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ABSTRACT

A model for rhythm similarity in electronic dance music
(EDM) is presented in this paper. Rhythm in EDM is built
on the concept of a ‘loop’, a repeating sequence typically
associated with a four-measure percussive pattern. The
presented model calculates rhythm similarity between seg-
ments of EDM in the following steps. 1) Each segment
is split in different perceptual rhythmic streams. 2) Each
stream is characterized by a number of attributes, most no-
tably: attack phase of onsets, periodicity of rhythmic el-
ements, and metrical distribution. 3) These attributes are
combined into one feature vector for every segment, af-
ter which the similarity between segments can be calcu-
lated. The stages of stream splitting, onset detection and
downbeat detection have been evaluated individually, and
a listening experiment was conducted to evaluate the over-
all performance of the model with perceptual ratings of
rhythm similarity.

1. INTRODUCTION

Music similarity has attracted research from multidisci-
plinary domains including tasks of music information re-
trieval and music perception and cognition. Especially for
rhythm, studies exist on identifying and quantifying rhythm
properties [16, 18], as well as establishing rhythm similar-
ity metrics [12]. In this paper, rhythm similarity is studied
with a focus on Electronic Dance Music (EDM), a genre
with various and distinct rhythms [2].

EDM is an umbrella term consisting of the ‘four on
the floor’ genres such as techno, house, trance, and the
‘breakbeat-driven’ genres such as jungle, drum ‘n’ bass,
breaks etc. In general, four on the floor genres are charac-
terized by a four-beat steady bass-drum pattern whereas
breakbeat-driven exploit irregularity by emphasizing the
metrically weak locations [2]. However, rhythm in EDM
exhibits multiple types of subtle variations and embellish-
ments. The goal of the present study is to develop a rhythm
similarity model that captures these embellishments and al-
lows for a fine inter-song rhythm similarity.
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Figure 1: Example of a common (even) EDM rhythm [2].

The model focuses on content-based analysis of audio
recordings. A large and diverse literature deals with the
challenges of audio rhythm similarity. These include, a-
mongst other, approaches to onset detection [1], tempo es-
timation [9,25], rhythmic representations [15,24], and fea-
ture extraction for automatic rhythmic pattern description
and genre classification [5, 12, 20]. Specific to EDM, [4]
study rhythmic and timbre features for automatic genre
classification, and [6] investigate temporal and structural
features for music generation.

In this paper, an algorithm for rhythm similarity based
on EDM characteristics and perceptual rhythm attributes is
presented. The methodology for extracting rhythmic ele-
ments from an audio segment and a summary of the fea-
tures extracted is provided. The steps of the algorithm are
evaluated individually. Similarity predictions of the model
are compared to perceptual ratings and further considera-
tions are discussed.

2. METHODOLOGY

Structural changes in an EDM track typically consist of
an evolution of timbre and rhythm as opposed to a verse-
chorus division. Segmentation is firstly performed to split
the signal into meaningful excerpts. The algorithm devel-
oped in [21] is used, which segments the audio signal based
on timbre features (since timbre is important in EDM struc-
ture [2]) and musical heuristics.

EDM rhythm is expressed via the ‘loop’, a repeating
pattern associated with a particular (often percussive) in-
strument or instruments [2]. Rhythm information can be
extracted by evaluating characteristics of the loop: First,
the rhythmic pattern is often presented as a combination of
instrument sounds (eg. Figure 1), thus exhibiting a certain
‘rhythm polyphony’ [3]. To analyze this, the signal is split
into the so-called rhythmic streams. Then, to describe the
underlying rhythm, features are extracted for each stream
based on three attributes: a) The attack phase of the on-
sets is considered to describe if the pattern is performed on
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Figure 2: Overview of methodology.

percussive or non-percussive instruments. Although this
is typically viewed as a timbre attribute, the percussive-
ness of a sound is expected to influence the perception
of rhythm [16]. b) The repetition of rhythmic sequences
of the pattern are described by evaluating characteristics
of different levels of onsets’ periodicity. c) The metrical
structure of the pattern is characterized via features ex-
tracted from the metrical profile [24] of onsets. Based on
the above, a feature vector is extracted for each segment
and is used to measure rhythm similarity. Inter-segment
similarity is evaluated with perceptual ratings collected via
a specifically designed experiment. An overview of the
methodology is shown in Figure 2 and details for each step
are provided in the sections below. Part of the algorithm is
implemented using the MIRToolbox [17].

2.1 Rhythmic Streams

Several instruments contribute to the rhythmic pattern of
an EDM track. Most typical examples include combina-
tions of bass drum, snare and hi-hat (eg. Figure 1). This
is mainly a functional rather than a strictly instrumental di-
vision, and in EDM one finds various instrument sounds
to take the role of bass, snare and hi-hat. In describing
rhythm, it is essential to distinguish between these sources
since each contributes differently to rhythm perception [11].

Following this, [15, 24] describe rhythmic patterns of
latin dance music in two prefixed frequency bands (low and
high frequencies), and [9] represents drum patterns as two
components, the bass and snare drum pattern, calculated
via non-negative matrix factorization of the spectrogram.
In [20], rhythmic events are split based on their perceived
loudness and brightness, where the latter is defined as a
function of the spectral centroid.

In the current study, rhythmic streams are extracted with
respect to the frequency domain and loudness pattern. In
particular, the Short Time Fourier Transform of the sig-
nal is computed and logarithmic magnitude spectra are as-
signed to bark bands, resulting into a total of 24 bands for
a 44.1 kHz sampling rate. Synchronous masking is mod-
eled using the spreading function of [23], and temporal
masking is modeled with a smoothing window of 50 ms.
This representation is hereafter referred to as loudness en-
velope and denoted by Lb for bark bands b = 1, . . . , 24. A
self-similarity matrix is computed from this 24-band rep-
resentation indicating the bands that exhibit similar loud-
ness pattern. The novelty approach of [8] is applied to
the 24⇥ 24 similarity matrix to detect adjacent bands that
should be grouped to the same rhythmic stream. The peak

locations P of the novelty curve define the number of the
bark band that marks the beginning of a new stream, i.e., if
P = {pi 2 {1, . . . , 24}|i = 1, . . . , I} for total number of
peaks I , then stream Si consists of bark bands b given by,

Si =

⇢
{b|b 2 [pi, pi+1 � 1]} for i = 1, . . . , I � 1
{b|b 2 [pI , 24]} for i = I.

(1)
An upper limit of 6 streams is considered based on the ap-
proach of [22] that uses a total of 6 bands for onset detec-
tion and [14] that suggests a total of three or four bands for
meter analysis.

The notion of rhythmic stream here is similar to the no-
tion of ‘accent band’ in [14] with the difference that each
rhythmic stream is formed on a variable number of adja-
cent bark bands. Detecting a rhythmic stream does not
necessarily imply separating the instruments, since if two
instruments play the same rhythm they should be grouped
to the same rhythmic stream. The proposed approach does
not distinguish instruments that lie in the same bark band.
The advantage is that the number of streams and the fre-
quency range for each stream do not need to be predeter-
mined but are rather estimated from the spectral represen-
tation of each song. This benefits the analysis of electronic
dance music by not imposing any constraints on the possi-
ble instrument sounds that contribute to the characteristic
rhythmic pattern.

2.1.1 Onset Detection

To extract onset candidates, the loudness envelope per bark
band and its derivative are normalized and summed with
more weight on loudness than its derivative, i.e.,

Ob(n) = (1� �)Nb(n) + �N 0
b(n) (2)

where Nb is the normalized loudness envelope Lb, N 0
b the

normalized derivative of Lb, n = 1, . . . , N the frame num-
ber for a total of N frames, and � < 0.5 the weighting fac-
tor. This is similar to the approach described by Equation
3 in [14] with reduced �, and is computed prior summation
to the different streams as suggested in [14,22]. Onsets are
detected via peak extraction within each stream, where the
(rhythmic) content of stream i is defined as

Ri = ⌃b2SiOb (3)

with Si as in Equation 1 and Ob as in Equation 2. This
onset detection approach incorporates similar methodolog-
ical concepts with the positively evaluated algorithms for
the task of audio onset detection [1] in MIREX 2012, and
tempo estimation [14] in the review of [25].
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Figure 3: Detection of rhyhmic streams using the novelty approach; first a bark-band spectrogram is computed, then its
self-similarity matrix, and then the novelty [7] is applied where the novelty peaks define the stream boundaries.

2.2 Feature Extraction

The onsets in each stream represent the rhythmic elements
of the signal. To model the underlying rhythm, features
are extracted from each stream, based on three attributes,
namely, characterization of attack, periodicity, and metri-
cal distribution of onsets. These are combined to a feature
vector that serves for measuring inter-segment similarity.
The sections below describe the feature extraction process
in detail.

2.2.1 Attack Characterization

To distinguish between percussive and non-percussive pat-
terns, features are extracted that characterize the attack pha-
se of the onsets. In particular, the attack time and attack
slope are considered, among other, essential in modeling
the perceived attack time [10]. The attack slope was also
used in modeling pulse clarity [16]. In general, onsets from
percussive sounds have a short attack time and steep attack
slope, whereas non-percussive sounds have longer attack
time and gradually increasing attack slope.

For all onsets in all streams, the attack time and at-
tack slope is extracted and split in two clusters; the ‘slow’
(non-percussive) and ‘fast’ (percussive) attack phase on-
sets. Here, it is assumed that both percussive and non-
percussive onsets can be present in a given segment, hence
splitting in two clusters is superior to, e.g., computing the
average. The mean and standard deviation of the two clus-
ters of the attack time and attack slope (a total of 8 features)
is output to the feature vector.

2.2.2 Periodicity

One of the most characteristic style elements in the musical
structure of EDM is repetition; the loop, and consequently
the rhythmic sequence(s), are repeating patterns. To ana-
lyze this, the periodicity of the onset detection function per
stream is computed via autocorrelation and summed across
all streams. The maximum delay taken into account is pro-
portional to the bar duration. This is calculated assuming a
steady tempo and 4

4 meter throughout the EDM track [2].
The tempo estimation algorithm of [21] is used.

From the autocorrelation curve (cf. Figure 4), a total of
5 features are extracted:

Lag duration of maximum autocorrelation: The lo-
cation (in time) of the second highest peak (the first being
at lag 0) of the autocorrelation curve normalized by the bar
duration. It measures whether the strongest periodicity oc-
curs in every bar (i.e. feature value = 1), or every half bar
(i.e. feature value = 0.5) etc.

Amplitude of maximum autocorrelation: The am-
plitude of the second highest peak of the autocorrelation
curve normalized by the amplitude of the peak at lag 0.
It measures whether the pattern is repeated in exactly the
same way (i.e. feature value = 1) or somewhat in a similar
way (i.e. feature value < 1) etc.

Harmonicity of peaks: This is the harmonicity as de-
fined in [16] with adaptation to the reference lag l0 cor-
responding to the beat duration and additional weighting
of the harmonicity value by the total number of peaks of
the autocorrelation curve. This feature measures whether
rhythmic periodicities occur in harmonic relation to the
beat (i.e. feature value = 1) or inharmonic (i.e. feature
value = 0).

Flatness: Measures whether the autocorrelation curve
is smooth or spiky and is suitable for distinguishing be-
tween periodic patterns (i.e. feature value = 0), and non-
periodic (i.e. feature value = 1).

Entropy: Another measure of the ‘peakiness’ of auto-
correlation [16], suitable for distinguishing between ‘clear’
repetitions (i.e. distribution with narrow peaks and hence
feature value close to 0) and unclear repetitions (i.e. wide
peaks and hence feature value increased).

2.2.3 Metrical Distribution

To model the metrical aspects of the rhythmic pattern, the
metrical profile [24] is extracted. For this, the downbeat
is detected as described in Section 2.2.4, onsets per stream
are quantized assuming a 4

4 meter and 16-th note resolu-
tion [2], and the pattern is collapsed to a total of 4 bars. The
latter is in agreement with the length of a musical phrase
in EDM being usually in multiples of 4, i.e., 4-bar, 8-bar,
or 16-bar phrase [2]. The metrical profile of a given stream
is thus presented as a vector of 64 bins (4 bars ⇥ 4 beats
⇥ 4 sixteenth notes per beat) with real values ranging be-
tween 0 (no onset) to 1 (maximum onset strength) as shown
in Figure 5. For each rhythmic stream, a metrical pro-
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Figure 5: Metrical profile of the rhythm in Figure 1 assum-
ing for simplicity a 2-bar length and constant amplitude.

file is computed and the following features are extracted.
Features are computed per stream and averaged across all
streams.

Syncopation: Measures the strength of the events lying
on the weak locations of the meter. The syncopation model
of [18] is used with adaptation to account for the amplitude
(onset strength) of the syncopated note. Three measures of
syncopation are considered that apply hierarchical weights
with, respectively, sixteenth note, eighth note, and quarter
note resolution.

Symmetry: Denotes the ratio of the number of onsets
in the second half of the pattern that appear in exactly the
same position in the first half of the pattern [6].

Density: Is the ratio of the number of onsets over the
possible total number of onsets of the pattern (in this case
64).

Fullness: Measures the onsets’ strength of the pattern.
It describes the ratio of the sum of onsets’ strength over the
maximum strength multiplied by the possible total number
of onsets (in this case 64).

Centre of Gravity: Denotes the position in the pattern
where the most and strongest onsets occur (i.e., indicates
whether most onsets appear at the beginning or at the end
of the pattern etc.).

Aside from these features, the metrical profile (cf. Fig-
ure 5) is also added to the final feature vector. This was
found to improve results in [24]. In the current approach,
the metrical profile is provided per stream, restricted to a
total of 4 streams, and output in the final feature vector in
order of low to high frequency content streams.

2.2.4 Downbeat Detection

The downbeat detection algorithm uses information from
the metrical structure and musical heuristics. Two assump-

tions are made:
Assumption 1: Strong beats of the meter are more likely

to be emphasized across all rhythmic streams.
Assumption 2: The downbeat is often introduced by

an instrument in the low frequencies, i.e. a bass or a kick
drum [2, 13].

Considering the above, the onsets per stream are quan-
tized assuming a 4

4 meter, 16-th note resolution, and a set of
downbeat candidates (in this case the onsets that lie within
one bar length counting from the beginning of the seg-
ment). For each downbeat candidate, hierarchical weights
[18] that emphasize the strong beats of the meter as indi-
cated by Assumption 1, are applied to the quantized pat-
terns. Note, there is one pattern for each rhythmic stream.
The patterns are then summed by applying more weight to
the pattern of the low-frequency stream as indicated by As-
sumption 2. Finally, the candidate whose quantized pattern
was weighted most, is chosen as the downbeat.

3. EVALUATION

One of the greatest challenges of music similarity evalu-
ation is the definition of a ground truth. In some cases,
objective evaluation is possible, where a ground truth is de-
fined on a quantifiable criterion, i.e., rhythms from a partic-
ular genre are similar [5]. In other cases, music similarity
is considered to be influenced by the perception of the lis-
tener and hence subjective evaluation is more suitable [19].
Objective evaluation in the current study is not preferable
since different rhythms do not necessarily conform to dif-
ferent genres or subgenres 1 . Therefore a subjective eval-
uation is used where predictions of rhythm similarity are
compared to perceptual ratings collected via a listening ex-
periment (cf. Section 3.4). Details of the evaluation of
rhythmic stream, onset, and downbeat detection are pro-
vided in Sections 3.1 - 3.3. A subset of the annotations
used in the evaluation of the latter is available online 2 .

3.1 Rhythmic Streams Evaluation

The number of streams is evaluated with perceptual anno-
tations. For this, a subset of 120 songs from a total of 60
artists (2 songs per artist) from a variety of EDM genres
and subgenres was selected. For each song, segmentation
was applied using the algorithm of [21] and a characteristic
segment was selected. Four subjects were asked to evalu-
ate the number of rhythmic streams they perceive in each
segment, choosing between 1 to 6, where rhythmic stream
was defined as a stream of unique rhythm.

For 106 of the 120 segments, the subjects’ responses’
standard deviation was significantly small. The estimated
number of rhythmic streams matched the mean of the sub-
ject’s response distribution with an accuracy of 93%.

1 Although some rhythmic patterns are characteristic to an EDM genre
or subgenre, it is not generally true that these are unique and invariant.

2
https://staff.fnwi.uva.nl/a.k.honingh/rhythm_

similarity.html
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3.2 Onset Detection Evaluation

Onset detection is evaluated with a set of 25 MIDI and
corresponding audio excerpts, specifically created for this
purpose. In this approach, onsets are detected per stream,
therefore onset annotations should also be provided per
stream. For a number of different EDM rhythms, MIDI
files were created with the constraint that each MIDI in-
strument performs a unique rhythmic pattern therefore rep-
resents a unique stream, and were converted to audio.

The onsets estimated from the audio were compared to
the annotations of the MIDI file using the evaluation mea-
sures of the MIREX Onset Detection task 3 . For this, no
stream alignment is performed but rather onsets from all
streams are grouped to a single set. For 25 excerpts, an
F -measure of 85%, presicion of 85%, and recall of 86%
are obtained with a tolerance window of 50 ms. Inaccura-
cies in onset detection are due (on average) to doubled than
merged onsets, because usually more streams (and hence
more onsets) are detected.

3.3 Downbeat Detection Evaluation

To evaluate the downbeat the subset of 120 segments de-
scribed in Section 3.1 was used. For each segment the
annotated downbeat was compared to the estimated one
with a tolerance window of 50 ms. An accuracy of 51%
was achieved. Downbeat detection was also evaluated at
the beat-level, i.e., estimating whether the downbeat cor-
responds to one of the four beats of the meter (instead of
off-beat positions). This gave an accuracy of 59%, mean-
ing that in the other cases the downbeat was detected on the
off-beat positions. For some EDM tracks it was observed
that high degree of periodicity compensates for a wrongly
estimated downbeat. The overall results of the similarity
predictions of the model (Section 3.4) indicate only a mi-
nor increase when the correct (annotated) downbeats are
taken into account. It is hence concluded that the down-
beat detection algorithm does not have great influence on
the current results of the model.

3.4 Mapping Model Predictions to Perceptual Ratings
of Similarity

The model’s predictions were evaluated with perceptual
ratings of rhythm similarity collected via a listening ex-
periment. Pairwise comparisons of a small set of segments
representing various rhythmic patterns of EDM were pre-
sented. Subjects were asked to rate the perceived rhythm
similarity, choosing from a four point scale, and report also
the confidence of their rating. From a preliminary collec-
tion of experiment data, 28 pairs (representing a total of 18
unique music segments) were selected for further analysis.
These were rated from a total of 28 participants, with mean
age 27 years old and standard deviation 7.3. The 50% of
the participants received formal musical training, 64% was
familiar with EDM and 46% had experience as EDM mu-
sician/producer. The selected pairs were rated between 3 to
5 times, with all participants reporting confidence in their

3 www.MIREX.org

r p features
-0.17 0.22 attack characterization
0.48 0.00 periodicity
0.33 0.01 metrical distribution excl. metrical profile
0.69 0.00 metrical distribution incl. metrical profile
0.70 0.00 all

Table 1: Pearson’s correlation r and p-values between the
model’s predictions and perceptual ratings of rhythm sim-
ilarity for different sets of features.

rating, and all ratings being consistent, i.e., rated similarity
was not deviating more than 1 point scale. The mean of the
ratings was utilized as the ground truth rating per pair.

For each pair, similarity can be calculated via applying
a distance metric to the feature vectors of the underlying
segments. In this preliminary analysis, the cosine distance
was considered. Pearson’s correlation was used to compare
the annotated and predicted ratings of similarity. This was
applied for different sets of features as indicated in Table 1.

A maximum correlation of 0.7 was achieved when all
features were presented. The non-zero correlation hypoth-
esis was not rejected (p > 0.05) for the attack character-
ization features indicating non-significant correlation with
the (current set of) perceptual ratings. The periodicity fea-
tures are correlated with r = 0.48, showing a strong link
with perceptual rhythm similarity. The metrical distribu-
tion features indicate a correlation increase of 0.36 when
the metrical profile is included in the feature vector. This
is in agreement with the finding of [24].

As an alternative evaluation measure, the model’s pre-
dictions and perceptual ratings were transformed to a bi-
nary scale (i.e., 0 being dissimilar and 1 being similar)
and their output was compared. The model’s predictions
matched the perceptual ratings with an accuracy of 64%.
Hence the model matches the perceptual similarity ratings
at not only relative (i.e., Pearson’s correlation) but also ab-
solute way, when a binary scale similarity is considered.

4. DISCUSSION AND FUTURE WORK

In the evaluation of the model, the following considera-
tions are made. High correlation of 0.69 was achieved
when the metrical profile, output per stream, was added to
the feature vector. An alternative experiment tested the cor-
relation when considering the metrical profile as a whole,
i.e., as a sum across all streams. This gave a correlation of
only 0.59 indicating the importance of stream separation
and hence the advantage of the model to account for this.

A maximum correlation of 0.7 was reported, taking into
account the downbeat detection being 51% of the cases
correct. Although regularity in EDM sometimes compen-
sates for this, model’s predictions can be improved with a
more robust downbeat detection.

Features of periodicity (Section 2.2.2) and metrical dis-
tribution (Section 2.2.3) were extracted assuming a 4

4 me-
ter, and 16-th note resolution throughout the segment. This
is generally true for EDM, but exceptions do exist [2]. The
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assumptions could be relaxed to analyze EDM with ternary
divisions or no 4

4 meter, or expanded to other music styles
with similar structure.

The correlation reported in Section 3.4 is computed from
a preliminary set of experiment data. More ratings are cur-
rently collected and a regression analysis and tuning of the
model is considered in future work.

5. CONCLUSION

A model of rhythm similarity for Electronic Dance Music
has been presented. The model extracts rhythmic features
from audio segments and computes similarity by compar-
ing their feature vectors. A method for rhythmic stream
detection is proposed that estimates the number and range
of frequency bands from the spectral representation of each
segment rather than a fixed division. Features are extracted
from each stream, an approach shown to benefit the anal-
ysis. Similarity predictions of the model match perceptual
ratings with a correlation of 0.7. Future work will fine-tune
predictions based on a perceptual rhythm similarity model.
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