
JAMS: A JSON ANNOTATED MUSIC SPECIFICATION FOR
REPRODUCIBLE MIR RESEARCH

Eric J. Humphrey1,*, Justin Salamon1,2, Oriol Nieto1, Jon Forsyth1,
Rachel M. Bittner1, and Juan P. Bello1

1Music and Audio Research Lab, New York University, New York
2Center for Urban Science and Progress, New York University, New York

ABSTRACT

The continued growth of MIR is motivating more com-
plex annotation data, consisting of richer information, mul-
tiple annotations for a given task, and multiple tasks for
a given music signal. In this work, we propose JAMS, a
JSON-based music annotation format capable of address-
ing the evolving research requirements of the community,
based on the three core principles of simplicity, structure
and sustainability. It is designed to support existing data
while encouraging the transition to more consistent, com-
prehensive, well-documented annotations that are poised
to be at the crux of future MIR research. Finally, we pro-
vide a formal schema, software tools, and popular datasets
in the proposed format to lower barriers to entry, and dis-
cuss how now is a crucial time to make a concerted effort
toward sustainable annotation standards.

1. INTRODUCTION

Music annotations —the collection of observations made
by one or more agents about an acoustic music signal—
are an integral component of content-based Music Infor-
mation Retrieval (MIR) methodology, and are necessary
for designing, evaluating, and comparing computational
systems. For clarity, we define the scope of an annota-
tion as corresponding to time scales at or below the level
of a complete song, such as semantic descriptors (tags) or
time-aligned chords labels. Traditionally, the community
has relied on plain text and custom conventions to serialize
this data to a file for the purposes of storage and dissem-
ination, collectively referred to as “lab-files”. Despite a
lack of formal standards, lab-files have been, and continue
to be, the preferred file format for a variety of MIR tasks,
such as beat or onset estimation, chord estimation, or seg-
mentation.
∗Please direct correspondence to ejhumphrey@nyu.edu

c© Eric J. Humphrey, Justin Salamon, Oriol Nieto, Jon
Forsyth, Rachel M. Bittner, Juan P. Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Eric J. Humphrey, Justin Salamon,
Oriol Nieto, Jon Forsyth, Rachel M. Bittner, Juan P. Bello. “JAMS: A
JSON Annotated Music Specification for Reproducible MIR Research”,
15th International Society for Music Information Retrieval Conference,
2014.

Meanwhile, the interests and requirements of the com-
munity are continually evolving, thus testing the practical
limitations of lab-files. By our count, there are three un-
folding research trends that are demanding more of a given
annotation format:

• Comprehensive annotation data: Rich annotations,
like the Billboard dataset [2], require new, content-
specific conventions, increasing the complexity of
the software necessary to decode it and the burden
on the researcher to use it; such annotations can be
so complex, in fact, it becomes necessary to docu-
ment how to understand and parse the format [5].

• Multiple annotations for a given task: The expe-
rience of music can be highly subjective, at which
point the notion of “ground truth” becomes tenu-
ous. Recent work in automatic chord estimation [8]
shows that multiple reference annotations should be
embraced, as they can provide important insight into
system evaluation, as well as into the task itself.

• Multiple concepts for a given signal: Although sys-
tems are classically developed to accomplish a sin-
gle task, there is ongoing discussion toward inte-
grating information across various musical concepts
[12]. This has already yielded measurable benefits
for the joint estimation of chords and downbeats [9]
or chords and segments [6], where leveraging mul-
tiple information sources for the same input signal
can lead to improved performance.

It has long been acknowledged that lab-files cannot be used
to these ends, and various formats and technologies have
been previously proposed to alleviate these issues, such
as RDF [3], HDF5 [1], or XML [7]. However, none of
these formats have been widely embraced by the commu-
nity. We contend that the weak adoption of any alternative
format is due to the combination of several factors. For ex-
ample, new tools can be difficult, if not impossible, to in-
tegrate into a research workflow because of compatibility
issues with a preferred development platform or program-
ming environment. Additionally, it is a common criticism
that the syntax or data model of these alternative formats
is non-obvious, verbose, or otherwise confusing. This is
especially problematic when researchers must handle for-

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

591

mat conversions. Taken together, the apparent benefits to
conversion are outweighed by the tangible costs.

In this paper, we propose a JSON Annotated Music Spec-
ification (JAMS) to meet the changing needs of the MIR
community, based on three core design tenets: simplicity,
structure, and sustainability. This is achieved by combin-
ing the advantages of lab-files with lessons learned from
previously proposed formats. The resulting JAMS files
are human-readable, easy to drop into existing workflows,
and provide solutions to the research trends outlined previ-
ously. We further address classical barriers to adoption by
providing tools for easy use with Python and MATLAB,
and by offering an array of popular datasets as JAMS files
online. The remainder of this paper is organized as fol-
lows: Section 2 identifies three valuable components of an
annotation format by considering prior technologies; Sec-
tion 3 formally introduces JAMS, detailing how it meets
these design criteria and describing the proposed speci-
fication by example; Section 4 addresses practical issues
and concerns in an informal FAQ-style, touching on usage
tools, provided datasets, and some practical shortcomings;
and lastly, we close with a discussion of next steps and
perspectives for the future in Section 5.

2. CORE DESIGN PRINCIPLES

In order to craft an annotation format that might serve the
community into the foreseeable future, it is worthwhile to
consolidate the lessons learned from both the relative suc-
cess of lab-files and the challenges faced by alternative for-
mats into a set of principles that might guide our design.
With this in mind, we offer that usability, and thus the like-
lihood of adoption, is a function of three criteria:

2.1 Simplicity

The value of simplicity is demonstrated by lab-files in two
specific ways. First, the contents are represented in a for-
mat that is intuitive, such that the document model clearly
matches the data structure and is human-readable, i.e. uses
a lightweight syntax. This is a particular criticism of RDF
and XML, which can be verbose compared to plain text.
Second, lab-files are conceptually easy to incorporate into
research workflows. The choice of an alternative file for-
mat can be a significant hurdle if it is not widely supported,
as is the case with RDF, or the data model of the document
does not match the data model of the programming lan-
guage, as with XML.

2.2 Structure

It is important to recognize that lab-files developed as a
way to serialize tabular data (i.e. arrays) in a language-
independent manner. Though lab-files excel at this par-
ticular use case, they lack the structure required to en-
code complex data such as hierarchies or mix different data
types, such as scalars, strings, multidimensional arrays,
etc. This is a known limitation, and the community has
devised a variety of ad hoc strategies to cope with it: folder
trees and naming conventions, such as “{X}/{Y}/{Z}.lab”,

where X, Y, and Z correspond to “artist”, “album”, and
“title”, respectively 1 ; parsing rules, such as “lines begin-
ning with ‘#’ are to be ignored as comments”; auxiliary
websites or articles, decoupled from the annotations them-
selves, to provide critical information such as syntax, con-
ventions, or methodology. Alternative representations are
able to manage more complex data via standardized markup
and named entities, such as fields in the case of RDF or
JSON, or IDs, attributes and tags for XML.

2.3 Sustainability

Recently in MIR, a more concerted effort has been made
toward sustainable research methods, which we see posi-
tively impacting annotations in two ways. First, there is
considerable value to encoding methodology and metadata
directly in an annotation, as doing so makes it easier to
both support and maintain the annotation while also en-
abling direct analyses of this additional information. Ad-
ditionally, it is unnecessary for the MIR community to de-
velop every tool and utility ourselves; we should instead
leverage well-supported technologies from larger commu-
nities when possible.

3. INTRODUCING JAMS

So far, we have identified several goals for a music anno-
tation format: a data structure that matches the document
model; a lightweight markup syntax; support for multiple
annotations, multiple tasks, and rich metadata; easy work-
flow integration; cross-language compliance; and the use
of pre-existing technologies for stability. To find our an-
swer, we need only to look to the web development com-
munity, who have already identified a technology that meets
these requirements. JavaScript Object Notation (JSON) 2

has emerged as the serialization format of the Internet, now
finding native support in almost every modern program-
ming language. Notably, it was designed to be maximally
efficient and human readable, and is capable of represent-
ing complex data structures with little overhead.

JSON is, however, only a syntax, and it is necessary
to define formal standards outlining how it should be used
for a given purpose. To this end, we define a specifica-
tion on top of JSON (JAMS), tailored to the needs of MIR
researchers.

3.1 A Walk-through Example

Perhaps the clearest way to introduce the JAMS specifi-
cation is by example. Figure 1 provides the contents of a
hypothetical JAMS file, consisting of nearly valid 3 JSON
syntax and color-coded by concept. JSON syntax will be
familiar to those with a background in C-style languages,
as it uses square brackets (“[]”) to denote arrays (alterna-
tively, lists or vectors), and curly brackets (“{ }”) to denote

1 http://www.isophonics.net/content/
reference-annotations

2 http://www.json.org/
3 The sole exception is the use of ellipses (“...”) as continuation charac-

ters, indicating that more information could be included.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

592

 ,

{'tag':

 'beat':

 'chord':

 'melody':
 ,

 ,

 ,

 ,

 'file_metadata':

 'sandbox': }{'foo': "bar", ... }

 , ...]

 ,

[{'data':

 ,

 ,

 'annotation_metadata':

 'sandbox': }

 ,

 , ...]

[{'value': "good for running",
 'confidence': 0.871,
 'secondary_value': "use-case"} 'secondary_value': "use-case"}

{'corpus': "User-Generated Tags",

 ,

 'version': "0.0.1",

 'annotation_rules': "Annotators were provided ...",

 'annotation_tools': "Sonic Visualizer, ...",

 'validation': "Data were checked by ...",

 'data_source': "Manual Annotation",

 'curator':

 'annotator':

{'unique_id': "61a4418c841",

 'skill_level': "novice",

 'principal_instrument': "voice",

 'primary_role': "composer", ... }

{"name": "Jane Doe", "email": "j.doe@xyz.edu"}

{ ... }

{'data': ... }

 , ...]

 ,

[{'data':

 'annotation_metadata': ,

 ,

 'sandbox': } { ... }

{ ... }

 ,

 , ...]

[{'time': ,

 'label': }

{'value': 0.237, ... }

{'value': "1", ... }

{'time': ... }

{'data': ... }

 , ...]

 ,

[{'data':

 'annotation_metadata': ,

 ,

 'sandbox': } { ... }

{ ... }

 ,

 , ...]

[{'start': ,

 'label': }

 'end': ,

{'value': 0.237, ... }

{'value': "1", ... }

{'value': "Eb", ... }

{'time': ... }

{'data': ... }

 , ...]

 ,

 ,

[{'data':

 ,

 'annotation_metadata': ,

 ,

 'sandbox': { ... }

{ ... }

 ,

 ,

 , ...]

[{'value': [205.340, 204.836, 205.561, ...],

 'confidence': [0.966, 0.884, 0.896, ...],

 'label': }

 'time': [10.160, 10.538, 10.712, ...],

{'value': "vocals", ... }

{'value': ... }

{'data': ... }

 ,

{'version': "0.0.1",

 'identifiers':

 'artist': "The Beatles",
 'title': "With a Little Help from My Friends",
 'release': "Sgt. Pepper's Lonely Hearts Club Band",
 'duration': 159.11 }

{'echonest_song_id': "SOVBDYA13D4615308E",
 'youtube_id': "jBDF04fQKtQ”, ... }

{'value': "rock", ... }

E

F

G

H

I

J

K

L

D
C

BA

M

Figure 1. Diagram illustrating the structure of the JAMS
specification.

objects (alternatively, dictionaries, structs, or hash maps).
Defining some further conventions for the purpose of illus-
tration, we use single quotes to indicate field names, italics
when referring to concepts, and consistent colors for the
same data structures. Using this diagram, we will now step
through the hierarchy, referring back to relevant compo-
nents as concepts are introduced.

3.1.1 The JAMS Object

A JAMS file consists of one top-level object, indicated
by the outermost bounding box. This is the primary con-
tainer for all information corresponding to a music sig-
nal, consisting of several task-array pairs, an object for
file metadata, and an object for sandbox. A task-
array is a list of annotations corresponding to a given task
name, and may contain zero, one, or many annotations for
that task. The format of each array is specific to the kind
of annotations it will contain; we will address this in more
detail in Section 3.1.2.

The file metadata object (K) is a dictionary con-
taining basic information about the music signal, or file,
that was annotated. In addition to the fields given in the di-
agram, we also include an unconstrained identifiers
object (L), for storing unique identifiers in various names-
paces, such as the EchoNest or YouTube. Note that we
purposely do not store information about the recording’s
audio encoding, as a JAMS file is format-agnostic. In other
words, we assume that any sample rate or perceptual codec
conversions will have no effect on the annotation, within a
practical tolerance.

Lastly, the JAMS object also contains a sandbox, an
unconstrained object to be used as needed. In this way, the
specification carves out such space for any unforeseen or
otherwise relevant data; however, as the name implies, no
guarantee is made as to the existence or consistency of this
information. We do this in the hope that the specification
will not be unnecessarily restrictive, and that commonly
“sandboxed” information might become part of the speci-
fication in the future.

3.1.2 Annotations

An annotation (B) consists of all the information that is
provided by a single annotator about a single task for a
single music signal. Independent of the task, an annotation
comprises three sub-components: an array of objects for
data (C), an annotation metadata object (E), and
an annotation-level sandbox. For clarity, a task-array (A)
may contain multiple annotations (B).

Importantly, a data array contains the primary anno-
tation information, such as its chord sequence, beat loca-
tions, etc., and is the information that would normally be
stored in a lab-file. Though all data containers are func-
tionally equivalent, each may consist of only one object
type, specific to the given task. Considering the different
types of musical attributes annotated for MIR research, we
divide them into four fundamental categories:

1. Attributes that exist as a single observation for the
entire music signal, e.g. tags.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

593

2. Attributes that consist of sparse events occurring at
specific times, e.g. beats or onsets.

3. Attributes that span a certain time range, such as
chords or sections.

4. Attributes that comprise a dense time series, such
as discrete-time fundamental frequency values for
melody extraction.

These four types form the most atomic data structures, and
will be revisited in greater detail in Section 3.1.3. The im-
portant takeaway here, however, is that data arrays are not
allowed to mix fundamental types.

Following [10], an annotation metadata object
is defined to encode information about what has been an-
notated, who created the annotations, with what tools, etc.
Specifically, corpus provides the name of the dataset to
which the annotation belongs; version tracks the version of
this particular annotation; annotation rules describes the
protocol followed during the annotation process; annota-
tion tools describes the tools used to create the annota-
tion; validation specifies to what extent the annotation was
verified and is reliable; data source details how the anno-
tation was obtained, such as manual annotations, online
aggregation, game with a purpose, etc.; curator (F) is it-
self an object with two subfields, name and email, for the
contact person responsible for the annotation; and annota-
tor (G) is another unconstrained object, which is intended
to capture information about the source of the annotation.
While complete metadata are strongly encouraged in prac-
tice, currently only version and curator are mandatory in
the specification.

3.1.3 Datatypes

Having progressed through the JAMS hierarchy, we now
introduce the four atomic data structures, out of which an
annotation can be constructed: observation, event, range
and time series. For clarity, the data array (A) of a tag
annotation is a list of observation objects; the data array of
a beat annotation is a list of event objects; the data array
of a chord annotation is a list of range objects; and the
data array of a melody annotation is a list of time series
objects. The current space of supported tasks is provided
in Table 1.

Of the four types, an observation (D) is the most atomic,
and used to construct the other three. It is an object that
has one primary field, value, and two optional fields,
confidence and secondary value. The value and
secondary value fields may take any simple primi-
tive, such as a string, numerical value, or boolean, whereas
the confidence field stores a numerical confidence es-
timate for the observation. A secondary value field is pro-
vided for flexibility in the event that an observation re-
quires an additional level of specificity, as is the case in
hierarchical segmentation [11].

An event (H) is useful for representing musical attributes
that occur at sparse moments in time, such as beats or on-
sets. It is a container that holds two observations, time
and label. Referring to the first beat annotation in the

observation event range time series
tag beat chord melody

genre onset segment pitch
mood key pattern

note
source

Table 1. Currently supported tasks and types in JAMS.

diagram, the value of time is a scalar quantity (0.237),
whereas the value of label is a string (‘1’), indicating
metrical position.

A range (I) is useful for representing musical attributes
that span an interval of time, such as chords or song seg-
ments (e.g. intro, verse, chorus). It is an object that consists
of three observations: start, end, and label.

The time series (J) atomic type is useful for represent-
ing musical attributes that are continuous in nature, such
as fundamental frequency over time. It is an object com-
posed of four elements: value, time, confidence
and label. The first three fields are arrays of numerical
values, while label is an observation.

3.2 The JAMS Schema

The description in the previous sections provides a high-
level understanding of the proposed specification, but the
only way to describe it without ambiguity is through for-
mal representation. To accomplish this, we provide a JSON
schema 4 , a specification itself written in JSON that uses
a set of reserved keywords to define valid data structures.
In addition to the expected contents of the JSON file, the
schema can specify which fields are required, which are
optional, and the type of each field (e.g. numeric, string,
boolean, array or object). A JSON schema is concise, pre-
cise, and human readable.

Having defined a proper JSON schema, an added bene-
fit of JAMS is that a validator can verify whether or not a
piece of JSON complies with a given schema. In this way,
researchers working with JAMS files can easily and confi-
dently test the integrity of a dataset. There are a number of
JSON schema validator implementations freely available
online in a variety of languages, including Python, Java, C,
JavaScript, Perl, and more. The JAMS schema is included
in the public software repository (cf. Section 4), which also
provides a static URL to facilitate directly accessing the
schema from the web within a workflow.

4. JAMS IN PRACTICE

While we contend that the use and continued development
of JAMS holds great potential for the many reasons out-
lined previously, we acknowledge that specifications and
standards are myriad, and it can be difficult to ascertain
the benefits or shortcomings of one’s options. In the in-
terest of encouraging adoption and the larger discussion of

4 http://json-schema.org/

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

594

standards in the field, we would like to address practical
concerns directly.

4.1 How is this any different than X?

The biggest advantage of JAMS is found in its capacity
to consistently represent rich information with no addi-
tional effort from the parser and minimal markup over-
head. Compared to XML or RDF, JSON parsers are ex-
tremely fast, which has contributed in no small part to its
widespread adoption. These efficiency gains are coupled
with the fact that JAMS makes it easier to manage large
data collections by keeping all annotations for a given song
in the same place.

4.2 What kinds of things can I do with JAMS that I
can’t already do with Y?

JAMS can enable much richer evaluation by including mul-
tiple, possibly conflicting, reference annotations and di-
rectly embedding information about an annotation’s ori-
gin. A perfect example of this is found in the Rock Corpus
Dataset [4], consisting of annotations by two expert musi-
cians: one, a guitarist, and the other, a pianist. Sources of
disagreement in the transcriptions often stem from differ-
ences of opinion resulting from familiarity with their prin-
cipal instrument, where the voicing of a chord that makes
sense on piano is impossible for a guitarist, and vice versa.
Similarly, it is also easier to develop versatile MIR systems
that combine information across tasks, as that information
is naturally kept together.

Another notable benefit of JAMS is that it can serve as
a data representation for algorithm outputs for a variety of
tasks. For example, JAMS could simplify MIREX submis-
sions by keeping all machine predictions for a given team
together as a single submission, streamlining evaluations,
where the annotation sandbox and annotator metadata can
be used to keep track of algorithm parameterizations. This
enables the comparison of many references against many
algorithmic outputs, potentially leading to a deeper insight
into a system’s performance.

4.3 So how would this interface with my workflow?

Thanks to the widespread adoption of JSON, the vast ma-
jority of languages already offer native JSON support. In
most cases, this means it is possible to go from a JSON
file to a programmatic data structure in your language of
choice in a single line of code using tools you didn’t have
to write. To make this experience even simpler, we ad-
ditionally provide two software libraries, for Python and
MATLAB. In both instances, a lightweight software wrap-
per is provided to enable a seamless experience with JAMS,
allowing IDEs and interpreters to make use of autocom-
plete and syntax checking. Notably, this allows us to pro-
vide convenience functionality for creating, populating, and
saving JAMS objects, for which examples and sample code
are provided with the software library 5 .

5 https://github.com/urinieto/jams

4.4 What datasets are already JAMS-compliant?

To further lower the barrier to entry and simplify the pro-
cess of integrating JAMS into a pre-existing workflow, we
have collected some of the more popular datasets in the
community and converted them to the JAMS format, linked
via the public repository. The following is a partial list of
converted datasets: Isophonics (beat, chord, key, segment);
Billboard (chord); SALAMI (segment, pattern); RockCor-
pus (chord, key); tmc323 (chords); Cal500 (tag); Cal10k
(tag); ADC04 (melody); and MIREX05 (melody).

4.5 Okay, but my data is in a different format – now
what?

We realize that it is impractical to convert every dataset
to JAMS, and provide a collection of Python scripts that
can be used to convert lab-files to JAMS. In lieu of direct
interfaces, alternative formats can first be converted to lab-
files and translated to JAMS thusly.

4.6 My MIR task doesn’t really fit with JAMS.

That’s not a question, but it is a valid point and one worth
discussing. While this first iteration of JAMS was designed
to be maximally useful across a variety of tasks, there are
two broad reasons why JAMS might not work for a given
dataset or task. One, a JAMS annotation only considers
information at the temporal granularity of a single audio
file and smaller, independently of all other audio files in
the world. Therefore, extrinsic relationships, such as cover
songs or music similarity, won’t directly map to the speci-
fication because the concept is out of scope.

The other, more interesting, scenario is that a given use
case requires functionality we didn’t plan for and, as a
result, JAMS doesn’t yet support. To be perfectly clear,
the proposed specification is exactly that –a proposal– and
one under active development. Born out of an internal
need, this initial release focuses on tasks with which the
authors are familiar, and we realize the difficulty in solving
a global problem in a single iteration. As will be discussed
in greater detail in the final section, the next phase on our
roadmap is to solicit feedback and input from the commu-
nity at large to assess and improve upon the specification.
If you run into an issue, we would love to hear about your
experience.

4.7 This sounds promising, but nothing’s perfect.
There must be shortcomings.

Indeed, there are two practical limits that should be men-
tioned. Firstly, JAMS is not designed for features or signal
level statistics. That said, JSON is still a fantastic, cross-
language syntax for serializing data, and may further serve
a given workflow. As for practical concerns, it is a known
issue that parsing large JSON objects can be slow in MAT-
LAB. We’ve worked to make this no worse than reading
current lab-files, but speed and efficiency are not touted
benefits of MATLAB. This may become a bigger issue as
JAMS files become more complete over time, but we are

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

595

actively exploring various engineering solutions to address
this concern.

5. DISCUSSION AND FUTURE PERSPECTIVES

In this paper, we have proposed a JSON format for mu-
sic annotations to address the evolving needs of the MIR
community by keeping multiple annotations for multiple
tasks alongside rich metadata in the same file. We do so in
the hopes that the community can begin to easily leverage
this depth of information, and take advantage of ubiqui-
tous serialization technology (JSON) in a consistent man-
ner across MIR. The format is designed to be intuitive and
easy to integrate into existing workflows, and we provide
software libraries and pre-converted datasets to lower bar-
riers to entry.

Beyond practical considerations, JAMS has potential to
transform the way researchers approach and use music an-
notations. One of the more pressing issues facing the com-
munity at present is that of dataset curation and access. It is
our hope that by associating multiple annotations for multi-
ple tasks to an audio signal with retraceable metadata, such
as identifiers or URLs, it might be easier to create freely
available datasets with better coverage across tasks. Anno-
tation tools could serve music content found freely on the
Internet and upload this information to a common repos-
itory, ideally becoming something like a Freebase 6 for
MIR. Furthermore, JAMS provides a mechanism to han-
dle multiple concurrent perspectives, rather than forcing
the notion of an objective truth.

Finally, we recognize that any specification proposal
is incomplete without an honest discussion of feasibility
and adoption. The fact remains that JAMS arose from the
combination of needs within our group and an observation
of wider applicability. We have endeavored to make the
specification maximally useful with minimal overhead, but
appreciate that community standards require iteration and
feedback. This current version is not intended to be the
definitive answer, but rather a starting point from which
the community can work toward a solution as a collective.
Other professional communities, such as the IEEE, con-
vene to discuss standards, and perhaps a similar process
could become part of the ISMIR tradition as we continue
to embrace the pursuit of reproducible research practices.

6. REFERENCES

[1] Thierry Bertin-Mahieux, Daniel P.W. Ellis, Brian
Whitman, and Paul Lamere. The million song dataset.
In Proc. of the 12th International Society for Music In-
formation Retrieval Conference, pages 591–596, 2011.

[2] John Ashley Burgoyne, Jonathan Wild, and Ichiro Fuji-
naga. An expert ground truth set for audio chord recog-
nition and music analysis. In Proc. of the 12th Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 633–638, 2011.

6 http://www.freebase.com

[3] Chris Cannam, Christian Landone, Mark B Sandler,
and Juan Pablo Bello. The sonic visualiser: A visuali-
sation platform for semantic descriptors from musical
signals. In Proc. of the 7th International Society for
Music Information Retrieval Conference, pages 324–
327, 2006.

[4] Trevor De Clercq and David Temperley. A corpus anal-
ysis of rock harmony. Popular Music, 30(1):47–70,
2011.

[5] W Bas de Haas and John Ashley Burgoyne. Parsing the
billboard chord transcriptions. University of Utrecht,
Tech. Rep, 2012.

[6] Matthias Mauch, Katy Noland, and Simon Dixon. Us-
ing musical structure to enhance automatic chord tran-
scription. In Proc. of the 10th International Society for
Music Information Retrieval Conference, pages 231–
236, 2009.

[7] Cory McKay, Rebecca Fiebrink, Daniel McEnnis,
Beinan Li, and Ichiro Fujinaga. Ace: A framework
for optimizing music classification. In Proc. of the 6th
International Society for Music Information Retrieval
Conference, pages 42–49, 2005.

[8] Yizhao Ni, Matthew McVicar, Raul Santos-Rodriguez,
and Tijl De Bie. Understanding effects of subjectiv-
ity in measuring chord estimation accuracy. Audio,
Speech, and Language Processing, IEEE Transactions
on, 21(12):2607–2615, 2013.

[9] Hélène Papadopoulos and Geoffroy Peeters. Joint esti-
mation of chords and downbeats from an audio signal.
Audio, Speech, and Language Processing, IEEE Trans-
actions on, 19(1):138–152, 2011.

[10] G. Peeters and K. Fort. Towards a (better) definition of
annotated MIR corpora. In Proc. of the 13th Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 25–30, Porto, Portugal, Oct. 2012.

[11] Jordan Bennett Louis Smith, John Ashley Burgoyne,
Ichiro Fujinaga, David De Roure, and J Stephen
Downie. Design and creation of a large-scale database
of structural annotations. In Proc. of the 12th Interna-
tional Society for Music Information Retrieval Confer-
ence, pages 555–560, 2011.

[12] Emmanuel Vincent, Stanislaw A Raczynski, Nobutaka
Ono, Shigeki Sagayama, et al. A roadmap towards ver-
satile mir. In Proc. of the 11th International Society for
Music Information Retrieval Conference, pages 662–
664, 2010.

15th International Society for Music Information Retrieval Conference (ISMIR 2014)

596

