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ABSTRACT

This paper focuses on automatic melody transcription in a
situation where a chord transcription is already available.
Given an excerpt of music in audio form and a chord tran-
scription in symbolic form, the task is to create a symbolic
melody transcription that consists of note onset times and
pitches. We present an algorithm that divides the audio
into segments based on the chord transcription, and then
matches potential melody patterns to each segment. The
algorithm uses chord information to favor melody patterns
that are probable in the given harmony context. To eval-
uate the algorithm, we present a new ground truth dataset
that consists of 1,5 hours of audio excerpts together with
hand-made melody and chord transcriptions.

1. INTRODUCTION

Melody and chords have a strong connection in Western
music. The purpose of this paper is to exploit this con-
nection in automatic melody transcription. Given a chord
transcription, we can use it in melody transcription to con-
strain the set of possible melodies. Both the rhythm and
the pitches of the melody should match the chords in a suc-
cessful melody transcription.

For example, let us consider the melody in Figure 1.
The melody consists of 16 bars, each annotated with a
chord symbol. The first observation is that chord bound-
aries divide the melody into segments of approximately
equal length. Each of the segments has a simple rhythmical
structure. In this case the chord boundaries exactly match
the bar lines, and each segment contains up to three melody
notes. Of course, many melodies are more complex than
this, but the underlying segmentation is still usually appar-
ent.

Let us now consider the pitches of the melody. The key
of the melody mainly determines what pitches typically oc-
cur in the melody. In this example the key of the melody
is C major, and almost all melody pitches belong to the C
major scale. However, there are two exceptions: the G#
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Figure 1: A melody from Disney’s Snow White and the
Seven Dwarfs. The chord transcription consists of 16
chords, and the melody transcription consists of 30 notes.

note in the second bar and the C# note in the sixth bar.
Thus, although the melody follows the C major scale, the
individual chords also have an effect on the pitches. In this
case the major thirds of E major and A major chords are so
predominant that the melody adapts to the harmony.

Human transcribers routinely use this kind of musical
knowledge in music transcription. If the melody does not
match the chords, or the chords do not match the melody,
the transcription cannot be correct. However, in automatic
music transcription, chord extraction and melody extrac-
tion have been studied separately for the most part.

Currently, the best automatic systems for chord tran-
scription produce promising results, while melody tran-
scription seems to be a more challenging problem. For this
reason, we approach automatic melody transcription with
the assumption that a chord transcription has already been
done. We present an algorithm that divides the audio data
into segments based on the chord boundaries. After this,
the algorithm assigns each segment a melody pattern that
matches both the audio data and the chord information.

1.1 Problem statement

Given an excerpt of music in audio form and a chord tran-
scription in symbolic form, the task is to produce a melody
transcription in symbolic form. We concentrate on typical
Western music, and assume that the pitches of the notes are
given in semitones.

We assume that the audio data A is divided into nA
frames of equal length using some preprocessing method.
For each audio frame k (1 ≤ k ≤ nA), we are given values
A[k].begin and A[k].end that are time values in seconds
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when the frame begins and ends. In addition, for each pos-
sible melody note q we are given a real number A[k][q] in
the range [0, 1]. This value estimates the strength of the
note q in frame k.

The chord transcriptionC consists of nC chord changes.
For each chord change k (1 ≤ k ≤ nC), we are given a
value C[k].time that is the time when the chord changes.
In addition, we are given a value C[k].chord that is the
name of the chord. We restrict ourselves to triads (major,
minor, diminished and augmented chords that consist of
three notes), which results in a total of 48 possible chords.

Finally, the outcome of the algorithm should be a melody
transcription M that consists of nM melody notes. For
each melody note k (1 ≤ k ≤ nM ), the algorithm should
produce valuesM [k].time andM [k].pitch that denote the
onset time of the note and the pitch of the note.

Throughout the paper, we use MIDI note numbers to
refer to the pitches. Thus, every pitch has a unique integer
value and the interval of pitches a and b is |a−b| semitones.
Pitch C4 (261.6 Hz) is associated with MIDI value 60.

1.2 Related work

Automatic melody transcription has been studied actively
during the last decade. Detailed reviews of the proposed
methods can be found in [16] and [20].

The usual first step in automatic melody transcription
is to detect potential melody notes in the audio signal. The
most popular method for this is to calculate a salience func-
tion for the audio frames using the discrete Fourier trans-
form or a similar technique (e.g. [2, 6, 15, 19]). Other pro-
posed approaches for audio data processing include signal
source separation [3] and audio frame classification [5].

After this, the final melody is selected according to some
criterion. One technique for this is to construct a hidden
Markov model (HMM) for note transitions and use the
Viterbi algorithm for tracking the most probable melodic
line [3, 5, 19]. An alternative to this is to use a set of local
rules that describe typical properties of melody notes and
outlier notes [7, 15, 20]. In addition, some systems [2, 6]
feature agents that follow potential melody lines.

The idea of providing additional information to facili-
tate the melody transcription has also been considered in
previous studies. A usual approach for this is to gather in-
formation from users. For example, users can determine
which instruments are present [8], help in the source sep-
aration process [4] or create an initial version of the tran-
scription [9]. The drawback of these systems is, of course,
that the transcription is not fully automatic.

There are also some previous studies that combine key,
chord and pitch estimation. In [18], the key and the chords
of the piece are estimated simultaneously. Multiple pitch
transcription systems that exploit key and chord informa-
tion in pitch estimation include [1] and [17].

Most of the previous work on automatic melody tran-
scription focuses on a slightly different problem than the
topic of this paper, namely how to determine the melody
frequency in the audio signal frame-by-frame. In [19] and
[22], the output of the algorithm is similar to ours.

2. ALGORITHM

In this section we present our melody transcription algo-
rithm that uses a chord transcription as a starting point for
the transcription. The algorithm first divides the audio data
into segments so that the boundaries of the segments cor-
respond to the boundaries of the chords in the chord tran-
scription. After this, the key of the piece is estimated using
the chord transcription. Finally, the algorithm assigns each
segment a pattern of notes that matches both the audio data
and the chord transcription.

The input and the output of the algorithm are as de-
scribed in Section 1.1. Thus, the algorithm is given nA
audio frames in array A and a chord transcription of nC
chord changes in array C, and the algorithm produces a
melody transcription of nM notes in array M .

2.1 Segmentation

The first step in the algorithm is to divide the audio data
into segments. The segments will be processed separately
in a later phase in the algorithm. The idea is to choose the
boundaries of the segments so that the harmony in each
segment is stable. This is accomplished using the chord
boundaries in the chord transcription.

Let

l(k) = C[k + 1].time− C[k].time

for each k where 1 ≤ k ≤ nC − 1 and

f(k, x) = (l(k)/x)/bl(k)/xc

where x is a real value. Thus, l(k) is the length of the
segment between chord changes k and k+1, and f(k, x) is
an estimate how evenly x divides that segment into smaller
segments. Finally, let

g(k, x) =

{
1 if f(k, x) ≤ 1 + ε
0 otherwise

and

s(x) =

nC−1∑
i=1

g(i, x).

If f(k, x) ≤ 1+ε for some small ε, our interpretation is
that x divides the segment evenly. Thus, g(k, x) indicates
if the segment is divided evenly, and s(x) is the number of
segments that are divided evenly if x was chosen. In this
paper we use value ε = 0.1.

The algorithm chooses a value of x such that x is in the
range [minx,maxx] and s(x) is as large as possible. The
value x will be used as a unit length in the segmentation.
The valuesminx andmaxx denote the minimum and max-
imum unit length; in this paper we use values minx = 0.5
and maxx = 3.

Finally, the algorithm produces a segment division S of
nS segments by dividing each chord segment k into l(k)/x
smaller segments of equal length (the number of segments
is rounded to the nearest integer). For each new segment u
(1 ≤ u ≤ nS) the algorithm assigns the values S[u].begin
and S[u].end as described above, and S[u].chord denotes
the name of the chord in the segment.
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2.2 Key estimation

After determining the segments, the algorithm estimates
the key of the piece. The estimated key will be used later
in the algorithm to favor melody notes that agree with the
key. The key estimation is done using a simple method that
is based on the chord information.

The algorithm goes through all segments in S and main-
tains a counter for each pitch class (a total of 12 counters).
Initially, all the counters are zero. For each segment k,
the algorithm increases the value of each counter that cor-
responds to S[k].chord. For example, if S[k].chord is G
major, the algorithm increases counters that correspond to
notes G, B and D.

Finally, the algorithm determines the key using the coun-
ters as follows. There are 24 possible keys, 12 major keys
and 12 minor keys. For each key, the algorithm calculates
the sum of counters that correspond to tonic, mediant and
dominant in that key. The key whose sum is the highest is
selected as the key of the piece.

This method for key estimation is more simple than
methods used in previous studies involving chord and key
estimation from music audio [11,18]. However, this method
produces results that are considered accurate enough for
this purpose.

2.3 Pattern matching

For each segment, the algorithm chooses a melody pattern
that matches both the audio data within the segment and
the chord and key information. Each segment is processed
independently, and the final melody transcription consists
of all melody patterns in the segments.

The algorithm divides each segment into d note slots
where d is a preselected constant for all segments. Each
note slot can contain either one melody note or rest in the
melody pattern. The idea is to select d so that most rhythms
can be represented using d note slots, but at the same time
d is small enough to restrict the number of melody notes.
In practice, small integers that are divisible by 2 and/or 3
should be good choices for d.

An optimal melody pattern is selected according to a
scoring function. The scoring function should give high
scores for melody patterns that are probable choices for
the segment. Depending on the scoring function, there are
three ways to construct the optimal melody pattern:

• Greedy construction: If the melody slots are inde-
pendent of one another, we can select the optimal
melody note for each slot and combine the results to
get the optimal melody pattern.

• Dynamic programming: If the melody slots are not
independent but the score of a slot only depends on
the previous slot, we can use dynamic programming
to construct the optimal pattern.

• Complete search: If the score of a melody pattern
cannot be calculated before all melody notes are se-
lected, we have to go through all possible note pat-
terns and select the optimal one.

The methods involving greedy construction and dynamic
programming are efficient in all practical situations. How-
ever, in complete search we need to check qd melody pat-
terns where q is the number of possible choices for a melody
slot. In practice, q ≈ 50, so complete search can be used
only when d ≤ 4 to keep the algorithm efficient.

2.4 Scoring function

The scoring function that we use in this paper is primar-
ily based on the key information and favors melody notes
that match the estimated key of the excerpt. In addition,
the notes that belong to the chord of the segment have an
increased probability to be selected to the melody. Thus, if
an E major chord occurs in the C major key, the note G# is
a strong candidate for the melody note even if it does not
belong to the C major scale.

Let s(k, a, q) denote the score for an event where a’th
note slot of segment k contains note q. We calculate the
score using the formula

s(k, a, q) = z · b(k, a, q)− x · c(k, a, q)

where b(k, a, q) is a base score calculated from the audio
data, c(k, a, q) is a penalty for selecting a note that does
not appear in the audio data, and z and x are parameters
that control the balance of the base score and the penalty.

Let I be a set that contains the indices of all audio frames
that are inside the current note slot. Now we define

b(k, a, q) =
∑
i∈I

A[i][q]

and
c(k, a, q) =

∑
i∈I

e(i, q)

where

e(i, q) =

{
1 if A[i][q] = 0
0 otherwise.

The parameter z favors melody notes that match the
chord transcription, and it should depend on the key of the
excerpt and the chord in segment k. We set z = 2 if q be-
longs to the current chord, z = 1 if q belongs to the key of
the excerpt and otherwise z = 0. The parameter x controls
the effect of adding a note to the melody that does not ap-
pear strongly in the audio data, and we study the effect of
that constant in Section 3.

Finally, we select the note pattern greedily so that each
note slot will be assigned the note that maximizes the score
for that slot. If no note produces a score greater than 0, we
leave that slot empty.

We also experimented with dynamic programming scor-
ing functions that favor small intervals between consec-
utive notes, but the results remained almost unchanged.
Consequently, we chose the more simple greedy construc-
tion approach.

3. EVALUATION

In this section we present results concerning the accuracy
of the transcriptions produced by our algorithm, using real-
world inputs. We evaluated our algorithm using a dataset
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of Western popular music. We used both hand-made and
automatic chord transcriptions as additional input for the
algorithm.

Audio Melody Extraction task is an established part of
the MIREX evaluation [13]. However, in the MIREX eval-
uation each audio frame is assigned a melody note fre-
quency, and those results cannot be compared with our
melody transcriptions that consist of note onset times and
pitches in semitones.

3.1 Dataset

The evaluation dataset consists of 1,5 hours of audio ex-
cerpts from Western popular music. The length of each
excerpt in the dataset is between 20 and 60 seconds. For
each excerpt, we manually created time-aligned melody
and chord transcriptions. We chose the excerpts so that the
content of each excerpt is unique i.e. repetitions of verses
and choruses are not included in the dataset.

The dataset can be found on our web site 1 , and is avail-
able for free for use in research. For each excerpt, the
dataset includes an audio file in WAV format, and chord
and melody transcriptions in text format. Each chord tran-
scription is a list of chord change times and chord symbols,
and each melody transcription is a list of note onset times
and pitches. Thus, the transcriptions in the dataset corre-
spond to the definitions in Section 1.1.

3.2 Evaluation method

To evaluate a melody transcription, we calculate two val-
ues: the precision and the recall. Precision is the ratio of
the number of correct notes in the transcription and the to-
tal number of notes in the transcription. Recall is the ratio
of the number of correct notes in the transcription and the
total number of notes in the ground truth.

Let X be a melody transcription of nX notes created
by the algorithm, and let G be the corresponding melody
transcription of nG notes in the ground truth. Both tran-
scriptions consists of a list of melody note onset times and
pitches as described in Section 1.1.

To evaluate the precision and the recall of X , we first
align the transcriptions. Let nD be the maximum integer
value such that we can create lists DX and DG as follows.
List DX consists of nD note indices in X , and list DG

consists of nD note indices in G. In addition, for each k
(1 ≤ k ≤ nD) X[DX [k]].pitch = G[DG[k]].pitch and
|X[DX [k]].time − G[DG[k]].time| ≤ α where α is a
small contant. In other words, we require that lists DX

and DG align a set of notes where all pitches match each
other and the onset times of the notes do not differ more
than α from each other.

Finally, let

precision(X,G) = nD/nX

and
recall(X,G) = nD/nG.

1 http://cs.helsinki.fi/u/ahslaaks/fpds/

In practice, we calculate the value nD efficiently using
dynamic programming. The technique is similar to calcu-
lating the Levenshtein distance between two strings [14].

This evaluation method corresponds with that used in
[19] and [22], however, the previous papers do not specify
how the notes in the two transcriptions are aligned.

3.3 Experiments

We implemented our algorithm as described in Section 2.
For calculating array A we used an algorithm by Salamon
and Gómez that estimates potential melody contours in the
audio signal. We used the Vamp plugin implementation of
the algorithm (”all pitch contours”). Note that this algo-
rithm already restricts the set of possible melodies consid-
erably. We converted each pitch frequency to a MIDI note
number assuming that the frequency of A4 is 440 Hz.

We used four chord transcriptions in the evaluation:

• A random chord transcription where the time be-
tween two chord changes is a random real number
in the range [0.5, 2] and each chord is randomly se-
lected from the set of 48 possible triads.

• A simple automatic chord transcription created by
our own algorithm. We used the standard technique
of constructing a hidden Markov model and tracking
the optimal path using the Viterbi algorithm [21].

• An advanced automatic chord transcription created
using the Chordino tool [12].

• The chord transcription in the ground truth.

Random chord transcriptions were used in an effort to
understand the actual role of the chord information and
how the algorithm works if the chord information does not
make sense at all.

Finally, there are three parameters that we varied during
the evaluation:

• d: the number of note slots in a segment as described
in Section 2.3 (default value: 6),

• x: the cost for assigning a note to a frame with-
out a note as described in Section 2.4 (default value:
1.00),

• α: the maximum onset time difference in the evalua-
tion as described in Section 3.2 (default value: 0.25).

The default values were chosen so that they produce
good results on the evaluation dataset.

In each experiment in the evaluation, we varied one pa-
rameter and kept the remaining parameters unchanged. We
used the ground truth chord transcription as the default
chord transcription. We created melody transcriptions for
all excerpts in the dataset and calculated average precision
and recall values.
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(a) The results using random chord transcription, simple
automatic transcription, advanced automatic transcrip-
tion, and ground truth transcription.
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(b) The results varying the parameter d: the number of
available note slots in a segment.
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(c) The results varying the parameter x: the cost for
assigning a note to a frame without a note.
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(d) The results varying the parameter α: the maximum
onset time difference in seconds in the evaluation.

Figure 2: The results of the experiment.

3.4 Results

In the first experiment (Figure 2a) we studied how the qual-
ity of the chord transcription affects the results. As ex-
pected, the better the chord transcription, the better the
precision of the melody transcription. However, recall was
highest when using automatic chord transcriptions. One
possible reason for this is that there were more chord changes
in automatic transcriptions than in the ground truth tran-
scription. Therefore more melody notes were selected us-
ing the automatic chord transcriptions.

In the second experiment (Figure 2b) we varied the pa-
rameter d: the number of note slots in a segment. Our
findings suggest that 6 note slots is a good trade-off be-
tween the precision and the recall. This can be explained
by the fact that 6 is divisible by both 2 and 3, and thus seg-
ments of 6 note slots are suitable for both 3/4 time and 4/4
time music. Interestingly, when d ≤ 6 the precision of the
transcription remained nearly unchanged.

In the third experiment (Figure 2c) we varied the pa-
rameter x: the cost for assigning a note to a frame without
a note. This was an important parameter, and the results

were as expected. Increasing the parameter x improves the
precision because melody notes are only selected if they
appear strongly in the audio data. At the same time, this
decreases the recall because fewer uncertain notes are in-
cluded in the melody transcription.

Finally, in the fourth experiment (Figure 2d) we varied
the parameter α: the maximum note onset time difference
in the evaluation. Of course, the greater the parameter α,
the better the results. Interestingly, after reaching a value
of approximately 0.25, increasing α did not affect the re-
sults considerably. The probable reason for this is that if
the melody note pitches in the transcription are not correct,
the situation cannot be rescued by allowing more error for
the onset times.

Previous studies also present some results about the pre-
cision and the accuracy of the algorithms. However, find-
ings from these studies cannot be directly compared with
the new results because the evaluation dataset is different
in each study. In [19] precision 0.49 and recall 0.61 was
reported using a database of 84 popular songs. In [22] the
melody transcription was evaluated using a small set of 11
songs with precision 0.68 and recall 0.63.
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4. CONCLUSIONS

In this paper we presented an automatic melody transcrip-
tion algorithm that uses a chord transcription for select-
ing melodies that match the harmony of the music. We
evaluated the algorithm using a collection of popular mu-
sic excerpts, and the results of the evaluation suggest that
the chord information can be successfully used in melody
transcription of real-world inputs.

Our new evaluation dataset consists of 1,5 hours of au-
dio excerpts of popular music together with melody and
chord annotations. The dataset can be used at no cost
for research purposes, for example as evaluation material
for other chord transcription and melody transcription sys-
tems.

Our future work aims to use the harmony information
provided by the chord transcription more extensively in
melody transcription. Currently our algorithm uses only
information about chord notes to constrain the pitches of
melody notes, but using more advanced musical knowl-
edge should yield better results.
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