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ABSTRACT

Melodic segmentation is a fundamental yet unsolved
problem in automatic music processing. At present most
melody segmentation models rely on a ‘single strategy’
(i.e. they model a single perceptual segmentation cue).
However, cognitive studies suggest that multiple cues need
to be considered. In this paper we thus propose and eval-
uate a ‘multi-strategy’ system to automatically segment
symbolically encoded melodies. Our system combines the
contribution of different single strategy boundary detection
models. First, it assesses the perceptual relevance of a gi-
ven boundary detection model for a given input melody;
then it uses the boundaries predicted by relevant detection
models to search for the most plausible segmentation of
the melody. We use our system to automatically segment a
corpus of instrumental and vocal folk melodies. We com-
pare the predictions to human annotated segments, and to
state of the art segmentation methods. Our results show
that our system outperforms the state-of-the-art in the in-
strumental set.

1. INTRODUCTION

In Music Information Retrieval (MIR), segmentation refers
to the task of dividing a musical fragment or a complete
piece into smaller cognitively-relevant units (such as notes,
motifs, phrases, or sections). Identifying musical segments
aids (and in some cases enables) many tasks in MIR, such
as searching and browsing large music collections, or vi-
sualising and summarising music. In MIR there are three
main tasks associated with music segmentation: (1) the
segmentation of musical audio recordings into notes, as
part of transcription systems, (2) the segmentation of sym-
bolic encodings of music into phrases, and (3) the segmen-
tation of both musical audio recordings and symbolic en-
codings into sections. In this paper we focus on the second
task, i.e. identifying segments resembling the musicolog-
ical concept of phrase. Currently automatic segmentation
of music into phrases deals mainly with monophony. Thus,
this area is commonly referred to as melody segmentation.

When targeting melodies, segmentation is usually re-
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duced to identifying segment boundaries, i.e. locate the
points in time where one segment transitions into an-
other.! Computer models of melody segmentation often
focus on modelling boundary cues, i.e. the musical factors
that have been observed or hypothesised to trigger human
perception of boundaries. Two common examples of boun-
dary cues are: (a) the perception of ‘gaps’ in a melody (e.g.
the sensation of a ‘temporal gap’ due to long note durations
or rests) and (b) the perception of repetitions (e.g. recog-
nising a melodic figure as a modified instance of a previ-
ously heard figure). The first cue mentioned is thought to
signal the end of phrases, and conversely the second one is
thought to signal the start of phrases.

Findings in melodic segment perception studies suggest
that, even in short melodic excerpts, listeners are able to
identify multiple cues, and what is more, that the role and
relative importance of these cues seems to be contextual
[3,6]. Yet, most computer models of melody segmentation
rely on a single strategy, meaning that they often focus on
modelling a single type of cue. For instance, [4] focuses on
modelling cues related only to melodic gaps, while [1, 5]
aim to modelling cues related only to melodic repetitions.

In this paper we propose and evaluate a multi-strategy
system that combines single strategy models of melodic
segmentation. In brief, our system first estimates the cues
(and hence the single strategy models) that might be more
‘relevant’ for the segmentation of a particular input me-
lody, combines the boundaries predicted by the models es-
timated relevant, and then selects which boundaries result
in the ‘most plausible’ segmentation of the input melody.

Contribution: first, we bring together single strategy
models that have not been previously tested in combina-
tion; second, our evaluation results show that our system
outperforms the state-of-the-art of melody segmentation in
instrumental folk songs.

The remainder of this paper is organised as follows:
§2 reviews music segmentation related work using multi-
strategy approaches, §3 presents a theoretical overview of
the proposed system, §4 describes implementation details
of the system, §5 describes and discusses our evaluation of
the system, and finally, §6 provides conclusions and out-
lines possibilities of future work.

! Other subtasks associated to segmentation such as boundary pairing,
as well as labelling of segments, are not considered.
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2. RELATED WORK

Melody segmentation models often focus on modelling a
single cue (e.g. [1,4,5]), leaving only a handful of models
that have proposed ways to combine different cues. Per-
haps the best known multi-strategy model is Grouper [11],
which relies on three cues: temporal gaps, metrical par-
allelism, and segment length. Grouper employs temporal
gap detection heuristics to infer a set of candidate bound-
aries, and uses dynamic programming to find an ‘optimal’
segmentation given the candidate boundaries and two reg-
ularisation constraints (metrical parallelism and segment
length). Grouper constitutes the current state-of-the-art in
melodic segmentation. However, Grouper relies entirely
on temporal information, and as such might have difficul-
ties segmenting melodies with low rhythmic contrast or no
discernible metric.

Another multi-strategy model is ATTA [7], which
merges gap, metrical, and self-similarity related cues. In
ATTA the relative importance of each cue is assigned man-
ually, requiring the tuning of over 25 parameters. Param-
eter tuning in ATTA is time consuming (estimated to be
~10 mins per melody in [7]). Moreover, the parameters
are non-adaptive (set at initialization), and thus make the
model potentially insensitive to changes in the relative im-
portance of a given cue during the course of a melody.

The main differences between the research discussed
and ours are: (a) our system integrates single strategy mod-
els that have not been previously used (and systematically
tested) in combination, and (b) our system provides ways
to select which single strategy models to use for a partic-
ular melody. In §5.3.2 we compare our system to the two
models that have consistently performed best in compara-
tive studies, namely Grouper [11] and LBDM [4]. 2

3. THEORETICAL OVERVIEW OF OUR SYSTEM

In this section we describe our system, depicted in Fig-
ure 1. In module 1, our system takes a group of single
strategy segmentation models (henceforth ‘cue models’),
selects which might be more relevant to segment the cur-
rent input melody, and combines the estimated boundary
locations into a single list. In module 2, the system as-
sesses the segmentation produced by combinations of the
selected boundary candidates in respect to corpus-learnt
priors on segment contour and segment length. Below we
describe in more detail the input/output characteristics of
our system, as well as each processing module.

3.1 Input/Output

The input to our system consists of a melody and a set
of boundaries predicted by cue models. The melody is
encoded as a sequence of temporally ordered note events
e =ey,...€,...,ey. In e each note event is represented
by its chromatic pitch and quantized duration (onset, off-
set) values. The output of our system is a set of ‘opti-
mum’ boundary locations b,,; of length m, constituting

2 The manual tuning feature of ATTA made it impossible to include it
in our evaluation.
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Figure 1. General diagram of our system. Within the mod-
ules O = input elements, and [ = processing stages.

a set of segments S,,; = {s; }1<i<m. Where each segment
S; = [biabi-‘rl) .

3.1.1 Cue Models Characteristics

Each cue model transforms e into a set of sequences, each
representing a melodic attribute (e.g. pitch class, inter-
onset-interval, etc.). The specific set of attribute sequen-
ces produced by each cue model used within our system is
discussed in §4.2. Each cue model processes the attribute
sequences linearly, moving in steps of one event, produc-
ing a boundary strength profile. A boundary strength pro-
file is simply a normalized vector of length n, where each
element value encodes the strength with which a cue mo-
del ‘perceives’ a boundary at the temporal location of the
element. In these profiles segment boundaries correspond
to local maxima, and thus candidate boundary locations
are obtained via peak selection. The method used to select
peaks is discussed in §4.2.

3.2 Module 1: Multiple-Cue Boundary Detection

Module 1 takes as input a set of features describing the
melody, and a set of boundary locations predicted by cue
models. Module 1 is comprised of two processing stages,
namely ‘cue relevance prediction’ and ‘voting scheme’.
The first uses the input melodic features to estimate the
‘relevance’ of a given cue for the perception of boundaries
in the input melody, and the second merges and filters the
predicted boundary locations.

3.2.1 Cue Relevance Prediction

For a given set of k cue models C = {c¢;}i<i<ks
and a set of h features describing the melodies F
{fj}1<j<n, we need to estimate how well a given cue mo-
del might perform under a given performance measure M
as P(M|C;, F;). In this paper we use the common F1,
precision, and recall measures to evaluate performance
(see §5.2). In module 1 we focus on predicting a cue mo-
del’s precision (assuming high recall can be achieved by
the combined set of candidate boundaries).

3.2.2 Voting Scheme

Once we have estimated the relevance value of each cue
model for the input melody P(M|C;, F;), we combine the
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candidate boundaries by simply adding the relevance val-
ues of candidate boundaries in close proximity (i.e. +1
note event apart). We assume that if boundaries from dif-
ferent cues are located 1 note event apart, one of them
might be identifying a beginning and the other an end of
segment, and thus for the processing in module 2 is bene-
ficial to keep both.

The final output of this module is a single list of boun-
dary locations b, each boundary with its own relevance
value.

3.3 Module 2: Optimality-Based Segment Formation

Module 2 takes as input b, e, and length/contour? priors
computed from a melodic corpus. The task of this module
is to find the ‘most plausible’ set of segments S,,; from
the space of all possible candidate segmentations. The
idea is to evaluate segmentations according to two em-
pirical constraints: one, melodic segments tend to show
small deviations from a ‘typical’ segment length, and two,
melodic segments tend to show a reduced set of prototypi-
cal melodic contour shapes. We address the task of finding
the most plausible set of segments given these two con-
straints as an optimisation problem. Thus, for a given can-
didate segmentation S, = {s; }1<;<¢, derived from a sub-
set of ¢ candidate boundaries ¢ € b, where s; = [¢;, ¢;y1),
our cost function is defined as:

t—1
C(Se) = > _T(si) 1)
=1
with
T(s;) = (si) + (Y (si) + ¥(si)) )
Where,

®(s;) is the cost associated to each candidate boun-
dary demarcating s; (i.e. the inverse of the relevance
value of each candidate boundary).

Y (s;) is a cost associated to the deviation of sy, from
an expected phrase contour. The cost of Y(s;) is
computed as —log(-) of the probability of the con-
tour of the candidate phrase segment s;.

U(s;) is a cost of the deviation from the length of
s; from an expected length. The cost of ¥(s;) is
computed as —log(+) of the probability of the length
of the candidate phrase segment s;.

« is a user defined parameter that balances the boun-
dary related costs against the segment related costs.

Details for the computation of S,,; and priors on segment
length/contour are given in §4.4.

3 Melodic contour can be seen as an overall temporal development of
pitch height
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4. SYSTEM IMPLEMENTATION

In this section we first describe the selection and tuning of
the cue models used within our system, then provide some
details on the implementation of modules 1 and 2.

4.1 Cue Models: Selection

We selected and implemented four cue models based
on two conditions: (a) the models have shown relatively
high performance in previous studies, (b) the cues mod-
elled have been identified as being important for melody
segmentation within music cognition studies. All imple-
mented models follow the same processing chain, de-
scribed in §3.1, i.e. each model derives a set of melodic
attribute sequences, processes each sequence linearly, and
outputs a boundary strength profile bsp. Below we list and
briefly describe the cue models used within our system.
CML1 - gap detection: Melodic gap cues are assumed to
correspond to points of significant local change, e.g. a pitch
or duration interval that is perceived as ‘overly large’ in
respect to its immediate vicinity. We implemented a model
of melodic gap detection based on [4]. The model uses a
distance metric to measure local change,* and generates
a bsp where peaks correspond to large distances between
contiguous melodic events. Large local distances are taken
as boundary candidates.

CM2 - contrast detection: Melodic contrast cues are as-
sumed to correspond to points of significant change (which
require a mid-to-large temporal scale to be perceptually
discernible), e.g. a change in melodic pace, or a change of
mode. We implemented a contrast detection model based
on [9]. The model employs a probabilistic representation
of melodic attributes and uses an information-theoretic di-
vergence measure to determine contrast. The model gener-
ates a bsp where peaks correspond to large divergences be-
tween attribute distributions representing contiguous sec-
tions of the melody. The model identifies boundaries by
recursively locating points of maximal divergence.

CM3 - repetition detection: Melodic repetition cues are
assumed to correspond to salient (exact or approximate)
repetitions of melodic material. We implemented a model
to locate salient repeated fragments of a melody based on
[5]. The model uses an exact-match string pattern search
algorithm to extract repeated melodic fragments, and in-
cludes a method to score the salience of repetitions based
on the length, frequency, and temporal overlap of the ex-
tracted fragments. The model generates a bsp where peaks
correspond to the starting points of salient repetitions.
CM4 - closure detection: Tonal closure cues are assumed
to correspond to points where an ongoing cognitive process
of melodic expectation is disrupted. One way in which
expectation of continuation might be disrupted is when a
melodic event following a given context is unexpected. We
implemented an unexpected-event detection model based
on [8].° The model employs unsupervised probabilistic

4 The model employs both pitch and temporal information, but in our
tests only temporal information is used

5 Our implementation is however less sophisticated than that of [8], as
it requires the user to provide an upper limit for context length (specifed
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learning and prediction to measure the degree of unexpect-
edness of each note event in the input melody, given a fi-
nite preceding context. The model generates a bsp where
peaks correspond to significant increases in (information-
theoretic) surprise. Candidate boundaries are placed before
surprising note events.

4.2 Cue Models: Tuning

We tuned the cue models used within our system to achieve
maximal precision. This involved a selection of melody
representation (choice of melodic attribute sequences to be
processed), ® tuning of parameters exclusive to the cue mo-
del, and choice and tuning of a peak selection mechanism.

The choice of attribute sequence selection and parame-
ter tuning per cue model is listed in Table 1. The abbrevi-
ations of melodic attributes correspond to: cp: chromatic
pitch, ioi: inter onset interval, ooi: onset to offset in-
terval, cpiv: chromatic pitch interval, pcls: pitch class.
To select peaks as boundary candidates, we experimented
with several peak selection algorithms, settling for the al-
gorithm proposed in [8].7 This peak selection algorithm
has only one parameter k. The optimal values of k for
each cue model are given in the rightmost column of Ta-
ble 1. We also provide details on the choice of parameters
exclusive to each cue model, for an elaboration on their in-
terpretation we refer the reader to the original publications.

Cue model attribute sequence set parameters
CM1 {cpiv,ioi,c0i} k=2
CM2 {pcls, ioi} -
CM3 {cp, ioi} F=3
L=3
O=1
k=3
CM4 {cp, pcls, cpiv} PPM-C, with exclusion
STM: order 5
LTM: order 2
LTM: 400 EFSC melodies
k=25

Table 1. Attributes and parameter settings of cue models.

4.3 Module 1: Predictors and Feature Selection

To evaluate cue relevance prediction, we first select a sub-
set of 200 boundary annotated melodies from the melodic
corpora used in this paper (see §5.1), and then run the cue
models to obtain precision performance values for each
melody. To allow an estimation of precision we partition
its range into a discrete set of categories. 8

as the Markov order in Table 1).

6 While some cue models, e.g. [4, 11] have already a preferred choice
of melodic attribute representation, the other cue models used within our
system allow for many choices, and where thus selected through experi-
mental exploration.

7 This algorithm proved to work better than the alternatives for all
models but CM3, for which its own peak selection heuristic worked best.

81n our experiments we used a set dividing a model’s precision
into two categories (1:poor, 2:good). The exact mapping precision :
[0,1] — {1,2} was selected manually for each cue model, to ensure a
sufficient number of melodies representing each performance category is
available for training.

210

To determine cue relevance prediction, we experimented
with several off-the-shelf classifiers available as part of
Weka® . We selected features using the common BestFirst
with a 10-fold cross validation. The selected features were
those used in all folds.

The melodic features used to predict precision by the
classifiers where taken from the Fantastic'®and jSym-
bolic"' feature extractor libraries, which add up to over
200. After selection, 17 features are kept: ‘melody length’,
‘pitch standard deviation, skewness, kurtosis, and entropy’,
‘pitch interval standard deviation, skewness, kurtosis, and
entropy’, ‘duration standard deviation, skewness, kurtosis,
and entropy’, ‘tonal clarity’, ‘m-type mean entropy’, ‘m-
type Simpson’s D’, ‘m-type productivity’ (please refer to
the Fantastic library documentation for definitions).

The classifiers we experimented with are Sequential Min-
imal Optimization (SMO, with the radial basis function
kernel), K-Nearest Neighbours (K*) and Bayesian Network
(BNet). To evaluate each classifier we use 10-fold cross
validation. The classifier with the best performance-to-
efficiency ratio is SMO for models CM2-CM4, with an av-
erage accuracy of 72.21%, and the simple K* for CM1 with
an average accuracy of 66.37%.

4.4 Module 2: Computation of Priors and Choice of o

To compute the optimal sequence of segments S, we
minimise the cost function in Eq. 1 using a formulation of
the Viterbi algorithm based on [10]. The minimisation of
Eq. 1 is subject to constraints on segment contour and seg-
ment length, and to a choice for parameter ov. We tuned «
manually (a value of 0.6 worked best in our experiments).
To model constraints in segment contour and segment len-
gth we use probability priors. Below we provide details on
their computation.

A prior P(contour(sy)) is computed employing a
Gaussian Mixture Model (GMM). Phrase contours are
computed using the polynomial contour feature of the Fan-
tastic library. A contour model with four nodes was se-
lected. The GMM (one Gaussian per node) is fitted to con-
tour distributions obtained from a subset of 1000 phrases
selected randomly from the boundary annotated corpora
used in this paper (see §5.1).

A prior of segment length P(lj) is computed employing
a Gaussian fitted to a distribution of lengths obtained from
the same 1000 phrase subset used to derive contours.

S. EVALUATION

In this section we describe our test database and evaluation
metrics, and subsequently describe experiments and results
obtained by our system. A prototype of our system was im-
plemented using a combination of Matlab, R, and Python.
Source files and test data are available upon request.

http://www.cs.waikato.ac.nz/ml/weka/
Onttp://www.doc.gold.ac.uk/~mas03dm/
Uhttp://jmir.sourceforge.net/jSymbolic.html
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5.1 Melodic Corpora

To evaluate our system we employed a set of 100 instru-
mental folk songs randomly sampled from the Liederen-
bank collection '? (1.C) and 100 vocal folk songs randomly
sampled from the German subset of the Essen Folk Song
Collection '3 (EFSC). We chose to use the EFSC due to its
benchmark status in the field of melodic segmentation. Ad-
ditionally, we chose to use the LC to compare the perfor-
mance of segmentation models in vocal and non-vocal me-
lodies. '

The EFSC consists of ~6000 songs, mostly of German
origin. The EFSC data was compiled and encoded from
notated sources. The songs are available in EsAC and
x+»kern formats. The origin of phrase boundary markings
in the EF SC has not been explicitly documented (yet it is
commonly assumed markings coincide with breath marks
or phrase boundaries in the lyrics of the songs).

The instrumental (mainly fiddle) subset of the LC con-
sists of ~2500 songs. The songs were compiled and en-
coded from notated sources. The songs are available in
MIDI and »xkern formats. Segment boundary mark-
ings for this subset comprise two levels: ‘hard” and ‘soft’.
Hard (section) boundary markings correspond with struc-
tural marks found in the notated sources. Soft (phrase)
boundary markings correspond to the musical intuition of
two experts annotators. 15

5.2 Evaluation Measures

To evaluate segmentation results, we encode both predicted
and human-annotated phrase boundary markings as binary
vectors. Using these vectors we compute the number of
true positives tp (hits), false positives fp (insertions), and
false negatives fn (misses). '® We then quantify the simi-
larity between predictions and human annotations using
the well known F1 = iﬂ: , Where precision p = tpffp
and recall r = tpffn. While the F'1 has its downsides (it
assumes independence between boundaries), 17 it has been
used extensively in the field and thus allows us to establish
a comparison to previous research.

5.3 Experiments & Results

In our experiments we compare our system to the melody
segmentation models that have consistently scored best in
comparative studies: GROUPER [11] and LBDM [4]. The
first is a multi-strategy model, and the second a single stra-

2http://www.liederenbank.nl/

Bhttp://www.esac-data.org

14 Vocal music has dominated previous evaluations of melodic segmen-
tation (especially large-scale evaluations), which might give an incom-
plete picture of the overall performance and generalisation capacity of
segmentation models

15 Instructions to annotate boundaries were related to performance prac-
tice (e.g. “where would you change movement of bow”).

16 The first and last boundaries are treated as trivial cases which cor-
respond, respectively, to the beginning and ending notes of a melodic
phrase. These trivial cases are excluded from the evaluation. Also, we
allow a tolerance of £1 note event for the computation of ¢p.

17 By assuming independence between boundaries aspects such as seg-
ment length and position are discarded from the evaluation
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tegy (gap detection) model. '® We also compare our sys-

tem to its performance when only one module is active.
Additionally we compare to two naive baselines: always,
which predicts a segment boundary at every melodic event
position, and never which does not make predictions.

Table 2 shows the performance results of all models
over the instrumental and vocal melodic sets. We refer to
our model as COMPLETE, and to the configurations when
either module 1 or 2 are active as MOD10ON and MOD20N,
respectively.

We tested the statistical significance of the paired F1
differences between the three configurations of our sys-
tem, the two state-of-the-art models, and the baselines. For
the statistical testing we used a non-parametric Friedman
test (¢ = 0.05). Furthermore, to determine which pairs
of measurements significantly differ, we conducted a post-
hoc Tukey HSD test. All pair-wise differences among con-
figurations were found to be statistically significant, except
those between MOD 10N and MOD2ON in the vocal set and
between LBDM and MOD20N in the instrumental set. In
Table 2 the highest performances are highlighted in bold.

Database Instrumental Vocal

Model R P F1| R P F1
COMPLETE | 0.56 0.62 | 0.54 || 0.49 0.67 | 0.56
GROUPER 0.81 031|044 || 0.60 0.62 | 0.61
LBDM 0.57 049 | 045 | 0.56 0.55 | 0.52
MOD20N 0.51 049 | 044 || 048 045 | 047
MOD10ON 0.52 047 | 042 | 0.63 0.42 | 046
always 0.06 1.00 | 0.09 || 0.08 1.00 | 0.12
never 0.00 0.00 | 0.00 || 0.00 0.00 | 0.00

Table 2. Performance of models and baselines sorted in
order of mean recall R, precision P, and F'1 for instrumen-
tal and vocal melodies. The results presented in this table
were obtained comparing predictions to the ‘soft’ boun-
dary markings of the LC.

5.3.1 Summary of Main Results

In general, F1 performances obtained by the segmentation
models in the vocal set are consistently higher than in the
instrumental set. This might be simply an indication that
in the instrumental set melodies constitute a more chal-
lenging evaluation scenario. However, the F1 differences
might also be an indication that relevant perceptual boun-
dary cues are not covered by the evaluated models.

In the instrumental set, COMPLETE outperforms both
LBDM and GROUPER by a relatively large margin (> 10%).
In the vocal set, on the other hand, GROUPER obtains the
best performance. Below we discuss the three configura-
tions of our system (COMPLETE, MOD 10N, MOD20N).

5.3.2 Discussion

In both melodic sets MOD 10N shows considerably higher
recall than precision. These recall/precision differences
agree with intuition, since the output of MOD1ON con-
sists of the combination of all boundaries predicted by

18 For our tests we ran GROUPER and LBDM with their default settings.
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the cue models, and can hence be expected to contain a
relatively large number of false positives. On the other
hand, MOD20ON shows smaller differences between preci-
sion and recall values, and shows higher F1 performances
than MOD1ON in both melodic sets (although the differ-
ence between performances is significant only for the in-
strumental set). This last result highlights the robustness
of the optimisation procedure driving MOD20N. °

The large F1 differences between MODION and
MOD20N in respect to COMPLETE suggest that segmen-
tation at the phrase level is a perceptual process which, de-
spite happening in ‘real time’ (i.e. as music unfolds itself,
represented more closely by module 1), might still require
repeated exposure and retrospective listening (represented
more closely by module 2).

Manual examination COMPLETE reveals that, when seg-
menting the vocal melody set, the prediction stage of mo-
dule 1 tends to overestimate the importance of cue models
(i.e. it often misclassifies models as relevant when they are
not). However, when altering the settings of COMPLETE so
that the prediction stage of model 1 is more conservative
(i.e. so that it predicts fewer boundaries), there is no sig-
nificant improvement in performance. Closer analysis of
these results points to a trade-off in performance, i.e. while
a conservative setting increases precision (predictions have
fewer ‘false positives’), it also decreases recall (predictions
have fewer ‘correct positives’). This suggests that the pre-
diction stage of module 1 might require estimation of cue
relevance at a local level, i.e. on subsections of the melody
rather than on the whole melody.

6. CONCLUSION

In this paper we introduce a multi-strategy system for the
segmentation of symbolically encoded melodies. Our sys-
tem combines the contribution of single strategy models
of melody segmentation. The system works in two stages.
First, it estimates how relevant the boundaries computed by
each selected single strategy model are to the melody being
analysed, and then combines boundary predictions using
heuristics. Second, it assesses the segmentation produced
by combinations of the selected boundary candidates in re-
spect to corpus-learnt priors on segment contour and seg-
ment length.

We tested our system on 100 vocal and 100 instrumen-
tal folk song melodies. The performance of our system
showed a considerable (10% F'1) improvement upon the
state-of-the-art in melody segmentation for instrumental
folk music, and showed to perform second best in the case
of vocal folk songs.

In future work we will test if the relevance of cue mod-
els can be accurately estimated for sections of the melody
(and not the whole melody as it is done in this paper). This

19 1f we consider that (with MOD10N bypassed) the number of candi-
date boundaries taken as input to MOD20ON often exceeds ‘correct’ (hu-
man annotated) boundaries by a factor 2 or 3, then the number of possible
segmentations of the melody shows an exponential increase, leading to lo-
cal minima issues, and so it would be reasonable to expect a performance
equal or worse than that of MOD10ON.

[10]

(1]
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‘local’ account of relevance might play a major role in im-
proving the system’s precision. Also, we will incorporate a
more advanced model of prior segment knowledge of seg-
ment structure in our system. We hypothesise that a model
of the characteristics of [2] could constitute a good alterna-
tive to model not only segment length and contour, but also
to incorporate knowledge of ‘template’ phrase structure
forms. Lastly, we will continue testing our model’s gen-
eralisation capacity by evaluating on larger sample sizes
and genres other than folk (for the latter the authors are
currently in the process of annotating a corpus of Jazz me-
lodies).
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