
TEMPO- AND TRANSPOSITION-INVARIANT IDENTIFICATION OF
PIECE AND SCORE POSITION

Andreas Arzt1, Gerhard Widmer1,2, Reinhard Sonnleitner1
1Department of Computational Perception, Johannes Kepler University, Linz, Austria

2Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria
andreas.arzt@jku.at

ABSTRACT

We present an algorithm that, given a very small snippet
of an audio performance and a database of musical scores,
quickly identifies the piece and the position in the score.
The algorithm is both tempo- and transposition-invariant.
We approach the problem by extending an existing tempo-
invariant symbolic fingerprinting method, replacing the ab-
solute pitch information in the fingerprints with a relative
representation. Not surprisingly, this leads to a big de-
crease in the discriminative power of the fingerprints. To
overcome this problem, we propose an additional verifi-
cation step to filter out the introduced noise. Finally, we
present a simple tracking algorithm that increases the re-
trieval precision for longer queries. Experiments show that
both modifications improve the results, and make the new
algorithm usable for a wide range of applications.

1. INTRODUCTION

Efficient algorithms for content-based retrieval play an im-
portant role in many areas of music retrieval. A well known
example are audio fingerprinting algorithms, which permit
the retrieval of all audio files from the database that are
(almost) exact replicas of a given example query (a short
audio excerpt). For this task there exist efficient algorithms
that are in everyday commercial use (see e.g. [4], [13]).

A related task, relevant especially in the world of classi-
cal music, is the following: given a short audio excerpt of
a performance of a piece, identify both the piece (i.e. the
musical score the performance is based on), and the posi-
tion within the piece. For example, when presented with an
audio excerpt of Vladimir Horowitz playing Chopin’s Noc-
turne Op. 55 No. 1, the goal is to return the name and data
of the piece (Nocturne Op. 55 No. 1 by Chopin) rather than
identifying the exact audio recording. Hence, the database
for this task does not contain audio recordings, but sym-
bolic representations of musical scores. This is related to
version identification (see [11] for an overview), where the

c© Andreas Arzt1, Gerhard Widmer1,2, Reinhard
Sonnleitner1.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Andreas Arzt1, Gerhard Widmer1,2,
Reinhard Sonnleitner1. “Tempo- and Transposition-invariant Identifica-
tion of Piece and Score Position”, 15th International Society for Music
Information Retrieval Conference, 2014.

goal is to identify different versions of one and the same
song, mostly in order to detect cover versions in popular
music.

A common way to solve this task, especially for clas-
sical music, is to use an audio matching algorithm (see
e.g. [10]). Here, all the scores are first transformed into
audio files (or a suitable in-between representation), and
then aligned to the query in question, most commonly with
algorithms based on dynamic programming techniques. A
limitation of this approach is that relatively large queries
are needed (e.g. 20 seconds), to achieve good retrieval re-
sults. Another problem is computational cost. To cope
with this, in [8] clever indexing strategies were presented
that greatly reduce the computation time.

In [2] an approach is presented that tries to solve the
task in the symbolic domain instead. First, the query is
transformed into a symbolic list of note events via an audio
transcription algorithm. Then, a globally tempo-invariant
fingerprinting method is used to query the database and
identify matching positions. In this way even for queries
with lengths of only a few seconds very robust retrieval
results can be achieved. A downside is that this method
depends on automatic music transcription, which in gen-
eral is an unsolved problem. In [2] a state of the art tran-
scription system for piano music is used, thus limiting the
approach to piano music only, at least for the time being.

In addition, we identified two other limitations of this
algorithm, which we tackle in this paper. First, the ap-
proach depends on the performer playing the piece in the
correct key and the correct octave (i.e. in the same key
and octave as it is stored in the database). In music it
is quite common to transpose a piece of music accord-
ing to specific circumstances, e.g. a singer preferring to
sing in a specific range. Secondly, while this algorithm
works very well for small queries, larger queries with local
tempo changes within the query tend to be problematic. Of
course these limitations were already discussed in the lit-
erature for other approaches, see e.g. [10] for tempo- and
transposition-invariant audio matching.

In this paper we present solutions to both problems by
proposing (1) a transposition-invariant fingerprinting meth-
od for symbolic music representations which uses an ad-
ditional verification step that largely compensates for the
general loss in discriminative power, and (2) a simple but
effective tracking method that essentially achieves not only
global, but also local invariance to tempo changes.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

549



2. TEMPO-INVARIANT FINGERPRINTING

The basis of our algorithm is a fingerprinting method pre-
sented in [2] (which in turn is based on [13]) that is invari-
ant to the global tempo of both the query and the entries
in the database. In this section we will give a brief sum-
mary of this algorithm. Then we will show how to make
it transposition-invariant (Section 3) and how to make it
invariant to local tempo changes (Section 4).

2.1 Building the Score Database

In [2] a fingerprinting algorithm was introduced that is in-
variant to global tempo differences between the query and
the scores in the database. Each score is represented as an
ordered list of [ontime, pitch] pairs, which in turn are ex-
tracted from MIDI files with a suitable but constant tempo
for the whole piece.

For each score, fingerprint tokens are generated and stor-
ed in a database. Tokens are created from triplets of note-
on events according to some constraints to make them tem-
po invariant. A fixed event e is paired with the first n1

events with a distance of at least d seconds “in the fu-
ture” of e. This results in n1 event pairs. For each of
these pairs this step is repeated with the n2 future events
with a distance of at least d seconds. This finally results
in n1 ∗ n2 event triplets. In our experiments we used the
values d = 0.05 seconds and n1 = n2 = 5 (i.e. for each
event 25 tokens are created). The pair creation steps are
constrained to notes which are at most 2 octaves apart.

Given such a triplet consisting of the events e1, e2 and
e3, the time difference td1,2 between e1 and e2 and the
time difference td2,3 between e2 and e3 are computed. To
get a tempo independent fingerprint token, the ratio of the
time differences is computed: tdr =

td2,3

td1,2
. This finally

leads to a fingerprint token dbtoken = [pitch1 : pitch2 :
pitch3 : tdr ] : pieceID : time : td1,2, with the hash
key being [pitch1 : pitch2 : pitch3 : tdr ], pieceID the
identifier of the piece, and time the onset time of e1 . The
tokens in our database are unique, i.e. we only insert the
generated token if an equivalent one does not exist yet.

2.2 Querying the Database

Before querying the database, the query (an audio snippet
of a performance) has to be transformed into a symbolic
representation. The algorithm we use to transcribe musical
note onsets from an audio signal is based on the system
described in [3]. The result of this step is a possibly very
noisy list of [ontime, pitch] pairs.

This list is processed in exactly the same fashion as
above, resulting in a list of tokens of the form qtoken =
[qpitch1 : qpitch2 : qpitch3 : qtdr ] : qtime : qtd1,2.
Then, all the tokens which match hash keys of the query
tokens are extracted from the database (we allow a maxi-
mal deviation of the ratio of the time differences of 15%).
For querying, the general idea is to find regions in the
database of scores which share a continuous sequence of
tokens with the query. To quickly identify these regions
we use the histogram approach presented in [2] and [13].

This is a computationally inexpensive way of finding these
sequences by sorting the matched tokens into a histogram
with a bin width of 1 second such that peaks appear at the
start points of these regions (i.e. the start point where the
query matches a database position). We also included the
restriction that each query token can only be sorted at most
once into each bin of the histogram, effectively preventing
excessively high scores for sequences of repeated patterns
in a brief period of time.

The matching score for each score position is computed
as the number of tokens in the respective histogram bin. In
addition, we can also compute a tempo estimate, i.e. the
tempo of the performance compared to the tempo in the
score, by taking the mean of the ratios of td1,2 and qtd1,2

of the respective matching query and database tokens that
were sorted in the bin in question. We will use this infor-
mation for the tracking approach presented in Section 4.

3. TRANSPOSITION-INVARIANT
FINGERPRINTS

3.1 General Approach

In the algorithm described above, the pitches in the hash
keys are represented as absolute values. Thus, if a per-
former decides to transpose a piece by an arbitrary number
of semi-tones, any identification attempt by the algorithm
must fail.

To overcome this problem, we suggest a simple, relative
representation of the pitch values, which makes the algo-
rithm invariant to linear transpositions. Instead of using 3
absolute pitch values, we replace them by 2 differences,
pd1 = pitch2 − pitch1 and pd2 = pitch3 − pitch2 , re-
sulting in a hash key [pd1 : pd2 : tdr ]. For use in Section
3.2 below we additionally store pitch1, the absolute pitch
of the first note, in the token value.

In every other aspect the algorithm works in the same
way as the purely tempo-invariant version described above.
Of course this kind of transposition invariance cannot come
for free as the resulting fingerprints will not be as discrim-
inative as before. This has two important direct conse-
quences: (1) the retrieval accuracy will suffer, and (2) for
every query a lot more matching tokens are found in the
database, thus the runtime for each query increases (see
Section 5).

3.2 De-noising the Results: Token Verification

To compensate for the loss in discriminative power we pro-
pose an additional step before accepting a database token
as a match to the query. The general idea is taken from [9]
and was first used in a music context by [12]. It is based
on a verification step for each returned token that looks at
the context within the query and the context at the returned
position the database.

Each token dbtoken that was returned in response to
a qtoken can be used to project the query (i.e. the notes
identified from the query audio snippet by the transcrip-
tion algorithm) to the possibly matching position in the
score indicated by the dbtoken. The intuition then is that at

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

550



true matching positions we will find a majority of the notes
from the query at their expected positions in the score. This
will permit us to more reliably decide if the match of hash
keys is a false positive or an actual match.

To do this, we need to compute the pitch shift and the
tempo difference between the query and the potential po-
sition in the database. The pitch shift is computed as the
difference of the pitch1 of qtoken and dbtoken. The dif-
ference in tempo is computed as the ratio of td1,2 of the
two tokens. This information can now in turn be used to
compute the expected time and pitch for each query note
at the current score position hypothesis. We actually do
not do this for the whole query, but only for a window of
w = 10 notes, centred at the event e1 of the query, and we
exclude the notes e1, e2 and e3 from this list (as they were
already used to come up with the match in the first place).

We now take these w notes and check if they appear in
the database as would be expected. In this search we are
strict on the pitch value, but allow for a window of ±100
ms with regards to the actual time in the database. If we can
confirm that a certain percentage of notes from the query
appears in the database as expected (in the experiments we
used 0.8), we finally accept the query token as an actual
match.

As this approach is computationally expensive, we actu-
ally compute the results in two steps: we first do ‘normal’
fingerprinting without the verification step and only keep
the top 5% of the results. We then perform the verification
step on these results only and recompute the scores. On
our dataset this effectively more than halves the computa-
tion time.

4. PROCESSING LONGER QUERIES:
MULTI-AGENT TRACKING

The fingerprinting method in [2] was mainly concerned
with invariance regarding the global tempo. When apply-
ing this algorithm to our database with longer queries, lo-
cal tempo changes (i.e. tempo changes within the query)
prove to be problematic, because they break the ‘cheap’
histogram approach that is used to determine continuous
regions of matching tokens.

Instead of using computationally much more expensive
methods for determining these regions, we propose to split
longer queries into shorter ones and track the results of
these sub-queries over time. This is based on the assump-
tion that in short queries the tempo is (quasi) stationary,
and that a few exceptions will not break the tracking algo-
rithm we use. In our implementation, we split each query
into sub-queries with a window size of w = 15 notes and
a hop size of h = 5 notes and then feed each sub-query to
the fingerprinter individually.

Each result of a sub-query (but at most the top 100 po-
sitions that are returned) is in turn fed to an on-line posi-
tion hypothesis tracking algorithm. In our current proof-
of-concept implementation we use a simple on-line rule-
based multi-agent approach, inspired by the beat-tracking
algorithm described in [6]. For a purely off-line retrieval
task a non-causal algorithm will lead to even better results.

The basic idea is to create virtual ‘agents’ for positions
in the result sets. Each agent has a current hypothesis of
the piece, the position within the piece and the tempo, and
a score based on the results of the sub-queries. The agents
are updated, if possible, with newly arriving data. In do-
ing so, agents that represent positions that successively oc-
cur in result sets will accumulate higher scores than agents
that represent positions that only occurred once or twice by
chance, and are most probably false positives.

More precisely, we iterate over all sub-queries and per-
form the following steps in each iteration:

• Normalise Scores: First the scores of the positions
in the result set of the sub-query are normalised by
dividing them by their median. This makes sure that
each iteration has approximately the same influence
on the tracking process.

• Update Agents: For every agent, we look for a match-
ing position in the result set of the sub-query (i.e. a
position that approximately fits the extrapolated po-
sition of the agent, given the old position, the tempo,
and the elapsed time). The position, the tempo and
the score of the agent are updated with the new data
from the matching result of the sub-query. If we do
not find a matching position in the result set, we up-
date the agent with a score of 0, and the extrapo-
lated position is taken as the new hypothesis. If a
matching position is found, the accumulated score
is updated in a fashion such that scores from further
in the past have a smaller impact than more recent
ones. Each agent has a ring buffer s of size 50, in
which the scores of the individual sub-queries are
being stored. The accumulated score of the agent is

then calculated as scoreacc =
50∑
i=1

si
1+log i , where s1

is the most recent score.

• Create Agents: Each sub-query result that was not
used to update an existing agent is used to initialise
a new agent at the respective score position (i.e. in
the first iteration up to 100 agents are created).

• Remove obsolete Agents: Finally, agents with low
scores are removed. In our implementation we sim-
ply remove agents that are older then 10 iterations
and are not part of the current top 25 agents.

At each point in time the agents are ordered by scoreacc
and can be seen as hypotheses about the current position
in the database of pieces. Thus, in the case of a single
long query, the agents with the highest accumulated scores
are returned in the end. In an on-line scenario, where an
audio stream is constantly being monitored by the finger-
printing system, the current top hypotheses can be returned
after each performed update (i.e. after each processed sub-
query).

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

551



5. EVALUATION

5.1 Dataset Description

For the evaluation of the proposed algorithms a ground
truth is needed. We need exact alignments of performances
(recordings) of classical music to their respective scores
such that we know exactly when each note given in the
score is actually played in the performance. This data can
either be generated by a computer program or by extensive
manual annotation but both ways are prone to errors.

Luckily, we have access to two unique datasets where
professional pianists played performances on a computer-
controlled piano 1 and thus every action (e.g. key presses,
pedal movements) was recorded. The first dataset (see
[14]) consists of performances of the first movements of
13 Mozart piano sonatas by Roland Batik. The second,
much larger, dataset consists of nearly the complete solo
piano works by Chopin performed by Nikita Magaloff [7].
For the latter set we do not have the original audio files and
thus replayed the symbolic performance data on a Yamaha
N2 hybrid piano and recorded the resulting performances.

As we have both symbolic and audio information about
the performances, we know the exact timing of each played
note in the audio files. To build the score database we con-
verted the sheet music to MIDI files with a constant tempo
such that the overall duration of the file is similar to a ‘nor-
mal’ performance of the piece.

In addition to these two datasets the score database in-
cludes the complete Beethoven piano sonatas, two sym-
phonies by Beethoven, and various other piano pieces. To
this data we have no ground truth, but this is irrelevant
since we do not actively query for them with performance
data in our evaluation runs. See Table 1 for an overview of
the complete dataset.

5.2 Results

For the evaluation we follow the procedure from [2]. A
score position X is considered correct if it marks the be-
ginning (+/- 1.5 seconds) of a score section that is identi-
cal in note content, over a time span the length of the query
(but at least 20 notes), to the note content of the ‘real’ score
situation corresponding to the audio segment that the sys-
tem was just listening to. We can establish this as we have
the correct alignment between performance time and score
positions — our ground truth). This complex definition
is necessary because musical pieces may contain repeated
sections or phrases, and it is impossible for the system (or
anyone else, for that matter) to guess the ‘true’ one out of a
set of identical passages matching the current performance
snippet, given just that performance snippet as input. We
acknowledge that a measurement of musical time in a score
in terms of seconds is rather unusual. But as the MIDI
tempos in our database generally are set in a meaningful
way, this seemed the best decision to make errors compa-
rable over different pieces, with different time signatures –
it would not be very meaningful to, e.g. compare errors in
bars or beats over different pieces.

1 Bösendorfer SE 290

We tested the algorithms with different query lengths:
10, 15, 20 and 25 notes (automatically transcribed from
the audio query). For each of the query lengths, we gener-
ated 2500 queries by picking random points in the perfor-
mances of our test database, and used them as input for the
proposed algorithms. Duplicate retrieval results (i.e. posi-
tions that have the exact same note content; also, duplicate
piece IDs for the experiments on piece-level) are removed
from the result set.

Table 2 shows the results of the original tempo-invariant
(but not pitch-invariant) algorithm on our dataset. Here,
we present results for two categories: correctly identified
pieces, and correctly identified piece and position in the
score. For both categories we give the percentage of cor-
rect results at rank 1, and the mean reciprocal rank. This
experiment basically confirms the results that were reported
in [2] on a larger database (more than twice as large), for
which a slight drop in performance is expected.

In addition, for the experiments with the transposition-
invariant fingerprinting method, we transposed each score
randomly by between -11 and +11 semitones – although
strictly speaking this was not necessary, as the transposition-
invariant algorithm returns exactly the same (large) set of
tokens for un-transposed and transposed queries or scores.

Table 3 gives the results of the transposition-invariant
method on these queries, both without (left) and with the
verification step (right). As expected, the use of pitch-
invariant fingerprints without additional verification causes
a big decrease in retrieval precision (compare left half of
Table 3 with Table 2). Furthermore, the loss in discrimi-
native power of the fingerprint tokens also results in an in-
creased number of tokens returned for every query, which
has a direct influence on the runtime of the algorithm (last
row in Table 3). The proposed verification step solves the
precision problem, at least to some extent, and in our opin-
ion makes the approach usable. Of course this does not
come for free, as the runtime increases slightly.

We also tried to use the verification step with the origi-
nal tempo-invariant algorithm but were not able to improve
on the retrieval results. At least on our test data the tempo-
invariant fingerprints are discriminative enough to mostly
avoid false positives.

Finally, Table 4 gives the results on slightly longer quer-
ies for both the original tempo-invariant and the new tempo-
and transposition-invariant algorithm. As can be seen, for
the detection of the exact position in the score, using no
tracking, the results based on queries with length 100 notes
are worse than those for queries with only 50 notes, i.e.
more information leads to worse results. This is caused
by local tempo changes within the query, which break the
histogram approach for finding sequences of matching to-
kens.

As shown on the right hand side for both fingerprinting
types in Table 4, the approach of splitting longer queries
into shorter ones and tracking the results takes care of this
problem. Please note that for the tracking approach we
check if the position hypotheses after the last tracking step
match the correct position in the score. Thus, as this is an

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

552



Score Database Testset
Data Description Number of Pieces Notes in Score Notes in Performance Performance Duration
Chopin Corpus 154 325,263 326,501 9:38:36
Mozart Corpus 13 42,049 42,095 1:23:56
Additional Pieces 159 574,926 – –
Total 326 942,238

Table 1. Database and Testset Overview. In the database, all the pieces are included. As we only have performances
aligned to the scores for the Chopin and the Mozart corpus, only these are included in the test set to query the database.

Query Length in Notes 10 15 20 25
Correct Piece as Top Match 0.6 0.82 0.88 0.91
Correct Piece Mean Reciprocal Rank (MRR) 0.68 0.86 0.91 0.93
Correct Position as Top Match 0.53 0.72 0.77 0.79
Correct Position Mean Reciprocal Rank (MRR) 0.60 0.79 0.83 0.85
Mean Query Length in Seconds 1.47 2.26 3.16 3.82
Mean Query Execution Time in Seconds 0.02 0.06 0.11 0.16

Table 2. Results for different query sizes of the original tempo-invariant piece and score position identification algorithm
on the test database at the piece level (upper half) and on the score position level (lower half). Each estimate is based on
2500 random audio queries. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank
(MRR) are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.

Without Verification With Verification
Query Length in Notes 10 15 20 25 10 15 20 25
Correct Piece as Top Match 0.30 0.40 0.41 0.40 0.43 0.63 0.71 0.75
Correct Piece MRR 0.36 0.47 0.50 0.49 0.49 0.69 0.76 0.79
Correct Position as Top Match 0.23 0.33 0.32 0.32 0.33 0.51 0.57 0.60
Correct Position MRR 0.29 0.40 0.41 0.40 0.41 0.59 0.66 0.69
Mean Query Length in Seconds 1.47 2.26 3.16 3.82 1.47 2.26 3.16 3.82
Mean Query Execution Time in Seconds 0.10 0.32 0.62 0.91 0.12 0.38 0.72 1.09

Table 3. Results for different query sizes of the proposed tempo- and transposition-invariant piece and score position
identification algorithm on the test database with (right) and without (left) the proposed verification step. Each estimate is
based on 2500 random audio queries. The upper half shows recognition results on the piece level, the lower half on the
score position level. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank (MRR)
are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.

Tempo-invariant Tempo- and Pitch-invariant
No Tracking Tracking No Tracking Tracking

Query Length in Notes 50 100 50 100 50 100 50 100
Correct Piece as Top Match 0.95 0.96 0.98 1 0.81 0.79 0.92 0.98
Correct Piece MRR 0.97 0.98 0.99 1 0.85 0.82 0.94 0.99
Correct Position as Top Match 0.78 0.73 0.87 0.88 0.64 0.59 0.77 0.83
Correct Position MRR 0.85 0.81 0.89 0.90 0.72 0.66 0.82 0.86
Mean Query Length in Seconds 7.62 15.03 7.62 15.03 7.62 15.03 7.62 15.03
Mean Query Execution Time in Seconds 0.42 0.92 0.49 1.08 2.71 6.11 3.21 7.09

Table 4. Results of the proposed tracking algorithm on the test database for both the original tempo-invariant algorithm
(left) and the new tempo- and transposition-invariant approach (right), including the verification step. For the category ‘No
Tracking’, the query was fed directly to the fingerprinting algorithm. For ‘Tracking’, the queries were split into sub-queries
with a window size of 15 notes and a hop size of 5 notes, and the individual results were tracked by our proof-of-concept
multi-agent approach. Evaluation of the tracking approach is based on the finding the endpoint of a query (see text). Each
estimate is based on 2500 random audio queries. The upper half shows recognition results on the piece level, the lower half
on the score position level. For both categories the percentage of correct detections at rank 1 and the mean reciprocal rank
(MRR) are given. Additionally, the mean length of the query in seconds and the mean execution time for a query is shown.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

553



on-line algorithm, we are not interested in the start posi-
tion of the query in the score, but in the endpoint, i.e. if the
query was tracked successfully, and the correct current po-
sition is returned. Even the causal approach leads to a high
percentage of correct results with both the original and the
tempo- and pitch-invariant fingerprinting algorithm. Most
of the remaining mistakes happen because (very) similar
parts within one and the same piece are confused.

6. CONCLUSIONS

6.1 Applications

The proposed algorithm is useful in a wide range of ap-
plications. As a retrieval algorithm it enables fast and ro-
bust (inter- and intra-document) searching and browsing in
large collections of musical scores and corresponding per-
formances. Furthermore, we believe that the algorithm is
not limited to retrieval tasks in classical music, but may be
of use for cover version identification in general, and pos-
sibly many other tasks. For example, it was already suc-
cessfully applied in the field of symbolic music processing
to find repeating motifs and sections in complex musical
scores [5].

Currently, the algorithm is mainly used in an on-line
scenario (see [1]). In connection with a score following
algorithm it can act as a ‘piano music companion’. The
system is able to recognise arbitrary pieces of classical pi-
ano music, identify the position in the score and track the
progress of the performer. This enables a wide range of
applications for musicians and for consumers of classical
music.

6.2 Future Work

In its current state the algorithm is able to recognise the
correct piece and the score position even for very short
queries of piano music. It is invariant to both tempo dif-
ferences and transpositions and can be used in on-line con-
texts (i.e. to monitor audio streams and at any time report
what it is listening to) and as an off-line retrieval algorithm.
The main direction for future work is to lift the restriction
to piano music and make it applicable to all kinds of classi-
cal music, even orchestral music. The limiting component
at the moment is the transcription algorithm, which is only
trained on piano sounds.

7. ACKNOWLEDGMENTS

This research is supported by the Austrian Science Fund
(FWF) under project number Z159 and the EU FP7 Project
PHENICX (grant no. 601166).

8. REFERENCES

[1] A. Arzt, S. Böck, S. Flossmann, H. Frostel, M. Gasser,
and G. Widmer. The complete classical music compan-
ion v0. 9. In Proceedings of the 53rd AES Conference
on Semantic Audio, 2014.

[2] A. Arzt, S. Böck, and G. Widmer. Fast identification of
piece and score position via symbolic fingerprinting. In
Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2012.

[3] S. Böck and M. Schedl. Polyphonic piano note tran-
scription with recurrent neural networks. In Proceed-
ings of the International Conference on Acoustics,
Speech, and Signal Processing (ICASSP), 2012.

[4] P. Cano, E. Batlle, T. Kalker, and J. Haitsma. A re-
view of algorithms for audio fingerprinting. In Pro-
ceedings of the IEEE International Workshop on Mul-
timedia Signal Processing (MMSP), 2002.

[5] T. Collins, A. Arzt, S. Flossmann, and G. Widmer.
Siarct-cfp: Improving precision and the discovery of
inexact musical patterns in point-set representations. In
Proceedings of the International Society for Music In-
formation Retrieval Conference (ISMIR), 2013.

[6] S. Dixon. Automatic extraction of tempo and beat from
expressive performances. Journal of New Music Re-
search, 30(1):39–58, 2001.

[7] S. Flossmann, W. Goebl, M. Grachten, B. Nie-
dermayer, and G. Widmer. The Magaloff project:
An interim report. Journal of New Music Research,
39(4):363–377, 2010.

[8] F. Kurth and M. Müller. Efficient index-based audio
matching. IEEE Transactions on Audio, Speech, and
Language Processing, 16(2):382–395, 2008.

[9] D. Lang, D. W. Hogg, K. Mierle, M. Blanton, and
S. Roweis. Astrometry. net: Blind astrometric calibra-
tion of arbitrary astronomical images. The Astronomi-
cal Journal, 139(5):1782, 2010.

[10] M. Müller, F. Kurth, and M. Clausen. Audio matching
via chroma-based statistical features. In Proceedings
of the International Conference on Music Information
Retrieval (ISMIR), 2005.

[11] J. Serra, E. Gómez, and P. Herrera. Audio cover song
identification and similarity: background, approaches,
evaluation, and beyond. In Z. W. Ras and A. A. Wiec-
zorkowska, editors, Advances in Music Information
Retrieval, pages 307–332. Springer, 2010.

[12] R. Sonnleitner and G. Widmer. Quad-based audio fin-
gerprinting robust to time and frequency scaling. In
Proceedings of the International Conference on Dig-
ital Audio Effects, 2014.

[13] A. Wang. An industrial strength audio search algo-
rithm. In Proceedings of the International Conference
on Music Information Retrieval (ISMIR), 2003.

[14] G. Widmer. Discovering simple rules in complex data:
A meta-learning algorithm and some surprising mu-
sical discoveries. Artificial Intelligence, 146(2):129–
148, 2003.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

554




