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Preface 
 
It is our great pleasure to welcome you to the 17th Conference of the International Society for                                 
Music Information Retrieval (ISMIR 2016). The annual ISMIR conference is the world’s                       
leading research forum on processing, analyzing, searching, organizing, and accessing                   
musicrelated data. This year’s conference, which takes place in New York City, USA, from                           
August 7 to 11, 2016, is organized by New York University and Columbia University. 
 
The present volume contains the complete manuscripts of all the peer‐reviewed papers                       
presented at ISMIR 2016. A total of 287 submissions were received before the deadline, out                             
of which 238 complete and well‐formatted papers entered the review process. Special care                         
was taken to assemble an experienced and interdisciplinary review panel including people                       
from many different institutions worldwide. As in previous years, the reviews were                       
double‐blinded (i.e., both the authors and the reviewers were anonymous) with a two‐tier                         
review model involving a pool of 283 reviewers, including a program committee of 59                           
members. Each paper was assigned to a PC member and three reviewers. Reviewer                         
assignments were based on topic preferences and PC member assignments. After the review                         
phase, PC members and reviewers entered a discussion phase aiming to homogenize                       
acceptance vs. rejection decisions.  
 
In 2015, the size of the program committee was increased substantially, and we continued                           
using this structure, with 59 program committee members this year. Taking care of four                           
submissions on average, the PC members were asked to adopt an active role in the review                               
process by conducting an intensive discussion phase with the other reviewers and by                         
providing a detailed metareview. Final acceptance decisions were based on 955 reviews and                         
meta‐reviews. From the 238 reviewed papers, 113 papers were accepted resulting in an                         
acceptance rate of 47.5%. The table shown on the next page summarizes the ISMIR                           
publication statistics over its history. 
 
The mode of presentation of the papers was determined after the accept/reject decisions and                           
has no relation to the quality of the papers or to the number of pages allotted in the                                   
proceedings. From the 113 contributions, 25 papers were chosen for oral presentation based                         
on the topic and broad appeal of the work, whereas the other 88 were chosen for poster                                 
presentation. Oral presentations have a 20minute slot (including setup and questions/answers                     
from the audience) whereas poster presentations are done in two sessions per day for a total                               
of 3 hours, the same posters being presented in the morning and in the afternoon of a given                                   
conference day. 
 
The ISMIR 2016 conference runs for a 5day period. The selected submissions are presented                           
over a period of 3.5 days, preceded by a day of tutorials and followed by half a day of                                     
late‐breaking/demo & unconference sessions. Moreover, this year the conference offers four                     
satellite events before and after the main conference: The ISMIR Think Tank, Hacking on                           
Music and Audio Research (HAMR), as well as workshops on Cognitively Based Music                         
Informatics Research (CogMIR), and Digital Libraries for Musicology (DLfM). We believe                     
this is an exciting and engaging program reflecting the breadth and depth of activities across                             
our community.  
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Year  Location  Oral  Poster  Total 
Papers 

Total 
Pages 

Total 
Authors 

Unique 
Authors 

Pages/ 
Paper 

Authors/ 
Paper 

Unique 
Authors/ 
Paper 

2000  Plymouth  19  16  35  155  68  63  4.4  1.9  1.8 
2001  Indiana  25  16  41  222  100  86  5.4  2.4  2.1 
2002  Paris  35  22  57  300  129  117  5.3  2.3  2.1 
2003  Baltimore  26  24  50  209  132  111  4.2  2.6  2.2 
2004  Barcelona  61  44  105  582  252  214  5.5  2.4  2 
2005  London  57  57  114  697  316  233  6.1  2.8  2 
2006  Victoria  59  36  95  397  246  198  4.2  2.6  2.1 
2007  Vienna  62  65  127  486  361  267  3.8  2.8  2.1 
2008  Philadelphia  24  105  105  630  296  253  6  2.8  2.4 
2009  Kobe  38  85  123  729  375  292  5.9  3  2.4 
2010  Utrecht  24  86  110  656  314  263  6  2.  2.4 
2011  Miami  36  97  133  792  395  322  6  3  2.4 
2012  Porto  36  65  101  606  324  264  6  3.2  2.6 
2013  Curitiba  31  67  98  587  395  236  5.9  3  2.4 
2014  Taipei  33  73  106  635  343  271  6  3.2  2.6 
2015  Málaga  24  90  114  792  370  296  7  3.2  2.6 
2016  New York  25  88  113  781  341  270  6.9  3.0  2.4 

 
 
 
 
Tutorials 
 
Six tutorials take place on Sunday, providing a good balance between culture and technology.                           
Three 3‐hour tutorials are presented in parallel on Sunday morning, and three in parallel on                             
Sunday afternoon. 
 
Morning sessions: 

● Tutorial 1: Jazz Solo Analysis between Music Information Retrieval, Music                   
Psychology, and Jazz Research (Jakob Abeßer, Klaus Frieler, WolfGeorg Zaddach) 

● Tutorial 2: Music Information Retrieval: Overview, Recent Developments and Future                   
Challenges (Emilia Gómez, Markus Schedl, Xavier Serra, Xiao Hu) 

● Tutorial 3: Why is Studio Production Interesting? (Emmanuel Deruty, François                   
Pachet) 

Afternoon sessions: 
● Tutorial 4: Introduction to EEG Decoding for Music Information Retrieval Research                     

(Sebastian Stober, Blair Kaneshiro) 
● Tutorial 5: Natural Language Processing for MIR (Sergio Oramas, Luis                   

EspinosaAnke, Shuo Zhang, Horacio Saggion) 
● Tutorial 6: Why HipHop is Interesting (Jan Van Balen, Ethan Hein, Dan Brown) 
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Keynote Speakers and Industry Panel 
 
We are honored to have two distinguished keynote speakers: 
 

● Barbara Haws, Archivist and Historian, New York Philharmonic, presenting “The                   
New York Philharmonic Leon Levy Digital Archives: An Integrated View of                     
Performance Since 1842” 

● Beth Logan, PhD, VP, Optimization, DataXu, presenting “Is Machine Learning                   
Enough?” 

And a panel discussion moderated by Eric Humphrey of Spotify on the future of the music                               
industry  spanning creation, distribution, and consumption  and the role that intelligent                         
information technologies will play in that world. The panel consists of four distinguished                         
members of industry: 

● Liv Buli  Data Journalist, Pandora / NextBigSound 
● Alex Kolundzija  Head of Web Platforms, ROLI 
● Jim Lucchese  Head of Creator Business, Spotify 
● Kristin Thomson  Codirector of Artist Revenue Streams, Future of Music Coalition 

 
 
Evaluation and MIREX 
 
Evaluation remains an important issue for the community and its discussion will be, as in                             
previous years, an integral part of ISMIR: MIREX16 participants will present posters of                         
their work during the Late Breaking Demo session, and we will feature a townhall style,                             
plenary discussion on the topic of evaluation. For the town hall, participants are invited to                             
submit and vote on topics for discussion through an online forum, and discussion will be                             
open to all in attendance. 
 
 
LateBreaking/Demo & Unconference 
 
Thursday afternoon is dedicated to latebreaking papers and MIR system demonstrations.                     
Abstracts for these presentations are available online. Moreover, as in previous years, we                         
have a special “unconference” session in which participants break up into smaller groups to                           
discuss MIR issues of particular interest. This is an informal and informative opportunity to                           
get to know peers and colleagues from all around the world. 
 
 
Satellite Events 
 
ISMIR 2016 has expanded its offering of satellite events to four, emphasizing two very                           
important themes: the bridge between academia and industry and diversity in our community. 
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The ThinkTank is a free event organized in partnership with RealIndustry for invited                         
graduate students in MIR and Media Technology to provide opportunities to interact with                         
industry. It aims to expose those students who are interested in a future career outside of                               
academia to the challenges and concepts that arise in industrial and entrepreneurial settings. 
 
Hacking on Audio and Music Research (HAMR) is an event series which applies the                           
hackathon model to the development of new techniques for analyzing, processing, and                       
synthesizing audio and music signals. This is in contrast to traditional hackathons and hack                           
days, which generally emphasize prototyping commercial applications, but have proven to be                       
an effective way for entrepreneurs and hobbyists to spend a concentrated period of time doing                             
preliminary work on a new project.  
 
The sixth annual CogMIR (Cognitively based Music Informatics Research) seminar will                     
be collocated with ISMIR 2016. CogMIR aims to address the need for highlighting                         
empirically derived methods based on human cognition that inform the field of music                         
informatics and music information retrieval and covers topics such as music similarity, music                         
emotion, music analysis and generation, music information retrieval, and computational                   
modeling. 
 
The Digital Libraries for Musicology (DLfM) workshop presents a venue specifically for                       
those working on, and with, Digital Library systems and content in the domain of music and                               
musicology. This includes bibliographic and metadata for music, intersections with music                     
Linked Data, and the challenges of working with the multiple representations of music across                           
largescale digital collections such as the Internet Archive and HathiTrust. 
 
 
WiMIR 
 
Women in MIR (WiMIR) is a group of people in the MIR community dedicated to promoting                               
the role of, and increasing opportunities for, women in the field. Participants meet to network,                             
share information, and discuss in an informal setting the goal of building a community that                             
supports women – and more broadly, diversity – in the field of MIR. 
 
WiMIR has held annual meetings at the ISMIR conference since 2012, garnering a high                           
turnout of both female and male attendees. For the first time in 2016, WiMIR has organized a                                 
mentoring program connecting female students, postdocs, and earlystage researchers to more                     
senior females and male allies in the field, and has also received substantial financial support                             
which enables more female researchers to attend the ISMIR conference. 
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Social Events 
 
In addition to the academic focus of ISMIR, we have aimed to provide a number of unique                                 
social events. The social program provides participants with an opportunity to relax after                         
meetings, to experience New York City, and to network with other ISMIR participants. The                           
social program includes: 
 

● Sunday, August 7, Welcome reception at Houston Hall, a massive beer hall in NYC’s                           
West Village specializing in local craft beers. 

● Tuesday, August 9: ISMIR 2016 Pandora jam session at DROM, an eclectic and                         
vibrant music venue in the East Village, well known for introducing new talent to                           
NYC’s live music scene. 

● Wednesday August 10: Banquet dinner at Brooklyn Bowl, one of the hippest venues                         
in the city, famous for live music, bowling lanes, fried chicken and a fun atmosphere. 

 
 
Host city 

 
New York is the largest city in the US, and one of the most iconic urban areas in the world. It                                         
boasts one of the most vibrant music scenes to be found anywhere in the world, as home to                                   
landmark institutions such as Carnegie Hall, the Blue Note, The New York Philharmonic,                         
Broadway and Juilliard. It is the birthplace of styles as diverse as hiphop, salsa, bebop, disco                               
and punk rock, and serves as the base of an impressive array of major artists, studios and                                 
record labels. 

Recently it has experienced a boom in music technology activity and entrepreneurship                       
including presence from companies such as Google/Songza, Spotify/Echonest, Pandora,                 
Shazam, and a growing list of music technology startups; all of which complements the                           
already extensive network of more traditional music businesses and services. It is centrally                         
located in the northeastern United States, which includes a critical mass of MIR laboratories                           
and researchers, both in industry and academia. 

The conference venues are centrally located in the historic Greenwich Village neighborhood                       
of lower Manhattan, which is rich with dining and entertainment options. No less than 700                             
restaurants and 400 bars are listed within a 15 minute walk from the venue and other local                                 
attractions including famous Jazz clubs such as Blue Note and the Village Vanguard. 
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Helena Bantulà, Sergio Giraldo, Rafael Ramı́rez . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 674

Mining Musical Traits of Social Functions in Native American Music
Daniel Shanahan, Kerstin Neubarth, Darrell Conklin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 681

Mining Online Music Listening Trajectories
Flavio Figueiredo, Bruno Ribeiro, Christos Faloutsos, Nazareno Andrade, Jussara M. Almeida . . . . . . 688

Musical Typicality: How Many Similar Songs Exist?
Tomoyasu Nakano, Daichi Mochihashi, Kazuyoshi Yoshii, Masataka Goto . . . . . . . . . . . . . . . . . 695

MusicDB: A Platform for Longitudinal Music Analytics
Jeremy Hyrkas, Bill Howe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 702

Noise Robust Music Artist Recognition Using I-Vector Features
Hamid Eghbal-zadeh, Gerhard Widmer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 709

On the Use of Note Onsets for Improved Lyrics-To-Audio Alignment in Turkish Makam Music
Georgi Dzhambazov, Ajay Srinivasamurthy, Sertan Sentürk, Xavier Serra . . . . . . . . . . . . . . . . . 716

Querying XML Score Databases: XQuery is not Enough!
Raphael Fournier-S’niehotta, Philippe Rigaux, Nicolas Travers . . . . . . . . . . . . . . . . . . . . . . . 723

Recurrent Neural Networks for Drum Transcription
Richard Vogl, Matthias Dorfer, Peter Knees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730

Singing Voice Melody Transcription Using Deep Neural Networks
François Rigaud, Mathieu Radenen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 737

Sparse Coding Based Music Genre Classification Using Spectro-Temporal Modulations
Kai-Chun Hsu, Chih-Shan Lin, Tai-Shih Chi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 744

Time-Delayed Melody Surfaces for Rāga Recognition
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Keynote Talk 1  
 
The New York Philharmonic Leon Levy Digital Archives:  
An Integrated View of Performance Since 1842 
 
 
Barbara Haws 
Archivist and Historian, New York Philharmonic 
 
 
Abstract 
 
For nearly 175 years the New York Philharmonic has been assiduously documenting and                         
keeping all facets of its existence in whatever formats were available; marked conducting                         
scores, orchestra parts, printed programs, business records, contracts, letters, newspaper                   
reviews, audio and video. With the digitization of this material, it is possible for the first time                                 
to see the relationships between seemingly disparate materials that expand our understanding                       
of the performance experience and the music itself. As well, especially through the GitHub                           
repository, unanticipated applications of the data have occurred. Working towards the year                       
2066, the challenge is to incorporate the new formats of the modern era to ensure that the                                 
single longest running dataset of a performing institution continues.  
 
 
 
 
 
Biography 
 
Barbara Haws has been the Archivist and Historian of the New York Philharmonic since                           
1984. Haws has lectured extensively about the Philharmonic’s past and curated major                       
exhibitions here and in Europe. She is a Grammy nominated producer of the Philharmonic’s                           
Special Editions historic recordings. Haws along with Burton Bernstein is the author of                         
Leonard Bernstein: American Original published by Harper Collins, 2008 and the essay                       
"U.C. Hill, An American Musician Abroad (183537)”. Since 2009, Haws has led an effort                           
funded by the Leon Levy Foundation to digitize more than three million pages of archival                             
material since 1842, making it freely available over the internet. The Digital Archives project                           
was recently featured on FiveThirtyEight podcast “What’s The Point”. 
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Keynote Talk 2  
 
Is Machine Learning Enough? 
 
 
 
Beth Logan, PhD 
VP, Optimization, DataXu 
 
 
Abstract 
 
We live in a world unimaginable even 20 years ago. From our phones we can summon a car,                                   
book a vacation and of course access the word’s music to find just those songs we like, even                                   
songs we didn't know we liked. Automated Machine Learning at scale enables these and                           
thousands more applications. But in business, it’s good to know when to stop. It’s not                             
always smart to automate that last, difficult 10% of performance. Indeed in music and other                             
industries, humans often curate the results. Will humans always be in the loop or will the                               
machines eventually take over?   Will Machine Learning ever be enough? 
 
 
 
 
 
Biography 
 
Beth is the VP of Optimization at DataXu, a leader in programmatic marketing.  She has 
made contributions to a wide variety of fields, including speech recognition, music indexing 
and inhome activity monitoring.  Beth holds a PhD in speech recognition from the 
University of Cambridge.  
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Tutorial 1 
 
Jazz solo analysis between music information retrieval, music 
psychology, and jazz research 
 
Jakob Abeßer, Klaus Frieler, and WolfGeorg Zaddach 
 
 
Abstract 
 
The tutorial will consist of four parts. The first part sets the scene with a short run through                                   
jazz history and its main styles and an overview of the central musical elements in jazz. Out                                 
of this introduction, the main research questions will be derived, which cover jazz research                           
and jazz historiography, analysis of musical style, performance research, and psychology of                       
creative processes. Particularly, research issues as addressed in the Jazzomat Research                     
Project will be discussed and results will be presented. 
 
The second part of the tutorial will deal with the details of the Weimar Jazz Database. Each                                 
solo encompasses pitch, onset, and offset time of the played tones as well as several                             
additional annotations, e.g., manually tapped beat grids, chords, enumerations of sections and                       
choruses as well as phrase segmentations. The process of creating the monophonic                       
transcriptions will be explained (solo selection, transcription procedure, and quality                   
management) and examples will be shown. Moreover, the underlying datamodel of the                       
Weimar Jazz Database, which includes symbolic data as well as data automatically extracted                         
from the audiofiles (e.g., intensity curves and beatwise bass chroma) will be discussed in                           
detail. 
 
In the third part, we will introduce our analysis tools MeloSpySuite and MeloSpyGUI, which                           
allow the computation of a large set of currently over 500 symbolic features from                           
monophonic melodies. These features quantify various tonal, harmonic, rhythmic, metrical,                   
and structural properties of the solo melodies. In addition, pattern retrieval modules, based on                           
ngram representations and a twostage search option using regular expressions, play an                       
integral part for the extraction of motivic cells and formulas from jazz solos. All tools can be                                 
readily applied to other melodic datasets besides the Weimar Jazz Database. Several use                         
cases will be demonstrated and research results will be discussed. 
 
The final part of the tutorial will focus on audiobased analysis of recorded jazz solo                             
performances. We follow a scoreinformed analysis approach by using the solo transcriptions                       
from the Weimar Jazz Database as prior information. This allows us to mitigate common                           
problems in transcribing and analyzing polyphonic and multitimbral audio such as                     
overlapping instrument partials. A scoreinformed source separation algorithm is used to split                       
the original recordings into a solo and an accompaniment track, which allows the tracking of                             
f0curves and intensity contours of the solo instrument. We will present the results of                           
different analyses of the stylistic idiosyncrasies across wellknown saxophone and trumpet                     
players. Finally, we will briefly outline further potentials and challenges of scoreinformed                       
MIR techniques. 
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Jakob Abeßer holds a degree in computer engineering (Dipl.Ing.) from Ilmenau University                       
of Technology. He is a postdoctoral researcher in the Semantic Music Technologies group at                           
Fraunhofer IDMT and obtained a PhD degree (Dr.Ing.) in Media Technology from Ilmenau                         
University of Technology in 2014. During his PhD, he was a visiting researcher at the                             
Finnish Centre of Excellence in Interdisciplinary Music Research, University of Jyväskylä,                     
Finland in 2010. As a research scientist at Fraunhofer, he has experience with algorithm                           
development in the fields of automatic music transcription, symbolic music analysis, machine                       
learning, and music instrument recognition. Also, he works as a postdoctoral researcher at the                           
University of Music in Weimar in the Jazzomat Research Project, focusing on analyzing jazz                           
solo recordings using Music Information Retrieval technologies. 
 
Klaus Frieler graduated in theoretical physics (diploma) and received a PhD in systematic                         
musicology in 2008. In between, he worked several years as a freelance software developer                           
before taking up a post as lecturer in systematic musicology at the University of Hamburg in                               
2008. In 2012, he had a short stint at the C4DM, Queen Mary University of London. Since                                 
the end of 2012, he is a postdoctoral researcher with the Jazzomat Research Project at the                               
University of Music “Franz Liszt” Weimar. His main research interests are computational                       
and statistical music psychology with a focus on creativity, melody perception, singing                       
intonation, and jazz research. Since 2006, he also works as an independent music expert                           
specializing in copyright cases. 
 
WolfGeorg Zaddach studied musicology, arts administration, and history in Weimar and                     
Jena, music management and jazz guitar in Prague, Czech Republic. After finishing his                         
Magister Artium with a thesis about jazz in Czechoslovakia in the 50s and 60s, he worked as                                 
assistant professor at the department of musicology in Weimar. Since 10/2012 he works at                           
the jazz research project of Prof. Dr. Martin Pfleiderer. Since 02/2014, he holds a scholarship                             
by the German National Academic Foundation (Studienstiftung des deutschen Volkes) for his                       
Ph.D. about heavy and extreme metal in the 1980s GDR/East Germany. He frequently                         
performs live and on records as a guitarist. 
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Tutorial 2 
 
Music Information Retrieval:  
Overview, Recent Developments and Future Challenges 
 
Emilia Gómez, Markus Schedl, Xavier Serra, and Xiao Hu 
 
 
Abstract 
 
This tutorial provides a survey of the field of Music Information Retrieval (MIR), that aims,                             
among other things, at automatically extracting semantically meaningful information from                   
various representations of music entities, such as audio, scores, lyrics, web pages or                         
microblogs. The tutorial is designed for students, engineers, researchers, and data scientists                       
who are new to MIR and want to get introduced to the field. 
 
The tutorial will cover some of the main tasks in MIR, such as music identification,                             
transcription, search by similarity, genre/mood/artist classification, query by humming, music                   
recommendation, and playlist generation. We will review approaches based on contentbased                     
and contextbased music description and show how MIR tasks are addressed from a                         
usercentered and multicultural perspective. The tutorial will focus on latest developments                     
and current challenges in the field. 
 
 
Emilia Gómez (emiliagomez.wordpress.com) is an Associate Professor (SerraHunter               
Fellow) at the Music Technology Group, Department of Information and Communication                     
Technologies, Universitat Pompeu Fabra in Barcelona, Spain. She graduated as a                     
Telecommunication Engineer at Universidad de Sevilla (Spain) and she studied classical                     
piano performance at Seville Conservatoire of Music. She then received a DEA in Acoustics,                           
Signal Processing and Computer Science applied to Music (ATIAM) at IRCAM, Paris                       
(France) and a Ph.D. in Computer Science and Digital Communication at the UPF (awarded                           
by EPSON foundation). Her research is within the Music Information Retrieval (MIR) field.                         
She tries to understand and enhance music listening experiences by automatically extracting                       
descriptors from music signals. She has designed algorithms able to describe music signals in                           
terms of melody, tonality, and, by incorporating machine learning techniques, she has been                         
able to model highlevel concepts such as similarity, style or emotion. Emilia Gómez has                           
coauthored more than a 100 publications in peerreviewed scientific journals and                     
conferences. She has contributed to more than 15 research projects, most of them funded by                             
the European Commission and Spanish Government. She is elected memberatlarge of the                       
International Society for Music Information Retrieval (ISMIR). At the moment, she                     
contributes to the COFLA project on computational analysis of flamenco music and she is the                             
principal investigator for the European research project PHENICX, trying to innovate the                       
way we experience classical music concerts. 
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Markus Schedl is an Associate Professor at the Johannes Kepler University Linz /                         
Department of Computational Perception. He graduated in Computer Science from the                     
Vienna University of Technology and earned his Ph.D. in Technical Sciences from the                         
Johannes Kepler University Linz. Markus further studied International Business                 
Administration at the Vienna University of Economics and Business Administration as well                       
as at the Handelshogskolan of the University of Gothenburg, which led to a Master’s degree.                             
Markus (co)authored more than 120 refereed conference papers and journal articles (among                       
others, published in ACM Multimedia, SIGIR, ECIR, IEEE Visualization; Journal of                     
Machine Learning Research, ACM Transactions on Information Systems, Springer                 
Information Retrieval, IEEE Multimedia). Furthermore, he is associate editor of the Springer                       
International Journal of Multimedia Information Retrieval and serves on various program                     
committees and reviewed submissions to several conferences and journals (among others,                     
ACM Multimedia, ECIR, IJCAI, ICASSP, IEEE Visualization; IEEE Transactions of                   
Multimedia, Elsevier Data & Knowledge Engineering, ACM Transactions on Intelligent                   
Systems and Technology, Springer Multimedia Systems). His main research interests include                     
web and social media mining, information retrieval, multimedia, and music information                     
research. Since 2007, Markus has been giving several lectures, among others, ”Music                       
Information Retrieval”, ”Exploratory Data Analysis”, ”Multimedia Search and Retrieval”,                 
”Learning from Usergenerated Data”, ”Multimedia Data Mining”, and ”Intelligent Systems”.                   
He further spent several guest lecturing stays at the Universitat Pompeu Fabra, Barcelona,                         
Spain, the Utrecht University, the Netherlands, the Queen Mary, University of London, UK,                         
and the Kungliga Tekniska Hgskolan, Stockholm, Sweden. 
 
Xavier Serra is Associate Professor of the Department of Information and Communication                       
Technologies and Director of the Music Technology Group at the Universitat Pompeu Fabra                         
in Barcelona. After a multidisciplinary academic education he obtained a PhD in Computer                         
Music from Stanford University in 1989 with a dissertation on the spectral processing of                           
musical sounds that is considered a key reference in the field. His research interests cover the                               
analysis, description and synthesis of sound and music signals, with a balance between basic                           
and applied research and approaches from both scientific/technological and                 
humanistic/artistic disciplines. Dr. Serra is very active in promoting initiatives in the field of                           
Sound and Music Computing at the local and international levels, being involved in the                           
editorial board of a number of journals and conferences and giving lectures on current and                             
future challenges of the field. He has recently been awarded an Advanced Grant of the                             
European Research Council to carry out the project CompMusic aimed at promoting                       
multicultural approaches in music computing research. 
 
Xiao Hu is an Assistant Professor in the Division of Information and Technology Studies in                             
the Faculty of Education of the University of Hong Kong. She received her Ph.D degree in                               
Library and Information Science from the University of Illinois, with an award winning                         
dissertation on multimodal music mood classification. Dr. Hu’s research interests include                     
music mood recognition, MIR evaluation, usercentered MIR studies and crosscultural MIR.                     
Dr. Hu has won the Best Student Paper award in the ACM Joint Conference on Digital                               
Libraries (2010) and Best Student Paper award in the iConference (2010). Dr. Hu has been a                               
visiting scholar at the National Institute of Informatics, Japan. She was a tutorial speaker on                             
music affect recognition (2012) and a Conference Cochair (2014) in the International                       
Society for Music Information Retrieval Conference. 
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Tutorial 3 
 
Why is studio production interesting? 
 
Emmanuel Deruty and François Pachet 
 
 
Abstract 
 
The tutorial follows the “Why X is interesting” series that aims at bridging the gap between                               
technologyoriented and musicrelated research. It will suggest a number of reasons why                       
production is important for MIR, seen from the eyes of an expert (the first author) and a MIR                                   
researcher (the second one). 
 
In music, the use of studio techniques has become commonplace with the advent of cheap                             
personal computers and powerful DAWs. The MIR community has long been confronted to                         
studio production. Since ISMIR’s first installment in 2000, about 35 papers involving more                         
than 70 authors have addressed studio production. However, more than 44% of these identify                           
studio production as a source of problems: the socalled album or producer effect gets in the                               
way of artist or genre identification, audio processing techniques prevent proper onset                       
detections, or effects are responsible for false positive in singing voice detection. A few of                             
these papers even characterize production as not being part of the music. On the other hand,                               
another 35% of these papers either outline the knowledge of studio production as useful or                             
indispensable to MIR tasks, or try to provide a formal characterization for this set of                             
techniques. 
 
A difficulty met by MIR researchers interested in studio production techniques is that                         
production specialists are reluctant to formalize their knowledge. Like oldfashioned guild                     
artisans, engineers and producers reputedly learn “tricks of the trade” from the “Greatest                         
Teachers” or “mentors”. As a result, knowledge of studio production techniques is not                         
widespread in the scientific community. Even in the upcoming field of automatic mixing, a                           
domain intrinsically related to studio production, we have found that only 15% of scientific                           
papers take these techniques into account. A similar issue can be observed at DAFx, where                             
papers dealing with studio production as actually performed in the music community are rare. 
 
The tutorial aims at explaining studio production techniques to MIR researchers in a simple                           
and practical way, in order to highlight the main production tricks and usages to a MIR                               
audience. 
 
We will review standard aspects of studio music production, including recording, processing,                       
mixing, and mastering. We will then focus on the basic methods of audio processing: EQs,                             
compression, reverbs, and such. We will illustrate how these basic techniques can be                         
combined creatively. 
 
Production techniques may be implemented in a variety of ways, depending on trends and                           
available hardware. We’ll go through a brief retrospective of how these techniques have been                           
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used since the mid 60’s in different ways. As different variations of the same basic processes                               
can influence, sometimes drastically, the finished product, we believe such knowledge may                       
be useful in relation to classification and similarity. 
 
MIR researchers often conceptualize lead vocals as a solo line, possibly ornamented with                         
backing vocals and audio effects. In practice, we’ll show that vocal track production in                           
mainstream pop music results in complex architectures. We will analyze the vocals tracks in                           
some mainstream hits. It will demonstrate that studio production is an integral part of the                             
music, not an extraneous layer of effects. Consequences are obvious for the nature of the                             
information MIR scholars look for, e.g. in information extraction, retrieval, similarity or                       
recommendation. 
 
We will complete the tutorial with a short demo of automatic mixing techniques developed in                             
our lab that use autoadaptive audio effects. It will demonstrate that consideration of                         
production is a definite advantage in music generation. 
 
 
Emmanuel Deruty studied studio production for music at the Conservatoire de Paris                       
(CNSMDP), where he graduated as Tonmeister in 2000. He has worked in many fields                           
related to audio and music production in Europe and in the US: sound designer in a research                                 
context (IRCAM), sound designer in a commercial context (Soundwalk collective), film                     
music producer and composer (Autour de Minuit & Everybody on Deck, Paris), lecturer at                           
Alchemea College of sound engineering (London), writer for the Sound on Sound magazine                         
(Cambridge, UK). He’s worked as a M.I.R. researcher at IRCAM, INRIA and AkousticArts,                         
France. He’s currently working on automatic mixing at Sony CSL, and is a specialist of the                               
“loudness war”. 
 
François Pachet received his Ph.D. and Habilitation degrees from Paris 6 University                       
(UPMC). He is a Civil Engineer and was Assistant Professor in Artificial Intelligence and                           
Computer Science, at Paris 6 University, until 1997. He is now director of the Sony                             
Computer Science Laboratory in Paris, where he conducts research in interactive music                       
listening and performance and musical metadata and developed several innovative                   
technologies and award winning systems. François Pachet has published intensively in                     
artificial intelligence and computer music. He was cochair of the IJCAI 2015 special track                           
on Artificial Intelligence and the Arts, and has been elected ECCAI Fellow in 2014. His                             
current goal, funded by an ERC Advanced Grant, is to build computational representations of                           
style from text and music corpora,that can be exploited for personalized content generation.                         
He is also an accomplished musician (guitar, composition) and has published two music                         
albums (in jazz and pop) as composer and performer. 
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Tutorial 4 
 
Introduction to EEG Decoding for Music Information Retrieval 
Research 
 
Sebastian Stober and Blair Kaneshiro 
 
 
Abstract 
 
Perceptual and cognitive approaches to MIR research have very recently expanded to the                         
realm of neuroscience, with MIR groups beginning to conduct neuroscience research and vice                         
versa. First publications have already reached ISMIR and for the very first time, there will be                               
a dedicated satellite event on cognitively based music informatics research (CogMIR) at this                         
year’s ISMIR conference. Within the context of this growing potential for crossdisciplinary                       
collaborations, this tutorial will provide fundamental knowledge of neuroscientific                 
approaches and findings with the goal of sparking the interest of MIR researchers and leading                             
to future intersections between these two exciting fields. Specifically, our focus for this                         
tutorial is on electroencephalography (EEG), a widely used and relatively inexpensive                     
recording modality which offers high temporal resolution, portability, and mobility –                     
characteristics that may prove especially attractive for applications in MIR. Attendees of this                         
tutorial will gain a fundamental understanding of EEG responses, including how the data are                           
recorded as well as standard procedures for preprocessing and cleaning the data. Keeping in                           
mind the interests and objectives of the MIR community, we will highlight EEG analysis                           
approaches, including singletrial analyses, that lend themselves to retrieval scenarios.                   
Finally, we will review relevant opensource software, tools, and datasets for facilitating                       
future research. The tutorial will be structured as a combination of informational slides and                           
livecoding analysis demonstrations, with ample time for Q&A with the audience. 
 
 
Sebastian Stober is head of the recently established junior research group on “Machine                         
Learning in Cognitive Science” within the interdisciplinary setting of the Research Focus                       
Cognitive Science at the University of Potsdam. Before, he was a postdoctoral fellow at the                             
Brain and Mind Institute of the University of Western Ontario where he investigated ways to                             
identify perceived and imagined music pieces from electroencephalography (EEG)                 
recordings. He studied computer science with focus on intelligent systems and music                       
information retrieval at the OttovonGuericke University Magdeburg where he received his                     
diploma degree in 2005 and his Ph.D. in 2011 for his thesis on adaptive methods for                               
usercentered organization of music collections. He has also been coorganizer for the                       
International Workshops on Learning Semantics of Audio Signals (LSAS) and Adaptive                     
Multimedia Retrieval (AMR). With his current research on music imagery information                     
retrieval, he combines music information retrieval with cognitive neuroscience. 
 
Blair Kaneshiro is a Ph.D. candidate (ABD) at the Center for Computer Research in Music                             
and Acoustics at Stanford University. She earned her B.A. in Music, M.A. in Music, Science,                             
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and Technology, and M.S. in Electrical Engineering, all from Stanford. Her research explores                         
musical engagement and expectation through brain responses, with an emphasis on                     
multivariate and singletrial approaches to EEG analysis. Other research interests include the                       
study of musical engagement using behavioral and largescale socialmedia data, and                     
promotion of reproducible and crossdisciplinary research through opensource tools and                   
datasets. She is affiliated with CCRMA’s Music Engagement Research Initiative (MERI) led                       
by professor Jonathan Berger; music tech company Shazam; and the Brain Research group                         
(formerly Suppes Brain Lab) at Stanford’s Center for the Study of Language and Information. 
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Tutorial 5 
 
Natural Language Processing for MIR 
 
Sergio Oramas, Luis EspinosaAnke, Shuo Zhang, and Horacio Saggion 
 
 
Abstract 
 
An increasing amount of musical information is being published daily in media like Social                           
Networks, Digital Libraries or Web Pages. All this data has the potential to impact in                             
musicological studies, as well as tasks within MIR such as music recommendation. Making                         
sense of it is a very challenging task, and so this tutorial aims to provide the audience with                                   
potential applications of Natural Language Processing (NLP) to MIR and Computational                     
Musicology. 
 
In this tutorial, we will focus on linguistic, semantic and statisticalbased approaches to                         
extract and formalize knowledge about music from naturally occurring text. We propose to                         
provide the audience with a preliminary introduction to NLP, covering its main tasks along                           
with the stateoftheart and most recent developments. In addition, we will showcase the main                           
challenges that the music domain poses to the different NLP tasks, and the already developed                             
methodologies for leveraging them in MIR and musicological applications. We will cover the                         
following NLP tasks: 
 

● Basic text preprocessing and normalization 
● Linguistic enrichment in the form of partofspeech tagging, as well as shallow and                         

dependency parsing. 
● Information Extraction, with special focus on Entity Linking and Relation Extraction. 
● Text Mining 
● Topic Modeling 
● Sentiment Analysis 
● Word Vector Embeddings 

 
We will also introduce some of the most popular python libraries for NLP (e.g. Gensim,                             
Spacy) and useful lexical resources (e.g. WordNet, BabelNet). At the same time, the tutorial                           
analyzes the challenges and opportunities that the application of these techniques to large                         
amounts of texts presents to MIR researchers and musicologists, presents some research                       
contributions and provides a forum to discuss about how address those challenges in future                           
research. We envisage this tutorial as a highly interactive session, with a sizable amount of                             
handson activities and live demos of actual systems. 
 
 
Sergio Oramas received a degree in Computer Engineering by the Technical University of                         
Madrid in 2004, and a B.A. in Musicology by the University of La Rioja in 2011. He is a                                     
PhD candidate at the Music Technology Group (Pompeu Fabra University) since 2013,                       
holding a “La Caixa” PhD Fellowship. His research interests are focused on the extraction of                             
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structured knowledge from text and its application in Music Information Retrieval and                       
Computational Musicology. 
 
Luis EspinosaAnke is a PhD candidate at the Natural Language Processing group in at                           
Pompeu Fabra University. His research focuses in learning knowledge representations of                     
language, including automatic construction of glossaries; knowledge base generation,                 
population and unification; and automatic taxonomy learning. He is Fulbright alumni,                     
“laCaixa” scholar, and member of the Erasmus Mundus Association as well as the European                           
Network of eLexicography. 
 
Shuo Zhang is a PhD candidate in Computational Linguistics at Georgetown University,                       
USA, and a collaborator/researcher at the Music Technology Group, Universitat Pompeu                     
Fabra. He has worked in both text (NLPinformation extraction) and sound (speech                       
processing, timeseries data mining in speech prosody) aspects of computational linguistics                     
and their applications in MIR. His past and current projects include areas such as coreference                             
resolution, search and visualization of multilayered linguistic corpora, text mining & topic                       
modeling in MIR, temporal semantics, timeseries mining in speech and music, etc. Shuo                         
holds B.Sci. from the Peking University, M.A. from the Department of Music, University of                           
Pittsburgh, and M.Sci. in Computational Linguistics from Georgetown University. 
 
Horacio Saggion is Profesor Agregado at the Department of Technologies, Universitat                     
Pompeu Fabra. He holds a PhD in Computer Science from Université de Montréal (Canada).                           
He is associated to the Natural Language Processing group where he works on automatic text                             
summarization, text simplification, information extraction, text processing in social media,                   
sentiment analysis and related topics. His research is empirical combining symbolic,                     
patternbased approaches and statistical and machine learning techniques. Before joining                   
Universitat Pompeu Fabra, he worked at the University of Sheffield for a number of UK and                               
European research projects developing competitive human language technology. He was also                     
an invited researcher at Johns Hopkins University in 2011. Horacio has published over 100                           
works in leading scientific journals, conferences, and books in the field of human language                           
technology. 
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Tutorial 6 
 
Why HipHop is interesting 
 
Jan Van Balen, Ethan Hein, and Dan Brown 
 
 
Abstract 
 
Hiphop, as a musical culture, is extremely popular around the world. Its influence on popular                             
music is unprecedented: the hiphop creative process has become the dominant practice of the                           
pop mainstream, and spawned a range of electronic styles. Strangely, Hiphop hasn’t been the                           
subject of much research in Music Information Retrieval. Music research rooted in the                         
European music traditions tends to look at music in terms harmony, melody and form. Even                             
compared to other popular music, these are facets of music that don’t quite work the same                               
way in HipHop as they do in the music of Beethoven and the Beatles. 
 
In this tutorial, we will argue that a different perspective may be needed to approach the                               
analysis of Hiphop and popular music computationally—an analysis with a stronger focus on                         
timbre, rhythm and lyrics and attention to groove, texture, rhyme, metadata and semiotics. 
 
Hiphop is often said to integrate four modes of artistic expression: Rap, turntablism,                         
breakdance and graffiti culture. In the first part of this tutorial, we will discuss the emergence                               
and evolution of HipHop as a musical genre, and its particularities, focusing our discussion                           
on beatmaking (turntablism and sampling), and Rap. A second part of the talk will highlight                             
the most important reasons why MIR practitioners and other music technologists should care                         
about HipHop, talking about Hiphop’s relevance today, and the role Hiphop in popular                         
music. We highlight its relative absence in music theory, music education, and MIR. The                           
latter will be illustrated with examples of MIR and digital musicology studies in which                           
Hiphop music is explicitly ignored or found to ‘break’ the methodology. 
 
Next, we review some of the work done on the intersection of Hiphop and music technology.                               
Because the amount of computational research on Hiphop music is rather modest, we                         
discuss, in depth, three clusters of research on the intersection of Hiphop and music                           
technology. The first two are related of MIR, focusing on ‘beats’ and sampling, and Rap                             
lyrics and rhyme. For the third topic, situating Hiphop in the broader topic of music                             
technology, we look at how an important role for both music technology and Hiphop is                             
emerging in music education. Finally, the last part of the talk will give an overview of                               
resources and research opportunities for Hiphop research. 
 
This tutorial is aimed at anyone interested in Music Information Retrieval and popular music,                           
whether familiar with Hiphop music or not. We also aim to make it relevant to a broader                                 
audience interested in music technology, touching on topics like sampling and samplers, and                         
Hiphop in technology and music education, and to anyone interested in text processing, with                           
an additional focus on the analysis of lyrics. 
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Throughout the tutorial, we intend to include a lot of listening examples. Participants will                           
access to an extended playlist of selected listening examples, along with a short guide to the                               
significance of the selected recordings. 
 
 
Jan Van Balen researches the use of audio MIR methods to learn new things about music                               
and music memory. Living in London, he is finishing his PhD with Utrecht University (NL),                             
on audio corpus analysis and popular music. As part of his PhD project and with colleagues                               
at Utrecht University and University of Amsterdam, he worked on Hooked, a game to collect                             
data on popular music memory and ‘hooks’. Other work has focused on the analysis of the                               
game’s audio and participant data, and on content ID techniques for the analysis of samples,                             
cover songs and folk tunes. 
 
Ethan Hein is a doctoral student in music education at New York University. He teaches                             
music technology, production and education at NYU and Montclair State University. As the                         
Experience Designer In Residence with the NYU Music Experience Design Lab, Ethan has                         
taken a leadership role in a range of technologies for learning and expression. In                           
collaboration with Soundfly, he recently launched an online course called Theory For                       
Producers. He maintains a widelyfollowed and influential blog at http://www.ethanhein.com,                   
and has written for various publications, including Slate, Quartz, and NewMusicBox. 
 
Dan Brown is Associate Professor of Computer Science at the University of Waterloo, where                           
he has been a faculty member since 2000. Dan earned his Bachelor’s degree in Math with                               
Computer Science from MIT, and his PhD in Computer Science from Cornell. Before coming                           
to Waterloo, he spent a year working on the Human and Mouse Genome Projects as a                               
postdoc at the MIT Center for Genome Research. Dan’s primary research interests are                         
designing algorithms for understanding biological evolution, and applying bioinformatics                 
ideas to problems in music information retrieval. 
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ABSTRACT 

Most algorithms for music information retrieval are based 

on the analysis of the similarity between feature sets ex-

tracted from the raw audio. A common approach to as-

sessing similarities within or between recordings is by 

creating similarity matrices. However, this approach re-

quires quadratic space for each comparison and typically 

requires a costly post-processing of the matrix. In this 

work, we propose a simple and efficient representation 

based on a subsequence similarity join, which may be 

used in several music information retrieval tasks. We ap-

ply our method to the cover song recognition problem 

and demonstrate that it is superior to state-of-the-art algo-

rithms. In addition, we demonstrate how the proposed 

representation can be exploited for multiple applications 

in music processing. 

1. INTRODUCTION 

With the growing interest in applications related to music 

processing, the area of music information retrieval (MIR) 

has attracted huge attention in both academia and indus-

try. However, the analysis of audio recordings remains a 

significant challenge. Most algorithms for content-based 

music retrieval have at their cores some similarity or dis-

tance function. For this reason, a wide range of applica-

tions rely on some technique to assess the similarity be-

tween music objects. Such applications include segmen-

tation [8], audio-to-score alignment [4], cover song 

recognition [15], and visualization [23]. 

 A common approach to assessing similarity in music 

recordings is achieved by utilizing a self-similarity matrix 

(SSM) [5]. This representation reveals the relationship 

between each “snippet” of a track to all the other seg-

ments in the same recording. This idea has been general-

ized to measure the relationships between subsequences 

of different songs, as in the application of cross-

recurrence analysis for cover song recognition [16]. 

 The main advantage of similarity matrices is the fact 

that they simultaneously reveal both the global and the 

local structure of music recordings. However, this repre-

sentation requires quadratic space in relation to the length 

of the feature vector used to describe the audio. For this 

reason, most methods to find patterns in the similarity 

matrix are (at least) quadratic in time complexity. In spite 

of this, most information contained in similarity matrices 

is irrelevant or has little impact in its analysis. This ob-

servation suggests the need for a more space and time ef-

ficient representation of music recordings. 

 In this work, we extend the subsequences all-pairs-

similarity-search, also known as similarity join, in order 

to assess the similarity between audio recordings for MIR 

tasks. As with the common similarity matrices, represent-

ing the entire subsequence join requires a quadratic 

space, and also has a high time complexity, which is de-

pendent on the length of the subsequences to be joined.  

 However, in this work we show that we can exploit a 

new data structure called matrix profile which allows a 

space efficient representation of the similarity join matrix 

between subsequences. Moreover, we can leverage recent 

optimizations in FFT-based all-neighbor search that allow 

the matrix profile to be computed efficiently [10]. For 

clarity, we refer to the representation presented in this 

paper as Similarity Matrix ProfiLE (SiMPle). 

 Figure 1 illustrates an example of two matrices repre-

senting the dissimilarities within and between recordings 

and their relative SiMPle, which correspond to the mini-

mum value of each column of the similarity matrices. 
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Figure 1. Similarity matrix within (left) and between different 

songs (right) and their respective SiMPle. 

 In summary, our method has the following ad-

vantages/features: 

 It is a novel approach to assess the audio similarity 

and can be used in several MIR algorithms; 

 We exploit the fastest known subsequence similarity 

search technique in the literature [10], which makes 

our method fast and exact; 

 It is simple and only requires a single parameter, 

which is intuitive to set for MIR applications; 

 It is space efficient, requiring the storage of only 

O(n) values; 

 Once we calculate the similarity profile for a dataset 

it can be efficiently updated, which has implications 

for streaming audio processing. 

 © Diego F. Silva, Chin-Chia M. Yeh, Gustavo E. A. P. A. 
Batista, Eamonn Keogh. Licensed under a Creative Commons Attribu-
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2. SiMPle: SIMILARITY MATRIX PROFILE 

We begin by describing the operation for producing the 

matrix profile, a similarity join. For clarity, we use the 

term time series to refer to the ordered set of features that 

describe a whole recording and subsequence to define 

any continuous subset of features from the time series. 

Definition 1: Similarity join: given two time series A 

and B with the desired subsequence length m, the sim-

ilarity join identifies the nearest neighbor of each sub-

sequence (with length m) in A from all the possible 

subsequence set of B. 

 Through such a similarity join, we can gather two 

pieces of information about each subsequence in A, 

which are: 1) the Euclidean distance to its nearest neigh-

bor in B and 2) the position of its nearest neighbor in B. 

Such information can be compactly stored in vectors, re-

ferred as similarity matrix profile (SiMPle) and similarity 

matrix profile index (SiMPle index) respectively. 

 One special case of similarity join is when both input 

time series refer to the same recording. We define the op-

eration that handles this specific case self-similarity join. 

Definition 2: Self-similarity join: given a time series A 

with the desired subsequence length m, the self-

similarity join identifies the non-trivial nearest neigh-

bor of each subsequence (with length m) in A from all 

the possible subsequence set of A. 

 The only major difference between self-similarity join 

(Definition 2) and similarity join (Definition 1) is the 

exclusion of trivial matched pairs when identifying the 

nearest neighbor. The exclusion of trivial matches is cru-

cial as matching a subsequence with itself (or slightly 

shifted version of itself) produces no useful information.  

 We describe our method to calculate SiMPle in Algo-

rithm 1. In line 1, we record the length of B. In line 2, we 

allocate memory and initialize SiMPle PAB and SiMPle 

index IAB. From line 3 to line 6, we calculate the distance 

profile vector D which contains the distances between a 

given subsequence in time series B and each subsequence 

in time series A. The particular function we used to com-

pute D is MASS (Mueen’s Algorithm for Similarity 

Search), which is the most efficient algorithm known for 

distance vector computation [10]. We then perform the 

pairwise minimum for each element in D with the paired 

element in PAB (i.e., min(D[i], PAB[i]) for i = 0 to 

length(D) - 1.) We also update IAB[i] with idx when D[i] ≤ 

PAB[i] as we perform the pairwise minimum operation. 

Finally, we return the result PAB and IAB in line 7. 

Algorithm 1. Procedure to calculate SiMPle and SiMPle index 

Input: Two user provided time series, A and B, and the desired subse-
quence length m 

Output: The SiMPle PAB and the associated SiMPle index IAB  

1 
2 

3 

4 
5 

6 

7 

nB ← Length(B) 
PAB ← infs, IAB ← zeros, idxes ← 1:nB-m+1 

for each idx in idxes 

          D ← MASS(B[idx:idx+m-1], TA) // c.f. [10] 
          PAB, IAB ← ElementWiseMin(PAB, IAB, D, idx) 

end for 

return PAB, IAB 

 Note that the Algorithm 1 computes SiMPle for the 

general similarity join. To modify it to compute the self-

similarity join SiMPle of a time series A, we simply re-

place B by A in lines 1 and 4 and ignore trivial matches in 

D when performing ElementWiseMin in line 5. 

 The method MASS (used in line 4) is important to 

speed-up the similarity calculations. This algorithm has a 

time complexity of O(n log n). For brevity, we refer the 

reader interested in details of this method to [10].  

 In this work, we focus on demonstrating the utility of 

SiMPle on the cover song recognition task. Given that the 

cover song recognition is a specialization of the “query-

by-similarity” task, we believe that it is the best scenario 

to evaluate a similarity method. Specifically, we propose 

a SiMPle-based distance measure between a query and its 

potential original version. 

3. COVER SONG RECOGNITION 

“Cover song” is the generic term used to denote a new 

performance of a previously recorded track. For example, 

a cover song may refer to a live performance, a remix or 

an interpretation in a different music style. The automatic 

identification of covers has several applications, such as 

copyright management, collection organization, and 

search by content.  

 In order to identify different versions of the same 

song, most algorithms search for globally [20] or locally 

[15][18] conserved structure(s). A well-known and wide-

ly applied algorithm for measuring the global similarity 

between tracks is Dynamic Time Warping (DTW) [11]. 

In spite of its utility in other domains, DTW is not gener-

ally robust to differences in structure between the record-

ings. A potential solution would be segmenting the song 

before applying the DTW similarity estimation. However, 

audio segmentation itself is also an open problem, and the 

error on boundaries detection can cause a domino effect 

(compounded errors) in the whole identification process. 

 In addition, the complexity of the algorithm to calcu-

late DTW is O(n2). Although methods to fast approxi-

mate the DTW have been proposed [13], there is no error 

bound for such approximations. In other words, it is not 

possible to set a maximum error in the value obtained by 

it in relation to the actual DTW. 

 Algorithms that search for local similarities have been 

successfully used to provide structural invariance to the 

cover song identification task. A widely used method for 

music similarity proposes the use of a binary distance 

function to compare chroma-based features followed by a 

dynamic programming local alignment [15]. Despite its 

demonstrated utility to recognize cover recordings, this 

method has several parameters, that are unintuitive to 

tune, and is slow. Specifically, the local alignment is es-

timated by an algorithm with similar complexity to DTW. 

Plus, the binary distance between chroma features used in 

each step of the algorithm relies on multiple shifts of the 

chroma vectors under comparison. 

3.1 SiMPle-Based Cover Song Recognition 

In this work, we propose to use SiMPle to measure the 

distance between recordings in order to identify cover 

songs. In essence we exploit the fact that the global rela-

tion between the tracks is composed of many local simi-
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larities. In this way, we are able to simultaneously take 

advantage of both local and global pattern matching. 

 Intuitively, we should expect that the SiMPle obtained 

by comparing a cover song to its original version is com-

posed mostly of low values. In contrast, two completely 

different songs will result in a SiMPle constituted mainly 

by high values. For this reason, we adopted the median 

value of the SiMPle as a global distance estimation. For-

mally, the distance between a query B and a candidate 

original recording A is defined in Equation 1. 

 

 dist(A,B)=median(SiMPle(B,A)) (1) 

 

 Note that several other measures of statistics could be 

used instead of the median. However, the median is ro-

bust to outliers in the matrix profile. Such distortions may 

appear when a performer decides, for instance, to add a 

new segment (e.g., an improvisation or drum solo) to the 

song. The robustness of our method to this situation, as 

well as other changes in structure, is discussed in the next 

section. 

3.2 On the Structural Invariance 

The structural variance is a critical concern when com-

paring different songs. Changes in structure may occur by 

insertion or deletion of segments, as well as changes in 

the order that different excerpts are played. From a high-

level point of view, SiMPle describes a global similarity 

outline between songs by providing information of local 

comparisons. This fact has several implications in our 

distance estimation, which makes it largely invariant to 

structural variations: 

 If two performances are virtually identical, except for 

the order and the number of repetitions of each rep-

resentative excerpt (i.e., chorus, verse, bridge, etc.), 

all the values that compose SiMPle are close to zero; 

 If a segment of the original version is deleted in the 

cover song, this will cause virtually no changes in 

the SiMPle; 

 If a new feature is inserted into a cover, this will 

have as consequence a peak in the SiMPle that will 

cause only a slight increase in its median value. 

4. EXPERIMENTAL EVALUATION 

The evaluation of different choices of features sets is not 

the main focus of this paper. For this reason, we fix the 

use of chroma-based features in our experiments, as it is 

the most popular feature set to analyze music data. In or-

der to provide local tempo invariance, we used the chro-

ma energy normalized statistics (CENS) [12]. Specifical-

ly, for the cover song recognition task, we adopted the 

rate of two CENS per second of audio.  

 In addition, we preprocessed the feature sets in each 

comparison to provide key invariance. Before calculating 

the similarity between songs, we transpose one of them in 

order to have the same key using the optimal transposi-

tion index (OTI) [14].  

 We notice that we are committed to the reproducibil-

ity of our results, and we encourage researchers and prac-

titioners to extend our ideas and evaluate the use of the 

SiMPle in different MIR tasks. To this end, we created a 

website [19] with the complete source code used in our 

experiments and videos highlighting some of the results 

presented in this work. 

4.1 Datasets 

We evaluate our method in different scenarios regarding 

music styles and size of the databases. Specifically, we 

tested the proposed distance measure’s utility for as-

sessing both popular and classical recordings. 

 The first database considered is the YouTube Covers 

[18], composed of 50 different compositions, each one 

containing 7 different recordings obtained from YouTube 

videos. The data was originally split into training and 

testing partitions, in which the training set is composed of 

the original recording in studio and a live version per-

formed by the same artist. To allow comparisons to the 

literature, we follow the same configuration. 

 The second dataset we consider is the widely used 

collection of Chopin’s Mazurkas. The set of Mazurkas 

used in this work contains 2,919 recordings of 49 pieces 

for piano. The number of recordings of each song varies 

from 41 to 95. 

4.2 Results and Discussion 

In order to assess the performance of our method, we 

used three commonly applied evaluation measures: mean 

average precision (MAP), precision at 10 (P@10), and 

mean rank of first correctly identified cover (MR1). Note 

that for MR1, smaller values are better. 

 For both the YouTube Covers and Mazurkas datasets, 

we compared our algorithm using results previously pre-

sented in the literature. For the former case, in addition to 

comparing to the results presented in the paper for which 

the dataset was created [18], we carefully implemented 

the algorithm for local alignments based on the chroma 

binary distance [15]. Table 1 shows the results. 

 

Table 1. Mean average precision (MAP), precision at 10 

(P@10), and mean rank of first correctly identified cover 

(MR1) on the YouTube Covers dataset. Given that this dataset 

has only two recordings per song in the training set, the maxi-

mum value to P@10 is 0.2. 

 Our method achieved the best results in this experi-

ment. In addition, we note that our method is notably 

faster than the second best (Serrà et al.). Specifically, 

while our method took 1.3 hours, the other method took 

approximately one week to run on the same computer1. 

                                                           
1 In our experiments, we used an 8-core Intel® Core ™ i7-6700K CPU 

@ 4.00GHz with 32GB of RAM memory running Windows 10®. All 
our codes were implemented and executed using Matlab R2014a®. 

Algorithm MAP P@10 MR1 

DTW 0.425 0.114 11.69 

Silva et al. [18] 0.478 0.126 8.49 

Serrà et al. [15] 0.525 0.132 9.43 

SiMPle 0.591 0.140 7.91 
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We acknowledge that we did not invest a lot of effort op-

timizing the competing method. However, we do not be-

lieve that any code optimization is capable of significant-

ly reducing the performance gap. 

 We also consider the Mazurkas dataset. In addition to 

the results achieved by DTW, we report MAP results 

documented in the literature, which were achieved by re-

trieving the recordings by structural similarity strategies 

using this data. Specifically, the subset of mazurkas used 

in this work is exactly the same as the used in [2] and 

[17] and has only minor differences to the dataset used in 

[6]. Although [15] is considered the state-of-the-art for 

cover song recognition, we do not include its results due 

to the high time complexity. Table 2 shows the results. 

Algorithm MAP P@10 MR1 

DTW 0.882 0.949 4.05 

Bello [2] 0.767 - - 

Silva et al. [17] 0.795 - - 

Grosche et al. [6]  0.819 - - 

SiMPle 0.880 0.952 2.33 

Table 2. Mean average precision (MAP), precision at 10 

(P@10), and mean rank of first correctly identified cover 

(MR1) on the Mazurkas dataset. 

 The structures of the pieces on this dataset are re-

spected in most of the recordings. In this case, DTW per-

forms similar than our algorithm. However, our method is 

faster (approximately two times in our experiments) and 

has several advantages over DTW, such as its incremen-

tal property, discussed in the next section. 

4.3 Streaming Cover Song Recognition 

Real-time audio matching has attracted the attention of 

the community in the last years. In this scenario, the input 

is a stream of audio and the output is a sorted list of simi-

lar objects in a database.  

 In this section, we evaluate our algorithm in an online 

cover song recognition scenario. For concreteness, con-

sider that a TV station is broadcasting a live concert. In 

order to automatically present the name of the song to the 

viewers or to synchronize the concert with a second 

screen app, we would like to take the streaming audio as 

input to our algorithm and be able to recognize what song 

the band is playing as soon as possible. To accomplish 

this task, we need to match the input to a set of (previous-

ly processed) recordings. 

 In addition to allowing the fast calculation of all the 

distances of a subsequence to a whole song, the proposed 

algorithm has an incremental property that can be ex-

ploited to estimate cover song similarity in a streaming 

fashion. If we have a previously calculated SiMPle, then, 

when we extract a new vector of (chroma) features, we 

do not need to recalculate the whole SiMPle from the be-

ginning. Instead, just two quick steps are required: 

 Calculation of the distance profile to the new subse-

quence, i.e., the distance of the last observed subse-

quence (including the new feature vector) to all the 

subsequences of the original song; 

 Update of SiMPle by selecting the minimum value 

between the new distance profile and the previous 

SiMPle for each subsequence. 

 These steps are done by the Algorithm 2. 

Algorithm 2. Procedure to incrementally update SiMPle and SiMPle 
index  

Input: The current time series A and B, the new chroma vector c, the 

desired subsequence length m, and the current SiMPle PAB and SiMPle 
index IAB 

Output: The updated SiMPle PAB,new and the associated SiMPle index 

IAB,new  

1 

2 
3 

4 

5 
6 

newB ← Concatenate(B,c), nB ← Length(newB) 

D ← MASS(newB[nB-m+1: nB], A) // c.f. [10] 

PAB, IAB ← ElementWiseMin(PAB, IAB, D, nB-m+1) 

PAB,last, IAB,last ← FindMin(D) 

PAB,new← [PAB, PAB,last], IAB,new ← [IAB, IAB,last] 

return PAB,new, IAB,new 

 To evaluate the ability of our method for streaming 

recognition, we performed a simple experiment simulat-

ing the previously described scenario. First, we extracted 

features from each track in the dataset of original record-

ings. For clarity, we will refer to this database as the 

training set. Then, we randomly chose another recording 

as our query and processed it according to the following 

steps. We begin extracting features from the first three 

seconds of the query in order to calculate the first dis-

tance estimation to each training object. After this initial 

step, for each second of the query, we repeat the process 

of extracting features and re-estimating the distance 

measure to the training set.  

 In this experiment, we used the Mazurkas dataset with 

two CENS per second. The training set is composed of 

the first recording (in alphabetical order) of each piece. 

We used a performance with approximately 275 seconds 

as a query, and we were able to maintain the process fast-

er than real-time. Specifically, the updates took approxi-

mately 0.7 seconds to extract the features, update SiMPle, 

and recalculate the distance for all the training objects.  

 Figure 2 visualizes the changes in distance estimation 

in an audio streaming query session. In this case, we used 

a recording of the “Mazurka in F major, Op. 68, No. 3” 

as query. In the first estimation, its training version ap-

pears as the sixth nearest neighbor. However as we see 

more evidence, it quickly becomes the best match. 

0 4 8 12

Op. 68, No. 3

Op. 24, No. 4

Op. 33, No. 3

Op. 56, No. 3

Op. 24, No. 1

Op. 27, No. 1

0 4 8 12

Op. 24, No. 2

Op. 33, No. 3

Op. 68, No. 1

Op. 24, No. 3

Op. 41, No. 3

Op. 68, No. 3

0 4 8 12

Op. 56, No. 3

Op. 17, No. 4

Op. 68, No. 3

Op. 45, No. 4

Op. 24, No. 2

Op. 24, No. 2

Distance to the training recording  
Figure 2. Changes in the distance when querying a recording 

of the “Mazurka in F major, Op. 68, No. 3” in a streaming 

fashion. The graphs represent the top 6 matches after pro-

cessing 3 (left), 5 (middle), and 10 (right) seconds of the audio. 
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 Another strategy that can be used in this scenario is an 

amnesic sliding window, in order to forget old values and 

further speedup the matching of new subsequences. For a 

given window length w, we can maintain just the last w 

values in the SiMPle. In this way, a change in the distri-

bution of the distance estimates may assist in the identifi-

cation of the ending and beginning of a song. At the same 

time, the positions of the most recently matched sections 

can be used as estimation of the moment in the current 

song. These ideas may help to identify songs being se-

quentially played in a random or unknown order. 

5. EXPANDING THE RANGE OF APPLICATIONS 

OF SiMPle 

In this work, we focus on assessing music similarity by 

joining subsequences. While we evaluate our method on 

the cover song recognition task, we claim that the SiMPle 

is a powerful tool for other music processing tasks. To 

reinforce this argument, we present insights on how to 

use SiMPle in different application domains, as well 

some initial results. The methods presented in this section 

have room for improvements, but they are simple yet ef-

fective. We intend to further explore and evaluate SiMPle 

in (at least) the tasks listed below. 

 In contrast to the previous experiments, when we use 

the self-similarity join to highlight points of interest in a 

recording, we apply ten CENS per second.  

5.1 Motifs and Discords 

The SiMPle from a self-similarity join has several ex-

ploitable properties. For example, the lowest points cor-

respond to the locations of the most faithfully repeated 

section (i.e., the chorus or refrain). Between several defi-

nitions of motifs in the literature, such as harmonic or me-

lodic motifs, its simplest definition is the closest pair of 

subsequences. As noted in the time series literature, given 

the best motif pair, other definitions of motifs can be 

solved by minor additional calculations [9]. 

 On the other hand, the highest point on the SiMPle 

corresponds to the “most unique” snippet from the re-

cording. The procedure to search for such a subsequence 

that is the furthest from any other, known as discord dis-

covery, can be used in music processing to find interest-

ing segments in recordings. For example, it can be used 

to identify a solo, improvisation segments or the bridge. 

 For example, consider the song “Let It Be” by The 

Beatles. Figure 3. shows the SiMPle obtained for this 

track and points to their discord and pair of best motifs.  
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Figure 3. The pair of best motifs in a recording is determined 

by the subsequences starting at the positions of the minimum 

values of its SiMPle. At the same time, the position of the 

highest value points to the beginning of the discord excerpt. 

 While the motifs point to refrains, the discord in-

cludes bridge and the beginning of the guitar solo. 

5.2 Audio Thumbnailing 

Audio thumbnails are short representative excerpts of au-

dio recordings. Thumbnails have several applications in 

music information retrieval. For example, they can be 

used as the snippet shown the result of a search to the us-

er. In a commercial application, they can be used as the 

preview to a potential costumer in an online music store.  

 There is a consensus in the MIR community that the 

“ideal” music thumbnail is the most repeated excerpt, 

such as the chorus [1]. Using this assumption, the appli-

cation of SiMPle to identify a thumbnail is direct. Con-

sider the SiMPle index obtained by the self-join proce-

dure. The thumbnail is given by the subsequence starting 

in the position that is most used as a nearest neighbor. In 

other words, the beginning of the thumbnail is given by 

the position related to the mode of SiMPle index. 

 To illustrate this idea, we considered the song “New 

York, New York” by Frank Sinatra. Looking for a 30 sec-

onds thumbnail, we found an excerpt that is comprised of 

the last refrain, as well as the famous (brass) instrumental 

basis of the song. Figure 4 shows the histogram of the 

SiMPle index found in this experiment. 

The position of the mode corresponds to 

approximately 2 minutes and 49 seconds
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Figure 4. Histogram of SiMPle index for the song “New York, 

New York”. Each bar counts how many times the subsequence 

starting at that point was considered the nearest neighbor of any 

other. We consider the subsequence represented by the most 

prominent peak as the thumbnail for this recording. 

5.3 Visualization 

The visualization of music structure aids the understand-

ing of the music content. Introduced in [21], the arc dia-

gram is a powerful tool to visualize repetitive segments in 

MIDI files [22] and audio recordings [23]. This approach 

represents a song by plotting arcs linking repeated seg-

ments. 

 All the information required to create such arcs are 

completely comprised on the SiMPle and the SiMPle in-

dex obtained by a self-join. Specifically, SiMPle provides 

the distances between subsequences, which can be used 

to determine if they are similar enough to exist a link be-

tween them and to define the color or transparency of 

each arc. The SiMPle index can be used to define both 

the positions and width of the arcs.  

 Figure 5 shows the scatter plot of the SiMPle index 

for “Hotel California” by Eagles. In this figure, there is a 

point (x,y) only if y is the nearest neighbor of x. The clear 

diagonals on this plot represent regions of n points such 

that the nearest neighbors of [x,x+1,…,x+n-1] are approx-

imately [y,y+1,…,y+n-1]. If the distance between such 

excerpts is low, then these regions may have a link be-

tween them. For this example, we defined the mean value 

of the SiMPle in that region as the distance threshold be-

tween the segments, in order to resolve if they should 
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stablish a link. Such threshold has direct impact on the 

number of arcs plotted. 
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Figure 5. Scatter plot of the SiMPle index for the song “Hotel 

California”. The (light) gray area indicates a possible link, but 

only the values in the (dark) green area represent subsequences 

with distance lower than the threshold.  

 By using a simple algorithm to spot such diagonals, 

we only need to define a threshold of distance and mini-

mum length of the linkages. We set the width of the links 

in our experiment to be greater than or equal to 5 sec-

onds. Figure 6 shows the resulting arc plot for the exam-

ple shown in Figure 5. 
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Figure 6. Arc plot for the song “Hotel California”. These plots 

show the difference between using the mean value of SiMPle 

as distance threshold (above) and no distance threshold at all 

(below). The color of the arcs are related to their relevance, i.e., 

as darker the arc, closer the subsequences linked by it. 

5.4 Endless Reproduction 

Consider a music excerpt s1, which starts at the time t1 of 

a specific song, has a small distance to its nearest neigh-

bor s2, which starts at time t2. When the reproduction of 

this song arrives t1, we can make a random decision to 

“skip” the reproduction to t2. Given that s1 and s2 are sim-

ilar, this jump may be imperceptible to the listener. By 

creating several points of skip, we are able to define a se-

quence of jumps that creates an endless reproduction of 

the song. A well-known deployed example of this kind of 

player is the Infinite Jukebox [7]. 

 The distance values obtained by the self-join repre-

sent how similar each subsequence is to its nearest neigh-

bor in another region of the song. Adopting a small 

threshold to the distance between subsequences, we can 

use SiMPle to define the jumps. These characteristics 

may be explored in order to create a player for endless 

reproduction. We refer the interested reader to the sup-

porting website [19] for examples of this functionality. 

5.5 Sampling Identification 

In addition to providing a global distance estimation be-

tween different songs, SiMPle is also powerful to exam-

ine local similarities. An interesting application that may 

exploit this ability is the automatic identification of sam-

ples. Sampling is the act of “borrowing” the instrumental 

basis or main melody from another song. This is a com-

mon approach in electronic and hip-hop music. 

 In contrast to cover versions, sampling is used as a 

virtual “instrument” to compose new songs. However, 

algorithms that look only for local patterns to identify 

versions of the same track may classify a recording using 

samples as a cover song. Using SiMPle, we can discover 

that the sampling excerpts have small distance values. In 

contrast, the segments related to the new song have sig-

nificantly higher values. 

 Figure 7 shows an example of the usage of SiMPle to 

spot sampling. In this case, we compare the song “Under 

Pressure” by Queen and David Bowie with “Ice Ice Ba-

by” by Vanilla Ice. Most of the continuous regions with 

values lower than the mean refer to the sampling of the 

famous bass line of the former song. 
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Figure 7. SiMPle (in blue) obtained between the songs “Ice Ice 

Baby” and “Under Pressure”. The continuous regions below the 

mean value (in red) represent the excerpts sampled by Vanilla 

Ice from Queen’s song. 

6. CONCLUSIONS 

In this paper, we introduced a technique to exploit subse-

quences joins to assess similarity in music. The presented 

method is very fast and requires only one parameter that 

is intuitively set in music applications. 

 While we focused our evaluation on the cover song 

recognition, we have shown that our approach has the po-

tential for applications in different MIR tasks. We intend 

to further investigate the use of matrix profiles in the 

tasks discussed in Section 5 and the effects of different 

features in the process.  

 The main limitation of the proposed method is that 

the use of only one nearest neighbor may be sensitive to 

hubs, i.e., subsequences that are considered the nearest 

neighbor of many other snippets. In addition, SiMPle 

cannot be directly used to identify regions where several 

subsequences are next to each other, composing a dense 

region. For this reason, we intend to measure the impact 

of the reduction in the amount of information in different 

tasks. Given that, we plan to explore how to incorporate 

additional information to SiMPle with no loss of time and 

space efficiency. 

 We have encouraged the community to confirm our 

results and explore or extend our ideas by making the 

code freely available [19]. 
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ABSTRACT

A main goal in music tuition is to enable a student to play a
score without mistakes, where common mistakes include
missing notes or playing additional extra ones. To automat-
ically detect these mistakes, a first idea is to use a music
transcription method to detect notes played in an audio
recording and to compare the results with a corresponding
score. However, as the number of transcription errors pro-
duced by standard methods is often considerably higher
than the number of actual mistakes, the results are often
of limited use. In contrast, our method exploits that the
score already provides rough information about what we
seek to detect in the audio, which allows us to construct
a tailored transcription method. In particular, we employ
score-informed source separation techniques to learn for
each score pitch a set of templates capturing the spectral
properties of that pitch. After extrapolating the resulting
template dictionary to pitches not in the score, we estimate
the activity of each MIDI pitch over time. Finally, making
again use of the score, we choose for each pitch an individ-
ualized threshold to differentiate note onsets from spurious
activity in an optimized way. We indicate the accuracy of
our approach on a dataset of piano pieces commonly used
in education.

1. INTRODUCTION

Automatic music transcription (AMT) has a long history
in music signal processing, with early approaches dating
back to the 1970s [1]. Despite the considerable interest
in the topic, the challenges inherent to the task are still
to overcome by state-of-the-art methods, with error rates
for note detection typically between 20 and 40 percent, or
even above, for polyphonic music [2–8]. While these error
rates can drop considerably if rich prior knowledge can
be provided [9, 10], the accuracy achievable in the more
general case still prevents the use of AMT technologies in
many useful applications.

This paper is motivated by a music tuition application,

c© Sebastian Ewert, Siying Wang, Meinard Müller and Mark
Sandler. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Sebastian Ewert, Siying Wang,
Meinard Müller and Mark Sandler. “Score-Informed Identification of
Missing and Extra Notes in Piano Recordings”, 17th International Society
for Music Information Retrieval Conference, 2016.

(a)

(b)

(c)

Figure 1. Given (a) an audio recording and (b) a score (e.g.
as a MIDI file) for a piece of music, our method (c) estimates
which notes have been played correctly (green/light crosses), have
been missed (red/dark crosses for pitch 55) or have been added
(blue/dark crosses for pitch 59) in the recording compared to the
score.

where a central learning outcome is to enable the student to
read and reproduce (simple) musical scores using an instru-
ment. In this scenario, a natural use of AMT technologies
could be to detect which notes have been played by the stu-
dent and to compare the results against a reference score –
this way one could give feedback, highlighting where notes
in the score have not been played (missed notes) and where
notes have been played that cannot be found in the score
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(extra notes). Unfortunately, the relatively low accuracy
of standard AMT methods prevents such applications: the
number of mistakes a student makes is typically several
times lower than the errors produced by AMT methods.

Using a standard AMT method in a music tuition sce-
nario as described above, however, would ignore a highly
valuable source of prior knowledge: the score. Therefore,
the authors in [11] make use of the score by first align-
ing the score to the audio, synthesizing the score using a
wavetable method, and then transcribing both the real and
the synthesized audio using an AMT method. To lower the
number of falsely detected notes for the real recording, the
method discards any detected note if the same note is also
detected in the synthesized recording while no correspond-
ing note can be found in the score. Here, the underlying
assumption is that in such a situation, the local note con-
stellation might lead to uncertainty in the spectrum, which
could cause an error in their proposed method. To improve
the results further, the method requires the availability of
single note recordings for the instrument to be transcribed
(under the same recording conditions) – a requirement not
unrealistic to fulfil in this application scenario but leading
to additional demands for the user. Under these additional
constraints, the method lowered the number of transcription
errors considerably compared to standard AMT methods.
To the best of the authors’ knowledge, the method presented
in [11] is the only score-informed transcription method in
existence.

Overall, the core concept in [11] is to use the score in-
formation to post-process the transcription results from a
standard AMT method. In contrast, the main idea in this
paper is to exploit the available score information to adapt
the transcription method itself to a given recording. To this
end, we use the score to modify two central components of
an AMT system: the set of spectral patterns used to iden-
tify note objects in a time-frequency representation, and
the decision process responsible for differentiating actual
note events from spurious note activities. In particular, af-
ter aligning the score to the audio recording, we employ
the score information to constrain the learning process in
non-negative matrix factorization similar to strategies used
in score-informed source separation [12]. As a result, we
obtain for each pitch in the score a set of template vectors
that capture the spectro-temporal behaviour of that pitch –
adapted to the given recording. Next, we extrapolate the
template vectors to cover the entire MIDI range (including
pitches not used in the score), and compute an activity for
each pitch over time. After that we again make use of the
score to analyze the resulting activities: we set, for each
pitch, a threshold used to differentiate between noise and
real notes such that the resulting note onsets correspond to
the given score as closely as possible. Finally, the resulting
transcription is compared to the given score, which enables
the classification of note events as correct, missing or ex-
tra. This way, our method can use highly adapted spectral
patterns in the acoustic model eliminating the need for ad-
ditional single note recordings, and remove many spurious
errors in the detection stage. An example output of our
method is shown in Fig. 1, where correctly played notes

are marked in green, missing notes in red and extra notes in
blue.

The remainder of this paper is organized as follows. In
Section 2, we describe the details of our proposed method.
In Section 3, we report on experimental results using a
dataset comprising recordings of pieces used in piano edu-
cation. We conclude in Section 4 with a prospect on future
work.

2. PROPOSED METHOD

2.1 Step 1: Score-Audio Alignment

As a first step in our proposed method, we align a score
(given as a MIDI file) to an audio recording of a student play-
ing the corresponding piece. For this purpose, we employ
the method proposed in [13], which combines chroma with
onset indicator features to increase the temporal accuracy of
the resulting alignments. Since we expect differences on the
note level between the score and the audio recording related
to the playing mistakes, we manually checked the temporal
accuracy of the method but found the alignments to be ro-
bust in this scenario. It should be noted, however, that the
method is not designed to cope with structural differences
(e.g. the student adding repetitions of some segments in the
score, or leaving out certain parts) – if such differences are
to be expected, partial alignment techniques should be used
instead [14, 15].

2.2 Step 2: Score-Informed Adaptive Dictionary
Learning

As a result of the alignment, we now roughly know for each
note in the score, the corresponding or expected position in
the audio. Next, we use this information to learn how each
pitch manifests in a time-frequency representation of the
audio recording, employing techniques similarly used in
score-informed source separation (SISS). There are various
SISS approaches to choose from: Early methods essentially
integrated the score information into existing signal mod-
els, which already drastically boosted the stability of the
methods. These signal models, however, were designed for
blind source separation and thus have the trade-off between
the capacity to model details (variance) and the robustness
in the parameter estimation (bias) heavily leaned towards
the bias. For example, various approaches make specific
assumptions to keep the parameter space small, such as
that partials of a harmonic sound behave like a Gaussian
in frequency direction [16], are highly stationary in a sin-
gle frame [17] or occur as part of predefined clusters of
harmonics [6]. However, with score information providing
extremely rich prior knowledge, later approaches found
that the variance-bias trade-off can be shifted considerably
towards variance.

For our method, we adapt an approach that makes fewer
assumptions about how partials manifests and rather learns
these properties from data. The basic idea is to constrain a
(shift-invariant) non-negative matrix factorization (NMF)
based model using the score, making only use of rough
information and allowing the learning process to identify
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(a) (b)

(c) (d)

Figure 2. Score-Informed Dictionary Learning: Using multi-
plicative updates in non-negative matrix factorization, semanti-
cally meaningful constraints can easily be enforced by setting
individual entries to zero (dark blue): Templates and activations
after the initialization (a)/(b) and after the optimization process
(c)/(d).

the details, see also [12]. Since we focus on piano record-
ings where tuning shifts in a single recording or vibrato
do not occur, we do not make use of shift invariance. In
the following, we assume general familiarity with NMF
and refer to [18] for further details. Let V ∈ RM×N be a
magnitude spectrogram of our audio recording, with loga-
rithmic spacing for the frequency axis. We approximate V
as a product of two non-negative matricesW ∈ RM×K and
H ∈ RK×N , where the columns of W are called (spectral)
templates and the rows in H the corresponding activities.
We start by allocating two NMF templates to each pitch
in the score – one for the attack and one for the sustain
part. The sustain part of a piano is harmonic in nature and
thus we do not expect significant energy in frequencies that
lie between its partials. We implement this constraint as
in [12] by initializing for each sustain template only those
entries with positive values that are close to a harmonic of
the pitch associated with the template, i.e. entries between
partials are set to zero, compare Fig. 2a. This constraint
will remain intact throughout the NMF learning process
as we will use multiplicative update rules and thus setting
entries to zero is a straightforward way to efficiently imple-
ment certain constraints in NMF, while letting some room
for the NMF process to learn where exactly each partial is
and how it spectrally manifests. The attack templates are
initialized with a uniform energy distribution to account for
their broadband properties.

Constraints on the activations are implemented in a sim-
ilar way: activations are set to zero if a pitch is known
to be inactive in a time segment, with a tolerance used to

account for alignment inaccuracies, compare Fig. 2b. To
counter the lack of constraints for attack templates, the cor-
responding activations are subject to stricter rules: attack
templates are only allowed to be used in a close vicinity
around expected onset positions. After these initializations,
the method presented in [12] employs the commonly used
Lee-Seung NMF update rules [18] to minimize a gener-
alized Kullback-Leibler divergence between V and WH .
This way, the NMF learning process refines the information
within the unconstrained areas on W and H .

However, we propose a modified learning process that
enhances the broadband properties for the attack templates.
More precisely, we include attack templates to bind the
broadband energy related to onsets and thus reduce the
number of spurious note detections. We observed, however,
that depending on the piece, the attack templates would
capture too much of the harmonic energy, which interfered
with the note detection later on. Since harmonic energy
manifest as peaks along the frequency axis, we discourage
such peaks for attack templates and favour smoothness
using an additional spectral continuity constraint in the
objective function:

f(W,H) :=
∑

m,n

Vm,n log(
Vm,n

(WH)m,n
)− Vm,n + (WH)m,n

+σ
∑

m

∑

k∈A
(Wm,k −Wm−1,k)

2

where the first sum is the generalized Kullback-Leibler
divergence and the second sum is a total variation term
in frequency direction, with A ⊂ {1, . . . ,K} denoting
the index set of attack templates and σ controlling
the relative importance of the two terms. Note that
Wm,k −Wm−1,k = (F ? W:,k)(m), where W:,k denotes
the k-th column of W and F = (−1, 1) is a high-pass filter.
To find a local minimum for this bi-convex problem, we
propose the following iterative update rules alternating be-
tween W and H (we omit the derivation for a lack of space
but followed similar strategies as used for example in [19]):

Wm,k ←Wm,k ·∑
nHk,n

Vm,n

(WH)m,n
+ IA(k) 2σ(Wm+1,k +Wm−1,k)∑

nHk,n + IA(k) 4σWm,k

Wm,k ←
Wm,k∑
m̃Wm̃,k

Hk,n ← Hk,n ·
∑

mWm,k
Vm,n

(WH)m,n∑
mWm,k

where IA is the indicator function for A. The result of this
update process is shown in Fig. 2c and d. It is clearly visible
how the learning process refined the unconstrained areas in
W and H , closely reflecting the acoustical properties in
the recording. Further, the total variation term led to attack
templates with broadband characteristics for all pitches,
while still capturing the non-uniform, pitch dependent
energy distribution typical for piano attacks.
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2.3 Step 3: Dictionary Extrapolation and Residual
Modelling

All notes not reflected by the score naturally lead to a dif-
ference or residual between V and WH as observed also
in [20]. To model this residual, the next step in our proposed
method is to extrapolate our learnt dictionary of spectral
templates to the complete MIDI range, which enables us
to transcribe pitches not used in the score. Since we use a
time-frequency representation with a logarithmic frequency
scale, we can implement this step by a simple shift oper-
ation: for each MIDI pitch not in the score, we find the
closest pitch in the score and shift the two associated tem-
plates by the number of frequency bins corresponding to
the difference between the two pitches. After this operation
we can use our recording-specific full-range dictionary to
compute activities for all MIDI pitches. To this end, we
add an activity row to H for each extrapolated template and
reset any zero constraints in H by adding a small value to
all entries. Then, without updating W , we re-estimate this
full-range H using the same update rules as given above.

2.4 Step 4: Onset Detection Using Score-Informed
Adaptive Thresholding

After convergence, we next analyze H to detect note onsets.
A straightforward solution would be to add, for each pitch
and in each time frame, the activity for the two templates
associated with that pitch and detecting peaks afterwards
in time direction. This approach, however, leads to sev-
eral problems. To illustrate these, we look again at Fig. 2c,
and compare the different attack templates learnt by our
procedure. As we can see, the individual attack templates
do differ for different pitches, yet their energy distribution
is quite broadband leading to considerable overlap or sim-
ilarity between some attack templates. Therefore, when
we compute H there is often very little difference with
respect to the objective function if we activate the attack
template associated with the correct pitch, or an attack tem-
plate for a neighboring pitch (from an optimization point
of view, these similarities lead to relatively wide plateaus
in the objective function, where all solutions are almost
equally good). The activity in these neighboring pitches led
to wrong note detections.

As one solution, inspired by the methods presented
in [21, 22], we initially incorporated a Markov process into
the learning process described above. Such a process can
be employed to model that if a certain template (e.g. for the
attack part) is being using in one frame, another template
(e.g. for the sustain part) has to be used in the next frame.
This extension often solved the problem described above as
attack templates cannot be used without their sustain parts
anymore. Unfortunately, the dictionary learning process
with this extension is not (bi-)convex anymore and in prac-
tice we found the learning process to regularly get stuck
in poor local minima leading to less accurate transcription
results.

A much simpler solution, however, solved the above
problems in our experiments similar to the Markov process,
without the numerical issues associated with it: we sim-

ply ignore activities for attack templates. Here, the idea
is that as long as the broadband onset energy is meaning-
fully captured by some templates, we do not need to care
about spurious note detections caused by this energy and
can focus entirely on detecting peaks in the cleaner, more
discriminative sustain part to detect the notes (compare also
Fig. 2d). Since this simpler solution turned out to be more
robust, efficient and accurate overall, we use this approach
in the following. The result of using only the sustain activi-
ties is shown in the background of Fig. 1. Comparing these
results to standard NMF-based transcription methods, these
activities are much cleaner and easier to interpret – a result
of using learnt, recording-specific templates.

As a next step, we need to differentiate real onsets from
spurious activity. A common technique in the AMT litera-
ture is to simply use a global threshold to identify peaks in
the activity. As another approach often used for sustained
instruments like the violin or the flute, hidden Markov mod-
els (HMMs) implement a similar idea but add capabilities to
smooth over local activity fluctuations, which might other-
wise be detected as onsets [2]. We tried both approaches for
our method but given the distinctive, fast energy decay for
piano notes, we could not identify significant benefits for
the somewhat more complex HMM solution and thus only
report on our thresholding based results. A main difference
in our approach to standard AMT methods, however, is
the use of pitch-dependent thresholds, which we optimize
again using the score information. The main reason why
this pitch dependency is useful is that loudness perception
in the human auditory system non-linearly depends on the
frequency and is highly complex for non-sinusoidal sounds.
Therefore, to reach a specific loudness for a given pitch,
a pianist might strike the corresponding key with differ-
ent intensity compared to another pitch, which can lead to
considerable differences in measured energy.

To find pitch-wise thresholds, our method first gener-
ates C ∈N threshold candidates, which are uniformly dis-
tributed between 0 and maxk,nHk,n. Next, we use each
candidate to find note onsets in each activity row in H that
is associated with a pitch in the score. Then, we evaluate
how many of the detected onsets correspond to notes in
the aligned score, how many are extra and how many are
missing – expressed as a precision, recall and F-measure
value for each candidate and pitch. To increase the robust-
ness of this step, in particular for pitches with only few
notes, we compute these candidate ratings not only using
the notes for a single pitch but include the notes and onsets
for the N closest neighbouring pitches. For example, to
rate threshold candidates for MIDI pitch P , we compute
the F-measure using all onsets and notes corresponding to,
for example, MIDI pitch P − 1 to P + 1. The result of this
step is a curve for each pitch showing the F-measure for
each candidate, from which we choose the lowest threshold
maximizing the F-measure, compare Fig. 3. This way, we
can choose a threshold that generates the least amount of
extra and missing notes, or alternatively, a threshold that
maximizes the match between the detected onsets and the
given score. Thresholds for pitches not used in the score are
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Figure 3. Adaptive and pitch-dependent thresholding: For each
pitch we choose the smallest threshold maximizing the F-measure
we obtain by comparing the detected offsets against the aligned
nominal score. The red entries show threshold candidates having
maximal F-measure.

interpolated from the thresholds for neighbouring pitches
that are in the score.

2.5 Step 5: Score-Informed Onset Classification

Using these thresholds, we create a final transcription result
for each pitch. As our last step, we try to identify for each
detected onset a corresponding note in the aligned score,
which allows us to classify each onset as either correct
(i.e. note is played and is in the score) or extra (i.e. played
but not in the score). All score notes without a correspond-
ing onset are classified as missing. To identify these cor-
respondences we use a temporal tolerance T of ±250 ms,
where T is a parameter that can be increased to account
for local alignment problems or if the student cannot yet
follow the rhythm faithfully (e.g. we observed concurrent
notes being pulled apart by students for non-musical rea-
sons). This classification is indicated in Fig. 1 using crosses
having different colours for each class.

3. EXPERIMENTS

3.1 Dataset

We indicate the performance of our proposed method using
a dataset 1 originally compiled in [11]. The dataset com-
prises seven pieces shown in Table 1 that were taken from
the syllabus used by the Associated Board of the Royal
Schools of Music for grades 1 and 2 in the 2011/2012 pe-
riod. Making various intentional mistakes, a pianist played
these pieces on a Yamaha U3 Disklavier, an acoustic up-
right piano capable of returning MIDI events encoding the
keys being pressed. The dataset includes for each piece an
audio recording, a MIDI file encoding the reference score,
as well as three annotation MIDI files encoding the extra,
missing and correctly played notes, respectively.

In initial tests using this dataset, we observed that the
annotations were created in a quite rigid way. In particular,
several note events in the score were associated with one
missing and one extra note, which were in close vicinity
of each other. Listening to the corresponding audio record-
ing, we found that these events were seemingly played
correctly. This could indicate that the annotation process
was potentially a bit too strict in terms of temporal tolerance.
Therefore, we modified the three annotation files in some
cases. Other corrections included the case that a single

1 available online: http://c4dm.eecs.qmul.ac.uk/rdr/

ID Composer Title
1 Josef Haydn Symp. No. 94: Andante (Hob I:94-02)
2 James Hook Gavotta (Op. 81 No. 3)
3 Pauline Hall Tarantella
4 Felix Swinstead A Tender Flower
5 Johann Krieger Sechs musicalische Partien: Bourrée
6 Johannes Brahms The Sandman (WoO 31 No. 4)
7 Tim Richards (arr.) Down by the Riverside

Table 1. Pieces of music used in the evaluation, see also [11].

score note was played more than once and we re-assigned
in some cases which of the repeated notes should be consid-
ered as extra notes and which as the correctly played note,
taking the timing of other notes into account. Further, some
notes in the score were not played but were not found in
the corresponding annotation of missing notes. We make
these slightly modified annotation files available online 2 . It
should be noted that these modifications were made before
we started evaluating our proposed method.

3.2 Metrics

Our method yields a transcription along with a classifi-
cation into correct, extra and missing notes. Using the
available ground truth annotations, we can evaluate each
class individually. In each class, we can identify up to
a small temporal tolerance the number of true positives
(TP), false positives (FP) and false negatives (FN). From
these, we can derive the Precision P = TP

TP+FP , the Recall
R = TP

TP+FN , the F-measure 2PR/(P + R) and the Ac-
curacy A = TP

TP+FP+FN . We use a temporal tolerance of
±250ms to account for the inherent difficulties aligning dif-
ferent versions of a piece with local differences, i.e. playing
errors can lead to local uncertainties which position in the
one version corresponds to which position in the other.

3.3 Results

The results for our method are shown in Table 2 for each
class and piece separately. As we can see for the ‘correct’
class, with an F-measure of more than 99% the results
are beyond the limits of standard transcription methods.
However, this is expected as we can use prior knowledge
provided by the score to tune our method to detect exactly
these events. More interestingly are the results for the events
we do not expect. With an F-measure of 94.5%, the results
for the ‘missing’ class are almost on the same level as for
the ‘correct’ class. The F-measure for the ‘extra’ class is
77.2%, which would be a good result for a standard AMT
method but it is well below the results for the other two
classes.

Let us investigate the reasons. A good starting point is
piece number 6 where the results for the ‘extra’ class are
well below average. In this recording, MIDI notes in the
score with a pitch of 54 and 66 are consistently replaced
in the recording with notes of MIDI pitch 53 and 65. In
particular, pitches 54 and 66 are never actually played in
the recording. Therefore, the dictionary learning process

2 http://www.eecs.qmul.ac.uk/˜ewerts/
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ID Class Prec. Recall F-Meas. Accur.

1
C 100.0 100.0 100.0 100.0
E 100.0 71.4 83.3 71.4
M 100.0 100.0 100.0 100.0

2
C 100.0 99.7 99.8 99.7
E 90.0 81.8 85.7 75.0
M 92.3 100.0 96.0 92.3

3
C 99.2 99.2 99.2 98.4
E 100.0 66.7 80.0 66.7
M 100.0 100.0 100.0 100.0

4
C 98.7 100.0 99.3 98.7
E 80.0 80.0 80.0 66.7
M 100.0 85.7 92.3 85.7

5
C 99.5 98.6 99.1 98.1
E 75.0 92.3 82.8 70.6
M 87.5 100.0 93.3 87.5

6
C 99.2 99.2 99.2 98.4
E 50.0 52.9 51.4 34.6
M 93.3 93.3 93.3 87.5

7
C 99.5 97.1 98.3 96.7
E 75.0 80.0 77.4 63.2
M 76.2 100.0 86.5 76.2

Av
g. C 99.4 99.1 99.3 98.6

E 81.4 75.0 77.2 64.0
M 92.8 97.0 94.5 89.9

Table 2. Evaluation results for our proposed method in percent.

Figure 4. Cause of errors in piece 6: Activation matrix with
ground truth annotations showing the position of notes in the
‘correct’, ‘extra’ and ‘missing’ classes.

in step 2 cannot observe how these two pitches manifest
in the recording and thus cannot learn a meaningful tem-
plate. Yet, being in a direct neighbourhood, the dictionary
extrapolation in step 3 will use the learnt templates for pitch
54 and 66 to derive templates for pitches 53 and 65. Thus,
these templates, despite the harmonicity constraints which
still lead to some enforced structure in the templates, do not
well represent how pitches 53 and 65 actually manifest in
the recording and thus the corresponding activations will
typically be low. As a result the extra notes were not de-
tected as such by our method. We illustrate these effects in
Fig. 4, where a part of the final full-range activation matrix
is shown in the background and the corresponding ground-
truth annotations are plotted on top as coloured circles. It
is clearly visible, that the activations for pitch 53 are well
below the level for the other notes. Excluding piece 6 from
the evaluation, we obtain an average F-measure of 82% for
‘extra’ notes.

Finally, we reproduce the evaluation results reported for

Class C E M
Accuracy 93.2 60.5 49.2

Table 3. Results reported for the method proposed in [11]. Re-
mark: Values are not directly comparable with the results shown
in Table 2 due to using different ground truth annotations in the
evaluation.

the method proposed in [11] in Table 3. It should be noted,
however, that the results are not directly comparable with
the results in Table 2 as we modified the underlying ground
truth annotations. However, some general observations
might be possible. In particular, since the class of ‘correct’
notes is the biggest in numbers, the results for this class are
roughly comparable. In terms of accuracy, the number of
errors in this class is five times higher in [11] (6.8 errors vs
1.4 errors per 100 notes). In this context, we want to remark
that the method presented in [11] relied on the availability
of recordings of single notes for the instrument in use, in
contrast to ours. The underlying reason for the difference
in accuracy between the two methods could be that instead
of post-processing a standard AMT method, our approach
yields a transcription method optimized in each step using
score information. This involves a different signal model
using several templates with dedicated meaning per pitch,
the use of score information to optimize the onset detection
and the use of pitch-dependent detection thresholds. Since
the number of notes in the ‘extra’ and ‘missing’ classes are
lower, it might not be valid to draw conclusions here.

4. CONCLUSIONS

We presented a novel method for detecting deviations from
a given score in the form of missing and extra notes in
corresponding audio recordings. In contrast to previous
methods, our approach employs the information provided
by the score to adapt the transcription process from the
start, yielding a method specialized in transcribing a spe-
cific recording and corresponding piece. Our method is
inspired by techniques commonly used in score-informed
source separation that learn a highly optimized dictionary
of spectral templates to model the given recording. Our
evaluation results showed a high F-measure for notes in the
classes ‘correct’ and ‘missing’, and a good F-measure for
the ‘extra’ class. Our error analysis for the latter indicated
possible directions for improvements, in particular for the
dictionary extrapolation step. Further it would be highly
valuable to create new datasets to better understand the
behaviour of score-informed transcription methods under
more varying recording conditions and numbers of mistakes
made.
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ABSTRACT

We explore frame-level audio feature learning for chord
recognition using artificial neural networks. We present
the argument that chroma vectors potentially hold enough
information to model harmonic content of audio for chord
recognition, but that standard chroma extractors compute
too noisy features. This leads us to propose a learned
chroma feature extractor based on artificial neural net-
works. It is trained to compute chroma features that en-
code harmonic information important for chord recogni-
tion, while being robust to irrelevant interferences. We
achieve this by feeding the network an audio spectrum with
context instead of a single frame as input. This way, the
network can learn to selectively compensate noise and re-
solve harmonic ambiguities.

We compare the resulting features to hand-crafted ones
by using a simple linear frame-wise classifier for chord
recognition on various data sets. The results show that the
learned feature extractor produces superior chroma vectors
for chord recognition.

1. INTRODUCTION

Chord Recognition (CR) has been an active research field
since its inception by Fujishima in 1999 [10]. Since
then, researchers have explored many aspects of this field,
and developed various systems to automatically extract
chords from audio recordings of music (see [20] for a re-
cent review). Chord recognition meets this great interest
in the MIR (music information research) community be-
cause harmonic content is a descriptive mid-level feature
of (Western) music that can be used directly (e.g. for creat-
ing lead sheets for musicians) and as basis for higher-level
tasks such as cover song identification, key detection or
harmonic analysis.

Most chord recognition systems follow a common
pipeline of feature extraction, pattern matching, and chord
sequence decoding (also called post-filtering) [7]. In this
paper, we focus on the first step in this pipeline: feature
extraction.

c© Filip Korzeniowski and Gerhard Widmer. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Filip Korzeniowski and Gerhard Widmer. “Feature
Learning for Chord Recognition:
The Deep Chroma Extractor”, 17th International Society for Music Infor-
mation Retrieval Conference, 2016.

Two observations lead us to explore better features for
chord recognition: (1) The capabilities of chord models for
pattern matching are limited. In [7], Cho and Bello con-
clude that appropriate features largely redeem the benefits
of complex chord models. (2) The capabilities of post-fil-
tering are limited. As shown in [6, 7], post-filtering meth-
ods are useful because they enforce continuity of individ-
ual chords rather than providing information about chord
transitions. Incorporating such information did not consid-
erably improve recognition results in both studies. Chen
et al. [6] also observed quantitatively that in popular mu-
sic “chord progressions are less predictable than it seems”,
and thus knowing chord history does not greatly narrow the
possibilities for the next chord. Given these apparent limi-
tations of the pattern matching and post-filtering stages, it
is not surprising that they only partly compensate the per-
formance gap between features [7]. We therefore have to
compute better features if we want to improve chord recog-
nition.

In this paper, we take a step towards better features for
chord recognition by introducing a data-driven approach
to extract chromagrams that specifically encode content
relevant to harmony. Our method learns to discard irrel-
evant information like percussive noise, overtones or tim-
bral variations automatically from data. We argue that it
is thus able to compensate a broader range of interferences
than hand-crafted approaches.

2. CHROMAGRAMS

The most popular feature used for chord recognition is the
Chromagram. A chromagram comprises a time-series of
chroma vectors, which represent harmonic content at a spe-
cific time in the audio as c ∈ R12. Each ci stands for a pitch
class, and its value indicates the current saliency of the cor-
responding pitch class. Chroma vectors are computed by
applying a filter bank to a time-frequency representation of
the audio. This representation results from either a short-
time Fourier transform (STFT) or a constant-q transform
(CQT), the latter being more popular due to a finer fre-
quency resolution in the lower frequency area.

Chromagrams are concise descriptors of harmony be-
cause they encode tone quality and neglect tone height.
In theory, this limits their representational power: with-
out octave information, one cannot distinguish e.g. chords
that comprise the same pitch classes, but have a different
bass note (like G vs. G/5, or A:sus2 vs. E:sus4). In prac-
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tice, we can show that given chromagrams derived from
ground truth annotations, using logistic regression we can
recognise 97% of chords (reduced to major/minor) in the
Beatles dataset. This result encourages us to create chroma
features that contain harmony information, but are robust
to spectral content that is harmonically irrelevant.

Chroma features are noisy in their basic formulation be-
cause they are affected by various interferences: musical
instruments produce overtones in addition to the funda-
mental frequency; percussive instruments pollute the spec-
trogram with broadband frequency activations (e.g. snare
drums) and/or pitch-like sounds (tom-toms, bass drums);
different combinations of instruments (and different, pos-
sibly genre-dependent mixing techniques) create different
timbres and thus increase variance [7, 20].

Researchers have developed and used an array of meth-
ods that mitigate these problems and extract cleaner chro-
magrams: Harmonic-percussive source separation can fil-
ter out broadband frequency responses of percussive in-
struments [22, 27], various methods tackle interferences
caused by overtones [7, 19], while [21, 27] attempt to
extract chromas robust to timbre. See [7] for a recent
overview and evaluation of different methods for chroma
extraction. Although these approaches improve the qual-
ity of extracted chromas, it is very difficult to hand-craft
methods for all conceivable disturbances, even if we could
name and quantify them.

The approaches mentioned above share a common limi-
tation: they mostly operate on single feature frames. Single
frames are often not enough to decide which frequencies
salient in the spectrum are relevant to harmony and which
are noise. This is usually countered by contextual aggrega-
tion such as moving mean/median filters or beat synchro-
nisation, which are supposed to smooth out noisy frames.
Since they operate only after computing the chromas, they
address the symptoms (noisy frames) but do not tackle the
cause (spectral content irrelevant to harmony). Also, [7]
found that they blur chord boundaries and details in a sig-
nal and can impair results when combined with more com-
plex chord models and post-filtering methods.

It is close to impossible to find the rules or formulas
that define harmonic relevance of spectral content manu-
ally. We thus resort to the data-driven approach of deep
learning. Deep learning was found to extract strong, hierar-
chical, discriminative features [1] in many domains. Deep
learning based systems established new state-of-the-art re-
sults in computer vision 1 , speech recognition, and MIR
tasks such as beat detection [3], tempo estimation [4] or
structural segmentation [28].

In this paper, we want to exploit the power of deep
neural networks to compute harmonically relevant chroma
features. The proposed chroma extractor learns to filter
harmonically irrelevant spectral content from a context of
audio frames. This way, we circumvent the necessity to
temporally smooth the features by allowing the chroma ex-
tractor to use context information directly. Our method

1 See https://rodrigob.github.io/are we there yet/build/classification
datasets results.html for results on computer vision.

computes cleaner chromagrams while retaining their ad-
vantages of low dimensionality and intuitive interpretation.

3. RELATED WORK

A number of works used neural networks in the context
of chord recognition. Humphrey and Bello [14] applied
Convolutional Neural Networks to classify major and mi-
nor chords end-to-end. Boulanger-Lewandowski et al. [5],
and Sigtia et al. [24] explored Recurrent Neural Networks
as a post-filtering method, where the former used a deep
belief net, the latter a deep neural network as underlying
feature extractor. All these approaches train their models
to directly predict major and minor chords, and follow-
ing [1], the hidden layers of these models learn a hier-
archical, discriminative feature representation. However,
since the models are trained to distinguish major/minor
chords only, they consider other chord types (such as sev-
enth, augmented, or suspended) mapped to major/minor as
intra-class variation to be robust against, which will be re-
flected by the extracted internal features. These features
might thus not be useful to recognise other chords.

We circumvent this by using chroma templates derived
from chords as distributed (albeit incomplete) representa-
tion of chords. Instead of directly classifying a chord label,
the network is required to compute the chroma representa-
tion of a chord given the corresponding spectrogram. We
expect the network to learn which saliency in the spectro-
gram is responsible for a certain pitch class to be harmon-
ically important, and compute higher values for the corre-
sponding elements of the output chroma vector.

Approaches to directly learn a mapping from spectro-
gram to chroma include those by İzmirli and Dannen-
berg [29] and Chen et al. [6]. However, both learn only
a linear transformation of the time-frequency representa-
tion, which limits the mapping’s expressivity. Addition-
ally, both base their mapping on a single frame, which
comes with the disadvantages we outlined in the previous
section.

In an alternative approach, Humphrey et al. apply deep
learning methods to produce Tonnetz features from a spec-
trogram [15]. Using other features than the chromagram
is a promising direction, and was also explored in [6] for
bass notes. Most chord recognition systems however still
use chromas, and more research is necessary to explore to
which degree and under which circumstances Tonnetz fea-
tures are favourable.

4. METHOD

To construct a robust chroma feature extractor, we use a
deep neural network (DNN). DNNs consist of L hidden
layers hl of Ul computing units. These units compute val-
ues based on the results of the previous layer, such that

hl(x) = σl (Wl · hl−1(x) + bl) , (1)

where x is the input to the net, Wl ∈ RUl×Ul−1 and
bl ∈ RUl are the weights and the bias of the lth layer re-
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spectively, and σl is a (usually non-linear) activation func-
tion applied point-wise.

We define two additional special layers: an input layer
that is feeding values to h1 as h0(x) = x, with U0 being
the input’s dimensionality; and an output layer hL+1 that
takes the same form as shown in Eq. 1, but has a specific
semantic purpose: it represents the output of the network,
and thus its dimensionality UL+1 and activation function
σL+1 have to be set accordingly. 2

The weights and biases constitute the model’s parame-
ters. They are trained in a supervised manner by gradient
methods and error back-propagation in order to minimise
the loss of the network’s output. The loss function de-
pends on the domain, but is generally some measure of dif-
ference between the current output and the desired output
(e.g. mean squared error, categorical cross-entropy, etc.)

In the following, we describe how we compute the input
to the DNN, the concrete DNN architecture and how it was
trained.

4.1 Input Processing

We compute the time-frequency representation of the sig-
nal based on the magnitude of its STFT X . The STFT
gives significantly worse results than the constant-q trans-
form if used as basis for traditional chroma extractors, but
we found in preliminary experiments that our model is not
sensitive to this phenomenon. We use a frame size of 8192
with a hop size of 4410 at a sample rate of 44100 Hz. Then,
we apply triangular filters to convert the linear frequency
scale of the magnitude spectrogram to a logarithmic one in
what we call the quarter-tone spectrogram S = F4Log · |X|,
where F4Log is the filter bank. The quarter-tone spectro-
gram contains only bins corresponding to frequencies be-
tween 30 Hz and 5500 Hz and has 24 bins per octave. This
results in a dimensionality of 178 bins. Finally, we apply
a logarithmic compression such that Slog = log (1 + S),
which we will call the logarithmic quarter-tone spectro-
gram. To be concise, we will refer to SLog as “spectro-
gram” in rest of this paper.

Our model uses a context window around a target frame
as input. Through systematic experiments on the validation
folds (see Sec.5.1) we found a context window of±0.7 s to
work best. Since we operate at 10 fps, we feed our network
at each time 15 consecutive frames, which we will denote
as super-frame.

4.2 Model

We define the model architecture and set the model’s
hyper-parameters based on validation performance in sev-
eral preliminary experiments. Although a more systematic
approach might reveal better configurations, we found that
results do not vary by much once we reach a certain model
complexity.

2 For example, for a 3-class classification problem one would use 3
units in the output layer and a softmax activation function such that the
network’s output can be interpreted as probability distribution of classes
given the data.

Figure 1. Model overview. At each time 15 consecutive
frames of the input quarter-tone spectrogram SLog are fed
to a series of 3 dense layers of 512 rectifier units, and fi-
nally to a sigmoid output layer of 12 units (one per pitch
class), which represents the chroma vector for the centre
input frame.

Our model is a deep neural network with 3 hidden layers
of 512 rectifier units [11] each. Thus, σl(x) = max(0, x)
for 1 ≤ l ≤ L. The output layer, representing the chroma
vector, consists of 12 units (one unit per pitch class) with a
sigmoid activation function σL+1(x) = 1/1+exp(−x). The
input layer represents the input super-frame and thus has a
dimensionality of 2670. Fig. 1 shows an overview of our
model.

4.3 Training

To train the network, we propagate back through the net-
work the gradient of the loss L with relation to the net-
work parameters. Our loss is the binary cross-entropy
between each pitch class in the predicted chroma vector
p = hL+1(Slog) and the target chroma vector t, which is
derived from the ground truth chord label. For a single data
instance,

L =
1

12

12∑

i=1

−ti log(pi)− (1− ti) log(1− pi). (2)

We learn the parameters with mini-batch training (batch
size 512) using the ADAM update rule [16]. We also tried
simple stochastic gradient descent with Nesterov momen-
tum and a number of manual learn rate schedules, but could
not achieve better results (to the contrary, using ADAM
training usually converged earlier). To prevent over-fitting,
we apply dropout [26] with probability 0.5 after each hid-
den layer and early stopping if validation accuracy does
not increase after 20 epochs.

5. EXPERIMENTS

To evaluate the chroma features our method produces, we
set up a simple chord recognition task. We ignore any post-
filtering methods and use a simple, linear classifier (logis-
tic regression) to match features to chords. This way we
want to isolate the effect of the feature on recognition ac-
curacy. As it is common, we restrict ourselves to distinct
only major/minor chords, resulting in 24 chord classes and
a ’no chord’ class.
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Figure 2. Validation WCSR for Major/minor chord recog-
nition of different methods given different audio context
sizes. Whiskers represent 0.95 confidence intervals.

Our compound evaluation dataset comprises the Beat-
les [13], Queen and Zweieck [18] datasets (which form the
“Isophonics” dataset used in the MIREX 3 competition),
the RWC pop dataset 4 [12], and the Robbie Williams
dataset [8]. The datasets total 383 songs or approx. 21
hours and 39 minutes of music.

We perform 8-fold cross validation with random splits.
For the Beatles dataset, we ensure that each fold has the
same album distribution. For each test fold, we use six of
the remaining folds for training and one for validation.

As evaluation measure, we compute the Weighted
Chord Symbol Recall (WCSR), often called Weighted Av-
erage Overlap Ratio (WAOR) of major and minor chords
using the mir eval library [23].

5.1 Compared Features

We evaluate our extracted features CD against three
baselines: a standard chromagram C computed from
a constant-q transform, a chromagram with frequency
weighting and logarithmic compression of the underlying
constant-q transform CW

Log , and the quarter-tone spectro-
gram SLog . The chromagrams are computed using the li-
brosa library 5 . Their parametrisation follows closely the
suggestions in [7], where CW

Log was found to be the best
chroma feature for chord recognition.

Each baseline can take advantage of context informa-
tion. Instead of computing a running mean or median,
we allow logistic regression to consider multiple frames of
each feature 6 . This is a more general way to incorporate
context, because running mean is a subset of the context
aggregation functions possible in our setup. Since training
logistic regression is a convex problem, the result is at least
as good as if we used a running mean.

3 http://www.music-ir.org/mirex
4 Chord annotations available at https://github.com/tmc323/

Chord-Annotations
5 https://github.com/bmcfee/librosa
6 Note that this description applies only to the baseline methods. For

our DNN feature extractor, “context” means the amount of context the
DNN sees. The logistic regression always sees only one frame of the
feature the DNN computed.

Btls Iso RWC RW Total

C 71.0±0.1 69.5 ±0.1 67.4±0.2 71.1±0.1 69.2±0.1

CW
Log 76.0±0.1 74.2 ±0.1 70.3±0.3 74.4±0.2 73.0±0.1

SLog 78.0±0.2 76.5 ±0.2 74.4±0.4 77.8±0.4 76.1±0.2

CD 80.2±0.1 79.3±0.1 77.3±0.1 80.1±0.1 78.8±0.1

Table 1. Cross-validated WCSR on the Maj/min task of
compared methods on various datasets. Best results are
bold-faced (p < 10−9). Small numbers indicate stan-
dard deviation over 10 experiments. “Btls” stands for the
Beatles, “Iso” for Isophonics, and “RW” for the Robbie
Williams datasets. Note that the Isophonics dataset com-
prises the Beatles, Queen and Zweieck datasets.

We determined the optimal amount of context for
each baseline experimentally using the validation folds, as
shown in Fig. 2. The best results achieved were 79.0% with
1.5 s context for CD, 76.8% with 1.1 s context for SLog ,
73.3% with 3.1 s context for CW

Log , and 69.5% with 2.7 s
context for C. We fix these context lengths for testing.

6. RESULTS

Table 1 presents the results of our method compared to the
baselines on several datasets. The chroma features C and
CW

Log achieve results comparable to those [7] reported on
a slightly different compound dataset. Our proposed fea-
ture extractor CD clearly performs best, with p < 10−9

according to a paired t-test. The results indicate that the
chroma vectors extracted by the proposed method are bet-
ter suited for chord recognition than those computed by the
baselines.

To our surprise, the raw quarter-tone spectrogram SLog

performed better than the chroma features. This indicates
that computing chroma vectors in the traditional way mixes
harmonically relevant features found in the time-frequency
representation with irrelevant ones, and the final classifier
cannot disentangle them. This raises the question of why
chroma features are preferred to spectrograms in the first
place. We speculate that the main reason is their much
lower dimensionality and thus ease of modelling (e.g. us-
ing Gaussian mixtures).

Artificial neural networks often give good results, but
it is difficult to understand what they learned, or on which
basis they generate their output. In the following, we will
try to dissect the proposed model, understand its workings,
and see what it pays attention to. To this end, we com-
pute saliency maps using guided back-propagation [25],
adapting code freely available 7 for the Lasagne library [9].
Leaving out the technical details, a saliency map can be in-
terpreted as an attention map of the same size as the input.
The higher the absolute saliency at a specific input dimen-
sion, the stronger its influence on the output, where pos-
itive values indicate a direct relationship, negative values
an indirect one.

Fig. 3 shows a saliency map and its corresponding
super-frame, representing a C major chord. As expected,

7 https://github.com/Lasagne/Recipes/
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Figure 3. Input example (C major chord) with correspond-
ing saliency map. The left image shows the spectrogram
frames fed into the network. The centre image shows the
corresponding saliency map, where red pixels represent
positive, blue pixels negative values. The stronger the sat-
uration, the higher the absolute value. The right plot shows
the saliency summed over the time axis, and thus how each
frequency bin influences the output. Note the strong posi-
tive influences of frequency bins corresponding to c, e, and
g notes that form a C major chord.

the saliency map shows that the most relevant parts of the
input are close to the target frame and in the mid frequen-
cies. Here, frequency bins corresponding to notes con-
tained in a C major chord (c, e, and g) showing posi-
tive saliency peeks, with the third, e, standing out as the
strongest. Conversely, its neighbouring semitone, f, ex-
hibits strong negative saliency values. Fig. 4 depicts av-
erage saliencies for two chords computed over the whole
Beatles corpus.

Fig. 5 shows the average saliency map over all super-
frames of the Beatles dataset summed over the frequency
axis. It thus shows the magnitude with which individ-
ual frames in the super-frame contribute to the output of
the neural network. We observe that most information is
drawn from a±0.3 s window around the centre frame. This
is in line with the results shown in Fig. 2, where the pro-
posed method already performed well with 0.7 s of audio
context.

Fig. 6 shows the average saliency map over all super-
frames of the Beatles dataset, and its sum over the time
axis. We observe that frequency bins below 110 Hz and
above 3136 Hz (wide limits) are almost irrelevant, and that
the net focuses mostly on the frequency range between
196 Hz and 1319 Hz (narrow limits). In informal exper-
iments, we could confirm that recognition accuracy drops
only marginally if we restrict the frequency range to the
wide limits, but significantly if we restrict it to the narrow
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Figure 4. Average saliency map summed over the time
axis for A:min7 and F]:min chords computed on the Beat-
les dataset. As expected, we observe mostly positive peaks
for frequency bins corresponding to notes present in the
chords (a, c, e, g for A:min7; f], a, c] for F]:min).
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Figure 5. Average positive and negative saliencies of all
input frames of the Beatles dataset, summed over the fre-
quency axis. Most of the important information is within
±0.3 s around the centre frame, and past data seems to be
more important than future data. Around the centre frame,
the network pays relatively more attention to what should
be missing than present in a given chroma vector, and vice
versa in areas further away from the centre. The differ-
ences are statistically significant due to the large number
of samples.

limits. This means that the secondary information captured
by the additional frequency bins of the wide limits is also
crucial.

To allow for a visual comparison of the computed fea-
tures, we depict different chromagrams for the song “Yes-
terday” by the Beatles in Fig. 7. The images show that
the chroma vectors extracted by the proposed method are
less noisy and chord transitions are crisper compared to the
baseline methods.

7. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a data-driven approach to
learning a neural-network-based chroma extractor for
chord recognition. The proposed extractor computes
cleaner chromagrams than state-of-the-art baseline meth-
ods, which we showed quantitatively in a simple chord
recognition experiment and examined qualitatively by vi-
sually comparing extracted chromagrams.

We inspected the learned model using saliency maps
and found that a frequency range of 110 Hz to 3136 Hz
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Figure 7. Excerpts of chromagrams extracted from the
song “Yesterday” by the Beatles. The lower image shows
chroma computed by the CW

Log without smoothing. We see
a good temporal resolution, but also noise. The centre im-
age shows the same chromas after a moving average filter
of 1.5 seconds. The filter reduced noise considerably, at
the cost blurring chord transitions. The upper plot shows
the chromagram extracted by our proposed method. It dis-
plays precise pitch activations and low noise, while keep-
ing chord boundaries crisp. Pixel values are scaled such
that for each image, the lowest value in the respective chro-
magram is mapped to white, the highest to black.

seems to suffice as input to chord recognition methods. Us-
ing saliency maps and preliminary experiments on valida-
tion folds we also found that a context of 1.5 seconds is
adequate for local harmony estimation.

There are plenty possibilities for future work to extend
and/or improve our method. To achieve better results, we
could use DNN ensembles instead of a single DNN. We
could ensure that the network sees data for which its pre-
dictions are wrong more often during training, or similarly,
we could simulate a more balanced dataset by showing
the net super-frames of rare chords more often. To fur-
ther assess how useful the extracted features are for chord
recognition, we shall investigate how well they interact
with post-filtering methods; since the feature extractor is
trained discriminatively, Conditional Random Fields [17]
would be a natural choice.

Finally, we believe that the proposed method extracts
features that are useful in any other MIR applications that
use chroma features (e.g. structural segmentation, key esti-
mation, cover song detection). To facilitate respective ex-
periments, we provide source code for our method as part
of the madmom audio processing framework [2]. Informa-
tion and source code to reproduce our experiments can be
found at http://www.cp.jku.at/people/korzeniowski/dc.
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ABSTRACT

Building an instrument detector usually requires tempo-
rally accurate ground truth that is expensive to create.
However, song-wise information on the presence of in-
struments is often easily available. In this work, we in-
vestigate how well we can train a singing voice detec-
tion system merely from song-wise annotations of vocal
presence. Using convolutional neural networks, multiple-
instance learning and saliency maps, we can not only de-
tect singing voice in a test signal with a temporal accuracy
close to the state-of-the-art, but also localize the spectral
bins with precision and recall close to a recent source sep-
aration method. Our recipe may provide a basis for other
sequence labeling tasks, for improving source separation
or for inspecting neural networks trained on auditory spec-
trograms.

1. INTRODUCTION

A fundamental step in automated music understanding is
to detect which instruments are present in a music audio
recording, and at what time they are active. Traditionally,
developing a system detecting and localizing a particular
instrument requires a set of music pieces annotated at the
same granularity as expected to be output by the system –
no matter if the system is constructed by hand or by ma-
chine learning algorithms.

Annotating music pieces at high temporal accuracy re-
quires skilled annotators and a lot of time. On the other
hand, instrument annotations at a song level are often eas-
ily available online, as part of the tags given by users of
streaming services, or descriptions or credits by the pub-
lisher. Even if not, collecting or cleaning song-wise anno-
tations requires very little effort and low skill compared to
curating annotations with sub-second granularity.

As a step towards tapping into such resources, in this
work, we explore how to obtain high-granularity vocal de-
tection results from low-granularity annotations. Specifi-
cally, we train a Convolutional Neural Network (CNN) on
10,000 30-second song snippets annotated as to whether

c© Jan Schlüter. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Jan Schlüter.
“Learning to Pinpoint Singing Voice From Weakly Labeled Examples”,
17th International Society for Music Information Retrieval Conference,
2016.

they contain singing voice anywhere within, and subse-
quently use it to detect the presence of singing voice with
sub-second granularity. As the main contribution of our
work, we develop a recipe to improve initial results us-
ing multiple-instance learning and saliency maps. Finally,
we investigate how well the system can even pinpoint
the spectral bins containing singing voice, instead of the
time frames only. While we constrain our experiments to
singing voice detection as a special case of instrument de-
tection (and possibly the easiest), we do not assume any
prior knowledge about the content to be detected, and thus
expect the recipe to carry over to other instruments.

The next section will provide a review of related work
on learning from weakly-annotated data both outside and
within of the music domain, and on singing voice detec-
tion. Section 3 explains the methods we combined in this
paper, Section 4 describes how we combined them, and
Section 5 evaluates the resulting system on four datasets.
Finally, Section 6 discusses what we achieved and what is
still open, highlights avenues for future research and points
out alternative uses for some of our findings.

2. RELATED WORK

The idea of training on weakly-labeled data is far from
new, since coarse labels are almost always easier to ob-
tain than fine ones. The general framework for this setting
is Multiple-Instance Learning, which we will return to in
Section 3.2. As one of the first instances, Keeler et al. [8]
train a CNN to recognize and localize two hand-written
digits in an input image of about 36 × 36 pixels, giving
only the identities of the two digits as training targets. As a
recent work closer to our setting, Hou et al. [6] train a CNN
to detect and classify brain tumors in gigapixel resolution
tissue images. As such images are too large to be processed
as a whole, they propose to train on patches, still using
image-level labels only. To account for the fact that not all
patches in a tumor image show tumorous tissue, Hou et al.
employ an expectation maximization algorithm that itera-
tively prunes non-discriminative patches from the training
set based on the CNN’s predictions. As far as we are aware,
the only work in music information retrieval aiming to pro-
duce fine-grained predictions from coarse training data is
that of Mandel and Ellis [14]: They train special variants
of SVMs on song, album or artist labels to predict tags on
a granularity of 10-second clips. In contrast, we aim for
sub-second granularity, and for identifying spectral bins.
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Recent approaches for singing voice detection [9,10,18]
are all based on machine learning from temporally accurate
labels. The current state of the art is our previous work
[18], a CNN trained on mel spectrogram excerpts. We will
use it both as a starting point and for comparing our results
against, and describe it in more detail in Section 3.1.

Singing voice detection does not entail identifying the
spectral bins. The closest task to this is singing voice ex-
traction, which aims to extract a purely vocal signal from
a single-channel audio recording and thus has to estimate
its spectral extends. It differs from general blind source
separation in that it can leverage prior knowledge about
the two signals to be separated – vocals and background
music. As an improvement over Nonnegative Matrix Fac-
torization (NMF) [20], which can only encode such prior
knowledge in the form of spectral templates, REPET [16]
uses the fact that background music is repetitive while vo-
cals are not. Kernel-Additive Modeling [11] generalizes
this method and uses a set of assumptions on local regular-
ities of vocals and background music to perform singing
voice extraction. We will use it as a mark to compare our
results to.

3. INGREDIENTS

Our recipe combines a few methods that we shall intro-
duce up front: a singing voice detector based on CNNs,
multiple-instance learning, and saliency maps.

3.1 CNN-based Singing Voice Detection

The base of our system is a CNN trained to predict whether
a short spectrogram excerpt contains singing voice at its
center. We mostly follow Schlüter et al. [18], and will limit
the description here to what is needed for understanding
the paper, as well as how we deviated from that approach.

Input signals are converted to 22.05 kHz mono and pro-
cessed by a Short-Time Fourier Transform with 70 1024-
sample frames per second. Phases are discarded, magni-
tudes are scaled by log(1+ x), the spectrogram is cropped
above 8 kHz (keeping 372 bins) and each frequency band
is normalized to zero mean and unit variance over the train-
ing set. We skip the mel-scaling step of Schlüter et al. to
enable more accurate spectral localization of singing voice.

As in [18], the network architecture starts with 64 and
32 3×3 convolutions, 3×3 max-pooling, 128 and 64 3×3
convolutions. At this point, the 372 frequency bands have
been reduced to 118. We add 128 3×115 convolutions
and 1×4 max-pooling. This way, the network learns spec-
trotemporal patterns spanning almost the full frequency
range, applies them at four different frequency offsets and
keeps the maximum activation of those four, effectively
introducing some pitch invariance. We finish with three
dense layers of 256, 64 and 1 unit, respectively. Except
for the final layer, each convolution and dense layer is fol-
lowed by batch normalization [7] and the leaky rectifier
max(x/100, x) [13]. The final layer uses the sigmoid ac-
tivation function.

Training is done on excerpts of 115 frames (about

1.6 sec) paired with a binary label for the excerpt’s central
frame. We follow the training protocol described in [18,
Sec. 3.3], augmenting inputs with random pitch-shifting
and time-stretching of ±30% and frequency filtering of
±10 dB using the code accompanying [18].

We arrived at this system by selectively modifying our
previous work [18] to work well with linear-frequency
spectrograms, on an internal dataset with fine-grained an-
notations. It slightly outperforms [18] on this dataset.

3.2 Multiple-Instance Learning

While we train our network on short spectrogram excerpts,
we actually only have a single label per 30-second clip.
In the Multiple-Instance Learning (MIL) framework, each
explicitly labeled 30-second clip is called a bag, and the
excerpts we train on are called instances. In our setting,
a bag is labeled positively if and only if at least one of
the instances contained within are positive (referred to as
the standard MI assumption [4]). This gives an interesting
asymmetry: If a 30-second clip is labeled as “no vocals”,
we can infer that neither of its excerpts contains vocals. If
a clip contains vocals, we only know that some excerpts
will contain vocals, but neither which ones nor how many.

One approach for training a neural network in this set-
ting is based on the observation that the label of a bag is
simply the maximum over its instance labels. If we define
the network’s prediction for a bag to be the maximum over
the predictions for its instances, and the objective function
to measure the discrepancy between this bag-wise predic-
tion and the true label, minimizing it by gradient descent
directly results in the following algorithm (BP-MIP, [24]):
Propagate all instances of a bag through the network, pick
the instance that gives the highest output, and update the
network weights to minimize its discrepancy with the bag
label. Unfortunately, this scheme is very costly: It com-
putes predictions for all instances of a bag, then performs
an update for a single instance only. Furthermore, it is
easy to overfit: It is enough for the network to produce
a strongly positive output for a single chosen instance per
bag and negative outputs for all others. For 10,000 30-
second clips, it would require merely learning 10,000 short
excerpts by heart.

A different approach is to present all instances from
negative bags as negative examples (we know they are neg-
ative) and all instances from positive bags as positive ex-
amples (they could be positive), and use a classifier that
can underfit the training data, i.e., that may deviate from
the training labels for some examples. This naive idea
alone can produce good results, but it is also the basis
for algorithms iteratively refining this starting point: The
mi-SVM algorithm [1] uses the predictions of the initial
classifier to re-label some instances from positive bags to
become negative, and alternates between re-training and
re-labeling until convergence. A variant proposed by Hou
et al. [6] is to prune instances from positive bags that are
not clearly positive, and also iterate until convergence. We
will find that for our task, the idea of improving initial re-
sults by relabeling instances is important as well.
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(a) (b) (c) (d)

Figure 1: Demonstration of saliency mapping: Network
input (a), gradient (b), guided backpropagation (c) and its
positive values (d). Best viewed on screen.

3.3 Saliency Mapping

Saliency maps for neural networks have been popularized
by Zeiler et al. [23] as a means of inspecting how a trained
neural network forms its decisions. One of the most ele-
gant forms computes the saliency map as the gradient of
the network’s output 1 with respect to its input [19]. For a
single data point, this tells how and in which direction each
input feature influences the prediction for that data point.
In our case, the input is a spectrogram excerpt and the gra-
dient shows for each spectrogram bin how an infinitesimal
increase would affect the probability of predicting singing
voice (demonstrated in Figure 1a and 1b, respectively).
Unfortunately, for a deep neural network, an input feature
can influence the output in convoluted ways: Some input
may increase the output by decreasing activities in hidden
layers that are negatively connected to the output unit.

To get a clearer picture, Springenberg et al. [21] propose
guided backpropagation: At each layer, only propagate the
positive gradient values to the previous layer. This limits
the saliency map to showing how input features affect the
output by a chain of changes in the same direction. Fig-
ure 1c demonstrates this for our example. A positive value
(displayed in red) for a bin means increasing this bin will
increase the output by increasing activities in all layers in
between. Likewise, a negative value (displayed in blue) for
a bin means that increasing it will decrease the output.

Note that the negative saliencies are not very useful:
They form “halos” around the positive saliencies, indicat-
ing that the network hinges on the local contrast, and they
are much less sharply localized. Assuming the hidden lay-
ers show a similar picture, this explains why ignoring neg-
ative gradients in guided backpropagation gives a sharper
saliency map. To obtain a map of spectrogram bins corre-
sponding to what the network used to detect singing voice,
we keep the positive saliencies only (Figure 1d).

1 Precisely, the pre-activation of the output unit, before applying the
nonlinearity, as the sigmoid would dampen gradients at high activations.

4. RECIPE

Having the basic ingredients in place, we will now describe
our recipe. We begin by showing how to use a naively
trained network for temporal detection and spectral local-
ization, and then highlight an observation about saliency
maps that enables higher precision. Finally, we give a
three-step training procedure that further improves results.

4.1 Naive Training

The easiest solution to dealing with the problem of incom-
plete labels – and the starting point of our recipe – is to
pretend the labels were complete. We train an initial net-
work by presenting all excerpts from instrumental songs
as negative, and all excerpts from vocal songs as positive.
This already works quite well: even on the training data, it
produces lower output for excerpts of vocal songs that do
not contain voice than for those that do.

To obtain a temporal detection curve for a test song,
we pass overlapping spectrogram excerpts of 115 frames
through the network (with a hop size of 1 frame), recording
each prediction. This way, for each spectrogram frame, we
obtain a probability of singing voice being present in the
surrounding ±57 frames. As in [18], we post-process this
curve by a sliding median filter of 56 frames (800 ms).

For spectral localization, we also pass overlapping spec-
trogram excerpts through the network, each time comput-
ing the 115×372-pixels saliency map for the excerpt. To
combine these into a single map for a test song, we con-
catenate the central frames of the saliency maps. This gives
a much sharper picture than an overlap-add of the excerpt
maps. When used for vocal extraction, we apply two post-
processing steps: As the saliency maps are very sparse,
we apply Gaussian blurring with a standard dev. of 1 bin.
And as the saliency values are very low, we scale them to a
range comparable to the spectrogram and take the element-
wise minimum of the scaled map and spectrogram.

4.2 Overshoot Correction

When examining the predictions of the initial, naively
trained network, we observe that it regularly overshoots
at the boundaries of segments of singing voice. Figure 2
illustrates the problem for a training example: Predictions
only decline far away from vocal parts, and short pauses
are glossed over. This is an artifact from training on weak
labels: The network predicts singing voice whenever its
1.6-second input excerpt contains vocals, even if only at
the edge, because such excerpts have never been presented
as negative examples during training.

The saliency map provides additional information,
though. By computing the saliency of the central frame
of each excerpt (Figure 2e), we can check whether it was
important for that excerpt’s prediction. Summing up the
saliency map over frequencies (Figure 2f) gives an alterna-
tive prediction curve that can be used to improve the preci-
sion of temporal detection. In the next section, we will use
this observation to improve the network.
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(a) spectrogram of a 30-second training clip containing vocals

0.0
0.5
1.0

(b) weak labels for training (all positive)

0.0
0.5
1.0

(c) actual ground truth

0.0
0.5
1.0

(d) network predictions

(e) network saliency map

0.0
0.1
0.2

(f) network saliency map summarized over frequencies

Figure 2: Network predictions (d) overshoot vocal seg-
ments (c) because input windows only partially contain-
ing vocals were always presented as positive examples (b).
Summarizing the saliency map (e) over frequencies (f) al-
lows to correct such overshoots.

4.3 Self-Improvement

A basic idea we described in Section 3.2 is that the naively
trained network could be used to relabel the positive train-
ing instances, which necessarily contain false positives
(compare Figure 2b to 2c). The intuition is that correct-
ing even just a few of those and re-training should improve
results.

We tried several variants of this idea: Relabeling by
thresholding the initial network’s predictions (using a low
threshold to only relabel very certainly false positives),
weighting positive examples by the initial network’s pre-
dictions (so confidently positive examples would affect
training more than others), or removing positive examples
the initial network is not confident about. However, the
only effect was that the bias of the re-trained network was
lower, and iterating such a scheme lead to a network pre-
dicting “no” all the time. In hindsight, this is not surpris-
ing: The only positive instances we relabel this way are
those the network got correct with naive training already,
so it will not learn anything new when re-training.

We found a single scheme that does not deteriorate re-
sults: Training a second network to output the temporally
smoothed predictions of the initial network for positive in-
stances, and the actual labels for negative instances. It does
not result in better predictions either, but in much clearer
saliency maps with less noise in non-vocal sections. Us-
ing the technique of Section 4.2, we find that for such a

second network, the summarized saliency maps alone ac-
tually provide a better temporal detection curve than the
network output, as it does not suffer from overshoot.

Iterating the latter scheme by re-training on the second
network’s predictions does not help. However, we can train
a third network to output the temporally smoothed sum-
marized saliency maps of the second network for positive
instances, again keeping negative instances at their true la-
bels. To bring them to a suitable range for training (i.e.,
between 0 and 1), we scale them by 10 and apply the tanh
function. Finally, this third network gives predictions that
do not need any overshoot correction. It can be seen as
finding a more efficient way of computing the summarized
saliency map of the second network.

Put together, our recipe consists of: (1) Training a first
network (subsequently called CNN-α) on the weak in-
stance labels, (2) training a second network (CNN-β) on
the predictions of CNN-α, (3) training a third network
(CNN-γ) on the summarized saliency maps of CNN-β.

5. EXPERIMENTS

To test our approach, we train networks on a dataset of
10,000 weakly-annotated 30-second snippets, then evalu-
ate them on two public datasets for temporal detection and
two public datasets for spectral localization.

5.1 Datasets

5.1.1 Training and Development

We collected 10,000 30-second song snippets of 10,000
artists. Using a custom web interface, 5 annotators sorted
2,000 snippets each into vocal and non-vocal ones, where
“vocal” was defined to be “any use of human vocal
chords”. Annotators were allowed to skip examples they
were very unsure about or that only contained voice-like
sound effects, leaving 9751 annotated clips, 6772 of which
contain vocals. To check inter-annotator agreement, we
had 100 clips be labeled by 6 annotators. Of those, anno-
tators agreed on 97 clips, the remaining 3 were skipped by
at least one annotator and disagreed on by others.

We annotate the multiply-annotated clips with sub-
second granularity to be used for testing, and keep the re-
maining clips for training. We further annotate 100 of the
training clips finely to train a network equivalent to the one
of Schlüter et al. [18] (dataset In-House A in that work).

The finely annotated positive clips feature vocals for
70% of the running time (between 13% and 99% per clip).
Extrapolating, we thus expect CNN-α to be presented with
30% false positives among its positive training instances.

5.1.2 Testing

For testing temporal detection, we use two public datasets
finely annotated with singing voice presence:
– RWC, collected by Goto et al. [5] and annotated by

Mauch et al. [15], contains 100 pop songs.

– Jamendo, curated by Ramona et al. [17], contains 93
songs. It comes with a predefined train/test split, but
we use all songs for testing.
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internal RWC Jamendo
AU-
ROC

max
acc.

AU-
ROC

max
acc.

AU-
ROC

max
acc.

CNN-α pred. .911 .888 .879 .856 .913 .865
sal. .955 .896 .912 .843 .930 .849

CNN-β pred. .922 .888 .890 .861 .923 .875
sal. .970 .916 .936 .883 .955 .894

CNN-γ pred. .970 .915 .939 .887 .960 .901
sal. .965 .914 .931 .884 .950 .898

CNN- pred. .979 .930 .947 .882 .951 .880
fine sal. .969 .909 .937 .883 .948 .885

Table 1: Temporal detection results for the three steps of
self-improvement on weak labels (Section 4.3) as well as a
network trained on fine labels, for three datasets.2

For spectral localization, we use two public datasets that
come with separated vocal tracks:
– ccMixter, collected by Liutkus et al. [11], consists of 50

recordings from ccmixter.org.

– MedleyDB, compiled by Bittner et al. [2], contains 174
songs. We only use the 52 songs that feature vocals
(singer or rapper) and do not have bleed between tracks.
Downmixes are provided, we obtain the corresponding
vocal tracks by mixing all vocal stems per song.

5.2 Temporal Detection Results

Singing voice detection is usually evaluated via the classi-
fication error at a particular threshold [9, 10, 15, 18]. How-
ever, different tasks may require different thresholds tuned
towards higher precision or recall. Furthermore, tuning the
threshold towards some goal requires a finely-annotated
validation set, which we assume is not available in our set-
ting. We therefore opt to assess the quality of the detection
curves, rather than hard classifications. Specifically, we
compute two measures: The Area Under the Receiver Op-
erating Characteristic Curve (AUROC), and the classifica-
tion accuracy at the optimal threshold. The former gives
the probability that a randomly drawn positive example
gets a higher prediction than a randomly drawn negative
example, and the latter gives a lower bound on the error.

Table 1 shows the results. We compare four CNNs:
CNN-α to CNN-γ from the three-step self-improvement
scheme of Section 4.3, and CNN-fine, a network of the
same architecture trained on 100 finely-annotated clips,
as a reimplementation of the state-of-the-art by Schlüter
et al. [18]. For each network, we assess the quality of
its predictions and of its summarized saliency map, on the
held-out part of our internal dataset as well as the two pub-
lic datasets. 2

We can see that for CNN-α, summarized saliencies are
better than its direct predictions in terms of AUROC, but
worse in terms of optimal classification error. CNN-β,
which is trained on the predictions of CNN-α, performs
strictly better than CNN-α and gains a lot when using

2 Note that we did not train on the public datasets and used the full
datasets for evaluation, so results are not directly comparable to literature.

ccMixter MedleyDB
prec. rec. F1 prec. rec. F1

baseline .324 .947 .473 .247 .955 .361
KAML [12] .597 .681 .627 .416 .739 .484
CNN-α .575 .651 .603 .467 .637 .497
CNN-β .565 .763 .643 .522 .618 .529
CNN- fine .552 .795 .646 .494 .669 .528

Table 2: Spectral localization results for the baseline of
just predicting the spectrogram of the mix, a voice/music
separation method, and saliency maps of three networks.

summarized saliencies instead of predictions. CNN-γ is
trained to predict the saliencies of CNN-β and matches or
even outperforms those. Its saliency maps do not provide
any benefit. Figure 3 provides a qualitative comparison of
the predictions for the three networks.

Comparing results to CNN-fine, we see that it performs
comparable to CNN-γ: It is strictly better on the internal
test set (which is taken from the same source as the train-
ing data), but not on the public test sets, indicating that
CNN-γ profits from its larger training set despite the weak
labels. The summarized saliencies of CNN-fine do not pro-
vide any improvement, which was to be expected: There is
no overshoot they could correct as in Section 4.2.

5.3 Spectral Localization Results

Spectral localization of singing voice, i.e., identifying the
spectrogram bins containing vocals, is not an established
task. The closest to this is singing voice extraction, which
is evaluated with standard source separation measures
(Source to Distortion Ration, Source to Interference Ra-
tio). However, developing our method into a full-fledged
source separator is out of scope for this work. We therefore
resort to comparing the saliency map produced by the net-
work for a mixed signal to the spectrogram of the known
pure-vocal signal. Specifically, we compute a general-
ization of precision, recall and F1-measure towards real-
valued (instead of binary) targets: For a predicted saliency
map Pij and pure-vocal spectrogram Tij , we define the to-
tal amount of true positives as t =

∑
i,j min(Pij , Tij).

We then obtain precision as p = t/
∑

i,j Pij , recall as
r = t/

∑
i,j Tij , and F1-measure as f = 2pr/(p+ r).

Results are shown in Table 2. We first compute a sim-
ple baseline: Using the spectrogram of the mix as our vo-
cal predictions. In theory, this should give 100% recall,
but since the songs are mastered, the mix spectrogram is
sometimes lower than the spectrogram of the vocal track,
leaving a gap. We then obtain results for KAML [12], a re-
fined implementation of KAM [11] described in Section 2.
As the vocal prediction Pij , we compute the spectrogram
of the vocal signal it extracts, clipped to 8 kHz to be com-
parable to our network’s saliency maps. Finally, we eval-
uate the saliency maps of CNN-α, CNN-β and CNN-fine,
post-processing them as described in Section 4.1. We omit
CNN-γ as it is tailored for temporal detection and will not
produce better saliencies than CNN-β.
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We find that all methods are comparably far from the
baseline, with the CNNs obtaining higher F1-measure than
KAML. As in temporal detection, CNN-β has an edge over
CNN-α, and is close to CNN-fine. While these results look
promising, it should be noted that the saliency maps will
not necessarily be better for source separation: A lot of
the improvement in F1-score hinges on the fact that the
saliency maps are often perfectly silent in passages that
do not contain vocals, while KAML still extracts parts of
background instruments. To obtain high recall, for pas-
sages that do contain vocals, the post-processed saliency
maps include more instrumental interference than KAML.

6. DISCUSSION

We have explored how to train CNNs for singing voice de-
tection on coarsely annotated training data and still obtain
temporally accurate predictions, closely matching perfor-
mance of a network trained on finely annotated data. Fur-
thermore, we have investigated a method for localizing the
spectral bins that contain singing voice, without requiring
according ground truth for training. We expect the recipe
to carry over from human voice to musical instruments,
if good contrasting examples are available – training on
weakly-annotated data can only learn to distinguish instru-
ments that occur independently from one another in differ-
ent music pieces.

While our results are promising, there are a few short-
comings that provide opportunities for further research.
For one, our networks produce good prediction curves, but
when used for binary classification, we still need to choose
a suitable threshold (e.g., optimizing accuracy, or a preci-
sion/recall tradeoff). We did not find good heuristics for se-
lecting such a threshold solely based on weakly labeled ex-
amples. Secondly, comparing training on 10,000 weakly-
labeled clips against 100 finely-labeled clips is clearly ar-
bitrary. The main purpose in this work was to show that
training from weakly-labeled clips can give high tempo-
ral accuracy at all, which is useful if such weak labels are
easy to obtain. For future work, it would be interesting to
compare the two methods on more even grounds. Specif-
ically, we could investigate if weak labeling, fine labeling
or a combination of both provides the best value for a given
budget of annotator time.

The spectral localization results could be a starting point
for instrument-specific source separation. But as for tem-
poral detection, this route would first have to be com-
pared on even grounds to learning from finely-annotated
or source-separated training data, and its viability depends
on how easily these types of data are obtainable. And in
contrast to temporal detection, it requires further work to
be turned into a source separation method.

Finally, the kind of saliency maps explored in this work
could be used for other purposes: For example, it can be
used to visualize and auralize precisely which content in a
spectrogram was responsible for a particular false positive
given by a network, and thus give a hint on how to enrich
the training data to improve results.

(a) spectrogram of a 30-second test clip containing vocals

0.0
0.5
1.0

(b) corresponding ground truth

(c) spectrogram of corresponding vocal track

0.0
0.5
1.0

(d) predictions of CNN-α (trained on weak labels)

(e) saliency map of CNN-α

0.0
0.1
0.2

(f) summarized saliency map of CNN-α

0.0
0.5
1.0

(g) predictions of CNN-β (trained on predictions of CNN-α)

(h) saliency map of CNN-β

0.0
0.2
0.4

(i) summarized saliency map of CNN-β

0.0
0.5
1.0

(j) predictions of CNN-γ (trained on tanh squashed sal. of CNN-β)

Figure 3: Qualitative demonstration of the self-
improvement recipe in Section 4.3 for a single test clip
(0:24 to 0:54 of “Vermont” by “The Districts”, part of
the MedleyDB dataset [2]). Visit http://ofai.at/
~jan.schlueter/pubs/2016_ismir/ for an in-
teractive version.
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ABSTRACT

An emerging trend in music information retrieval (MIR)
is the use of supervised machine learning to train automatic
music transcription models. A prerequisite of adopting a
machine learning methodology is the availability of anno-
tated corpora. However, different genres of music have dif-
ferent characteristics and modelling these characteristics is
an important part of creating state of the art MIR systems.
Consequently, although some music corpora are available
the use of these corpora is tied to the specific music genre,
instrument type and recording context the corpus covers.
This paper introduces the first corpus of annotations of au-
dio recordings of Irish traditional dance music that cov-
ers multiple instrument types and both solo studio and live
session recordings. We first discuss the considerations that
motivated our design choices in developing the corpus. We
then benchmark a number of automatic music transcription
algorithms against the corpus.

1. INTRODUCTION

Automatic music transcription is one of the main chal-
lenges in MIR. The focus of most recent research is on
polyphonic music, since it is sometimes claimed that the
problem of transcribing a melody from a monophonic sig-
nal is solved [4]. The standard method in evaluating tran-
scription algorithms is to take a data driven approach. This
requires a corpus of data with original audio and ground
truth annotations. Several such corpora exist, for example
those provided for the annual MIREX evaluations. How-
ever no corpus can be universal, and the difficulty of gath-
ering such a dataset is often discussed [20].

We are interested particularly in Irish traditional dance
music and applications of automatic and accurate tran-
scription in this genre. This musical tradition has sev-
eral characteristics that are not captured by the existing
datasets. Furthermore, to the best of our knowledge, there
is no corpus of annotated Irish traditional dance music
available. Since this is of absolute necessity in order to
evaluate any new transcription method, we have created

c© Pierre Beauguitte, Bryan Duggan and John Kelleher. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Pierre Beauguitte, Bryan Duggan and John
Kelleher. “A corpus of annotated Irish traditional dance music record-
ings: design and benchmark evaluations”, 17th International Society for
Music Information Retrieval Conference, 2016.

and released our own corpus. This paper presents its de-
sign and some baseline results for existing melody extrac-
tion algorithms.

The structure of the paper is as follows: Section 2 ex-
plains the rationale behind the creation of this corpus. We
also detail the characteristics of the music we consider and
the challenges it presents. Section 3 presents existing work
related to our own. We then give the detailed design of our
audio annotations dataset in Section 4. In Section 5, we
evaluate four transcription algorithms on the dataset.

2. CHARACTERISTICS OF IRISH TRADITIONAL
DANCE MUSIC

In common with similar, aurally transmitted musical tradi-
tions, Irish traditional dance music is subject to variations
and ornamentation in its interpretation. The melodies, or
tunes, are usually rather short and consist of two or some-
times more repeated parts.

The nature of the music is melodic and modal, as op-
posed to the more common harmonic and tonal aesthet-
ics of classical and contemporary Western music. Most of
the tunes are played on a D major or G major scale, but
they can be in different keys including D ionian or mixoly-
dian (major keys), E dorian or aeolian (minor keys) or G
mixolydian (major key).

Many tunes were originally dance tunes, with a fixed
rhythm, tempo and structure, though nowadays the tunes
are mostly performed for listening rather than dancing.
The most common rhythms are reels, with a 4/4 time sig-
nature, and jigs, with a 6/8 time signature. Other types
of tunes include polkas, hornpipes, slides, barndances and
airs. An in-depth presentation of Irish music can be found
in [22].

Although in the past Irish music was performed mostly
by solo instrumentalists, and this type of performance is
still highly valued today, in contemporary practice it is
commonly played by ensembles of musicians. On com-
mercial recordings, the most common configuration in-
volves several melodic instruments with rhythmic and har-
monic accompaniment.

The environment in which this music is most commonly
played is that of sessions: gatherings of musicians, profes-
sional or amateurs, of a usually informal nature. When
played in a session, Irish music can often be adequately
qualified as heterophonic [23]. All players of melodic in-
struments (typically greater in number than rhytmic and
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harmonic instruments) play the same tune together, but the
result is often far from unison for several reasons. First of
all, different instruments can play the same melody in dif-
ferent octaves (e.g. flute and tin whistle). Additionally, due
to the acoustic limitations of certain instruments, or as an
intended variation, some notes of a tune can be played in
a different octave. The low B (B3) for example cannot be
played on most traditional flutes. Consequently flute play-
ers often play a B4 instead, while a banjo player would
play the “correct” note B3 and a whistle player would play
an octave higher than the flute, B5. Yet, all would be con-
sidered as playing the same tune.

Another important aspect is the amount of variations
present in Irish music. Because of personal or regional
stylistic differences, the abundance of different sources
(notations, archive or commercial recordings), and of the
music being transmitted aurally (thus relying on the mem-
ory of the musician and therefore subject to interpretation),
many different versions of a same tune may exist. Al-
though musicians will often try to adapt to each other in
order to play a common version during a session, it is not
uncommon to hear some differences in the melodies. Fi-
nally, tunes are almost always ornamented differently by
each individual musician depending on their style and per-
sonal preferences.

Our goal with this project is to create a representative
corpus of annotated audio data. We will then be able to es-
tablish a baseline on the performance of existing transcrip-
tion algorithms for this particular music style. This will
facilitate the development and evaluation of new melody
extraction algorithms for Irish traditional dance music. We
believe this is of great interest for such applications as ac-
curate transcription of archive recordings, improvement of
popular digital tools for musicians [9], and monitoring of
contemporary music practice [21].

3. RELATED WORK

Automatic melody transcription algorithms have been de-
signed specifically for a cappella flamenco singing in [10],
and evaluated against manual annotations made by experts
musicians. Although the article cites previous work related
to the creation of a representative audio dataset, the man-
ual ground truths annotations were created specifically for
that project.

Turkish makam music has also been the subject of re-
search, in particular with the SymbTr project [12], whose
goal was to offer a comprehensive database of symbolic
music. Applications of automatic transcription algorithms
have been studied in [5]. Ground truth annotations were
obtained by manually aligning the symbolic transcription
from the SymbTr database to existing audio recordings.
The paper points out the predominance of monophonic and
polyphonic Eurogenetic music in Music Information Re-
trieval evaluations, and the challenges presented by music
falling out of this range, such as heterophonic music.

Applications of automatic transcription algorithms to
large scale World & Traditional music archives are pro-
posed in [1]. More than twenty-nine thousand pieces of au-

dio have been analysed. The obtained data have been made
available through a Semantic Web server. No ground truth
annotations were used to assess the quality of the transcrip-
tions, that were obtained by the method presented in [3].

Manual and automatic annotations of commercial solo
flute recordings of Irish traditional music have been con-
ducted in [2], [11] and [13]. The focus in these papers is
on style and automatic detection of ornaments in mono-
phonic recordings. Consequently every ornament is finely
transcribed in the annotations. An HMM-based transcrip-
tion algorithm has been developed in [11] to recognise the
different ornaments as well as the melody. An attempt was
made at identifying players from these stylistic informa-
tions. The authors of [13] are planning on sharing the an-
notation corpus via the Semantic Web, but no data is pub-
licly available yet.

4. PRESENTATION OF THE DATASET

We now describe the design of our corpus. First we present
the set of audio recordings included, that was chosen to
make the corpus representative of Irish traditional dance
music. We then detail the annotation format used to deal
with the characteristics of this genre.

4.1 Source of Audio Recordings

Three sources of recordings are included in the corpus:

• session recordings accompanying the Foinn Seisiún
books published by the Comhaltas Ceoltóirı́ Éireann
organisation, available with Creative Commons li-
cence. These offer good quality, homogeneous ex-
amples of the heterophony inherent to an Irish tradi-
tional dance music session.

• Grey Larsen’s MP3s for 300 Gems of Irish Music
for All Instruments, commercially available. These
consist of studio quality recordings of tunes played
on Irish flute, tin whistle and anglo concertina.

• personal recordings of the second author, a
renowned musician, on the Irish flute. These are
available together with the annotations.

The corpus comprises thirty tunes in total, which add up
to more than thirty minutes of audio. We chose to include
solo recordings as a way of comparing the performance of
transcription algorithms on monophonic and heterophonic
music. This set of tunes has been chosen to be representa-
tive of the corpus of Irish music in terms of type and key
signature. Table 1 categorises the tunes in our corpus by
tune type, key, and performance type.

The complete list of tunes with all relevant metadata is
included with the dataset.

4.2 Format of the Annotations

We annotated each audio recording with note events, con-
sisting of three values: onset time, duration and pitch. For
the larger goal of obtaining a symbolic transcription, this
format of annotation is more useful as well as easier to
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Reel Jig Hornpipe Polka Slide Air
Dmaj 2 3 1 1 0 0
Gmaj 2 2 1 2 1 0
Amin 2 2 1 1 0 0
Emin 2 2 1 0 1 1
Bmin 1 0 0 0 1 0

Session 5 5 1 1 1 0
Solo 4 4 3 3 2 1

Table 1: Classification of tunes in our corpus by tune type,
key, and performance type

obtain than a continuous pitch track labelling every au-
dio frame. Despite the heterophonic nature of the session
performances, there is always a single underlying mono-
phonic melody. It is this melody we are interetsed in. For
this reason there is no overlap between the notes, and the
resulting transcription we present is monophonic.

Due to the heterophonic nature of Irish traditional music
as played during a session, and to the slight tuning differ-
ences between the instruments, a single fundamental fre-
quency cannot appropriately describe a note. Therefore we
decided to report only MIDI note references instead of fre-
quencies.

In session performances, the playing of ornamentation
such as rolls and cuts [22] often results in several suc-
cessive onsets for a single long note. Figure 1 shows an
example of such a situation, where three different instru-
ments interpret differently the same note (the short notes
played by the flute are part of a roll and are not melodi-
cally significant, therefore they are not transcribed). This
makes it difficult, even for experienced musicians and lis-
teners, to know when repeated notes are to be considered
as a single ornamented note or distinct notes. Because of
this inherent ambiguity, it is not correct to associate one
onset with one note in the transcription. For this reason,
we decided to merge consecutive notes of identical pitch
into one single note. A note in our transcriptions then
corresponds to a change of pitch in the melody. For solo
performances, there are some clear silences between notes
(typically when the flute or whistle player takes a breath).
Whenever such a silence occurs, we annotated two distinct
notes even if they are of the same pitch. In the solo record-
ings present in the corpus, a breath typically lasts around
200ms. Notes that are repeated without pauses or cut by
an ornament were still reported as a single note, in order to
be consistent with the annotations of session recordings.

Manual annotations were made by the first author with
the aid of the Tony software [14]. After importing an audio
file, Tony offers estimates using the pYIN algorithm (note-
level) presented in the next section. These were then man-
ually corrected, by adding new notes, merging repeated
notes and adjusting frequencies. The annotations were
finally post-processed to convert these frequencies to the
closest MIDI note references. With this annotation format,
the dataset comprises in total more than 8600 notes.

Fiddle

Flute

Banjo

Transcribed

Figure 1: Example of ornamented notes on different in-
struments

4.3 Open Publication of the Dataset

The dataset is publicly available as a set of csv files. 1

Each file contains the annotation for an entire audio file.
Each line represents a note (as onset time, duration, MIDI
note). The annotations can be easily used in any evalua-
tion framework as well as with the software Sonic Visu-
aliser [6].

5. EVALUATION OF EXISTING TRANSCRIPTION
ALGORITHMS

In order to establish some baselines for melody extraction
in recordings of Irish traditional dance music, we evaluate
transcriptions of our audio corpus returned by four differ-
ent algorithms.

5.1 Presentation of the Algorithms

The melody extraction (or more generally automatic tran-
scription) algorithms we use rely on different signal pro-
cessing approaches, and return estimated melodies in two
different formats. Some return frame-level estimates, or
continuous pitch tracks, in which case some pre-processing
detailed later in 5.2.1 is needed to conduct the evaluations.
Others return note-level estimates of the same format as
that used for our annotations, sometimes with a continu-
ous pitch track as an intermediate step.

5.1.1 pYIN

pYIN [15] stands for probabilistic YIN, and is based on
the standard frequency estimation algorithm YIN [7], used
in conjunction with HMM-based pitch tracking. The ini-
tial algorithm returns frame-level estimates, but an addi-
tional segmentation step based on HMM modelling of note
events was introduced in [14]. We evaluate the two ver-
sions of the algorithm, both open source and available as a
Vamp plug-in. 2

It is important to note that because we manually an-
notated our corpus with Tony, offering the note-level es-
timates from pYIN as first approximations, results of the
evaluations might be biased in favour of this method.

5.1.2 Melodia

Melodia [19] first extracts a salience function by detect-
ing peaks in the time/frequency representation of the au-

1 https://github.com/pierrebeauguitte/tuneset
2 https://code.soundsoftware.ac.uk/projects/pyin
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dio signal and then extracts the best continuous pitch track
possible. It is available as a Vamp plug-in. 3

5.1.3 MATT

MATT [8] stands for Machine Annotation of Traditional
Tunes. It returns note-level transcriptions, by estimating
the fundamental frequency from the harmonicity of the sig-
nal, and segmenting the resulting continuous pitch track
according to its continuity as well as the energy level. Al-
though the method used is not at the state of the art of
melody extraction algorithms (for an overview, see [18]),
the fact that it was designed specifically for and fine-tuned
to Irish traditional music makes it of great interest to us. A
Java implementation is available online. 4

5.1.4 Silvet

Silvet [3] is based on Principal Latent Component Anal-
ysis. Although it is designed for polyphonic music tran-
scription, obtaining a single melody track is achievable by
simply limiting the number of notes occuring at any time to
one. It first generates a pitch track by factorising the spec-
trogram according to predefined templates. This is then
post-processed with HMM smoothing, in a similar man-
ner to the pYIN segmentation step. This approach has a
much higher computationnal cost due to the complexity of
spectrogram factorisation. It is available as an open source
Vamp plug-in. 5

5.2 Evaluations of the Transcriptions

In order to be consistent with our annotation policy (see
4.2), it is necessary to post-process the estimates of these
algorithms in the following manner:

• align all frequencies to the closest MIDI note;

• merge consecutive notes of same pitch separated by
less than 200ms (only for note-level estimates).

The second step is particularly critical for the note-level
metrics of the MIREX Note Tracking task, but will also af-
fect the frame-level metrics of the Melody Extraction tasks
for the frames in the filled gaps.

All evaluations are performed with the mir eval open
source framework presented in [16]. 6 In order to assess
the statistical significance of the differences in scores, we
use the Wilcoxon signed rank test (to compare our sam-
ples with the performances reported in the original publica-
tions), and the Mann-Whitney U -test (to compare between
our different samples).

5.2.1 Frame-Level Evaluation: Melody Extraction Task

The MIREX Melody Extraction task evaluates transcrip-
tions at the frame-level. Pre-processing of both the ground
truth and the estimates is necessary, and simply consists of
aligning both on the same 10ms time grid. The pitch esti-
mate for a frame is considered correct if it is distant from

3 http://mtg.upf.edu/technologies/melodia
4 https://github.com/skooter500/matt2
5 https://code.soundsoftware.ac.uk/projects/silvet
6 https://github.com/craffel/mir_eval

the ground truth by less than a quarter of a tone (50 cents).
The metrics also look for voicing errors: a voiced frame is
one where a melody pitch is present. Five different metrics
are computed for each tune. Results are shown, using box-
plots, in Figure 2, (a) for the solo recordings, and (b) for
the session recordings.

The original publications introducing frame-level pYIN
and MATT do not report these metrics. In [3], Silvet was
only evaluated on corpora of polyphonic music, for which
these metrics are not suitable. pYIN - notes was evaluated
with the audio dataset from, and scores reported in [14]
ranged from 0.83 to 0.85 for Overall Accuracy, and from
0.87 to 0.91 for Raw Pitch Accuracy. Evaluations con-
ducted in [19] for Melodia on audio datasets from the
MIREX evaluation resulted in Overall Accuracy of 0.77,
Raw Chroma Accuracy of 0.83 and Raw Pitch Accuracy
of 0.81. Scores obtained on our dataset are significantly
lower for all these metrics and samples (p-values < 0.01),
for both solo and session recordings. This seems to sug-
gest that the genre of Irish traditional dance music does
have some distinct characteristics, not limited to the het-
erophonic aspect of a session, that can present challenges
for automatic transcription.

Comparing the Overall Accuracy on the solo and ses-
sion subsets, it is interesting to see that MATT and both
versions of pYIN have significantly lower scores on the
session subset (p-values< 0.01), whereas Melodia and Sil-
vet do not. We believe that this is because the Melodia
and Silvet algorithms were specifically designed for poly-
phonic music analysis.

Raw chroma accuracy is, by definition, always higher
than raw pitch accuracy. We observe that, on the solo
recordings, this difference is only significant for Melodia
(p-value < 0.05). On the session subset, it is very signif-
icant (p-values < 0.001) for all algorithms except Silvet.
This suggests that Silvet is more robust for estimating fun-
damental frequencies.

5.2.2 Note-Level Evaluation: Note Tracking Task

We now present the results of the MIREX Note Track-
ing task. Although this task is primarily aiming at poly-
phonic music transription systems, it also applies directly
to monophonic music as long as both ground truth annota-
tions and returned estimates are in a note-event format. In
our case, this applies to pYIN - notes, MATT and Silvet.

Estimated notes are associated with their closest match
from the ground truth, and a note is considered correctly
transcribed if its onset is distant from the reference note
by less than 50ms and its pitch by less than a quarter of a
tone. Another way of evaluating the transcription is to also
take the duration of notes into account. Commonly found
instruments in Irish music have a wide range of acoustical
characteristics: some (like the flute, the fiddle, the uilleann
pipes) can be played legato or staccato, depending on per-
sonal or regional styles, or on the type of tunes performed;
others (typically the banjo) can only be played staccato,
with hard onsets and very little sustain. Consequently, the
offset of the notes is of little interest for our evaluations,
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(a) Solo recordings

(b) Session recordings

Figure 2: Scores of the MIREX Melody Extraction task evaluation metrics.

particularly in session recordings where all these instru-
ments can play together. This is why we only report results
for the first type of evaluation.

Precision, recall and F-measures are computed with the
mir eval framework [16], and plotted in Figure 3, (a) for
the solo recordings and (b) for the session recordings. The
figures also show the results for the Chroma correctness,
where a note is correctly transcribed if its onset (±50ms)
and its pitch class are correct. This is of interest to us be-
cause of the heterophonic nature of session performance
described in Section 2.

It is interesting to observe that MATT achieves the high-
est F-measures on the solo recordings. However, only the
difference with Silvet is statistically significant (p-values
< 0.05). On the session subset, Silvet performs better than
the other two algorithms, with high statistical significance
(p-values < 0.01).

Precision scores are not significantly different on the
solo recordings. On the session recordings, Silvet achieves
significantly higher pitch precisions (p-values < 0.001).
However, when looking at the chroma precision, the differ-
ence with pYIN is no longer significant. Scores for MATT
remain significantly lower (p-values < 0.001).

Surprisingly, Silvet has higher F-measures on the ses-
sion subset than on the solo subset, and this difference is
statistically significant (p-value < 0.05). pYIN and MATT
both score lower on the session subset. For the pitch F-
measure, this difference is highly significant, with p-values

< 0.001. For the chroma F-measure, only MATT scores
significantly lower (p-value < 0.01).

6. CONCLUSION

In this paper, we introduced a new dataset of annotations
of Irish traditional dance music. It is, to our knowledge,
the first publicly available corpus of manually transcribed
audio recordings in this genre. It covers a representative
range of tune types, keys, and performance types. From the
results obtained with state of the art automatic transcription
algorithms, it appears that the heterophonic nature of this
music presents challenges for MIR. It would have been of
great interest to evaluate the HMM based algorithm used
for flute ornaments recognition in [11], but unfortunately
no implementation of it is publicly available.

These findings are good motivation to work towards the
development of new methods for automatically transcrib-
ing Irish traditional dance music. We believe that this cor-
pus will be of great use for this purpose, both for training
data-driven models and to evaluate new algorithms.

We hope to make the corpus larger in the future, so that
it includes a wider range of instruments and performance
types (violin or fiddle, banjo, session recordings from other
sources). We are also planning on making use of the Mu-
sic Ontology [17] in later releases. Adopting the standards
of the Semantic Web will hopefully allow more interaction
with many resources such as, for example, the Europeana-
Sounds database.
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(a) Solo recordings

(b) Session recordings

Figure 3: Scores of the MIREX Note Tracking task evaluation metrics.
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ABSTRACT

Beat induction, the means by which humans listen to mu-
sic and perceive a steady pulse, is achieved via a perceptual
and cognitive process. Computationally modelling this
phenomenon is an open problem, especially when process-
ing expressive shaping of the music such as tempo change.
To meet this challenge we propose Adaptive Frequency
Neural Networks (AFNNs), an extension of Gradient Fre-
quency Neural Networks (GFNNs).

GFNNs are based on neurodynamic models and have
been applied successfully to a range of difficult music
perception problems including those with syncopated and
polyrhythmic stimuli. AFNNs extend GFNNs by applying
a Hebbian learning rule to the oscillator frequencies. Thus
the frequencies in an AFNN adapt to the stimulus through
an attraction to local areas of resonance, and allow for a
great dimensionality reduction in the network.

Where previous work with GFNNs has focused on fre-
quency and amplitude responses, we also consider phase
information as critical for pulse perception. Evaluating
the time-based output, we find significantly improved re-
sponses of AFNNs compared to GFNNs to stimuli with
both steady and varying pulse frequencies. This leads us to
believe that AFNNs could replace the linear filtering meth-
ods commonly used in beat tracking and tempo estimation
systems, and lead to more accurate methods.

1. INTRODUCTION

Automatically processing an audio signal to determine
pulse event onset times (beat tracking) is a mature field,
but it is by no means a solved problem. Analysis of beat
tracking failures has shown that beat trackers have great
problems with varying tempo and expressive timing [5, 6].

The neuro-cognitive model of nonlinear resonance
models the way the nervous system resonates to audi-
tory rhythms by representing a population of neurons as a
canonical nonlinear oscillator [15]. A Gradient Frequency
Neural Network (GFNN) is an oscillating neural network

c© Andrew J. Lambert, Tillman Weyde, and Newton Arm-
strong. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Andrew J. Lambert, Tillman Weyde,
and Newton Armstrong. “Adaptive Frequency Neural Networks
for Dynamic Pulse and Metre Perception”, 17th International Society for
Music Information Retrieval Conference, 2016.

model based on nonlinear resonance. The network con-
sists of a number of canonical oscillators distributed across
a frequency range. The term ‘gradient’ is used to refer
to this frequency distribution, and should not be confused
with derivative-based learning methods in Machine Learn-
ing. GFNNs have been shown to predict beat induction
behaviour from humans [16,17]. The resonant response of
the network adds rhythm-harmonic frequency information
to the signal, and the GFNN’s entrainment properties allow
each oscillator to phase shift, resulting in deviations from
their natural frequencies. This makes GFNNs good candi-
dates for modelling the perception of temporal dynamics
in music.

Previous work on utilising GFNNs in an MIR context
has shown promising results for computationally difficult
rhythms such as syncopated rhythms where the pulse fre-
quency may be completely absent from the signal’s spec-
trum [17, 23], and polyrhythms where there is more than
one pulse candidate [2]. However, these studies have
placed a focus on the frequencies contained in the GFNN’s
output, often reporting the results in the form of a magni-
tude spectrum, and thus omitting phase information. We
believe that when dealing with pulse and metre perception,
phase is an integral part as it constitutes the difference be-
tween entraining to on-beats, off-beats, or something in-
between. In the literature, the evaluation of GFNNs’ pulse
finding predictions in terms of phase has, to our knowl-
edge, never been attempted.

Our previous work has used GFNNs as part of a ma-
chine learning signal processing chain to perform rhythm
and melody prediction. An expressive rhythm prediction
experiment showed comparable accuracy to the state-of-
the-art beat trackers. However, we also found that GFNNs
can sometimes become noisy, especially when the pulse
frequency fluctuates [12, 13].

This paper presents a novel variation on the GFNN,
which we have named an Adaptive Frequency Neural Net-
work (AFNN). In an AFNN, an additional Hebbian learn-
ing rule is applied to the oscillator frequencies in the net-
work. Hebbian learning is a correlation-based learning ob-
served in neural networks [9]. The frequencies adapt to
the stimulus through an attraction to local areas of reso-
nance. A secondary elasticity rule attracts the oscillator
frequencies back to their original values. These two new
interacting adaptive rules allow for a great reduction in the
density of the network, minimising interference whilst also
maintaining a frequency spread across the gradient.
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The results of an experiment with a GFNNs and AFNNs
are also presented, partially reproducing the results from
Velasco and Large’s last major MIR application of a
GFNN [23], and Large et al.’s more recent neuroscientific
contribution [17]. However, we place greater evaluation
focus on phase accuracy. We have found that AFNNs can
produce a better response to stimuli with both steady and
varying pulses.

The structure of this paper is as follows: Section 2
provides a brief overview of the beat-tracking literature
and the GFNN model, Section 3 introduces a phase based
evaluation method, Section 4 introduces our new AFNN
model, Section 5 details the experiments we have con-
ducted and shares the results, and finally Section 6 pro-
vides some conclusions and points to future work.

2. BACKGROUND

2.1 Pulse and Metre

Lerdahl and Jackendoff’s Generative Theory of Tonal Mu-
sic [19] was one of the first formal theories to put forward
the notion of hierarchical structures in music which are not
present in the music itself, but perceived and constructed
by the listener. One such hierarchy is metrical structure,
which are layers of beats existing in a hierarchically lay-
ered relationship with the rhythm. Each metrical level is
associated with its own period, which divides the previous
level’s period into a certain number of parts.

Humans often choose a common, comfortable metrical
level to tap along to, which is known as a preference rule
in the theory. This common metrical level is commonly re-
ferred to as ‘the beat’, but this is a problematic term since
a beat can also refer to a singular rhythmic event or a met-
rically inferred event. To avoid that ambiguity, we use the
term ‘pulse’ [4].

2.2 Beat Tracking

Discovering the pulse within audio or symbolic data is
known as beat tracking and has a long history of research
dating back to 1990 [1]. There have been many varied ap-
proaches to beat tracking over the years, and here we focus
on systems relevant to the proposed model. Some early
work by Large used a single nonlinear oscillator to track
beats in performed piano music [14]. Scheirer used linear
comb filters [22], which operate on similar principles to
Large and Kolen’s early work on nonlinear resonance [18].
A comb filter’s state is able to represent the rhythmic con-
tent directly, and can track tempo changes by only consid-
ering one metrical level. Klapuri et al.’s system builds on
Scheirer’s design by also using comb filters, and extends
the model to three metrical levels [10]. More recently,
Böck et al. [3] used resonating feed backward comb filters
with a particular type of Recurrent Neural Network called
a Long Short-Term Memory Network (LSTM) to achieve a
state-of-the-art beat tracking result in the MIR Evaluation
eXchange (MIREX) 1 .

1 http://www.music-ir.org/mirex/

2.3 Nonlinear Resonance
Jones [7] proposed a psychological entrainment theory to
address how humans are able to attend temporal events.
Jones posited that rhythmic patterns such as music and
speech potentially entrain a hierarchy of oscillations, form-
ing an attentional rhythm. Thus, entrainment assumes an
organisational role for temporal patterns and offers a pre-
diction for future events, by extending the entrained period
into the future.

Large then extended this theory with the notion of non-
linear resonance [15]. Musical structures occur at simi-
lar time scales to fundamental modes of brain dynamics,
and cause the nervous system to resonate to the rhythmic
patterns. Certain aspects of this resonance process can
be described with the well-developed theories of neurody-
namics, such as oscillation patterns in neural populations.
Through the use of neurodynamics, Large moves between
physiological and psychological levels of modelling, and
directly links neural activity with music. Several musical
phenomena can all arise as patterns of nervous system acti-
vation, including perceptions of pitch and timbre, feelings
of stability and dissonance, and pulse and metre percep-
tion.

The model’s basis is the canonical model of Hopf nor-
mal form oscillators, which was derived as a model oscil-
lating neural populations [16]. Eqn (1) shows the differ-
ential equation that defines the canonical model, which is
a Hopf normal form oscillator with its higher order terms
fully expanded:

dz

dt
= z(α+ iω + (β1 + iδ1)|z|2 +

(β2 + iδ2)ε|z|4
1− ε|z|2 )

+ kP (ε, x(t))A(ε, z̄) +
∑

i 6=j

cij
zj

1−√εzj
.

1

1−√εz̄i
,

(1)

z is a complex valued output where the real and imaginary
parts represent excitation and inhibition, z̄ is its complex
conjugate, and ω is the driving frequency in radians per
second. α is a linear damping parameter, and β1, β2 are
amplitude compressing parameters, which increase stabil-
ity in the model. δ1, δ2 are frequency detuning parameters,
and ε controls the amount on nonlinearity in the system.
x(t) is a time-varying external stimulus, which is also cou-
pled nonlinearly and consists of passive part, P (ε, x(t)),
and an active part, A(ε, z̄), controlled by a coupling pa-
rameter k. cji is a complex number representing phase
and magnitude of a connection between the ith and jth

oscillator (zi, zj). These connections can be strengthened
through unsupervised Hebbian learning, or set to fixed val-
ues as in [23]. In our experiments presented here, we set
cij to 0.

By varying the oscillator parameters, a wide range of
behaviours not encountered in linear models can be in-
duced (see [15]). In general, while the cannonical model
maintains an oscillation according to its parameters, it en-
trains to and resonates with an external stimulus nonlin-
early. The α parameter acts as a bifurcation parameter:
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Figure 1. Amplitudes of oscillators over time. The dashed
line shows stimulus frequency. The stimulus itself is
shown in Figure 2. There is an accelerando after approxi-
mately 25s.

when α < 0 the model behaves as a damped oscillator, and
when α > 0 the model oscillates spontaneously, obeying a
limit-cycle. In this mode, the oscillator is able to maintain
a long temporal memory of previous stimulation.

Canonical oscillators will resonate to an external stim-
ulus that contains frequencies at integer ratio relationships
to its natural frequency. This is known as mode-locking,
an abstraction on phase-locking in which k cycles of os-
cillation are locked to m cycles of the stimulus. Phase-
locking occurs when k = m = 1, but in mode-locking
several harmonic ratios are common such as 2:1, 1:2, 3:1,
1:3, 3:2, and 2:3 and even higher order integer ratios are
possible [17], which all add harmonic frequency informa-
tion to a signal. This sets nonlinear resonance apart from
many linear filtering methods such as the resonating comb
filters used in [10] and Kalman filters [8].

2.4 Gradient Frequency Neural Networks
Connecting several canonical oscillators together with a
connection matrix forms a Gradient Frequency Neural
Network (GFNN) [16]. When the frequencies in a GFNN
are distributed within a rhythmic range and stimulated with
music, resonances can occur at integer ratios to the pulse.

Figure 1 shows the amplitude response of a GFNN to
a rhythmic stimulus over time. Darker areas represent
stronger resonances, indicating that that frequency is rel-
evant to the rhythm. A hierarchical structure can be seen
to emerge from around 8 seconds, in relation to the pulse
which is just below 2Hz in this example. At around 24
seconds, a tempo change occurs, which can be seen by the
changing resonances in the figure. These resonances can
be interpreted as a perception of the hierarchical metrical
structure.

Velasco and Large [23] connected two GFNNs together
in a pulse detection experiment for syncopated rhythms.
The two networks were modelling the sensory and motor
cortices of the brain respectively. In the first network, the
oscillators were set to a bifucation point between damped
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Figure 2. Weighted phase output, Φ, of the GFNN over
time. The stimulus is the same as Figure 1.

and spontaneous oscillation (α = 0, β1 = −1, β2 =
−0.25, δ1 = δ2 = 0 and ε = 1). The second net-
work was tuned to exhibit double limit cycle bifurcation
behaviour (α = 0.3, β1 = 1, β2 = −1, δ1 = δ2 = 0
and ε = 1), allowing for greater memory and threshold
properties. The first network was stimulated by a rhythmic
stimulus, and the second was driven by the first. Internal
connections were set to integer ratio relationships such as
1:3 and 1:2, these connections were fixed and assumed to
have been learned through a Hebbian process. The results
showed that the predictions of the model confirm observa-
tions in human performance, implying that the brain may
be adding frequency information to a signal to infer pulse
and metre [17].

3. PHASE BASED EVALUATION

Thus far in the literature, evaluation of GFNNs has not con-
sidered phase information. The phase of oscillations is an
important output of a GFNN; in relation to pulse it consti-
tutes the difference between predicting at the correct pulse
times, or in the worst-case predicting the off-beats. This
is concerning in Velasco and Large’s evaluation of pulse
detection in syncopated beats, which by definition contain
many off-beat events [23].

Phase and frequency are interlinked in that frequency
can be expressed as a rate of phase change and indeed the
canonical oscillators’ entrainment properties are brought
about by phase shifts. Since the state of a canonical oscil-
lator is represented by a complex number, both amplitude
and phase can be calculated instantaneously by taking the
magnitude (r = |z|), and angle (ϕ = arg(z)) respectively.
We propose calculating the weighted phase output, Φ, of
the GFNN as a whole, shown in (2).

Φ =

N∑

i=0

riϕi (2)

Figure 2 shows the weighted phase output, Φ, over time.
Even though the amplitude response to the same stimu-
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Figure 3. A low density (4opo) GFNN output. The dashed
line shows stimulus frequency. Frequency information is
not being captured as successfully, as can be observed by
the low resonances.

lus shows a clear corresponding metrical hierarchy (see
Figure 1), the phase response remains noisy. This is due to
the high density of oscillators required in a GFNN. Velasco
and Large used 289 oscillators per layer in their experi-
ment, a density of 48 oscillators per octave (opo). These
high densities are often used in GFNNs to capture a wide
range of frequencies, but can cause interference in the net-
work. The term ‘interference’ is used here to mean in-
teracting signals amplifying or cancelling each other when
summed. Since each oscillator can only entrain to a narrow
range of frequencies, using a lower density not only in-
creases the likelihood missing a relevant frequency, it also
stops local frequency populations from reinforcing one an-
other. An example of this can be seen in Figure 3, where
frequency information is not being captured as success-
fully in a 4opo GFNN.

In our previous work, we have addressed this issue by
using only the real part of the oscillator as a single mean-
field output [11, 12]. This retained a meaningful represen-
tation of the oscillation, but ultimately removed important
information. A selective filter could also be applied, by
comparing each oscillator with the mean amplitude of the
GFNN, and only retaining resonating oscillators. However,
this is not an ideal solution to the interference problem as it
requires an additional, non real-time processing step which
cannot be easily incorporated into an online machine learn-
ing chain. Furthermore, new frequencies would not be
selected until they begin to resonate above the selection
threshold, meaning that new resonances in changing tem-
pos may be missed.

4. ADAPTIVE FREQUENCY NEURAL NETWORK

The Adaptive Frequency Neural Network (AFNN) at-
tempts to address both the interference within high density
GFNNs, and improve the GFNNs ability to track changing
frequencies, by introducing a Hebbian learning rule on the
frequencies in the network. This rule is an adapted form of
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Figure 4. AFNN frequencies adapting to a sinusoidal stim-
ulus. The dashed line shows stimulus frequency.

the general model introduced by Righetti et al. [21] shown
in (3):

dω

dt
= − ε

r
x(t)sin(ϕ) (3)

Their method depends on an external driving stimulus
(x(t)) and the state of the oscillator (r, ϕ), driving the fre-
quency (ω) toward the frequency of the stimulus. The fre-
quency adaptation happens on a slower time scale than the
rest of the system, and is influenced by the choice of ε,
which can be thought of as a force scaling parameter. ε
also scales with r, meaning that higher amplitudes are af-
fected less by the rule.

This method differs from other adaptive models such
as McAuley’s phase-resetting model [20] by maintaining a
biological plausibility ascribed to Hebbian learning [9]. It
is also a general method that has been proven to be valid for
limit cycles of any form and in any dimension, including
the Hopf oscillators which form the basis of GFNNs (see
[21]).

We have adapted this rule to also include a linear elas-
ticity, shown in (4).

dω

dt
= −εf

r
x(t)sin(ϕ)− εh

r
(
ω − ω0

ω0
) (4)

The elastic force is an implementation of Hooke’s Law,
which describes a force that strengthens with displace-
ment. We have introduced this rule to ensure the AFNN
retains a spread of frequencies (and thus metrical struc-
ture) across the gradient. The force is relative to natural
frequency, and can be scaled through the εh parameter. By
balancing the adaptive (εf ) and elastic (εh) parameters, the
oscillator frequency is able to entrain to a greater range of
frequencies, whilst also returning to its natural frequency
(ω0) when the stimulus is removed. Figure 4 shows the fre-
quencies adapting over time in the AFNN under sinusoidal
input.

The AFNN preserves the architecture of the GFNN;
the main difference is the frequency learning procedure.
Figure 5 shows the weighted phase output (Φ) of an AFNN
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Figure 5. Weighted phase output, Φ, of the AFNN over
time. Reduced interference can be seen compared with
Figure 2.

stimulated with the same stimulus as in Figure 2. One can
observe that a reduced level of interference is apparent.

5. EXPERIMENT

We have conducted a pulse detection experiment designed
to test two aspects of the AFNN.

Firstly, we wanted to discover how the output of the
AFNN compares with the GFNN presented in [23]. To
this end, we are using similar oscillator parameters (α =
0, β1 = β2 = −1, δ1 = δ2 = 0 and ε = 1). This is known
as the ‘critical’ parameter regime, poised between damped
and spontaneous oscillation. We are retaining their GFNN
density of 48opo, but reducing the number of octaves to
4 (0.5-8Hz, logarithmically distributed), rather than the 6
octaves (0.25-16Hz) used in [23]. This equates to 193 os-
cillators in total. This reduction did not affect our results
and is more in line with Large’s later GFNN ranges (see
[17]).

The AFNN uses the same oscillator parameters and dis-
tribution, but the density is reduced to 4opo, 16 oscillators
in total. εf and εh were hand-tuned to the values of 1.0 and
0.3 respectively. For comparison with the AFNN, a low
density GFNN is also included, with the same density as
the AFNN but no adaptive frequencies.

We have selected two of the same rhythms used by Ve-
lasco and Large for use in this experiment, the first is an
isochronous pulse and the second is the more difficult ‘son
clave’ rhythm. We supplemented these with rhythms from
the more recent Large et al. paper [17]. These rhythms are
in varying levels of complexity (1-4), varied by manipulat-
ing the number of events falling on on-beats and off-beats.
A level 1 rhythm contains one off-beat event, level 2 con-
tains two off-beat events and so forth. For further informa-
tion about these rhythms, see [17]. Two level 1 patterns,
two level 2 patterns, two level 3 patterns, and four level 4
patterns were used.

The second purpose of the experiment was to test
the AFNN and GFNN’s performance on dynamic pulses,

therefore we have included two additional stimulus
rhythms: an accelerando and a ritardando.

We are additionally testing these rhythms at 20 differ-
ent tempos selected randomly from a range 80-160bpm.
None of the networks tested had any internal connections
activated, fixed or otherwise (cij = 0). An experiment to
study of the effect of connections is left for future work.

In summary, the experiment consisted of 5 stimulus cat-
egories, 20 tempos per category and 3 networks. There
are two initial evaluations, one for comparison with previ-
ous work with GFNNs, and the second is testing dynamic
pulses with accelerando and ritardando. The experiment
used our own open-source PyGFNN python library, which
contains GFNN and AFNN implementations 2 .

5.1 Evaluation
As we have argued above (see Section 2.4), we believe that
when predicting pulse, phase is an important aspect to take
into account. Phase information in the time domain also
contains frequency information, as frequency equates the
rate of change in phase. Therefore our evaluation com-
pares the weighted phase output (Φ) with a ground truth
phase signal similar to an inverted beat-pointer model [24].
While a beat-pointer model linearly falls from 1 to 0 over
the duration of one beat, our inverted signal rises from 0 to
1 to represent phase growing from 0 to 2π in an oscillation.
The entrainment behaviour of the canonical oscillators will
cause phase shifts in the network, therefore the phase out-
put should align to the phase of the input.

To make a quantitative comparison we calculate the
Pearson product-moment correlation coefficient (PCC) of
the two signals. This gives a relative, linear, mean-free
measure of how close the target and output signals match.
A value of 1 represents a perfect correlation, whereas -1
indicates an anti-phase relationship. Since the AFNN and
GFNN operate on more than one metrical level, even a
small positive correlation would be indicative of a good
frequency and phase response, as some of the signal repre-
sents other metrical levels.

5.2 Results
Figure 6 shows the results for the pulse detection experi-
ment described above in the form of box plots.

We can observe from Figure 6a that the GFNN (A) is
effective for tracking isochronous rhythms. The resonance
has enough strength to dominate the interference from the
other oscillators. The low density GFNN (B) performs sig-
nificantly worse with little positive correlation and some
negative correlation, showing the importance of having a
dense GFNN. The outliers seen can be explained by the
randomised tempo; sometimes by chance the tempo falls
into an entrainment basin of one or more oscillators. De-
spite its low density, the AFNN (C) fairs as well as the
GFNN, showing a matching correlation to the target sig-
nal, especially in the upper quartile and maximum bounds.
Exploring more values for εf and εh may yield even better
results here.

2 https://github.com/andyr0id/PyGFNN
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Figure 6. Box and Whisker plots of the PCC results. A) GFNN, B) Low density GFNN, C) AFNN. Boxes represent the
first and third quartiles, the red band is the median, and whiskers represent maximum and minimum non-outliers. *Denotes
significance in a Wilcoxon signed rank test (p < 0.05).

In the son clave results (Figure 6b) all networks perform
poorly. A poorer result here was expected due to the diffi-
culty of this rhythm. However, we can see a significant im-
provement in the AFNN, which may be due to the reduced
interference in the network. In the Large et al. rhythms
(Figure 6c) we notice the same pattern.

We can see from the Accelerando and Ritardando
rhythms (Figure 6d and 6e) that Φ is poorly correlated, in-
dicating the affect of the interference from other oscilla-
tors in the system. The AFNNs response shows a signifi-
cant improvement, but still has low minimum values. This
may be due to the fact that the adaptive rule depends on
the amplitude of the oscillator, and therefore a frequency
change may not be picked up straight away. Changing the
oscillator model parameters to introduce more amplitude
damping may help here. Nevertheless the AFNN model
still performs significantly better than the GFNN, with a
much lower oscillator density.

6. CONCLUSIONS

In this paper we proposed a novel Adaptive Frequency
Neural Network model (AFNN) that extends GFNNs with
a Hebbian learning rule to the oscillator frequencies, at-
tracting them to local areas of resonance. Where previ-
ous work with GFNNs focused on frequency and ampli-
tude responses, we evaluated the outputs on their weighted
phase response, considering that phase information is crit-
ical for pulse detection tasks. We conducted an experi-
ment partially reproducing Velasco and Large’s [23] and
Large et al.’s [17] studies for comparison, adding two new

rhythm categories for dynamic pulses. When compared
with GFNNs, we showed an improved response by AFNNs
to rhythmic stimuli with both steady and varying pulse fre-
quencies.

AFNNs allow for a great reduction in the density of the
network, which can improve the way the model can be
used in tandem with other machine learning models, such
as neural networks or classifiers. Furthermore the system
functions fully online for use in real time. In future we
would like to explore this possibility by implementing a
complete beat-tracking system with an AFNN at its core.

We have a lot of exploration to do with regards to the
GFNN/AFNN parameters, including the testing values for
the adaptive frequency rule, oscillator models and inter-
nal connectivity. The outcome of this exploration may im-
prove the results presented here.

The mode-locking to high order integer ratios, nonlin-
ear response, and internal connectivity set GFNNs apart
from many linear filtering methods such as the resonating
comb filters and Kalman filters used in many signal pre-
diction tasks. Coupled with frequency adaptation we be-
lieve that that the AFNN model provides very interesting
prospects for applications in MIR and further afield. In
future we would like to explore this possibility by imple-
menting a complete beat-tracking system with an AFNN at
its core and perform an evaluation with more realistic MIR
datasets.
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[3] Sebastian Böck, Florian Krebs, and Gerhard Widmer.
Accurate tempo estimation based on recurrent neural
networks and resonating comb filters. In Proceedings
of the 16th International Society for Music Information
Retrieval Conference, pages 625–31, Malaga, Spain,
2015.

[4] Simon Grondin. Psychology of Time. Emerald Group
Publishing, 2008.

[5] Peter Grosche, Meinard Müller, and Craig Stuart Sapp.
What Makes Beat Tracking Difficult? A Case Study on
Chopin Mazurkas. In in Proceedings of the 11th Inter-
national Society for Music Information Retrieval Con-
ference, 2010, pages 649–54, Utrecht, Netherlands,
2010.

[6] Andre Holzapfel, Matthew E.P. Davies, José R. Zap-
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ABSTRACT

In this paper we present and report on a methodology for
evaluating a creative MIR-based application of concatena-
tive synthesis. After reviewing many existing applications
of concatenative synthesis we have developed an applica-
tion that specifically addresses loop-based rhythmic pat-
tern generation. We describe how such a system could be
evaluated with respect to its its objective retrieval perfor-
mance and subjective responses of humans in a listener
survey. Applying this evaluation strategy produced posi-
tive findings to help verify and validate the objectives of
our system. We discuss the results of the evaluation and
draw conclusions by contrasting the objective analysis with
the subjective impressions of the users.

1. INTRODUCTION

MIR-based applications are becoming increasingly
widespread in creative scenarios such as composition and
performance [14] [7] [8]. This is commensurate with
the prevalence of sampling-based approaches to sound
generation, thus the desire is to develop more rich and
descriptive understanding of the underlying content being
used.

One of the primary difficulties faced with designing in-
struments for creative and compositional tasks remains the
elaboration of an appropriate evaluation methodology. In-
deed, this is a trending challenge facing many researchers
[2], and numerous papers address this directly with various
proposals for methodological frameworks, some drawing
from the closely related field of HCI (Human Computer
Interaction) [13], [16], [11]. More generally the evaluation
of computer composition systems has also been the subject
of much discussion in the literature. One frequent bench-
mark for evaluating algorithmic music systems is a type
of Turing test where the success criterion is determined
by the inability of human listener to discern between hu-
man and computer-generated music. As Hiraga [11] notes,

c© Cárthach Ó Nuanáin, Perfecto Herrera, Sergi Jordà. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Cárthach Ó Nuanáin, Perfecto Herrera, Sergi
Jordà. “An Evaluation Framework and Case Study for
Rhythmic Concatenative Synthesis”, 17th International Society for Music
Information Retrieval Conference, 2016.

however, these kind of tests can be problematic for two
reasons. Firstly, it makes the assumption that the music
generated by the algorithm is intended to sound like music
produced by humans, rather than something to be treated
differently. Secondly it ignores other facets of the system
that imperatively needs evaluation, such as the interface
and the experience. Pachet also finds issue with simplistic
Turing test approaches to music evaluation [18]. He re-
peats, for instance, the view that unlike the traditional Tur-
ing test which evaluated the ability to synthesis believable
natural language, no such “common-sense” knowledge ex-
ists for aspects of music.

We have designed and developed an MIR-driven instru-
ment that uses concatenative synthesis to generate looped
rhythmic material from existing content. In terms of eval-
uation we face the challenge of evaluating an MIR driven
software system, thus subject to the same scrutiny facing
any information retrieval system that needs to be appraised.
We also face the challenge of evaluating the system as a
musical composition system that needs to serve the com-
poser and listener alike.

In the next section we will give the reader brief fa-
miliarity with the instrument in terms of its implementa-
tion and functionality. Subsequently, existing concatena-
tive systems will be reported on in terms of their evalu-
ation methodologies (if any). Section 3 will propose the
evaluation framework in questions and the results will be
reported. We will conclude the paper with our impressions
on what we have learnt and scope for improvement in terms
of the system itself and the evaluation methodology.

2. INSTRUMENT DESCRIPTION

Concatenative synthesis builds new sounds by combining
together existing ones from a corpus. It is similar to gran-
ular synthesis differing only in the order of size of the
grains: granular synthesis operates on microsound scales
of 20-200ms whereas concatenative synthesis uses musi-
cally relevant unit sizes such as notes or even phrases. The
process by which these sounds are selected for resynthesis
is a fundamentally MIR-driven task. The corpus is defined
by selecting sound samples, optionally segmenting them
into onsets and extracting a chosen feature set to build de-
scriptions of those sounds. New sounds can finally be syn-
thesised by selecting sounds from the corpus according to
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Figure 1: Instrument Interface

a unit selection algorithm and connecting them in series,
maybe applying some cross-fading to smooth disparities
in the process.

Concatenative synthesis has a long history of applica-
tion in speech synthesis [15]. One of the most well-known
works in the area of musical concatenative synthesis is
CataRT [22] but there are many other systems referenced
in the literature including some commercial implementa-
tions. Bernardes [3] provides a thorough summary of these
based on similar reports in [25] and [21].

Our system (Figure 1) resembles many concatenative
synthesis applications that offer a 2D timbre space for ex-
ploration. Where it distinguishes itself is in its sound gen-
eration strategy and mode of interaction for the user. Im-
plemented as a VST plugin, it is an inherently loop-based
instrument. It records and analyses incoming audio from
the host as target segments according to a metrical level
and concatenates units of sound from the corpus to gen-
erate new loops with varying degrees of similarity to the
target loop. This similarity is determined by the unit se-
lection algorithm, the central component in concatenative
systems.

2.1 Unit Selection

The unit selection algorithm is quite straightforward. For
each unit i in the segmented target sequence (e.g. 16-step)
and each corpus unit j (typically many more), the con-
catenation unit cost Ci,j is calculated by the weighted Eu-
clidean distance of each feature k as given by Equation 1,
where a and b are the values of the features in question.

Ci,j =

√√√√
n∑

k=1

wk(ak − bk)2 (1)

In terms of feature selection, after consulting a number
of different articles [10], [20] and [27], dealing with fea-
ture extraction and rhythm we decided on a combination of
MFCCs, loudness, spectral centroid and spectral flatness.

These unit costs are stored in similarity matrixM . Next
we create a matrix M ′ of the indices of the ascendingly

Author (Year) Evaluation
Schwarz (2000) No
Zils & Pachet (2001) No
Hazel (2001) No
Hoskinson & Pai (2001) No
Xiang (2002) No
Kobayashi (2003) No
Cardle et al. (2003) Videos of use cases
Lazier & Cook (2003) No
Sturm (2004) No
Casey (2005) Retrieval Accuracy
Aucouturier & Pachet, (2005) User Experiment
Simon et al. (2005) Algorithm Performance
Jehan (2005) Algorithmic evaluation
Schwarz (2005) No
Weiss et al. (2009) No
Frisson et al. (2010) No
Hackbarth (2010) No
Bernardes (2014) Author’s impressions

Table 1: Evaluation in Concatenative Systems

sorted elements of M . Finally a concatenated sequence
can be generated by returning a vector of indices I from
this sorted matrix and playing back the associated sound
file. To retrieve the closest sequence V0 one would only
need to return the first row (Equation 3).

V0 = (I0,i, I0,i+1..., I0,N ) (2)

Returning sequence vectors solely based on the row re-
stricts the possibilities to the number of rows in the matrix
and is quite limited. We can extend the number of possi-
bilities to ij−T units if we define a similarity threshold T
and return a random index between 0 and j − T for each
step i in the new sequence.

3. EVALUATION OF CONCATENATIVE
SYNTHESIS

As we were researching existing works in the table pre-
sented by Bernardes, [3] we were struck by the absence
of discussion regarding evaluation in most of the accom-
panying articles. This table we reproduce here (Table 1)
amended and abridged with our details on the evaluation
procedures (if any) that were carried out.

Some of the articles provided descriptions of use cases
[4] or at least provided links to audio examples [24]. No-
tably, many of the articles [23], [9] consistently made ref-
erences to the role of “user”, but only one of those actually
conducted a user experiment [1]. By no means is this in-
tended to criticise the excellent work presented by these
authors. Rather it is intended to highlight that although
evaluation is not always an essential part of such exper-
iments - especially in ”one-off” designs for single users
such as the author as composer - it is an underexplored as-
pect that could benefit from some contribution.

We can identify two key characteristics of our research
that can inform what kind of evaluation can be carried out.
Firstly it’s a retrieval system, and can be analysed to deter-
mined its ability to retrieve relevant items correctly. Sec-
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ondly it is a system that involves users or more precisely,
musical users. How do we evaluate this crucial facet?

Coleman has identified and addressed the lack of sub-
jective evaluation factors in concatenative synthesis [5]. In
his doctoral thesis he devotes a chapter to a listening sur-
vey conducted to determine the quality of a number of dif-
ferent algorithmic components of the system under con-
sideration. He asks the listeners to consider how well the
harmony and timbre of the concatenated sequences are re-
tained. In a previous paper [17] we conducted a similar-
style listening survey to determine the ability of a genetic
algorithm to create symbolic rhythmic patterns that also
mimic a target input pattern. Evaluation strategies need
to be tailored specifically for systems, but if the system
is intended to retrieve items according to some similarity
metric, and the material is musical, then a listening survey
should be critical. Furthermore, and echoing Coleman’s
work, we would emphasise that whatever the application of
a concatenative system, the evaluation of the timbral qual-
ity is essential.

In light of these elements we also devised a quantitative
listening survey to examine musical output of the system
not only in terms of its facility in matching the target con-
tent perceptually but also in producing musically pleasing
and meaningful content.

4. METHOD

4.1 Evaluation and Experimental Design

Given the rhythmic characteristics of the system we for-
mulated an experiment that evaluated its ability to generate
new loops based on acoustic drum sounds. We gathered a
dataset of 10 breakbeats ranging from 75 BPM to 142BPM
and truncated them to single bar loops. Breakbeats are
short drum solo sections from funk music records in the
1970s and exploited frequently as sample sources for hip-
hop and electronic music. This practice has been of interest
to the scientific community, as evident in work by Ravelli
et al. [19], Hockman [12] and Collins [6].

In turn, each of these loops was then used as a seed loop
for the system with the sound palette derived from the re-
maining 9 breakbeats. Four variations were then generated
with 4 different distances to the target. These distances
correspond to indices into the similarity matrix we alluded
to in Section 2, which we normalise by dividing the index
by the size of the table. The normalised distances then cho-
sen were at 0.0 (the closest to the target), 1.0 (the furthest
from the target) and two random distances in ranges 0.0 -
0.5 and 0.5 - 1.0.

Repeating this procedure 10 times for each target loop
in the collection for each of the distance categories, we
produced a total of 40 generated files to be compared with
the target loop. Each step in the loop was labelled in terms
of its drum content, for example the first step might have
a kick and a hi-hat. Each segmented onset (a total of 126
audio samples) in the palette was similarly labelled with
its corresponding drum sounds producing a total of 169
labelled sounds. The labellings we used were K = Kick,

S = Snare, HH = Hi-hat, C = Cymbal and finally X when
the content wasn’t clear. Figure 2 shows the distribution
of onsets by type in the full corpus of segmented units.
Another useful statistic is highlighted in Figure 3, which
plots the distribution of onsets for each step in the 16 step
sequence for the predominant kick, snare and hi-hat for the
10 target loops. Natural trends are evident in these graphs,
namely the concentration of the kick on the 1st beat, snares
on the 2nd and 4th beat and hi-hats on off beats.

Figure 2: Distribution of Sounds in Corpus

Figure 3: Distribution of Sounds in Target Loops

4.2 Retrieval Evaluation

The aim of the experiment was first to determine how well
the system was able to retrieve similarly labelled ”units”
for each 1/16th step in the seed loop. To evaluate the ability
of the algorithm to retrieve correctly labelled sounds in the
generated loops we defined the accuracy A by equation 3,
based on a similar approach presented in [26]. We make a
simplification that corresponding HH and X and C labels
also yield a match based on our observation that their noisy
qualities are very similar, and some of the target loops used
did not have onsets sounding at each 1/16th step.

A =
number of correctly retrieved labels

total number of labels in target loop
(3)

4.2.1 Retrieval Results

By studying the Pearson’s correlation between the retrieval
ratings and the distance, we can confirm the tendency of
smaller distances to produce more similar patterns by ob-
serving the moderate negative correlation (ρ = -0.516, p
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<0.001) between increased distance and the accuracy rat-
ings (Figure 4).

An interesting observation is that when we isolate the
retrieval accuracy ratings to kick and snare we see this cor-
relation increase sharply to (ρ = -0.826, p <0.001), as can
be seen in Figure 5.

Figure 4: Scatter Plot and Regression Line of Retrieval
Accuracy with Distance for all Drum Sounds

Figure 5: Scatter Plot and Regression Line of Retrieval
Accuracy with Distance for Kick and Snare

Delving into the data further, we can identify 3 different
categorical groupings that demonstrate predictable trends
in terms of the central tendencies and descending retrieval
accuracy (Figure 6). We label these categories A, B and
C with the breakdown of the number of patterns and their
corresponding distance ranges as follows:

• A - 10 patterns - 0.0

• B - 9 patterns - [0.2 - 0.5]

• C - 21 patterns - [0.5 - 1.0]

Figure 6: Central Tendencies of Retrieval Ratings for the
Similarity/Distance Categories

4.3 Listener Evaluation

The retrieval accuracy gives the objective ratings of the
system’s capability for retrieving correctly labelled items.
This information may not be consistent with the human lis-
tener’s perceptual impression of similarity, nor does it give
any indication whether the retrieved items are musically
acceptable or pleasing. To assess the human experience of
the sonic output and to compare with the objective ratings
of the system, we conducted a listening survey which will
be described here.

Figure 7: Screenshot of Web Survey

To directly compare and contrast with the retrieval eval-
uation the same 40 loops generated by the system and used
in the retrieval analysis were transferred to the listening
survey. The survey itself was web-based (Figure 7) and
took roughly 15-20 minutes to complete. Participants were
presented with the seed pattern and the generated patterns
and could listen as many times as they liked. Using a 5
point Likert scale the participants were then asked to rate
their agreement with the following statements:
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Figure 8: Correlations Between Distance and Subjective
Ratings of Pattern Similarity, Timbre Similarity and Liking

• Is the rhythmic pattern similar?

• Is the timbre similar?

• Did you like the loop?

Twenty one participants in all took part in total, drawn
from researchers at the authors’ institute as well as friends
and colleagues with an interest in music. Twenty out of the
21 participants declared they were able to play a musical
instrument Ten of the 21 participants specified they played
a percussion instrument and 9 reported they could read no-
tation. In the instructions we provided brief explanations
of the key terms and audio examples demonstrating con-
trasting rhythmic patterns and timbres.

4.3.1 Listener Evaluation Results

The survey data was analysed using Spearman’s rank cor-
relation on the mode of the participants’ responses to each
loop stimulus with the associated distance of that loop.
We identified a moderate to strong negative correlation for
each of the pattern, timbre and ”likeness” aspects (p<0.01
in all instances). This can be observed in the red values in
the correlation matrix presented in Figure 8.

It should be evident that the subjective listening data
conforms quite well to the findings of the objective re-
trieval rating. Increased distance resulted in decreased re-
trieval accuracy which in turn corresponded to a decrease
in listener ratings for qualities pertaining to pattern sim-
ilarity and impression of timbral similarity in the sounds
themselves. Furthermore, it was revealed that the aestheti-
cal judgement of the generated loops, encapsulated by the
”likeness” factor, also followed the trend set out by the ob-
jective algorithm. We were curious to establish whether
any particular subject did not conform to this preference
for similar loops, but examining the individual correlation
coefficients revealed all to be negative (all participants pre-
ferred more similar sounding patterns).

5. CONCLUSIONS

In this paper we presented a proposal for a framework that
evaluates concatenative synthesis systems. Using a system
that we developed which specifically generates rhythmic
loops as a use case we demonstrated how such a framework
could be applied in practice. An application-specific exper-
iment was devised and the objective results and subjective
results showed favourably the performance of the similar-
ity algorithm involved. It is hoped that by providing a well-
documented account of this process other researchers can
be encouraged to adapt comparable evaluation strategies in
creative applications of MIR such as concatenative synthe-
sis.
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ABSTRACT

A plurality of audio feature extraction toolsets and feature
datasets are used by the MIR community. Their differ-
ent conceptual organisation of features and output formats
however present difficulties in exchanging or comparing
data, while very limited means are provided to link features
with content and provenance. These issues are hindering
research reproducibility and the use of multiple tools in
combination. We propose novel Semantic Web ontologies
(1) to provide a common structure for feature data formats
and (2) to represent computational workflows of audio fea-
tures facilitating their comparison. The Audio Feature On-
tology provides a descriptive framework for expressing dif-
ferent conceptualisations of and designing linked data for-
mats for content-based audio features. To accommodate
different views in organising features, the ontology does
not impose a strict hierarchical structure, leaving this open
to task and tool specific ontologies that derive from a com-
mon vocabulary. The ontologies are based on the analy-
sis of existing feature extraction tools and the MIR litera-
ture, which was instrumental in guiding the design process.
They are harmonised into a library of modular interlinked
ontologies that describe the different entities and activities
involved in music creation, production and consumption.

1. INTRODUCTION

Several content based audio feature extraction frameworks
and toolsets have been developed over the past decades of
MIR research aiming to provide a platform for distributing,
sharing or deploying algorithms. While most tools have the
potential to become widely adopted common platforms, it
is most likely that a plurality of them will continue to be
used by the community as well as adopters of MIR technol-
ogy. However, diverging conceptual organisation of fea-
tures and different output formats present difficulties when
it comes to exchanging and comparing data, or producing
annotated datasets. These issues are hindering research re-
producibility as well as the use of multiple data or tool sets
in a single application or experiment.

A growing demand for shared representations of com-
putational extraction workflows and interoperable data for-
mats is signified by several proposed formats, some of

c© Alo Allik, György Fazekas, Mark Sandler. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Alo Allik, György Fazekas, Mark Sandler. “ An
ontology for audio features ”, 17th International Society for Music Infor-
mation Retrieval Conference, 2016.

which are associated with feature extractor tools or ser-
vices [3, 4, 8, 13, 19]. While existing formats for structur-
ing and exchanging content-based audio feature data may
satisfy tool or task specific requirements, there are still sig-
nificant limitations in linking features produced in different
data sources, as well as in providing generalised descrip-
tions of audio features that would allow easier identifica-
tion and comparison of algorithms that produce the data.

Semantic Web technologies facilitate formal descrip-
tions of concepts, terms and relationships that enable im-
plementations of automated reasoning and data aggre-
gation systems to manage large amounts of information
within a knowledge domain. Both in research and com-
mercial use cases, it is becoming increasingly important
to fuse cultural, contextual and content-based information.
This may be achieved by leveraging Linked Data enabled
by the use of shared ontologies and unique identification of
entities. This not only offers the potential to simplify ex-
periments and increase productivity in research activities
traditionally relying on Web scraping, proprietary applica-
tion programming interfaces or manual data collection, but
also enables incorporation of increasingly larger and more
complex datasets into research workflows.

We propose a modular approach towards ontological
representation of audio features. Since there are many
different ways to structure features depending on a spe-
cific task or theoretically motivated organising principle, a
common representation would have to account for multi-
ple conceptualisations of the domain and facilitate diverg-
ing representations of common features. This may be due
to the “semantic gap” between low-level computational
representations of audio signals and theoretical represen-
tations founded in acoustics or musicology. This semantic
gap could potentially be bridged using Semantic Web tech-
nologies if high-level feature identification can be inferred
from computational signatures. However, this function-
ality is currently beyond the scope of existing technolo-
gies. For example, Mel Frequency Cepstral Coefficients
(MFCC), which are widely calculated in many tools and
workflows, can be categorised as a “timbral” feature in
the psychoacoustic or musicological sense, while from the
computational point of view, MFCC could be labelled as
a “cepstral” or “spectral” representation. The complexity
arising from this makes music somewhat unique calling for
a robust ontological treatment, although ontological repre-
sentation of content-based features have been proposed in
other domains including image processing [23].

Our framework consists of two separate components to
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distinguish between the abstract concepts describing the
audio feature domain and more concrete classes that repre-
sent specific audio features and their computational signa-
tures. The Audio Feature Ontology (AFO) is the more ab-
stract component representing entities in the feature extrac-
tion process on different levels of abstraction. It describes
the structure of processes in feature extraction workflow
through phases of conceptualisation, modelling and imple-
mentation. The Audio Feature Vocabulary (AFV) then lists
existing audio features providing the terms for tool and
task specific ontologies without attempting to organise the
features into a taxonomy.

2. BACKGROUND

Many recent developments in audio feature data for-
mats employ JavaScript Object Notation (JSON), which
is rapidly becoming a ubiquitous data interchange mecha-
nism in a wide range of systems regardless of domain. Par-
ticularly, the JSON Annotated Music Specification (JAMS)
[8] is a notable attempt to provide meaningful structure to
audio feature data while maintaining simplicity and sus-
tainability in representations, which the authors deem as
the most crucial factors for wider adoption in the MIR
community. A different JSON format for features has been
developed in the AcousticBrainz project [19] with the in-
tention of making available low and high level audio fea-
tures for millions of music tracks. This resource provides
the largest feature dataset to date while exposing the ex-
traction algorithms in an open source environment.

It is evident that the simplicity of JSON combined
with its structuring capabilities make it an attractive op-
tion, particularly compared to preceding alternatives in-
cluding YAML, XML, Weka Attribute-Relation File For-
mat (ARFF), the Sound Description Interchange Format
(SDIF), and various delimited formats. All these formats
enable communication between various workflow compo-
nents and offer varying degrees of flexibility and expres-
sivity. However, even the most recent JSON methods only
provide a structured representation of feature data with-
out the facility of linking these concepts semantically to
other music related entities or data sources. For example,
the JAMS definition does not address methodology that
would enable detailed description and comparison of au-
dio features nor does it provide a structured way of linking
the feature data to the rest of the available metadata for
a particular music track. Admittedly, the AcousticBrainz
dataset does provide links to the MusicBrainz 1 database
by global identifiers, but there is no mechanism to identify
the features or compare them to those available in other
extraction libraries. The Essentia library [3] that is used in
the AcousticBrainz infrastructure for feature extraction is
open source, thus providing access to the algorithms, but
there is no formalised description of audio features beyond
source code and documentation yet. Other feature extrac-
tion frameworks provide data exchange formats designed
for particular workflows or specific tools. However, there
is no common format shared by all the different tools and

1 http://musicbrainz.org

libraries. The motley of output formats is well demon-
strated in the representations category of a recent evalu-
ation of feature extraction toolboxes [15]. For example,
the popular MATLAB MIR Toolbox export function out-
puts delimited files as well as ARFF, while Essentia pro-
vides YAML and JSON and the YAAFE library outputs
CSV and HDF5. The MPEG-7 standard, used as bench-
marks for other extraction tools provides an XML schema
for a set of low-level descriptors, but the deficiencies high-
lighted above also apply in this case.

Semantic Web technologies provide domain modelling
and linking methods considerably beyond the expressiv-
ity and interoperability of any of the solutions described
above. The OWL family of ontology languages is designed
to be flexible enough to deal with heterogeneous Web-
based data sources. It is also built on strong logical founda-
tions. It implies a conceptual difference between develop-
ing data formats and ontological modelling. The authors
of [8] mention a common criticism that RDF-based MIR
formats similarly to XML suffer from being non-obvious,
verbose or confusing. However, the potential of meaning-
ful representation of audio features and linking ability to
other music related information outweighs these concerns.
Ontological representation and linking of divergent do-
mains is a difficult task, but should not be discarded lightly
in favour of simplicity. The benefits of even relatively lim-
ited Semantic Web technologies for MIR research have
been demonstrated on a number of occasions. For exam-
ple, the proof-of-concept system described in [17] enables
increased automation and simplification of research work-
flows and encourages resource reuse and validation by
combining several existing ontologies and Semantic Web
resources, including the Music Ontology 2 , GeoNames 3 ,
DBTune 4 , and the Open Archives Initiative Object Reuse
and Exchange (OAI-ORE). A system for MIR workflow
preservation has been proposed in [12], which emphasises
the importance of representing and preserving the context
of entire research processes and describes a Context Model
of a typical MIR workflow as a Semantic Web ontology.

The original version of the Audio Feature Ontology
was created within a framework of a harmonised library
of modular music-related Semantic Web ontologies [4],
built around the core Music Ontology [20]. This library
relies on widely adopted Semantic Web ontologies such as
the Friend of a Friend (FOAF) vocabulary, as well as do-
main specific ontologies for describing intellectual works
(FRBR) and complex associations of domain objects with
time-based events (Event and Timeline ontologies). The
library also provides a set of extensions describing mu-
sic specific concepts including music similarity [9] and the
production of musical works in the recording studio [5].
Since its publication, it has been integrated in several re-
search projects, including the Networked Environment for
Music Analysis (NEMA) [24], the Computational Anal-
ysis of the Live Music Archive (CALMA) [2] as well as
commercial applications, e.g. the BBC and its music Web-

2 http://musicontology.com/
3 http://www.geonames.org/
4 http://dbtune.org/
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site 5 . This ontology provides a model for structuring
and publishing content-derived information about audio
recordings and allows linking this information to concepts
in the Music Ontology framework. However, it does not
provide a comprehensive vocabulary of audio features or
computational feature extraction workflows. It also lacks
concepts to support development of more specific feature
extraction ontologies. Structurally, it conflates musicolog-
ical and computational concepts to an extent that makes it
inflexible for certain modelling requirements as suggested
in [7]. In order to address these issues, the updated Au-
dio Feature Ontology separates abstract ontological con-
cepts from more specific vocabulary terminology, supplies
methodology for extraction workflow descriptions, and in-
creases flexibility for modelling of task and tool specific
ontologies.

3. ONTOLOGY ENGINEERING

In order to gain a better understanding of the MIR do-
main and user needs, a catalogue of audio features was
first compiled based on a review of relevant literature, ex-
isting feature extraction tools and research workflows. The
first phase of this process involved extracting information
about features from journal articles, source code and ex-
isting structured data sources. This information was sub-
sequently collated into a linked data resource to serve as
a foundation for the ontology engineering process. There
was no attempt at explicit classification of features into
a hierarchical taxonomy. Source code was parsed from
a number of open source feature extraction packages in-
cluding CLAM [1], CoMIRVA [21] jMIR (jAudio) [13],
LibXtract 6 , Marsyas 7 , Essentia [3] and YAAFE [11]. Ex-
isting linked resource representations of the Vamp plug-
ins provided easy access to all the features available for
download on the Vamp plugins Website 8 . Manual extrac-
tion was used for the packages which did not provide suit-
able access for automatic parsing or which were reviewed
in journal articles, including the Matlab toolboxes (MIR
Toolbox and Timbre Toolbox), Aubio 9 , Cuidado [18],
PsySound3 10 , sMIRk [6], SuperCollider SCMIR toolkit,
and some of the more recent MIREX submissions. A sim-
ple automatic matching procedure was employed to iden-
tify synonymous features using a Levenshtein distance al-
gorithm, which aided the compilation of a feature synonym
dictionary.

The catalogue was created in linked data format us-
ing the Python RDFLib library 11 , which enables quick
and easy serialisation of linked data into various formats.
The catalogue lists feature objects and their attributes and
serves as the foundation for a hybrid ontology engineer-
ing process combining manual and semi-automatic ap-
proaches. The catalogue identifies approximately 400 dis-

5 http://bbc.co.uk/music/
6 http://libxtract.sourceforge.net
7 http://marsyas.info
8 http://www.vamp-plugins.org/
9 http://aubio.org/

10 http://psysound.wikidot.com/
11 https://github.com/RDFLib/rdflib

tinct features and thereby significantly increases the scope
of the original ontology, which supports identifying about
30 entities. The catalogue has been published online 12 and
allows querying subsets of popular features computed in
feature extraction tools to help define the scope and domain
boundaries of the ontology. It also sheds light on the range
of classifications of features inherent in different software
tools and libraries, as well as conceptualisations of the do-
main in journal articles. Figure 1 shows three divergent
organisations of features from very different sources.

Feature Extractor

Dynamics Pitch Rhythm Timbre Tonality

MIR descriptor

SFX Tonal Time-domain Rhythm Spectral

Feature

Eigen-
domain

Modulation
Frequency

Frequency

Physical Perceptual

Phase 
Space

CepstralTemporal

a

b

c

Figure 1. Three different taxonomies of audio features ex-
tracted from (a) MIR Toolbox, (b) Essentia, and (c) Mitro-
vic et al. [14]

The catalogue exemplifies the diversity of viewpoints
on classification of features within the community. It is
clear that in some cases audio features are categorised ac-
cording to musicological concepts, such as pitch, rhythm
and timbre, while in others, the classification is based on
the computational workflows used in calculating the fea-
tures or a combination of different domains depending
on the task. Consequently, there is no need to impose a
deeply taxonomical structure on the collected audio fea-
tures, rather the resulting ontology should be focused on
facilitating structured feature data representation that is
flexible enough to accommodate all these diverging organ-
isational principles.

4. CORE ONTOLOGY MODEL

The most significant updates to the original ontology
model are designed to address a number of requirements
determined during the engineering process. The proposed
updates are intended to:

• provide comprehensive vocabulary of audio features
• define terms for capturing computational feature ex-

traction workflows
• support development of domain and task specific on-

tologies for existing extraction tools
• restructure concept inheritance for more flexible and

sustainable feature data representation
12 http://sovarr.c4dm.eecs.qmul.ac.uk/af/

catalog/1.0#
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• facilitate design of linked data formats that combine
strong logical foundations of ontological structuring
with simplicity of representations.

The fundamental structure of the ontology has changed in a
couple of key aspects. The core structure of the framework
separates the underlying classes that represent abstract
concepts in the domain from specific named entities. This
results in the two main components of the framework de-
fined as Audio Feature Ontology (AFO, http://w3id.
org/afo/onto/1.1#) and Audio Feature Vocabulary
(AFV, http://w3id.org/afo/vocab/1.1#). The
main differences also include introducing levels of abstrac-
tion to the class structure and reorganising the inheritance
model. The different layers of abstraction represent the
feature design process from conceptualisation of a fea-
ture, through modelling a computational workflow, to im-
plementation and instantiation in a specific computational
context. For example, the abstract concept of Chroma-
gram is separate from its model which involves a sequence
of computational operations like cutting an audio signal
into frames, calculating the Discrete Fourier Transform for
each frame, etc. (see Section 5.1 for a more detailed exam-
ple, and [16] for different methods for extracting Chroma-
based features). The abstract workflow model can be im-
plemented using various programming languages as com-
ponents of different feature extraction software applica-
tions or libraries. Thus, this layer enables distinguishing
a Chromagram implementation as a Vamp plugin from a
Chromagram extractor in MIR Toolbox. The most con-
crete layer represents the feature extraction instance, for
example, to reflect the differences of operating systems or
hardware on which the extraction occurred. The layered
model is shown in Figure 2.

Audio 
Feature

Model
Feature

Extractor

models implements

Instance
instantiates

Figure 2. The Audio Feature Ontology core model with
four levels of abstraction

The core model of the ontology retains original at-
tributes to distinguish audio features by temporal charac-
teristics and data density. It relies on the Event and Time-
line ontologies to provide the primary structuring concepts
for feature data representation. Temporal characteristics
classify feature data either into instantaneous points in time
- e.g. event onsets or tonal change moments - or events
with known time duration. Data density attributes allow
describing how a feature relates to the extent of an audio
file: whether it is scattered and occurs irregularly over the
course of the audio signal, or the feature is calculated at
regular intervals and fixed duration. The change in the
inheritance model removes the music-specific subclassing
of afo:Point, afo:Segment, and afo:Signal classes which
was claimed to make feature representation less flexible in
certain use cases [7]. The Segment Ontology was proposed
as a solution to get around these limitations [7], in which
the Segment class functions as a music-generic dimension

between explicitly temporal and implicitly temporal con-
cepts, thus enabling multiple concurrent domain-specific
concepts to be represented. An alternative solution is to
subclass afo:Point, afo:Segment, and afo:Signal directly
from afo:AudioFeature, which, in turn, is a subclass of
event:Event. In this case, the feature extraction data can
be directly linked to the corresponding term in AFV with-
out being constrained by domain or task specific class def-
initions. This way, it is not necessary to add the Segment
Ontology concepts to feature representations, thereby sim-
plifying the descriptions.

tl:Timeline

tl:Interval

mo:Signal

mo:time

tl:Instant

tl:timeline

afo:Signalafo:Point

tl:timeline tl:timeline

afo:AudioFeature

music metadata
on the Web

tl:TimeLineMap

tl:domainTimeLine

tl:Timeline

tl:domainTimeLine

tl:Interval tl:Interval

tl:timeline

afo:Segment

event:time event:time event:time

rdfs:subClassOf

rdfs:subClassOfrdfs:subClassOf

Figure 3. Framework model showing how feature data
representation is linked with music metadata resources on
the Web using temporal entities defined in the Timeline
ontology

Audio features collated from literature and extraction
software are defined as subclasses in the AFV. An illustra-
tive Turtle-syntax representation that shows the basic prin-
ciple of how subclassing afo:AudioFeature functions in
the context of annotating both sparse and dense features
is provided in Section 5.2. The other purpose of the vo-
cabulary is to define computational extraction workflow
descriptions, so that features can be more easily identi-
fied and compared by their respective computational signa-
tures. The following section delves into this in more detail.

5. CASE STUDIES AND EVALUATION

5.1 Representing computational workflows

AFV defines terms for the tool and task specific ontolo-
gies and implements the model layer of the ontology
framework. It is a clean version of the catalogue which
only lists the features without any of their properties with
many duplications of terms consolidated. This enables the
definition of tool and task specific feature implementations
and leaves any categorisation or taxonomic organisation to
be specified in the implementation layer.

The vocabulary also specifies computational workflow
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models for some of the features which can be linked to
from lower level ontologies. The computational workflow
models are based on feature signatures as described
in [14]. The signatures represent mathematical operations
employed in the feature extraction process with each
operation assigned a lexical symbol. It offers a compact
description of each feature and enables an easier way of
comparing features according to their extraction work-
flows. Converting the signatures into a linked data format
to include them in the vocabulary involves defining a
set of OWL classes that handle the representation and
sequential nature of the calculations. The operations
are implemented as sub-classes of three general classes:
transformations, filters and aggregations. For each abstract
feature, we define a model property. The OWL range
of the model property is a ComputationalModel class in
the Audio Feature Ontology namespace. The operation
sequence can be defined through this object’s operation
sequence property. For example, the signature of the
Chromagram feature defined in [14] as “f F l Σ”, which
designates a sequence of (1) windowing (f), (2) Discrete
Fourier Transform (F), (3) logarithm (l) and (4) sum (Σ) is
expressed as a sequence of RDF statements in Listing 1.

afv:Chromagram a owl:Class ;
afo:model afv:ChromagramModel ;
rdfs:subClassOf afo:AudioFeature .

afv:ChromagramModel a afo:Model;
afo:sequence afv:Chromagram_operation_sequence_1 .

afv:Chromagram_operation_sequence_1 a afv:Windowing;
afo:next_operation

afv:Chromagram_operation_sequence_2 .

afv:Chromagram_operation_sequence_2 a
afv:DiscreteFourierTransform;

afo:next_operation
afv:Chromagram_operation_sequence_3 .

afv:Chromagram_operation_sequence_3 a afv:Logarithm;
afo:next_operation

afv:Chromagram_operation_sequence_4 .

afv:Chromagram_operation_sequence_4 a
afo:LastOperation, afv:Sum .

Listing 1. Description of a chromagram computation.

SELECT DISTINCT ?feature
WHERE {
?opid a afv:DiscreteCosineTransform .
?seqid afo:first_operation ?fopid .
?fopid afo:next_operation+ ?opid .

OPTIONAL {
?model afo:operation_sequence ?seqid .
?feature afo:model ?model .

}
}

Listing 2. Retrieving feature types involving the DCT.

This structure enables building SPARQL queries to
retrieve comparative information on features from the
vocabulary. For example, we can inquire which features
in the vocabulary employ the Discrete Cosine Transform
calculation by executing the query of Listing 2. The query
will produce the following result:

afv:AutocorrelationMFCCs

afv:BarkscaleFrequencyCepstralCoefficients

afv:MelscaleFrequencyCepstralCoefficients

afv:ModifiedGroupDelay

afv:ModulationHarmonicCoefficients

afv:NoiseRobustAuditoryFeature

afv:PerceptualLinearPrediction

afv:RelativeSpectralPLP

5.2 Audio content description

In order to determine how well the AFO framework repre-
sents the audio feature extraction domain, we need to test
its suitability for representing audio features in the context
of particular use cases. We employ a task-based methodol-
ogy to focus on evaluating the suitability of AFO in a fea-
ture extraction workflow. Task-based evaluation is based
on having a set of pre-defined requirements and it may of-
fer a measure of practical aspects, such as the human abil-
ity to formulate queries using an ontology, or the accuracy
of responses provided by the system’s inferential compo-
nent. In order to qualitatively evaluate the AFO frame-
work, we need to define a set of requirements from the
perspective of music information retrieval workflows. Re-
viewing common research workflows, the following main
requirements for audio feature annotations have been dis-
covered:

• identify an extracted audio feature by linking it to a
corresponding term in the Audio Feature Vocabulary

• identify the computational steps involved in the pro-
cess

• describe the temporal structure and density of output
• associate audio features with the audio signal time-

line
• identify the feature extraction software tools used in

the extraction process

Sparse point-like and dense signal-like features of an
audio file - such as onsets or MFCC - can be linked directly
to their respective classes in AFV in the feature extraction
process as shown in Listing 3.

The Turtle representation is but one of the possible
means of serialisation. AFO can facilitate development of
other data formats that are aligned with linked data prin-
ciples, including binary RDF representations. One of the
goals of the development process has been to look for alter-
native formats that could be used in different contexts. Due
to the wide appeal of JSON, the ontology also enables pub-
lishing feature data in its linked data version. JSON-LD is
an extension to the standard JSON format that provides an
entity-centric representation of RDF/OWL semantics and
a means to define a linked data context with URI connec-
tions to external ontologies and resources [10]. It has the
potential to simplify feature representations while main-
taining ontological structuring of the data. The format en-
ables establishing links to ontologies where the structure
of the data is defined by using the key word ”@context”.
OWL class types are annotated with ”@type” and unique
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identifiers are with ”@id”. The latter functions as a link-
ing mechanism between nodes when an RDF graph is con-
verted into a JSON tree structure. The JSON-LD represen-
tation of audio features has been tested in the context of an
adaptive music player.

@prefix afv: <http://w3id.org/afo/vocab/1.1#> .
@prefix mo: <http://purl.org/ontology/mo/> .
@prefix tl:

<http://purl.org/c4dm/timeline.owl#> .
@prefix vamp: <http://purl.org/ontology/vamp/> .

:signal_f6261475 a mo:Signal ;
mo:time [
a tl:Interval ;
tl:onTimeLine :timeline_aec1cb82

] .

:timeline_aec1cb82 a tl:Timeline .

:transform_onsets a vamp:Transform ;
vamp:plugin plugbase:qm-onsetdetector ;
vamp:output

plugbase:qm-onsetdetector_output_onsets .

:transform_mfcc a vamp:Transform ;
vamp:plugin plugbase:qm-mfcc ;
vamp:output

plugbase:qm-mfcc_output_coefficients .

:event_1 a afv:Onset ;
event:time [
a tl:Instant ;
tl:onTimeLine :timeline_aec1cb82 ;
tl:at "PT1.98S"ˆˆxsd:duration ;

] ;
vamp:computed_by :transform_onsets .

:feature_1 a afv:MFCC ;
mo:time [
a tl:Interval ;
tl:onTimeLine :timeline_aec1cb82 ;

] ;
vamp:computed_by :transform_mfcc ;
afo:value ( -26.9344 0.188319 0.106938 ..) .

Listing 3. An abbreviated example of linking onsets and
MFCC features to AFV and the Music Ontology

5.3 Case study: adaptive music player

Beyond representing audio feature data in research work-
flows, there are many other practical applications for the
ontology framework. One of the test cases is providing
data services for an adaptive music player that uses au-
dio features to enrich user experience and enables novel
ways to search or browse large music collections. Feature
data of the music tracks available in the player is stored
in a CouchDB 13 instance in JSON-LD. The data is used
by Semantic Web entities called Dynamic Music Objects
(dymos) [22] that control the audio mixing functionality
of the player. Dymos make song selections and determine
tempo alignment for cross-fading based on features. List-
ing 4 shows an example of JSON-LD representation of a
track used in the system linked to feature annotations.

6. CONCLUSIONS

The Audio Feature Ontology and Vocabulary provide a
framework for representing audio features using Seman-
tic Web methods and linked data technologies. It pro-
vides terminology to facilitate task and tool specific on-
tology development and serves as a descriptive framework

13 http://couchdb.apache.org/

{
"@context": {

"foaf": "http://xmlns.com/foaf/0.1/",
"afo": "http://w3id.org/afo/onto/1.1#",
"afv": "http://w3id.org/afo/vocab/1.1#",
"mo": "http://purl.org/ontology/mo/",
"dc": "http://purl.org/dc/elements/1.1/",
"tl": "http://purl.org/NET/c4dm/timeline.owl#",
"vamp": "http://purl.org/ontology/vamp/"

},
"@type": "mo:Track",
"dc:title": "Open My Eyes",
"mo:artist": {

"@type": "mo:MusicArtist",
"foaf:name": "The Nazz"

},
"mo:available_as": "/home/snd/250062-15.01.wav",
"mo:encodes": {

"@type": "mo:Signal",
"mo:time": {

"@type": "tl:Interval",
"tl:duration": "PT163S",
"tl:timeline": {

"@type": "tl:Timeline",
"@id": "98cfa995.."

}}},
"afo:features": [

{
"@type": "afv:Key",
"vamp:computed_by": {

"@type": "vamp:Transform",
"vamp:plugin_id":

"vamp:qm-vamp-plugins:qm-keydetector"
},
"afo:values": [

{ "tl:at": 1.4 , "rdfs:label": "C# minor",
"tl:timeline": "98cfa995.."

},
{ "tl:at": 5.9 , "rdfs:label": "D minor",

"tl:timeline": "98cfa995.."
}

]
}]}

Listing 4. JSON-LD representation of an audio feature
linked with track metadata

for audio feature extraction. The updates to the original
ontology for audio features strive to simplify feature rep-
resentations and make them more flexible while maintain-
ing ontological structuring and linking capabilities. JSON-
LD has been shown to function as a linked data format
that enables converting RDF graph structures to key-value
representation. This could also apply for other similar
data formats and NoSQL database systems. The ontol-
ogy engineering process has produced example ontolo-
gies for existing tools including MIR Toolbox, Essentia,
Marsyas and others available from the ontology Website
http://w3id.org/afo/onto/1.1#.
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ABSTRACT

Phonation mode is an expressive aspect of the singing
voice and can be described using the four categories neu-
tral, breathy, pressed and flow. Previous attempts at auto-
matically classifying the phonation mode on a dataset con-
taining vowels sung by a female professional have been
lacking in accuracy or have not sufficiently investigated
the characteristic features of the different phonation modes
which enable successful classification. In this paper, we
extract a large range of features from this dataset, in-
cluding specialised descriptors of pressedness and breath-
iness, to analyse their explanatory power and robustness
against changes of pitch and vowel. We train and opti-
mise a feed-forward neural network (NN) with one hid-
den layer on all features using cross validation to achieve a
mean F-measure above 0.85 and an improved performance
compared to previous work. Applying feature selection
based on mutual information and retaining the nine high-
est ranked features as input to a NN results in a mean F-
measure of 0.78, demonstrating the suitability of these fea-
tures to discriminate between phonation modes. Training
and pruning a decision tree yields a simple rule set based
only on cepstral peak prominence (CPP), temporal flatness
and average energy that correctly categorises 78% of the
recordings.

1. INTRODUCTION

Humans have the extraordinary capability of producing a
wide variety of sounds by manipulating the complex inter-
action between the vocal folds and the vocal tract. This
flexibility also manifests in the singing voice, giving rise
to a large number of different types of expression such as
vibrato or glissando. In this paper, we focus on phonation
mode as one of these expressive elements. Sundberg [22]
defines four phonation modes within a two-dimensional
space spanned by subglottal pressure and glottal airflow:
Neutral and breathy phonations involve less subglottal
pressure than pressed and flow phonations, while neutral
and pressed phonations have lower glottal airflow than
breathy and flow phonations.

The phonation mode is an important part of singing
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and can be seen as an expressive dimension along with
pitch and loudness [23]. This additional degree of con-
trol allows more room for interpretation and expression - a
breathy voice for example can be used to portray sweetness
and sexuality, while pressed voices can seem forceful and
tense [20]. In addition to individual differences between
singers, the phonation mode tends to vary depending on
the musical style, as shown in a study with four different
genres by Borch and Sundberg [5]. Automatically detect-
ing the phonation mode could help diagnose certain vocal
disorders such as the hypofunction and hyperfunction of
the glottis [10]. Because many singing students in particu-
lar exhibit varying degrees of these malfunctions through-
out the course of their studies, teachers could be assisted
to correct this behaviour during lessons. Apart from mu-
sic, phonation modes also play an important role in speech.
For the task of speaker-independent emotion recognition,
phonation mode is one of the features of voice quality that
can be useful for reliably detecting emotion in speech [16].

2. RELATED WORK

Several studies have investigated phonation modes from a
physiological and a signal processing perspective.

By using direct body measurements, Grillo and Ver-
dolini [11] showed that laryngeal resistance as the ratio
of subglottal pressure and average glottal airflow can re-
liably account for the difference between pressed, neutral
and breathy phonation, although not between neutral and
resonant voice. Subglottal pressure was also found to cor-
relate with the amount of phonatory pressedness in a sim-
ilar study, along with the closing quotient of the glottis
and the difference in amplitudes of the first two harmon-
ics in the voice source spectrum [17]. Without direct body
measurements however, it is difficult to estimate subglottal
pressure based only on auditory information.

As a result, signal-based feature descriptors have been
developed to estimate the degree of pressedness. Most no-
tably, the normalised amplitude quotient (NAQ) describes
the glottal closing phase and was shown to be more robust
than the closing quotient when separating breathy, neutral
and pressed spoken vowels [1, 3]. This capability appar-
ently transfers to the singing voice: Given vocal record-
ings featuring the four different phonation modes rated by
a panel of experts, the NAQ accounted for 73% of the vari-
ation in the ratings of perceived pressedness [24]. Other
descriptors have been proposed for discriminating breathy
from tense voices, such as the peak slope [14] and the
maxima dispersion quotient (MDQ) [15]. The cepstral
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peak prominence (CPP) [12] feature was shown to corre-
late strongly with ratings of perceived breathiness. In the
context of singing however, the suitability of these features
to capture the characteristics of all four phonation modes
remains largely unknown and is investigated in this paper.

For the automatic detection of phonation modes, a
dataset containing vowels sung by a female professional
was created [21]. On this dataset, an automatic classifica-
tion method [20] based on modelling the human vocal tract
and estimating the glottal source waveform was developed.
The physiological nature of the model can give insight into
how humans produce phonation modes by interpreting op-
timised model parameters. However, only moderate accu-
racies between 60% and 75% were achieved, despite train-
ing the model on each vowel individually, resulting in a
less general classification problem where vowel-dependent
effects do not have to be taken into account. Another
classification attempt on the same dataset using features
derived from linear predictive coding (LPC) such as for-
mant frequencies achieved a mean F-measure of 0.84 [13]
with a logistic model tree as classifier. However, the ac-
curacy may be high partly due to not excluding the higher
pitches in the dataset, which the singer was only able to
produce in breathy and neutral phonation. As a result,
only two instead of four classes have to be distinguished in
the higher pitch range, incentivising the classifier to extract
pitch-related information to detect this situation. Although
the authors identify CPP and the difference between the
first two harmonics of the voice source as useful features,
they do not systematically analyse how their features al-
low for successful classification to derive an explanation
for phonation modes as an acoustic phenomenon.

This paper focuses on finding the features that best ex-
plain the differences between phonation modes in the con-
text of singing. We investigate whether individual features,
especially descriptors such as NAQ and MDQ, can directly
distinguish some of the phonation modes. Different sets of
features are constructed and used for the automatic classi-
fication of phonation modes to compare their explanatory
power. In its optimal configuration, our classifier signifi-
cantly outperforms existing approaches.

3. DATASET

We use the dataset provided by [21], which contains single
sustained vowels sung by a female professional recorded
at a sampling frequency of 44.1 KHz. Every phonation
mode is reproduced with each of the nine vowels A, AE,
I, O, U, UE, Y, OE and E and with pitches ranging from
A3 to G5. However, pitches above B4 do not feature the
phonation modes flow and pressed. To create a balanced
dataset, where all four classes are approximately equally
represented for each combination of pitch and vowel, we
only use pitches between A3 and B4 and also exclude alter-
native recordings of the same phonation mode. If not stated
otherwise, the balanced dataset called DS-Bal is used in
this study. The full dataset DS-Full is only used to en-
able a comparison with classification results from previous
work [13].

No. Feature No. Feature
F1 MFCC40B F15 Harmonic 1-6 amp.
F2 MFCC80B F16 HNR 500
F3 MFCC80B0 F17 HNR 1500
F4 MFCC80BT F18 HNR 2500
F5 Temp. Flatness F19 HNR 3500
F6 Spec. Flatness F20 HNR 4500
F7 ZCR F21 Formant 1-4 amp.
F8 Spec. Flux Mean F22 Formant 1-4 freq.
F9 Spec. Flux Dev. F23 Formant 1-4 bandw.
F10 Spec. Centroid F24 CPP
F11 HFE1 F25 NAQ
F12 HFE2 F26 MDQ
F13 F0 Mean F27 Peak Slope
F14 F0 Dev. F28 Glottal Peak Slope

Table 1. List of features used in this paper. A detailed
explanation can be found in section 4.

4. FEATURES

A large number of features listed in table 1 is extracted to
facilitate an extensive comparison and evaluation. Apart
from the first three features, trimmed audio samples con-
taining only the centre 600 ms of every recording are used
for extraction to remove potential silences and note tran-
sients, keeping the stable part of the phonation and en-
suring the reliability of LPC-derived features. For time-
dependent features, frames of 50 ms with a Hanning win-
dow and 50% overlap are used for extraction before the
mean of all frames is calculated, unless otherwise noted.
In addition to common spectral features, we include fea-
tures introduced in section 2 specifically designed to esti-
mate phonatory pressedness or breathiness, because they
should be particularly useful in this task.

Mel-frequency cepstral coefficients (MFCCs, F1-F4)
are timbre descriptors used widely in MIR and speech re-
search. In this paper, the n-th coefficient of an MFCC
vector will be denoted as MFCC(n). The first feature
MFCC40B (F1) is a 40-dimensional MFCC vector using
the standard number of 40 Mel bands for the summarisa-
tion of the spectrum and including the 0-th coefficient rep-
resenting energy. Presumably, the lower coefficients cap-
ture information more relevant to phonation modes, as they
encode timbral properties that are independent of pitch.
Therefore, we additionally include MFCC80B (F2), which
is the first 40 coefficients of the MFCCs computed with
80 instead of 40 Mel bands, giving increased resolution in
the lower coefficients. To determine the importance of en-
ergy as a feature for successful classification, MFCC80B0
(F3) is introduced as a variant of MFCC80B that is also
40-dimensional, but does not include the 0-th coefficient.
As an additional variant of MFCC80B (F2), we extract
MFCC80BT (F4), not from the full but from the trimmed
recordings of the sung vowels, to investigate the impor-
tance of timbral information at the vowel onset and release.

Although MFCCs represent the audio signal very effi-
ciently, as they encode most of the energy in the spec-
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trum in the lower coefficients using the discrete cosine
transform, they are hard to interpret as they mostly lack
an intuitive description. We add a range of spectral fea-
tures (F5-F12) to allow for a more comprehensible expla-
nation of the phonation mode as an acoustic phenomenon.
More specifically, temporal flatness (F5) and spectral flat-
ness (F6) compute the ratio between the geometric and the
arithmetic mean of the audio signal in the time and in the
frequency domain, respectively, and describe whether the
signal is smooth or spiky. The spectral flux is summarised
by its mean (F8) and standard deviation (F9). As an esti-
mation of high-frequency energy (HFE), HFE1 (F11) de-
termines the frequency above which only 15% of the to-
tal energy resides and HFE2 (F12) calculates the amount
of energy present above a frequency of 1500 Hz. We ap-
ply the pitch tracking algorithm from [9] and compute the
mean (F13) and standard deviation (F14) of the resulting
series of pitches to determine the amplitudes of the first
six harmonics (F15). As a potential discriminator for the
breathy voice, the harmonic-to-noise ratio (HNR) designed
for speech signals [8] is extracted for the frequencies below
500 (F16), 1500 (F17), 2500 (F18), 3500 (F19) and 4500
(F20) Hz. Using LPC with a filter of order f

1000 + 2 and f
as the sampling frequency in Hz, we retain the amplitudes
(F21), frequencies (F22) and bandwidths (F23) of the first
four formants. We further include CPP (F24), NAQ (F25)
and MDQ (F26) introduced in section 2. Finally, the peak
slope is computed by determining the slope of a regression
line that is fitted to the peaks in the spectrum of the audio
signal (F27) and the glottal waveform (F28) obtained by
the iterative adaptive inverse filtering algorithm [2].

5. FEATURE ANALYSIS

5.1 MFCC Visualisation

In contrast to most of the other features listed in table 1,
MFCCs (F1-F4) can be difficult to interpret. To make
sense of this high-dimensional feature space and how it po-
tentially differentiates phonation modes, we normalise the
coefficients in MFCC40B to have zero mean and unit stan-
dard deviation across the dataset. The resulting coefficients
are visualised in Figure 1, where the recordings on the hor-
izontal axis are grouped by phonation mode and sorted in
ascending order of pitch within each group. Within each
phonation mode, multiple diagonal lines extending across
the 10-th and higher coefficients imply a dependency of
these feature coefficients on pitch, which a classifier would
have to account for to reach high accuracy. The first 10 co-
efficients on the other hand do not exhibit this behaviour
and also partly differ between phonation modes, especially
when comparing breathy to non-breathy phonation. In
particular, MFCC40B(0) as a measure of average energy
increases in value from breathy, neutral, pressed to flow
phonation. Although this visualisation does not reveal de-
pendencies on vowel, it demonstrates the importance of the
lower MFCCs and motivates the usage of MFCC80B, as
more Mel bands increase the resolution in this range.

Normalised values of MFCC40B on DS-Bal
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Figure 1. Visualisation of normalised MFCC40B values.
Vertical gaps separate the different phonation modes. For
each phonation mode, corresponding recordings are sorted
in ascending order of pitch.

5.2 Class separation

In this section, we will investigate whether individual fea-
ture coefficients can directly separate some of the phona-
tion modes by using an analysis of variance (ANOVA). As-
suming that of all MFCC variants, MFCC80B is best suited
for phonation mode detection, we subject MFCC80B and
all remaining features (F5-F28) to an ANOVA with feature
coefficients as dependent variables and the four phonation
modes as independent categorical variables. The resulting
F-Ratio equates to the ratio of variance between classes to
the variance within classes, indicating how clearly phona-
tion modes are separated by a particular feature.

The ten features with the highest resulting F-Ratios in
descending order from F = 441 to F = 213 are CPP, tem-
poral flatness, MFCC80B(0), MFCC80B(1), spectral flat-
ness, HFE1, MDQ, spectral flux mean and deviation, and
MFCC80B(3). However, these features are all mutually
correlated with absolute correlation coefficients above 0.5
(mean: 0.77), indicating a large degree of redundancy.

In Figure 2, the distribution of feature values depend-
ing on phonation mode is shown for CPP, temporal flatness
and MFCC80B(0) as they reach the highest F-Ratios, and
for MDQ because it correlates least with the three afore-
mentioned features. Figure 2 (a) demonstrates that CPP
separates not only breathy from all other phonation modes
significantly, as expected due to its design as a measure
of breathiness [12], but can also distinguish neutral from
pressed and flow phonation and to some degree pressed
from flow phonation. Regardless of its simplicity, tempo-
ral flatness shown in Figure 2 (b) manages to clearly sepa-
rate neutral and breathy from pressed and flow phonation.
MFCC80B(0) shown in Figure 2 (c) confirms the finding
from section 5.1 that each phonation mode features a dif-
ferent loudness on average. Interestingly, MDQ plotted in
Figure 2 (d) behaves similar to temporal flatness shown in
Figure 2 (b) and does not separate the classes more clearly
despite its comparatively complex design intended to di-
rectly quantify the degree of pressedness.
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Figure 2. Distributions of (a) CPP, (b) temporal flatness,
(c) MFCC80B(0) and (d) MDQ for the four phonation
modes.

Regarding the other features, HNR behaves as expected
and successfully separates breathy phonation from all other
phonation modes, with a cut-off of 2500 Hz (F18) achiev-
ing the best F-Ratio of 97.8, but does not differentiate
between the remaining phonation modes. Contrary to its
purpose of estimating pressedness, NAQ surprisingly ex-
hibits only small differences in mean values and large
overlaps of the distributions between different phonation
modes (F = 6.48), possibly because it was originally pro-
posed for speech [3]. Apart from slightly higher values of
peak slope for breathy voices, the feature proves to be un-
informative (F = 22.75), despite obtaining good results
on speech excerpts [14]. Finally, distributions of glottal
peak slope for the phonation modes are not significantly
different (F = 0.42).

In general, separating breathy and neutral phonation
from pressed and flow phonation is more readily achieved
by individual features than distinguishing pressed from
flow phonation. Therefore, we perform the same analy-
sis with only pressed and flow phonation as possible cat-
egories of the independent variable to find features that
make this particularly difficult distinction. As a result,
MFCC80B(0) achieves by far the largest separation (F =
183.23), which is hinted at in Figure 2 (c), followed by
MFCC80B(1) (F = 44.51). Apart from CPP (F = 38.58)
shown in Figure 2 (a) and MFCC80B(10) (F = 31.72), all
remaining features exhibit F-Ratios below 15.

5.3 Robustness against pitch and vowel changes

We investigate the robustness of individual features against
changes of pitch and vowel by performing an ANOVA with
pitch and vowel respectively as independent variables, with
one class for each unique pitch or vowel present in the
dataset. As well as the formant-based features (F21-F23),
the lower MFCC80B coefficients between approximately
4 and 17 are dependent on vowel, a dependency not imme-
diately visible in Figure 1. HFE2 with an F-Ratio of 32.03
is more dependent on vowel than the alternative HFE1 fea-
ture (F = 9.16), further corroborating the superiority of
HFE1 over HFE2 for phonation mode detection. Other par-

ticularly vowel-dependent features are the amplitude of the
third harmonic (F = 26.68) and peak slope (F = 45.04).
Regarding pitch, dependencies were found in MFCC80B
confirming the interpretation of Figure 1, starting with co-
efficient 18 and increasing in F-Ratio until coefficient 30,
where it remains constant for the coefficients 30 to 40. Ex-
cept for F0 Mean as an estimate of pitch, no other sig-
nificant dependencies were found, allowing for the con-
struction of a classifier that is mostly robust against pitch
changes.

5.4 A simple rule set to explain phonation modes

In this section, possible interactions between features that
could explain differences in the phonation modes are anal-
ysed to derive a comprehensible rule set that correctly cat-
egorises most of the recordings. We construct a decision
tree with Gini’s diversity index [6] as split criterion and
prune it so it has only three decision nodes. The result
is the following set of rules using only temporal flatness,
CPP and the MFCC80B(0) for distinguishing the phona-
tion modes:

• Neutral and breathy phonation have higher temporal
flatness (greater than 0.055 = 47th percentile) than
pressed and flow phonation

• Neutral phonation has higher CPP (greater than
29.97 = 30th percentile) than breathy phonation

• Flow phonation has a higher MFCC80B(0) (greater
than −26.37 = 84th percentile) than pressed

The above rules assign the correct class to 78% of the
recordings in the dataset, thus offering a simple explana-
tion for the main differences between the phonation modes.

6. CLASSIFICATION

6.1 Feature Sets

The eight feature sets listed in table 2 are constructed for
training the classifier. The first four feature sets exclusively
use the MFCC variants (F1-F4) from section 4. FS5 con-
tains all features except the MFCC variants (F1-F4), while
FS6 combines the MFCC variant yielding the best classifi-
cation accuracy (F2) with all other features (F5-F28).

In the search for a low-dimensional feature representa-
tion, we apply Principal component analysis (PCA) to the
features in FS6. The resulting principal components sorted
in descending order of their eigenvalues constitute feature
set FS7, for which classification performance will be as-
sessed when including only the first D dimensions. Princi-
pal components can be difficult to interpret, because each
represents a combination of different features. Therefore,
we employ a feature selection method based on mutual in-
formation [19] to retrieve a ranking of the dimensions in
FS6, enabling the construction of an optimal feature set of
dimensionality D with the D highest-ranked feature coef-
ficients. As a result, FS8 contains all feature dimensions
from FS6 sorted in descending order of rank.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 83



Name List of features Dimensions
FS1 MFCC40B (F1) 40
FS2 MFCC80B (F2) 40
FS3 MFCC80B0 (F3) 40
FS4 MFCC80BT (F4) 40
FS5 Features 5 to 28 38
FS6 FS2 and FS5 78
FS7 FS6, PCA-transformed 78
FS8 FS6, sorted by feature selection 78

Table 2. Feature sets used for classification.

6.2 Method

Feed-forward neural networks (NNs) are used for classifi-
cation, as they are robust against noise and correlated in-
puts. We use one hidden layer with a variable number of
neuronsN , and a soft-max output layer. Cross-validation is
employed that splits the dataset into 10 evenly distributed
subsets, using every combination of two subsets as test and
validation set with the remaining 8 subsets as training data,
resulting in 10 · 9 iterations. For training, stochastic gra-
dient descent is used to minimise cross-entropy error after
semi-randomly initialising the network weights with the
Nguyen-Widrow initialisation method [18].We describe
the overall performance with the mean F-measure obtained
over all cross-validation iterations.

To find the optimal number of hidden neuronsN for ev-
ery feature set, we determine the mean F-measure achieved
for everyN ∈ {1, . . . , 40}. To obtain a compact set of fea-
tures that yields high accuracy, we also optimise the mean
F-measure achieved when using only the first D dimen-
sions in the feature sets FS1 to FS4 as well as FS7 and
FS8, resulting in a grid search with the number of neurons
N and the number of features D as parameters.

6.3 Results

The classification results obtained with varying numbers
of hidden neurons N and dimensions D using the feature
sets FS1, FS2, FS7 and FS8 are visualised in Figure 3. We
excluded the feature sets FS3 and FS4 due to their simi-
lar behaviour compared to FS1 and FS2, and FS5 as well
as FS6 because only the number of neurons N was varied.
WithN < 4 neurons in the hidden layer, mean F-measures
remain at low levels for every feature set regardless of the
number of dimensions. Performance with more neuronsN
improves gradually when using an increasing number of
MFCCs, as Figures 3 (a) and (b) demonstrate. The rate of
this increase becomes less pronounced for higher MFCCs,
implying that the differences in phonation mode are mostly
encoded by approximately the first 20 MFCCs. FS2 con-
taining MFCC80B shown in Figure 3 (b) however reaches
significantly higher mean F-measures with the same num-
ber of coefficients than FS1 comprised of MFCC40B in
Figure 3 (a). An increased frequency resolution of the cep-
strum representation could be an explanation, as it leads to
a more precise description of the relevant low-frequency
components in the spectrum. Applying PCA does not lead

Figure 3. Mean F-measures when using a different number
of neurons N and the first D dimensions in the feature sets
(a) FS1, (b) FS2, (c) FS7 and (d) FS8.

to a drastically reduced dimensionality of the feature space
without a major degradation in performance: Including the
first D principal components of feature set FS7 only re-
sults in moderate performance for D < 19. One reason
could be an intrinsically high dimensionality of the fea-
ture space, corroborated by the requirement of 32 principal
components to explain 95% of the variance. Additionally,
the first principal components could encode mostly pitch-
and vowel-dependent variances in feature values instead
of changes induced by different phonation modes. In con-
trast, feature selection considers how informative each fea-
ture dimension is for classification. As a result, including
only the first few dimensions of FS8, which were ranked
highest by feature selection, yields high mean F-measures
as shown in Figure 3 (d).

Generally, the mean F-measure is subject to consider-
able variance due to the random selection of subsets per-
formed by cross-validation. Because this impedes the ro-
bust selection of the optimal parameters, we interpolate
the mean F-measures using locally weighted regression [7]
with a span of 0.1, meaning 10% of the data points along
each dimension nearest to an interpolated point determine
its position. Intended as a trade-off between classifica-
tion accuracy and model complexity, we define the optimal
combination of parameters N and D as

(Nopt, Dopt) = argmin
(N,D)

{N +D | (N,D) ∈ C}, (1)

where C is the set of parameter configurations for which
neither adding a dimension nor a hidden neuron increases
the smoothed F-measure s(N,D) more than a threshold t:

C = {(N,D) | s(N + 1, D)− s(N,D) < t (2)

∧ s(N,D + 1)− s(N,D) < t}. (3)

For t = 0.001, the mean F-measures for the optimised
parameter settings are shown in table 3, including the 95%
confidence for the maximum deviation of the mean in both
directions, calculated as 1.96 times the standard error of

84 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Feature set Nopt Dopt Mean F-m. 1.96 · SEM
FS1 10 18 0.7403 0.027
FS2 8 15 0.7965 0.026
FS3 12 17 0.7948 0.027
FS4 9 21 0.7358 0.028
FS5 9 - 0.7681 0.023
FS6 9 - 0.8501 0.024
FS7 9 26 0.8050 0.025
FS8 9 24 0.8302 0.026

Table 3. Classification results for each feature set after
optimising the number of neurons N and dimensions D.

the mean (SEM), to determine whether two classification
results are significantly different from each other. For ev-
ery feature set, at least moderate performance is achieved
with only a low number of neurons. The usage of 80
Mel bands in MFCC80B (FS2) results in a significantly
higher F-measure compared to the standard MFCC40B
feature (FS1) with 40 Mel bands. Although FS3 exhibits
lower performance with only very few coefficients, remov-
ing MFCC80B(0) does not decrease accuracy compared to
FS2, perhaps because its correlation with higher MFCCs
can be used to gain very similar information. The MFCCs
appear to capture relevant timbral information present at
the vowel onsets and releases, as the decreased perfor-
mance for FS4 using the trimmed recordings shows. The
interpretable, 38-dimensional feature set FS5 obtains mod-
erate accuracy, but the best mean F-measure of 0.8501 is
reached with the 78-dimensional feature set FS6. Applica-
tion of PCA (FS7) and feature selection based on mutual
information (FS8) on feature set FS6 lead to only slightly
reduced performance with fewer dimensions. Feature se-
lection is particularly successful, allowing us to construct a
NN with only four hidden neurons and the MFCC80B(0),
MFCC80B(1), MFCC80B(12), spectral flux mean and de-
viation, HNR 3500 and temporal flatness as features that
still achieves a mean F-measure of 0.78 (SEM = 0.027).

To compare performance, we use the full dataset DS-
Full on which the best mean F-measure of 0.84 was
achieved by [13], and train a NN in the same manner as
described in section 6.2. FS6 is chosen for this experiment,
as it exhibits the best performance on the dataset DS-Bal.
With N = 13 neurons, a mean F-measure of 0.868 with
an SEM of 0.015 is obtained, leading to a 95% confidence
interval of [0.846, 0.890] for the F-measure and proving
a significant improvement over the previously achieved
mean F-measure of 0.84.

7. DISCUSSION AND OUTLOOK

Although designed specifically to only determine the
amount of breathiness, CPP manages to separate each
phonation mode best out of all features (F = 441). MDQ
reliably distinguishes pressed and flow phonation from
neutral and breathy phonation (F = 310), but has a cor-
relation of 0.66 with temporal flatness, which achieves a
better direct class separation (F = 394) with a simpler ap-
proach. Peak slope (F = 22.75) and glottal peak slope

(F = 0.65) show weak discriminative power, in con-
trast to previous work [14]. The same applies to NAQ
(F = 6.48), which contradicts previous literature demon-
strating its suitability to measure the degree of pressed-
ness [1, 3, 24] and warrants further investigation.

Contrary to the assumption in [20] that MFCCs are
inapt for phonation mode classification, the lower coef-
ficients alone lead to commensurate performance despite
their dependence on vowel. Our classifier is mostly able
to account for these effects, but an investigation into how
class separation is exactly achieved, for example by us-
ing rule extraction from NNs [4], remains for future work.
The increase in performance with MFCCs when includ-
ing the full recording (MFCC80B) instead of an excerpt
(MFCC80BT) demonstrates the relevance of timbral infor-
mation at the vowel onset and release, but a more detailed
analysis is needed to find the underlying cause. We show
that using 80 Mel bands further increases performance, re-
vealing the importance of optimising this parameter in fu-
ture work. Every phonation mode features a different loud-
ness, as indicated by MFCC80B(0) as a measure of average
energy (F = 352). Loudness could vary strongly in more
realistic singing conditions and between different singers,
therefore making loudness-based phonation mode detec-
tion not very generalisable and adaptive to other scenarios.

Overall, the dataset has severe limitations, which re-
duces the generalisability of classifiers trained on this data:
Because it only contains one singer, detection could be
using singer-specific effects leading to decreased perfor-
mance when confronted with other singers. Classification
also has to be extended to work on full recordings of vo-
cal performances instead of only isolated vowels. Finally,
the recordings in the dataset are monophonic unlike many
real-world music pieces, for which performance could be
reduced due to the additionally required singing voice sep-
aration. Considering this is the only publically available
dataset known to the authors that includes annotations of
phonation mode, the development of larger, more compre-
hensive datasets for phonation mode detection seems criti-
cal for future progress on this task.

8. CONCLUSION

In this paper, we investigated the discriminative and ex-
planatory power of a large number of features in the con-
text of phonation mode detection. CPP, temporal flatness
and MFCC80B(0) representing average energy were found
to separate the phonation modes best, as they can correctly
explain the phonation mode present in 78% of all record-
ings. Contrary to previous work, NAQ, peak slope and
glottal peak slope did not separate phonation modes well.
MFCCs lead to good classification accuracy using NNs as
shown in section 6, particularly when using 80 instead of
40 Mel bands. The highest mean F-measure of 0.85 is
achieved on the balanced dataset DS-Bal when using all
features, demonstrating their explanatory power and the
success of our classifier. On the dataset DS-Full, we attain
an F-measure of 0.868, thereby significantly outperform-
ing the best classifier from previous work [13].
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ABSTRACT

In this paper, we analyse the pitch trajectories of vocal imi-
tations by non-poor singers. A group of 43 selected singers
was asked to vocally imitate a set of stimuli. Five stimu-
lus types were used: a constant pitch (stable), a constant
pitch preceded by a pitch glide (head), a constant pitch fol-
lowed by a pitch glide (tail), a pitch ramp and a pitch with
vibrato; with parameters for main pitch, transient length
and pitch difference. Two conditions were tested: singing
simultaneously with the stimulus, and singing alternately,
between repetitions of the stimulus. After automatic pitch-
tracking and manual checking of the data, we calculated
intonation accuracy and precision, and modelled the note
trajectories according to the stimulus types. We modelled
pitch error with a linear mixed-effects model, and tested
factors for significant effects using one-way analysis of
variance. The results indicate: (1) Significant factors in-
clude stimulus type, main pitch, repetition, condition and
musical training background, while order of stimuli, gen-
der and age do not have any significant effect. (2) The
ramp, vibrato and tail stimuli have significantly greater ab-
solute pitch errors than the stable and head stimuli. (3)
Pitch error shows a small but significant linear trend with
pitch difference. (4) Notes with shorter transient duration
are more accurate.

1. INTRODUCTION

Studying the vocal imitations of pitch trajectories is ex-
tremely important because most of the human produce a
musical tone by imitation rather than absolute. Only .01%
of the general population can produce a musical tone with-
out the use of an external reference pitch [22]. Although
sing in tone is the primary element of singing performance,
the research of vocal imitations with unstable stimuli has
not been explored. It is significant to distinguish the in-
fluence factors and to quantise them, fill the gap between
response and stimuli, as well as create knowledge to help
the future music education and entertainment.
The accuracy of pitch in playing or singing is called into-
nation [8, 20]. Singing in tune is extremely important for
solo singers and choirs because they must be accurate and

c© Jiajie Dai, Simon Dixon. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jiajie Dai, Simon Dixon. “Analysis of vocal imitations of pitch
trajectories”, 17th International Society for Music Information Retrieval
Conference, 2016.

blend well with accompaniments and other vocal parts [1].
However, it is a practical challenge when the singers have
to sing with an unstable reference pitch or other vocal parts
without instrumental accompaniment [17, Ch. 12, p. 151].
Nevertheless, most singers rely on their sense of relative
pitch and their teammates who provide reference pitches
which help them maintain tuning, as the initial tonal ref-
erence can be forgotten over time [9, 11]. Pfordresher et
al. [16] distinguish between pitch accuracy, the average
difference between the sung pitch and target pitch, and
pitch precision, the standard error of sung pitches.
As for vocal reference pitch (stimulus of imitation in this
paper), it usually does not have a fixed pitch for each note
which is different from percussion instruments with a sta-
ble shape [4, 7, 11]. Instead, vocal notes typically fluctu-
ate around the target pitch. When singing with a stable
reference pitch, the singer will voluntarily adjust their vo-
cal output until the auditory feedback matches the intended
note [28]. This adjustment especially at the beginning of
the note, they may sing with vibrato, and they may not sus-
tain the pitch at the end of the note [27]. Although singers
make fewer errors when singing in unison or with stable
accompaniment [24], the response of unstable stimulus or
notes with transient parts is still obscure.
A transient is part of a signal (often at the beginning) dur-
ing which its properties are rapidly changing and thus un-
predictable. For most musical tones, a short transient seg-
ment is followed by a much longer steady state segment,
but for singing, such a segmentation is difficult, as the sig-
nal never reaches a steady state. At the beginning of a tone,
a pitch glide is often observed as the singer adjusts the vo-
cal cords from their previous state (the previous pitch or a
relaxed state). Then the pitch is adjusted as the singer uses
perceptual feedback to correct for any error in the pitch.
Possibly at the same time, vibrato may be applied, which
is an oscillation around the central pitch, which is close to
sinusoidal for skilled singers, but asymmetric for unskilled
singers [7]. At the end of the tone, the pitch often moves
in the direction of the following note, or downward (to-
ward a relaxed vocal cord state) if there is no immediately
following note.
To investigate the response of singers to time-varying pitch
trajectories, we prepared a controlled experiment using syn-
thetic stimuli, in order to test the following hypotheses:

• The stimulus type will have a significant effect on
intonation accuracy.

• A greater duration or extent of deviation from the
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Figure 1: Experimental design showing timing of stimuli
and responses for the two conditions.

main pitch will increase intonation error.

• The direction of any deviation in the stimulus from
the main pitch determines the direction of any error
in the response.

• Singing simultaneously with the stimulus will result
in a lower error than alternating the response with
the stimulus.

We extract the fundamental frequency (f0) [5,10] and con-
vert to a logarithmic scale, corresponding to non-integer
numbers of equal-tempered semitones from the reference
pitch (A4, 440Hz). We model responses according to stim-
ulus types in order to compute the parameters of observed
responses. The significance of factors (stimulus type, stim-
ulus parameters and order of stimuli, as well as partici-
pants’ musical background, gender and age) was evaluated
by analysis of variance (ANOVA) and linear mixed-effects
models.

2. MATERIALS AND METHODS

2.1 Experimental Design

The experiment consisted of 75 trials in each of two con-
ditions. In each trial, the participant imitated the stimulus
three times (see Figure 1). Each stimulus was one sec-
ond in duration. In the simultaneous condition, the stim-
ulus was repeated six times, with one second of silence
between the repetitions, and the participants sang simul-
taneously with the 2nd, 4th and 6th instances of the stimu-
lus. The sequenced condition was similar in that the re-
sponses occurred at the same times as in the simultane-
ous case, but the stimulus was not played at these times.
There was a three second pause after each trial. The trials
of a given condition were grouped together, and partici-
pants were given visual prompts so that they knew when to
respond. Each of the 75 trials within a condition used a dif-
ferent stimulus, taken from one of the five stimulus types
described in Section 2.2, and presented in a random order.
The two conditions were also presented in a random order.

2.2 Stimuli

Unlike previous imitation experiments which have used
fixed-pitch stimuli, our experimental stimuli were synthe-

sised from time-varying pitch trajectories in order to pro-
vide controlled conditions for testing the effect of specific
deviations from constant pitch. Five stimulus types were
chosen, representing a simplified model of the components
of sung tones (constant pitch, initial and final glides, vi-
brato and pitch ramps). The pitch trajectories of the stim-
uli were generated from the models described below and
synthesised by a custom-made MATLAB program, using
a monotone male voice on the vowel /a:/.
The five different stimulus types considered in this work
are: constant pitch (stable), a constant pitch preceded by
an initial quadratic pitch glide (head), a constant pitch fol-
lowed by a final quadratic pitch glide (tail), a linear pitch
ramp (ramp), and a pitch with sinusoidal vibrato (vibrato).
The stimuli are parametrised by the following variables:
pm, the main or central pitch; d, the duration of the tran-
sient part of the stimulus; and pD, the extent of pitch devi-
ation from pm. For vibrato stimuli, d represents the period
of vibrato. Values for each of the parameters are given in
Table 1 and the text below.
By assuming an equal tempered scale with reference pitch
A4 tuned to 440 Hz, pitch p and fundamental frequency f0

can be related as follows [11]:

p = 69 + 12 log2
f0

440
(1)

such that for integer values of p the scale coincides with
the MIDI standard. Note that pitch is not constrained to
integer values in this representation.
For the stable stimulus, the pitch trajectory p(t) is defined
as follows:

p(t) = pm, 0 6 t 6 1. (2)

The head stimulus is represented piecewise by a quadratic
formula and a constant:

p(t) =

{
at2 + bt+ c, 0 6 t 6 d
pm, d < t 6 1. (3)

The parameters a, b and c are selected to make the curve
pass through the point (0,pm + pD) and have its vertex
at (d,pm). The tail stimulus is similar, with p(t) = pm
for t < 1 − d, and the transient section being defined for
1 − d 6 t 6 1. In this case the parameters a, b and c are
chosen so that the curve has vertex (1−d,pm) and passes
through the point (1,pm + pD).
The ramp stimuli are defined by:

p(t) = pm + pD × (t− 0.5), 0 6 t 6 1. (4)

Finally, the equation of vibrato stimuli is:

p(t) = pm + pD sin
(

2πt
d

)
, 0 6 t 6 1. (5)

There is a substantial amount of data on the fundamental
frequency of the voice in the speech of speakers who differ
in age and sex [23]. We chose three pitch values accord-
ing to gender to fall within a comfortable range for most
singers. The pitches C3 (p = 48), F3 (p = 53) and B[3
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(p = 58) were chosen for male singers and C4 (p = 60),
F4 (p = 65) and B[4 (p = 70) for female singers. For the
vibrato stimuli, we set the vibrato rate according to a re-
ported mean vibrato rate across singers of 6.1 Hz [18], and
the extent or depth of vibrato to±0.25 or 0.5 semitones, in
accordance with values reported by [21]. Because intona-
tion accuracy is affected by the duration of the note [4, 6],
we used a fixed one-second duration for all stimuli in this
experiment.

Table 1: Parameter settings for each stimulus type. The
octave for the pitch parameter was dependent on sex (3 for
male, 4 for female).

Type pm d pD Count
stable {C, F, B[} {0.0} {0.0} 3
head {C, F, B[} {0.1, 0.2} {±1,±2} 24
tail {C, F, B[} {0.1, 0.2} {±1,±2} 24
ramp {C, F, B[} {1.0} {±1,±2} 12
vibrato {C, F, B[} {±0.32} {0.25, 0.5} 12

2.3 Participants

A total of 43 participants (27 female, 16 male) took part
in the experiment. 38 of them were recorded in the studio
and 5 were distance participants from the USA, Germany,
Greece and China (2 participants). The range of ages was
from 19 to 34 years old (mean: 25.1; median: 25; std.dev.:
2.7). Apart from 3 participants who did not complete the
experiment, most singers recorded all the trials.
We intentionally chose non-poor singers as our research
target. “Poor-pitch singers” are defined as those who have
a deficit in the use of pitch during singing [15,25], and are
thus unable to perform the experimental task. Participants
whose pitch imitations had on average at least one semi-
tone absolute error were categorised as poor-pitch singers.
The data of poor-pitch singers is not included in this study,
apart from one singer who occasionally sang one octave
higher than the target pitch.
Vocal training is an important factor for enhancing the sing-
ing voice and making the singer’s voice different from that
of an untrained person [12]. To allow us to test for the
effects of training, participants completed a questionnaire
containing 34 questions from the Goldsmiths Musical So-
phistication Index [13] which can be grouped into 4 main
factors for analysis: active engagement, perceptual abil-
ities, musical training and singing ability (9, 9, 7 and 7
questions respectively).

2.4 Recording Procedure

A tutorial video was played before participation. In the
video, participants were asked to repeat the stimulus pre-
cisely. They were not told the nature of the stimuli. Singers
who said they could not imitate the time-varying pitch tra-
jectory were told to sing a stable note of the same pitch.
The experimental task consisted of 2 conditions, each con-
taining 75 trials, in which participants sang three one-sec-
ond responses in a 16-second period. It took just over one
hour for participants to finish the experiment. 22 singers
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Figure 2: Example of extracted pitch and annotation for
head stimulus (pm = 48, pD = 1, d = 0.1). The upper
panel shows the results for pitch extraction by YIN, and
the three lower panels show the segmented responses.

took the simultaneous condition first and 21 singers took
the sequenced condition first. Although the synthetic stim-
ulus simulated the vowel /a:/, participants occasionally chose
other vowels that felt comfortable.
We used an on-line system to record and manage the ex-
periment. After sign-up, participants completed the unfin-
ished tests guided by a graphical interface. After singing
each trial, the system automatically uploaded the record-
ings to a server and the annotation results were simultane-
ously generated. All responses were labelled with singer
ID, condition, trial, order and repetition.

2.5 Annotation

Each recording file contains three responses, from which
we extract pitch information using the YIN algorithm (ver-
sion 28th July 2003) [5]. This outputs the pitch trajectory
p(t) from which we compute the median pitch p̄ for each
response. The segmentation into individual responses is
based on the timing, pitch and power. If participants sang
more than 3 repetitions we choose the three responses that
have the longest duration and label them with the recording
order. Any notes having a duration less than 0.1 seconds
were excluded. Any remaining notes with a duration less
than 0.4 seconds were flagged and checked manually. Most
of these deficient notes were due to participants making no
response. Figure 2 shows an example of pitch extraction
and segmentation.
The main pitch p̄ of response was calculated by removing
the first 10% and last 10% of the response duration, and
computing the median of the remaining pitch track. The
pitch error ep is calculated as the difference between the
main pitch of the stimulus pm and that of the response p̄:

ep = p̄− pm (6)

For avoiding bias due to large errors we exclude any re-
sponses with |ep| > 2 (4% of responses). Such errors arose
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when participants sang the pitch of the previous stimulus or
one octave higher than the stimulus. The resulting database
contains 18572 notes, from which the statistics below were
calculated.
The mean pitch error (MPE) over a number of trials mea-
sures the tendency to sing sharp (MPE > 0) or flat (MPE <
0) relative to the stimulus. The mean absolute pitch error
(MAPE) measures the spread of a set of responses. These
can be viewed respectively as inverse measures of accuracy
and precision (cf. [16]).
To analyse differences between the stimulus and response
as time series, pitch error epf (t) is calculated frame-wise:
epf (t) = pr(t) − ps(t), for stimulus ps(t) and response
pr(t), where the subscript f distinguishes frame-wise re-
sults. For frame period T and frame index i, 0 6 i < M,
we calculate summary statistics:

MAPEf =
1
M

M−1∑

i=0

|epf (iT)| (7)

and MPEf is calculated similarly. Equation 7 assumes that
the two sequences pr(t) and ps(t) are time-aligned. Al-
though cross-correlation could be used to find a fixed off-
set between the sequences, or dynamic time warping could
align corresponding features if the sequences proceed at
different or time-varying rates, in our case we consider
singing with the correct timing to be part of the imitation
task, and we align the stimulus to the beginning of the de-
tected response.

3. RESULTS

We first report pitch error (MPE: 0.0123; std.dev.: 0.3374),
absolute pitch error (MAPE: 0.2441; std.dev.: 0.2332) and
frame-wise absolute pitch error (MAPEf: 0.3968; std.dev.:
0.2238) between all the stimuli and responses. 71.1% of
responses have an absolute error less than 0.3 semitones.
51.3% of responses are higher than the stimulus (ep >

0). All the singers’ information, questionnaire responses,
stimulus parameters and calculated errors were arranged
in a single table for further processing. We first analyse
the factors influencing absolute pitch error in the next two
subsections, and then consider pitch error in section 3.3
and the modelling of responses in the following two sub-
sections.

3.1 Influence of stimulus type on absolute pitch error

We performed one-way independent samples analysis of
variance (one-way ANOVA) with the fixed factor stimu-
lus type (five levels: stable, head, tail, ramp and vibrato)
and the random factor participant. There was a significant
effect of stimulus type ([F(4, 18567) = 72.3, p < .001]).
Post hoc comparisons using the Tukey HSD test indicated
that the absolute ep for tail, ramp and vibrato stimuli were
significantly different from that of the stable stimuli, while
the head stimuli showed no significant difference from sta-
ble stimuli (see Table 2). Thus tail, ramp and vibrato stim-
uli do have an effect on pitch precision. Table 2 also shows

Stimulus MAPE Confidence interval Effect size
stable 0.1977 [0.1812, 0.2141] –
head 0.1996 [0.1938, 0.2054] 0.2 cents
tail 0.2383 [0.2325, 0.2441]* 4.1 cents
ramp 0.3489 [0.3407, 0.3571]*** 15.1 cents
vibrato 0.2521 [0.2439, 0.2603]*** 5.5 cents

Table 2: Mean absolute pitch error (MAPE) and 95% con-
fidence intervals for each stimulus type (***p < .001;
**p < .01; *p < .05).

the 95% confidence intervals for each stimulus type. Ef-
fect sizes were calculated by a linear mixed-effects model
comparing with stable stimulus results.

3.2 Factors of influence for absolute pitch error

The participants performed a self-assessment of their musi-
cal background with questions from the Goldsmiths Musi-
cal Sophistication Index [14] covering the four areas listed
in Table 3, where the general factor is the sum of other four
factors. An ANOVA F-test found that all background fac-
tors are significant for pitch accuracy (see Table 3). The
task involved both perception and production, so it is to be
expected that both of these factors (perceptual and singing
abilities) would influence results. Likewise most musical
training includes some ear training which would be bene-
ficial for this experiment.

Factor Test Results
General factor F(30, 18541) = 54.4 ***
Active engagement F(21, 18550) = 37.3 ***
Perceptual abilities F(22, 18549) = 57.5 ***
Musical training F(24, 18547) = 47.2 ***
Singing ability F(20, 18551) = 69.8 ***

Table 3: Influence of background factors.

We used R [19] and lme4 [2] to perform a linear mixed-
effects analysis of the relationship between factors of in-
fluence and |ep|. The factors stimulus type, main pitch,
age, gender, the order of stimuli, trial condition, repetition,
duration of pitch deviation d, extent of pitch deviation pD,
observed duration and the four factors describing musical
background were added separately into the model, and a
one-way ANOVA between the model with and without the
factor tested whether the factor had a significant effect. Ta-
ble 4 shows the p-value of ANOVA results after adding
each factor.
We created a fixed model with factors stimulus type, main
pitch, repetition and trial condition. As a random effect,
we had the factor of the singer. Visual inspection of resid-
ual plots did not reveal any obvious deviations from ho-
moscedasticity or normality. The p-values were obtained
by likelihood ratio tests of the full model with the effect
in question against the model without the effect in ques-
tion [26].
According to the modelling results on |ep|, significant ef-
fects were found for the factors stimulus type, main pitch
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Table 4: Significance and effect sizes for tested factors
based on ANOVA results.

Factors p-value Effect size (cents)
Stimulus type 2.2e-16*** See Table 2
pm 5.4e-7*** -0.19
Age 0.51
Gender 0.56
Order of stimuli 0.13
Trial condition 2.2e-16*** 3.2
Repetition 2.2e-16*** -1.8
Duration of transient d 2.2e-16*** 11.4
sign(pD) 5.1e-6*** 0.8
abs(pD) 8.3e-12*** 1.9
Observed duration 3.3e-4*** -5.4
Active engagement 6.9e-2
Perceptual abilities 0.04* -0.3
Musical training 6.2e-5*** -0.5
Singing ability 8.2e-2

pm (effect size: -2.35 cents per octave), trial condition,
repetition, musical background, duration of pitch deviation
(effect size: 11.4 cents per second), direction of pitch de-
viation, magnitude of pitch deviation (effect size: 1.7 cents
per semitone) and observed duration (effect size: -5.4 cents
per second). The remaining factors (singer, age, gender
and the order of stimuli) did not have any significant ef-
fect on |ep| in this model. The LME models gave different
results for the background questionnaire factors than the
one-way ANOVA, with only two of the factors, perceptual
abilities and musical training, having a significant effect.

Contrary to our hypothesis, singing simultaneously (MAPE:
0.26; std.dev.: 0.25) is 3.2 cents less accurate than the se-
quenced condition (MAPE: 0.23; std.dev: 0.21). Despite
the large spread of results, the standard errors in the means
are small and the difference is significant. Recall also that
responses with |ep| over 2 semitones were excluded.

Other significant factors were repetition, where we found
that MAPE decreases 1.8 cents for each repetition (that is,
participants improved with practice), and observed dura-
tion and main pitch, which although significant, had very
small effect sizes for the range of values they took on.

3.3 Effect of pitch deviation on pitch error

We now look at specific effects on the direction of pitch er-
ror, to test the hypothesis that asymmetric deviations from
main pitch are likely to lead to errors in the direction of
the deviation. For the stable, head and tail stimuli, a corre-
lation analysis was conducted to examine the relationship
between pitch deviation and MPE. The result was signifi-
cant on MPE (F(4, 12642) = 8.4, p = 9.6e−7) and MAPE
(F(4, 12642) = 8.2, p = 1.3e−6). A significant regression
equation was found, with R2 = 2.5e − 3, modelling pitch
error as eP = 0.033+0.01pD. Pitch error increased 1 cent
for each semitone of pD, a significant but small effect, as
shown in Figure 3.
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Figure 3: Boxplot of MPE for different pD, showing me-
dian and interquartile range, regression line (red, solid)
and 95% confidence bounds (red, dotted). The regression
shows a small bias due to the positively skewed distribu-
tion of MPE.

3.4 Modelling

In this section, we fit the observed pitch trajectories to a
model defined by the stimulus type, to better understand
how participants imitated the time-varying stimuli. The
head and tail stimuli are modelled by a piecewise linear
and quadratic function. Given the break point, correspond-
ing to the duration of the transient, the two parts can be
estimated by regression. We perform a grid search on the
break point and select the optimal parameters according to
the smallest mean square error. Figure 4 shows an example
of head response modelling.
The ramp response is modelled by linear regression. The
model pm of a stable response is the median of p(t) for
the middle 80% of the response duration. The vibrato re-
sponses were modelled with the MATLAB nlinfit function
using Equation 5 and initialising the parameters with the
parameters of the stimulus.
For the absolute pitch error between modelling results and
stimuli, 66.5% of responses have an absolute error less
than 0.3 semitones, while only 29.3% of trials have an ab-
solute error less than 0.3 semitones between response and
stimulus. We observed that some of the vibrato models did
not fit the stimulus very well because the singer attempted
to sing a stable pitch rather than imitate the intonation tra-
jectory.

3.5 Duration of transient

As predicted, the duration d of the transient has a signifi-
cant effect on MPE (F(5, 18566) = 51.4, p < .001). For
the stable, head and tail stimuli, duration of transient in-
fluences MAPE (F(2, 12644) = 31.5, p < .001), where
stimuli with smaller transient length result in lower MAPE.
The regression equation is MAPE = 0.33 + 0.23d with
R2 = 0.208. MAPE increased 23.2 cents for each second
of transient. This matches the result from the linear mixed-
effects model, where effect size is 23.8 cents per second.
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Based on the modelling results, we observed that transient
length in responses was longer than in the corresponding
stimuli. 74.2% of head and tail responses have transient
length longer than that of the stimulus. Stimulus transients
are 0.1 or 0.2 seconds, but 65.5% of head and 72.0% of
tail responses have a transient longer than 0.2 seconds.

4. DISCUSSION

Since we intentionally chose non-poor singers, most par-
ticipants imitated with small error. 88.5% of responses
were sung with intonation error less than half a semitone.
The responses are characterised far more by imprecision
than inaccuracy. That is, there is very little systematic er-
ror in the results (MPE = 0.0123), whereas the individ-
ual responses exhibit much larger errors in median pitch
(MAPE = 0.2441) and on a frame-wise level within notes
(MAPEf = 0.3968). The results for MAPE are within
the range reported for non-poor singers attempting known
melodies (19 cents [11], 28 cents [4]), and thus is better ex-
plained by limitations in production and perception rather
than by any particular difficulty of the experimental task.
The stable stimuli gave rise to the lowest pitch errors, al-
though the head responses were not significantly different.
The larger errors observed for the tail, ramp and vibrato
stimuli could be due to a memory effect. These three stim-
ulus types have in common that the pitch at the end of the
stimulus differs from pM. Thus the most recent pitch heard
by the participant could distract them from the main tar-
get pitch. The ramp stimuli, having no constant or central
pitch, was the most difficult to imitate, and resulted in the
highest MAPE.
It was hypothesised that the simultaneous condition would
be easier than the sequenced condition, as singing tends to
be more accurate when accompanied by other singers or
instruments. We propose two reasons why this experiment
might be exceptional. Firstly, in the sequenced condition,

the time between stimulus and response was short (1 sec-
ond), so it would be unlikely that the participant would for-
get the reference pitch. Secondly, the stimulus varied more
quickly than the auditory feedback loop, the time from
perception to a change in production (around 100ms [3]),
could accommodate. Thus the feedback acts as a distractor
rather than an aid. Singing in practice requires staying in
tune with other singers and instruments. If a singer takes
their reference from notes with large pitch fluctuations, es-
pecially at their ends, this will adversely affect intonation.

5. CONCLUSIONS

We designed a novel experiment to test how singers re-
spond to controlled stimuli containing time-varying pitches.
43 singers vocally imitated 75 instances of five stimulus
types in two conditions. It was found that time-varying
stimuli are more difficult to imitate than constant pitches,
as measured by absolute pitch error. In particular, stim-
uli which end on a pitch other than the main pitch (tail,
ramp and vibrato stimuli) had significantly higher abso-
lute pitch errors than the stable stimuli, with effect sizes
ranging from 15 cents (ramp) to 4.1 cents (tail).
Using a linear mixed-effects model, we determined that
the following factors influence absolute pitch error: stim-
ulus type, main pitch, trial condition, repetition, duration
of transient, direction and magnitude of pitch deviation,
observed duration, and self-reported musical training and
perceptual abilities. The remaining factors that were tested
had no significant effect, including self-reported singing
ability, contrary to other studies [11].
Using one-way ANOVA and linear regression, we found a
positive correlation between extent of pitch deviation (pitch
difference, pD) and pitch error. Although the effect size
was small, it was significant and of similar order to the
overall mean pitch error. Likewise we observed that the
duration d of the transient proportion of the stimulus cor-
related with absolute pitch error. Contrary to expectations,
participants performed 3.2 cents worse in the condition
when they sang simultaneously with the stimulus, although
they also heard the stimulus between singing attempts, as
in the sequenced condition.
Finally, we extracted parameters of the responses by a for-
ced fit to a model of the stimulus type, in order to describe
the observed pitch trajectories. The resulting parameters
matched the stimuli more closely than the raw data did.
Many aspects of the data remain to be explored, but we
hope that the current results take us one step closer to un-
derstanding interaction between singers.

6. DATA AVAILABILITY

There is the tutorial video which show participants how
to finish the experiment before they start: https://www.
youtube.com/watch?v=xadECsaglHk. The annotated
data and code to reproduce our results are available in an
open repository at: https://code.soundsoftware.ac.
uk/projects/stimulus-intonation/repository.
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Steve Walker. Fitting Linear Mixed-Effects Models Us-
ing lme4. Journal of Statistical Software, 67(1):1–48,
2015.

[3] T. A. Burnett, M. B. Freedland, C. R. Larson, and T. C.
Hain. Voice F0 Responses to Manipulations in Pitch
Feedback. Journal of the Acoustical Society of Amer-
ica, 103(6):3153–3161, 1998.

[4] Jiajie Dai, Matthias Mauch, and Simon Dixon. Analy-
sis of Intonation Trajectories in Solo Singing. In Pro-
ceedings of the 16th ISMIR Conference, volume 421,
2015.
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ABSTRACT

Traditional automatic music recommendation systems’
performance typically rely on the accuracy of statistical
models learned from past preferences of users on music
items. However, additional sources of data such as de-
mographic attributes of listeners, their listening behaviour,
and their listening contexts encode information about lis-
teners, and their listening habits, that may be used to im-
prove the accuracy of music recommendation models.

In this paper we introduce a large dataset of music lis-
tening histories with listeners’ demographic information,
and a set of features to characterize aspects of people’s lis-
tening behaviour. The longevity of the collected listening
histories, covering over two years, allows the retrieval of
basic forms of listening context. We use this dataset in the
evaluation of accuracy of a music artist recommendation
model learned from past preferences of listeners on music
items and their interaction with several combinations of
people’s demographic, profiling, and contextual features.
Our results indicate that using listeners’ self-declared age,
country, and gender improve the recommendation accu-
racy by 8 percent. When a new profiling feature termed
exploratoryness was added, the accuracy of the model in-
creased by 12 percent.

1. LISTENING BEHAVIOUR AND CONTEXT

The context in which people listen to music has been
the object of study of a growing number of publications,
particularly coming from the field of music psychology.
Konec̆ni has suggested that the act of music listening has
vacated the physical spaces devoted exclusively to mu-
sic performance and enjoyment long ago, and that music
nowadays is listened to in a wide variety of contexts [13].
As music increasingly accompanies our everyday activi-
ties, the music and the listener are not the only factors,
as the context of listening has emerged as another vari-
able that influences, and is influenced, by the other two

c© Gabriel Vigliensoni and Ichiro Fujinaga. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Gabriel Vigliensoni and Ichiro Fujinaga. “Automatic
music recommendation systems: do demographic, profiling, and contex-
tual features improve their performance?”, 17th International Society for
Music Information Retrieval Conference, 2016.

factors [11]. It has been also observed that people con-
sciously understand these interactions [6] and use them
when choosing music for daily life activities [23]. The
context of music listening seems to influence the way in
which people chooses music, and so music recommenders
should suggest music items to fit the situation and needs of
each particular listener.

Modelling the user needs was identified by Schedl et
al. as one key requirement for developing user-centric mu-
sic retrieval systems [20]. They noted also that person-
alized systems customize their recommendations by using
additional user information, and context-aware systems use
dynamic aspects of the user context to improve the qual-
ity of the recommendations. The need for contextual and
environmental information was highlighted by Cunning-
ham et al. and others [5, 12, 16]. They hypothesized
that listeners’ location, activity, and context were proba-
bly correlated with their preferences, and thus should be
considered when developing music recommendation sys-
tems. As a result, frameworks for abstracting the context
of music listening by using raw features such as environ-
mental data have been proposed in the literature [16, 22].
While some researchers have reported that context-aware
recommendation systems perform better than traditional
ones [15, 22, 24], others have shown only minor improve-
ments [10]. Finally, others have carried out experiments
with only the most highly-ranked music items, probably
leading to models biased by popularity [15, 25].

We will now discuss the impact of using listeners’
demographic and profiling characteristics— hereafter re-
ferred to as user-side features [19]—in improving the ac-
curacy of a music recommendation model. User-side fea-
tures were extracted from self-declared demographics data
and a set of custom-built profiling features characterizing
the music listening behaviour of a large amount of users
of a digital music service. Their music listening histories
were disaggregated into different time spans to evaluate if
the accuracy of models changed using different temporal
contexts of listening. Finally, models based on latent fac-
tors were learned for all listening contexts and all combi-
nations of user-side features. Section 2 presents the dataset
collection, Section 3 introduces a set of custom-built fea-
tures to profile listeners’ listening behaviour, and Section 4
describes the experimental set up and presents the results.
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2. DATASET

We are interested in evaluating the impact of using demo-
graphic and profiling features, as well as contextual in-
formation, for a large number of people, on the predic-
tion accuracy of a music artist recommendation model. A
few publicly available datasets for music listening research
provide information relating people and music items. Dror
et al. presented a dataset of 1M people’s aggregated rat-
ings on music items [7]. McFee et al. introduced a dataset
of song playcounts of 1M listeners [17]. Neither of these
two datasets, however, provided timestamps of the mu-
sic logs or demographic information about the listeners.
Celma provided a dataset of playcounts with listeners’ de-
mographic data for 360K listeners and a set of listening
histories with full time-stamped logs; however this last
dataset only included logs for 1K listeners [3]. Cantador
et al. presented another small dataset with song playcounts
for 2K users [2]. Finally, EMI promised a dataset of 1M
interviews about people’s music appreciation, behaviour,
and attitudes [9], but only partial information was made
available.

None of the aforementioned datasets provide, at the
same time and for a large amount of listeners, access to full
music listening histories as well as people’s demographic
data. This means it is not possible to extract all of the user-
side features that we were interested in, and so we decided
to collect our own dataset made with music listening his-
tories from Last.fm. Last.fm stands out from most online
digital music services because it not only records music
logs of songs played back within its own ecosystem, but
also from more than 600 media players.

Next, we will present the criteria and acquisition meth-
ods used to collect a large number of music listening his-
tories from the Last.fm service.

2.1 Data criteria, acquisition, and cleaning

Aggregating people’s music listening histories requires
collapsing their music logs into periods of time. In order to
obtain data evenly across aggregated weeks, months, sea-
sons, or years, we searched for listeners with an arbitrary
number of at least two years of activity submitting mu-
sic logs since they started using the system, and also with
an average of ten music logs per day. These two restric-
tions forced our data-gathering crawler to search for lis-
teners with a minimum of 7,300 music logs submitted to
the Last.fm database. Also, these constraints assured us
that we would collect listening histories from active listen-
ers with enough data to perform a good aggregation over
time.

Data acquisition was performed by means of us-
ing several machines calling the Last.fm API during a
period of two years (2012–2014). We collected lis-
tening histories by using the Last.fm’s API method
user.getRecentTracks(). This API call allowed us to
obtain full listening histories. Along with this data, we also
stored all available metadata for each listener, including the
optional self-declared demographic features: age, country,
and gender.

We performed several processes of data filtering and
cleaning in order to avoid noisy data. For example, we re-
alized that there were listeners with numerous duplicated
music logs (i.e., same timestamp for many music item
IDs), and listening histories with a great deal of music logs
that were too close in time (i.e., less than 30 seconds apart,
which is the minimum that Last.fm requires to consider a
played track as a valid music log). Hence, we decided to
filter out all duplicated logs as well as logs that were less
than 30 seconds apart in time.

2.2 Dataset demographics

Our dataset consists of 27 billion music logs taken from
594K users’ music listening histories. This large reposi-
tory of music listening records accounts for the interaction
of listeners with more than 555K different artists, 900K
albums, and 7 million tracks. There are music listening
histories from people in 239 self-declared different coun-
tries, with listeners from all time zones represented. How-
ever, listeners from Africa, South Asia, and East Asia are
under-represented in our dataset. In fact, the 19 “top coun-
tries” combined account for more than 85 percent of the
total number of listeners in the dataset. Table 1 summa-
rizes some of the overall and demographic characteristics
of users in the dataset.

Items No. Demographic % Age groups %
Logs 27MM Age 70.5 15–24 57.5

Tracks 7M Country 81.8 25–34 35.8
Albums 900K Gender 81.6 35–44 5.5
Artists 555K 45–54 1.2

Listeners 594K

Table 1. Dataset summary (Demographic: the percentage
of people who provided demographic information)

Table 1 shows that large proportion of listeners self-
declared their age, gender, and country. Previous research
on online profiles concluded that people usually want to
be well typified by their online profiles [4], and so we as-
sumed there is a high degree of truth in these demographic
features. Listeners from all ages are not equally repre-
sented in the dataset. The age distribution is biased towards
young people, with an average age of 25 years old.

3. FEATURES FOR LISTENER PROFILING

We hypothesized that by better understanding the listening
behaviour of people, we will be able to more accurately
model the user needs. Hence, the recommendation can be
tailored to each listener and the prediction accuracy will
probably improve.

A set of computational features that attempt to de-
scribe some aspects of music listening behaviour in rela-
tion to musical artists was already proposed in previous re-
search [21]. However, the ranking of the music items was
not take into consideration and feature values were binned
into categories. In our approach we try to represent similar
characteristics of listening behaviour but we also consider

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 95



the position of the music items within each listener’s rank-
ing as well as using normalized feature values to express
the precise value of a certain listening behaviour charac-
teristic in relation to a music item.

3.1 Feature design

We restricted ourselves to designing three novel features
to describe listener behaviours: exploratoryness, main-
streamness, and genderness. Values for these features were
computed for the three types of music items in the dataset:
tracks, albums, and artists. Therefore, each listener’s lis-
tening behaviour was described by a vector of nine values.

We will describe the goals behind each one of these
features, give details about their implementation, visualize
data patterns, and provide some analysis about the results.

3.1.1 Exploratoryness

To represent how much a listener explores different music
instead of listening to the same music repeatedly we devel-
oped the exploratoryness feature.

For each user x’s listening history, let L be the number
of submitted music logs, Sk be all submitted music items
of type k, where k={tracks, albums, artists}, sk,i be the
number of music logs for the given music item key k at
ranking i. We computed the exploratoryness ex,k for lis-
tener x on a given music item of type k as:

ex,k = 1− 1

L

Sk∑

i=1

sk,i
i

(1)

Exploratoryness returns a normalized value, with val-
ues closer to 0 for users listening to the same music item
again and again, and values closer to 1 for users with more
exploratory listening behaviour.

3.1.2 Mainstreamness

With the goal of expressing how similar a listener’s listen-
ing history is to what everyone else listened to, we devel-
oped the mainstreamness feature. It analyses a listener’s
ranking of music items, and compares it with the overall
ranking of artists, albums, or tracks, looking for the posi-
tion of co-occurrences.

For each user x’s listening history, let N be the number
of logs of the music item ranked first in the overall rank-
ing, L be the number of submitted music logs, Sk be all
submitted music items of type k, where k={tracks, albums,
artists}, sk,i be the number of music logs for the given mu-
sic item key k at ranking i, and ok,i be the number of music
logs in the overall ranking of music item type k ranked at
position i. We defined the mainstreamness feature mx,k

for listener x on a given music item of type k as:

mx,k =
1

NL

Sk∑

i=1

sk,iok,i (2)

Listening histories of people with a music item’s rank-
ing similar to the overall ranking receive mainstreamness
values closer to 1. Listeners’ mainstreamness whose rank-
ing differ more from the overall ranking receive values
closer to 0.

3.1.3 Genderness

With the aim of expressing how close a listener’s listen-
ing history is to what females or males are listening to,
we developed the genderness feature. The genderness fea-
ture computation basically relies on mainstreamness, but
instead of computing just one overall ranking from all lis-
teners, it uses two rankings: one made with music logs
from listeners self-declared as female, and another one
from male data.

For each user x’s listening history and music item of
type k, let mx,k,male be the mainstreamness computed
with the male ranking, mx,k,female be the mainstreamness
calculated with the female ranking.

We defined the feature genderness gx,k for listener x on
a given music item of type k as:

gx,k = mx,k,male −mx,k,female (3)

3.2 Profiling listeners

To illustrate how the features we developed can be used
to profile listeners, we calculated exploratoryness, main-
streamness, and genderness of users in our dataset. In order
to not violate the homogeneity of variance we binned lis-
teners into four age groups with balanced number of sam-
ples for each group. To obtain balanced groups, we drew a
random sample of 100 people of each age, and created 10-
year groups with 1000 people each. We then bootstrapped
these groups with 1000 replications of the original sam-
ple and calculated 95 percent CI error bars. Although we
quantified these characteristics in the relation of listeners
with artists, albums, and tracks, and their interaction with
listeners’ age group, preliminary tests indicated that the in-
teraction with artists was most significant. Therefore, for
the rest of the paper we present only the results of the in-
teraction between listeners and artists.

Figure 1 shows feature means by age group as well as
95 percent CI bars. In terms of artist exploratoryness, Fig-
ure 1(a) shows that while younger listeners in our dataset
tend to listen more often to the same performers than
adults, older listeners tend to explore more artists. Also,
the rise in exploratoryness tends to stabilize in the mid-
thirties. Figure 1(b) shows that while younger people listen
more to the same artists that everyone is listening to, older
people tend to listen to less common performers. This ef-
fect could be generated by the behaviour of older people
or the fact that there are fewer older people in the original
dataset, and so the artists they listen to are less represented
in the overall ranking. Figure 1(c) shows artist gender-
ness by age and gender. Listeners self-declared as male
tend to listen more to music that is ranked higher in the
male ranking, in all age groups, however their preference
for the male ranking diminishes with age. Females, on the
contrary, listen more to artists ranked higher in the female
ranking when they are young, but adult women listen more
to artists ranked higher in the male ranking. Overall, men
and women have opposite trends of genderness in the dif-
ferent age groups, which seem to stabilize as they mature.
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Figure 1. Feature means and 95% CI bars for a random group of listeners in our dataset. Each age group has 1K listen-
ers. Error bars were calculated by taking 1K populations replicated from the original sample using bootstrap. (a) Artist
exploratoryness by age group of listeners, (b) artist mainstreamness by age group of listeners, and (c) artist genderness by
listeners’ age group and gender.

We hoped that the aforementioned features captured
some information about people’s listening behaviour and
will help to improve the accuracy of a music recommender
model. However, as genderness was derived directly from
mainstreamness, we did not use it in the experimental pro-
cedure for evaluating a music recommendation model with
user-side data.

4. EXPERIMENTAL PROCEDURE

Our goal is to evaluate if demographics, behavioural pro-
files, and the use of observations from different contexts
improve the accuracy of a recommendation model. Our
sources of data involve a matrix of user preferences on
artists derived from implicit feedback, a set of three cat-
egorical demographic features for each user: age, country,
and gender, and a set of two continuous-valued features
for describing people’s listening behaviour: exploratory-
ness and mainstreamness. Preference matrixes were gen-
erated by considering full week of music listening histories
data, as well as data coming from music logs submitted on
weekdays and weekends only.

We followed a similar approach to Koren et al., in which
a matrix of implicit feedback values expressing prefer-
ences of users on items is modelled by finding two lower
dimensional matrixes of rank f Xn×f and Ym×f , which
product approximates the original preference [14]. The
goal of this approach is to find the set of values in X and
Y that minimize the RMSE error between the original and
the reconstructed matrixes. However, this conventional
approach of matrix factorization for evaluating the accu-
racy of recommendation models using latent factors does
not allow the researcher to incorporate additional features,
such as user-side features. In order to incorporate latent
factors as well as user-side features into one single rec-
ommendation model, we used the Factorization Machines
method for matrix factorization and singular value decom-
position [18]. In this approach, interactions between all
latent factors as well as additional features are computed
within a single framework, with a computational complex-

ity that is linear to the number of extra features.
In order to perform a series of experiments with differ-

ent sets of model parameters and user-side features in a
timely fashion, we randomly sampled 10 percent of per-
user music listening histories in the dataset, and we split
this new subset into two disjoint sets: training (90 per-
cent) and testing (10 percent) datasets. The training dataset
had more than 60M observations from 59K users on 432K
artists, with a density of observations of about 0.24 per-
cent. We aggregated each dataset of listening histories by
creating <user, artist, playcounts> triples. Then,
we transformed the number of playcounts in each triple
into a 1–5 Likert scale value by means of calculating the
complementary cumulative distribution of artists per lis-
tener [3]. Hence, artists in each distribution quintile were
assigned with a preference value according to how much
each user listened to them.

In order to learn the best set of parameters of the rec-
ommendation model, we performed a grid search on the λ
regularization parameter as well as the f number of latent
factors with no user-side data, just using plain matrix fac-
torization for the matrix of preferences of users on artists.
Finding a good λ value helps to avoid overfitting the ob-
served data by penalizing the magnitudes of the learned
parameters. Finding the best f number of factors helps to
obtain a better recommendation accuracy while also pro-
viding a set of to-be-interpreted latent factors. We used the
Graphlab Create framework 1 to search over the number
of latent factors in the range [50, 200] , and regularization
values in the range [1×10-5, 1×10-8]. The best combina-
tion of parameters was achieved for λ=1×10-7 and f=50
latent factors. We used the Adaptive Stochastic Gradient
Descent optimization algorithm [8] and set the maximum
number of iterations at 50.

4.1 Demographic and profiling features

With these model parameter values, we evaluated the rec-
ommendation accuracy in the testing dataset of models

1 https ://pypi.python.org/pypi/GraphLab-Create
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Figure 2. Root mean square error means and 95 percent CI bars for learned models evaluated in the testing dataset, with 32
combinations of the user-side features: age, gender, country, exploratoryness, and mainstreamness , ranked in decreasing
order. Feature combinations are labelled according to the first letter of the word they represent. Baseline for comparison is
combination u: user’s preferences only, without any user-side features.

learned from the training data for all combinations of user-
side demographic and profiling features. Since we had five
user-side features: age, gender, country, exploratoryness,
and mainstreamness, there were 32 different combinations.

Learning a model using an optimization algorithm can
sometimes cause the results to converge into local minima
instead of the global minimum. We informally evidenced
that the variance in results of the optimization algorithm
was larger than the variance in using different samples of
the dataset. Hence, we repeated the process of learning
and testing the accuracy of the learned models 10 times for
each user-side feature combination. Using this procedure,
we also wanted to compare and evaluate if results in model
error were similar throughout several trials. The experi-
ment baseline was established as the approach in which
plain matrix factorization was used to estimate the recom-
mendation accuracy of the learned models by just using the
matrix of preferences of listeners on artists, without any
user-side feature combination. By using this approach, we
will be able to compare if the use of any feature combina-
tion resulted in a decrease in RMSE error, thus indicating
an increase in the accuracy of the model.

Figure 2 summarizes the results of all trials. It shows
all feature combination means, ranked in decreasing order,
with 95 percent CI error bars generated from a bootstrap
sample of 100 replications of the original sample. Feature
combinations are labelled according to the first letter of the
word they represented. For example, user preference data
with age, gender, and exploratoryness is labelled u.a.g.e;
user data with no user-side feature combinations is just la-
belled u. It can be seen that u, the baseline without user-
side features, achieved an average RMSE value of .931 and
exhibited a small variability, indicating that models in this
setup were stable across all trials. All feature combinations
to the right of the u show a smaller RMSE error, thus pro-
viding evidence for an increase in the learned accuracies of
those models. Several feature combinations achieved bet-
ter accuracy than the baseline. In particular, those combi-
nations using just one of the demographic features: country
(u.c), age (u.a), or gender (u.g) achieved improvements of
about 7, 8, and 9 percent, respectively. Also, the combina-

tion of only demographic features (u.a.g.c), and all demo-
graphic and profiling features (u.a.g.c.e.m) improved the
baseline model by almost 8 percent. However, the combi-
nation of features that achieved the best result was all de-
mographic features together, plus the listener profiling fea-
ture of exploratoryness (u.a.g.c.e), exhibiting an improve-
ment of about 12 percent above the baseline. The small
variability in the model error of this combination through-
out all trials suggested that models based on this user-side
feature combination were quite stable. On the other hand,
the combination of profiling features (u.m.e) achieved the
worst performance, with a 29 percent increase in error, and
a large variability in the estimated model error throughout
trials. The variability in the results with these features sug-
gests that the data topology using only profiling features
is complex, probably making the iterative process of op-
timization converge into non-optimal local minima in the
data.

4.2 Listening preferences in the contexts of entire
week, weekdays only, and weekends only

We hypothesized that if people listen to different music
during the weekdays than on weekends, we could create
more accurate models by using data from only the week-
days or weekends, respectively. To test this hypothesis, we
performed the same experimental approach that we car-
ried out with the full-week dataset. However, this time
we created two additional preference matrices of listeners
for artists. The first additional matrix was made by using
only music logs submitted during weekdays, and the sec-
ond matrix was made by using only weekend music logs.
Therefore, two extra sub-datasets were created using the
original full-week dataset: weekday and weekend datasets.
We then followed the same procedure described before: we
split the data into training and testing datasets, we learned
models from the training dataset for all 32 possible combi-
nations of user-side features, and evaluated the accuracy of
those models in the testing dataset. The number of obser-
vations, listeners, and artists, and also each of the matrix
densities are shown in Table 2.
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Dataset Observations Listeners Artists Density
Full-week 61M 59K 432K 0.237%
Weekdays 54M 59K 419K 0.216%
Weekends 35M 59K 379K 0.154%

Table 2. Number of observations, listeners, artists, and
density for each context-based preference matrix.

As expected, the number of observations decreased in
the datasets with partial data in relation to the full-week
dataset. The number of listeners remained constant, which
implies that most listeners in the dataset submitted music
logs during weekdays as well as on weekends. Interest-
ingly, the total number of artists for which there were sub-
mitted music logs on weekdays and weekends decreased
between 3 and 12 percent in relation to the full week data,
which implies that many artists in the dataset were only
listened during one of the two weekly periods.
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Figure 3. Root mean square error means and 95 percent
CI bars for learned models with weekday, weekend, and
full-week data. Only those feature combinations with a
better RMSE value than the baseline for full-week data are
shown.

Figure 3 summarizes model accuracies obtained using
music log data from the three aforementioned contexts.
Many of the models made with weekly-split listening data
achieved better performance than those using full-week
data. For example, models learned with weekday as well
as weekend data using feature combinations u.a.e, u.g.c,
and u.c.m achieved improvements in accuracy of about
7 percent in comparison to the model created with full-
week data. They also showed smaller variability meaning
more stability in model estimation. However, while the
best RMSE value was obtained using the user-side feature
combination u.a.g.c.e with full-week data, the same fea-
ture combination achieved worse performances by using
listening data from weekdays and weekends only.

5. CONCLUSIONS AND FUTURE WORK

We have evaluated the impact of listeners’ demographic
and profiling features as well as basic forms of listening
context, namely weekday and weekend versus full-week
listening, on recommendation accuracy. We described our
requirements for a dataset of music listening histories, ex-
plaining why none of the available datasets met our needs
and how we ended up collecting our own data. We then
formalized a set of profiling features that account some as-
pects of music listening behaviour. We also explained how
we split our dataset of listening histories into weekdays and
weekend listening histories to evaluate if having data from
different sets of listening histories improved the accuracy
of recommendation. Finally, we described how we set ex-
periments that evaluated all combinations of user-side data
features in the different contexts of listening. We found
that the feature combination that achieved the smallest er-
ror was all demographic features together plus listener’s
exploratoryness, obtaining 12 percent improvement over
the baseline of not using any user-side feature data. Al-
though for some feature combinations the use of split lis-
tening data improved the recommendation, the best combi-
nation of features did benefit from having full-week data.

The results, in particular the many low RMSE values
for several feature combinations using split listening data,
seem to indicate that these error values are close to the limit
in the minimum achievable error. This characteristic has
already been described in the literature as a “magic bar-
rier” in recommender systems design [1], referring to the
upper bound in rating prediction accuracy due to inconsis-
tencies in user’s ratings. However, since we are mapping
the number of submitted music listening logs into ratings,
we do not see how these inconsistencies can explain this
barrier. It would be interesting to perform a narrower grid
search in order to investigate if we are actually hitting a
wall in accuracy, or if there is a better set of model param-
eters that allows us to create more stable models and better
performances throughout many trials. In comparison with
previous research [21], the results are not comparable since
different metrics are used. Also, our experiment directly
integrated the profiling features into the matrix factoriza-
tion algorithm. Finally, although these results show an
improvement in the accuracy of a recommendation model
based on listeners’ past listening histories, we might re-
quire an online, user-centred study to measure people’s ac-
tual satisfaction with the learned model.
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ABSTRACT

Outlier detection, also known as anomaly detection, is an
important topic that has been studied for decades. An outlier
detection system is able to identify anomalies in a dataset
and thus improve data integrity by removing the detected
outliers. It has been successfully applied to different types
of data in various fields such as cyber-security, finance,
and transportation. In the field of Music Information Re-
trieval (MIR), however, the number of related studies is
small. In this paper, we introduce different state-of-the-art
outlier detection techniques and evaluate their viability in
the context of music datasets. More specifically, we present
a comparative study of 6 outlier detection algorithms ap-
plied to a Music Genre Recognition (MGR) dataset. It is
determined how well algorithms can identify mislabeled or
corrupted files, and how much the quality of the dataset can
be improved. Results indicate that state-of-the-art anomaly
detection systems have problems identifying anomalies in
MGR datasets reliably.

1. INTRODUCTION

With the advance of computer-centric technologies in the
last few decades, various types of digital data are being gen-
erated at an unprecedented rate. To account for this drastic
growth in digital data, exploiting its (hidden) information
with both efficiency and accuracy became an active research
field generally known as Data Mining.

Outlier detection, being one of the most frequently stud-
ied topics in Data Mining, is a task that aims to identify
abnormal data points in the investigated dataset. Generally
speaking, an outlier often refers to the instance that does not
conform to the expected behavior and should be highlighted.
For example, in a security surveillance system an outlier
could be the intruder, whereas in credit card records, an
outlier could be a fraud transaction.

Many algorithms have been proposed to identify out-
liers in different types of data, and they have been proven
successful in fields such as cyber-security [1], finance [4],

c© Yen-Cheng Lu, Chih-Wei Wu, Chang-Tien Lu, Alexander
Lerch. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Yen-Cheng Lu, Chih-Wei Wu, Chang-
Tien Lu, Alexander Lerch. “Automatic Outlier Detection in Music Genre
Datasets”, 17th International Society for Music Information Retrieval
Conference, 2016.

and transportation [17]. Outlier detection techniques can
also be used as a pre-processing step to remove anomalous
data. In the work of Smith and Martinez [24], a set of out-
lier detection methods are used to remove anomalies from
the dataset, followed by several widely-used classification
methods in order to compare the performance before and
after outlier removal. The result indicates that removing
outliers could lead to statistically significant improvements
in the training quality as well as the classification accuracy
for most of the cases.

Music datasets offer similar challenges to researchers in
the field of MIR. Schedl et al. point out that many MIR stud-
ies require different datasets and annotations depending on
the task [22]. However, since the annotation of music data
is complex and subjective, the quality of the annotations cre-
ated by human experts varies from dataset to dataset. This
inaccuracy may potentially introduce errors to the system
and decrease the resulting performance.

One MIR task known for this issue is Music Genre
Recognition (MGR). According to Sturm [26], the most
frequently used dataset in MGR is GTZAN [29], and many
of the existing systems are evaluated based on their perfor-
mance on this dataset. Sturm points out that this dataset
contains corrupted files, repeated clips, and misclassified
genre labels. These are undesirable for the proper training
and testing of a MGR system.

To address the problem of identifying such anomalies
in music datasets, an investigation into existing outlier de-
tection algorithms is a good starting point. The goal of
this paper is to assess the viability of state-of-the-art outlier
detection methods in the context of music data. The contri-
bution of this paper can be summarized as follows: first, this
early stage investigation provides a systematic assessment
of different outlier detection algorithms applied to a music
dataset. Second, the use of standard audio features reveals
the capability as well as the limitations of this feature repre-
sentation for outlier detection. Third, we provide insights
and future directions for related studies.

This paper is structured as follows. In Sect. 2, the re-
lated work of outlier detection in music data is summarized.
The methods used in this paper, such as feature extraction
and different outlier detection algorithms, are described in
Sect. 3. Section 4 presents the results and discusses the
experiments. Finally, the conclusion and future work are
given in Sect. 5.
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2. RELATED WORK

Outlier detection methods are typically categorized into five
groups: (a) distance-based [14, 19], (b) density-based [3,
16], (c) cluster-based [30], (d) classification-based [8, 21],
and (e) statistics-based [5, 6, 13, 18, 20, 28] methods.

The first group (distance-based), proposed by Knorr
et al. [14], computes the distances between samples and
detects outliers by setting a distance threshold. Methods
in this category are usually straightforward and efficient,
but the accuracy is compromised when the data is sparse
or unevenly distributed. The basic idea was extended by
combining the distance criterion with the k-nearest neigh-
bor (KNN) based method [19], which adapts the distance
threshold by the k-nearest neighboring distances.

The second group (density-based) estimates the local
densities around the points of interest in order to determine
the outliers. Different variations use different methods to de-
termine the local density, for example, the local outlier fac-
tor (LOF) [3] and the local correlation integral (LOCI) [16].
These approaches are popular and have been widely used
in different fields.

The third group (clustering-based), as proposed in [30],
first applies a clustering algorithm to the data, and then
labels the wrongly clustered instances as outliers.

The fourth group (classification-based) assumes that the
designation of anomalies can be learned by a classifica-
tion algorithm. Here, classification models are applied to
classify the instances into inliers and outliers. This is ex-
emplified by Das et al. [8] with a one-class Support Vector
Machine (SVM) based approach and Roth [21] with Kernel
Fisher Discriminants.

The fifth group (statistics-based) assumes the data has
a specific underlying distribution, and the outliers can be
identified by finding the instances with low probability den-
sities. A number of works apply the similar concept with
variations, including techniques based on the robust Maha-
lanobis distance [20], direction density ratio estimation [13],
and minimum covariance determinant estimator [6]. One of
the main challenges of these approaches is the reduction of
masking and swamping effects: outliers can bias the estima-
tion of distribution parameters, yielding biased probability
densities. This effect could result in a biased detector iden-
tifying normal instances as outliers, and outliers as normal,
respectively. Recent advances have generally focused on ap-
plying robust statistics to outlier detection [5, 18, 28]. This
is usually achieved by adopting a robust inference technique
to keep the model unbiased from outliers in order to capture
the normal pattern correctly.

Although the above mentioned approaches have been
applied to different types of data, the number of studies
on music datasets is relatively small. Flexer et al. [10]
proposed a novelty detection approach to automatically
identify new or unknown instances that are not covered
by the training data. The method was tested on a MGR
dataset with 22 genres and was shown to be effective in a
cross-validation setting. However, in real-world scenarios,
the outliers are usually hidden in the dataset, and an outlier-
free training dataset may not be available. As a result, the

proposed method might not be directly applicable to other
music datasets. Hansen et al. [12] proposed the automatic
detection of anomalies with a supervised method based on
parzen-window and kernel density estimation. The pro-
posed algorithm was evaluated on a 4-class MGR dataset,
which consisted of audio data recorded from radio stations.
A commonly used set of audio features, the Mel Frequency
Cepstral Coefficients (MFCCs), was extracted to represent
the music signals. This approach, nevertheless, has two
underlying problems. First, the dataset used for evaluation
does not have a ground truth agreed on by human experts.
Second, while MFCCs are known to be useful in a multi-
tude of MIR tasks, they might not be sufficient to represent
music signals for outlier detection tasks.

To address these issues, two approaches have been taken
in this paper: First, for evaluation, a commonly-used MGR
dataset with reliable ground truth is used. In Sturm’s analy-
sis [26], a set of outliers (i.e., repeated, distorted, and misla-
beled music clips) were identified manually in the popular
GTZAN [29] dataset. This analysis provides a solid ground
for the evaluation of an anomaly detection system in the
MGR dataset. Second, we extend the set of descriptors for
the music data. In addition to the MFCCs, audio features
that are commonly used in MIR tasks are also extracted in
order to evaluate the compatibility of current audio features
with the existing outlier detection methods.

3. METHOD

3.1 Feature Extraction

Feature extraction is an important stage that transforms an
audio signal into a vector-based representation for further
data analysis. In an early study of automatic music genre
classification, Tzanetakis and Cook proposed three feature
sets that characterized any given music signal based on its
timbral texture, rhythmic content and pitch content [29].
These features have shown their usefulness in music genre
classification, and have been used in many music-related
tasks. Although many studies presented more sophisticated
features (e.g., [11]) with higher classification accuracy on
the GTZAN dataset, the original set of features still seem
to provide a good starting point for representing music data.
Therefore, a set of baseline features based on Tzanetakis
and Cook’s features [29] is extracted to allow for easier
comparison with prior work. The extracted features can
be divided into three categories: spectral, temporal and
rhythmic. All of the features are extracted using a block-
wise analysis method. To begin with, the audio signal is
down-mixed to a mono signal. Next, a Short Time Fourier
Transform (STFT) is performed using a block size of 23 ms
and a hop size of 11 ms with a Hann window in order to
obtain the time-frequency representation. Finally, differ-
ent instantaneous features are extracted from every block.
Spectral features are computed using the spectrum of each
block. Temporal features are computed from the time do-
main signal of each block directly. The rhythmic features
are extracted from the beat histogram of the entire time
domain signal. The extracted features are (for the details of
the implementations, see [15]):
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1. Spectral Features (d = 16): Spectral Centroid (SC),
Spectral Roll-off (SR), Spectral Flux (SF), 13 Mel
Frequency Cepstral Coefficients (MFCCs)

2. Temporal Features (d = 1): Zero Crossing Rate
(ZCR)

3. Rhythmic Features (d = 8): Period0 (P0), Ampli-
tude0 (A0), RatioPeriod1 (RP1), Amplitude1 (A1),
RatioPeriod2 (RP2), Amplitude2 (A2), RatioPeriod3
(RP3), Amplitude3 (A3).

All of the features are aggregated into texture vectors
following the standard procedure as mentioned in [29]; the
length of the current texture block is 0.743 s. The mean
and standard deviation of the feature vectors within this
time span will be computed to create a new feature vector.
Finally, all the texture blocks will be summarized again by
the mean and standard deviation of these blocks, generating
one feature vector to represent each individual recording in
the dataset.

3.2 Outlier Detection Methods

3.2.1 Problem Definition

Given N music clips that have been converted into a set of
feature vectors X = {X1, ..., XN} with the corresponding
genre label Y = {Y1, ..., YN}, where each Yn is belong
to one of the M genres (i.e., Yn ∈ {C1, ..., CM}), the
objective is to find the indices of the abnormal instances
which have an incorrect label Yn.

For this study, we choose 6 well-known outlier detection
methods from different categories as introduced in Sect. 2
and compare their performances on a MGR dataset. The
methods are described in details in the following sections:

3.2.2 Method 1: Clustering

Clustering is a cluster-based approach as described in
Sect. 2. In our implementation of this method, we apply
k-means to cluster the data into 10 groups. Based on the
assumption that normal data are near the cluster centroids
while the outliers are not [7, 25], the anomalous score of a
given instance is defined by the distance between the point
and the centroid of the majority within the same class.

3.2.3 Method 2: KNN

KNN method is a distance-based approach that typically
defines the anomalous score of each instance by its distance
to the k nearest neighbors [9]. It can be expressed in the
following equation:

k–distance(P ) = d(P, knn(P )) (1)

where knn is the function that returns the k-th nearest neigh-
bor of a point P , and d is the function that calculates the
distance between two points. Finally, we may compute the
outlier score as:

1

k

∑

p∈neighborsk(P )

k–distance(p) (2)

Setting k to a larger number usually results in a model
more robust against outliers. When k is small, the anoma-
lous score given by this method may be biased by a small
group of outliers. In our implementation of this method,
we apply k = 6 in order to maintain a balance between
robustness and efficiency.

3.2.4 Method 3: Local Outlier Factor

The Local Outlier Factor (LOF) [3] is a density-based ap-
proach that extends the KNN method with a calculation of
the local densities of the instances. It is one of the most pop-
ular anomaly detection methods. It starts with the definition
of k-reachability distance:

k–reachDist(P,O) = max(k–distance(P ), d(O,P ))
(3)

This represents the distance from O to P , but not less
than the k–distance of P . The local reachability density
of a given sample is defined by the inverse of the average
local rechability distances of k-nearest neighbors:

lrd(P ) = 1/

(∑
P0∈neighborsk(P ) k–reachDist(P, P0)

|neighborsk(P )|

)

(4)
Finally, the lof calculates the average ratio of the local

reachability densities of the k-nearest neighbors against the
point P :

lof(P ) =

∑
P0∈neighborsk(P ) lrd(P0)

lrd(P )|neighborsk(P )| (5)

In a dataset that is densely distributed, a point may have
shorter average distance to its neighbors, and vice versa.
Since LOF uses the ratio instead of the distance as the
outlier score, it is able to detect outliers in clusters with
different densities.

3.2.5 Method 4: One-Class SVM

The One-Class SVM [23] is a classification-based approach
that identifies outliers with a binary classifier. Given a genre
m ∈ {1, ...,M}, every sample in m can be classified as in-
class or off-class, and the off-class instances are most likely
to be the outliers. A One-Class SVM solves the following
quadratic programming problem:

min
w,ξi,ρ

1
2 ||w||2 + 1

νN

∑
i ξi − ρ

subject to (wΦ(xi)) ≥ ρ− ξi, i = 1...N

ξi ≥ 0, i = 1...N (6)

where ξ, w, and ρ are the parameters to construct the sepa-
ration hyperplane, ν is a parameter that serves as the upper
bound fraction of outliers and a lower bound fraction of
samples used as support vectors, and Φ is a function that
maps the data into an inner product space such that the
projected data can be modeled by some kernels such as
a Gaussian Radial Basis Function (RBF). By optimizing
the above objective function, a hyperplane is then created
to separate the in-class instances from the outliers. In the
experiment, we construct a One-Class SVM for each of the
genres, and identify the music clips that are classified as
off-class instances as outliers.
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3.2.6 Method 5: Robust PCA

Robust PCA [5] is a statistics-based approach that considers
the problem of decomposing a matrix X into the superposi-
tion of a low-rank matrix L0 and a sparse matrix S0, such
that:

X = L0 + S0

The problem can be solved by the convex optimization
of the Principal Component Pursuit [5]:

minimize||L||∗ + λ||S||1 (7)

subject to L+ S = X (8)

where ||L||∗ is the nuclear norm of L, and λ is the sparsity
constraint that determines how sparse S would be.

The matrix S0 is a sparse matrix consisting of mostly
zero entries with a few non-zero entries being the outliers.
In the experiment, we apply this method to the music data
and calculate the sparse matrices for every genre. Next,
we normalize the features using a standard Z-score nor-
malization process, and identify the outliers by finding the
instances with a maximum sparse matrix value that is 3
times greater than the unity standard deviation.

3.2.7 Method 6: Robust Categorical Regression

Robust Categorial Regression (RCR) is another statistics-
based method that identifies outliers based on a regression
model. First, we formulate the relation of Y and X based
on a linear input-output assumption:

g(Y ) = Xβ + ε, (9)

where g is the categorical link function, β is the regres-
sion coefficient matrix, and ε is a random variable that
represents the white-noise vector of each instance. The link
function g is a logit function paired with a categoryCM , i.e.,
ln (P (Yn = Cm)/P (Yn = CM )) = Xnβm + εnm. Since
the probabilities of the categories will sum up to one, we
can derive the following modeling equation:

P (Yn = Cm) =
exp {Xnβm + εnm}

1 +
∑M−1
l=1 exp {Xnβl + εnl}

(10)

and

P (Yn = CM ) =
1

1 +
∑M−1
l=1 exp {Xnβl + εnl}

(11)

The coefficient vector β usually represents the decision
boundary in a classification problem. In this approach, β is
used to capture the normal behavior of the data.

The robust version of categorical regression applies a
heavy-tailed distribution, which is a zero-mean Student-t
distribution to capture the error effect caused by outliers.

The solution to this regression model is approximated
with a variational Expectation-Maximization (EM) algo-
rithm [2]. Once converged, the errors of the instances are
expected to be absorbed in the ε variables. Finally, the
outliers can be identified by finding the instances with ε
that is 3 times greater than the unity standard deviation.

4. EXPERIMENT

4.1 Experiment Setup

To evaluate the state-of-the-art outlier detection methods as
described in Sect. 3.2, different experiments are conducted
on the well-known GTZAN dataset [29]. This dataset con-
sists of 10 music genres (i.e., blues, classical, country, disco,
hip-hop, jazz, metal, pop, reggae, and rock), with each genre
containing 100 audio tracks; each track is a 30-second long
excerpt from a complete mixture of music. For each method,
two sets of experiments are conducted.

In the first set of experiments, we use a purified GTZAN
dataset, which excludes the conspicuous misclassified and
jitter music clips reported in [26]. This setup simulates the
best case scenario, where the dataset is clean and all genres
are well separated in the feature space. The results can
serve as a sanity check of all the methods. Two types of
injection experiments are conducted on this purified dataset,
namely label injection and noise injection. The label in-
jection process is performed by randomly choosing 5% of
instances, and swapping their genre labels to create outliers.
In this experiment, two sets of features are used to represent
the music data, one is the full feature set as described in
Sect. 3.1, and the other is the baseline feature set using only
13 MFCCs as reported in the work of Hansen et al. [12] for
comparison. The noise injection process is performed by
randomly choosing 5% of instances in the data, and shifting
20% of their feature values by 5 times the standard devi-
ation. This experiment uses the full feature set to test the
methods’ capability of detecting corrupted data. For each of
the experiments above, we generate 10 random realizations
and report the averaged evaluation results.

In the second set of experiments, we apply all the meth-
ods to the full GTZAN dataset directly, and the identified
outliers are compared with the list of conspicuous genre
labels and the obviously corrupted clips (Hip-hop (38), Pop
(37), Reggae (86)) reported in [26]. This experiment pro-
vides the real-world scenario, in which case the outlier
detection should find the outliers identified by human ex-
perts.

All of the experiments use the same metrics for the per-
formance measurements, which include the standard calcu-
lation of Precision, Recall, F-measure, and the Area Under
ROC Curves (AUC).

4.2 Experiment Results

The results of the first set of experiments, evaluating the
performance of the methods on detecting injected misclassi-
fication labels with full features, are shown in Table 1. With
F-measures in the range from 0.1–0.57, the results do not
have high reliability but are usable for some methods. The
Robust Categorical Regression approach outperforms the
other algorithms. Since RCR explicitly models the input-
output relationship between the features and the labels, it
fits the data better compared to the other methods. Sur-
prisingly, the simple methods such as Clustering and KNN
also perform relatively well in terms of AUC, and they out-
perform the more sophisticated approaches such as LOF
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Method Precision Recall F-measure AUC

CLUS 0.23 0.23 0.23 0.74
KNN 0.26 0.26 0.26 0.77
LOF 0.11 0.11 0.11 0.57
SVM 0.06 0.32 0.10 0.52
RPCA 0.47 0.34 0.39 0.78
RCR 0.59 0.55 0.57 0.91

Table 1. Average Detection Rate comparison of label injec-
tion with full features

Method Precision Recall F-measure AUC

CLUS 0.06 0.06 0.06 0.61
KNN 0.10 0.10 0.10 0.71
LOF 0.09 0.09 0.09 0.62
SVM 0.05 0.38 0.09 0.50
RPCA 0.30 0.20 0.24 0.65
RCR 0.52 0.40 0.45 0.87

Table 2. Average Detection Rate comparison of label injec-
tion with MFCCs only

and One-Class SVM. One possible explanation is that the
label injection datasets contain outliers generated by swap-
ping dissimilar genres, e.g., swapping the label from Jazz
to Metal. As a result, the decision boundaries of LOF and
One-Class SVM might be biased towards the extreme values
and perform poorly. On the other hand, the simple methods
such as Clustering and KNN, which are based on Euclidean
distance, were able to identify these instances without being
biased. Generally speaking, the statistics-based approaches,
such as the robust statistics based methods RPCA and Ro-
bust Categorical Regression, perform better on the label
injection datasets.

The results of the same experiments with only MFCCs as
features are shown in Table 2. In general, the performance
drops drastically. This result implies that MFCCs might not
be representative enough for the outlier detection task.

Table 3 shows the results for the noise injection experi-
ment. It can be observed that density and distance methods,
such as CLUS, KNN, and LOF, have better results on de-
tecting corrected data. The main distinction of this kind of
outlier is that the abnormal behavior is explicitly shown in
the feature space instead of implicitly embedded in the rela-
tionship between genre labels and the features. Therefore,
the methods that directly detect outliers in the feature space
tend to outperform the other methods such as SVM, RCR
and RPCA.

In the second set of experiments, we perform the
anomaly detection on the complete GTZAN dataset with
full features, and aim to detect the misclassified music clips
reported by Sturm [26]. The experiment result is shown in
Table 4. Based on these metrics, none of these methods are
able to detect the anomalies with high accuracy. Compared

Method Precision Recall F-measure AUC

CLUS 0.92 0.90 0.91 0.99
KNN 0.99 0.98 0.99 1.00
LOF 1.00 0.98 0.99 1.00
SVM 0.05 0.41 0.09 0.50
RPCA 0.32 0.23 0.27 0.72
RCR 0.61 0.50 0.55 0.75

Table 3. Average Detection Rate comparison of noise in-
jection with full features

Method Precision Recall F-measure AUC

CLUS 0.15 0.13 0.14 0.54
KNN 0.18 0.15 0.16 0.56
LOF 0.18 0.15 0.16 0.59
SVM 0.09 0.63 0.15 0.66
RPCA 0.08 0.09 0.08 0.51
RCR 0.17 0.22 0.19 0.60

Table 4. Detection Rate comparison on GTZAN detecting
Sturm’s anomalies with full features

to the other methods, SVM and RCR present AUCs that
are relatively higher, however, the Precision, Recall and
F-measures are still too low to be applicable in real-world
scenarios. The One-Class SVM method performs better in
this experiment than it does in the previous experiment. We
speculated that in the case of injection, the model is biased
by the extreme values introduced by the injected outliers. In
the real-world scenario, however, the differences between
the outliers and the non-outliers are relatively subtle. When
One-Class SVM expands its in-class region moderately, it
learns a better decision boundary. Therefore, it has a better
capability of detecting the outliers.

It can be observed that both statistics-based approaches,
RPCA and RCR, do not perform well compared to the re-
sults of the previous experiment. Since these methods are
good at capturing extreme values and prevent the model
from being biased by the outliers, they are relatively weak
in differentiating subtle differences in the feature space.
Therefore, the resulting performances are not ideal.

4.3 Discussion

To further reveal the relationship between different methods
and outliers from different genres, we list the distribution
of top 20 true and false outliers ranked by the anomalous
scores of different methods as well as the true distribution
reported by Sturm [26]. The results are shown in Table
5. Interestingly, majority of the approaches have most of
the true outliers in Disco and Reggae except the One-Class
SVM. For the One-Class SVM, its top 20 includes 14 metal
outliers, which are barely detected by the other methods.
More specifically, the One-Class SVM had a high precision
of 14/26 in the Metal genre. Since most of the true out-
liers in the Metal genre can be categorized to punk rock
according to the definition on the online music library, 1

they could exhibit similar features with subtle differences
in the feature space, and they are still detected by the One-
Class SVM. In Reggae, there is a jitter music clip which
presents extreme values in the feature space, along with the
other outliers. For the One-Class SVM in the context of Reg-
gae, however, only the jitter instance is captured while the
other outliers are missing. These two observations confirm
that One-Class SVM is especially good at distinguishing
the outliers that have subtle differences, and could be easily
biased by the outliers with extreme values.

Three of methods have about 10 of the top 20 false out-
liers in Pop. This may due to the variety of Pop music in the
dataset. For example, although Pop (12) - Aretha Franklin,
Celine Dion, Mariah Carey, Shania Twain, and Gloria Es-

1 AllMusic: http://www.allmusic.com/
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True CLUS KNN LOF SVM RPCA RCR

Blues 0 0/2 0/0 0/0 0/0 0/4 0/0
Classical 0 0/0 0/3 0/0 0/0 0/1 0/0
Country 4 2/0 2/0 3/0 0/0 2/0 1/2
Disco 7 5/0 5/0 2/0 0/0 4/0 5/2

Hip-hop 3 1/0 3/3 2/2 3/5 1/1 2/3
Jazz 2 0/7 1/6 1/5 0/0 0/5 2/0

Metal 17 1/0 2/0 5/1 14/0 2/2 2/1
Pop 4 4/10 2/2 2/11 2/8 3/3 2/0

Reggae 7 7/1 5/3 5/1 1/5 7/4 5/2
Rock 2 0/0 0/3 0/0 0/2 1/0 1/10

Table 5. Distribution of the Top 20 Ranked True Out-
liers/False Outliers among Methods.

tefan ”You Make Me Feel Like A Natural Woman” is not
identified by the expert as an outlier, it can be argued to be
Soul music. By the nature of the One-Class SVM, this clip
is also ranked at the top by its anomalous score. Another in-
teresting observation is that four methods have about 5 jazz
instances in the top 20 false outliers. Although jazz music
has strong characteristics and can be easily distinguished by
humans, it shows the most significant average variance on
its features comparing with other genres. Thus, the methods
that calculate the Euclidean distances such as Clustering,
KNN, and LOF, and the approaches that absorb variances
as errors such as RPCA could report more false outliers
in this circumstance. We also noticed that RCR includes
10 Rock false outliers in its top 20. This may because it
models the input-output relationship among all genres, and
this global-view property thus causes the model mixing up
Rock with other partially overlapping genres such as Metal
and Blues.

To summarize, outlier detection in music data faces the
following challenges compared to other types of data: first,
due to the ambiguity in the genre definitions, some of the
tracks can be considered as both outliers and non-outliers.
This inconsistency may impact the training and testing re-
sults for both supervised and unsupervised approaches. In
Sturm’s [27] work, a risk model is proposed to model the
loss of misclassification by the similarity of genres. Second,
the music data has temporal dependencies. In the current
framework, we aggregate the block-wise feature matrix into
a single feature vector as it allows for the immediate use in
the context of the state-of-the-art methods. This approach,
however, does not keep the temporal changes of the mu-
sic signals and potentially discards important information
for identifying outliers with subtle differences. Third, the
extracted low-level features might not be able to capture
the high-level concept of music genre, therefore, it is diffi-
cult for the outlier detection algorithms to find the outliers
agreed on by the human experts. Finally, the outliers are un-
evenly distributed among genres (e.g., Metal has 16 while
Blues and Classical have none), and the data points are also
distributed differently in the feature space in each genre.
An approach or a specific parameter setting may perform
well on some of the genres and fail on others.

5. CONCLUSION

In this paper, we have presented the application of outlier
detection methods on a music dataset. Six state-of-the-art

approaches have been investigated in the context of music
genre recognition, and their performance is evaluated based
on their capability of finding the outliers identified by hu-
man experts [26]. The results show that all of the methods
fail to identify the outliers with reasonably high accuracy.
This leaves room for future improvement in the automatic
detection of outliers in music data. The experiment results
also reveal the main challenges for outlier detection in mu-
sic genre recognition: first, genre definitions are usually
subjective and ambiguous. Second, the temporal depen-
dencies of music need to be modeled. Third, the low-level
audio features might not be able to capture the high-level
concepts. These challenges may also generalize to other
music datasets, and they should be further addressed in
future work.

We identify possible directions for future work as: First,
as shown in the experiments, a better feature representation
should lead to a better performance for the majority of the
methods. Therefore, to robustly isolate outliers, a better
feature representation for outlier detection algorithms seems
to be necessary. Second, since music data has temporal
dependencies, the static approach in the current framework
might not be feasible. An outlier detection method that
can handle the temporal dependencies could potentially
show improved performance Third, in the top 20 list for
different methods, it is shown that different methods could
be sensitive to different types of outliers. An ensemble
approach that takes advantage of multiple methods might
be considered in future studies.

With our results, we have shown that outlier detection
in music datasets is still at a very early stage. To fully
characterize a music signal, many challenges and questions
still need to be answered. With current advances in feature
design and feature learning, however, we expect significant
progress to be made in the near future.
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ABSTRACT

Vibratos and portamenti are important expressive features
for characterizing performance style on instruments capa-
ble of continuous pitch variation such as strings and voice.
Accurate study of these features is impeded by time con-
suming manual annotations. We present AVA, an interac-
tive tool for automated detection, analysis, and visualiza-
tion of vibratos and portamenti. The system implements
a Filter Diagonalization Method (FDM)-based and a Hid-
den Markov Model-based method for vibrato and porta-
mento detection. Vibrato parameters are reported directly
from the FDM, and portamento parameters are given by
the best fit Logistic Model. The graphical user interface
(GUI) allows the user to edit the detection results, to view
each vibrato or portamento, and to read the output param-
eters. The entire set of results can also be written to a text
file for further statistical analysis. Applications of AVA
include music summarization, similarity assessment, mu-
sic learning, and musicological analysis. We demonstrate
AVA’s utility by using it to analyze vibratos and portamenti
in solo performances of two Beijing opera roles and two
string instruments, erhu and violin.

1. INTRODUCTION

Vibrato and portamento use are important determinants of
performance style across genres and instruments [4, 6, 7,
14, 15]. Vibrato is the systematic, regular, and controlled
modulation of frequency, amplitude, or the spectrum [12].
Portamento is the smooth and monotonic increase or de-
crease in pitch from one note to the next [15]. Both con-
stitute important expressive devices that are manipulated
in performances on instruments that allow for continuous
variation in pitch, such as string and wind instruments, and
voice. The labor intensive task of annotating vibrato and
portamento boundaries for further analysis is a major bot-
tleneck in the systematic study of the practice of vibrato
and portamento use.

c© Luwei Yang, Khalid Z. Rajab and Elaine Chew. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Luwei Yang, Khalid Z. Rajab and Elaine
Chew. “AVA: An Interactive System for Visual and Quantitative Anal-
yses of Vibrato and Portamento Performance Styles”, 17th International
Society for Music Information Retrieval Conference, 2016.

While vibrato analysis and detection methods have been
in existence for several decades [2, 10, 11, 13], there is
currently no widely available software tool for interactive
analysis of vibrato features to assist in performance and
musicological research. Portamenti have received far less
attention than vibratos due to the inherent ambiguity in
what constitutes a portamento—beyond a note transition,
a portamento is a perceptual feature that can only exist if
it is recognizable by the human ear—some recent work on
the modeling of portamenti can be found in [15].

The primary goal of this paper is to introduce the AVA
system 1 for interactive vibrato and portamento detection
and analysis. AVA seeks to fill the gap in knowledge dis-
covery tools for expressive feature analysis for continuous
pitch instruments. The AVA system is built on recent ad-
vances in automatic vibrato and portamento detection and
analysis. As even the best algorithm sometimes produces
erroneous vibrato or portamento detections, the AVA in-
terface allows the user to interactively edit the detection
solutions so as to achieve the best possible analysis results.

A second goal of the paper is to demonstrate the util-
ity of the AVA system across instruments and genres using
two datasets, one for voice and the other for string instru-
ments. The vocal dataset comprises of monophonic sam-
ples of phrases from two Beijing opera roles, one female
one male; the string instruments dataset consists of record-
ings of a well known Chinese piece on erhu and on violin.

Applications of AVA include music pedagogy and mu-
sicological analysis. AVA can be used to provide visual
and quantitative feedback in instrumental learning, allow-
ing students to inspect their expressive features and adapt
accordingly. AVA can also be used to quantify musicians’
vibrato and portamento playing styles for analyses on the
ways in which they use these expressive features. It can be
used to conduct large-scale comparative studies, for exam-
ple, of instrumental playing across cultures. AVA’s anal-
ysis results can also serve as input to expression synthe-
sis engines, or to transform expressive features in recorded
music.

The remainder of the paper is organized as follows:
Section 2 presents the AVA system and begins with a de-
scription of the vibrato and portamento feature detection
and analysis modules; Section 3 follows with details of
AVA’s user interface. Section 4 presents two case studies

1 The beta version of AVA is available at luweiyang.com/
research/ava-project.
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using AVA to detect and analyse vibratos and portamenti
and their properties in two Beijing opera roles, and in vio-
lin and erhu recordings. Section 5 closes with discussions
and conclusions.

2. FEATURE DETECTION AND ANALYSIS

Figure 1 shows AVA’s system architecture. The system
takes monophonic audio as input. The pitch curve, which
is given by the fundamental frequency, is extracted from
the input using the pYIN method [5]. The first part of
the system focuses on vibrato detection and analysis. The
pitch curve derived from the audio input is sent to the vi-
brato detection module, which detects vibrato existence us-
ing a Filter Diagonalization Method (FDM). The vibratos
extracted are then forwarded to the module for vibrato
analysis, which outputs the vibrato statistics.

Audio Input 

FDM-based 
Vibrato Analysis 

Logistic-based 
Portamento Analysis 

FDM-based 
 Vibrato Detection 

HMM-based 
Portamento Detection 

User 
Correction 

Pitch 
Detection 

Vibrato  
Removal 

Figure 1. The AVA system architecture.

The next part of the system deals with portamento de-
tection and analysis. The oscillating shapes of the vibratos
degrade portamento detection. To ensure the best pos-
sible performance for portamento detection, the detected
vibratos are flatten using the built-in MATLAB function
‘smooth’. The portamento detection module, which is
based on the Hidden Markov Model (HMM), uses this
vibrato-free pitch curve to identify potential portamenti. A
Logistic Model is fitted to each detected portamento for
quantitative analysis.

For both the vibrato and portamento modules, if there
are errors in detection, the interface allows the user to mark
up missing vibratos or portamenti and delete spurious re-
sults. Further details on the AVA interface will be given in
Section 3.

2.1 Vibrato Detection and Analysis

We use an FDM-based method described in [16] to analyze
the pitch curve and extract the vibrato parameters. The ad-
vantage of the FDM is its ability to extract sinusoid fre-
quency and amplitude properties for a short time signal,
thus making it possible to determine vibrato presence over
the span of a short time frame.

Vibrato detection methods can be classified into note-
wise and frame-wise methods. Note-wise methods have a

pre-requisite note segmentation step before they can de-
termine if the note contains a vibrato [8, 10]. Frame-
wise methods divide the audio stream, or the extracted f0
information, into a number of uniform frames. Vibrato
existence is then decided based on information in each
frame [2, 11, 13, 16]. The FDM approach constitutes one
of the newest frame-wise methods.

Fundamentally, the FDM assumes that the time signal
(the pitch curve) in each frame is the sum of exponentially
decaying sinusoids,

f(t) =
K∑

k=1

dke
−inτωk , for n = 0, 1, . . . , N, (1)

where K is the number of sinusoids required to represent
the signal to within some tolerance threshold, and the fit-
ting parameters ωk and dk are the complex frequency and
complex weight, respectively, of the k-th sinusoid. The
aim of the FDM is to find the 2K unknowns, representing
all ωk and dk. A brief summary of the steps is described
in Algorithm 1. Further details of the algorithm and imple-
mentation are given in [16].

Algorithm 1: The Filter Diagonalization Method
Input: Pitch curve (fundamental frequency)
Output: The frequency and amplitude of the sinusoid

with the largest amplitude
Set the vibrato frequency range;
Filter out sinusoids having frequency outside the
allowable range;
Diagonalize the matrix given by the pitch curve;
for each iteration do

Create a matrix by applying a 2D FFT on the
pitch curve;
Diagonalize this matrix;
Get the eigenvalues;
Check that the eigenvalues are within the
acceptance range;

end
Compute the frequencies from the eigenvalues;
Calculate the amplitudes from the corresponding
eigenvectors;
Return the frequency and amplitude of the sinusoid
with the largest amplitude;

Information on vibrato rate and extent fall naturally out
of the FDM analysis results. Here, we consider only the
frequency and amplitude of the sinusoid having the largest
amplitude. The window size is set to 0.125 seconds and
step size is one quarter of the window. Given the frequency
and amplitude, a Decision Tree determines the likely state
of vibrato presence. Any vibrato lasting less than 0.25 sec-
onds is pruned.

A third parameter is reported by the vibrato analysis
module, that of sinusoid similarity, which is used to char-
acterize the sinusoid regularity of the shape of the detected
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vibrato. The sinusoid similarity is a parameter between 0
and 1 that quantifies the similarity of a vibrato shape to a
reference sinusoid using cross correlation (see [14]).

2.2 Portamento Detection and Analysis

Portamenti are continuous variations in pitch connecting
two notes. Not all note transitions are portamenti; only
pitch slides that are perceptible to the ear are considered
portamenti. They are far less well defined in the literature
than vibratos, and there is little in the way of formal meth-
ods for detecting portamenti automatically.

Up Down Steady 

Figure 2. The portamento detection HMM transition net-
work.

To detect portamentos, we create a fully connected
three-state HMM using the delta pitch curve as input as
shown in Figure 2. The three states are down, steady, and
up, which correspond to slide down, steady pitch, and slide
up gestures. Empirically, we choose as transitions poba-
bilities the numbers shown in Table 1, which have worked
well in practice. Each down state and up state observation

Down Steady Up
Down 0.4 0.4 0.2
Steady 1/3 1/3 1/3
Up 0.2 0.4 0.4

Table 1. Transition probabilities for portamento detection
HMM.

is modeled using a Gamma distribution model. The steady
pitch observation is modeled as a sharp needle around 0
using a Gaussian function. The best (most likely) path
is decoded using the Viterbi algorithm. All state changes
are considered to be boundaries, and the minimum note or
transition (portamento) duration is set as 0.09 seconds.

To quantitatively describe each portamento, we fit a Lo-
gistic Model to the pitch curve in the fashion described
in [15]. The choice of model is motivated by the observa-
tion that portamenti largely assume S or reverse S shapes.
An ascending S shape is characterized by a smooth accel-
eration in the first half followed by a deceleration in the
second half, with an inflection point between the two pro-
cesses.

The Logistic Model can be described mathematically as

P (t) = L+
(U − L)

(1 +Ae−G(t−M))
1/B

, (2)

where L and U are the lower and upper horizontal asymp-
totes, respectively. Musically speaking, L and U are the
antecedent and subsequent pitches of the transition. A, B,
G, andM are constants. Furthermore,G can be interpreted
as the growth rate, indicating the steepness of the transition
slope.

The time of the point of inflection is given by

tR = − 1

G
ln

(
B

A

)
+M . (3)

The pitch of the inflection point can then be calculated by
substituting tR into Eqn (2).
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Figure 3. Description of the portamento duration, interval
and inflection for a real sample.

Referring to Figure 3, the following portamento param-
eters are reported by the portamento analysis module and
are caculated as follows:

1. Portamento slope: the coefficient G in Eqn (2).
2. Portamento duration (in seconds): the time interval dur-
ing which the first derivative (slope) of the logistic curve is
greater than 0.861 semitones per second (i.e. 0.005 semi-
tones per sample).
3. Portamento interval (in semitones): the absolute differ-
ence between the lower (L) and upper (U ) asymptotes.
4. Normalized inflection time: time between start of porta-
mento and inflection point time, tR in Eqn (3), as a fraction
of the portamento duration.
5. Normalized inflection pitch: distance between the lower
(L) asymptote and the inflection point pitch as a fraction
of the portamento interval.

3. THE AVA INTERFACE

The vibrato and portamento detection and analysis meth-
ods described above were implemented in AVA using
MATLAB.

AVA’s Graphical User Interface (GUI) consists of three
panels accessed through the tabs: Read Audio, Vibrato
Analysis, and Portamento Analysis. The Read Audio panel
allows a user to input or record an audio excerpt and obtain
the corresponding (fundamental frequency) pitch curve.
The Vibrato Analysis and Portamento Analysis panels pro-
vide visualizations of vibrato and portamento detection and
analysis results, respectively.

Figure 4 shows screenshots of the AVA interface.
Figure 4(a) shows the Vibrato Analysis panel analyzing an
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(a) Vibrato Analysis (b) Portamento Analysis

Figure 4. AVA screenshots: the vibrato analysis (left) and portamento analysis (right) panels.

erhu excerpt. Figure 4(b) shows the Portamento Analysis
panel analyzing the same excerpt.

Our design principle was to have each panel provide one
core functionality while minimizing unnecessary functions
having little added value. As vibratos and portamenti relate
directly to the pitch curve, each tab shows the entire pitch
curve of the excerpt and a selected vibrato or portamento
in that pitch curve.

To allow for user input, the Vibrato Analysis and Porta-
mento Analysis panels each have “Add” and “Delete” but-
tons for creating or deleting highlight windows against the
pitch curve. Playback functions allow the user to hear each
detected feature so as to inspect and improve detection re-
sults. To enable further statistical analysis, AVA can ex-
port to a text file all vibrato and portamento annotations
and their corresponding parameters.

3.1 Vibrato Analysis Panel

We first describe the Vibrato Analysis Panel, shown in
Figure 4(a). The pitch curve of the entire excerpt is pre-
sented in the upper part, with the shaded areas marking the
detected vibratos. Vibrato existence is determined using
the method described in Section 2.1. The computations are
triggered using the “Get Vibrato(s)” button in the top right,
and the detected vibratos are highlighted by grey boxes on
the pitch curve. Users can correct vibrato detection errors
using the “Add Vibrato” and “Delete Vibrato” buttons.

The interface allows the user to change the default set-
tings for the vibrato frequency and amplitude ranges; these
adaptable limits serve as parameters for the Decision Tree
vibrato existence detection process. In this case, with the
vibrato frequency range threshold [4, 9] Hz and amplitude
range threshold [0.1,∞] semitones.

On the lower left is a box listing the indices of the de-
tected vibratos. The user can click on each highlighted vi-
brato on the pitch curve, use the left- or right-arrow keys to
navigate from the selected vibrato, or click on one of the in-
dices to select a vibrato. The pitch curve of the vibrato thus
selected is presented in the lower plot with corresponding
parameters shown to the right of that plot.

In Figure 4(a), the selected vibrato has frequency
7.07 Hz, extent 0.65 semitones, and sinusoid similarity
value 0.93. These parameters are obtained using the FDM-
based vibrato analysis technique. Alternatively, using the
drop down menu currently marked “FDM”, the user can
toggle between the FDM-based technique and a more ba-
sic Max-min method that computes the vibrato parameters
from the peaks and troughs of the vibrato pitch contour.

Another drop down menu, labeled “X axis” under the
vibrato indices at the bottom left, lets the user to choose
between the original time axis and a normalized time axis
for visualizing each detected vibrato. A playback function
assists the user in vibrato selection and inspection. All de-
tected vibrato annotations and parameters can be exported
to a text file at the click of a button to facilitate further sta-
tistical analysis.

3.2 Portamento Analysis Panel

Next, we present the functions available on the Portamento
Analysis Panel, shown in Figure 4(b).

In the whole-sample pitch curve of Figure 4(b), the de-
tected vibratos of Figure 4(a) have been flattened to im-
prove portamento detection. Clicking on the “Get Por-
tamentos” button initiates the process of detecting porta-
menti. The “Logistic Model” button triggers the process
of fitting Logistic Models to all the detected portamenti.

Like the Vibrato Analysis panel, the Portamento Analy-
sis panel also provides “Add Portamento” and “Delete Por-
tamento” buttons for the user to correct detection errors.
The process for selecting and navigating between detected
portamenti is like that for the Vibrato Analysis panel.

When a detected portamento is selected, the best-fit Lo-
gistic model is shown as a red line against the original por-
tamento pitch curve. The panel to the right shows the cor-
responding Logistic Model parameters. In the case of the
portamento highlighted in Figure 4(b), the growth rate is
52.15 and the lower and upper asymptotes are 66.25 and
68.49 (in MIDI number), respectively, which could be in-
terpreted as the antecedent and subsequent pitches. From
this, we infer that the transition interval is 2.24 semitones.
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As with the Vibrato Analysis panel, a playback func-
tion assists the user in portamento selection and inspection.
Again, all detected portamento annotations and parameters
can be exported to a text file at the click of a button to fa-
cilitate further statistical analysis.

4. CASE STUDIES

This section demonstrates the application of AVA to two
sets of data: one for two major roles in Beijing opera, and
one for violin and erhu recordings.

4.1 Case 1: Beijing Opera (Vocal)

Vibrato and portamento are widely and extensively em-
ployed in opera; the focus of the study here is on singing
in Beijing opera. Investigations into Beijing opera singing
include [9]. For the current study, we use selected record-
ings from the Beijing opera dataset created by Black and
Tian [1]; the statistics on the amount of vibrato and porta-
menti, based on manual annotations, in the sung samples
are shown in Table 2. The dataset consists of 16 mono-

No. Role Duration(s) # Vibratos # Portamenti
1

Laosheng

102 49 94
2 184 62 224
3 91 56 159
4 95 49 166
5 127 26 115
6 147 51 106
7 168 47 144
8 61 19 89
9

Zhengdan

159 47 173
10 80 24 49
11 119 42 176
12 50 24 71
13 155 57 212
14 41 12 48
15 180 59 219
16 70 34 87

Table 2. Beijing opera dataset.

phonic recordings by 6 different Chinese opera singers per-
forming well-known phrases from the Beijing opera roles
Laosheng(老生) and Zhengdan(正旦).

Each recording was uploaded to the AVA system for vi-
brato and portamento detection and analysis. Detection er-
rors were readily corrected using the editing capabilities of
AVA. Figure 5 presents the resulting histogram envelops
of the vibrato and portamento parameter values, each nor-
malized to sum to 1, for the Zhengdan (red) and Laosheng
(blue) roles. Translucent lines show the parameter’s distri-
butions for individual recordings, and bold lines show the
aggregate histogram for each role.

The histograms show the similarities and differences
in the underlying probability density functions. Visual
inspection shows that the singing of the Zhengdan and

Laosheng roles to be most contrastive in the vibrato ex-
tents, with peaks at around 0.5 and 0.8 semitones, respec-
tively. A Kolmogorov-Smirnov (KS) test 2 shows that the
histogram envelopes of vibrato extent from Laosheng and
Zheng to be significant different (p = 2.86 × 10−4) at
1% significant level. The same test shows that the dis-
tributions for vibrato rate (p = 0.0536) and vibrato si-
nusoid similarity (p = 0.0205) are not significant differ-
ent. Significant differences are found between the singing
of the Laosheng and Zhengdan roles for the portamento
slope (p = 1.80× 10−3) and interval (p = 2.30× 10−34)
after testing using the KS test; differences in duration
(p = 0.345), normalized inflection time (p = 0.114) and
normalized inflection pitch (p = 1.00) are not significant.

4.2 Case 2: Violin vs. Erhu (String)

Here, we demonstrate the usability of the AVA system on
the analysis of vibrato and portamento performance styles
on erhu and violin. The study centers on a well known Chi-
nese piece The Moon Reflected on the Second Spring (二
泉映月) [3]. The study uses four recordings, two for erhu
and two more for violin. Table 3 lists the details of the
test set, which comprises of a total of 23.6 minutes of mu-
sic; with the help of AVA, 556 vibratos and 527 portamenti
were found, verified, and analysed.

No. Instrument Duration(s) # Vibratos # Portamenti
1

Erhu
446 164 186

2 388 157 169
3

Violin
255 131 91

4 326 104 81

Table 3. Erhu and violin dataset.

The histograms of the vibrato and portamento param-
eters are summarized in Figure 6. Again, we use the KS
test to assess the difference in the histograms between vio-
lin and erhu. As with the case for the Beijing opera roles,
the most significant difference between the instruments is
found in the vibrato extent (p = 2.70 × 10−3), with the
vibrato extent for the erhu about twice that for violin (half
semitone vs. quarter semitone). There is no significant
difference found between erhu and violin for vibrato rate
(p = 0.352) and sinusoid similarity (p = 0.261), although
the plots show that the violin recordings have slightly faster
vibrato rates and lower sinusoid similarity.

Regarding portamento, the portamento interval his-
togram has a distinct peak at around three semitones for
both violin and erhu, showing that notes separated by
this gap is more frequently joined by portamenti. The
difference between the histograms is highly insignificant
(p = 0.363). The most significant difference between vi-
olin and erhu portamenti histograms is observed for the
slope (p = 1.51 × 10−4). Inspecting the histograms, vio-
linists tend to place the normalized inflection time after the
midpoint and erhu players before the midpoint of the por-
tamento duration. However, it is not supported by the KS

2 http://uk.mathworks.com/help/stats/kstest2.html
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dan (red). Translucent lines show histograms for individual singers; bold line shows aggregated histograms for each role.
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Figure 6. Histogram envelopes of vibrato and portamento parameters for two instruments: erhu (blue) and violin (red).
Translucent lines show histograms for individual players; bold line shows aggregated histograms for each instrument.

test (p = 0.256). The duration (p = 0.344) and normal-
ized inflection pitch (p = 0.382) doesn’t show significant
results.

5. CONCLUSIONS AND DISCUSSIONS

We have presented an interactive vibrato and portamento
detection and analysis system, AVA. The system was im-
plemented in MATLAB, and the GUI provides interactive
and intuitive visualizations of detected vibratos and porta-
menti and their properties. We have also demonstrated its
use in analyses of Beijing opera and string recordings.

For vibrato detection and analysis, the system imple-
ments a Decision Tree for vibrato detection based on FDM
output and an FDM-based vibrato analysis method. The
system currently uses a Decision Tree method for deter-
mining vibrato existence; a more sophisticated Bayesian
approach taking advantage of learned vibrato rate and ex-
tent distributions is described in [16]. While the Bayesian
approach has been shown to give better results, it requires
training data; the prior distributions based on training data
can be adapted to specific instruments and genres.

For portamento detection and analysis, the system uses

an HMM-based portamento detection method with Logis-
tic Models for portamento analysis. Even though a thresh-
old has been set to guarantee a minimum note transition
duration, the portamento detection method sometimes mis-
classifies normal note transitions as portamenti, often for
notes having low intensity (dynamic) values. While there
were significant time savings over manual annotation, es-
pecially for vibrato boundaries, corrections of the auto-
matically detected portamento boundaries proved to be the
most time consuming part of the exercise. Future improve-
ments to the portamento detection method could take into
account more features in addition to the delta pitch curve.

For the Beijing opera study, the two roles differed sig-
nificantly in vibrato extent, and in portamento slope and
interval. The violin and erhu study showed the most sig-
nificant differences in vibrato extent and portamento slope.
Finally, the annotations and analyses produced with the
help of AVA will be made available for further study.
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ABSTRACT

We propose a method for music classification based on the
use of convolutional models on symbolic pitch–time rep-
resentations (i.e. piano-rolls) which we apply to composer
recognition. An excerpt of a piece to be classified is first
sampled to a 2D pitch–time representation which is then
subjected to various transformations, including convolu-
tion with predefined filters (Morlet or Gaussian) and clas-
sified by means of support vector machines. We combine
classifiers based on different pitch representations (MIDI
and morphetic pitch) and different filter types and config-
urations. The method does not require parsing of the mu-
sic into separate voices, or extraction of any other prede-
fined features prior to processing; instead it is based on the
analysis of texture in a 2D pitch–time representation. We
show that filtering significantly improves recognition and
that the method proves robust to encoding, transposition
and amount of information. On discriminating between
Haydn and Mozart string quartet movements, our best clas-
sifier reaches state-of-the-art performance in leave-one-out
cross validation.

1. INTRODUCTION

Music classification has occupied an important role in the
music information retrieval (MIR) community, as it can
immediately lead to musicologically interesting findings
and methods, whilst also being immediately applicable in,
for example, recommendation systems, music database in-
dexing, music generation and as an aid in resolving issues
of spurious authorship attribution.

Composer recognition, one of the classification tasks
addressing musical style discrimination (among genre, pe-
riod, origin identification, etc.), has aroused more attention
in the audio than in the symbolic domain [13]. Particu-
larly in the symbolic domain, the string quartets by Haydn
and Mozart have been repeatedly studied [10, 12, 13, 24],

c© Gissel Velarde, Carlos Cancino Chacón, Tillman Weyde,
David Meredith, Maarten Grachten. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Gis-
sel Velarde, Carlos Cancino Chacón, Tillman Weyde, David Meredith,
Maarten Grachten. “Composer Recognition based on 2D-Filtered Piano-
Rolls”, 17th International Society for Music Information Retrieval Con-
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since discriminating between Haydn and Mozart has been
found to be a particularly challenging composer recogni-
tion task [24].

In this study, we propose a novel method and evaluate
it on the classification of the string quartet movements by
Haydn and Mozart. The method is based on the use of con-
volutional models on symbolic pitch–time representations
(i.e. piano-rolls). An excerpt of a piece to be classified
is first sampled to a 2D pitch–time representation which is
then subjected to various transformations, including con-
volution with predefined filters (Morlet or Gaussian) and
classified by means of Support Vector Machines (SVM).

2. RELATED WORK

Typically it is seen that computational methods use some
kind of preprocessing to extract melody and harmony. Pre-
vious computational methods addressing composer dis-
crimination of polyphonic works required defining sets of
musical features or style makers, and/or relied on the en-
coding of separate parts or voices [10,12,13,24]. However,
hard-coded musical features require musical expertise and
may not perform similarly on different datasets [24], while
the performance of methods relying on separate encoding
of voice parts could be affected if voices are not encoded
separately or even be unusable.

In order to avoid the requirements of previous methods,
we aim to develop a more general approach studying the
texture of pitch–time representations (i.e. piano-rolls) in
the two-dimensional space. Previous studies did not ad-
dress musical texture as it is proposed here.

Next, we review previous work that employs 2D music
representations (2.1), and briefly sketch the background of
the use of convolutional methods for machine perception
and classification (2.2).

2.1 Representing music with 2D images

Visually motivated features generated from spectrograms
have been successfully used for music classification
(see [5, 28]). This success may be partly due to the fact
that similar principles of perceptual organization operate in
both vision and hearing [8]. The Gestalt principles of prox-
imity, similarity and good continuation, originally devel-
oped to account for perceptual organization in vision, have
also been used to explain the way that listeners organize
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sonic events into streams and chunks [3, 7, 16]. Moreover,
other studies suggest direct interaction between visual and
auditory processing in common neural substrates of the hu-
man brain, which effectively integrates these modalities
in order to establish robust representations of the world
[9, 11, 21].

Graphical notation systems have been used since an-
cient times to transmit musical information [27]. More-
over, most Western music composed before the age of
recording survives today only because of transmission by
graphical notation — as staff notation, tablature, neumatic
notation, etc. Standard graphical musical notation methods
have proved to be extremely efficient and intuitive, possi-
bly in part due to the natural mapping of pitch and time
onto two orthogonal spatial dimensions.

2.2 Convolutional models

Convolutional models have been used extensively to model
the physiology and neurology of visual perception. For
example, in 1980, Daugman [6] and Marčelja [17] mod-
eled receptive field profiles in cortical simple cells with
parametrized 2D Gabor filters. In 1987, Jones and Palmer
[14] showed that receptive-field profiles of simple cells in
the visual cortex of a cat are well described by the real
parts of complex 2D Gabor filters. More recently, Kay et
al. [15] used a model based on Gabor filters to identify nat-
ural images from human brain activity. In our context, the
Gabor filter is equivalent to the Morlet wavelet which we
have used as a filter in the experiments described below.

Filters perform tasks like contrast enhancement or edge
detection. In image classification, filtering is combined
with classification algorithms such as SVM or neural net-
works for object or texture recognition [2, 23].

In the remainder of this paper, we present our proposed
method in detail (3). Then, we report the results of our
experiments (4) and finally, state our conclusions (5).

3. METHOD

Figure 1 provides an overview of our proposed method. As
input, the method is presented with excerpts from pieces of
music in symbolic format. Then, in the sampling phase, a
2D image is derived from each input file in the form of a
piano-roll. After the sampling phase, various tranforma-
tions are applied to the images before carrying out the final
classification phase, which generates a class label for the
input file using an SVM. Details of each phase are given
below. We begin by describing the sampling phase, in
which symbolic music files are transformed into images
of piano-rolls.

3.1 Sampling piano-roll images from symbolic
representations

3.1.1 MIDI note numbers encoding

Symbolic representations of music (e.g. MIDI files) en-
code each note’s pitch, onset and duration. We encoded
pitch as an integer from 1 to 128 using MIDI note num-
bers (MNN), where C4 or middle C is mapped to MNN

60. Onset and duration are temporal attributes measured in
quarter notes (qn).

3.1.2 Morphetic pitch encoding

The pitch name of a note is of the form
<letter name><alteration><octave number>, e.g.
C]4. By removing the <alteration> and mapping all
note names with the same <letter name> and <octave
number> to the same number we reduce the space to
morphetic pitch: an integer corresponding to the vertical
position of the note on a musical staff.

We use a pitch-spelling algorithm by Meredith called
PS13s1 [18], to compute the pitch names of notes. The
PS13s1 algorithm has been shown to perform well on clas-
sical music of the type considered in this study. The set-
tings of the PS13s1 algorithm used here are the same as
in [18], 1 with the pre-context parameter set to 10 notes and
the post-context set to 42 notes. These parameters define a
context window around the note to be spelt, which is used
to compute the most likely pitch name for the note, based
on the extent to which the context implies each possible
key. When transposing a pattern within a major or minor
scale (or, indeed, any scale in a diatonic mode), as is com-
mon practice in tonal (and modal) music, chromatic pitch
intervals within the pattern change although the transposed
pattern is still recognized by listeners as an instance of the
same musical motif [8]. Morphetic pitch intervals are in-
variant to within-scale transpositions. We hypothesize that
preserving this tonal motif identity might improve the per-
formance of our models.

3.1.3 Piano-rolls (p70qn)

Symbolic representations of music are sampled to 2D bi-
nary images of size P × T pixels taking values of 0 or 1,
called piano-roll representations. Our piano-roll represen-
tations are sampled from the first 70 qn of each piece, using
onset in qn, duration in qn and either MNN or morphetic
pitch, with a sampling rate of 8 samples per qn. We de-
note such representations by p70qn. Each note of a piece
symbolically encoded is described as an ordered tuple (on-
set, duration, pitch). The onsets are shifted, so that the
first note starts at 0 qn. The piano-roll image is initialized
with zeros and filled with ones for each sampled note. Its
rows correspond to pitch and columns to samples in time.
For each note, its onset and duration are multiplied by the
sampling rate and rounded to the nearest integer. Note that
since the tempo in terms of quarter notes per minute varies
across pieces in our test corpora, the resulting samples vary
in physical duration.

3.1.4 Piano-rolls (p400n)

As an alternative to the 70 qn piano roll excerpts, p70qn, de-
fined in 3.1.3 above, we also tested the methods on piano-
roll excerpts consisting of the first 400 notes of each piece.

1 We use a Java implementation of the PS13s1 algorithm by
David Meredith that takes MIDI files as input. **kern files are
first converted to MIDI. Then we use the function writemidi seconds
by Christine Smit: http://www.ee.columbia.edu/˜csmit/
midi/matlab/html/example_script1.html#2
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Figure 1. Overview of the method. Music, represented symbolically, is first sampled to 2D images of piano-rolls. Then,
various transformations or processing steps are applied to the images, including convolution with predefined filters. The
order of applying these transformations is from left to right. Finally, the images are classified with an SVM.

Figure 2. Piano-roll representation using MNN (left) and
morphetic pitch (right) of the first 48 qn of Prelude 3 in
C] major, BWV 848 by Bach. Note that the approximately
similar inverted “V” shaped patterns in the left-hand figure
are transformed into patterns of exactly the same shape in
the right-hand figure.

We denote this type of representation by p400n. These
p400n representations were produced by sampling in the
way described in section 3.1.3, but using the first 400 notes
instead of the first 70 qn of a piece and sampling to a size of
P ×T pixels. If a piece has fewer than 400 notes, all notes
of the piece are represented. This representation is used
to approximately normalize the amount of information per
image.

In the next phase of our proposed method with a sin-
gle classifier, as seen in Figure 1, various transformations
or processing steps are applied which will be described as
follows.

3.2 Transformations

We explore the effect of applying transformations or pro-
cessing techniques to the piano-roll images. These trans-
formations are applied in order to find a suitable normal-
ization (i.e., alignment between the images) before classi-
fication, and to test the robustness of the method to trans-
formations of the input data that would not be expected to
reduce the performance of a human expert (cf. [22]). We
now consider each of these transformations in turn.

3.2.1 Pitch range centering (Cb)

Typically, the pitch range of a piece in a piano-roll repre-
sentation does not extend over the full range of possible
MIDI note number values. We hypothesized that we could
improve performance by transposing each piano roll so that
its pitch range is centered vertically in its image. That is,
for a piano-roll image of size P × T pixels, we translated
the image by ys = (P − (yd + yu))/2 pixels vertically,
where yd and yu are the lower and upper co-ordinates, re-
spectively, of the bounding box of the piano roll (i.e., cor-
responding to the minimum and maximum pitches, respec-
tively, occurring in the piano roll). This transformation is
used to test robustness to pitch transposition.

3.2.2 Center of mass centering (Cm)

An image p of size P × T pixels is translated
so that the centroid of the piano roll occurs at the
center of the image. We denote the centroid by
(x̄, ȳ) = (M10/M00,M01/M00), where Mij =∑
x

∑
y x

iyjp(x, y). The elements of the image are
shifted circularly to the central coordinates (xc, yc) of the
image, where (xc = T/2) and (yc = P/2), an amount
of (xc − x̄) pixels on the x-axis, and (yc − ȳ) pixels on
the y-axis. In this case, circular shift is applied to rows
and columns of p. In the datasets used for the experiments,
in 5% of the pieces with MNN encoding, one low-pitch
note was shifted down by this transformation and wrapped
around so that it became a high-pitched note (in one piece
there were four low-pitch notes shifted to high pitch-notes
after circular shift). However, this transformation caused
most pieces to be shifted and wrapped around in the time
dimension so that, on average, approximately the initial 2
quarter notes of each representation were transferred to the
end.

3.2.3 Linear Discriminant Analysis

We apply Linear Discriminant Analysis (LDA) [4] solving
the singularity problem by Singular Value Decomposition
and Tikhonov regularization to find a linear subspace for
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Figure 3. Piano-roll (p400n) morphetic pitch representation (top) of Haydn’s String Quartet in E-flat Major Opus 1, No. 0
and its transformations filtered by the Morlet wavelet at a scale of 2 pixels oriented of 90 degrees (second image), and by a
Gaussian filter of size 9× 9 pixels with σ = 3 (third image). p400n and its filtered versions are each 56× 560 pixels.

discrimination between classes. 2

3.2.4 Filtering

Images are convolved with pre-defined filters (Morlet
wavelet or a Gaussian filter). We apply the continuous
wavelet transform (CWT) [1], with the Morlet wavelet ψ
at fixed scale a and rotation angle θ

ψa,θ(x, y) = a−1ψ(a−1r−θ(x, y)) (1)

with rotation rθ

rθ(x, y) = (x cos θ−y sin θ, x sin θ+y cos θ), 0 ≤ θ < 2π.
(2)

where

ψ(x, y) = eik0ye−
1
2 (ε

−1x2+y2) (3)

with frequency k0 = 6 and ε = 1.
The filtered images are the absolute values of the real

part of the wavelet coefficients. We test a defined set of
scales and angles (see section 4). The selection of scale
and angle of orientation are those that yield the best classi-
fication as in [25].

We also filter images with a rotationally symmetric
Gaussian low-pass filter g:

g(x, y) = e
−(x2+y2)

2σ2 (4)

where x and y are the distances from the origin in the hor-
izontal and vertical axis, respectively.

We test a defined set of filter sizes h and σ values (see
section 4). The selection of the size h of the filter and the
value of σ are those that yield the best classification. As
an example of the effect of filtering, Figure 3 shows the
piano-roll image, p70qn of Haydn’s String Quartet in E-flat
Major Opus 1, No. 0 and the filtered images obtained by
the convolution with Morlet wavelet and Gaussian filter.

2 We use Deng Cai’s LDA implementation version 2.1:
http://www.cad.zju.edu.cn/home/dengcai/Data/
DimensionReduction.html.

3.3 Classification with support vector machines

For classification, we use SVM with the Sequential Mini-
mal Optimization (SMO) method to build an optimal hy-
perplane that separates the training samples of each class
using a linear kernel [19]. Samples are transformed images
of size P×T if they are not reduced by LDA. If LDA is ap-
plied, samples are points in 1D. Each sample is normalized
around its mean, and scaled to have unit standard deviation
before training. The Karush–Kuhn–Tucker conditions for
SMO are set to 0.001.

4. EXPERIMENTS

We used a set of movements from string quartets by Haydn
and Mozart, two composers that seemed to have influenced
each other on this musical form. Walthew [26] observes
that “Mozart always acknowledged that it was from Haydn
that he learnt how to write String Quartets” and, in his late
string quartets, Haydn was directly influenced by Mozart.

Distinguishing between string quartet movements by
Haydn and Mozart is a difficult task. Sapp and Liu [20]
have run an online experiment to test human performance
on this task and found, based on over 20000 responses, that
non-experts perform only just above chance level, while
self-declared experts achieve accuracies up to around 66%.

Classification accuracy—that is, the proportion of
pieces in the test corpus correctly classified—has been the
established evaluation measure for audio genre and com-
poser classification since the MIREX 2005 competition 3

and also for symbolic representations [12, 13, 24].
In our experiments we used the same dataset as in [24]

consisting of 54 string quartet movements by Haydn and
53 movements by Mozart, encoded as **kern files, 4 and

3 See http://www.music-ir.org/mirex/wiki/2005:
Main_Page.

4 http://www.music-cog.ohio-state.edu/Humdrum/
representations/kern.html
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p70qn 65.4 58.9 57.9 53.3 68.2 58.9

Cb(p70qn) 65.4 60.7 47.7 57.9 63.6 51.4

Cm(p70qn) 53.3 60.7 52.3 64.5 59.8 56.1

p400n 67.3 80.4 57.0 63.6 72.9 55.1

Cb(p400n) 62.6 72.9 54.2 61.7 66.4 53.3

Cm(p400n) 65.4 65.4 55.1 66.4 70.1 53.3

M
N

N

p70qn 64.5 67.3 66.4 62.6 66.4 64.5

Cb(p70qn) 70.1 61.7 63.6 67.3 61.7 61.7

Cm(p70qn) 63.6 57.9 57.0 66.4 56.1 54.2

p400n 66.4 69.2 64.5 65.4 63.6 64.5

Cb(p400n) 54.2 64.5 52.3 58.9 58.9 49.5

Cm(p400n) 53.3 62.6 42.1 56.1 63.6 44.9

Table 1. Haydn and Mozart String Quartet classification
accuracies in leave-one-out cross validation for different
configurations of classifiers (NF = no filtering).

evaluated our method’s classification accuracies in leave-
one-out cross-validation as it was done in [24].

Table 1 shows the classification accuracies (mean val-
ues) obtained in leave-one-out cross-validation for images
of size 56× 560 pixels. The standard deviation values are
not presented, as they are not informative. The standard
deviation can be derived from the accuracy in this case
(accuracy of binary classification in leave-one-out cross-
validation). The filters of the classifiers were tuned ac-
cording to their classification accuracy over the different
pitch–time representations. The angle of orientation of the
Morlet wavelet was set to 90 degrees. This orientation was
chosen out of a selection of angles (0, 45, 90 and 135 de-
grees). The scale was set to 2 pixels, selected varying its
value from 1 to 9 pixels. The Gaussian filter was tested
with pixel sizes of 1 to 10 pixels, with values of σ rang-
ing from 1 to 4 pixels. Gaussian filters were set to 9 pixels
and σ = 3. The best classifier using MNN encoding cor-
responds to a classifier operating on pitch–time represen-
tation Cb(p70qn), filtered by Morlet wavelet oriented 90
degrees at a scale of 2 pixels, and LDA reduction. The
best classifier of all reaches state-of-the-art performance
with an accuracy of 80.4%. This classifier corresponds to
a pitch–time representation p400n in morphetic pitch en-
coding, filtered by a Gaussian filter of size 9 pixels and
σ = 3, and LDA reduction. It misclassified 12 movements
by Haydn and 9 by Mozart. The misclassified movements
(mov.) are shown in Table 2. Due to our model section, it
could be that the results present some overfitting.

From the results in Table 1 we observe that filtering
significantly improves recognition at 5% significance level
(Wilcoxon rank sum = 194.5, p = 0.0107, n = 12, with
Morlet wavelet), (Wilcoxon rank sum = 203, p = 0.0024,

Movements by Haydn Movements by Mozart
Op 1, N. 0, mov. 4 K. 137, mov. 3
Op 1, N. 0, mov. 5 K. 159, mov. 3
Op 9, N. 3, mov. 1 K. 168, mov. 2
Op 20, N. 6, mov. 2 K. 168, mov. 3
Op 20, N. 6, mov. 4 K. 428, mov. 3
Op 50, N. 1, mov. 3 K. 465, mov. 2
Op 64, N. 1, mov. 2 K. 465, mov. 4
Op 64, N. 4, mov. 2 K. 499, mov. 1
Op 64, N. 4, mov. 3 K. 499, mov. 4
Op 71, N. 2, mov. 2
Op 103, mov. 1
Op 103, mov. 2

Table 2. Misclassified movements of our best classifier.

n = 12, with Gaussian filter), and it is not significantly dif-
ferent to filter with Morlet or Gaussian filters (Wilcoxon
rank sum = 133, p = 0.3384, n = 12). On the other
side, there is not sufficient evidence to conclude that LDA
improves recognition (Wilcoxon rank sum = 154, p =
0.8395, n = 12).

We study the effect of encoding (MNN vs. morphetic
pitch), transposition (not centering vs. centering with Cb)
and the amount of information (p70qn vs. P400n). The
center of mass centering Cm was not evaluated, as this
transformation may affect human recognition. Consider-
ing all results in Table 1 obtained with filtering and ex-
cluding the ones obtained with Cm, the difference in en-
coding between MNN and morphetic pitch is not signifi-
cant at %5 significance level (Wilcoxon rank sum = 269.5,
p = 0.8502, n = 16), nor are the results significantly dif-
ferent with or without centering Cb (Wilcoxon rank sum
= 311.5, p = 0.0758, n = 16), neither it is significantly
different to use p70qn or P400n (Wilcoxon rank sum = 242,
p = 0.4166, n = 16). These findings suggest that the
method based on 2D-Filtered piano-rolls is robust to trans-
formations such as encoding, transposition, and amount of
information that are considered not to affect human per-
ception.

In Table 3, we list all previous studies where machine-
learning methods have been applied to this Haydn/Mozart
discrimination task. A direct comparison can be made be-
tween the classification accuracy achieved by the method
of van Kranenburg and Backer [24] and our proposed
method, as we used the same dataset. The datasets used
by the other approaches in Table 3 were not available for
us to test our method and make direct comparisons. Hon-
tanilla et al. [13] used a subset of the set used in [24]: 49
string quartets movements by Haydn and 46 string quartets
movements by Mozart [13]. Hillewaere et al. [12] extended
van Kranenburg and Backer’s [24] dataset to almost dou-
ble its size, including several movements from the period
1770–1790. Herlands et al. [10] used a dataset consist-
ing of MIDI encodings of only the first movements of the
string quartets.

Table 3 shows that our best classifier reaches state-of-
the-art performance and that there is no significant dif-
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Method Accuracy
Proposed best classifier 80.4
Van Kranenburg and Backer (2004) [24] 79.4
Herlands et al. (2014) [10]* 80.0
Hillewaere et al. (2010) [12]* 75.4
Hontanilla et al. (2013) [13]* 74.7

Table 3. Classification accuracies achieved by previous
computational approaches on the Haydn/Mozart discrimi-
nation task. * indicates that a different dataset was used
from that used in the experiments reported here.

ference from the results obtained by van Kranenburg and
Backer at 5% significance level (Wilcoxon rank sum =
11449, p = 0.8661, n = 107). Compared to previous ap-
proaches [10,12,13,24], our method is more general in that
it does not need hard-coded musical style markers for each
dataset as in [24], nor does it require global musical fea-
ture sets as in [12], nor does it depend on the music having
been parsed into separate parts or voices as in [10,12,13].

5. CONCLUSION

We have shown that string quartets by Haydn and Mozart
can be discriminated by representing pieces of music as
2-D images of their pitch–time structure and then using
convolutional models to operate on these images for clas-
sification. Our approach based on classifying pitch–time
representations of music does not require parsing of the
music into separate voices, or extraction of any other pre-
defined features prior to processing. It addresses musical
texture of 2-D pitch–time representations in a more gen-
eral form. We have shown that filtering significantly im-
proves recognition and that the method proves robust to
encoding, transposition and amount of information. Our
best single classifier reaches state-of-the-art performance
in leave-one-out cross validation on the task of discrim-
inating between string quartet movements by Haydn and
Mozart.

With the proposed method, it is possible to generate a
wide variety of classifiers. In preliminary experiments, we
have seen that diverse configurations of classifiers (i.e. dif-
ferent filter types, orientations, centering, etc.) seem to
provide complementary information which could be po-
tentially used to build ensembles of classifiers improving
classification further. Besides, we have observed that the
method can be applied to synthetic audio files and audio
recordings. In this case, audio files are sampled to spectro-
grams instead of piano-rolls, and then follow the method’s
chain of transformations, filtering and classification. We
are optimistic that our proposed method can perform sim-
ilarly on symbolic and audio data, and might be used suc-
cessfully for other style discrimination tasks such as genre,
period, origin, or performer recognition.
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ABSTRACT

Sample retrieval remains a central problem in the cre-
ative process of making electronic dance music. This pa-
per describes the findings from a series of interview ses-
sions involving users working creatively with electronic
music. We conducted in-depth interviews with expert users
on location at the Red Bull Music Academies in 2014 and
2015. When asked about their wishes and expectations for
future technological developments in interfaces, most par-
ticipants mentioned very practical requirements of storing
and retrieving files. A central aspect of the desired systems
is the need to provide increased flow and unbroken periods
of concentration and creativity.

From the interviews, it becomes clear that for Creative
MIR, and in particular, for music interfaces for creative ex-
pression, traditional requirements and paradigms for music
and audio retrieval differ to those from consumer-centered
MIR tasks such as playlist generation and recommendation
and that new paradigms need to be considered. Despite all
technical aspects being controllable by the experts them-
selves, searching for sounds to use in composition remains
a largely semantic process. From the outcomes of the in-
terviews, we outline a series of possible conclusions and
areas and pose two research challenges for future develop-
ments of sample retrieval interfaces in the creative domain.

1. MOTIVATION AND CONTEXT

Considerable effort has been put into analysing user be-
haviour in the context of music retrieval in the past two
decades [35]. This includes studies on music information
seeking behaviour [14,17], organisation strategies [15], us-
age of commercial listening services [36], the needs or
motivations of particular users, such as kids [28], adoles-
cents [34], or musicologists [29], and behaviour analysis
for specific tasks, e.g., playlist and mix generation [13], or
in specific settings, e.g., riding together in a car [16] or in
music lessons in secondary schools [49].

c© Kristina Andersen, Peter Knees. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Kristina Andersen, Peter Knees. “Conversations with Expert
Users in Music Retrieval and Research Challenges for Creative MIR”,
17th International Society for Music Information Retrieval Conference,
2016.

Figure 1. Live electronic music performance at the Red
Bull Music Academy 2014

In this paper, we want to address music retrieval from
the perspective of music producers, thus investigate the
user behaviour of a group that deals with audio retrieval
professionally on a daily basis, but has received compara-
tively less attention in MIR research so far—as have other
questions from the area of Creative MIR [27].

The majority of today’s electronic music is created from
pre-recorded or live-generated sound material. This pro-
cess often combines sound loops and samples with syn-
thesized and processed elements using a so-called digital
audio workstation (DAW), an electronic device or com-
puter application for recording, editing and producing au-
dio files. In these systems, Music Information Retrieval
(MIR) methods, e.g., for content analysis, gain importance.
In essence, future tools and applications need to be aware
of the nature and content of the music material, in order to
effectively support the musician in the creative process.

However, user studies on retrieval for musicians and
producers are scarce. Cartwright et al. [6] investigate po-
tential alternatives to existing audio production user inter-
faces in a study with 24 participants. In another example,
Bainbridge et al. [4] explore and test a personal digital li-
brary environment for musicians, where based on a spatial
paradigm musicians should be able to capture, annotate,
and retrieve their ideas, e.g., using query-by-humming. In
this paper, our approach is not to test an existing system,
but to gain an understanding of the processes involved for
music producers, who are used to working with existing
music software suites.
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This work is organized a follows. In section 2, we iden-
tify and briefly discuss existing MIR approaches in the
context of music production. In section 3, we describe our
motivation for engagement with expert users, our approach
of conducting semi-structured interviews, and information
on the interview background. The main part of the paper
is presented in sections 4 and 5, where we highlight inter-
esting outcomes of the interview sessions and distill cen-
tral topics. Corresponding to this, we conclude this work
by posing two research challenges for Creative MIR (sec-
tion 6).

2. MIR RESEARCH IN MUSIC MAKING

Existing MIR research targeted at composition support and
music production deals with browsing interfaces to facili-
tate access to large collections of potentially homogeneous
material, such as drum samples [41]. Exploration of sam-
ple libraries, e.g., [8, 50], is often supported or driven by
methods to automatically extract music loops from mu-
sic files. Given the prevalent techniques of sampling and
remixing in today’s music production practise, such meth-
ods are useful to identify reusable materials and can lead
to inspirations for new compositions [40, 51] and new in-
terfaces for remixing [23] In terms of retrieval in the cre-
ative domain, and in contrast to consumer-based infor-
mation systems, the query-by-example paradigm, imple-
mented as query-by-humming or through other vocal in-
puts [5, 25, 31], is still an active research field.

Other MIR systems facilitate musical creation through
automatic composition systems [10] or mosaicing systems
that “reconstruct” the sound of a target piece by concate-
nating slices of other recordings [38, 45, 54]. This princi-
ple of concatenative synthesis can also be found in interac-
tive systems for automatic accompaniment or improvisa-
tion such as the OMax system by Assayag et al. [3], Audio
Oracle by Dubnov et al. [19], or Cont’s Antescofo [11].

Other MIR systems emphasize the embodiment of cre-
ativity expression. For instance, Schnell et al. [44] pro-
pose a system that combines real-time audio processing,
retrieval, and playback with gestural control for re-embodi-
ment of recorded sound and music. The Wekinator [22] by
Fiebrink is a real-time, interactive machine learning toolkit
that can be used in the processes of music composition and
performance, as well as to build new musical interfaces and
has also shown to support the musical expression of people
with disabilities [32].

3. WORKING WITH EXPERT USERS

Standards for user involvement in the field of Human Com-
puter Interaction (HCI) have evolved from a traditional ap-
proach of metric user-testing of already designed systems,
to understanding of users and their context through ethno-
graphic methods and scenarios, towards an emerging fo-
cus on developing empathy with the user’s experience of
life. Wright and McCarthy state that “‘knowing the user’
in their lived and felt life involves understanding what it

feels like to be that person, what their situation is like from
their own perspective.” [52]

This is especially important in the case of the creative
expert users, who are not just looking to complete a series
of tasks, but rather are engaging with the technology in or-
der to express themselves through it. As such they can be
seen to be not only using the technology, but rather collab-
orating with it as described by Tom Jenkinson (aka Square-
pusher): “Through his work, a human operator brings as
much about the machine to light as he does about himself
... The machine has begun to participate.” [30]

This paper describes some of our efforts at building
such an understanding. Eventually, our work will aim to
create musical tools that provide new interfaces to the se-
lection of sounds and musical data through music anal-
ysis algorithms. The underlying concern will be to not
just improve existing user interfaces for the creation of
electronic music through increases in efficiency, but fa-
cilitate increased flow and unbroken periods of concentra-
tion and creativity. To do so, we are engaging with expert
users throughout the entire project, allowing them a strong
peer position in the conceptualisation and evaluation of any
ideas.

Our main users are the participants at the Red Bull Mu-
sic Academy (RBMA), cf. fig. 1, an event held yearly with
a carefully selected group of professional electronic dance
music makers on the point of breaking though. 1

Our sustained involvement with this group of expert
users is key to our strategy of building detailed understand-
ings of current forms of electronic music making, cf. [1].
We hope that this will allow us to go beyond user testing,
and instead aim for a coherent impression of how an inter-
face may benefit the real-life creative process of the users.
To this end, we are committed to conducting interviews in
a fashion that fits within the work-flow and interpersonal
communication style of these music professionals, we ulti-
mately aim to support creatively with the outcomes of the
project. What we need to understand is: How do they
organise their work, what are their needs, and ultimately
what are their mental models of their music?

We conducted 33 in-depth interviews with expert users
on location at the Red Bull Music Academy in Tokyo
(2014) and Paris (2015). The aim of the 2014 sessions
was to establish understandings of existing work practices
among users, and the 2015 sessions were set up to inves-
tigate a number of emergent themes in more detail. Our
interviews were executed in an open conversational struc-
ture, engaging the interviewees directly as peers, while
aiming to support them to go beyond evaluation of current
interfaces and into the imagination of new and unknown
interfaces for their own creative practice.

The interviews were audio recorded and fully tran-
scribed. Three independent HCI researchers analysed the

1 http://redbullmusicacademy.com; From the web page:
“The Red Bull Music Academy is a world-travelling series of music
workshops and festivals [in which] selected participants – producers,
vocalists, DJs, instrumentalists and all-round musical mavericks from
around the world – come together in a different city each year. For two
weeks, each group will hear lectures by musical luminaries, work together
on tracks and perform in the city’s best clubs and music halls.”
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transcripts for content-rich quotes: short sentences or para-
graphs describing a particular idea or concern. The key-
words from these quotes were extracted and used for la-
belling the quote, e.g., “search”, “finding”, “colour”, or
“pace”. Following this, keywords were manually clustered
into bigger concepts or themes. From the material col-
lected, we identified the themes of Search, Categories, Vi-
sualisation, Colour, Organisation, Assistance, Workflow,
Connections, Correction, Suggestions, Obstructions, De-
liberate error, Tweaks, Interfaces, and Live. The material
we address in this paper belongs to the themes of Search,
Categories, Colour, Visualisation, Organisation, Sugges-
tions, and Obstructions.

4. INTERVIEW QUOTES AND FINDINGS

When asked about their wishes and expectations for future
technological developments, most participants mentioned
very practical requirements for storing and retrieving files.
Sounds are usually stored as short audio files (samples) or
presets, which can be loaded into playback devices in com-
position software.

“Because we usually have to browse really
huge libraries [...] that most of the time are
not really well organized.” (TOK003)

“If you have like a sample library with
500,000 different chords it can take a while
to actually find one because there are so many
possibilities.” (TOK015)

“Like, two hundred gigabytes of [samples].
I try to keep some kind of organisation.”
(TOK006)

“I easily get lost... I always have to scroll back
and forth and it ruins the flow when you’re
playing” (PA011)

“...what takes me really long time is organis-
ing my music library for DJing. [...] Yes, it
could be something like Google image search
for example. You input a batch of noise, and
you wait for it to return a sound.” (TOK011)

Even from this small selection of statements it becomes
clear that organisation of audio libraries, indexing, and ef-
ficient retrieval plays a central role in the practice of music
creators and producers. However, in the search tools pro-
vided by existing DAWs, this aspect seems addressed in-
sufficiently. When asked directly: “How do you find what
you are looking for?” answers indicated a number of per-
sonal strategies that either worked with, or sometimes in
opposition to, the existing software design.

“You just click randomly and just scrolling, it
takes for ever!” (TOK009)

“Sometimes, when you don’t know what you
are looking for, and you’re just going ran-
domly through your samples, that might be

Figure 2. User sample file collection, photographed from
laptop screen of expert music producer at RBMA 2014.

helpful, but most of the time I have something
in mind that I am looking for, and I am just
going through all these sound files, and I am
just waiting for the sound which I had in mind
to suddenly appear. Or what comes the clos-
est to what I had in mind. So I think that most
of the time, I know what I am looking for, and
then it is just a matter of time before I find it.”
(TOK002)

“Part of making music is about being lost a
little bit and accidentally stumbling upon stuff
that you didn’t think would work.” (TOK007)

This highlights a key element of much creative work,
the element of the accidental, sometimes caused by the
positive and negative effects of malfunctioning of sound-
editing software. Our finding 1 is that serendipity is highly
important to support creative work and that when existing
software is not providing this desired functionality, worka-
rounds will be created.

Often, users are constructing their own personal sys-
tems for searching, sometimes working with the structures
available to them, but often developing idiosyncratic and
personal strategies of misuse or even randomness. We also
see users painstakingly creating hierarchical categorisation
schemes manually in order to stay in control of their own
sound collections as seen in Figure 2.

Searching for sounds to use in composition remains a
broadly semantic process, where the user has a certain
structure of meaning in mind when querying the collection.
Current solutions in this direction rely on databases with
sets of meta-data (tags) for the available sounds. However,
all available solutions that come with pre-tagged sounds
use a static semantic structure, which cannot adapt to the
users individual understanding of the sounds. This is espe-
cially problematic when the user has a specific target sound
in mind, but does not know how this would be described in
the pre-tagged semantic structure of the database. In short,
as our finding 2 we see that our users have mental images
of sound that they translate to verbal expressions.
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“So it would be really useful to for exam-
ple have some kind of sorting system for
drums, for example, where I could for exam-
ple choose: ’bass drum’, and here it is: ’bass’
and ’bright’, and I would like it to have maybe
bass drum ’round’ and ’dry’, and you can
choose both, the more I choose, of course, the
less results I will have [...] So it is filtering it
down, that is really helpful, if it works well of
course.” (TOK002)

“It would be even more useful to be able to
search for a particular snare, but I can’t really
imagine how, I need something short, low in
pitch, dark or bright in tone and then it finds
it...” (TOK003)

“There are a lot of adjectives for sound, but
for me, if you want a ‘bright’ sound for ex-
ample it actually means a sound with a lot of
treble, if you say you want a ‘warm’ sound,
you put a round bass, well, round is another
adjective.” (TOK009)

We also see that the semantic descriptions used in
these descriptions are very individually connoted and of-
ten stemming from non-auditory domains, such as haptic,
or most prominently, the visual domain (e.g., round, dark,
bright). Thus, the mental images expressed verbally are
often actually rooted in another domain.

In fact, one solution to the problem of indexing sug-
gested by our participants is to organize sounds by sources,
by projects in which they have been used, or to colour-code
them.

“If I have hundreds of tracks, I have to colour
code everything, and name properly every-
thing. It’s a kind of system, and also kind of
I feel the colours with the sounds, or maybe
a rose, if kind of more orange, and brownish
and maybe... I use that kind of colour coding.”
(TOK006)

Finding 3 is that we see a need for semantic representa-
tions of sounds, but it’s not only a matter of just tags and
words, but rather an ability to stay much closer to the vo-
cabulary and mental representations of sound of each user.

Additionally, the question arises whether the intervie-
wees really want a direct representation of their mental
map in the data structure, or if indeed they rather expect
something more akin to a machine collaborator, that could
come up with its own recommendations and suggest a
structure based on the personal requirements of the indi-
vidual user.

“I’d like it to do the opposite actually, be-
cause the point is to get a possibility, I mean I
can already make it sound like me, it’s easy.”
(TOK001)

“What I would probably rather want it would
do is make it complex in a way that I appreci-
ate, like I would be more interested in some-
thing that made me sound like the opposite of
me, but within the boundaries of what I like,
because that’s useful. Cause I can’t do that
on my own, it’s like having a band mate basi-
cally.” (TOK007)

Again we see the computer as a potential collaborator,
one that might even be granted some level of autonomy:

“Yeah, yeah, well I like to be completely in
charge myself, but I like to... I don’t like other
humans sitting the chair, but I would like the
machine to sit in the chair, as long as I get to
decide when it gets out.” (TOK014)

Finding 4 is that instead of computer-generated and si-
milarity-based recommendations, desired features are sur-
prise, opposition, individuality, and control over the pro-
cess (with the possibility to give up control when needed).

5. INTERVIEW CONCLUSIONS

From the interviews outlined in the previous section, we
see that central concerns in everyday work in music pro-
duction are core topics of MIR: indexing, retrieval, brows-
ing, recommendation, and intuitive (visual) interfaces.
More than in music retrieval systems built for consumer
or entertainment needs, the expert user in a music produc-
tion environment will actually evaluate a large part of the
returned items to find the best—a process that is integral to
some as a way to get inspired.

In order to facilitate this process and to enable creative
work to make better use of MIR tools, we identified four
crucial findings:

1. Surprise and serendipity in recommendation and re-
trieval are important to support creative work

2. Users have personal mental images of sound

3. There is a need for semantic representations of
sounds for retrieval, which are not just tags and
words but rather reflect those mental images (which
can be visual or haptic)

4. Instead of “more of the same” recommendations, de-
sired features are surprise, opposition, individuality,
and control over the recommendation process

The desires for systems that respond to personal vocab-
ularies and individual mental images of sound alongside
the desire to have a controllable element of otherness and
difference, constitute both a challenge and an opportunity.
However, this also goes someway towards illustrating how
individualized the creative expert user needs may turn out
to be. While we can try to find common concerns, it is
clear that no system will fit the requirements of all users. In
the creative domain even more than in consumer-oriented
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MIR, allowing personalisation of the systems is a central
requirement, cf. [4]. This is reflected in the two following
areas, which take the findings into a bigger context and out-
line two conceptual ideas for future Creative MIR research,
namely “The Collaborative Machine,” building upon find-
ings 1 and 4 to go beyond the idea of a traditional recom-
mender system, and “Synaesthetic Sound Retrieval,” based
upon findings 2 and 3, as an approach beyond tag-based
“semantic retrieval”.

5.1 The Collaborative Machine

The collaborative machine can be imagined as a virtual
bandmate who assesses, critiques, takes over, and occa-
sionally opposes.

It appears that in creative work as well as in the con-
sumer world, successful imitation is not enough for the
machine to be recognized as “intelligent” anymore. While
this is a first and necessary step in creative and intelligent
behavior, a machine requires more multi-faceted and com-
plex behavior in order to be considered a useful advice-
giver or even collaborator. However, no matter how well
grounded or wise they can be, artificial knowledge and ex-
pert agent-based advice might be completely useless or,
even worse, annoying and even odious. Aspects of such
human behavior, as well as of surprise, opposition, and ob-
struction, should contribute to making the interaction with
the machine more interesting and engaging.

Can we imagine an intelligent machine providing the
user with creative obstructions in the place of helpful sug-
gestions?

A creative obstruction is based on the artistic technique
of “defamiliarisation” as defined by Shklovsky [47]—a ba-
sic artistic strategy central to both Surrealism and Dada.
It is based on the idea that the act of experiencing some-
thing occurs inside the moment of perceiving it and that
the further you confuse or otherwise prolong the moment
of arriving at an understanding, the deeper or more detailed
that understanding will be. This technique and the findings
from the interviews can be directly translated into new re-
quirements for recommendation engines in music making.

This need for opposition goes far beyond the com-
monly known and often addressed needs for diversity, nov-
elty, and serendipity in recommendation system research,
which has identified purely similarity-based recommenda-
tion as a shortcoming that leads to decreased user satis-
faction and monotony [7, 48, 53]. This phenomenon spans
multiple domains: from news articles [37] to photos [42]
to movies [18]. One idea proposed to increase diversity
is to subvert the basic idea of collaborative filtering sys-
tems of recommending what people with similar inter-
ests found interesting (“people with similar interests also
like...”) by recommending the opposite of what the least
similar users (the k-furthest neighbors) want [43]. Indeed
it could be shown that this technique allows to increase di-
versity among relevant suggestions.

In the context of experimental music creation, Collins
has addressed the question of opposition in the Contrary
Motion system [9] using a low-dimensional representation

of rhythm. The system opposes a piano player’s rhythm in
real time by constructing a structure located in the space
of actions “where the human is likely not to be” [9]. The
hypothesis underlying the system is that being confronted
with an oppositional music style can be stimulating for a
musician. Experiments where the opposing structure is
sonified using a different instrument have indeed shown
that musicians start to experiment and play with the op-
posing agent. For future work, it would be interesting to
see whether computer-system-created music (or a system
that suggests fragments) will be accepted by experts or de-
clined, cf. [39].

5.2 Synaesthetic Sound Retrieval

Multiple search avenues allow the user to use many differ-
ent ways to describe the searched-for sound. This includes
acoustic sketching, e.g., [5, 25, 31], as well as graphical
representations.

In a number of quotes in section 4, sounds are described
by shapes (round), brightness (bright, dark) and textures
(soft, dry). While these might be regarded as unusual de-
scriptors of sound, there is some evidence that many hu-
mans make to some degree use of synaesthetic connections
between visual perceptions and sound. In the Creative MIR
scenario, we make use of a weak definition of synaesthesia
as cross-modal associations, cf. [20, 26], and, in the con-
text of computer science, “the more general fact that digital
technologies offer, if not a union of the senses, then some-
thing akin: the inter-translatability of media, the ability to
render sound as image, and vice versa.” [12]

Focusing on the visual domain, through the interviews,
a number of ideas and notions came up in addition to the
importance of brightness, shape, and texture for sound re-
trieval. More precisely, colour plays a central role: “I see
the music sometimes as more aesthetic and something that
I can see more than something that I can hear” (PA013),
“When I listen to music I see colours. [...] I remember
colours.” (PA011), “Different sounds to me have specific
colours. ... [For finding files,] I don’t have the actual abil-
ity to use images [now], so I just use colour.” (PA009).

Such a colour-coding, for instance, takes the role of “se-
mantic tagging”. The fact that a system needs time to learn
a user’s associations first, i.e., that it might not work per-
fectly out of the box but learn their associations over time
(personalisation), is understood and accepted:

“You could imagine that your computer gets
used to you, it learns what you mean by
grainy, because it could be different from what
that guy means by grainy.” (PA008)

The models learned from personal categories and (visual)
tagging could then be applied on new collections for per-
sonal indexing.

For browsing sound, the idea of tapping into the visual
domain is well-established. Most proposed sound brows-
ing systems are based on 2D arrangements of sounds [8,
21, 41, 46]—even including personalised adaptation of the
arrangement [24]. In these systems, the visual aspect is the
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spatial arrangement of sounds, however, this does not re-
flect the mental models but rather requires the user to learn
the mapping provided by the system. Grill and Flexer [26]
get closer to a synaesthetic representation by visualizing
perceptual qualities of sound textures through symbols on
a grid. 2 To this end, they map bipolar qualities of sound
that describe spectral and temporal aspects of sound to vi-
sual properties. The spectral qualities of pitch (high vs.
low) and tonality (tonal vs. noisy) are mapped to bright-
ness and hue, and saturation, respectively. The temporal
(or structural) qualities of smoothness vs. coarseness, or-
der vs. chaos, and homogeneity vs. heterogeneity are as-
sociated with the jaggedness of an element’s outline, the
regularity of elements on the grid, and a variation in colour
parameters, respectively.

To the best of our knowledge, there is no system that
matches a visual query representing a mental image of
sound to a sound collection for retrieval. Developing such
a system would, however, pose an interesting challenge.

6. POSED CHALLENGES

Results that enable the two conceptual ideas discussed
above can not be trivially achieved. Therefore, to con-
clude this paper, we want to pose two topics as challenges
for future work in Creative MIR to the wider community.
Both of these topics should allow for alternative retrieval
paradigms particularly relevant in creative work. As dis-
cussed before, they require high levels of personalisation
in order to facilitate “semantic” retrieval.

Challenge 1: developing models for exploring dis-
similarity in search
To arrive at an artificial collaborator capable of inspiring
by opposing, the concept of opposition needs to be ex-
plored first, cf. [2]. Music similarity is a multi-dimensional
concept and while proximity can be easily, “semantically”
defined through minimizing distance measures, the con-
cept of dissimilarity is by far more difficult to capture as
it “spreads out” to different directions and dimensions of
sound. Finding dissimilar sounding audio from a given
query is therefore more challenging and requires individual
user models of music perception as well as a solid under-
standing of usage context in order to derive an understand-
ing of sounding “different”.

Challenge 2: developing retrieval methods for visual
queries
This challenge is to develop a software interface for sound
search based on queries consisting of sketches of mental
images, cf. [33]. A central requirement for such an in-
terface is that it needs to be able to deal with different
sound properties and different types of sounds, such as ef-
fects, samples, ambient, tonal, or textured recordings, and
therefore comprise different simultaneous representational
models for indexing. For instance, while tonal aspects
might be best represented using symbolic music notation,
noise sounds should be modeled primarily via their textural
properties. It is expected that modeling and indexing will

2 http://grrrr.org/test/texvis/map.html

heavily draw from audio content processing and analysis
methods—again—in order to cover a wide range of sound
property dimensions.

We hope that these challenges will drive the discussion
on Creative MIR and its applications in music production
and help reflecting upon and advancing the field of music
retrieval also beyond the specific area of study of this work.
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ABSTRACT

In this paper, we propose a system that extracts the down-
beat times from a beat-synchronous audio feature stream
of a music piece. Two recurrent neural networks are used
as a front-end: the first one models rhythmic content on
multiple frequency bands, while the second one models the
harmonic content of the signal. The output activations are
then combined and fed into a dynamic Bayesian network
which acts as a rhythmical language model. We show on
seven commonly used datasets of Western music that the
system is able to achieve state-of-the-art results.

1. INTRODUCTION

The automatic analysis of the metrical structure in an au-
dio piece is a long-standing, ongoing endeavour. A good
underlying meter analysis system is fundamental for vari-
ous tasks like automatic music segmentation, transcription,
or applications such as automatic slicing in digital audio
workstations.

The meter in music is organised in a hierarchy of pulses
with integer related frequencies. In this work, we concen-
trate on one of the higher levels of the metrical hierarchy,
the measure level. The first beat of a musical measure is
called a downbeat, and this is typically where harmonic
changes occur or specific rhythmic pattern begin [23].

The first system that automatically detected beats and
downbeats was proposed by Goto and Muraoka [15]. It
modelled three metrical levels, including the measure level
by finding chord changes. Their system, built upon hand-
designed features and rules, was reported to successfully
track downbeats in 4/4 music with drums. Since then,
much has changed in the meter tracking literature. A gen-
eral trend is to go from hand-crafted features and rules
to automatically learned ones. In this line, rhythmic pat-
terns are learned from data and used as observation model
in probabilistic state-space models [23, 24, 28]. Support
Vector Machines (SVMs) were first applied to downbeat
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Figure 1: Model overview

tracking in a semi-automatic setting [22] and later used
in a fully automatic system that operated on several beat-
synchronous hand-crafted features [12]. The latter sys-
tem was later refined by using convolutional neural net-
works (ConvNets) instead of SVMs and a new set of fea-
tures [10,11] and is the current state-of-the-art in downbeat
tracking on Western music.

Recurrent neural networks (RNNs) are Neural Net-
works adapted to sequential data and therefore are the nat-
ural choice for sequence analysis tasks. In fact, they have
shown success in various tasks such as speech recogni-
tion [19], handwriting recognition [17] or beat tracking [2].
In this work, we would like to explore the application of
RNNs to the downbeat tracking problem. We describe a
system that detects downbeats from a beat-synchronous in-
put feature sequence, analyse the performance of two dif-
ferent input features, and discuss shortcomings of the pro-
posed model. We report state-of-the-art performance on
seven datasets.

The paper is organised as follows: In Section 2 we de-
scribe the proposed RNN-based downbeat tracking system,
in Section 3 we explain the experimental set-up of our eval-
uation and present and discuss the results in Section 4.

2. METHOD

An overview of the system is shown in Fig. 1. Two beat-
synchronised feature streams (Section 2.1) are fed into two
parallel RNNs (Section 2.2) to obtain a downbeat acti-
vation function which indicates the probability whether a
beat is a downbeat. Finally, the activation function is de-
coded into a sequence of downbeat times by a dynamic
Bayesian network (DBN) (Section 2.3).
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2.1 Feature extraction

In this work we assume that the beat times of an audio
signal are known, by using either hand-annotated or auto-
matically generated labels. We believe that the segmenta-
tion into beats makes it much more easy for the subsequent
stage to detect downbeats because it does not have to deal
with tempo or expressive timing on one hand and it greatly
reduces the computational complexity by both reducing the
sequence length of an excerpt and the search space. Beat-
synchronous features have successfully been used before
for downbeat tracking [5, 10, 27]. Here, we use two fea-
tures: A spectral flux with logarithmic frequency spacing
to represent percussive content (percussive feature) and
a chroma feature to represent the harmonic progressions
throughout a song (harmonic feature).

2.1.1 Percussive feature

As a percussive feature, we compute a multi-band spec-
tral flux: First, we compute the magnitude spectrogram by
applying the Short-time Fourier Transform (STFT) with a
Hann window, hopsize of 10ms, and a frame length of 2048
samples, as shown in Fig. 2a. Then, we apply a logarithmic
filter bank with 6 bands per octave, covering the frequency
range from 30 to 17 000 Hz, resulting in 45 bins in total.
We compress the magnitude by applying the logarithm and
finally compute for each frame the difference between the
current and the previous frame. The feature sequence is
then beat-synchronised by only keeping the mean value per
frequency bin in a window of length ∆b/np, where ∆b is
the beat period and np = 4 is the number of beat subdivi-
sions, centred around the beginning of a beat subdivision.
An example of the percussive feature is shown in Fig. 2b.

2.1.2 Harmonic feature

As harmonic feature, we use the CLP chroma feature [26]
with a frame rate of 100 frames per second. We synchro-
nise the features to the beat by computing the mean over a
window of length ∆b/nh, yielding nh = 2 feature values
per beat interval. We found that for the harmonic feature
the resolution can be lower than for the percussive feature,
as for chord changes the exact timing is less critical. An
example of the harmonic feature is shown in Fig. 2d.

2.2 Recurrent Neural Network

RNNs are the natural choice for sequence modelling tasks
but often difficult to train due to the exploding and vanish-
ing gradient problems. In order to overcome these prob-
lems when dealing with long sequences, Long-Short-Term
memory (LSTM) networks were proposed [20]. Later, [4]
proposed a simplified version of the LSTMs named Gated
Recurrent Units (GRUs), which were shown to perform
comparable to the traditional LSTM in a variety of tasks
and have less parameters to train. Therefore, we will use
GRUs in this paper.

The time unit modelled by the RNNs is the beat period,
and all feature values that fall into one beat are condensed
into one vector. E.g., using the percussive feature with 45
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Figure 2: Visualisation of the two feature streams and their
corresponding network output of an 8-second excerpt of
the song Media-105701 (Ballroom dataset). The dashed
line in (c) and (e) represents the target (downbeat) se-
quence, the solid line the networks’ activations. The x-axis
shows time in seconds. The time resolution is one fourth
of the beat period in (b), and half a beat period in (d).
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frequency bins and a resolution of np = 4 beat subdivi-
sions yields an input dimension of 45 × 4 = 180 for the
rhythmic RNN. In comparison to an RNN that models sub-
divisions of the beat period as underlying time unit, this
vectorisation of the temporal context provided an impor-
tant speed-up of the network training due to the reduced
sequence length, while maintaining the same level of per-
formance.

In preliminary tests, we investigated possible architec-
tures for our task and compared their performances on the
validation set (see Section 3.3). We made the following
discoveries: First, adding bidirectional connections to the
models was found to greatly improve the performance.
Second, the use of LSTMs/GRUs further improved the
performance compared to the standard RNN. Third, using
more than two layers did not further improve the perfor-
mance.

We therefore chose to use a two layer bidirectional
network with GRU units and standard tanh non-linearity.
Each hidden layer has 25 units. The output layer is a dense
layer with one unit and a sigmoid non-linearity. Due to the
different number of input units the rhythmic model has ap-
proximately 44k, and the harmonic model approximately
19k parameters.

The activations of both the rhythmic and harmonic
model are finally averaged to yield the input activation for
the subsequent DBN stage.

2.3 Dynamic Bayesian Network

The language model incorporates musical prior knowledge
into the system. In our case it implements the following
assumptions:

1. Beats are organised into bars, which consist of a con-
stant number of beats.

2. The time signature of a piece determines the number
of beats per bar.

3. Time signature changes are rare within a piece.

The DBN stage is similar to the one used in [10], with
three differences: First, we model beats as states instead
of tatums. Second, as our data mainly contains 3/4 and
4/4 time signatures, we only model these two. Third, we
force the state sequence to always transverse a whole bar
from left to right, i.e., transitions from beat 2 to beat 1 are
not allowed. In the following we give a short review of the
DBN stage.

A state s(b, r) in the DBN state space is determined by
two hidden state variables: the beat counter b and the time
signature r. The beat counter counts the beats within a bar
b ∈ {1..Nr} where Nr is the number of beats in time sig-
nature r. E.g., r ∈ {3, 4} for the case where a 3/4 and a
4/4 time signature are modelled. The state transition prob-
abilities can then be decomposed using

P (sk|sk−1) = P (bk|bk−1, rk−1)× P (rk|rk−1, bk, bk−1)
(1)

where

P (bk|bk−1, rk−1) =

{
1 if bk = (bk−1 mod rk−1) + 1
0 otherwise.

(2)
Eq. 2 ensures that the beat counter can only move steadily
from left to right. Time signature changes are only allowed
to happen at the beginning of a bar ((bk < bk−1)), as im-
plemented by

if (bk < bk−1)

P (rk|rk−1, bk, bk−1) =

{
1− pr if (rk = rk−1)
pr/R if (rk 6= rk−1)

else
P (rk|rk−1, bk, bk−1) = 0

(3)
where pr is the probability of a time signature change. We
learned pr on the validation set and found pr = 10−7 to be
an overall good value, which makes time signature changes
improbable but possible. However, the exact choice of this
parameter is not critical, but it should be greater than zero
as mentioned in Section 4.5.

As the sigmoid of the output layer of the RNN yields a
value between 0 and 1, we can interpret its output as the
probability that a specific beat is a downbeat and use it as
observation likelihood for the DBN. As the RNN outputs a
posterior probability P (s|features), we need to scale it by
a factor λ(s) which is proportional to 1/P (s) in order to
obtain

P (features|s) ∝ P (s|features)/P (s), (4)

which is needed by the observation model of the DBN. Ex-
periments have shown that a value of λ(s(b = 1, r)) = 100
for downbeat states and λ(s(b > 1, r)) = 1 for the other
states performed best on our validation set, and will be
used in this paper.

Finally, we use a uniform initial distribution over the
states and decode the most probably state sequence with
the Viterbi algorithm.

3. EXPERIMENTS

3.1 Data

In this work, we restrict the data to Western music only
and leave the evaluation of Non-Western music for future
work. The following datasets are used:

Ballroom [16, 24]: This dataset consists of 685 unique
30 second-long excerpts of Ballroom dance music. The
total length is 5h 57m.

Beatles [6]: This dataset consists of 180 songs of the
Beatles. The total length is 8h 09m.

Hainsworth [18]: This dataset consists of 222 excerpts,
covering various genres. The total length is 3h 19m.

RWC Pop [14]: This dataset consists of 100 American
and Japanese Pop songs. The total length is 6h 47m.

Robbie Williams [13]: 65 full songs of Robbie
Williams. The total length is 4h 31m

Rock [7]: This dataset consists of 200 songs of the
Rolling Stone magazine’s list of the “500 Greatest Songs
of All Time“. The total length is 12h 53m.
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System Ballroom Beatles Hainsworth RWC pop Robbie Williams Klapuri Rock Mean
With annnotated beats:
Rhythmic 83.9 87.1 75.7 91.9 93.4 - 87.0 84.4
Harmonic 77.2 89.9 80.1 92.9 92.6 - 86.0 82.2
Combined 91.8 89.6 83.6 94.4 96.6 - 89.4 90.4
With detected beats:
Combined 80.3 79.8 71.3 82.7 83.4 69.3 79.0 77.3
[11] 77.8 81.4 65.7 86.1 83.7 68.9 81.3 76.1
Beat tracking results:
Beat tracker [1, 25] 89.0 88.4 88.2 88.6 88.2 85.2 90.5 88.3

Table 1: Mean downbeat tracking F-measures across all datasets. The last column shows the mean over all datasets used.
The last row shows beat tracking F-measure scores.

Klapuri [23]: This dataset consists of 320 excerpts,
covering various genres. The total length is 4h 54m. The
beat annotations of this dataset have been made indepen-
dently of the downbeat annotations and therefore do not
always match. Hence, we cannot use the dataset in experi-
ments that rely on annotated beats.

3.2 Evaluation measure

For the evaluation of downbeat tracking we follow [10,25]
and report the F-measure which is computed by F =
2RP/(R+ P ), where the recall R is the ratio of correctly
detected downbeats within a ±70ms window and the total
number of annotated downbeats, and the precision P is the
ratio of correctly detected downbeats within this window
and all the reported downbeats.

3.3 Training procedure

All experiments in this section have been carried out using
the leave-one-dataset-out approach, to be as comparable as
possible with the setting in [11]. After removing the test
dataset, we use 75% of the remaining data for training and
25% for validation. To cope with the varying lengths of
the audio excerpts, we split the training data into segments
of 15 beats and an overlap of 10 beats. For training, we
use cross entropy cost, and AdaGrad [9] with a constant
learn rate of 0.04 for the rhythmic model and 0.02 for the
harmonic model. The hidden units and the biases are ini-
tialised with zero, and the weights of the network are ran-
domly sampled from a normal distribution with zero mean
and a standard deviation of 0.1. We stop the learning after
100 epochs or when the validation error does not decrease
for 15 epochs. For training the GRUs, we used the Lasagne
framework [8].

4. RESULTS AND DISCUSSION

4.1 Influence of features

In this section we investigate the influence of the two dif-
ferent input features described in Section 2.1.

The performance of the two different networks is shown
in the upper part of Table 1. Looking at the mean scores
over all datasets, the rhythmic and harmonic network

achieve a comparable performance. The biggest differ-
ence between the two was found in the Ballroom and the
Hainsworth dataset, which we believe is mostly due to dif-
fering musical content. While the Ballroom set consists
of music with clear and prominent rhythm which the per-
cussive feature seems to capture well, the Hainsworth set
also includes chorales with less clear-cut rhythm but more
prominent harmonic content which in turn is better repre-
sented by the harmonic feature. Interestingly, combining
both networks (by averaging the output activations) yields
a score that is almost always higher than the score of the
single networks. Apparently, the two networks concentrate
on different, relevant aspects of the audio signal and com-
bining them enables the system exploiting both. This is in
line with the observations in [11] who similarly combined
the output of three networks in their system.

4.2 Estimated vs. annotated beat positions

In order to have a fully automatic downbeat tracking sys-
tem we use the beat tracker proposed in [1] with an en-
hanced state space [25] as a front-end to our system. 1

We show the beat tracking F-measures per dataset in the
bottom row of Table 1. With regard to beat tracking, the
datasets seem to be balanced in terms of difficulty.

The detected beats are then used to synchronise the fea-
tures of the test set. 2 The downbeat scores obtained with
the detected beats are shown in the middle part of Table 1.
As can be seen, the values are around 10% − 15% lower
than if annotated beats were used. This makes sense, since
an error in the beat tracking stage cannot be corrected in
a later stage. This might be a drawback of the proposed
system compared to [11], where the tatum (instead of the
beat) is the basic time unit and the downbeat tracking stage
can still decide whether a beat consists of one, two or more
tatums.

Although the beat tracking performance is balanced
among the datasets, we find clear differences in the down-
beat tracking performance. For example, while the beat
tracking performance on the Hainsworth and the Robbie
Williams dataset are similar, the downbeat accuracy dif-
fers more than 12%. Apparently, the mix of genres, in-

1 We use the DBNBeatTracker included in madmom [3] version 0.13.
2 We took care that there is no overlap between the train and test sets.

132 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



0 0.5 1
0

500

1000

F−measure

C
ou

nt
s

(a)

0 0.5 1
0

500

1000

F−measure

C
ou

nt
s

(b)

Figure 3: Histogram of the downbeat F-measures of the
proposed system (a) and the reference system [11] (b)

cluding time signatures of 2/2, 3/2, 3/4 and 6/8, in the
Hainsworth set represents a challenge to downbeat track-
ing compared to the more simple Robbie Williams, which
mostly contains 4/4 time signatures.

4.3 Importance of the DBN stage

System annotated detected
RNN 85.0 73.7
RNN+DBN 90.4 77.3

Table 2: Mean downbeat tracking F-measures across all
datasets of the proposed, combined system. annotated and
detected means that annotated or detected beats were re-
spectively used to synchronise the features. RNN uses
peak-picking to select the downbeats, while RNN+DBN
uses the DBN language model.

To assess the importance of the DBN stage (Section 2.3)
we implemented a simple baseline, which simply reports
downbeats if the resulting (combined) RNN activations ex-
ceed a threshold. A threshold of 0.2 was found to yield
the best results on the validation set. In Table 2, we show
the results of the baseline (RNN) and the results of the
combined system (RNN+DBN). As can be seen, the com-
bination of RNN and DBN significantly outperforms the
baseline, confirmed by a Wilcoxon signed-rank test with
p < 0.01.

4.4 Comparison to the state-of-the-art

In this section we investigate the performance of our sys-
tem in relation to the state-of-the-art in downbeat tracking,
represented by [11]. Unfortunately, a direct comparison is
hindered by various reasons: The datasets used for train-
ing the ConvNets [11] are not freely available and the beat
tracker at their input stage is different to the one that we
use in this work. Therefore, we can only check whether the
whole end-to-end system is competitive and leave a modu-
lar comparison of the approaches to future work.

In the middle of Table 1 we show the results of the sys-
tem described in [11], as provided by the authors. The last
column shows the mean accuracy over all 1771 excerpts in
our dataset. A paired-sample t-test did not show any sta-
tistically significant differences in the mean performance

between the two approaches considering all data points.
However, a Wilcoxon signed-rank test revealed that there
is a significant (p < 0.01) difference in the median F-
measure over all data points, which is 89.7% for [11] and
96.2% for the proposed system. Looking at histograms of
the obtained scores (see Fig. 3), we found a clear peak at
around 66% F-measure, which is typically caused by the
beat tracking stage reporting half or double of the correct
tempo. The peak is more prominent for the system [11]
(Fig. 3b), hence we believe the system might benefit from
a more accurate beat tracker.

From this we conclude that overall the proposed sys-
tem (in combination with the beat tracker [1, 25]) per-
forms comparable to the state-of-the-art when looking at
the mean performance and even outperforms the state-of-
the-art in terms of the median performance.

4.5 Error analysis

In order to uncover the shortcomings of the proposed
model we analysed the errors of a randomly-chosen, small
subset of 30 excerpts. We identified two main factors that
lead to a low downbeat score. The first one, obviously,
are beat tracking errors which get propagated through to
the downbeat stage. Most beat tracking errors are octave
errors, and among them, the beat tracker mostly tapped
twice as fast as the groundtruth tempo. In some cases this
is acceptable and therefore would make sense to also al-
low these metrical levels as, e.g., done in [23]. The sec-
ond common error is that the downbeat tracker chooses the
wrong time signature or has problems following time sig-
nature changes or coping with inserted or removed beats.
Phase errors are relatively rare. Changing time signatures
appear most frequently in the Beatles dataset. For this
dataset, reducing the transition probability of time signa-
ture changes pr from 10−7 to 0 leads to a relative perfor-
mance drop of 6%, while the results for other datasets re-
main largely unaffected. Besides, the used datasets mainly
contain 3/4 and 4/4 time signatures making it impossible
for the RNN to learn something meaningful about other
time signatures. Here, creating a more balanced training
set regarding time signatures would surely help.

5. CONCLUSIONS AND FUTURE WORK

We have proposed a downbeat tracking back-end system
that uses recurrent Neural networks (RNNs) to analyse a
beat-synchronous feature stream. With estimated beats as
input, the system performs comparable to the state-of-the-
art, yielding a mean downbeat F-measure of 77.3% on a
set of 1771 excerpts of Western music. With manually an-
notated beats the score goes up to 90.4%.

For future work, a good modular comparison of down-
beat tracking approaches needs to be undertaken, possibly
with collaboration between several researchers. In partic-
ular, standardised dataset train/test splits need to be de-
fined. Second, we would like to train and test the model
with non-Western music and ‘odd’ time signatures, such
as done in [21].
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The source code will be released as part of the
madmom library [3], including all trained models
and can be found together with additional material
under http://www.cp.jku.at/people/krebs/
ismir2016/index.html.
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[4] K. Cho, B. Van Merriënboer, C. Gulcehre, Dzmitry
Bahdanau, F. Bougares, H. Schwenk, and Y. Ben-
gio. Learning phrase representations using RNN
encoder-decoder for statistical machine translation.
arXiv:1406.1078, 2014.

[5] M. E. P. Davies and M. D. Plumbley. A spectral differ-
ence approach to downbeat extraction in musical au-
dio. In Proceedings of the European Signal Processing
Conference (EUSIPCO), Florence, 2006.

[6] M.E.P. Davies, N. Degara, and M.D. Plumbley. Eval-
uation methods for musical audio beat tracking algo-
rithms. Queen Mary University of London, Tech. Rep.
C4DM-09-06, 2009.

[7] T. De Clercq and D. Temperley. A corpus analysis of
rock harmony. Popular Music, 30(01):47–70, 2011.

[8] Sander Dieleman, Jan Schlüter, Colin Raffel, Eben Ol-
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ABSTRACT

Cover song identification involves calculating pairwise si-
milarities between a query audio track and a database of
reference tracks. While most authors make exclusively use
of chroma features, recent work tends to demonstrate that
combining similarity estimators based on multiple audio
features increases the performance. We improve this ap-
proach by using a hierarchical rank aggregation method for
combining estimators based on different features. More
precisely, we first aggregate estimators based on global
features such as the tempo, the duration, the overall loud-
ness, the number of beats, and the average chroma vector.
Then, we aggregate the resulting composite estimator with
four popular state-of-the-art methods based on chromas as
well as timbre sequences. We further introduce a refine-
ment step for the rank aggregation called “local Kemeniza-
tion” and quantify its benefit for cover song identification.
The performance of our method is evaluated on the Sec-
ond Hand Song dataset. Our experiments show a signifi-
cant improvement of the performance, up to an increase of
more than 200% of the number of queries identified in the
Top-1, compared to previous results.

1. INTRODUCTION

Given an audio query track, the goal of a cover song iden-
tification system is to retrieve at least one different version
of the query in a reference database, in order to identify it.
In that context, a version can be described as a new per-
formance or recording of a previously recorded track [22].
Retrieving covers is a challenging task, as the different ren-
ditions of a song can differ from the original track in terms
of tempo, pitch, structure, instrumentation, etc. The usual
way of retrieving cover songs in a database involves ex-
tracting meaningful features from an audio query first in
order to compare them to the corresponding features com-
puted for the other tracks of the database using a pairwise
similarity function. The function returns a score or a prob-
ability of similarity. Many researchers have been using ex-
clusively chroma features [10, 13, 14, 22] to characterize

c© Julien Osmalskyj, Marc Van Droogenbroeck, Jean-
Jaques Embrechts. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Julien Osmalskyj,
Marc Van Droogenbroeck, Jean-Jaques Embrechts. “Enhancing cover
song identification with hierarchical rank aggregation”, 17th International
Society for Music Information Retrieval Conference, 2016.
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Figure 1. Hierarchical rank aggregation of estimators
based on audio features. Global features are first aggre-
gated using the mean rule, identifying 1,381 tracks in the
top-100, out of 5,464 tracks sampled from the Second
Hand Song dataset. The resulting composite estimator
is then aggregated with four remaining features using the
minimum rule, identifying 2,774 tracks in the top-100.

the songs in the database. Chroma vectors describe the
harmony of the songs and are robust to changes in instru-
mentation and timbre, which makes them quite popular for
the task. While chromas are the most used features in the
literature, other works investigate the use of different fea-
tures, such as timbral features [23] or cognition based fea-
tures [4].

In recent work [16], we established that combining mul-
tiple audio features improves the performance of cover song
identification systems: designing several classifiers based
on different features and combining them through proba-
bilistic rules or rank aggregation techniques improves the
performance. In light of this, it seems important to study
how state-of-the-art features perform when they are com-
bined for cover song identification. In this paper, we im-
prove upon previous work by considering a total of nine
features, including four state-of-the-art ones. These fea-
tures cover a wide range of audio characteristics, from low-
dimensional ones such as the tempo or the duration of the
songs, to higher level characteristics such as chromas and
timbral sequences. We build similarity estimators for each
feature, using supervised machine learning for some of
them, and combine them in a hierarchical way to design
a new combination method. In this method, we first ag-
gregate five estimators that are based on global features:
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tempo, duration, loudness, beats, and averaged chroma.
These global features are computed for the entire song,
rather than for individual chunks of audio. We show that
combining such estimators using rank aggregation meth-
ods improves the performance, compared to probabilistic
fusion [16]. We then take the resulting aggregated estima-
tor and combine it with four state-of-the-art methods us-
ing a different aggregation rule, as shown in Figure 1. We
further achieve a higher performance by applying a refine-
ment step called “local Kemenization” [7, 8]. We found
that this refinement step significantly increases the number
of queries identified immediately (Top-1).

2. METHOD OVERVIEW

Identifying cover songs with respect to an audio query in-
volves comparing the query to a set of tracks in a refer-
ence database using a similarity function. Considering two
input tracks, the function should return a score indicating
whether the tracks are considered as being similar or not.
Our approach follows the combining method that we pro-
posed in [16]. As there exist several effective features in
the literature, the idea is to take advantage of all of them
by combining them. We therefore design several pairwise
comparison functions, called similarity estimators, based
on different audio features. We first consider the same
set of estimators as the one used in [16]. We make use
of global low-dimensional features such as the tempo, the
duration, the number of beats, the overall loudness, and
the average chroma vector of a song, learning a probabilis-
tic model to predict the similarity. We also include three
estimators based on chromas features. The first and sec-
ond ones were used in previous works and are respectively
based on the quantization of chroma features [11, 16] and
the cross-correlation of entire chroma sequences [9]. We
add a third chroma estimator based on an efficient large-
scale method proposed by Bertin-Mahieux et al. [2]. Fi-
nally, to take into account timbral information, we include
an estimator based on MFCC features. This method, intro-
duced by Tralie et al. [23], showed that some covers could
be identified based on timbre only.

2.1 Weak estimators

In previous work [16], we demonstrated that global low-
dimensional features (tempo, duration, etc.) bring infor-
mation that helps in the identification process. However,
using only such features for identifying cover songs is not
enough to achieve good performance. Indeed, such fea-
tures are considered as weak because they only slightly im-
prove a classifier with respect to a purely random classifier.
While we combined these features using probabilistic com-
bination rules, we innovate by combining them using rank
aggregation techniques. For each feature, we build a prob-
abilistic estimator, using supervised machine learning. To
determine the similarity of candidates with respect to the
query, we perform pairwise comparisons using the learned
probabilistic models to predict probabilities of similarities.
Each query is compared to the database using each esti-

mator. We then aggregate the rankings produced by each
estimator to build an improved list of results.

2.2 Chroma estimators

2.2.1 Cross-correlation

We design the same cross-correlation estimator as the one
used in [16]. This estimator is useful to take into account
temporal information. It computes two dimensional cross-
correlations between high-pass filtered chroma sequences
of the tracks to be compared. The similarity score between
two songs is computed as the reciprocal of the peak value
of the cross-correlated signal. We refer the reader to the
original work [9] for details.

2.2.2 Quantization

To take into account the harmonic distribution of the songs,
we make use of an estimator based on the quantization of
chroma features [11, 17]. For each track, chroma vec-
tors are mapped to specific codewords. Codewords are
determined using a K-Means clustering of 200,000 chro-
mas vectors. We retain 100 clusters for the feature, re-
sulting in a 100-dimensional feature vector. The similar-
ity score is computed as the cosine similarity between two
100-dimensional vectors. To account for key transposition,
we make use of the optimal transposition index [21] (OTI)
technique, as it has been used in other works [1, 20].

2.2.3 2D Fourier transform magnitude coefficients

This method was first introduced by Bertin-Mahieux et
al. [2] and was designed as a fast and accurate feature for
cover song identification. The idea is to encode harmonic
information in a compact representation, to make it invari-
ant to local tempo changes and pitch shifts. First we ex-
tract patches of 75 consecutive chromas with an overlap of
1. We then compute the 2D FFT magnitude coefficients
for each patch. Next, we aggregate all the patches point-
wise using a median rule. Finally, we project the resulting
900-dimensional representation on a 50 dimensional PCA
sub-space. Each track is therefore represented by a 50-
dimensional vector. The final score between two tracks is
computed as the cosine similarity between two projections.

2.3 Timbre estimator

In our base set of estimators, we also include a method pro-
posed by Tralie et al. [23], that takes into account the rela-
tive evolution of timbre over time. Using careful centering
and normalization, the authors were able to design features
that are approximately invariant to cover. The features are
based on self-similarity matrices of MFCC coefficients and
can be used to identify cover songs. Being based on tim-
bre rather than harmony, this feature demonstrates that if
the pitch is blurred and obscured, cover song identification
should still be possible (see the original paper [23] for a
detailed explanation). We designed an estimator based on
features that were kindly computed for us by the authors
of the method. The similarity score is computed using the
Smith-Waterman alignment algorithm.
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3. HIERARCHICAL RANK AGGREGATION

3.1 Rank aggregation techniques

To take advantage of all the features that we use, we need
a way to combine them. One way of doing that is through
probabilistic combination rules. Under the hypothesis that
all estimators return probabilities, we can experiment sev-
eral rules such as the probabilistic product, sum or median
rules [5, 6]. The problem is that not all of our estimators
return a probability. Some estimators return probabilities,
while others return different kinds of scores, for example
a cosine similarity or a cross-correlation peak value. One
solution for using such rules would be to map scores to
probabilities, but there is no straightforward way of doing
that. Furthermore, an independent dataset is often manda-
tory for such a mapping.

Another solution is to combine estimators through rank
aggregation techniques, as we proposed in [16]. As a sin-
gle query q is compared to the entire database using N es-
timators, we obtain N different orderings of the database.
Each track of the database can be found at different posi-
tions in the resulting orderings. Based on the positions of
the tracks, rank aggregation techniques compute a new po-
sition by applying simple rules such as computing the new
rank as the mean of the ranks of each track in the initial
orderings. Other rules include the minimum, maximum
or median rules. Rank aggregation techniques are popular
in the web literature [7]. Such techniques are interesting
compared to score-based combination because they are in-
trinsically calibrated and scale-insensitive [19].

In this paper, we aggregate features at different levels.
We first aggregate weak features, experimenting with mul-
tiple rules. We next use the resulting ranking as a new
input for another aggregation rule, by considering our four
remaining estimators. We therefore build a hierarchy of
two aggregated classifiers (Figure 1) and achieve improved
performance compared to previous results [16].

3.2 Optimizing rank aggregation

After several input rankings r1, r2, . . . , rk have been ag-
gregated into one final ranking µ using one of the rules
proposed before, we can apply a refinement step called lo-
cal Kemenization [8] to further improve the ranking µ. An
aggregated ranking is locally Kemeny optimal if there are
no pairwise swaps of items in the list that will reduce the
sum of Kendall τ [8] measures between each input ranking
ri and µ, where i = 1, . . . , k. The sum of the Kendall τ
measures with respect to each initial ranking is called “ag-
gregated Kendall measure”. The Kendall τ measure deter-
mines the correlation between two rankings of equal size.
It measures the degree to which one list agrees with an-
other [15]. In practice, one way of computing it is to count
the number of swaps needed by a bubble sort algorithm
to permute one list to the other. Formally, the Kendall τ
distance is defined by

τ =
nc − nd

n(n− 1)/2
, (1)

where nc is the number of concordant pairs and nd is the
number of discordant pairs. The denominator corresponds
to the total number of pairs of n items in the lists. A pair
of tracks (i, j) is concordant if i is ranked above j in both
lists, and discordant otherwise.

Based on this distance measure between rankings, the
local Kemenization procedure considers each pair of adja-
cent tracks in µ and verifies whether a swap will improve
the aggregated Kendall measure. In practice, for two adja-
cent tracks (i, j) in µ, with i ranked above j, the procedure
checks whether track j is ranked above i in the majority
of the input rankings. If yes, it swaps the two items as it
refines the aggregated list with a reduced Kendall distance.
The procedure starts from the beginning of the list, and is
repeated iteratively for all pairs of tracks, requiring n − 1
checks for an aggregated list of length n. Note that the
consecutive swaps of the Kemenization process take into
account the inclusion of earlier swaps. For implementa-
tion details, we refer the reader to our own implementation
of several rank aggregation rules with local Kemenization
in a C++ library 1 . We used that code to produce results
for this paper.

For our task of cover song identification, we apply the
local Kemenization step to our final aggregations to im-
prove the overall performance. Detailed results are given
in Section 4.

4. EXPERIMENTS AND RESULTS

4.1 Experimental setup

4.1.1 Evaluation database

We evaluate our method on the Second Hand Song dataset 2

(SHS), a subset of the Million Song Dataset (MSD) [3].
The SHS is structured in 5,854 cliques, which are groups
of 3 cover songs on average, for a total of 18,196 tracks.
The dataset does not provide any audio data. Rather than
that, it proposes a set of pre-computed features. Since we
need independent learning and test sets for learning prob-
abilistic models, we split all tracks in a learning set (LS)
containing 70% of the tracks, and a test set (TS) contain-
ing the 30% remaining tracks. We learn our models on
the LS, and evaluate our final system on the TS, containing
5,464 tracks. Following the procedure explained in [16],
we get rid of duplicate tracks in the SHS, thus reducing the
number of cliques to 5,828.

4.1.2 Estimators settings

For each estimator, we use the pre-computed features in the
SHS. As the chroma features provided in the dataset are
aligned on onsets rather than the beats, we re-align them
on the beats to account for tempo variations within covers,
as done in other works [2, 13].

For our weak estimators, we learn probabilistic models
using the ExtraTrees algorithm [12], to estimate probabili-
ties of similarity. The models are learned with 1,000 trees

1 https://github.com/osmju/librag
2 http://labrosa.ee.columbia.edu/millionsong/

secondhand
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Figure 2. Comparison of the performance of rank aggregation methods for combining estimators based on weak features.
The baseline is the probabilistic fusion of weak features proposed in [16]. The mean rank aggregation rule significantly
outperforms the baseline, especially in the top-1 with an improvement of 146%. The red arrows quantify the improvement
compared to the baseline. � baseline, � mean rank rule, � mean rank rule with local Kemenization, � minimum rank rule,
� minimim rank rule with local Kemenization, � median rank rule, � median rank rule with local Kemenization.

to reduce the variance, and a maximum depth of 20. The
trees are not completely developped to avoid over-fitting.
The implementation we use is the Python Scikit-Learn li-
brary [18].

To account for key transpositions in our estimator based
on the average chroma and in the quantization estimator,
we use the optimal transposition index (OTI) technique [21].

For the 2D-FTM estimator, we closely follow the orig-
inal implementation. We wrote our own C++ implemen-
tation, based on the Python code 3 provided by Humphrey
et al. [13]. We use the FFTW library for computing the
2D-FFT of chroma patches.

Finally, our timbre estimator is close to the original im-
plementation [23], as the features were computed by the
author itself for us. The only difference in the implementa-
tion comes from the fact that the MFCC sequence of a song
in the SHS does not have the same resolution than in the
original implementation. We implemented our own ver-
sion of the sequence alignment Smith-Waterman to com-
pute the final score.

4.2 Aggregation of weak features

Our first experiment consists in aggregating weak features,
experimenting with several fusion rules. We take estima-
tors based on the tempo, the duration, the number of beats,
the average chroma vectors, the loudness, and aggregate
them. We compare the performance to the baseline re-
sults obtained in our previous work [16]. We evaluate the
performance of the system using standard information re-
trieval statistics, such as the Mean Rank of the first iden-
tified track (MR), the Mean Reciprocal Rank (MRR), and
the Mean Average Precision (MAP). Note that the lower
the MR is, the better it is, while the goal is to maximize

3 https://github.com/urinieto/
LargeScaleCoverSongId

Baseline Mean Kemeny Increase

Top-1 26 58 64 + 146 %
Top-10 158 307 333 + 111 %
Top-100 1,044 1,379 1,381 + 32 %

Top-1000 3,729 3,911 3,911 + 5 %
MR 977.6 876.2 875 +10 %

MRR 0.016 0.029 0.03 + 88 %
MAP 0.009 0.014 0.015 + 67 %

Table 1. Performance achieved with weak estimators when
applying the mean rank aggregation rule (“mean” column),
and applying the refinement step (“Kemeny” column) to
improve the performance.

the MAP and the MRR. We also evaluate the number of
queries for which a match is identified in the Top-K, K
being a parameter. We present results for the number of
tracks identified in the top-1, 10 and 100.

Figure 2 displays the performance of three aggregation
rules for the weak estimators with respect to all the met-
rics. We can notice immediately that the mean aggrega-
tion rule outperforms all other combinations. Without lo-
cal Kemenization, the mean rule provides an improvement
of 123% compared to the baseline, with 58 tracks iden-
tified in the top-1 (against 26 in the baseline). That re-
sult shows that rank aggregation of these features outper-
forms the probabilistic rules proposed in previous work.
Improvements in terms of the other metrics are also sig-
nificant and demonstrate the strength of the method. Ap-
plying the refinement local Kemenization step, we further
improve the performance to 64 tracks identified in the top-
1, which corresponds to an increase of 146% compared to
the baseline. Note that the refinement provides surprisingly
good improvement, especially for the minimum aggrega-
tion rule. Without optimization, we identify 7 tracks in the
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Baseline Mean Min Median
Top-1 328 832 1010 839

Top-10 1015 1479 1785 1499
Top-100 2015 2669 2774 2681

Top-1000 4158 4456 4416 4385
MR 726.4 563 582 595

MRR 0.107 0.194 0.234 0.198
MAP 0.055 0.105 0.132 0.106

Table 2. Hierarchical aggregation of all features, with lo-
cal Kemenization. Best performance is achieved with the
minimum rule.

top-1. This number jumps to 42 tracks, without changing
anything to the base estimators, simply by applying the al-
gorithm presented in Section 3.2. Table 1 quantifies the
performance and improvement compared to the baseline
for the mean aggregation rule, as it provides the best per-
formance. Note that it is interesting to realize that using
such weak features, we still can identify cover songs much
better than random guessing.

4.3 Hierarchical aggregation

As the mean rule produces the best experimental results
with weak estimators, we consider that resulting aggre-
gated ranking as a single estimator by itself, and combine
it with the four remaining estimators based on chroma and
timbral features. We experiment the hierarchical combi-
nation with the mean, minimum and median rules, as for
the weak estimators. Figure 3 displays the performance of
each rule, with the local Kemenization step applied. It is
straightforward to notice that the minimum rule with Ke-
menization significantly outperforms the other rules, es-
pecially for the top-1, with 1,010 tracks identified in the
top-1. For the top-1 metric, we achieve the best perfor-
mance so far on the subset we use for evaluation, with a
MAP set to 0.132 and a MRR set to 0.234. Table 2 quan-
tifies the metrics for all rules. The minimum rule achieves
an impressive performance, especially for the top-1 met-
ric, with an improvement of 208%, and for the MRR and
the MAP, with an improvement of respectively 119% and
140%. Note that as we used a significant subset of the SHS
(70 %) as a learning set for our probabilistic models, it is
difficult to compare our results with other works. There-
fore, the baseline here corresponds to the best combination
results proposed in our previous work [16]. The baselines
in Figures 2 and 3 are different because they respectively
correspond to the combination of weak features, as done
in [16], and the combination of weak features and chroma
based estimators, also as proposed in [16]. Figure 4 shows
the performance curves of the aggregations corresponding
to the bars in Figure 3. The horizontal axis corresponds
to the top-k cutoff, that is the proportion of tracks that are
rejected from the final set (the tracks ranked below k). The
vertical axis corresponds to the loss, that is the proportion
of queries for which no matches at all have been found in
the top-k. If at least one corresponding track matches the
query, then the loss is set to zero for that query. The sec-

Mean Min Median
Top-1 503 784 519
Top-10 1187 1577 1106

Top-100 2435 2535 2299
Top-1000 4423 4290 4309

MR 593 651 650
MRR 0.13 0.19 0.13
MAP 0.07 0.1 0.07

Table 3. Performance of single aggregation rules without
hierarchization, with local Kemenization. Performance is
not as good as with hierarchization.

ond and third charts correspond to zooms in the lower left
corner and in the upper right corner. From the performance
curves, we clearly observe the improvement compared to
the baseline. We also observe that the final curve (mini-
mum rule, green) fits very closely the upper right part of
the chart, corresponding to a very high cutoff value. We
can reasonably tell that approximately half of the input
queries are identified in the top-1% of the returned rank-
ing. Note however how the mean curve (blue) takes the
best position at low cutoff values.

4.4 Single aggregation of all features

To quantify the benefit of using hierarchical rank aggre-
gation rather than running a single combination, we com-
bined all the features with the three aggregation rules, and
applied the refinement step. Aggregating all features in a
single run corresponds to setting equal weights to all fea-
tures. On the other hand, aggregating the results in a hi-
erarchical way corresponds to set different weights to the
features. Table 3 gives the performance of all aggregation
rules with local Kemenization without any hierarchization.
The best performing rule in terms of Top-{1, 10, 100} is
again the minimum rule. Similar conclusions yield for the
MRR and MAP metrics. For the Top-1000 and the MR,
the best rule is the mean aggregation. Overall, the results
are worse than using hierarchical aggregation. For the top-
1 metric, the number of identified tracks drops by 22% for
the minimum rule, which is quite significant. For the MRR
and the MAP respectively, the performance is decreased by
19% and 24% for the minimum rule. This demonstrates
that attributing different weights to the estimators allows to
achieve better performance. Avoiding the hierarchization
would lead to a decreased performance, as indicated by the
results in Table 3, compared to Table 2.

5. CONCLUSION

In this paper, we improve cover song identification by eval-
uating multiple rank aggregation rules. Based on previous
work, we first construct probabilistic estimators based on
multiple weak features such as tempo, duration, loudness,
number of beats, and average chroma vectors. We use su-
pervised machine learning to learn models predicting prob-
abilities of similarity. Then, rather than combining the
estimators through probabilistic rules, we have evaluated
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several rank aggregation rules, and prove that the mean
aggregation rule provides improved results, compared to
the baseline. Considering the resulting combined estima-
tor, we further aggregate it with four estimators based on
four state-of-the-art features. The selected features take
into account harmonic information through chroma fea-
tures, and timbral information through self-similarity ma-
trices of MFCC coefficients. We further introduce an op-
timization step, called local Kemenization, that builds an
improved aggregated ranking by swapping tracks to the top
of the list, with respect to the agreement with each base es-
timator. To combine the estimators, we aggregate them all
in a hierarchical way, evaluating several hierarchical rank
aggregation rules. To highlight the gain of using hierarchi-
cak rank aggregation, we also aggregate all nine features
through a single aggregation rule, thus allocating an iden-
tical weight to all features. We show that such a combi-
nation degrades the performance. Our method is evaluated
on the Second Hand Song dataset, displaying the perfor-
mance in terms of standard statistics such as the mean rank

of the first identified query, the mean reciprocal rank, the
mean average precision and the number of tracks identi-
fied at the top-k cutoff. Best results are achieved with the
minimum aggregation rule with local Kemenization. In-
deed, we are able to identify 1,010 tracks at the first po-
sition, which corresponds to 18% of the database. In the
first 10 tracks returned, we identify 1,785 tracks (32 % of
the database), which is a significant improvement over pre-
vious work. Compared to previous work on combination,
we improve the results by 208% in terms of the number
of tracks identified in the top-1. In terms of mean recipro-
cal rank and mean average precision, we achieve improved
performance with a value of 0.234 for the MRR and 0.132
for the MAP. The results show that aggregating multiple
features, and therefore taking into account multiple sources
of musical information, leads to significant improvements
in the field of cover song identification. Our method takes
advantage of all the best from the literature in that field,
and suggests that following that direction of research might
eventually lead to an even better performance.
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ABSTRACT

Music transcription is a highly complex task that is diffi-
cult for automated algorithms, and equally challenging to
people, even those with many years of musical training.
Furthermore, there is a shortage of high-quality datasets
for training automated transcription algorithms. In this re-
search, we explore a semi-automated, crowdsourced ap-
proach to generate music transcriptions, by first running
an automatic melody transcription algorithm on a (poly-
phonic) song to produce a series of discrete notes repre-
senting the melody, and then soliciting the crowd to cor-
rect this melody. We present a novel web-based interface
that enables the crowd to correct transcriptions, report re-
sults from an experiment to understand the capabilities of
non-experts to perform this challenging task, and charac-
terize the characteristics and actions of workers and how
they correlate with transcription performance.

1. INTRODUCTION

Music transcription is the process of transforming the acous-
tic representation of a music piece to a notational represen-
tation (e.g., music score). Despite active research on au-
tomating this process, music transcription remains a diffi-
cult problem [1,13] for automated algorithms, and equally
challenging for human annotators, even those with formal
music training. As a result, there is a lack of scalable meth-
ods for generating ground truth datasets for training and
evaluating music transcription algorithms.

Crowdsourcing has demonstrated great promise as an
avenue for generating large datasets. Recent work sug-
gests that the crowd may be capable of performing tasks
that require expert knowledge [24, 30]. In this paper, we
investigate whether it is feasible to elicit the help of the
non-expert crowd to streamline the generation of music
transcription ground truth data. Specifically, we introduce
a semi-automated system, which first extracts a note rep-
resentation of the melody from an audio file, and then so-
licits the crowd to correct the melody by making small ad-

c© Tim Tse1, Justin Salamon2, Alex Williams1, Helga
Jiang1 and Edith Law1. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Tim Tse1, Justin
Salamon2, Alex Williams1, Helga Jiang1 and Edith Law1. “Ensemble:
A Hybrid Human-Machine System for Generating Melody Scores from
Audio”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

justments to the pitch, onset and offset of each note. Our
goal is to characterize the extent to which the crowd can
successfully perform this complex task which typically re-
quires musical expertise, describe the relationship between
the actions that users take to correct transcriptions and their
relationship to performance, and based on these findings,
highlight specific challenges associated with crowdsourc-
ing music transcription.

2. RELATED WORK

There are three threads of prior work relevant to our re-
search: automatic music transcription (AMT), semi-
automatic music transcription, and crowdsourcing the gen-
eration of ground truth data in music information retrieval.

In this work, we tackle a specific subtask of automatic
music transcription, automatic melody transcription. Given
a polyphonic music recording that has a clear melodic line,
our goal is to transcribe the melody into a piano-roll like
representation consisting of a sequence of non-overlapping
notes, each with an onset time, offset time, and a pitch
value. While several approaches have been proposed to
date (see [27] and references therein), the task remains
highly challenging and is considered an open problem.

Given that fully automated transcription techniques are
at the moment still limited, it is worth investigating how
well machines aided by humans, or semi-automatic sys-
tems, perform at this task. In [15] the authors studied two
types of user input for semi-automatic music transcription
based on matrix deconvolution. They showed that by ask-
ing the users to transcribe a small number of notes from
the test data, performance could be significantly improved
compared to initializing the model from independent train-
ing data. [8] introduced a human-in-the-loop model which
solicits users to highlight notes to be extracted from the
rest of the audio. In [29], users are asked to hum the
melody to be extracted in a sound mixture. A source sep-
aration framework that incorporates prior knowledge has
been proposed by [20], and the authors have shown that the
informed settings outperform the blind settings. Finally,
recent work [16] elicits help from 30 users to provide note
onsets and pitches as seeds to a semi-automated melody
extraction algorithm, and found that experts and novices
alike were able to contribute useful information. Likewise,
Songle [12], a web service for music listening, provides
users with the ability to modify a draft transcription gener-
ated by an automated algorithm.
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There have been a number of crowdsourcing experi-
ments in music information retrieval that have investigated
how to generate ground truth datasets for music tagging
[17,32] and music similarity judgments [33], and for more
complicated music information retrieval tasks, such as the
creation of emotionally relevant musical scores for audio
stories [25]. These prior works found that the non-expert
crowd can be incentivized to contribute accurate annota-
tions for music.

3. ENSEMBLE

We propose Ensemble, a two-part architecture to the task
of music transcription (Figure 1). The first part involves the
task of automatically transcribing the notes of the melody
from the audio signal of a music piece. The second part
asks the crowd to fix and improve upon the automatically
generated score.

Music Au-
dio Signal

Melody Extraction
(MELODIA)

Note Segmentation
and Quantization

Crowdsourced
Transcription

Music Scores

Fully Automatic

Human Supervised

Figure 1. A semi-automatic architecture. Melody extrac-
tion and quantization is performed automatically, and this
automatically generated transcription is then corrected by
the crowd.

3.1 Automatic Melody Note Transcription

We employ a two stage process to produce an automatic
transcription of the melody notes from the audio signal.
First, we extract the continuous fundamental frequency (f0)
contour of the melody using the MELODIA melody ex-
traction plugin [28]. Next, we quantize the contour in pitch
and segment it in time to produce a set of discrete notes.
This is performed by means of the following set of sim-
ple heuristics: first, every f0 value is mapped to its nearest
semitone pitch assuming an equally tempered scale tuned
to 440 Hz. The sequence is then smoothed using a median
filter of 250 ms to avoid very short pitch jumps that can oc-
cur due to e.g. the presence of vibrato in the unquantized
pitch contour. Finally, the sequence must be segmented in
time into notes. Since MELODIA already estimates the
start and end times of each voiced section (i.e. sections
where the melody is present), we only need to identify
note transitions within each section, accomplished by sim-
ply starting a new note whenever the quantized pitch value

changes from one semitone to another. We impose a mini-
mum note duration of 100 ms to avoid very short notes gen-
erated by continuous pitch transitions such as glissando. It
should be noted that more advanced note segmentation al-
gorithms have been proposed [10,19], but since our goal is
to evaluate the capability of the non-expert crowd to cor-
rect the automatic transcriptions (not solve automatic note
segmentation), we do not require a state-of-the-art method
for this study. Our complete melody note transcription
script is available online 1 .

3.1.1 Evaluation Metrics and Tools

To evaluate the agreement between two note transcriptions
(i.e., automated/crowdsourced transcription against ground
truth), we use the evaluation metrics from the MIREX [5]
Note Tracking subtask of the Multiple Fundamental Fre-
quency Estimation & Tracking challenge 2 :

Precision =
|correct estimated notes|
|estimated notes| (1)

Recall =
|correct estimated notes|
|reference notes| (2)

F-measure = 2 · Precision · Recall
Precision + Recall

(3)

An estimated note is considered to match a reference (ground
truth) note if its pitch is within half a semitone (±50 cents)
of the reference pitch, its onset is within ±50 ms of the
reference note’s onset, and its offset is within ±50 ms or
20% of the reference note’s duration from the reference
note’s offset, whichever is greater. MIREX also computes
a second version of each metric where note offsets are ig-
nored for note matching, since offsets are both consider-
ably harder to detect automatically and more subjective:
our ability to perceive offsets can be strongly affected by
the duration of note decay, reverberation and masking [3,
18]. In light of this, and following our own difficulty in
annotating offsets for our dataset, for this study we use the
metrics that ignore note offsets, as we do not consider it
reasonable to expect our participants to be able to accu-
rately match the offsets when our expert was not certain
about them in the first place. The metrics are computed us-
ing the JAMS [14] evaluation wrapper for the mir eval
library [22].

3.2 Crowdsourcing Interface

Figure 2 depicts the interface that we designed for crowd
workers to correct the music transcription. The interface
consists of two panels: the reference panel (top) and the
transcription panel (bottom). The reference panel displays
the waveform of the original music clip. The transcription
panel displays the current note transcription; initially, this
is the transcription automatically generated by the

1 https://github.com/justinsalamon/audio_to_
midi_melodia

2 http://www.music-ir.org/mirex/wiki/2015:
Multiple_Fundamental_Frequency_Estimation_\%
26_Tracking_Results_-_MIREX_Dataset#Task_2:
Note_Tracking_.28NT.29
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Figure 2. Screenshot of the note editing interface.

MELODIA-based transcription algorithm. Similar to many
music editing software, the transcription panel uses rect-
angles to denote individual notes, height of the white bar
within the rectangle (and in our case, also rectangle color)
to denote pitch height, and width to denote duration. Work-
ers are given controls to play the reference music clip and
transcription separately, as well as simultaneously.

To edit the current transcription, workers can add, delete,
split and merge notes. Notes can be added either by click-
ing on the “add note” button on the right panel or by double-
clicking the area where the user wishes to add a note. Notes
can be deleted by first clicking on a note, then either click-
ing the “delete note” button or tapping “backspace” on the
keyboard. Adjacent notes can be merged together by click-
ing on the first note (in time) and then clicking on the
“merge notes” button. Similarly, a note can be split into
two notes by first clicking on it and then clicking the “split
note” button. Pitch can be adjusted (by one semitone at a
time) either by using the up and down arrows attached to
each note, or by clicking on the note and then pressing the
up and down arrow keys on the keyboard. Every time the
pitch is adjusted the note is played back to indicate the new
pitch. The note can be moved in time by dragging it left or
right, and the onset and offset can be adjusted by dragging
the note edges left or right. The purple bar at the bottom
determines which segment of the audio/transcription is to
be played. The bar is adjustable hence allowing the user to
selectively choose the portion of the audio to focus on and
compare the corrected transcription against.

4. STUDY DESIGN

In this work, our goal is to understand the extent to which
crowdworkers can perform transcription correction tasks,
which typically requires expertise. To do this, we con-
ducted an experiment via Amazon Mechanical Turk to en-
gage crowdworkers to correct the automatically transcribed
melody from a 30 second excerpt of a song. Each 30 s ex-
cerpt is sliced into ten 3 s music clips, and each Turker per-
formed corrections on all ten clips, one clip at a time. The
reason we use short 3 s clip is that the results of a previous
in-lab pilot test suggested that longer clips (10 s) resulted
in too much cognitive load on the worker, rendering the
task too overwhelming for them. Furthermore, Mechani-
cal Turk workers are more used to performing a series of
short, micro-tasks.

4.1 Data

For our experiments, we require a dataset of polyphonic
music that has clear melodies (such as popular music) with
ground truth annotations on a note level. Surprisingly, we
found it hard to find suitable data. Most datasets with
note annotations are comprised of music that does not con-
tain an unambiguous melody (e.g. chamber music [7, 31]
or solo piano [6]), or contain artificially synthesized au-
dio data [9]. The two most relevant datasets, RockCor-
pus [4] and RWC-Pop [11] also turned out to be problem-
atic: the former only contains pitch-class annotations for
notes while the latter was problematic in terms of align-
ing the audio content to the provided MIDI annotations,
which we found to be insufficiently accurate for the pur-
pose of this study. Ultimately, we decided to create our
own dataset.

To create the dataset, we selected 20 songs from the
Million Song Dataset [2] which had a clear melody, in all
cases sung by the human voice. For each song we obtained
a MIDI file that was automatically aligned to a 30 s ex-
cerpt of the audio from [23]. We then manually identified
the MIDI track containing the melody notes and separated
it from the rest of the tracks using pretty midi [21].
The separated melody was then loaded into Logic Pro and
manually corrected by one of the authors with formal mu-
sic training to match the melody as accurately as possible,
and finally converted to JAMS format [14]. Since tran-
scribing a sung melody into a series of quantized notes is
a task that contains a certain degree of subjectivity, the fol-
lowing guidelines were followed:

• The onset and offset of each annotated note should
match the audio recording as accurately as possible.

• Pitch is annotated on an equally-tempered semitone
scale tuned to 440 Hz.

• Every sung syllable is annotated as a separate note.

• Whenever the pitch of the melody is perceived to
change by a semitone or more it should be anno-
tated as a separate note, even if the syllable does not
change, including embellishments and glissandos.

The same guidelines were communicated to crowdwork-
ers in the tutorial preceding the experiment.

4.2 Participants

There were a total of 105 Turkers who participated in the
study. Each Turker was assigned a randomly chosen 30 s
excerpt (sliced into 10 clips 3 s each). The majority of the
workers were from the United States. The entire task takes
roughly 20-30 minutes, and workers were paid $5 in total.
Since we wish to evaluate how well a layperson randomly
drawn from the crowd can perform this task, we did not
restrict the pool of participants by the level of their for-
mal music training. Finally, our system ensures that each
worker takes our study only once.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 145



4.3 Procedure

To begin, workers watch a tutorial video that shows how an
expert corrects the transcription for a 3 s music clip. The
tutorial guides new users on how to approach this task, by
highlighting all of the functionalities of the interface and
specifying the rules to follow when considering the cor-
rectness of their transcription. The tutorial is followed by
a pre-study questionnaire, which asks workers about their
music background, including the number of years of for-
mal music training, a set of listening tests (i.e., listening
to two consecutive notes and determining which one has a
higher pitch), and a set of knowledge questions related to
music reading (e.g., whether they are familiar with musi-
cal notation such as key and time signature). Workers per-
formed a series of 10 tasks using the note editor interface
to correct the transcription of the melody of consecutive
3 s music clips. In order to better understand worker be-
havior and intent, all interactions with the interface were
recorded and saved in a database alongside the workers’
corrected melody transcription.

After finishing the transcription, workers are asked to
complete a post-study questionnaire, which asks them about
their experience using our interface. In particular, we cap-
ture motivational factors using the Intrinsic Motivation In-
ventory (IMI) [26], a scale that measures factors related to
enjoyment (how much workers enjoy the task), competence
(how competent workers think they are at the task) and ef-
fort (how much effort workers put into the task). Workers
are asked to rate how much they agree with a set of state-
ments related to these three dimensions on a 7-point Likert
scale. For each dimension, we then average the workers’
responses (inverting the scores for the negative statements)
and use the mean value as the summary statistic for that
dimension. Finally, we ask workers to rate the difficulty
of the task, as well as comment on ways in which the in-
terface could be improved and the aspects of the task they
found most challenging.

5. RESULTS

5.1 Worker Performance

To understand whether the crowd can improve the auto-
matic melody transcription, for each 3 s music clip we
compute the F-measure (ignoring offsets) of the automatic
(AMT) and the crowd-generated transcriptions against the
ground truth. In Figure 3(a) we present the scores of the
crowd-annotated transcriptions (green dots) against those
of the AMT (blue line) for each 3 s clip, ordered by the
score obtained by the AMT. In Figure 3(b) we present the
same results, but average the scores for each clip over all
workers who annotated that clip. Note that if a data point is
located above the y = x line it means the crowd-annotated
transcription outperformed the AMT, and vice versa.

The number of points above the line, on the line, and
below the line are 272, 366, 338 respectively for subplot
(a) and 85, 13, 94 respectively for subplot (b). In gen-
eral we see that the worker scores vary a lot, with some
workers able to correct the AMT to perfectly match the
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Figure 3. Worker clip F-measure against AMT clip F-
measure: (a) individual worker-clip scores, (b) averaged
per-clip scores.

ground truth and others capable of “ruining” an already
good AMT. The large number of points on the line in (a)
suggests that oftentimes the workers did not think they can
improve the AMT and left the transcription unchanged (or
modified it insignificantly). In both subplots we observe
that when the AMT score exceeds 0.6, the majority of the
points fall below the line, suggesting that the crowd has a
hard time improving the transcription for clips for which
the AMT already performs relatively well. Conversely,
when the AMT performs poorly the crowd is capable of
making corrections that improve the transcription (i.e., the
majority of the data points are on or above the line).

5.2 Worker Characteristics

The answers to the pre-study questionnaire are summa-
rized Figure 4: (a) shows the distribution of the workers’
musical expertise (T1), (b) the number of pitch comparison
questions answered correctly (T2), and (c) the number of
music notation questions answered correctly (T3).

We see that the majority of the workers have little to no
formal music training with 62% responding “None” or “1
year”. 93% of workers answered at least two pitch com-
parison correctly and 63% answered at least two musical
knowledge questions correctly. Given the variability in the
scores achieved by the workers, we wanted to see if there
was correlation between the workers’ answers and their F-
measure performance. To determine this, in Figure 4 (d),
(e), and (f) we plot the workers’ F-measure performance
against the three separate topics T1, T2 and T3 respec-
tively. We also compute their Pearson correlation coeffi-
cients: 0.12, 0.11 and 0.18 respectively. Results show that
the factor most correlated to the workers’ performance is
their understanding of musical notation. A possible expla-
nation is that the person’s proficiency with musical nota-
tion is a good indicator of their actual musical expertise.
Self-reported expertise is not as good an indicator: this
could be (for example) because the worker’s musical train-
ing happened a long time ago and has since deteriorated
through disuse (e.g., an adult took formal music lessons
when they were a child but never again). Interestingly, the
ability to compare pitches also has a relatively low corre-
lation to the F-measure performance. A possible expla-
nation for this is that the comparison questions (determin-
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Figure 4. Pre-questionnaire results: (a) years of formal music training, (b) correctly answered pitch comparison questions,
(c) correctly answered musical notation questions, (d) years of training vs. performance, (e) correctly answered pitch
comparison questions vs. performance, (f) correctly answered musical notation questions vs. performance.

ing which of two pitches is higher) are easier than the task
of matching the pitch of a synthesized note to the human
voice.

The post-questionnaire shows that there are three main
types of challenges. First, many workers (∼ 20%) reported
having difficulty matching the pitch of the transcription to
the pitch in the audio (e.g., “It’s hard to exactly match the
notes to the melody.”). There were several reasons cited,
including personal inexperience (e.g., “I’m pretty sure I’m
completely tone deaf. It was like trying to learn a for-
eign language.”), difficulty in separating the vocals from
the background (e.g., “Sometimes it was hard to hear the
exact melody over the instrumentation.”, “In my specific
audio clips, the voice was very ambient and seemed to be
layered in octaves at times. So, using only one tone to
accurately denote pitch was slightly confusing.”) and dif-
ficulty with decorative notes (e.g., “Vocal inflections/trails
can be almost impossible to properly transcribe”, “Getting
all the nuances of the notes correctly, especially the begin-
ning and ends of notes where the singer sort of “slides”
into and out of the note.”, “Some changes in tone were par-
ticularly difficult to find the right tone to match the voice.
Mostly the ‘guttural’ parts of the singing.”, “When some-
one’s voice does that little vibrato tremble thing, it’s almost
impossible to accurately tab that out.”).

Second, some workers reported difficulty with timing
and rhythm, knowing exactly when things should start and
end. For example, one musically trained worker said “Tim-
ing was incredibly difficult. I’ve been a (self taught) musi-
cian for 7 years so recognizing pitch wasn’t difficult. The
hard part was fitting the notes to the parts of the song in the
right timing. If there’s anything I messed up on during my
work, it was that.” Finally, a few workers mentioned find-
ing the task difficult due to the lack of feedback indicating

IMI Factor Mean Standard Deviation

Enjoyment 5.87 1.46
Competence 4.15 1.79

Effort 6.30 0.93

Table 1. Mean and standard deviation for each IMI factor.

whether they were doing the task accurately (“It was hard
to tell for sure if I was doing well or not.”).

Many workers describe the interface as “intuitive,” “easy
to work”, “well made,” and “straightforward”. The most
requested functionality was the ability to play the audio at
a slower speed, e.g., so that one can “catch grace notes or
time beats more precisely.” In practice this would require
us to incorporate a time-stretching algorithm into the inter-
face. Other requests include the ability to duplicate a note,
undo previous actions, and get more training and feedback.

Overall, there seems to be an interesting tension: work-
ers find the task extremely challenging, yet enjoyable. For
example, workers said “This is one of the best hits on Ama-
zon mTurk.”, “Getting it all to sound great is a challenge
but fun”, “Maybe I’m just not musically inclined, but even
after going through several notes, it was still difficult for
me to figure out whether or not they matched the singer’s
voice. Very challenging, but interesting too!”

The quantitative data also reflect this observation. Table
1 summarizes the average intrinsic motivational factors—
enjoyment, competence and effort—over all workers. Re-
sults show that on average, workers enjoy the task (µ=5.87,
σ=1.46), but at the same time, found themselves lacking
competence (µ=4.15, σ=1.79) in this task that they find ef-
fortful (µ=6.30, σ=0.93). In addition, they reported finding
the task difficult (µ=5.57, σ=1.55).
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Figure 5. User interaction count vs. AMT performance.

Action Occur. Action Occur.

Play Both 16.1 (26.2) Resize Play Region 6.3 (8.0)
Change Pitch 12.7 (12.1) Move Play Region 3.9 (3.8)
Change Offset 9.6 (10.6) Add Note 2.3 (1.9)
Play Wav 8.3 (13.2) Merge Note 2.1 (1.8)
Change Onset 7.5 (9.0) Delete Note 2.0 (1.4)
Play Transcription 7.2 (10.5) Split Note 1.8 (1.1)

Table 2. Average occurrence (and standard deviation) of
each worker action for all 3-second clips.

5.3 Worker Actions

In order to understand more deeply how workers perform
the transcriptions, we analyze the action log consisting of a
list of coded user actions, including changes in onset, off-
set, or pitch (up or down), note addition, deletion, merge
and split, as well as actions related to re-playing the origi-
nal song and the transcription (play wav, play transcription,
play both, resize-play-region, move-play-region).

In total, there were 53,411 user actions on the interface.
The average number of user actions per clip is 60.3, with
some workers making as few as 1 edit, and other work-
ers making as many as 920 edits for a single clip. Figure
5 shows that the worse the initial automatic transcription,
the more actions the Turkers took to make the corrections,
which is quite intuitive.

Table 2 shows the average occurrence of each worker
action performed over all transcription tasks. By far, the
most frequently taken actions were “change pitch” (chang-
ing the pitch of a note up or down) and “play both” (playing
both the transcription and the audio clip at the same time).
The prevalence of the “change pitch, then replay” interac-
tion potentially reflects workers’ general difficulty in de-
termining whether two pitches match. It also may reflect
the fact that the interface currently allows only a semitone
change at a time. Changing the onset and offset of a note
occurred less frequently than changing the pitch, but much
more frequently than adding or deleting notes. This behav-
ior could indicate that workers are more inclined to modify
a note that exists already in lieu of adding a new note. To-
gether, the results suggest that pitch-matching may be the
most challenging aspect of the task, and that workers may
have an inherent bias to keep the number of notes in the
automated transcription constant, while focusing instead
on adjusting the pitch, offset, and onset of existing notes.

6. CONCLUSION

In this paper we introduced Ensemble, a semi-automated
system that leverages both algorithms and crowd to per-
form melody transcription. We reported the characteris-
tics, performance and user-behavior pattern of a non-expert
crowd of 105 workers for this complex task. For our ex-
periment, workers were able to improve the initial tran-
scription if it was poor, but found it hard to improve a
transcription that was already mostly correct. Despite the
crowd workers’ sentiment that melody transcription is a
difficult task, they also feel that it is a fun and interesting
task that can hold their attention. We discover that there
is indeed a correlation between the music expertise level
of a worker and the F-measure performance of their tran-
scription. Many workers commented on the fact that pitch-
matching, while being the most frequent action, is also the
most challenging aspect of the task.

In the future we plan to breakdown the results by on-
set, offset, and pitch-only performance, with the goal of
gaining further insight into the strengths and weaknesses
of the crowdsourced annotations. Furthermore, currently
all transcriptions are evaluated against annotations from
a single expert. Since the task is somewhat subjective,
we plan to collect additional expert annotations and eval-
uate expert agreement. This would provide a glass ceil-
ing on the performance we can expect from the untrained
crowd. We also plan to develop an aggregation algorithm
that collates each worker’s contribution to create a single
(improved) transcription, investigate whether certain gran-
ularities (e.g., shorter/longer clips) and decompositions (e.g.,
having workers specialize in a particular subtask, such as
pitch changes) of the task can produce superior transcrip-
tions, and develop new ways to identify the skillful tran-
scribers in the crowd and incentivize them to perform the
task.
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ABSTRACT

In this paper, we explore a large multimodal dataset of
about 65k albums constructed from a combination of Ama-
zon customer reviews, MusicBrainz metadata and Acous-
ticBrainz audio descriptors. Review texts are further en-
riched with named entity disambiguation along with po-
larity information derived from an aspect-based sentiment
analysis framework. This dataset constitutes the corner-
stone of two main contributions: First, we perform ex-
periments on music genre classification, exploring a va-
riety of feature types, including semantic, sentimental and
acoustic features. These experiments show that modeling
semantic information contributes to outperforming strong
bag-of-words baselines. Second, we provide a diachronic
study of the criticism of music genres via a quantitative
analysis of the polarity associated to musical aspects over
time. Our analysis hints at a potential correlation between
key cultural and geopolitical events and the language and
evolving sentiments found in music reviews.

1. INTRODUCTION

With the democratisation of Internet access, vast amounts
of information are generated and stored in online sources,
and thus there is great interest in developing techniques
for processing this information effectively [27]. The Mu-
sic Information Retrieval (MIR) community is sensible to
this reality, as music consumption has undergone signifi-
cant changes recently, especially since users are today just
one click away from millions of songs [4]. This context re-
sults in the existence of large repositories of unstructured
knowledge, which have great potential for musicological
studies or tasks within MIR such as music recommenda-
tion.

In this paper, we put forward an integration proce-
dure for enriching with music-related information a large
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dataset of Amazon customer reviews [18,19], with seman-
tic and acoustic metadata obtained from MusicBrainz 1

and AcousticBrainz 2 , respectively. MusicBrainz (MB) is
a large open music encyclopedia of music metadata, whist
AcousticBrainz (AB) is a database of music and audio de-
scriptors, computed from audio recordings via state-of-the-
art Music Information Retrieval algorithms [26]. In addi-
tion, we further extend the semantics of the textual content
from two standpoints. First, we apply an aspect-based sen-
timent analysis framework [7] which provides specific sen-
timent scores for different aspects present in the text, e.g.
album cover, guitar, voice or lyrics. Second, we perform
Entity Linking (EL), so that mentions to named entities
such as Artist Names or Record Labels are linked to their
corresponding Wikipedia entry [24].

This enriched dataset, henceforth referred to as Multi-
modal Album Reviews Dataset (MARD), includes affec-
tive, semantic, acoustic and metadata features. We benefit
from this multidimensional information to carry out two
experiments. First, we explore the contribution of such
features to the Music Genre classification task, consisting
in, given a song or album review, predict the genre it be-
longs to. Second, we use the substantial amount of infor-
mation at our disposal for performing a diachronic analysis
of music criticism. Specifically, we combine the metadata
retrieved for each review with their associated sentiment
information, and generate visualizations to help us investi-
gate any potential trends in diachronic music appreciation
and criticism. Based on this evidence, and since music
evokes emotions through mechanisms that are not unique
to music [16], we may go as far as using musical infor-
mation as means for a better understanding of global af-
fairs. Previous studies argue that national confidence may
be expressed in any form of art, including music [20], and
in fact, there is strong evidence suggesting that our emo-
tional reactions to music have important and far-reaching
implications for our beliefs, goals and actions, as members
of social and cultural groups [1]. Our analysis hints at a
potential correlation between the language used in music
reviews and major geopolitical events or economic fluctu-
ations. Finally, we argue that applying sentiment analysis
to music corpora may be useful for diachronic musicolog-
ical studies.

1 http://musicbrainz.org/
2 http://acousticbrainz.org
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2. RELATED WORK

One of the earliest attempts on review genre classification
is described in [15], where experiments on multiclass genre
classification and star rating prediction are described. Sim-
ilarly, [14] extend these experiments with a novel approach
for predicting usages of music via agglomerative cluster-
ing, and conclude that bigram features are more infor-
mative than unigram features. Moroever, part-of-speech
(POS) tags along pattern mining techniques are applied
in [8] to extract descriptive patterns for distinguishing neg-
ative from positive reviews. Additional textual evidence is
leveraged in [5], who consider lyrics as well as texts re-
ferring to the meaning of the song, and used for training a
kNN classifier for predicting song subjects (e.g. war, sex
or drugs).

In [23], a dataset of music reviews is used for album
rating prediction by exploiting features derived from sen-
timent analysis. First, music-related topics are extracted
(e.g. artist or music work), and this topic information is
further used as features for classification. One of the most
thorough works on music reviews is described in [28].
It applies Natural Language Processing (NLP) techniques
such as named entity recognition, text segmentation and
sentiment analysis to music reviews for generating texts
explaining good aspects of songs in recommender systems.
In the line of review generation, [9] combine text analysis
with acoustic descriptors in order to generate new reviews
from the audio signal. Finally, semantic music information
is used in [29] to improve topic-wise classification (album,
artist, melody, lyrics, etc.) of music reviews using Sup-
port Vector Machines. This last approach differs from ours
in that it enriches feature vectors by taking advantage of
ad-hoc music dictionaries, while in our case we take ad-
vantage of Semantic Web resources.

As for sentiment classification of text, there is abundant
literature on the matter [21], including opinions, reviews
and blog posts classification as positive or negative. How-
ever, the impact of emotions has received considerably less
attention in genre-wise text classification. We aim at bridg-
ing this gap by exploring aspect-level sentiment analysis
features.

Finally, concerning studies on the evolution of music
genres, these have traditionally focused on variation in au-
dio descriptors, e.g. [17], where acoustic descriptors of
17,000 recordings between 1960 and 2010 are analyzed.
Descriptors are discretized and redefined as descriptive
words derived from several lexicons, which are subse-
quently used for topic modeling. In addition, [12] analyze
expressions located near the keyword jazz in newswire col-
lections from the 20th century in order to study the advent
and reception of jazz in American popular culture. This
work has resemblances to ours in that we also explore how
textual evidence can be leveraged, with a particular focus
on sentiment analysis, for performing descriptive analyses
of music criticism.

3. MULTIMODAL ALBUM REVIEWS DATASET

MARD contains texts and accompanying metadata origi-
nally obtained from a much larger dataset of Amazon cus-
tomer reviews [18, 19]. The original dataset provides mil-
lions of review texts together with additional information
such as overall rating (between 0 to 5), date of publica-
tion, or creator id. Each review is associated to a product
and, for each product, additional metadata is also provided,
namely Amazon product id, list of similar products, price,
sell rank and genre categories. From this initial dataset,
we selected the subset of products categorized as CDs &
Vinyls, which also fulfill the following criteria. First, con-
sidering that the Amazon taxonomy of music genres con-
tains 27 labels in the first hierarchy level, and about 500
in total, we obtain a music-relevant subset and select 16 of
the 27 which really define a music style and discard for in-
stance region categories (e.g. World Music) and other cate-
gories non specifically related to a music style (e.g. Sound-
track, Miscellaneous, Special Interest), function-oriented
categories (Karaoke, Holiday & Wedding) or categories
whose albums might also be found under other categories
(e.g. Opera & Classical Vocal, Broadway & Vocalists).
We compiled albums belonging only to one of the 16 se-
lected categories, i.e. no multiclass. Note that the original
dataset contains not only reviews about CDs and Vinyls,
but also about music DVDs and VHSs. Since these are not
strictly speaking music audio products, we filter out those
products also classified as ”Movies & TV”. Finally, since
products classified as Classical and Pop are substantially
more frequent in the original dataset, we compensate this
unbalance by limiting the number of albums of any genre
to 10,000. After this preprocessing, MARD amounts to a
total of 65,566 albums and 263,525 customer reviews. A
breakdown of the number of albums per genre is provided
in Table 1.

Genre Amazon MusicBrainz AcousticBrainz
Alternative Rock 2,674 1,696 564
Reggae 509 260 79
Classical 10,000 2,197 587
R&B 2,114 2,950 982
Country 2,771 1,032 424
Jazz 6,890 2,990 863
Metal 1,785 1,294 500
Pop 10,000 4,422 1701
New Age 2,656 638 155
Dance & Electronic 5,106 899 367
Rap & Hip-Hop 1,679 768 207
Latin Music 7,924 3,237 425
Rock 7,315 4,100 1482
Gospel 900 274 33
Blues 1,158 448 135
Folk 2,085 848 179
Total 66,566 28,053 8,683

Table 1: Number of albums by genre with information
from the different sources in MARD

Having performed genre filtering, we enrich MARD by
extracting artist names and record labels from the Ama-
zon product page. We pivot over this information to query
the MB search API to gather additional metadata such as
release id, first release date, song titles and song ids. Map-
ping with MB is performed using the same methodology
described in [25], following a pair-wise entity resolution
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Figure 1: Overview of the opinion mining and sentiment
analysis framework.

approach based on string similarity with a threshold value
of θ = 0.85. We successfully mapped 28,053 albums to
MB. Then, we retrieved songs’ audio descriptors from AB.
From the 28,053 albums mapped to MB, a total of 8,683
albums are further linked to their corresponding AB en-
try, which encompasses 65,786 songs. The final dataset is
freely available for download 3 .

4. TEXT PROCESSING

In this section we describe how we extract linguistic, sen-
timental and semantic information from textual reviews.
This information will serve both as input features for our
genre classification experiments, and also constitute the
basis for the diachronic study described in Section 6.

4.1 Sentiment Analysis

Following the work of [6,7] we use a combination of shal-
low NLP, opinion mining, and sentiment analysis to extract
opinionated features from reviews. For reviews Ri of each
album, we mine bi-grams and single-noun aspects (or re-
view features), see [13]; e.g. bi-grams which conform to
a noun followed by a noun (e.g. chorus arrangement) or
an adjective followed by a noun (e.g. original sound) are
considered, excluding bi-grams whose adjective is a sen-
timent word (e.g. excellent, terrible). Separately, single-
noun aspects are validated by eliminating nouns that are
rarely associated with sentiment words in reviews, since
such nouns are unlikely to refer to item aspects. We refer
to each of these extracted aspects Aj as review aspects.

For a review aspect Aj we determine if there are any
sentiment words in the sentence containing Aj . If not,
Aj is marked neutral, otherwise we identify the sentiment
word wmin with the minimum word-distance to Aj . Next
we determine the POS tags for wmin, Ai and any words
that occur between wmin and Ai. We assign a sentiment
score between -1 and 1 to Aj based on the sentiment of
wmin, subject to whether the corresponding sentence con-
tains any negation terms within 4 words of wmin. If there
are no negation terms, then the sentiment assigned to Aj

is that of the sentiment word in the sentiment lexicon; oth-
erwise this sentiment is reversed. Our sentiment lexicon
is derived from SentiWordNet [10] and is not specifically
tuned for music reviews. An overview of the process is
shown in Figure 1. The end result of sentiment analysis

3 http://mtg.upf.edu/download/datasets/mard

is that we determine a sentiment label Sij for each aspect
Aj in review Ri. A sample annotated review is shown in
Figure 2

“Very melodic great guitar riffs but the vocals are shrill”

S A A A S
+ve

+ve
-ve

Figure 2: A sentence from a sample review annotated with
opinion and aspect pairs.

4.2 Entity Linking

Entity Linking (EL) is the task to provide, given a men-
tion to a named entity (e.g. person, location or organi-
zation), its most suitable entry in a reference Knowledge
Base (KB) [22]. In our case, EL was performed taking ad-
vantage of Tagme 4 [11], an EL system that matches en-
tity candidates with Wikipedia links, and then performs
disambiguation exploiting both the in-link graph and the
Wikipedia page dataset. TagMe provides for each detected
entity, its Wikipedia page id and Wikipedia categories.

5. MUSIC GENRE CLASSIFICATION

5.1 Dataset Description

Starting from MARD, our purpose is to create a subset
suitable for genre classification, including 100 albums per
genre class. We enforce these albums to be authored by
different artists, and that review texts and audio descrip-
tors of their songs are available in MARD. Then, for every
album, we selected audio descriptors of the first song of
each album as representative sample of the album. From
the original 16 genres, 3 of them did not have enough in-
stances complying with these prerequisites (Reggae, Blues
and Gospel). This results in a classification dataset com-
posed of 1,300 albums, divided in 13 different genres, with
around 1,000 characters of review per album.

5.2 Features

5.2.1 Textual Surface Features

We used a standard Vector Space Model representation of
documents, where documents are represented as bag-of-
words (BoW) after tokenizing and stopword removal. All
words and bigrams (sequences of two words) are weighted
according to tf-idf measure.

5.2.2 Semantic Features

We enriched the initial BoW vectors with semantic infor-
mation thanks to the EL step. Specifically, for each named
entity disambiguated with Tagme, its Wikipedia ID and its
associated categories are added to the feature vector, also
with tf-idf weighting. Wikipedia categories are organized
in a taxonomy, so we enriched the vectors by adding one
level more of broader categories to the ones provided by

4 http://tagme.di.unipi.it/
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Alt. Rock Classical Country Electronic Folk Jazz Latin Metal New Age Pop R&B Hip-Hop Rock
Alt. Rock 28 / 42 1 / 3 3 / 1 10 / 10 7 / 1 1 / 2 2 / 0 18 / 12 10 / 2 4 / 10 3 / 6 3 / 2 10 / 9
Classical 0 / 0 87 / 95 1 / 0 0 / 0 1 / 1 1 / 1 2 / 2 1 / 0 5 / 1 1 / 0 0 / 0 0 / 0 1 / 0
Country 2 / 1 0 / 0 51 / 84 3 / 0 9 / 1 9 / 0 3 / 0 0 / 1 3 / 0 8 / 8 6 / 4 1 / 0 5 / 1
Electronic 7 / 3 3 / 1 1 / 2 40 / 61 4 / 1 1 / 2 2 / 2 6 / 0 7 / 5 6 / 5 6 / 7 13 / 5 4 / 7
Folk 4 / 6 11 / 0 13 / 10 7 / 0 27 / 55 6 / 1 7 / 3 4 / 2 6 / 9 5 / 9 6 / 4 1 / 0 3 / 1
Jazz 7 / 0 10 / 1 6 / 2 2 / 2 5 / 0 45 / 82 6 / 3 3 / 0 8 / 2 3 / 5 4 / 1 1 / 1 0 / 1
Latin 4 / 3 6 / 4 9 / 2 1 / 2 5 / 1 10 / 2 28 / 78 3 / 0 6 / 2 11 / 4 7 / 2 5 / 0 5 / 0
Metal 13 / 5 1 / 0 1 / 1 2 / 2 1 / 0 0 / 1 1 / 0 63 / 87 1 / 0 1 / 0 3 / 1 1 / 0 12 / 3
New Age 9 / 2 7 / 6 9 / 0 7 / 4 10 / 10 9 / 2 7 / 6 3 / 3 15 / 53 10 / 7 6 / 1 2 / 1 6 / 5
Pop 6 / 2 9 / 1 10 / 2 9 / 2 5 / 3 9 / 2 5 / 2 2 / 0 7 / 1 19 / 73 7 / 6 2 / 2 10 / 5
R&B 8 / 2 0 / 1 16 / 3 8 / 4 2 / 0 5 / 3 5 / 0 1 / 0 3 / 0 7 / 10 24 / 71 17 / 5 4 / 1
Hip-Hop 8 / 2 0 / 0 2 / 1 8 / 2 0 / 1 0 / 1 1 / 0 4 / 3 2 / 0 4 / 1 7 / 2 61 / 86 3 / 1
Rock 17 / 15 1 / 2 6 / 8 4 / 7 10 / 5 2 / 4 7 / 1 12 / 13 4 / 1 9 / 7 7 / 4 6 / 2 15 / 31

Table 2: Confusion matrix showing results derived from AB acoustic-based classifier/BoW+SEM text-based approach.

Tagme. Broader categories were obtained by querying DB-
pedia 5 .

5.2.3 Sentiment Features

Based on those aspects and associated polarity extracted
with the opinion mining framework, with an average num-
ber of aspects per review around 37, we follow [21] and
implement a set of sentiment features, namely:

• Positive to All Emotion Ratio: fraction of all senti-
mental features which are identified as positive (sen-
timent score greater than 0).

• Document Emotion Ratio: fraction of total words
with sentiments attached. This feature captures the
degree of affectivity of a document regardless of its
polarity.

• Emotion Strength: This document-level feature is
computed by averaging sentiment scores over all as-
pects in the document.

• F-Score 6 : This feature has proven useful for de-
scribing the contextuality/formality of language. It
takes into consideration the presence of a priori “de-
scriptive” POS tags (nouns and adjectives), as op-
posed to “action” ones such as verbs or adverbs.

5.2.4 Acoustic Features

Acoustic features are obtained from AB. They are com-
puted using Essentia 7 . These encompass loudness, dy-
namics, spectral shape of the signal, as well as additional
descriptors such as time-domain, rhythm, and tone [26].

5.3 Baseline approaches

Two baseline systems are implemented. First, we imple-
ment the text-based approach described in [15] for music
review genre classification. In this work, a Naı̈ve Bayes
classifier is trained on a collection of 1,000 review texts,
and after preprocessing (tokenisation and stemming), BoW
features based on document frequencies are generated.
The second baseline is computed using the AB frame-
work for song classification [26]. Here, genre classifica-
tion is computed using multi-class support vector machines

5 http://dbpedia.org
6 Not to be confused with the evaluation metric.
7 http://essentia.upf.edu/

BoW BoW+SEM BoW+SENT
Linear SVM 0.629 0.691 0.634
Ridge Classifier 0.627 0.689 0.61
Random Forest 0.537 0.6 0.521

Table 3: Accuracy of the different classifiers

(SVMs) with a one-vs.-one voting strategy. The classifier
is trained with the set of low-level features present in AB.

5.4 Experiments

We tested several classifiers typically used for text classi-
fication, namely Linear SVM, Ridge Classifier and Near-
est Centroid, using the implementations provided by the
scikit-learn library 8 . Among them, Linear SVM has
shown better performance when combining different fea-
ture sets (see Table 3). Therefore, we trained a Lin-
ear SVM classifier with L2 penalty over different sub-
sets of the features described in Section 5.2, which are
combined via linear aggregation. Specifically, we com-
bine the different feature sets into five systems, namely
BoW (BoW), BoW+Semantic without broader categories
(BoW+SEM), BoW+Semantic Broader with broader cat-
egories (BoW+SEMb), BoW+Sentiment (BoW+SENT)
and BoW+Semantic+Sentiment (BoW+SEM+SENT). In
this way, we aim at understanding the extent to which sen-
timent and semantic features (and their interaction) may
contribute to the review genre classification task. Note that
this paper is focused on the influence of textual features
in genre classification, and classification based on acous-
tic features is simply used as a baseline for comparison. A
proper combination of acoustic and textual features in text
classification is a challenging problem and would require
a deeper study that is out of the scope of this paper. The
dataset is split 80-20% for training and testing, and accu-
racy values are obtained after 5-fold cross validation.

5.5 Results and Discussion

Accuracy results of the two baseline approaches intro-
duced in Section 5.3 along with our approach variants
are shown in Figure 3. At first sight, we may conclude
that sentiment features contribute to slightly outperform-
ing purely text-based approaches. This result implies that

8 http://scikit-learn.org/
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Figure 3: Percentage of accuracy of the different ap-
proaches. AB refers to the AcousticBrainz framework. NB
refers to the method based on Naı̈ve Bayes from [15].

affective language present in a music review is not a salient
feature for genre classification (at least with the technology
we applied), although it certainly helps. On the contrary,
semantic features clearly boost pure text-based features,
achieving 69.08% of accuracy. The inclusion of broader
categories does not improve the results in the semantic ap-
proach. The combination of semantic and sentiment fea-
tures improves the BoW approach, but the achieved accu-
racy is slightly lower than using semantic features only.

Let us review the results obtained with baseline sys-
tems. The Naı̈ve Bayes approach from [15] is reported to
achieve an accuracy of 78%, while in our results it is below
55%. The difference in accuracy may be due to the sub-
stantial difference in length of the review texts. In [15], re-
view texts were at least 3,000 characters long, much larger
that ours. Moreover, the addition of a distinction between
Classic Rock and Alternative Rock is penalizing our re-
sults. As for the acoustic-based approach, although the
obtained accuracy may seem low, it is in fact a good re-
sult for purely audio-based genre classification, given the
high number of classes and the absence of artist bias in the
dataset [3]. Finally, we refer to Table 2 to highlight the
fact that the text-based approach clearly outperforms the
acoustic-based classifier, although in general both show a
similar behaviour across genres. Also, note the low accu-
racy for both Classic Rock and Alternative Rock, which
suggests that their difference is subtle enough for making
it a hard problem for automatic classification.

6. DIACHRONIC STUDY OF MUSIC CRITICISM

We carried out a study of the evolution of music criticism
from two different temporal standpoints. Specifically, we
consider when the review was written and, in addition,
when the album was first published. Since we have sen-
timent information available for each review, we first com-
puted an average sentiment score for each year of review
publication (between 2000 and 2014). In this way, we may
detect any significant fluctuation in the evolution of affec-
tive language during the 21st century. Then, we also cal-
culated the average sentiment for each review by year of
album publication. This information is obtained from MB
and complemented with the average of the Amazon rating
scores.

In what follows, we show visualizations for sentiment
scores and correlation with ratings given by Amazon users,

according to these two different temporal dimensions. Al-
though arriving to musicological conclusions is out of
the scope of this paper, we provide food for thought and
present the readers with hypotheses that may explain some
of the facts revealed by these data-driven trends.

6.1 Evolution by Review Publication Year

We applied sentiment and rating average calculations to the
whole MARD dataset, grouping album reviews by year of
publication of the review. Figure 4a shows the average of
the sentiment scores associated to every aspect identified
by the sentiment analysis framework in all the reviews pub-
lished in a specific year, whilst Figure 4b shows average
review ratings per year. At first sight, we do not observe
any correlation between the trends illustrated in the figures.
However, the sentiment curve (Figure 4a) shows a remark-
able peak in 2008, a slightly lower one in 2013, and a low
between 2003 and 2007, and also between 2009 and 2012.
It is not trivial to give a proper explanation of this vari-
ations on the average sentiment. We speculate that these
curve fluctuations may suggest some influence of econom-
ical or geopolitical circumstances in the language used in
the reviews, such as the 2008 election of Barack Obama
as president of the US. As stated by the political scientist
Dominique Moı̈si in [20]:

In November 2008, at least for a time, hope pre-
vailed over fear. The wall of racial prejudice fell as
surely as the wall of oppression had fallen in Berlin
twenty years earlier [...] Yet the emotional dimen-
sion of this election and the sense of pride it created
in many Americans must not be underestimated.

Another factor that might be related to the positiveness
in use of language is the economical situation. After sev-
eral years of continuous economic growth, in 2007 a global
economic crisis started 9 , whose consequences were visi-
ble in the society after 2008 (see Figure 4c). In any case,
further study of the different implied variables is necessary
to reinforce any of these hypotheses.

.

6.2 Evolution by Album Publication Year

In this case, we study the evolution of the polarity of lan-
guage by grouping reviews according to the album publica-
tion date. This date was gathered from MB, meaning that
this study is conducted on the 42,1% of the MARD that
was successfully mapped. We compared again the evo-
lution of the average sentiment polarity (Figure 4d) with
the evolution of the average rating (Figure 4e). Contrary
to the results observed by review publication year, here
we observe a strong correlation between ratings and sen-
timent polarity. To corroborate that, we computed first a
smoothed version of the average graphs, by applying 1-D
convolution (see line in red in Figures 4d and 4e). Then we
computed Pearson’s correlation between smoothed curves,
obtaining a correlation r = 0.75, and a p-value p� 0.001.
This means that in fact there is a strong correlation between

9 https://research.stlouisfed.org
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(a) Sentiment (b) Rating (c) USA GDP trend

(d) Sentiment (e) Rating (f) Sentiment by genre

Figure 4: Sentiment and rating averages by review publication year (a and b); GDP trend in USA from 2000 to 2014 (c),
and sentiment and rating averages by album publication year (d, e and f)

the polarity identified by the sentiment analysis framework
in the review texts, and the rating scores provided by the
users. This correlation reinforces the conclusions that may
be drawn from the sentiment analysis data.

To further dig into the utility of this polarity measure for
studying genre evolution, we also computed the smoothed
curve of the average sentiment by genre, and illustrate it
with two idiosyncratic genres, namely Pop and Reggae (see
Figure 4f). We observe in the case of Reggae that there is a
time period where reviews have a substantial use of a more
positive language between the second half of the 70s and
the first half of the 80s, an epoch which is often called the
golden age of Reggae [2]. This might be related to the pub-
lication of Bob Marley albums, one of the most influential
artists in this genre, and the worldwide spread popularity
of reggae music. In the case of Pop, we observe a more
constant sentiment average. However, in the 60s and the
beginning of 70s there are higher values, probably con-
sequence by the release of albums by The Beatles. These
results show that the use of sentiment analysis on music re-
views over certain timelines may be useful to study genre
evolution and identify influential events.

7. CONCLUSIONS AND FUTURE WORK

In this work we have presented MARD, a multimodal
dataset of album customer reviews combining text, meta-
data and acoustic features gathered from Amazon, MB and
AB respectively. Customer review texts are further en-
riched with named entity disambiguation along with polar-
ity information derived from aspect-based sentiment analy-
sis. Based on this information, a text-based genre classifier
is trained using different combinations of features. A com-
parative evaluation of features suggests that a combination
of bag-of-words and semantic information has higher dis-
criminative power, outperforming competing systems in
terms of accuracy. Our diachronic study of the sentiment
polarity expressed in customer reviews explores two in-

teresting ideas. First, the analysis of reviews classified
by year of review publication suggests that geopolitical
events or macro-economical circumstances may influence
the way people speak about music. Second, an analy-
sis of the reviews classified by year of album publication
is presented. The results show how sentiment analysis
can be very useful to study the evolution of music gen-
res. The correlation observed between average rating and
sentiment scores suggest the suitability of the proposed
sentiment-based approach to predict user satisfaction with
musical products. Moreover, according to the observed
trend curves, we can state that we are now in one of the
best periods of the recent history of music. Further work is
necessary to elaborate on these hypotheses. In addition, the
combination of audio and textual features is still an open
problem, not only for classification but also for the study
of the evolution of music. We expect the released dataset
will be explored in multiple ways for the development of
multimodal research approaches in MIR. In conclusion,
the main contribution of this work is a demonstration of
the utility of applying systematic linguistic processing on
texts about music. Furthermore, we foresee our method to
be of interest for musicologists, sociologists and humani-
ties researchers in general.
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ABSTRACT

Evaluating Optical Music Recognition (OMR) is notori-
ously difficult and automated end-to-end OMR evaluation
metrics are not available to guide development. In “To-
wards a Standard Testbed for Optical Music Recognition:
Definitions, Metrics, and Page Images”, Byrd and Simon-
sen recently stress that a benchmarking standard is needed
in the OMR community, both with regards to data and
evaluation metrics. We build on their analysis and def-
initions and present a prototype of an OMR benchmark.
We do not, however, presume to present a complete so-
lution to the complex problem of OMR benchmarking.
Our contributions are: (a) an attempt to define a multi-
level OMR benchmark dataset and a practical prototype
implementation for both printed and handwritten scores,
(b) a corpus-based methodology for assessing automated
evaluation metrics, and an underlying corpus of over 1000
qualified relative cost-to-correct judgments. We then as-
sess several straightforward automated MusicXML eval-
uation metrics against this corpus to establish a baseline
over which further metrics can improve.

1. INTRODUCTION

Optical Music Recognition (OMR) suffers from a lack of
evaluation standards and benchmark datasets. There is
presently no publicly available way of comparing vari-
ous OMR tools and assessing their performance. While
it has been argued that OMR can go far even in the ab-
sence of such standards [7], the lack of benchmarks and
difficulty of evaluation has been noted on multiple occa-
sions [2, 16, 21]. The need for end-to-end system evalu-
ation (at the final level of OMR when musical content is
reconstructed and made available for further processing),
is most pressing when comparing against commercial sys-
tems such as PhotoScore, 1 SmartScore 2 or SharpEye 3 :

1 http://www.neuratron.com/photoscore.htm
2 http://www.musitek.com/index.html
3 http://www.visiv.co.uk

c© Jan Hajič jr., Jiřı́ Novotný, Pavel Pecina, Jaroslav
Pokorný. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Jan Hajič jr., Jiřı́ Novotný,
Pavel Pecina, Jaroslav Pokorný. “Further Steps towards a Standard
Testbed for Optical Music Recognition”, 17th International Society for
Music Information Retrieval Conference, 2016.

these typically perform as “black boxes”, so evaluating on
the level of individual symbols requires a large amount of
human effort for assessing symbols and their locations, as
done by Bellini et al. [18] or Sapp [19].

OMR systems have varying goals, which should be
reflected in evaluation. Helping speed up transcription
should be measured by some cost-to-correct metric; a hy-
pothetical automated score interpretation system could re-
quire accurate MIDI, but does not need to resolve all slurs
and other symbols; digitizing archive scores for retrieval
should be measured by retrieval accuracy; etc. We focus
on evaluating transcription, as it is most sensitive to errors
and most lacking in evaluation metrics.

Some OMR subtasks (binarization, staff identification
and removal, symbol localization and classification) have
natural ways of evaluating, but the end-to-end task does
not: it is difficult to say how good a semantic represen-
tation (e.g., MusicXML) is. Manually evaluating system
outputs is costly, slow and difficult to replicate; and aside
from Knopke and Byrd [12], Szwoch [20] and Padilla et
al. [21], we know of no attempts to even define an auto-
matic OMR evaluation metric, much less define a method-
ology for assessing how well it actually evaluates.

Our contribution does not presume to define an entire
evaluation standard. Instead, we propose a robust, cumula-
tive, data-driven methodology for creating one. We collect
human preference data that can serve as a gold standard for
comparing MusicXML automated evaluation metrics, mir-
roring how the BLEU metric and its derivatives has been
established as an evaluation metric for the similarly elu-
sive task of assessing machine translation based on agree-
ment with human judgements [17]. This “evaluating eval-
uation” approach is inspired by the Metrics track of the
Workshop of Statistical Machine Translation competition
(WMT) [3, 5, 14]. To collect cost-to-correct estimates for
various notation errors, we generate a set of synthetically
distorted “recognition outputs” from a set of equally syn-
thetic “true scores”. Then, annotators are shown examples
consisting of a true score and a pair of the distorted scores,
and they are asked to choose the simulated recognition out-
put that would take them less time to correct.

Additionally, we provide an OMR bechmark dataset
prototype with ground truth at the symbol and end-to-end
levels.

The main contributions of our work are:
• A corpus-based “evaluating evaluation” methodol-
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ogy that enables iteratively improving, refining and
fine-tuning automated OMR evaluation metrics.

• A corpus of 1230 human preference judgments as
gold-standard data for this methodology, and as-
sessments of example MusicXML evaluation met-
rics against this corpus.

• Definitions of ground truths that can be applied to
Common Western Music Notation (CWMN) scores.

• MUSCIMA++. A prototype benchmark with multi-
ple levels of ground truth that extends a subset of the
CVC-MUSCIMA dataset [9], with 3191 annotated
notation primitives.

The rest of this paper is organized as follows: in Sec. 2,
we review the state-of-the-art on OMR evaluation and
datasets; in Sec. 3, we describe the human judgment data
for developing automated evaluation metrics and demon-
strate how it can help metric development. In Sec. 4, we
present the prototype benchmark and finally, in Sec. 5, we
summarize our findings and suggest further steps to take. 4

2. RELATED WORK

The problem of evaluating OMR and creating a standard
benchmark has been discussed before [7,10,16,18,20] and
it has been argued that evaluating OMR is a problem as
difficult as OMR itself. Jones et al. [10] suggest that in or-
der to automatically measure and evaluate the performance
of OMR systems, we need (a) a standard dataset and stan-
dard terminology, (b) a definition of a set of rules and met-
rics, and (c) definitions of different ratios for each kind of
errors. The authors noted that distributors of commercial
OMR software often claim the accuracy of their system
is about 90 %, but provide no information about how that
value was estimated.

Bellini et al. [18] manually assess results of OMR sys-
tems at two levels of symbol recognition: low-level, where
only the presence and positioning of a symbol is assessed,
and high-level, where the semantic aspects such as pitch
and duration are evaluated as well. At the former level,
mistaking a beamed group of 32nds for 16ths is a minor
error; at the latter it is much more serious. They defined
a detailed set of rules for counting symbols as recognized,
missed and confused symbols. The symbol set used in [18]
is quite rich: 56 symbols. They also define recognition
gain, based on the idea that an OMR system is at its best
when it minimizes the time needed for correction as op-
posed to transcribing from scratch, and stress verification
cost: how much it takes to verify whether an OMR output
is correct.

An extensive theoretical contribution towards bench-
marking OMR has been made recently by Byrd and Simon-
sen [7]. They review existing work on evaluating OMR
systems and clearly formulate the main issues related to
evaluation. They argue that the complexity of CWMN is
the main reason why OMR is inevitably problematic, and

4 All our data, scripts and other supplementary materials are available
at https://github.com/ufal/omreval as a git repository, in or-
der to make it easier for others to contribute towards establishing a bench-
mark.

suggest the following stratification into levels of difficulty:
1. Music on one staff, strictly monophonic,
2. Music on one staff, polyphonic,
3. Music on multiple staves, but each strictly mono-

phonic, with no interaction between them,
4. “Pianoform”: music on multiple staves, one or more

having multiple voices, and with significant interac-
tion between and/or within staves.

They provide 34 pages of sheet music that cover the var-
ious sources of difficulty. However, the data does not in-
clude handwritten music and no ground truth for this cor-
pus is provided.

Automatically evaluating MusicXML has been at-
tempted most significantly by Szwoch [20], who proposes
a metric based on a top-down MusicXML node matching
algorithm and reports agreement with human annotators,
but how agreement was assessed is not made clear, no im-
plementation of the metric is provided and the description
of the evaluation metric itself is quite minimal. Due to the
complex nature of MusicXML (e.g., the same score can
be correctly represented by different MusicXML files), Sz-
woch also suggests a different representation may be better
than comparing two MusicXML files directly.

More recently, evaluating OMR with MusicXML out-
puts has been done by Padilla et al. [21]. While they pro-
vide an implementation, there is no comparison against
gold-standard data. (This is understandable, as the pa-
per [21] is focused on recognition, not evaluation.) Align-
ing MusicXML files has also been explored by Knopke
and Byrd [12] in a similar system-combination setting, al-
though not for the purposes of evaluation. They however
make an important observation: stems are often mistaken
for barlines, so the obvious simplification of first aligning
measures is not straightforward to make.

No publicly available OMR dataset has ground truth
for end-to-end recognition. The CVC-MUSCIMA dataset
for staffline identification and removal and writer identi-
fication by Fornés et al. [9] is most extensive, with 1000
handwritten scores (50 musicians copying a shared set of
20 scores) and a version with staves removed, which is
promising for automatically applying ground truth anno-
tations across the 50 versions of the same score. Fornés et
al. [8] have also made available a dataset of 2128 clefs and
1970 accidentals.

The HOMUS musical symbol collection for online
recognition [11] consists of 15200 samples (100 musi-
cians, 32 symbol classes, 4-8 samples per class per mu-
sician) of individual handwritten musical symbols. The
dataset can be used for both online and offline symbol clas-
sification.

A further dataset of 3222 handwritten and 2521 printed
music symbols is available upon request [1]. Bellini et
al. [18] use 7 selected images for their OMR assessment;
unfortunately, they do not provide a clear description of
the database and its ground truth, and no more information
is publicly available. Another staffline removal dataset is
Dalitz’s database, 5 consisting of 32 music pages that cov-

5 http://music-staves.sourceforge.net
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ers a wide range of music types (CWMN, lute tablature,
chant, mensural notation) and music fonts. Dalitz et al. [6]
define several types of distortion in order to test the ro-
bustness of the different staff removal algorithms, simulat-
ing both image degradation and page deformations. These
have also been used to augment CVC-MUSCIMA.

There are also large sources such as the Mutopia
project 6 with transcriptions to LilyPond and KernScores 7

with HumDrum. The IMSLP database 8 holds mostly
printed scores, but manuscripts as well; however, as op-
posed to Mutopia and KernScores, IMSLP generally only
provides PDF files and no transcription of their musical
content, except for some MIDI recordings.

3. EVALUATING EVALUATION

OMR lacks an automated evaluation metric that could
guide development and reduce the price of conducting
evaluations. However, an automated metric for OMR eval-
uation needs itself to be evaluated: does it really rank as
better systems that should be ranked better?

Assuming that the judgment of (qualified) annotators is
considered the gold standard, the following methodology
then can be used to assess an automated metric:

1. Collect a corpus of annotator judgments to define the
expected gold-standard behavior,

2. Measure the agreement between a proposed metric
and this gold standard.

This approach is inspired by machine translation (MT),
a field where comparing outputs is also notoriously diffi-
cult: the WMT competition has an evaluation track [5,14],
where automated MT metrics are evaluated against human-
collected evaluation results, and there is ongoing research
[3, 15] to design a better metric than the current standards
such as BLEU [17] or Meteor [13]. This methodology is
nothing surprising; in principle, one could machine-learn
a metric given enough gold-standard data. However: how
to best design the gold-standard data and collection proce-
dure, so that it encompasses what we in the end want our
application (OMR) to do? How to measure the quality of
such a corpus – given a collection of human judgments,
how much of a gold standard is it?

In this section, we describe a data collection scheme
for human judgments of OMR quality that should lead to
comparing automated metrics.

3.1 Test case corpus

We collect a corpus C of test cases. Each test case
c1 . . . cN is a triplet of music scores: an “ideal” score Ii
and two “mangled” versions, P (1)

i and P (2)
i , which we call

system outputs. We asked our K annotators a1 . . . aK to
choose the less mangled version, formalized as assigning
ra(ci) = −1 if they preferred P (1)

i over P (2)
i , and +1 for

the opposite preference. The term we use is to “rank” the
predictions. When assessing an evaluation metric against

6 http://www.mutopiaproject.org
7 http://humdrum.ccarh.org
8 http://imslp.org

this corpus, the test case rankings then constrain the space
of well-behaved metrics. 9

The exact formulation of the question follows the “cost-
to-correct” model of evaluation of [18]:

“Which of the two system outputs would take you less
effort to change to the ideal score?”

3.1.1 What is in the test case corpus?

We created 8 ideal scores and derived 34 “system outputs”
from them by introducing a variety of mistakes in a nota-
tion editor. Creating the system outputs manually instead
of using OMR outputs has the obvious disadvantage that
the distribution of error types does not reflect the current
OMR state-of-the-art. On the other hand, once OMR sys-
tems change, the distribution of corpus errors becomes ob-
solete anyway. Also, we create errors for which we can
assume the annotators have a reasonably accurate estimate
of their own correction speed, as opposed to OMR outputs
that often contain strange and syntactically incorrect nota-
tion, such as isolated stems. Nevertheless, when more an-
notation manpower becomes available, the corpus should
be extended with a set of actual OMR outputs.

The ideal scores (and thus the derived system outputs)
range from a single whole note to a “pianoform” fragment
or a multi-staff example. The distortions were crafted to
cover errors on individual notes (wrong pitch, extra acci-
dental, key signature or clef error, etc.: micro-errors on
the semantic level in the sense of [16, 18]), systematic er-
rors within the context of a full musical fragment (wrong
beaming, swapping slurs for ties, confusing staccato dots
for noteheads, etc.), short two-part examples to measure
the tradeoff between large-scale layout mistakes and lo-
calized mistakes (e.g., a four-bar two-part segment, as a
perfect concatenation of the two parts into one vs. in two
parts, but with wrong notes) and longer examples that con-
strain the metric to behave sensibly at larger scales.

Each pair of system outputs derived from the same ideal
score forms a test case; there are 82 in total. We also in-
clude 18 control examples, where one of the system out-
puts is identical to the ideal score. A total of 15 annota-
tors participated in the annotation, of whom 13 completed
all 100 examples; however, as the annotations were volun-
tary, only 2 completed the task twice for measuring intra-
annotator agreement.

3.1.2 Collection Strategy

While Bellini et al. [18] define how to count individual
errors at the level of musical symbols, assign some cost
to each kind of error (miss, add, fault, etc.) and define
the overall cost as composed of those individual costs, our
methodology does not assume that the same type of error
has the same cost in a different context, or that the overall
cost can be computed from the individual costs: for in-
stance, a sequence of notes shifted by one step can be in

9 We borrow the term “test case” from the software development prac-
tice of unit testing: test cases verify that the program (in our case the
evaluation metric) behaves as expected on a set of inputs chosen to cover
various standard and corner cases.
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most editors corrected simultaneously (so, e.g., clef errors
might not be too bad, because the entire part can be trans-
posed together).

Two design decisions of the annotation task merit fur-
ther explanation: why we ask annotators to compare ex-
amples instead of rating difficulty, and why we disallow
equality.

Ranking. The practice of ranking or picking the best
from a set of possible examples is inspired by machine
translation: Callison-Burch et al. have shown that peo-
ple are better able to agree on which proposed translation
is better than on how good or bad individual translations
are [4]. Furthermore, ranking does not require introducing
a cost metric in the first place. Even a simple 1-2-3-4-5
scale has this problem: how much effort is a “1” on that
scale? How long should the scale be? What would the
relationship be between short and long examples?

Furthermore, this annotation scheme is fast-paced. The
annotators were able to do all the 100 available compar-
isons within 1 hour. Rankings also make it straightforward
to compare automated evaluation metrics that output val-
ues from different ranges: just count how often the met-
ric agrees with gold-standard ranks using some measure of
monotonicity, such as Spearman’s rank correlation coeffi-
cient.

No equality. It is also not always clear which out-
put would take less time to edit; some errors genuinely
are equally bad (sharp vs. flat). These are also impor-
tant constraints on evaluation metrics: the costs associ-
ated with each should not be too different from each other.
However, allowing annotators to explicitly mark equality
risks overuse, and annotators using underqualified judg-
ment. For this first experiment, therefore, we elected not to
grant that option; we then interpret disagreement as a sign
of uncertainty and annotator uncertainty as a symptom of
this genuine tie.

3.2 How gold is the standard?

All annotators ranked the control cases correctly, except
for one instance. However, this only accounts for elemen-
tary annotator failure and does not give us a better idea
of systematic error present in the experimental setup. In
other words, we want to ask the question: if all annota-
tors are performing to the best of their ability, what level
of uncertainty should be expected under the given an-
notation scheme? (For the following measurements, the
control cases have been excluded.)

Normally, inter-annotator agreement is measured: if the
task is well-defined, i.e., if a gold standard can exist, the
annotators will tend to agree with each other towards that
standard. However, usual agreement metrics such as Co-
hen’s κ or Krippendorf’s α require computing expected
agreement, which is difficult when we do have a subset of
examples on which we do not expect annotators to agree
but cannot a priori identify them. We therefore start by
defining a simple agreement metric L. Recall:
• C stands for the corpus, which consists of N exam-

ples c1 . . . cN ,

• A is the set of K annotators a1 . . . aK , a, b ∈ A;
• ra is the ranking function of an annotator a that as-

signs +1 or -1 to each example in c,

L(a, b) =
1

N

∑

c∈C

|ra(c) + rb(c)|
2

This is simply the proportion of cases on which a and b
agree: if they disagree, ra(c)+rb(c) = 0. However, we ex-
pect the annotators to disagree on the genuinely uncertain
cases, so some disagreements are not as serious as others.
To take the existence of legitimate disagreement into ac-
count, we modify L(a, b) to weigh the examples according
to how certain the other annotators A \{a, b} are about the
given example. We define weighed agreement Lw(a, b):

Lw(a, b) =
1

N

∑

c∈C
w(−a,b)(c)

|ra(c) + rb(c)|
2

where w(−a,b) is defined for an example c as:

w(−a,b)(c) =
1

K − 2
|
∑

a′∈A\a,b
ra′(c)|

This way, it does not matter if a and b disagree on cases
where no one else agrees either, but if they disagree on an
example where there is strong consensus, it should bring
the overall agreement down. Note that while maximum
achievable L(a, b) is 1 for perfectly agreeing annotators
(i.e., all the sum terms equal to 1), because w(c) ≤ 1,
the maximum achievable Lw(a, b) will be less than 1, and
furthermore depends on the choice of a and b: if we take
notoriously disagreeing annotators away from the picture,
the weights will increase overall. Therefore, we finally
adjust Lw(a, b) to the proportion of maximum achievable
Lw(a, b) for the given (a, b) pair, which is almost the same
as Lw(a, a) with the exception that bmust also be excluded
from computing the weights. We denote this maximum as
L∗w(a, b), and the adjusted metric L̂w is then:

L̂w(a, b) = Lw(a, b)/L
∗
w(a, b)

This metric says: “What proportion of achievable
weighed agreement has been actually achieved?” The up-
per bound of L̂w is therefore 1.0 again; the lower bound
is agreement between two randomly generated annotators,
with the humans providing the consensus.

The resulting pairwise agreements, with the lower
bound established by averaging over 10 random annota-
tors, are visualized in Fig. 1. The baseline agreement
L̂w between random annotators weighed by the full human
consensus was close to 0.5, as expected. There seems to
be one group of annotators relatively in agreement (green
and above, which means adjusted agreement over 0.8), and
then several individuals who disagree with everyone – in-
cluding among themselves (lines 6, 7, 8, 11, 12, 14).

Interestingly, most of these “lone wolves” reported sig-
nificant experience with notation editors, while the group
more in agreement not as much. We suspect this is because
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Figure 1. Weighed pairwise agreement. The cell [a, b] rep-
resents L̂w(a, b). The scale goes from the average random
agreement (ca. 0.55) up to 1.

with increasing notation editor experience, users develop a
personal editing style that makes certain actions easier than
others by learning a subset of the “tricks” available with the
given editing tools – but each user learns a different sub-
set, so agreement on the relative editing cost suffers. To the
contrary, inexperienced users might not have spent enough
time with the editor to develop these habits.

3.3 Assessing some metrics

We illustrate how the test case ranking methodology helps
analyze these rather trivial automated MusicXML evalua-
tion metrics:

1. Levenshtein distance of XML canonization (c14n),
2. Tree edit distance (TED),
3. Tree edit distance with <note> flattening (TEDn),
4. Convert to LilyPond + Levenshtein distance (Ly).
c14n. Canonize the MusicXML file formatting and

measure Levenshtein distance. This is used as a trivial
baseline.

TED. Measure Tree Edit Distance on the MusicXML
nodes. Some nodes that control auxiliary and MIDI infor-
mation (work, defaults, credit, and duration)
are ignored. Replacement, insertion, and deletion all have
a cost of 1.

TEDn. Tree Edit Distance with special handling of
note elements. We noticed that many errors of TED are
due to the fact that while deleting a note is easy in an
editor, the edit distance is higher because the note ele-
ment has many sub-nodes. We therefore encode the notes
into strings consisting of one position per pitch, stem,
voice, and type. Deletion cost is fixed at 1, insertion
cost is 1 for non-note nodes, and 1 + length of code for
notes. Replacement cost between notes is the edit distance
between their codes; replacement between a note and non-
note costs 1 + length of code; between non-notes costs 1.

Metric rs r̂s ρ ρ̂ τ τ̂

c14n 0.33 0.41 0.40 0.49 0.25 0.36
TED 0.46 0.58 0.40 0.50 0.35 0.51
TEDn 0.57 0.70 0.40 0.49 0.43 0.63
Ly 0.41 0.51 0.29 0.36 0.30 0.44

Table 1. Measures of agreement for some proposed evalu-
ation metrics.

Ly. The LilyPond 10 file format is another possible rep-
resentation of a musical score. It encodes music scores
in its own LaTeX-like language. The first bar of the
“Twinkle, twinkle” melody would be represented as d’8[
d’8] a’8[ a’8] b’8[ b’8] a’4 | This repre-
sentation is much more amenable to string edit distance.
The Ly metric is Levenshtein distance on the LilyPond im-
port of the MusicXML system output files, with all whites-
pace normalized.

For comparing the metrics against our gold-standard
data, we use nonparametric approaches such as Spear-
man’s rs and Kendall’s τ , as these evaluate monotonicity
without assuming anything about mapping values of the
evaluation metric to the [−1, 1] range of preferences . To
reflect the “small-difference-for-uncertain-cases” require-
ment, however, we use Pearson’s ρ as well [14]. For each
way of assessing a metric, its maximum achievable with
the given data should be also estimated, by computing how
the metric evaluates the consensus of one group of anno-
tators against another. We randomly choose 100 splits of
8 vs 7 annotators, compute the average preferences for the
two groups in a split and measure the correlations between
the average preferences. The expected upper bounds and
standard deviations estimated this way are:
• r∗s = 0.814, with standard dev. 0.040
• ρ∗ = 0.816, with standard dev. 0.040
• τ∗ = 0.69, with standard dev. 0.045

We then define r̂s as rs
r∗s

, etc. Given a cost metric L, we

get for each example ci = (Ii, P
(1)
i , P

(2)
i ) the cost differ-

ence `(ci) = L(Ii, P (1)
i )−L(Ii, P (2)

i ) and pair it with the
gold-standard consensus r(ci) to get pairwise inputs for
the agreement metrics.

The agreement of the individual metrics is summarized
in Table 1. When developing the metrics, we did not use
the gold-standard data against which metric performance is
measured here; we used only our own intuition about how
the test cases should come out.

4. BENCHMARK DATASET PROTOTYPE

A benchmark dataset should have ground truth at levels
corresponding to the standard OMR processing stages, so
that sub-systems such as staff removal, or symbol local-
ization can be compared with respect to the end-to-end
pipeline they are a part of. We also suspect handwrit-
ten music will remain an open problem much longer than
printed music. Therefore, we chose to extend the CVC-
MUSCIMA dataset instead of Byrd and Simonsen’s pro-

10 http://www.lilypond.org
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posed test bed [7] because of the extensive handwritten
data collection effort that has been completed by Fornés
et al. and because ground truth for staff removal and bi-
narization is already present. At the same time, CVC-
MUSCIMA covers all the levels of notational complexity
from [7], as well as a variety of notation symbols, includ-
ing complex tuples, less common time signatures (5/4), C-
clefs and some symbols that could very well expose the dif-
ferences between purely symbol-based and more syntax-
aware methods (e.g., tremolo marks, easily confused for
beams). We have currently annotated symbols in printed
scores only, with the perspective of annotating the hand-
written scores automatically or semi-automatically.

We selected a subset of scores that covers the various
levels of notational complexity: single-part monophonic
music (F01), multi-part monophonic music (F03, F16),
and pianoform music, primarily based on chords (F10) and
polyphony (F08), with interaction between staves.

4.1 Symbol-level ground truth

Symbols are represented as bounding boxes, labeled by
symbol class. In line with the low-level and high-level
symbols discussed by [7], we differentiate symbols at the
level of primitives and the level of signs. The relation-
ship between primitives and signs can be one-to-one (e.g.,
clefs), many-to-one (composite signs: e.g. notehead, stem,
and flag form a note), one-to-many (disambiguation: e.g.,
a sharp primitive can be part of a key signature, acciden-
tal, or an ornament accidental), and many-to-many (the
same beam participates in multiple beamed notes, but each
beamed note also has a stem and notehead). We include
individual numerals and letters as notation primitives, and
their disambiguation (tuplet, time signature, dynamics...)
as signs.

We currently define 52 primitives plus letters and nu-
merals, and 53 signs. Each symbol can be linked to a Mu-
sicXML counterpart. 11 There are several groups of sym-
bols:
• Note elements (noteheads, stems, beams, rests...)
• Notation elements (slurs, dots, ornaments...)
• Part default (clefs, time and key signatures...)
• Layout elements (staves, brackets, braces...)
• Numerals and text.

We have so far annotated the primitive level. There are
3191 primitives marked in the 5 scores. Annotation took
about 24 hours of work in a custom editor.

4.2 End-to-end ground truth

We use MusicXML as the target representation, as it is
supported by most OMR/notation software, actively main-
tained and developed and available under a sufficiently per-
missive license. We obtain the MusicXML data by manu-
ally transcribing the music and postprocessing to ensure
each symbol has a MusicXML equivalent. Postprocessing
mostly consists of filling in default barlines and correcting

11 The full lists of symbol classes are available in the repos-
itory at https://github.com/ufal/omreval under
muscima++/data/Symbolic/specification.

staff grouping information. Using the MuseScore notation
editor, transcription took about 3.5 hours.

5. CONCLUSIONS AND FUTURE WORK

We proposed a corpus-based approach to assessing auto-
mated end-to-end OMR evaluation metrics and illustrated
the methodology on several potential metrics. A gold
standard annotation scheme based on assessment of rela-
tive cost-to-correct of synthetic “system outputs” was de-
scribed that avoids pre-defining any cost metric, and the re-
sulting corpus of 1230 human judgments was analyzed for
inter-annotator agreement, taking into account the possi-
bility that the compared system outputs may not be clearly
comparable. This preference-based setup avoids the need
to pre-define any notion of cost, requires little annotator
training, and it is straightforward to assess an evaluation
metric against this preference data.

Our results suggest that the central assumption of a sin-
gle ground truth for preferences among a set of system out-
puts is weaker with increasing annotator experience. To
make the methodology more robust, we recommend:
• Explicitly control for experience level; do not as-

sume that more annotator experience is better.
• Measure actual cost-to-correct (in time and interface

operations) through a notation editor, to verify how
much human estimation of this cost can be relied on.

• Develop models for computing expected agreement
for data where the annotations may legitimately be
randomized (the “equally bad” cases). Once ex-
pected agreement can be computed, we can use more
standard agreement metrics.

The usefulness of the test case corpus for developing
automated evaluation metrics was clear: the TEDn met-
ric that outperformed the others by a large margin was de-
veloped through analyzing the shortcomings of the TED
metric on individual test cases (before the gold-standard
data had been collected). As Szwoch [20] suggested, mod-
ifying the representation helped. However, if enough hu-
man judgments are collected, it should even be possible
to sidestep the difficulties of hand-crafting an evaluation
metric through machine learning; we can for instance try
learning the insertion, deletion, and replacement costs for
individual MusicXML node types.

An OMR environment where different systems can be
meaningfully compared, claims of commercial vendors are
verifiable and progress can be measured is in the best inter-
est of the OMR community. We believe our work, both on
evaluation and on a dataset, constitutes a significant step in
this direction.
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ABSTRACT

Separating a polyphonic symbolic score into monophonic
voices or streams helps to understand the music and may
simplify further pattern matching. One of the best ways
to compute this separation, as proposed by Chew and Wu
in 2005 [2], is to first identify contigs that are portions of
the music score with a constant number of voices, then to
progressively connect these contigs. This raises two ques-
tions: Which contigs should be connected first? And, how
should these two contigs be connected? Here we propose
to answer simultaneously these two questions by consid-
ering a set of musical features that measures the quality of
any connection. The coefficients weighting the features are
optimized through a genetic algorithm. We benchmark the
resulting connection policy on corpora containing fugues
of the Well-Tempered Clavier by J. S. Bach as well as on
string quartets, and we compare it against previously pro-
posed policies [2, 9]. The contig connection is improved,
particularly when one takes into account the whole content
of voice fragments to assess the quality of their possible
connection.

1. INTRODUCTION

Polyphony, as opposed to monophony, is music created
by simultaneous notes coming from several instruments or
even from a single polyphonic instrument, such as the pi-
ano or the guitar. Polyphony usually implies chords and
harmony, and sometimes counterpoint when the melody
lines are independent.

Voice separating algorithms group notes from a
polyphony into individual voices [2,4,9,11,13,15]. These
algorithms are often based on perceptive rules, as studied
by Huron [7] or Deutsch [5, chapter 2], and at the first place
pitch proximity – voices tend to have small intervals.

Separating polyphony into voices is not always possible
or meaningful: many textures for polyphonic instruments
include chords with a variable number of notes. Con-
versely, one can play several streams on a monophonic in-
strument. Stream separation algorithms focus thus on a

c© Nicolas Guiomard-Kagan, Mathieu Giraud, Richard
Groult, Florence Levé. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Nicolas Guiomard-
Kagan, Mathieu Giraud, Richard Groult, Florence Levé. “Improving
voice separation by better connecting contigs”, 17th International Soci-
ety for Music Information Retrieval Conference, 2016.

narrower scale, extracting groups of coherent notes. These
segments are not necessarily connected throughout the
whole score: a voice can be split into several streams and
a stream can cluster notes from different voices [14, 16].

Both voice and stream segmentation algorithms provide
a better understanding of polyphony and make inference
and matching for relevant patterns easier. We previously
showed that voice and stream separation algorithms are
two facets of the same problem that can be compared with
similar evaluation metrics [6]. Pertinent evaluation met-
rics measure how segments or voices of the ground truth
are grouped together in the algorithms predictions, as the
transition-based evaluation [2] or the measure of mutual
information [6, 12].

Based on these metrics, it appears that the contig ap-
proach, as initially proposed by Chew and Wu [2] (Sec-
tion 2), is one of the best approaches to separate voices,
starting from contigs having a constant number of voices.
The results depends on how the contigs are connected,
larger voice or stream segments being built starting from
smaller ones.

In this article we propose and compare several criteria
to ground the connection policy, that is both the choice of
the order of the contigs to be connected, and the connec-
tion itself between contigs. In addition to the criteria used
in the literacy, we introduce new criteria that take into ac-
count more musical context, averaging pitches and dura-
tions over voice fragments (Section 3). We weight these
criteria using a genetic algorithm (Section 4). We show
how some values of these criteria can partially simulate
the previous methods, and evaluate the results on sets of
fugues and string quartets. By improving this contig con-
nection, we improve the precision of voice separation al-
gorithms (Section 5). We further study the distribution of
failures, showing that a higher precision can be obtained
by stopping the contig connection before the connection
quality drops.

2. VOICE SEPARATION BASED ON CONTIGS

The contig approach, proposed by Chew and Wu (denoted
by CW in the following) first separates the music score into
contigs that have a constant number of notes played at the
same time then progressively connect these contigs to the
whole score [2].

The first step splits the input polyphonic data into
blocks called contigs such that the number of simultaneous
notes in a contig does not change (Figure 1). Notes cross-
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Figure 1. In this piano-roll symbolic representation, each
segment describes a note. The horizontal axis represents
time and the vertical axis represents pitches. The notes
can be grouped in four contigs, each of them containing a
constant number of notes played at the same time. Con-
tig 2 contains three voice fragments 2a, 2b and 2c. The
challenge of contig-based voice separation algorithms is to
connect these voice fragments across contigs to build co-
herent voices throughout the score. The non-vertical dotted
lines show a possible solution of the voice separation.

ing the border of several contigs are split in several notes.
The idea behing building contigs is that the voice separa-
tion is relatively easy inside them: Notes in each contig are
grouped by pitch height to form voice fragments.

The second step links together fragments from distinct
contigs, following some musical principles (Figure 2). The
algorithm has now to take two kinds of decisions, follow-
ing what we call a connection policy:

• which contigs should be connected first?

• how should these two contigs be connected?

Figure 2. Any connection policy should decide which
contigs should be connected (such as, for example, 1
and 2) and how to do this connection. There are here
three possible connections (without voice crossing) be-
tween the contigs 1 and 2: C1 = {(1a, 2a), (1b, 2b)},
C2 = {(1a, 2a), (1b, 2c)}, and C3 = {(1a, 2b), (1b, 2c)}.

Order of connection of contigs. In CW algorithm, the con-
nection starts from the maximal contigs (i.e. contigs con-
taining the maximal number of voices). Since the voices
tend not to cross, the voice separation and connection in
these contigs with many voices were thought to be more
reliable. Then, CW continues the connection process to
the left and to the right of these maximal contigs. In Fig-
ure 1, the CW policy will thus connect contigs 1, 2, 3, then
finally 0, 1, 2, 3.

Ishigaki, Matsubara and Saito (denoted IMS in the fol-
lowing) suggested another connection policy, starting with

minimal contigs and connecting contigs with an increasing
number of fragments (i.e. the number of fragments in the
left contig is lower or equal to the number of fragments in
the right contig) [9]. The idea is that the (local) start of a
new voice is a more perceptible event than the (local) end
of a voice. Once all those possible connections are done,
maximal contigs are considered as in CW algorithm to ter-
minate the process. In Figure 1, IMS policy will connect
contigs 0, 1, then 0, 1, 2, and finally 0, 1, 2, 3.

Fragment connection. The policy to connect fragments of
the original CW algorithm, reused by IMS, is based on
two principles: Intervals are minimized between succes-
sive notes in the same stream or voice (pitch proximity);
Voices tend not to cross. Formally, the connection between
two contigs is a set of (`, r) fragments that maximize a
connection score. This score is here based on the absolute
difference between the pitch of the last note of the left frag-
ment ` and the pitch of the first note of the right fragment
r. There is moreover a very large score for the connection
of notes split between two contigs to keep them in the same
final voice.

3. MORE MUSICAL FEATURES TO IMPROVE
THE CONNECTION POLICY

3.1 A new view on the contig-based approach

We argue that the two questions of the connection pol-
icy (which contigs should be connected? how to connect
them?) should be handled at a same time: to build coherent
voices across a piece, one should always connect the con-
tigs yielding the “safest” connections between voice frag-
ments. The quality of these connections should be properly
evaluated with musical features that will be introduced be-
low.

Given two successive contigs i and i + 1, and one way
C to connect them (set of pairs of fragments), we define a
connection score S(i, C), computed as a weighted sum of
musical features, that measures the quality of this connec-
tion: The higher the connection score, the safer the con-
nection. The connection scores will extend the ones used
by CW and IMS, that did not systematically explore the re-
lation between the two decisions of the connection policy.

At each step of the algorithm, the (i, C) maximizing S
is selected, giving both the “best contigs” to connect and
the “best way” to connect them. Once this connection is
made, the connections scores between the newly formed
contig and its left and right neighbors have to be computed.

Definitions. Let n be the maximal number of simultaneous
notes in the piece. Let ni (respectively ni+1) be the max-
imal number of voices of the contig i (i + 1). After some
connections have been made, a contig may have a different
number of simultaneous notes at its both extremities, but
the hanging voices are “projected” to these extremities.

For two successive contigs i and i + 1, let C be a set
of pairs (`, r), where ` is a fragment of the (left) con-
tig i and r a fragment of the (right) contig i + 1, each
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fragment appearing at most once in C (Figure 2). C has
thus at most m = min(ni, ni+1) elements, and, in the
following, we only consider sets with m elements, that is
with the highest possible number of connections. Denot-
ingM = max(ni, ni+1), there areM !/(M−m)! different
such combinations for C, and only

(
M
m

)
if one restricts to

the combinations without voice crossing.
We consider that we have N features

f1(i, C), f2(i, C) . . . fN (i, C) characterizing some
musical properties of the connection C between contigs
i and i + 1. Each feature fk(i, C) has a value between
0 and 1. Finally let α1, α2, . . . , αN be N coefficients
such that

∑N
k=1 αk = 1. We then define the con-

nection score as a linear combination of the features
S(i, C) =

∑N
k=1 αkfk(i, C).

In the two following paragraphs, we propose different
features fk(i, C) depending on the musical properties of
contigs and fragments. The values of the coefficients αk

will be discussed in Section 4.

3.2 Features on the contigs

First we consider features that are not related to the con-
nection C but depend only on the contigs, more precisely
on the maximum number of voices in each contig.

• maximal voices(i) = max(ni, ni+1)/n. The closer
the number of voices to the maximal number of
voices, the higher the connection score .

• minimal voices(i) = (n+1−min(ni, ni+1))/n. The
closer the number of voices to 1, the higher the con-
nection score.

One can in particular favor some contig connection
based on the comparison of the number of voices between
the left and the right contigs:

• difference nb voices(i) = 1− (|ni−ni+1|/(n−1)).
The closer the number of voices of the left and the
right contigs, the higher the connection score.

Or with the following binary features, that will equal 0
if the condition is not met:

• increase(i) = 1 iff ni < ni+1;

• increase one(i) = 1 iff ni + 1 = ni+1;

• increase equal(i) = 1 iff ni ≤ ni+1;

• decrease(i) = 1 iff ni > ni+1;

• decrease one(i) = 1 iff ni − 1 = ni+1;

• decrease equal(i) = 1 iff ni ≥ ni+1.

Those features are inspired by the connection policy of
the existing algorithms. The maximal voices(i) feature re-
flects the idea used by the CW algorithm: It is safer to
first connect contigs having a large number of voices. The
reverse idea, as measured by minimal voices(i), was pro-
posed together with the increase(i) idea by the IMS algo-
rithm, favoring the connection of contigs with an increas-
ing number of voices. The idea is that the (local) start of a

new voice is a more perceptible event than its (local) end.
This is even more remarkable in contrapuntal music such
as fugues where enterings of voice on thematic patterns
(subjects, counter-subjects) are often clearly heard.

We propose to further use the increase one(i) feature
that should better assert an entry of exactly one new
voice. Conversely, we also evaluate the opposite idea (de-
crease(i), decrease one(i), decrease equal(i)).

Finally the connection could favor successive contigs
sharing a same note:

• maximal sim notes(i) = n=/min(ni, ni+1), where
n= is the number of notes with the same pitch and
same onset (i.e. note split in two) at the extremities
of contigs i and i + 1. The more the contigs share
common notes, the higher the connection score is.

This feature derives from the original implementation
of CW, where connectig contigs with shared notes was
awarded a very large score.

3.3 Features on the fragments

Now we consider features based on the individual fragment
connections (`, r) composing C.

Pitches. How can we measure the quality of connecting a
fragment ` to a fragment r? The main criterion of the CW
and IMS algorithms was to follow the pitch proximity prin-
ciple, favoring connections of fragments having a small
pitch interval. Given C and (`, r) ∈ C, let last pitch(`)
and first pitch(r) be the pitches of the extreme note of the
left fragment ` and the right fragment r:

• extreme pitch(C) = 1 −∑(`,r)∈C |last pitch(`) −
first pitch(r)|/ν. The closer the pitches between the
connected notes, the higher the connection score.

The normalization factor ν = 60 · |C| semitones was
chosen in order to range the feature value between 0 (5 oc-
taves between connected pitches) and 1 (equal pitches).
However, this extreme pitch(C) score only considers one
note on each side. We propose to extend this feature by
evaluating the pitch range coherence, taking into account
the average pitch (average pitch) of all notes of one or
both fragments. Indeed, voices tend to have the same pitch
range throughout the piece, and moreover through the frag-
ments:

• avg pitch right(C) = 1−∑(`,r)∈C |last pitch(`)−
average pitch(r)|/ν;

• avg pitch left(C) = 1 −∑
(`,r)∈C |average pitch(`)− last pitch(r)|/ν;

• avg pitch(C) = 1 −∑(`,r)∈C |average pitch(`) −
average pitch(r)|/ν.

Some voice separation algorithms assign each note to
the voice with the closest average pitch [10]. These algo-
rithms are quite efficient, and the avg pitch(C) feature re-
produces this idea at a local scale: Given a fragment with
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a few notes, even if one may not know to which (global)
voice it belongs, one already knows a local pitch range.

Durations. Similarly, we can measure the difference of
durations to favor connection of contiguous fragments with
a same rhythm. Indeed, the musical textures of each voice
tend to have coherent rhythms. For instance, a voice in
whole notes and another one in eights will often be heard
as two separate voices, even if they use very close pitches.
Given C and (`, r) ∈ C, let last dur(`) and first dur(r) be
the durations, taken in a log scale, of the extreme notes of
the left fragment ` and the right fragment r:

• extreme dur(C) = 1 − (
∑

(`,r)∈C |last dur(`) −
first dur(r)|/λ). The closer the durations between
the connected notes, the higher the connection score.

The normalization factor λ = 6 · |C| accounts for
the maximal difference (in a log scale) between whole
notes (6) and 64th notes, the shortest notes in our corpora
(0). Once more, this feature can also be extended to take
into account the average log duration (average dur) of one
or both fragments instead of the duration of the extreme
note:

• avg dur right(C) = 1 − ∑(`,r)∈C |last dur(`) −
average dur(r)|/λ;

• avg dur left(C) = 1−∑(`,r)∈C |average dur(`)−
last dur(r)|/λ;

• avg dur(C) = 1 − ∑
(`,r)∈C |average dur(`) −

average dur(r)|/λ.

These features measure how a fragment may be “mostly
in eights” or “mostly in long notes”, even if it contains
other durations as for ending notes. They handle also
rhythmic patterns: a fragment repeating the pattern “one
quarter, two eights” has an average dur of about 3 + 1/3.

Voice crossings. Finally, two features control the voice
crossing. On one hand, voice crossings do exist, on the
other hand, they are hard to predict. Voice separation algo-
rithms (such as CW and IMS) usually prevent them.

• crossed voices(C) = 1 if C contains a crossing
voice, and 0 otherwise;

• no crossed voices(C) = 1 if C does not contain a
crossing voice, and 0 otherwise.

4. LEARNING COEFFICIENTS THROUGH A
GENETIC ALGORITHM

The selection of features coefficients α = (α1, α2, . . . αN )
was achieved with a genetic algorithm with mutation and
crossover operators [1]. For computation efficiency, a gen-
eration is a set of 60 solutions, each solution being a set of
coefficients totaling 1. The first generation G0 is a set of
solutions drawn with random values. The following gener-
ations are built through mutations and crossovers.

Mutation. Given a generation Gt, each solution is mu-
tated 4 times, giving 4× 60 mutated solutions. Each muta-
tion consists in randomly transferring a part of the value of
a randomly chosen coefficient into another one. A new set
of 40 solutions is selected from both the original solutions
and the mutated solutions, by taking the 30 best solutions
and 10 random other solutions.

Crossover. The solutions in this set are then used to
generate 20 children solutions by taking random couples
of parents. Each parent is taken only once, and a child
solution is the average of the coefficients of the parent so-
lutions. The new generation Gt+1 is formed by the 40 par-
ents and the 20 children solutions.

5. RESULTS

We trained the coefficients weighting the features with the
genetic algorithm on the 24 fugues in the first book of
the Well-Tempered Clavier by J. S. Bach (corpus “wtc-
i”). This gives the set of coefficients GA1 after 36 genera-
tions (the process stabilized after that). We then evaluated
these GA1 coefficients and other connection policies on the
24 fugues of the second book of the Well-Tempered Cla-
vier (corpus “wtc-ii”) and on 17 first movements of classi-
cal and romantic string quartets (Haydn op. 33-1 to 33-6,
op. 54-3, op. 64-4, Mozart K80, K155, K156, K157 and
K387, Beethoven op. 18-2, Brahms op. 51-1 and Schubert
op. 125-1). Our implementation is based on the Python
framework music21 [3], and we worked on .krn files
downloaded from kern.ccarh.org [8]. The explicit
voice separation coming from the spines of these files
forms the ground truth on which the algorithms are trained
and evaluated.

5.1 Learned coefficients

The column GA1 of Table 1 shows the learned coefficients
of the best solution. The high no crossed voices(C) coef-
ficient confirms that trying to predict crossing voices cur-
rently gives many false connections. It may suggest that
such detection should be avoided until specific algorithms
could handle these cases. We draw two other observations:

• The pitch is the most important feature
(the four pitch coefficients totaling 0.271).
However, avg pitch right(C) is higher than
extreme pitch(C) – and summing avg pitch left(C),
avg pitch right(C) and avg pitch(C) gives 0.181,
twice extreme pitch(C). This confirms that using
the pitch range coherence is more reliable than
using the pitch proximity alone;

• The durations are also important features, especially
when one takes the average durations (avg dur(C)
or avg dur right(C), totaling 0.121). Note that the
extreme dur(C) coefficient is very low, confirming
the idea that even if the individual durations change,
rhythmic textures or small-scale patterns are con-
served inside voice fragments.
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Finally, the increase equal(i) feature as suggested by
IMS is high, but, surprisingly, the decrease equal(i) fea-
ture is also high. These two features combined seem to un-
derline that the contig connection is safer when both frag-
ments have the same number of notes. Further experiments
should be made to explore these features.

5.2 Quality of the connection policy

Evaluation metrics. The transition recall (TR-rec) (or com-
pleteness) is the ratio of correctly assigned transitions (pair
of notes in the same voice) over the number of transi-
tions in the ground truth. The transition precision (TR-
prec) (or soundness) is the ratio of correctly assigned tran-
sitions over the number of transitions in the predicted
voices [2,6,11]. The TR-rec and TR-prec metrics are equal
for voice separation algorithms connecting voices through-
out all the piece. Stream segmentation algorithms usu-
ally lead to higher TR-prec values as they predict fewer
transitions. The ground truth and the output of the algo-
rithms can also be considered as an assignation of a label
to every note, enabling to compute the So and Su met-
rics based on normalized entropies H(output|truth) and
H(truth|output). These scores report how an algorithm
may over-segment (So) or under-segment (Su) a piece
[6, 12]. They measure whether the clusters are coherent,
even when streams cluster simultaneous notes. Moreover,
we point out the contig connection correctness (CC), that is
the ratio of correct connections over all connections done.

Results. Table 2 details the evaluation metrics on the train-
ing set and the evaluation sets, both for the GA1 coef-
ficients and for coefficients SimCW and SimIMS simu-
lating the CW and IMS policies, displayed on Table 1.
The metrics reported here may be slightly different from
the results reported in the original CW and IMS imple-
mentations [2, 9]. The goal of our evaluation is to eval-
uate connection policies inside a same implementation.
On all corpora, the GA1 coefficients obtain better TR-
prec/TR-rec/CC results than the SimCW and SimIMS co-
efficients. The GA1 coefficients indeed make better con-
nections (more than 87% of correct connections on the test
corpus “wtc-ii”). The main source of improvement comes
from the new features that consider the average pitches
and/or lengths, as showed by the example on Figure 3.

5.3 Lowering the failures by stopping the connections

The first step of CW, the creation of contigs, is very reli-
able: TR-prec is more than 99% on both fugues corpora
(lines “no connection” in Table 2). Most errors come from
the connection steps. We studied the distribution of these
errors. With the SimIMS coefficients, and even more with
the GA1 coefficients, the first connections are generally
reliable, more errors being done in the last connections
(Figure 4). This confirms that considering more musical
features improves the connections.

By stopping the algorithm with the GA1 coefficients
when 75% of the connections have been done, almost half

Feature GA1 SimCW SimIMS
increase(i) 0.004 0 0

increase one(i) 0.004 0 0
increase equal(i) 0.137 0 0.250

decrease(i) 0.013 0 0
decrease one(i) 0.019 0 0

decrease equal(i) 0.112 0 0
difference nb voices(i) 0.009 0 0

maximal voices(i) 0.026 0.500 0
minimal voices(i) 0.007 0 0.250

maximal sim notes(i) 0.007 0 0
crossed voices(C) 0.009 0 0

no crossed voices(C) 0.248 0.250 0.250
extreme pitch(C) 0.090 0.250 0.250

avg pitch right(C) 0.117 0 0
avg pitch left(C) 0.023 0 0

avg pitch(C) 0.041 0 0
extreme dur(C) 0.007 0 0

avg dur right(C) 0.048 0 0
avg dur left(C) 0.006 0 0

avg dur(C) 0.073 0 0

Table 1. Coefficients weighting the musical features used
to measure the connection quality, with best coefficients
learned on the wtc-i corpus (GA1) and coefficients simu-
lating the connection policy of CW and IMS.

of the bad connections are avoided, giving streams with
a good compromise between precision and consistency
(lines “GA1-75%” in Table 2).

5.4 Other sets of coefficients

To assess reproducibility, we ran the experiment two other
times. The learned coefficients GA1′ and GA1′′ are very
close to GA1 (data not shown) and give comparable re-
sults on the learning corpus “wtc-i” (TR-prec = 97.83%
and 97.81%, instead of 97.84%). We also optimized coef-
ficients to find a worst solution (data not shown). The co-
efficients values crossed voices(C) and minimal voices(i)
stand out. This confirms that predicting crossing voices is
difficult and than small contigs are difficult to connect.

6. CONCLUSION

Voice and stream separation are improved when one opti-
mizes at the same time when and how the voice fragments
should be connected. We explored several features to eval-
uate the quality of these connections on fugues and string
quartets. Taking into account the average pitches and dura-
tions of fragments leads to better connections. The result-
ing algorithm connects voice fragments more reliably than
with the previous contig policies, and especially computes
high-quality connections at the first steps. This work could
be extended by considering more corpora and by evaluat-
ing further melodic or structural analysis on the resulting
voices or streams. The proposed principles apply to contig-
based algorithms but may also be used by other methods
clustering notes into voices or streams.
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Corpus Connection policy CC TR-rec TR-prec So Su

no connection – 86.78% 99.32% 0.98 0.34
GA1-75% 92.61% 93.45% 98.54% 0.91 0.42

wtc-i GA1 89.30% 97.84% 0.72 0.72
(training set) worst 16.93% 85.25% 0.06 0.09

SimCW 81.26% 96.58% 0.65 0.64
SimIMS 80.62% 96.55% 0.68 0.69

wtc-ii

no connection – 86.66% 99.29% 0.98 0.35
GA1-75% 92.54% 92.53% 98.36% 0.91 0.40

GA1 87.50% 97.14% 0.71 0.71
worst 25.06% 84.22% 0.05 0.07

SimCW 83.27% 96.22% 0.69 0.68
SimIMS 81.61% 96.07% 0.69 0.68

string quartets

no connection – 82.61% 97.00% 0.94 0.29
GA1-75% 85.30% 87.06% 94.80% 0.83 0.32

GA1 78.44% 92.59% 0.44 0.44
worst 31.88% 80.59% 0.12 0.13

SimCW 75.99% 92.29% 0.39 0.38
SimIMS 74.53% 91.79% 0.62 0.61

Table 2. Evaluation of the quality of various connection policies. Note that the two first policies (No connection, GA1-75%)
do not try to connect the whole voices: they have very high TR-prec/So metrics, but poorer TR-rec/Su metrics.
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Figure 3. Extract of the fugue
in C major BWV 846 by J.-
S. Bach. (Top.) The con-
nection policy of previous algo-
rithms fails on connection c28
because of the fifth leap be-
tween the D and the G in the
tenor voice. This error leads
to the wrong connection c55 at
a later stage of the algorithm.
(Bottom.) Because the coef-
ficients GA1 take into account
the feature avg pitch(C) and the
related features, the connection
is correct here.

Figure 4. Errors done during the successive connection steps. The lower the curves, the better. Coefficients SimCW (blue):
the error rate is almost constant. Coefficients SimIMS (yellow): the first connections are more reliable. Coefficients
GA1 (green): the first connections are even more reliable, enabling to improve the algorithm by stopping before too much
bad connections happen. The highest number of bad connections for string quartets (compared to fugues) is probably due
to a less regular polyphonic writing, with in particular stylistic differences leading to larger intervals.
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ABSTRACT

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for creating the all-partition array.
The problem of generating an all-partition array involves
finding a rectangular array of pitch-class integers that can
be partitioned into regions, each of which represents a dis-
tinct integer partition of 12. Integer programming (IP) has
proven to be effective for solving such combinatorial prob-
lems, however, it has never before been applied to the prob-
lem addressed in this paper. We introduce a new way of
viewing this problem as one in which restricted overlaps
between integer partition regions are allowed. This permits
us to describe the problem using a set of linear constraints
necessary for IP. In particular, we show that this problem
can be defined as a special case of the well-known prob-
lem of set-covering (SCP), modified with additional con-
straints. Due to the difficulty of the problem, we have yet
to discover a solution. However, we assess the potential
practicality of our method by running it on smaller similar
problems.

1. INTRODUCTION

Milton Babbitt (1916–2011) was a composer of twelve-
tone serial music noted for developing complex and highly
constrained music. The structures of many of his pieces
are governed by a structure known as the all-partition ar-
ray, which consists of a rectangular array of pitch-class
integers, partitioned into regions of distinct “shapes”, each
corresponding to a distinct integer partition of 12. This
structure helped Babbitt to achieve maximal diversity in
his works, that is, the presentation of as many musical pa-
rameters in as many different variants as possible [13].

In this paper, we formalize the problem of generating an
all-partition array using an integer programming paradigm
in which a solution requires solving a special case of the
set-covering problem (SCP), where the subsets in the cover
are allowed a restricted number of overlaps with one an-
other and where the ways in which these overlaps can oc-

c© Tsubasa Tanaka, Brian Bemman, David Meredith. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Tsubasa Tanaka, Brian Bemman, David
Meredith. “Integer Programming Formulation of the Problem of Gener-
ating Milton Babbitt’s All-partition Arrays”, 17th International Society
for Music Information Retrieval Conference, 2016.

cur is constrained. It turns out that this is a hard combina-
torial problem. That this problem was solved by Babbitt
and one of his students, David Smalley, without the use
of a computer is therefore interesting in itself. Moreover, it
suggests that there exists an effective procedure for solving
the problem.

Construction of an all-partition array begins with an
I × J matrix, A, of pitch-classes, 0, 1, . . . , 11, where each
row contains J/12 twelve-tone rows. In this paper, we only
consider matrices where I = 6 and J = 96, as matri-
ces of this size figure prominently in Babbitt’s music [13].
This results in a 6 × 96 matrix of pitch classes, contain-
ing 48 twelve-tone rows. In other words, A will contain an
approximately uniform distribution of 48 occurrences of
each of the integers from 0 to 11. On the musical surface,
rows of this matrix become expressed as ‘musical voices’,
typically distinguished from one another by instrumental
register [13]. A complete all-partition array is a matrix,
A, partitioned into K regions, each of which must contain
each of the 12 pitch classes exactly once. Moreover, each
of these regions must have a distinct “shape”, determined
by a distinct integer partition of 12 (e.g., 2+2+2+3+3
or 1+2+3+1+2+3) that contains I or fewer summands
greater than zero [7]. We denote an integer partition of an
integer, L, by IntPartL(s1, s2, . . . , sI) and define it to be
an ordered set of non-negative integers, 〈s1, s2, . . . , sI〉,
where L =

∑I
i=1 si and s1 ≥ s2 ≥ · · · ≥ sI . For exam-

ple, possible integer partitions of 12 when I = 6, include
IntPart12(3, 3, 2, 2, 1, 1) and IntPart12(3, 3, 3, 3, 0, 0).
We define an integer composition of a positive integer,
L, denoted by IntCompL(s1, s2, . . . , sI), to also be an
ordered set of I non-negative integers, 〈s1, s2, . . . , sI〉,
where L =

∑I
i=1 si, however, unlike an integer partition,

the summands are not constrained to being in descending
order of size. For example, if L = 12 and I = 6, then
IntComp12(3, 3, 3, 3, 0, 0) and IntComp12(3, 0, 3, 3, 3, 0)
are two distinct integer compositions of 12 defining the
same integer partition, namely IntPart12(3, 3, 3, 3, 0, 0).

Figure 1 shows a 6×12 excerpt from a 6×96 pitch-class
matrix,A, and a region determined by the integer composi-
tion, IntComp12(3, 2, 1, 3, 1, 2), containing each possible
pitch class exactly once. Note, in Figure 1, that each sum-
mand (from left to right) in IntComp12(3, 2, 1, 3, 1, 2),
gives the number of elements in the corresponding row of
the matrix (from top to bottom) in the region determined
by the integer composition. We call this part of a region
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Figure 1: A 6×12 excerpt from a 6×96 pitch-class matrix
with the integer composition, IntComp12(3, 2, 1, 3, 1, 2)
(in dark gray), containing each pitch class exactly once.

Figure 2: A 6 × 12 excerpt from a 6 × 96 pitch-class
matrix with a region whose shape is determined by the
integer composition, IntComp12(3, 3, 3, 3, 0, 0) (in light
gray), where three elements (in bold) are horizontal inser-
tions of pitch classes from the previous integer partition
region. Note that the two indicated regions represent dis-
tinct integer partitions.

in a given row of the matrix a summand segment. For
example, in Figure 1, the summand segment in the first
row for the indicated integer partition region contains the
pitch classes 11, 4 and 3. On the musical surface, the dis-
tinct shape of each integer composition helps contribute
to a progression of ‘musical voices’ that vary in textural
density, allowing for relatively thick textures in, for ex-
ample, IntComp12(2, 2, 2, 2, 2, 2) (with six participating
parts) and comparatively sparse textures in, for example,
IntComp12(11, 0, 1, 0, 0, 0) (with two participating parts).

There exist a total of 58 distinct integer partitions of 12
into 6 or fewer non-zero summands [13]. An all-partition
array with six rows will thus contain K = 58 regions,
each containing every pitch class exactly once and each
with a distinct shape determined by an integer composi-
tion representing a distinct integer partition. However, the
number of pitch-class integers required to satisfy this con-
straint, 58 × 12 = 696, exceeds the size of a 6 × 96
matrix containing 576 elements, by 120. In order to sat-
isfy this constraint, additional pitch-classes therefore have
to be inserted into the matrix, with the added constraint
that only horizontal insertions of at most one pitch class
in each row are allowed for each of the 58 integer parti-
tion regions. Each inserted pitch class is identical to its
immediate neighbor to the left, this being the right-most
element of a summand segment belonging to a previous
integer partition region. This constraint ensures that the or-
der of pitch classes in the twelve-tone rows of a given row
of A is not altered [13]. Figure 2 shows a second integer
partition region, IntComp12(3, 3, 3, 3, 0, 0), in the matrix
shown in Figure 1 (indicated in light gray), where three
of its elements result from horizontal insertions of pitch
classes from the previous integer partition region. Note, in

Figure 2, the three horizontal insertions of pitch-class inte-
gers, 3 (in row 1), 7 (in row 2), and 10 (in row 4), required
to have each pitch class occur exactly once in the second
integer partition region. Not all of the 58 integer partitions
must contain one or more of these insertions, however, the
total number of insertions must equal the 120 additional
pitch classes required to satisfy the constraint that all 58
integer partitions are represented. Note that, in order for
each of the resulting integer partition regions to contain
every pitch class exactly once, ten occurrences of each of
the 12 pitch classes must be inserted into the matrix. This
typically results in the resulting matrix being irregular (i.e.,
“ragged” along its right side).

In this paper, we address the problem of generating an
all-partition array by formulating it as a set of linear con-
straints using the integer programming (IP) paradigm. In
section 2, we review previous work on general IP problems
and their use in the generation of musical structures. We
also review previous work on the problem of generating
all-partition arrays. In section 3, we introduce a way of
viewing insertions of elements into the all-partition array
as fixed locations in which overlaps occur between con-
tiguous integer partition regions. In this way, our matrix
remains regular and we can define the problem as a special
case of the well-known IP problem of set-covering (SCP),
modified so that certain overlaps are allowed between the
subsets. In sections 4 and 5, we present our IP formula-
tion of this problem as a set of linear constraints. Due to
the difficulty of the problem, we have yet to discover a so-
lution using our formulation. Nevertheless, in section 6,
we present the results of using our implementation to find
solutions to smaller versions of the problem and in this
way explore the practicality of our proposed method. We
conclude in section 7 by mentioning possible extensions to
our formulation that could potentially allow it to solve the
complete all-partition array generation problem.

2. PREVIOUS WORK

Babbitt himself laid the foundations for the construction
of what would become the all-partition array during the
1960s, and he would continue to use the structure in nearly
all of his later works [1–4]. Subsequent composers made
use of the all-partition array in their own music and further
developed ways in which its structure could be formed and
used [5,6,11,12,14,15,17,18,21]. Most of these methods
focus on the organization of pitch classes in a twelve-tone
row and how their arrangement can make the construction
of an all-partition array more likely. We propose here a
more general purpose solution that will take any matrix and
attempt to generate a successful structure. Furthermore,
many of these previous methods were music-theoretical in
nature and not explicitly computational. Work by Bazelow
and Brickle is one notable exception [5, 6]. We agree here
with their assessment that ‘partition problems in twelve-
tone theory properly belong to the study of combinatorial
algorithms’ [6]. However, we differ considerably in our
approach and how we conceive of the structure of the all-
partition array.
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More recent efforts to automatically analyze and gen-
erate all-partition arrays have been based on backtracking
algorithms. [7–9]. True to the structure of the all-partition
array (as it appears on the musical surface) and the way
in which Babbitt and other music theorists conceive of
its structure, these attempts to generate an all-partition ar-
ray form regions of pitch classes according to the pro-
cess described in section 1, where horizontal repetitions
of pitch-classes are added, resulting in an irregular matrix.
While these existing methods have further proposed vari-
ous heuristics to limit the solution space or allow for in-
complete solutions, they were unable to generate a com-
plete all-partition array [7–9].

In general, for difficult combinatorial problems, more
efficient solving strategies than backtracking exist. One
such example is integer programming (IP). IP is a compu-
tationally efficient and practical paradigm for dealing with
typically NP-hard problems, such as the traveling sales-
man, set-covering and set-partitioning problems, where
these are expressed using only linear constraints (i.e.,
equations and inequalities) and a linear objective func-
tion [10, 16]. One benefit of using IP, is that it allows for
the separation of the formulation of a problem by users and
the development by specialists of an algorithm for solving
it. Many of these powerful solvers dedicated to IP prob-
lems have been developed and used particularly in the field
of operations research. Compared to approximate compu-
tational strategies, such as genetic algorithms, IP formu-
lations and their solvers are suitable for searching for so-
lutions that strictly satisfy necessary constraints. For this
reason, we expect that the IP paradigm could provide an
appropriate method for approaching the problem of gener-
ating all-partition arrays.

In recent work, IP has been applied to problems of anal-
ysis and generation of music [19, 20]. This is of impor-
tance to the research presented here as it demonstrates the
relevance of these traditional optimization problems of set-
covering (SCP) and set-partitioning (SPP), to general prob-
lems found in computational musicology, where SPP has
been used in the segmentation of melodic motifs and IP
has been used in describing global form. In the next sec-
tion, we address the set-covering problem (SCP) in greater
detail and show how it is related to the problem of gener-
ating all-partition arrays.

3. SET-COVERING PROBLEM FORMULATION
OF ALL-PARTITION ARRAY GENERATION

The set-covering (SCP) problem is a well-known prob-
lem in computer science and operations research that can
be shown to be NP-hard [10]. Let E be a set whose el-
ements are {E1, E2, · · · , E#E} (where #E denotes the
number of elements in E), F be a family of subsets of E,
{F1, F2, · · · , F#F }, and S be a subset of F . By assign-
ing a constant cost, cs, to each Fs, the objective of the

Figure 3: A 6×12 excerpt from a 6×96 pitch-class matrix
with two integer compositions, IntComp12(3, 2, 1, 3, 1, 2)
(in dark gray and outlined) and IntComp12(3, 3, 3, 3, 0, 0)
(in light gray), that form distinct integer partition regions.
Note, that the second composition overlaps three fixed lo-
cations in the first.

set-covering problem (SCP) is to

Minimize
S⊂F

∑

Fs∈S
cs

subject to
⋃

Fs∈S
Fs = E.

In other words, a solution S is a cover of E that allows for
the same elements to appear in more than one subset, Fs.
In this section, we suggest that our problem can be viewed
as an SCP with additional constraints.

3.1 All-partition array generation as a set-covering
problem (SCP) with additional constraints

When viewing the all-partition array in the context of⋃
Fs∈S Fs = E above, E is the set that consists of all loca-

tions (i, j) in the matrix,A, and Fs are the sets of locations
(i, j) that correspond to the “shapes” of integer composi-
tions. We call each Fs a candidate set. A candidate set Fs

is characterized by two conditions that we call containment
and consecutiveness. Containment means that the elements
(i.e., locations (i, j)) of Fs correspond to twelve distinct
integers, 0, 1, . . . , 11, in A. Consecutiveness means that
each of its elements belonging to the same row in A are
consecutive. In this sense, F includes all sets found in A
that satisfy the conditions of consecutiveness and contain-
ment.

As the expression
⋃

Fs∈S Fs = E implies, a candidate
set is allowed to share elements with another candidate set.
Similarly, the pitch classes in A (i.e., corresponding to el-
ements in E) that become insertions in the original prob-
lem can be instead regarded as shared elements or overlaps
between contiguous integer composition regions, with the
result that the matrix remains regular. Figure 3 shows how
these overlaps would occur in the two integer composition
regions shown in Figure 2.

Viewed in this way, a solution to the problem of gen-
erating an all-partition array thus satisfies the basic cri-
terion of an SCP, namely, the condition for set-covering,⋃

Fs∈S Fs = E. However, this criterion alone fails to ac-
count for the unique constraints under which such a cover-
ing is formed in an all-partition array. In the original SCP,
there are no constraints on the order of subsets, the order
of their elements or the number of overlaps and the ways in
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which they can occur. On the other hand, an all-partition
array must satisfy such additional conditions. We denote
the constraints for satisfying such additional conditions by
Add. Conditions.
Add. Conditions includes the conditions in the all-

partition array governing (1) the left-to-right order of con-
tiguous candidate sets, (2) permissible overlaps between
such sets, and (3) the distinctness of sets in S. This last
condition of distinctness ensures that the integer composi-
tions used in a cover, S, define every possible integer par-
tition once and only once. On the other hand, the condi-
tions for set-covering,

⋃
Fs∈S Fs = E, are conditions of

(1) candidate sets (which satisfy containment and consec-
utiveness) and (2) covering, meaning that each element in
E is covered no less than once.

We can now state that our problem of generating an all-
partition array is to

Minimize
S⊂F

∑

Fs∈S
cs

subject to
⋃

Fs∈S
Fs = E,

Add. Conditions.

where the associated cost, cs, of each Fs, can be inter-
preted as a preference for one integer composition or an-
other. It is likely that, in the interest of musical expression,
Babbitt may have preferred the shapes of some integer par-
tition regions over others [13]. However, as his preference
is unknown, we can regard these costs to have the same
value for each Fs.

Due to the condition of distinctness (just described),
|S| can be fixed at 58. This feature, combined with the
equal costs of each Fs, means that the objective function,∑

Fs∈S cs, for this problem, is constant. For these reasons,
the above formulation is a constraint satisfaction problem.
This motivates our discussions in sections 6 and 7 on pos-
sible alternative objective functions.

In the next two sections, we implement the constraint
satisfaction problem defined above using integer program-
ming (IP). In particular, section 4 addresses the conditions
for set-covering,

⋃
Fs∈S Fs = E, and section 5 addresses

those in Add. Conditions. It is because of our new way
of viewing this problem, with a regular matrix and over-
laps, that we are able to introduce variables for use in IP to
describe these conditions.

4. IP IMPLEMENTATION OF CONDITIONS FOR
SET-COVERING IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of linear constraints
for satisfying the general conditions for set-covering,⋃

Fs∈S Fs = E, in the generation of an all-partition ar-
ray. Before we introduce these constraints, we define the
necessary variables and constants used in our implemen-
tation of the conditions for set-covering. We begin with
a given matrix found in one of Babbitt’s works based on

the all-partition array. Examples of the matrices used in
this paper can be found in Babbitt’s Arie da Capo (1974)
and None but the Lonely Flute (1991), among others. Let
(Ai,j) be a (6, 96)-matrix whose elements are the pitch-
class integers, 0, 1, . . . , 11. We denote the number of rows
and columns by I and J , respectively.

Let xi,j,k (1 ≤ i ≤ I , 1 ≤ j ≤ J) be a binary vari-
able corresponding to each location (i, j) in A and a sub-
set (i.e., integer partition) identified by the integer k, where
1 ≤ k ≤ K and K = 58. Here, we consider the case
where I = 6 and J = 96, so there are 58 sets of 576 such
variables. Each of these variables will indicate whether
or not a location (i, j) belongs to a candidate set for the
kth position in the sequence of 58 integer partition regions.
We denote the set of locations (i, j) whose corresponding
value for xi,j,k is 1, to be Ck. Subject to conditions for
consecutiveness and containment, Ck will be a candidate
set.

Let (Bp
i,j) (0 ≤ p ≤ 11) be constant matrices, equal

in size to A, where Bp
i,j = 1 if and only if Ai,j = p and

Bp
i,j = 0 otherwise. The locations (i, j) whose values of

Bp
i,j equal 1, correspond to the locations of pitch-class p in

A.

4.1 Conditions for Ck to contain twelve distinct
integers in A (condition of containment)

A condition for Ck to satisfy the condition of containment
is that its number of elements is 12 and each corresponds to
a distinct pitch-class in A. These conditions are expressed
by the following two equations:

∀k ∈ [1,K],
I∑

i=1

J∑

j=1

xi,j,k = 12, (1)

∀p ∈ [0, 11],∀k ∈ [1,K],
I∑

i=1

J∑

j=1

Bp
i,j · xi,j,k = 1. (2)

Because xi,j,k equals 1 if (i, j) is included in Ck and 0
if it is not, Equation 1 means that there are 12 elements
in Ck. In Equation 2, we ensure that each corresponding
pitch-class integer p for the elements in Ck, appears once
and only once.

4.2 Conditions for Ck to be integer compositions in A
(condition of consecutiveness)

Let Ck,i be the ith-row part of Ck (i.e., the summand seg-
ment of composition k for row i). Let si,k be an integer
variable corresponding to the x-coordinate of a ‘starting
point’, which lies at the left side of the leftmost component
of Ck,i. The value of si,k is then equal to the column num-
ber of the leftmost component of Ck,i, minus 1. The origin
point of this coordinate lies along the left hand side of the
matrix A, and we set the width of each location (i, j) to be
1. Similarly, let ei,k be an integer variable corresponding
to the x-coordinate of an ‘ending point’, which lies at the
right side of the rightmost component belonging to Ck,i.
The value of ei,k is then equal to the column number of the
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(a) Ck,i contains pitch classes
11, 4, 3 (j = 1, 2, 3) and satisfies
consecutiveness.

(b) Ck,i contains pitch classes
11, 4, 5 (j = 1, 2, 4) and does
not satisfy consecutiveness.

Figure 4: Two Ck,i and corresponding si,k and ei,k from
Figure 3 when k = 1 and i = 1. Shaded elements indicate
xi,j,k = 0 and unshaded elements indicate xi,j,k = 1.

rightmost component of Ck,i. Figure 4 shows an example
of two possible Ck,i from Figure 3. If there is no compo-
nent in Ck,i (k ≥ 2), we define si,k to be ei,k−1 and ei,k to
be si,k. If there is no component inC1,i, we define si,k and
ei,k to be 0. Then, si,k and ei,k are subject to the following
constraint of range:

∀i ∈ [1, I],∀k ∈ [1,K], 0 ≤ si,k ≤ ei,k ≤ J. (3)

The condition under which Ck (k ∈ [1,K]) forms an inte-
ger composition—that is, satisfies the condition of consec-
utiveness, is expressed by the following three constraints:

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], (4)

j · xi,j,k ≤ ei,k,

∀i ∈ [1, I],∀j ∈ [1, J ],∀k ∈ [1,K], (5)

J − si,k ≥ (J + 1− j) · xi,j,k,

∀i ∈ [1, I],∀k ∈ [1,K],
J∑

j=1

xi,j,k = ei,k − si,k. (6)

In Equation 4, each element of Ck,i must be located at col-
umn ei,k or to the left of column ei,k. Equation 5 states that
each element of Ck,i must be located at column si,k +1 or
to the right of column si,k +1. Equation 6, combined with
the previous two constraints, states that the length of Ck,i

must be equal to ei,k−si,k, implying that the column num-
bers j of the elements in Ck,i are consecutive from si,k+1
to ei,k, where Ck,i contains at least one element.

4.3 Condition for covering A

As every location (i, j) in A (i.e., E in our SCP) must be
covered at least once, we pose the following condition of
covering:

∀i ∈ [1, I],∀j ∈ [1, J ],

K∑

k=1

xi,j,k ≥ 1. (7)

Equation 1 states that for all K = 58 integer partitions,
there are 12 · K = 696 variables, xi,j,k, that will equal
1. A successful cover of A by Equation 7, however, states
that all of I · J = 576 places (i, j) in A, are covered once
or more than once. Collectively, these imply that there are
120 or less than 120 places (i.e., combinations of (i, j))

that are covered twice or more than twice. These 120 over-
laps correspond to the 120 insertions of pitch-class integers
used when constructing an all-partition array in its original
form. By satisfying all of the constraints above, each Ck

forms a candidate set (i.e., a member of F in our SCP) and
the condition for set-covering,

⋃
Fs∈S Fs = E, is satisfied.

5. IP IMPLEMENTATION OF ADDITIONAL
CONDITIONS IN ALL-PARTITION ARRAY

GENERATION

In this section, we introduce our set of additional linear
constraints beyond those required for satisfying the condi-
tion of set-covering in the SCP.

5.1 Left-to-right order of Ck and permissible overlaps

Ck must be located immediately to the right of Ck−1. This
is expressed by

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1 ≤ ei,k, (8)

Ck−1,i andCk,i may overlap by no more than one element.
This is expressed by the following inequality:

∀i ∈ [1, I],∀k ∈ [2,K], ei,k−1− 1 ≤ si,k ≤ ei,k−1, (9)

meaning that si,k will be equal to ei,k−1 if there is no over-
lap and si,k will be equal to ei,k−1−1 if there is an overlap.

5.2 Conditions for Ck to be integer compositions
defining distinct integer partitions (condition of
distinctness)

Let yi,k,l be a binary variable that indicates whether or not
the length of Ck,i is greater than or equal to l (1 ≤ l ≤
L,L = 12), by introducing the following constraints:

∀i ∈ [1, I],∀k ∈ [1,K], ei,k − si,k =
L∑

l=1

yi,k,l, (10)

∀i ∈ [1, I],∀k ∈ [1,K],∀l ∈ [2, L], (11)

yi,k,l−1 ≥ yi,k,l.
Equation 10 states that the sum of all elements in
〈yi,k,1, yi,k,2, . . . , yi,k,L〉 is equal to the length of Ck,i,
while Equation 11 states that its elements equal to 1
begin in the first position and are consecutive (e.g.,
〈1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0〉, when the length of Ck,i is
3.)

The number of the lengths of Ck,i (1 ≤ i ≤ I) that
are greater than or equal to l is given by

∑I
i=1 yi,k,l. The

twelve values of
∑I

i=1 yi,k,l (1 ≤ l ≤ L) then, will pre-
cisely represent the type of partition. For example, if Ck

is IntComp12(3, 2, 1, 3, 1, 2), then yi,k,l (∀i ∈ [1, I],∀l ∈
[1, L]) would be

1,1,1,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,1,0,0,0,0,0,0,0,0,0
1,0,0,0,0,0,0,0,0,0,0,0
1,1,0,0,0,0,0,0,0,0,0,0
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and
∑I

i=1 yi,k,l would be [6, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0].
We denote the number of all integer partitions by N

(N = K = 58) and denote a single integer parti-
tion n (1 ≤ n ≤ N) by Pn. We can express Pn as
[Pn,1, Pn,2, . . . , Pn,L] (1 ≤ n ≤ N), where Pn,l corre-
sponds to the twelve values

∑I
i=1 yi,k,l (1 ≤ l ≤ L) de-

scribed above.
Then, by implementing the following expression:

∀k ∈ [1,K],∀n ∈ [1, N ],∀l ∈ [1, L], (12)

Pn,l · zk,n ≤
I∑

i=1

yi,k,l.

we can express whether Ck defines the integer partition n
or not by the binary variable zk,n. For example, if zk,n =
0, the value of Pn,l · zk,n = 0 constrains nothing, and thus
Ck cannot be the integer partition n (because of the next
equation). On the other hand, if zk,n = 1, Ck must be
the integer partition n. Accordingly, zk,n will equal 1 only
if the twelve values

∑I
i=1 yi,k,l correspond to Pn. From

this, determining whether or not all different partitions are
present can be expressed by the following equation:

∀n ∈ [1, N ],

K∑

k=1

zk,n = 1. (13)

6. EXPERIMENTS

In order to determine whether or not our formulation works
as intended, we implemented the constraints described in
sections 4 and 5 and supplied these to an IP solver based
on branch-and-bound (Gurobi Optimizer). As the objec-
tive function in our formulation amounts to a constant-cost
function (described in section 3), we replaced it with a
non-constant objective function,

∑
i,j,k ci,j,k ·xi,j,k, where

ci,j,k assumes a randomly generated integer for promoting
this process of branch and bound. When the first feasible
solution is found, we stop the search.

Although we first attempted to find a complete all-
partition array, we were unable to discover a solution after
one day of calculation. This highlights the difficulty of the
problem and reinforces those findings by previous methods
that were similarly unable to find a complete all-partition
array [7]. As the target of our current formulation is only
solutions which strictly satisfy all constraints, we opted to
try finding complete solutions to smaller-sized problems,
using the first j columns of the original matrix. Because
we cannot use all 58 integer partitions in the case K < N ,
a slight modification to Equation 13 was needed for this
change. Its equality was replaced by ≤ and an additional
constraint, ∀k ∈ [1,K],

∑N
n=1 zk,n = 1, for allocating

one partition to each Ck, was added.
Figure 5 shows the duration (vertical axis) of time spent

on finding a solution in matrices of varying size. The num-
ber of integer compositions,K, was set to (J+2)/2, where
J is an even number. This ensures that a given solution will
always contain 12 overlaps. These findings suggest that the
necessary computational time in finding a solution tends to

Figure 5: Duration of time spent on finding the first solu-
tion for each small matrix, whose column length is J(12 ≤
J ≤ 24, J ∈ 2N). K is set to (J + 2)/2, resulting in
12 overlaps. Note, that no feasible solution exists when
J = 14.

dramatically increase with an increase in J . However, this
increase fluctuates, suggesting that each small matrix rep-
resents a unique problem space with different sets of diffi-
culties (e.g., the case J = 14 was unfeasible). For this rea-
son, finding a solution in a complete matrix (6,96) within
a realistic limitation of time would be difficult for our cur-
rent method, even using a fast IP solver. This strongly mo-
tivates future improvements as well as the possibility of an
altogether different strategy.

7. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a novel integer-
programming-based perspective on the problem of gener-
ating Milton Babbitt’s all-partition arrays. We have shown
that insertions and the irregular matrix that results can be
replaced with restricted overlaps, leaving the regular ma-
trix unchanged. This view allows us to formulate the prob-
lem as a set-covering problem (SCP) with additional con-
straints and then implement it using integer programming.
Due to the difficulty of the problem, we have so far been
unable to find a solution. However, we have been able to
produce solutions in a practical running time (< 2500 sec-
onds) when the matrix is reduced in size to 24 columns or
less. These results motivate possible extensions to our for-
mulation. First, a relaxation of the problem is possible, for
example, by using an objective function that measures the
degree of incompleteness of a solution. This could allow
for approximate solutions to be discovered, such as those
found in previous work [7]. Second, it may be the case
that a solution to the full problem may be achievable by
combining solutions to smaller subproblems that we have
shown to be solvable in a practical running time.
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ABSTRACT

Two heads are better than one, and the many are smarter
than the few. Integrating knowledge from multiple sources
has shown to increase retrieval and classification accu-
racy in many domains. The recent explosion of crowd-
sourced information, such as on websites hosting chords
and tabs for popular songs, calls for sophisticated algo-
rithms for data-driven quality assessment and data integra-
tion to create better, and more reliable data. In this pa-
per, we propose to integrate the heterogeneous output of
multiple automatic chord extraction algorithms using data
fusion. First we show that data fusion creates significantly
better chord label sequences from multiple sources, outper-
forming its source material, majority voting and random
source integration. Second, we show that data fusion is
capable of assessing the quality of sources with high pre-
cision from source agreement, without any ground-truth
knowledge. Our study contributes to a growing body of
work showing the benefits of integrating knowledge from
multiple sources in an advanced way.

1. INTRODUCTION AND RELATED WORK

With the rapid growth and expansion of online sources
containing user-generated content, a large amount of con-
flicting data can be found in many domains. For exam-
ple, different encyclopediæ can provide conflicting infor-
mation on the same subject, and different websites can
provide conflicting departure times for public transporta-
tion. A typical example in the music domain is provided
by websites offering data that allows for playing along with
popular songs, such as tabs or chords. These websites of-
ten provide multiple, conflicting chord label sequences for
the same song. The availability of these large amounts
of data poses the interesting problem of how to combine
the knowledge from different sources to obtain better, and
more reliable data. In this research, we address the prob-
lem of finding the most appropriate chord label sequence

c© Hendrik Vincent Koops, W. Bas de Haas, Dimitrios
Bountouridis, Anja Volk. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Hendrik
Vincent Koops, W. Bas de Haas, Dimitrios Bountouridis, Anja Volk. “In-
tegration and Quality Assessment of Heterogeneous Chord Sequences us-
ing Data Fusion”, 17th International Society for Music Information Re-
trieval Conference, 2016.

for a piece out of conflicting chord label sequences. Be-
cause the correctness of chord labels is hard to define (see
e.g. [26]), we define “appropriate” in the context of this
research as agreeing with a ground truth. An example of
another evaluation context could be user satisfaction.

A pivotal problem for integrating data from different
sources is determining which source is more trustworthy.
Assessing the trustworthiness of a source from its data is a
non-trivial problem. Web sources often supply an external
quality assessment of the data they provide, for example
through user ratings (e.g. three or five stars), or popularity
measurements such as search engine page rankings. Un-
fortunately, Macrae et al. have shown in [18] that no cor-
relation was found with the quality of tabs and user ratings
or search engine page ranks. They propose that a better
way to assess source quality is to use features such as the
agreement (concurrency) between the data. Naive meth-
ods of assessing source agreement are often based on the
assumption that the value provided by the majority of the
sources is the correct one. For example, [1] integrates mul-
tiple symbolic music sequences that originate from differ-
ent optical music recognition (OMR) algorithms by picking
the symbol with the absolute majority at every position in
the sequences. It was found that OMR may be improved us-
ing naive source agreement measures, but that substantial
improvements may need more elaborate methods.

Improving results by combining the power of multi-
ple algorithms is an active research area in the music do-
main, whether it is integrating the output of similar algo-
rithms [28], or the integration of the output of different
algorithms [15], such as the integration of features into a
single feature vector to combine the strengths of multiple
feature extractors [12, 19, 20]. Nevertheless, none of these
deal with the integration and quality assessment of hetero-
geneous categorical data provided by different sources.

Recent advancements in data science have resulted in
sophisticated data integration techniques falling under the
umbrella term data fusion, in which the notion of source
agreement plays a central role. We show that data fusion
can achieve a more accurate integration than naive methods
by estimating the trustworthiness of a source, compared to
the more naive approach of just looking at which value is
the most common among sources. To our knowledge no
research into data fusion exists in the music domain. Re-
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search in other domains has shown that data fusion is ca-
pable of assessing correct values with high precision, and
significantly outperforms other integration methods [7,25].

In this research, we apply data fusion to the problem
of finding the most appropriate chord label sequence for a
piece by integrating heterogeneous chord label sequences.
We use a method inspired by the ACCUCOPY model that
was introduced by Dong et al. in [7, 8] to integrate con-
flicting databases. Instead of databases, we propose to in-
tegrate chord label sequences. With the growing amount
of crowd-sourced chord label sequences online, integration
and quality assessment of chord label sequences are impor-
tant for a number of reasons. First, finding the most appro-
priate chord labels from a large amount of possibly noisy
sources by hand is a very cumbersome process. An au-
tomated process combining the shared knowledge among
sources solves this problem by offering a high quality in-
tegration. Second, to be able to rank and offer high quality
data to their users, websites offering conflicting chord la-
bel data need a good way to separate the wheat from the
chaff. Nevertheless, as was argued above, both integration
and quality assessment have shown to be hard problems.

To measure the quality of chord label sequence inte-
gration, we propose to integrate the outputs of different
MIREX Audio Chord Estimation (ACE) algorithms. We
chose this data, because it offers us the most reliable
ground truth information, and detailed analysis of the algo-
rithms to make a high quality assessment of the integrated
output. Our hypothesis is that through data fusion, we can
create a chord label sequence that is significantly better in
terms of comparison to a ground truth than the individual
estimations. Secondly, we hypothesize that the results of
integrated chord label sequences have a lower standard de-
viation on their quality, hence are more reliable.

Contribution. The contribution of this paper is three-
fold. First, we show the first application of data fusion in
the domain of symbolic music. In doing so, we address
the question how heterogeneous chord label sequences de-
scribing a single piece of music can be combined into an
improved chord label sequence. We show that data fusion
outperforms majority voting and random picking of source
values. Second, we show how data fusion can be used to
accurately estimate the relative quality of heterogeneous
chord label sequences. Data fusion is better at capturing
source quality than the most frequently used source quality
assessment methods in multiple sequence analysis. Third,
we show that our purely data-driven method is capable
of capturing important knowledge shared among sources,
without incorporating domain knowledge.

Synopsis. The remainder of this paper is structured as
follows: Section 2 provides an introduction to data fusion.
Section 3 details how integration of chord label sequences
using data fusion is evaluated. Section 4 details the results
of integrating submissions of the MIREX 2013 automatic
chord extraction task. The paper closes with conclusions
and a discussion, which can be found in Section 5.

2. DATA FUSION

We investigate the problem of integrating heterogeneous
chord label sequences using data fusion. Traditionally, the
goal of data fusion is to find the correct values within au-
tonomous and heterogeneous databases (e.g. [9]). For ex-
ample, if we obtain meta-data (fields such as year, com-
poser, etc) from different web sources of the song “Black
Bird” by The Beatles, there is a high probability that some
sources will contradict each other on some values. Some
sources will attribute the composer correctly to “Lennon
- McCartney”, but others will provide just “McCartney”,
“McCarthey”, etc. Typos, malicious editing, data corrup-
tion, incorrectly predicted values, and human ignorance are
some of the reasons why sources are hardly ever error-free.

Nevertheless, if we assume that most of the values that
sources provide are correct, we can argue that values that
are shared among a large amount of sources are often more
probable to be correct than values that are provided by only
a single source. Under the same assumption, we can also
argue that sources that agree more with other sources are
more accurate, because they share more values that are
likely to be correct. Therefore, if a value is provided by
only a single but very accurate source, we can prefer it over
values with higher probabilities from less accurate sources,
the same way we are more open to accepting a deviating
answer from a reputable source in an everyday discussion.

In the above examples, we assume that each source is
independent. In real-life this is rarely the case: informa-
tion can be copied from one website to the other, students
repeat what their teacher tells them and one user can en-
ter the same values in a database twice, which can lead
to inappropriate values being copied by a large number
of sources: “A lie told often enough becomes the truth”
(Lenin 1 ) [8]. Intuitively, we can predict the dependency
of sources from their sharing of inappropriate values. In
general, inappropriate values are assumed to be uniformly
distributed, which implies that sharing a couple of identical
inappropriate values is a rare event. For example, the rare
event of two students sharing a number of identical inap-
propriate answers on an exam is indicative of copying from
each other. Therefore, by analyzing which values with low
probabilities are shared between sources, we can calculate
a probability of their dependence.

In this research, instead of using databases, we address
these issues through data fusion on heterogeneous chord
label sequences. Our goal is to take heterogeneous chord
label sequences of the same song and create a chord label
sequence that is better than the individual ones. We take
into account: 1) the accuracy of sources, 2) the probabil-
ities of the values provided by sources, and 3) the prob-
ability of dependency between sources. In the following
sections, we refer to different versions of the same song as
sources, each providing a sequence of values called chord
labels. See Table 1 for an example, showing four sources
(S0...3), each providing a sequence of three chord labels,
and FUSION, an example of data fusion output.

1 Ironically, this quote’s origin is unclear, but most sources cite Lenin.
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S0 C:maj A:min A:min F:maj
S1 C:maj F:maj G:maj F:maj
S2 C:maj F:maj A:min D:min
S3 C:maj F:maj A:min D:min

MV C:maj F:maj A:min ?
DF C:maj F:maj A:min D:min

Table 1: Example of four sources S(0...3) providing different
chord label sequences for the same song. DF shows an example
output of data fusion on these sources. DF is identical to majority
vote (MV) on the first three chord labels. For the last chord label,
DF chooses D:min by taking into account source accuracy, while
majority vote would randomly pick either F:maj or D:min.

2.1 Source Accuracy

By taking into account the accuracy of a source, we can
deal with issues that arise from simple majority voting. For
example in Table 1, the final chord labels in the sequence
(F:maj and D:min) are provided by the same number of
sources. Solving which chord to choose here would re-
quire picking randomly one of the two, or using auxiliary
knowledge such as harmony theory to make a good choice.

Another problem is that sometimes a source can pro-
vide an appropriate chord label that contradicts all other
sources. Majority vote would assign the lowest probability
to this chord, although it might come from a source that
overall agrees a lot with other sources. Intuitively, we have
more trust in a source that we believe is more accurate,
which is implemented as follows. The chord labels of a
source are weighted according to the overall performance
of that source: if a source provides a large number of val-
ues that agree with other sources, we consider it to be more
accurate and more trustworthy, and vice versa.

The accuracy of a source is defined by Dong et al. in [7]
as follows. We calculate source accuracy by taking the
arithmetic mean of the probabilities of all chord labels the
source provides. As an example, suppose we estimate the
probabilities of the chords in Table 1 based on their fre-
quency count (c.q. likelihood). That is, C:maj for the
first column is 1, A:min for the second column is 1/4, etc.
Then, if we take the average of the chord label probabil-
ities of the first source in our example of Table 1 we can
calculate the source accuracy A(S0) of S0 as follows:

A(S0) =
1 + 1/4 + 3/4 + 1/2

4
= 0.625 (1)

In the same way, we can calculate the source accuracies for
the other three sources which are 0.625, 0.75 and 0.75 for
S1,S2 and S3 respectively.

Assuming that the sources are independent, then the
probability that a source provides an appropriate chord la-
bel is its source accuracy. Conversely, the probability that
a source provides an inappropriate chord is the fraction
of the inverse of the source accuracy over all possible in-
appropriate values n: (1−A(S))

n . For example, for major
and minor chord labels we have 12 roots and 2 modes,
which means that for every correct chord label there are
n = (12 ∗ 2) − 1 = 23 inappropriate chord labels. With
more complex chord labels (sevenths, added notes, inver-
sions), n increases combinatorially.

The chord labels of sources with higher accuracies will
be more likely to be selected through the use of vote counts,

which are used as weights for the probabilities of the chord
labels they provide. With n andA(Si) we can derive a vote
count VS (Si) of a source Si. The vote count of a source is
computed as follows:

VS (Si) = ln
nA(Si)

1−A(Si)
(2)

Applied to our example, this results in vote counts of 2.62
for S0 and S1, and 2.80 for S2 and S3. The higher vote
count for S2 and S3 means that its values are more likely to
be appropriate than those of S0 and S1.

2.2 Chord Label Probabilities

After having defined the accuracy of a source, we can now
determine which chord labels provided by all the sources
are most likely the appropriate labels, by taking into ac-
count source accuracy. In the computation of chord label
probabilities we take into account a) the number of sources
that provide those chord labels and b) the accuracy of their
sources. With these values we calculate the vote count
VC (L) of a chord label L, which is computed as the sum
of the vote counts of its providers:

VC (L) =
∑

σ∈SL

VS (σ) (3)

where SL is the set of all sources that provide the chord
label L. For example, for the vote count of F:maj in the
last column of the example in Table 1, we take the sum of
the vote counts of S0 and S1. For the vote count of D:min
we take the sum of the vote counts of S2 and S3. To calcu-
late chord label probabilities from chord label vote counts,
we take the fraction of the chord label vote count and the
chord label vote counts of all possible chord labels (D):

P (L) =
exp(VC (L))

Σl∈D exp(VC (l))
(4)

Applied to our example from Figure 1, we see that solv-
ing this equation for F:maj results in a probability of
P (F:maj) ≈ 0.39 , and for D:min results in a proba-
bility of P (D:min) ≈ 0.56. Instead of having to choose
randomly as would be necessary in a majority vote, we
can now see that D:min is more probable to be the cor-
rect chord label, because it is provided by sources that are
overall more trustworthy.

2.3 Source Dependency

In the sections above we assumed that all sources are in-
dependent. This is not always the case when we deal with
real-world data. Often, sources derive their data from a
common origin, which means there is some kind of de-
pendency between them. For example, a source can copy
chord labels from another source before changing some
labels, or some Audio Chord Estimation (ACE) algorithm
can estimate multiple (almost) equal chord label sequences
with different parameter settings. This can create a bias in
computing appropriate values. To account for the bias that
can arise from source dependencies, we weight the values
of sources we suspect to have a dependency lower. In a
sense, we award independent contributions from sources
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and punish values that we suspect are dependent on other
sources.

In data fusion, we can detect source dependency di-
rectly from the data by looking at the amount of shared un-
common (rare) chord labels between sources. The intuition
is that sharing a large number of uncommon chord labels is
evidence for source dependency. With this knowledge, we
can compute a weight I(Si,L) for the vote count VC (L)
of a chord label L. This weight tells us the probability that
a source Si provides a chord label L independently.

2.4 Solving Catch-22: Iterative Approach

The chord label probabilities, source accuracy and source
dependency are all defined in terms of each other, which
poses a problem for calculating these values. As a solution,
we initialize the chord label probabilities with equal prob-
abilities and iteratively compute source dependency, chord
label probabilities and source accuracy until the chord la-
bel probabilities converge or oscillation of values is de-
tected. The resulting chord label sequence is composed
of the chord labels with the highest probabilities.

For detailed Bayesian analyses of the techniques men-
tioned above we refer to [7,10]. With regard to the scalabil-
ity of data fusion, it has been shown that DF with source de-
pendency runs in polynomial time [7]. Furthermore, [17]
propose a scalability method for very large data sets, re-
ducing the time for source dependency calculation by two
to three orders of magnitude.

3. EXPERIMENTAL SETUP

To evaluate the improvement of chord label sequences us-
ing data fusion we use the output of submissions to the Mu-
sic Information Retrieval Evaluation eXchange (MIREX)
Audio Chord Estimation (ACE) task. For the task, partic-
ipants extract a sequence of chord labels from an audio
music recording. The task requires the estimation chord
labels sequences that include the full characterization of
chord labels (root, quality, and bass note), as well as their
chronological order, specific onset times and durations.

Our evaluation uses estimations from twelve submis-
sions for two Billboard datasets (Section 3.1). Each of
these estimations is sampled at a regular time interval to
make them suitable for data fusion (Section 3.2). We
transform the chord labels of the sampled estimations to
different representations (root only, major/minor and ma-
jor/minor with sevenths) (Section 3.3) to evaluate the in-
tegration of different chord types. The sampled estima-
tions are integrated using data fusion per song. To measure
the quality of the data fusion integration, we calculate the
Weighted Chord Symbol Recall (WCSR) (Section 3.4).

3.1 Billboard datasets

We evaluate data fusion on chord label estimations for two
subsets of the Billboard dataset 2 , which was introduced
by Burgoyne et al. in [3]. The Billboard dataset contains
time-aligned transcriptions of chord labels from songs that

2 available from http://ddmal.music.mcgill.ca/billboard

appeared in the Billboard “Hot 100” chart in the United
States between 1958 and 1991. All transcriptions are anno-
tated by trained jazz musicians and verified by independent
music experts. For the MIREX 2013 ACE task, two subsets
of the Billboard dataset were used: the 2012 Billboard set
(BB) and the 2013 Billboard (BB) set. BB contains
chord label annotations for 188 songs, corresponding to
entries 1000—1300 in the Billboard set. BB contains the
annotations for 188 different songs: entries 1300—1500.

Twelve teams participated for both datasets, some with
multiple submissions: CB3 & CB4 [5], CF2 [4], KO1 &
KO2 [16], NG1 & NG2 [13], NMSD1 & NMSD2 [21],
PP3 & PP4 [22], and SB [27]. Their submissions are used
to evaluate data fusion, for which the Billboard annotations
serve as a ground truth.

3.2 Sampling

The MIREX ACE task requires teams to not only estimate
which chord labels appear in a song, but also when they
appear. Because of differences in approaches, timestamps
of the estimated chord labels do not necessarily agree be-
tween teams. This is a problem for data fusion, which ex-
pects an equal length and sampling rate of the sources that
will be integrated. As a solution, we sample the estima-
tions at a regular interval.

In the past, MIREX used a 10 millisecond sampling ap-
proach to calculate the quality of an estimated chord label
sequence. Since MIREX 2013, the ground-truth and es-
timated chord labels are viewed as continuous segmenta-
tions of the audio [23]. Because of our data constraint, we
use the pre-2013 10 millisecond sampling approach. An
initial evaluation using different sampling frequencies in
the range 0.1 millisecond to 0.5 seconds, we found only
minor differences in data fusion output. The estimated
chord label sequences are sampled per song from each
team, and used as input to the data fusion algorithm.

3.3 Chord Types

The MIREX ACE task is evaluated on different chord types.
To accurately compare our results with those of the teams,
and to investigate the effect of integrating different chord
types, we follow the chord vocabulary mappings that were
introduced by [23] and are standardized in the MIREX eval-
uation. We map the sampled sequences of estimated chord
labels into three chord vocabularies before applying data
fusion: root notes only (R), major/minor only chords (MM),
and major/minor with sevenths (MM).

Note that the MIREX 2013 evaluation also includes ma-
jor/minor with inversions and major/minor seventh chords
with inversions. Since there are only two teams that esti-
mated inversions we did not take these into account in our
evaluation.

3.4 Evaluation

From the data fusion output sequences for all songs, we
calculate the Weighted Chord Symbol Recall (WCSR). The
WCSR reflects the proportion of correctly labeled chords in
a single song, weighted by the length of the song [14, 23].
To measure the improvement of data fusion, we compare
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its WCSR with the WCSR of the best scoring team. In ad-
dition to data fusion, we compute baseline measurements.
We compare the data fusion results with a majority vote
(MV) and random picking (RND) technique.

For MV we simply take the most frequent chord la-
bel every 10 milliseconds. In case multiple chord labels
are most frequent, we randomly pick from the most fre-
quent chord labels. For the example in Table 1, the output
would be either C:maj, F:maj, A:min, F:maj or
C:maj, F:maj, A:min, D:min. For RND we se-
lect a chord from a random source every 10 milliseconds.
For the example in Table 1, RND essentially picks one from
44 possible chord label combinations by picking a chord
label from a randomly chosen source per column.

4. RESULTS

We are interested in obtaining improved, reliable chord se-
quences from quality assessed existing estimations. There-
fore, we analyze our results in three ways. Firstly, to mea-
sure improvement, we show the difference in WCSR be-
tween the best scoring team and RND, MV and DF. This
way, we can analyze the performance increase (or de-
crease) for each of these integration methods. The differ-
ences are visualized in Figure 1 for the BB and BB
datasets. For each of the three methods, it shows the dif-
ference in WCSR for root notes R major/minor only chords
MM, and major/minor + sevenths chords (MM). For de-
tailed individual results an analyses of the teams on both
datasets, we refer to [2] and MIREX. 3

Secondly, to measure the reliability of the integrations,
we analyze the standard deviation of the scores of MV and
DF. We leave RND out of this analysis because of its poor
results. The ideal integration should have 1) a high WCSR

and 2) a low standard deviation, because this means that
the integration is 1) good and 2) reliable. Table 2 shows
the difference with the average standard deviation of the
teams. Sections 4.1 - 4.2 report the results in WCSR differ-
ence and standard deviation.

Thirdly, in Section 4.3 we analyze the correlation be-
tween source accuracy and WCSR, and compare the corre-
lation with other source quality assessments. These corre-
lations will tell us to which extent DF is capable of assess-
ing the quality of sources compared to other, widely used
multiple sequence analysis methods.

3 http://www.music-ir.org/mirex/wiki/2013:MIREX2013 Results
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Figure 1: Difference in WCSR with best team for random picking
(RND), majority vote (MV) and data fusion (DF). R = root notes,
MM = major/minor chords and MM = major/minor + sevenths.

BB BB
R MM MM R MM MM

DF -2.5 -2.8 -2.2 -0.5 -0.9 -1.8
MV -1.4 -1.8 -0.97 -0.3 -0.4 -1
Table 2: Difference in standard deviation for DF and MV com-
pared to the average standard deviation of the teams. Lower is
better, best values are bold.

4.1 Results of Integrating R, MM and MM

The left hand sides of the triple-bar groups in Figure 1
show that for both BB and BB, RND performs the
worst among RND, MV and DF. RND decreases the WCSR

between 8.7% and 12% point, compared to the best per-
forming teams (CB3 and KO1 for BB and BB respec-
tively) for all chord types. This means that picking ran-
dom values from sources does not capture shared knowl-
edge in a meaningful way. The middle bars in Figure 1
show that MV integrates knowledge better than RND. MV

moderately improves the best algorithm with a difference
between 0.6% and 2.1% point.

The right hand sides of the bar groups in Figure 1 show
that in both datasets and in all chord types, DF outperforms
all other methods with an increase between 3.6% point and
5.4% point compared to the best team. We tested the scores
of RND, MV and DF and the best performing teams using
a Friedman test for repeated measurements, accompanied
by Tukeys Honest Significant Difference tests for each pair
of algorithms. We find that DF significantly outperforms
the best submission, RND and MV on all datasets on all
datasets (p < 0.01). These results combined show that DF

is capable of capturing knowledge shared among sources
needed to outperform all other methods.

In Table 2, we find that for both BB and BB, both
MV and DF decrease the standard deviation compared to
the average standard deviation of the teams. In fact, we find
that DF outperforms MV, improving the standard deviation
by a factor two compared to MV. Together, these results
mean that on average, DF creates the best sequences with
the least errors for all datasets and all chord types.

4.2 Influence of Chord Types on Integration

The results detailed above show that DF is not only capa-
ble to significantly outperform all other tested methods on
all tested chord labels types, but also produces the most
reliable output, because of the low standard deviation.

Comparing the RND, MV and DF results between chord
types in Figure 1, we see that the WCSR of RND decreases
with a larger chord vocabulary. Because specificity in-
creases the probability of random errors for any algorithm,
the probability that RND will pick a good chord label ran-
domly goes down with an increase of the chord vocabulary.
For MV, we see that the results are somewhat stable with
an increase of the chord vocabulary. Nevertheless, MV is
also sensitive for randomly matching chord labels, which
explains the drop in accuracy for MM for BB on the
left hand side of Figure 1. Most interestingly, we observe
that the performance of DF increases with a larger chord
vocabulary. The explanation is that specificity helps DF

to separate good sources from bad sources. With a larger
chord vocabulary, sources will agree with each other on
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more specific chord labels, which decreases the probabil-
ity of unwanted random source agreement.

4.3 Source Quality Assessment

The previous sections show that data fusion is capable of
selecting good chord labels from the coherence between
the sources, without ground truth knowledge. A pivotal
part of data fusion is the computation of source accuracy,
which provides a relative score for each source compared
to the other sources. There are circumstances in which we
are more interested in the estimation of source accuracy
than the actual integration of source data. For example,
ranking a number of different crowd sourced chord label
sequences of the same song obtained from web sources,
(e.g. investigated by [18]). Investigating the relationship
between source accuracy and the WCSR provides insight
whether data fusion is capable of assessing the accuracy of
the sources in a way that reflects WCSR. WCSR reflects the
quality of the chord sequences and therefore the quality of
the algorithm. This relationship is shown in Figure 2, in
which the WCSR is plotted against the DF source accuracy.

Initial observation of Figure 2 shows that for both
BB and BB, WCSR and source accuracy are distributed
along a more or less diagonal line, meaning that a higher
WCSR is associated with a higher DF source accuracy, and
vice versa. This indicates a strong correlation, which is
confirmed by the Spearman’s rank correlation coefficient
(SRCC). To analyze the relative performance of source
quality assessment of DF, we compare its correlation with
widely used sequence scoring methods. These are often
used in bioinformatics, where sequence ranking is at the
root of a multitude of problems. Table 3 compares the
SRCC of different similarity scoring methods for BB and
BB. The table shows the correlations between WCSR

and DF, bigrams (BIGRAM), profile hidden Markov mod-
els (PHMM), percentage identity (PID), and neigbor-joining
trees (NJT). BIGRAM compares the relative balance of spe-
cific character pairs appearing in succession, also known
as bigrams. Sequences belonging to the same group should
be stochastic products of the same probabilistic model [6].
PHMM turns the sources into a position-specific scoring
system by creating a profile with position-probabilities. A
source is scored through comparison with the profile of all
other sources [11]. PID is the fraction of equal characters
divided by the length of the source. NJT is a bottom-up
clustering method for the creation of phylogenetic trees, in
which the distance from the root is the score [24].

BB BB
R MM MM R MM MM

DF 0.87 0.85 0.82 0.77 0.77 0.76
BIGRAM 0.18 0.18 0.16 0.2 0.22 0.29
PHMM 4 0.22 — — 0.22 — —
PID 0.18 0.2 0.19 0.25 0.27 0.29
NJT 0.2 0.22 0.21 0.24 0.25 0.27

Table 3: Spearman’s rank correlation coefficient (ρ) of WCSR
and other source scoring methods. Best performing algorithms
are bold. All values are significant with p < 0.01.

The table shows that DF source accuracy has the highest
correlation with WCSR among all other methods. These
results show that data fusion is capable of assessing the
quality of the sources without any ground-truth knowledge
in a way that is closely related to the actual source quality.

5. DISCUSSION AND CONCLUSION

Through this study, we have shown for the first time that
using data fusion, we can integrate the knowledge con-
tained in heterogeneous ACE output to create improved,
and more reliable chord label sequences. Data fusion inte-
gration outperforms all individual ACE algorithms, as well
as majority voting and random picking of source values.
Furthermore, we have shown that with data fusion, one can
not only generate high quality integrations, but also accu-
rately estimate the quality of sources from their coherence,
without any ground truth knowledge. Source accuracy out-
performs other popular sequence ranking methods.

Our findings demonstrate that knowledge from multiple
sources can be integrated effectively, efficiently and in an
intuitive way. Because the proposed method is agnostic
to the domain of the data, it could be applied to melodies
or other musical sequences as well. We believe that fur-
ther analysis of data fusion in crowd-sourced data has the
potential to provide non-trivial insights into musical varia-
tion, ambiguity and perception. We believe that data fusion
has many important applications in music information re-
trieval research and in the music industry for problems re-
lating to managing large amounts of crowd-sourced data.
Acknowledgements We thank anonymous reviewers for provid-
ing valuable comments on an earlier draft on this text. H.V. Koops
and A. Volk are supported by the Netherlands Organization for
Scientific Research, through the NWO-VIDI-grant -- to
A. Volk. D. Bountouridis is supported by the FES project COM-
MIT/.

6. REFERENCES

[1] E.P. Bugge, K.L. Juncher, B.S. Mathiesen, and J.G. Si-
monsen. Using sequence alignment and voting to im-
prove optical music recognition from multiple recog-
nizers. In Proc. of the International Society for Mu-
sic Information Retrieval Conference, pages 405–410,
2011.

[2] J.A. Burgoyne, W.B. de Haas, and J. Pauwels. On com-
parative statistics for labelling tasks: What can we
learn from MIREX ACE 2013. In Proc. of the 15th

4 The MM and MM chord label alphabets are too large for the used
PHMM application, which only accepts a smaller bioinformatics alphabet.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 183



Conference of the International Society for Music In-
formation Retrieval, pages 525–530, 2014.

[3] J.A. Burgoyne, J. Wild, and I. Fujinaga. An expert
ground truth set for audio chord recognition and mu-
sic analysis. In Proc. of the International Society for
Music Information Retrieval Conference, volume 11,
pages 633–638, 2011.

[4] C. Cannam, M. Mauch, M.E.P. Davies, S. Dixon,
C. Landone, K. Noland, M. Levy, M. Zanoni, D. Stow-
ell, and L.A. Figueira. MIREX 2013 entry: Vamp plu-
gins from the centre for digital music, 2013.

[5] T. Cho and J.P. Bello. MIREX 2013: Large vocab-
ulary chord recognition system using multi-band fea-
tures and a multi-stream hmm. Music Information Re-
trieval Evaluation eXchange (MIREX), 2013.

[6] M.J. Collins. A new statistical parser based on bi-
gram lexical dependencies. In Proc. of the 34th annual
meeting on Association for Computational Linguistics,
pages 184–191. Association for Computational Lin-
guistics, 1996.

[7] X.L. Dong, L. Berti-Equille, and D. Srivastava. Inte-
grating conflicting data: the role of source dependence.
Proc. of the VLDB Endowment, 2(1):550–561, 2009.

[8] X.L. Dong and F. Naumann. Data fusion: resolving
data conflicts for integration. Proc. of the VLDB En-
dowment, 2(2):1654–1655, 2009.

[9] X.L. Dong and D. Srivastava. Big data integration. In
Data Engineering (ICDE), 2013 IEEE 29th Interna-
tional Conference on, pages 1245–1248. IEEE, 2013.

[10] X.L. Dong and D. Srivastava. Big data integration.
Synthesis Lectures on Data Management, 7(1):1–198,
2015.

[11] S.R. Eddy. Profile hidden markov models. Bioinfor-
matics, 14(9):755–763, 1998.

[12] R. Foucard, S. Essid, M. Lagrange, G. Richard, et al.
Multi-scale temporal fusion by boosting for music clas-
sification. In Proc. of the International Society for Mu-
sic Information Retrieval Conference, pages 663–668,
2011.

[13] N. Glazyrin. Audio chord estimation using chroma re-
duced spectrogram and self-similarity. Music Informa-
tion Retrieval Evaluation Exchange (MIREX), 2012.

[14] C. Harte. Towards automatic extraction of harmony in-
formation from music signals. PhD thesis, Department
of Electronic Engineering, Queen Mary, University of
London, 2010.

[15] A. Holzapfel, M.E.P. Davies, J.R. Zapata, J.L. Oliveira,
and F. Gouyon. Selective sampling for beat tracking
evaluation. Audio, Speech, and Language Processing,
IEEE Transactions on, 20(9):2539–2548, 2012.

[16] M. Khadkevich and M. Omologo. Time-frequency re-
assigned features for automatic chord recognition. In
Acoustics, Speech and Signal Processing (ICASSP),
2011 IEEE International Conference on, pages 181–
184. IEEE, 2011.

[17] X. Li, X.L. Dong, K.B. Lyons, W. Meng, and D. Sri-
vastava. Scaling up copy detection. arXiv preprint
arXiv:1503.00309, 2015.

[18] R. Macrae and S. Dixon. Guitar tab mining, analysis
and ranking. In Proc. of the International Society for
Music Information Retrieval Conference, pages 453–
458, 2011.

[19] A. Meng, P. Ahrendt, and J. Larsen. Improving mu-
sic genre classification by short time feature integra-
tion. In Acoustics, Speech, and Signal Processing,
2005. Proc..(ICASSP’05). IEEE International Confer-
ence on, volume 5, pages v–497. IEEE, 2005.

[20] A. Meng, J. Larsen, and L.K. Hansen. Temporal feature
integration for music organisation. PhD thesis, Techni-
cal University of Denmark, Department of Informatics
and Mathematical Modeling, 2006.

[21] Y. Ni, M. Mcvicar, R. Santos-Rodriguez, and
T. De Bie. Harmony progression analyzer for MIREX
2013. Music Information Retrieval Evaluation eX-
change (MIREX).

[22] J. Pauwels, J-P. Martens, and G. Peeters. The ircamk-
eychord submission for MIREX 2012.

[23] J. Pauwels and G. Peeters. Evaluating automatically
estimated chord sequences. In Acoustics, Speech and
Signal Processing (ICASSP), 2013 IEEE International
Conference on, pages 749–753. IEEE, 2013.

[24] N. Saitou and M. Nei. The neighbor-joining method:
a new method for reconstructing phylogenetic trees.
Molecular biology and evolution, 4(4):406–425, 1987.

[25] N.T. Siebel and S. Maybank. Fusion of multiple track-
ing algorithms for robust people tracking. In Computer
VisionECCV 2002, pages 373–387. Springer, 2002.

[26] J.B.L Smith, J.A. Burgoyne, I. Fujinaga, D. De Roure,
and J.S. Downie. Design and creation of a large-scale
database of structural annotations. In Proc. of the Inter-
national Society for Music Information Retrieval Con-
ference, volume 11, pages 555–560, 2011.

[27] Nikolaas Steenbergen and John Ashley Burgoyne.
Joint optimization of an hidden markov model-neural
network hybrid for chord estimation. MIREX-Music
Information Retrieval Evaluation eXchange. Curitiba,
Brasil, pages 189–190, 2013.

[28] C. Sutton, E. Vincent, M. Plumbley, and J. Bello. Tran-
scription of vocal melodies using voice characteristics
and algorithm fusion. In 2006 Music Information Re-
trieval Evaluation eXchange (MIREX), 2006.

184 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



LANDMARK-BASED AUDIO FINGERPRINTING FOR DJ MIX
MONITORING

Reinhard Sonnleitner1, Andreas Arzt1, Gerhard Widmer1,2
Department of Computational Perception, Johannes Kepler University, Linz, Austria1

Austrian Research Institute for Artificial Intelligence (OFAI), Vienna, Austria2

reinhard.sonnleitner@jku.at

ABSTRACT

Recently, the media monitoring industry shows increased
interest in applying automated audio identification systems
for revenue distribution of DJ performances played in dis-
cotheques. DJ mixes incorporate a wide variety of signal
modifications, e.g. pitch shifting, tempo modifications,
cross-fading and beat-matching. These signal modifica-
tions are expected to be more severe than what is usually
encountered in the monitoring of radio and TV broadcasts.
The monitoring of DJ mixes presents a hard challenge for
automated music identification systems, which need to be
robust to various signal modifications while maintaining a
high level of specificity to avoid false revenue assignment.
In this work we assess the fitness of three landmark-based
audio fingerprinting systems with different properties on
real-world data – DJ mixes that were performed in dis-
cotheques. To enable the research community to evaluate
systems on DJ mixes, we also create and publish a freely
available, creative-commons licensed dataset of DJ mixes
along with their reference tracks and song-border annota-
tions. Experiments on these datasets reveal that a recent
quad-based method achieves considerably higher perfor-
mance on this task than the other methods.

1. INTRODUCTION

Automated audio identification systems, also referred to as
audio fingerprinters, identify a piece of query audio from
a collection of known reference audio pieces. In general,
such systems search for characteristic features in the query
audio, which are then compared to features of known audio
pieces. The features are the so-called fingerprints, which
should embody a favourable trade-off in storage demands,
computation complexity, comparability, specificity, and ro-
bustness. The importance of the individual properties of
the fingerprints is dictated by the use case. The indus-
try uses audio identifications systems to monitor radio and
TV broadcast channels to create detailed lists of the spe-
cific content that was played at any given time. In addi-
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national License (CC BY 4.0). Attribution: Reinhard Sonnleitner1,
Andreas Arzt1, Gerhard Widmer1,2. “Landmark-based Audio Finger-
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tion to radio and TV broadcast monitoring, performance
rights organizations show interest in monitoring music per-
formances, for example in discotheques. Without using au-
tomated identification systems, royalty collection depends
on the broadcasters who are expected to create detailed
lists of played content.

Musical content that is played in discotheques is usu-
ally performed by DJs, who can introduce severe signal
modifications by mixing sets of songs in a homogeneous
fashion. This frequently involves temporally changing the
pitch or tempo of the audio to achieve a smooth transition
from one track to the other, and often DJs will add effects
in response to the mood or atmosphere in the club.

Signal content that is modified by DJs arguably puts
enormous robustness demands on automated systems. It
seems hard to quantify the type and severity of signal ma-
nipulations that can be introduced by DJs, as several effects
can be applied in combination. For the same reason we be-
lieve it is hard to manually create meaningful test cases that
reflect the possible modifications for system evaluation.

In this work, we investigate the fitness and performance
of systems that belong to the class of so-called landmark-
based audio fingerprinting methods. Landmark-based sys-
tems extract highly robust feature points, i.e. local energy
maxima, from the two dimensional time-frequency repre-
sentation of the audio signal, and combine groups of these
landmarks to form the individual fingerprints.

We show via experiments that it is hard to achieve ac-
curate results on DJ mixes. To do this, we test three im-
plementations with different robustness properties, and re-
port on their abilities to correctly identify known audio
pieces while correctly abstaining from reporting a match
if the correct song is not contained in the given reference
database.

While the algorithmic approaches that we use in this
work are extensively evaluated in the literature, we show
that the application to DJ mixes indeed unveils shortcom-
ings, specifically in the ability to prevent false detections.
In the context of media monitoring, falsely detecting a
song can lead to incorrect royalty management.

We contribute a new dataset which poses difficulties to
automated identification systems, and investigate the dif-
ferent properties of three landmark based systems via ex-
periments on these datasets.

The paper is organized as follows. Section 2 discusses
prior and related work, in Section 3 we introduce the
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datasets that are the basis for the experiments and analysis
and interpretation of results. Section 4 gives an overview
of the methods we test in this work. Then, in Section 5 we
describe the setup of experiments and their evaluation. An
analysis of the different properties of the tested methods is
given in Section 6. Finally, in Section 7 we conclude our
work.

2. RELATED WORK

The field of audio fingerprinting enjoys high research ac-
tivity and numerous systems are described in the literature
that approach the task [6, 7, 10, 12, 14, 15, 18]. Excellent
reviews of earlier systems are presented in [2, 3].

The system described in [13] achieves pitch scale
change robustness to small scaling factors by describing
content based on short term band energies. In addition, the
system is robust to small time scale modifications.

The basic algorithm of the Shazam system, a well
known representative method for landmark-based audio
fingerprinting, is described in [18]. It pairs spectral peaks
(i.e. the so-called landmarks) that are extracted from the
audio to obtain compact hashes, which are used as index
into a hashtable to search for matches. The fingerprints are
highly robust to environmental noise and signal degrada-
tions that result from digital-analog conversions of audio.

Another system that achieves a certain amount of ro-
bustness to changes in playback speed is described in [4].
As the change of the playback speed of audio influences
the pitch scale, a system is described that can mitigate this
effect by first searching for common pitch offsets of query
and reference pieces, and then rescaling the query accord-
ingly. This system also is a member of landmark based
identification methods.

The work described in [1, 19, 20] incorporates tech-
niques from the domain of computer vision to audio iden-
tification. The authors of [1] apply a wavelet transform to
signals and create compact bit vector descriptors of content
that can be efficiently indexed via the Min-Hash algorithm.
The approach shown in [20] uses the image retrieval and
similarity approach by applying the SIFT [9] method on
logarithmically scaled audio spectrograms, and later pro-
pose a matching method using LSH [5] in [19].

The concept of extracting features based on time-
chroma patches from the time frequency representation of
the audio to describe robust features for audio identifica-
tion is discussed in [11].

We proposed to perform audio identification using com-
pact scale invariant quad descriptors that are robust to time,
pitch or speed modifications in [16], and later refined and
extended that approach in [17].

The systems we use for the experiments in this work are
described in Section 4.

3. DATA SETS

We perform experiments on two different datasets, called
disco set, and mixotic set. In the following we introduce
these datasets, and summarize their properties in Table 1.

Disco tracks ref. +[s] −[s]
set0 25 18 5661 2179
set1 12 12 3760 0
set2 12 11 3206 294
set3 11 4 1054 2006
set20 19 17 3123 457
set35 20 7 324 996
set36 28 13 872 768
set37 21 10 720 720

total: 8 148 92 18 720 7420

Mixotic tracks ref. +[s] −[s]
set044 14 14 4640 0
set123 12 12 3320 0
set222 18 11 3543 2097
set230 9 7 2560 780
set275 17 11 3398 1622
set278 12 11 3576 284
set281 18 15 3300 280
set282 14 8 2200 1740
set285 15 15 4540 0
set286 14 14 3140 0

total: 10 143 118 34 217 6803

Table 1: Data set properties of the disco set (top) and
the mixotic set (bottom). The column “tracks” gives the
number of played tracks in the DJ mix, “ref” denotes the
number of these tracks that are present in the reference
database, and the columns “+[s], −[s]” hold the number
of seconds of referenced audio and not-referenced audio
for the individual DJ mixes.

The first dataset, the disco set, contains eight mixes that
were performed in discotheques, and digitally recorded
from the DJ mixing desk. The duration of the mixes is
approximately 7 hours and 16 minutes. For this dataset we
have 296 reference tracks, only some of which are actually
played in the mixes. The genres of the mixes include pop
and rock, electronic music and German folk.

Because of copyright reasons, we cannot make the
disco set publicly available, therefore we compile a sec-
ond dataset, called mixotic set. We created this dataset
from free, CC-licensed DJ mixes that were published on
the mixotic netlabel 1 , and collected their respective refer-
ence songs, which are available under the same license.
The mixotic set consists of 10 mixes with a total dura-
tion of 11 hours and 23 minutes. For this dataset we col-
lected a set of 723 reference tracks, 118 of which are actu-
ally played in the mixes. According to the artists, this set
contains genres like Techno, Chicago House, Deep-Tech,
Dub-Techno, Tech-House, and the like. To be able to eval-
uate the fingerprinting results, we annotated the song bor-
ders of the tracks that are played in the individual mixes.
Due to the long fading regions and sometimes very ho-
mogeneous track transitions, these annotations cannot be
exact. We tried to mark the positions in time where the

1 Mixotic is accessible via http://www.mixotic.net.
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previous track is fully faded out.
We think that the mixotic set may be useful to the re-

search community, and could help to design well balanced
identification systems and to uncover specific strengths and
potential shortcomings of various methods, therefore we
publish the mixotic set along with the annotations 2 .

4. METHOD OVERVIEW

We use the datasets that we described in the previous
section to experiment with the following three methods:
Audfprint, Panako and the quad based audio fingerprinter,
henceforth referred to as simply Qfp.

Audfprint Audfprint is a MIT-licensed implementa-
tion 3 of a landmark-based audio identification algorithm
based on the method described in [18]. The published al-
gorithm utilizes quantized hash fingerprints that represent
pairs of spectral peaks. The hashes are described by the
time-frequency position of the first peak and its distance
in time and frequency to the second peak. The hashes that
are computed from a snippet of query audio are used as
the keys into a suitable reference data structure, e.g. a hash
table, to retrieve reference hashes with the same key. For
each query hash, a lookup is performed and the result sets
are collected. Matched query and reference hashes which
happen to have a constant time offset in their individual
peak-time identify the reference audio, along with its posi-
tion in which the query snippet could be located.

Panako Panako [15], available 4 under the GNU Affero
General Public License is a free audio identification sys-
tem. It transforms the time domain audio signal into a
two dimensional time frequency representation using the
Constant Q transform, from which it extracts event coordi-
nates. Instead of peak pairs, the method uses triples, which
allows for a hash representation that is robust to small time
and pitch scale modifications of the query audio. Thus, the
system can also report the scale change factors of the query
audio with respect to the identified reference. The system
is evaluated on queries against a database of 30 000 full
length songs, and on this data set achieves perfect speci-
ficity while being able to detect queries that were changed
in time or frequency scale of up to around 8%. In this work
we use Version 1.4 of Panako.

Qfp The Qfp method [16, 17] is a landmark based
method that is robust to time and pitch scale changes of
query audio. Its evaluation shows high average accuracy of
more than 95% and an average precision of 99% on queries
that are modified in pitch and/or time scale by up to±30%.
The evaluation is performed on a reference data base con-
sisting of 100 000 full length songs. The average query run
time is under two seconds for query snippets of 20 seconds

2 Available on http://www.cp.jku.at/datasets/fingerprinting/
3 Audfprint is available on https://github.com/dpwe/audfprint.
4 Panako is available on http://www.panako.be/.

in length. The system also correctly uncovers any underly-
ing scale changes of query audio. While some robust au-
dio identification systems are using methods from the field
of computer vision (c.f. Section 2), Qfp is inspired by a
method used in astronomy [8], which proposes to use n-
tuples (with n > 2) of two dimensional point coordinates
to describe continuous feature descriptors that are invariant
to rotation and isotropic scaling. The Qfp method adapts
the described findings to represent non-isotropic-scale in-
variant features that allow for robust and efficient audio
identification. The system uses range queries against a spa-
tial data structure, and a subsequent verification stage to
reliably discard false matches. The verification process ac-
cepts matches within individual match sequences if spec-
tral peaks in a region around the candidate match in the
reference audio are also present in the query audio excerpt.
Evaluation results of the Qfp method along with a param-
eter study and resulting run times are given in [17].

These methods are well performing identification sys-
tems. An evaluation of experiments using Audfprint and
Panako is given in [15]. While all three methods are
landmark-based, the systems employ different inner mech-
anisms and thus are expected to perform differently on the
datasets used in this work. Note that we use Audfprint and
Panako as published, without tuning to the task at hand.
We do this because we believe that the methods are pub-
lished with a set of standard parameters that turned out to
be well suited for general use cases according to experi-
mentation performed by their authors. Likewise, we also
use the same set of parameters for Qfp, as they are de-
scribed in [17]. We incorporated improvements for run-
time, but these do not have any impact on the identification
results at all. For the task at hand, we want to investigate
the fitness of the underlying algorithms of the methods,
rather than discussing their specific implementations.

5. EXPERIMENT SETUP

Experiments are performed individually on the datasets we
described in Section 3. The general experimental setup is
as follows. The mixes are split into non-overlapping query
snippets of 20 seconds in length. To create query snippets
from the DJ mix we use the tool SoX 5 along with switches
to prevent clipping, and convert the snippets into .wav files.

The methods process each query snippet and store the
results. The implementations of the three tested systems
behave differently in answering a query: if the query ex-
cerpt could be matched, Audfprint and Panako by default
report the whole query duration as matched sequence. Qfp
gives a more detailed answer and reports the start time and
end time of the matched portion within the query excerpt.
Likewise, as Qfp, Audfprint allows to report the exact part
of the query that it could actually match (using the option
--find-time-range), but for Panako we did not find
such an option. For best comparability of the evaluation
results, for all of the three methods we assign the reported
match file ID to its whole query of 20 seconds.

5 SoX is available on http://sox.sourceforge.net/.
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Dataset Referenced not ref.
+[s] −[s] M. TP FP FN acc. prec. TN FP spec.

A 7838 7440 3442 0.419 0.513 3611 3809 0.487
Disco. 18720 7420 P 4624 5596 8500 0.247 0.452 5539 1881 0.746

Q 13879 1253 3588 0.741 0.917 6996 424 0.942

Qv 14316 1523 2881 0.765 0.904 6587 833 0.888
Qε 3423 152 15145 0.183 0.957 7413 7 0.999
A 21783 10233 2201 0.637 0.680 1735 5068 0.255

Mixotic 34 217 6803 P 12326 16181 5710 0.360 0.432 2371 4432 0.349
Q 29985 1262 2970 0.876 0.959 6304 499 0.927

Qv 30445 1680 2092 0.889 0.948 4395 2408 0.647
Qε 19497 349 14371 0.570 0.982 6715 88 0.987

Table 2: Evaluation results for the data sets. The column “+” shows the number of seconds of the DJ mix, for which a
reference is present. The column “−” likewise gives the number of seconds for which no reference track is present in the
database. The methods (M.) Audfprint, Panako and Qfp are abbreviated as “A”, “P ” and “Q”. The column “Qv” shows
Qfp results without the verification stage, and “Qε” shows the results for reduced search neighbourhood. “acc.” is the
accuracy, “prec.” is the precision and “spec.” is the specificity. The experiment setup and the meaning of the measures is
defined in Section 5. Because of space constraints we omit showing the individual statistics of each DJ mix that is contained
in the dataset, and directly present the overall values. Detailed results are available in the published dataset.

It is important to note that we do not perform smoothing
over time on the individual results but rather test the raw
identification performance of each method based on each
individual query.

We compare the fingerprinting results to the ground
truth on a one second basis, i.e. for each second of the DJ
mix we check whether the corresponding query result is
correct.

Here we distinguish the following two cases: Case 1
(C1) identifiable, and Case 2 (C2) not identifiable por-
tions of the mixes. We investigate how the systems perform
in cases where a song is identifiable, because it is present
in the reference database (C1), and how well behaving a
system is in not producing a match result in cases where
this is correct, i.e. because the track is in fact not present in
the reference (C2).

For all cases (C1), we count the number of seconds of
true positives (TP ), false positives (FP ) and false nega-
tives (FN ). True positives are cases in which the system
correctly identified a track from a query. The false posi-
tives denote situations in which the wrong track is claimed
to be present, and the false negatives are cases in which
the system did not report a result at all. For this evaluation
there exist no true negatives, i.e. TP+FP+FN = N . For
this case (C1) we define the following two performance
measures.

Accuracy, as the proportion of correctly identified
queries:

Accuracy =
TP

TP + FP + FN
=

TP

N
(1)

Precision, as the proportion of cases in which the sys-
tem reports an identification and this claim is correct, i.e.
a system that operates with high precision produces a low
proportion of false positives:

Precision =
TP

TP + FP
(2)

To assess system performance for cases (C2), in which
the reference track is unknown, i.e. not present in the
database, we compute a third evaluation measure, the
specificity:

Specificity =
TN

TN + FP
(3)

Here, TN denotes the number of seconds in which no re-
sult was produced, and at the same time the reference track
is absent. The number of FP are the cases where the sys-
tem reports a match despite the fact that there is no refer-
ence. Specificity expresses the capability of a system to
avoid false predictions by not reporting a result.

The identification performance of all three methods is
listed in Table 2. We will discuss the results in the Section
below, and analyze the properties and differences of the
methods.

6. DISCUSSION OF RESULTS

Table 2 summarizes the results of each method on the disco
set and the mixotic set (rows Qv and Qε become relevant
at a later point of this section). For the disco set, the accu-
racy shows that just between 25% and 74% of detectable
seconds were assigned to the correct reference track. This
reveals that DJ mix track identification indeed is a tough
problem. The precision values show that Audfprint and
Panako claim a wrong track in around 50% of the cases
where the correct track should be identifiable. The speci-
ficity of the systems shows that Audfprint correctly ab-
stains from claiming a match in roughly 50% of the cases
where no track can be found because it is not referenced
in the database. Panako shows higher specificity at around
75%. Qfp manages to correctly treat TN in 94% of the
cases.

The results obtained from the experiment on the mixotic
set show better accuracy for all three methods, and Audf-
print and Qfp operate with higher precision than on the
disco set. For the mixotic set, all three systems show lower
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specificity than for the disco set. We believe that this is
a result of the larger reference database (723 songs rather
than 296 in the disco set) and the highly repetitive tracks
in the mixotic set. In total, Qfp performs at higher accu-
racy, precision and specificity than Audfprint and Panako.
Panako shows higher specificity than Audfprint on both
datasets.

The low specificity of the algorithm that is implemented
in Audfprint indicates that its fingerprints are too general.
Panako uses triples of peaks, which inherently capture
more specific information of the local signal. Indeed, its
specificity on the disco set is considerably higher than that
of Audfprint, i.e. its fingerprint descriptors are less general,
which may be the reason for it to correctly refuse to make
a claim in around 75% of the cases on the disco set, and in
roughly 35% of the cases on the mixotic set.

Analysis Qfp performs best on the tested datasets. To
find out which properties of the system are responsible for
that, we perform two additional experiments. The first ex-
periment is intended to investigate the impact of the veri-
fication process, and the second experiment highlights the
effect of the range query for Qfp. For a detailed explana-
tion on the parameters that are mentioned in this section,
we ask the reader to consult [17].

First, we want to find out if it is the verification process
that allows it to maintain high performance.

If we switch off the verification 6 and run the experi-
ments, this results in an overall accuracy of 0.76, a pre-
cision of 0.90, and a specificity of 0.89 on the disco set.
For the mixotic set this results in the accuracy of 0.89, pre-
cision of 0.95 and a specificity of 0.65 (c.f. Table 2, row
Qv). In terms of accuracy and precision, the results for
both datasets are comparable to those with active verifica-
tion. The specificity on the mixotic set, however, is notably
lower.

We now investigate the performance of the Qfp method
using a reduced neighbourhood for the range queries.
We argue, that this loosely translates to using quantized
hashes, i.e. if a query peak moves with respect to the oth-
ers, the corresponding reference hash cannot be retrieved.
This neighbourhood is specified as distance in the continu-
ous hash space of the quad descriptor. For this experiment
we reduce this distance from 0.0035, 0.012 for pitch and
time to 0.001, 0.001 for pitch and time. For the disco set,
this results in a low accuracy of 0.18, precision of 0.96
and specificity of 0.99. On the mixotic set, the small range
query neighbourhoods result in an accuracy and precision
of 0.57 and 0.98, and specificity of 0.99 (c.f. Table 2, Qε).

Extended Database We now add the reference tracks
of both, the disco set and the mixotic set to a reference
database that consists of 430 000 full length tracks (this
captures almost the entire Jamendo corpus 7 ), and inspect

6 Strictly speaking, the implementation does not allow to switch off the
verification. Therefore we instead relax the verification constraints such
that no candidate can be rejected.

7 Jamendo is accessible via https://www.jamendo.com.

how the Qfp method responds to that amount of additional
tracks. The overall result for the disco set (with standard
settings for the range query and verification) is 0.69 for
accuracy and 0.80 for precision. The specificity is 0.71.
On the mixotic set, the results are as follows: Accuracy
0.83, precision 0.87 and specificity 0.56. The low speci-
ficity here is also impacted by a song duplicate in the DJ
mixes and Jamendo corpus, i.e. in the case of mixotic set
282, Qfp could correctly identify the track “Akusmatic -
Scamos” within the additional 430 000 songs, but the eval-
uation treats this as FP , because according to the ground
truth this track is not present. The issue with song du-
plicates does not influence any other experiments in this
work, since we use the extended reference database only
with the Qfp method.

The experiment shows that there is a certain negative
impact, causing more FP when trying to identify tracks in
DJ mixes on larger databases. Note that these results also
depend on the experiment setup as defined in Section 5,
where we chose to assign the identified track ID to the
whole query of 20 seconds in length. If we respect the
reported start and end time of identified queries, the results
on the disco set give an accuracy of 0.60, precision of 0.88,
and a specificity of 0.89. For the mixotic set the accuracy
then is 0.76, precision is 0.93 and the specificity results in
0.80.

Qfp turns out to maintain – what we think is – accept-
able performance, on a database with 430 000 full length
songs. According to precision and specificity, the other
methods tested in this work seem to get distracted by 723
reference songs. This leads us to suggest that the moni-
toring of DJ mixes via automated fingerprinting systems
indeed is a challenging task.

Visual analysis The different behaviour of the systems
can be conveyed visually. In Figure 1 we show an excerpt
of the mixotic set mix-ID 222 8 , from second 1500 to 4300.
Vertical lines represent song borders. The figure shows the
scattered query identification results, where the x-axis po-
sition is the query time, and the y-axis position locates the
query within the reference song that the system could iden-
tify. Thus, scattered positions of songs that are correctly
identified over several successive queries usually take the
shape of a sawtooth function. In DJ mixes this will not al-
ways be the case, as the DJ can loop content. The different
track names are encoded as markers, to be able to see if a
system tends to confuse the same two tracks, or whether
it reports many different tracks for a portion that it fails
to identify correctly. The larger markers shown on top, be-
tween song borders, are the reference. A missing reference
marker means that the song is not present in the database.
Note that the evaluation does not consider whether the pre-
dicted position within the reference is correct, as this is not
meaningful for highly repetitive musical content.

8 The mix-IDs are listed and explained in the published dataset.
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Figure 1: Query visualisation of an excerpt of mixotic set-ID 222. The rows show the results of individual, non-overlapping
20s queries without smoothing of predictions for Audfprint (top), Panako (middle) and Qfp (bottom). The vertical lines are
the annotated song borders. The identification claims of the systems are encoded in the shown markers, where each marker
represents a reference track. The x-axis position shows the query excerpt position, and y-axis the location of the matched
query within the identified reference track. A missing large marker between song borders means that the reference song is
not present in the database. The figures show a bar at the bottom, which represents the confusions. TP (green) and TN
(blue) are shown on top of the horizontal line, FP (red) and FN (yellow) are shown below.

7. CONCLUSIONS

The results obtained from the experiments shown in this
work support the intuition that automated audio identifica-
tion on DJ mixes is a challenging problem. We observe that
the Qfp method performs best on the tested datasets, and
believe that it constitutes a well suited method to further
investigate the analysis of DJ mixes via audio fingerprint-
ing.

For future work and experiments we strive to collect
DJ mixes with accurate annotations and timestamps, that
are exported from the specific software or the midi con-
troller used by the DJ. This would allow to gain insight on
what kinds of effects and combinations thereof prevent au-
tomated identification systems from correctly identifying
certain portions of query audio.
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ABSTRACT

We describe a system to learn and visualize specifications
from song(s) in symbolic and audio formats. The core of
our approach is based on a software engineering proce-
dure called specification mining. Our procedure extracts
patterns from feature vectors and uses them to build pat-
tern graphs. The feature vectors are created by segment-
ing song(s) and extracting time and and frequency domain
features from them, such as chromagrams, chord degree
and interval classification. The pattern graphs built on
these feature vectors provide the likelihood of a pattern be-
tween nodes, as well as start and ending nodes. The pat-
tern graphs learned from a song(s) describe formal spec-
ifications that can be used for human interpretable quan-
titatively and qualitatively song comparison or to perform
supervisory control in machine improvisation. We offer re-
sults in song summarization, song and style validation and
machine improvisation with formal specifications.

1. INTRODUCTION AND RELATED WORK

In software engineering literature, specification mining is
an efficient procedure to automatically infer, from empir-
ical data, general rules that describe the interactions of a
program with an application programming interface (API)
or abstract datatype (ADT) [3]. It has convenient proper-
ties that facilitate and optimize the process of developing
formal specifications. Specification mining is a procedure
that is either entirely automatic, or only requires the rel-
atively simple task of creating templates. It offers valu-
able information on commonalities in large datasets and
exploits latent properties that are unknown to the user but
reflected in the data. Techniques to automatically gener-
ate specifications date back to the early seventies, includ-
ing [5, 24]. More recent research on specification mining
includes [2,3,10,17]. In general, specification mining tools
mine temporal properties in the form of mathematical logic

c© Rafael Valle, Daniel J. Fremont, Ilge Akkaya, Alexandre
Donze, Adrian Freed, Sanjit S. Seshia. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Rafael Valle, Daniel J. Fremont, Ilge Akkaya, Alexandre Donze, Adrian
Freed, Sanjit S. Seshia. “Learning And Visualizing Music Specifications
Using Pattern Graphs”, 17th International Society for Music Information
Retrieval Conference, 2016.

or automata. Figure 1 describes a simple musical specifica-
tion. Broadly speaking, the two main strategies for build-
ing these automata include: 1) learning a single automa-
ton and inferring specifications from it; 2) learning small
templates and designing a complex automaton from them.
For example, [3] learns a single probabilistic finite state
automaton from a trace and then extracts likely properties
from it. The other strategy circumvents the NP-hard chal-
lenge of directly learning a single automaton [14, 15] by
first learning small specifications and then post-processing
them to build more complex state machines. The idea of
mining simple alternating patterns was introduced by [10],
and subsequent efforts include [12, 13, 25, 26].

Figure 1: This graph describes three specifications: 1) a
sequence must start (unlabelled incoming arrow) with a
note of any type; 2) every note that does not belong to the
underlying chord (dissonant) must be followed by a note
that belongs to that chord (consonant); 3) a consonant note
must be followed by a dissonant note or another consonant
note; F means followed.

Manually describing such general rules from music is
a complex problem, even for experts, due to music’s pa-
rameter space complexity and richness of interpretation.
Specification mining is a very attractive solution because it
offers a systematic and automatic mechanism for learning
these specifications from large amounts of data. Similar
to specification mining strategies, algorithms for pattern
discovery in music such as [6, 20, 21] combine segmen-
tation and exhaustive search to find patterns that will be
condensed to create a statisticailly significant description
of the song(s). Our method avoids the exhaustive search
by searching for specific patterns and creates a complex
pattern graph by combining the patterns found, combin-
ing pattern graphs, and recursively building pattern graphs
learned from pattern graphs. The pattern graph allows the
representation of edges and nodes as mathematical objects,
e.g. multidimensional point sents or Gaussian Mixture
Models (GMM), hence it is not limited to strings.
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2. SPECIFICATIONS AND PATTERN GRAPH

This paper adapts the work of [17] to formally describe
specification mining in music. It expands our previous ef-
forts in [9] by developing an inference engine that uses
pre-defined templates to mine from a collection of traces
(songs) specifications in the form of pattern graphs.

2.1 Formal Definition

Let F be a list of features extracted from a song S, e.g.
pitch, duration, chroma, etc. The notation vf,t indicates
the value of f ∈ F at time t.

Definition 1 (Event) Formally, we define an event with
the tuple (~f,~v, t), where ~f is a set of features and ~v is their
corresponding values at time t. The alphabet Σf is the set
of distinct events given feature f , and a finite trace τ is a
sequence of events ordered by their time of occurrence.

Definition 2 (Projection) The projection π of a trace τ
onto an alphabet Σ, πΣ(τ), is defined as τ with all events
not in Σ deleted.

Definition 3 (Specification Pattern) A specification pat-
tern is a finite state automata, FSA, over symbols Σ. Pat-
terns can be parametrized by the events used in this alpha-
bet; for example, we use “the A pattern between events a
and b” to indicate the pattern obtained by taking a FSA A
with |Σ| = 2 and using a as the first element of Σ and b
as the second. A pattern is satisfied over a trace τ with
alphabet Στ ⊇ Σ iff πΣ(τ) ∈ L(A), that is, if and only
if the projection of the trace onto the alphabet Σ is in the
language of A.

Definition 4 (Binary Pattern) A binary pattern is a spec-
ification pattern with alphabet size 2. We denote a binary
pattern between events a and b as a R b, where R is a label
identifying the pattern. 1

Definition 5 (Pattern Graph) A pattern graph is a la-
belled directed multigraph whose nodes are elements of
Σf , i.e. values of a feature f . A node can be labelled
as a starting node, an ending node, or neither. Edges are
labelled with a type of binary pattern and a count indi-
cating how many times the pattern occurred in the dataset
used to build the pattern graph.

For example, an edge (a, b) labelled (R, 3) in the pattern
graph means the pattern a R b occurred 3 times in the
dataset. Figure 3 provides a complete example of a pat-
tern graph learned from the example in Figure 2. We have
indicated starting nodes with an unlabelled incoming ar-
row and ending nodes with a double circle (by analogy to
the standard notation for FSAs). 2

1 Although we explored binary patterns in this paper, our method sup-
ports patterns with more than two events.

2 A pattern graph can be converted into an automaton, but is not itself
an automaton.

Figure 2: First phrase of Crossroads Blues by Robert
Johnson as transcribed in the Real Book of Blues. The
transition from chord degree 10 (note f) to chord degree 7
(note d) is always preceded by two or several occurrences
of chord degree 10. Not merging 10 F 7 with 10 F 7 repre-
sents a musical inconsistency and the pattern graph would
accept words such as (10, 7, 10, 7).

Figure 3: Pattern graph learned on the chord degree fea-
ture (interval from root) extracted from the phrase in Fig. 2.
The F pattern between chord degrees 10 and 7 has been
merged into the pattern 10 T 7.

2.2 Patterns

We generate specifications by mining small patterns from
a set of traces and combining the mined patterns into a pat-
tern graph. The patterns in this paper as described as reg-
ular expressions, re, and were chosen based on idiomatic
music patterns such as repetition and ornamentation. Other
patterns can be mined by simply writing their re.

Followed(F): This pattern occurs when event a is im-
mediately followed by event b. It provides information
about immediate transitions between events, e. g. reso-
lution of non-chord tones. We denote the followed pattern
as a F b and describe it with the re (ab).

‘Til(T): This pattern occurs when event a appears two
or more times in sequence and is immediately followed by
event b. It provides information about what transitions are
possible after self-transitions are taken. We denote the ‘til
pattern as a T b and describe it with the re (aaa∗b).

Surrounding(S): This pattern occurs when event a im-
mediately precedes and succeeds event b. It provides in-
formation over a time-window of three events and we mu-
sically describe it as an ornamented self-transition. We de-
note the surrounding pattern as a S b and describe it with
the re (aba).

2.3 Pattern Merging

If every match to a pattern P2 = a R b occurs inside a
match to a pattern P1 = a Q b, we say that P1 subsumes
P2 and write P1 =⇒ P2. When this happens, we only
add the stronger pattern P1 to the pattern graph, with the
purpose of emphasizing longer musical structures. Given
the patterns described in this paper:

1. a T b =⇒ a F a, a F a is merged into a T b

2. a T b =⇒ a F b, a F b is merged into a T b

3. a S b =⇒ a F b, a F b is merged into a S b

4. a S b =⇒ b F a, b F a is merged into a S b
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Shorter patterns not included will be added iff they occur
outside the scope of longer patterns. Nonetheless, the pat-
tern graph is designed such that it accepts traces that satisfy
the longer pattern, e.g. a T b accepts the sequences aab and
aaab, but not ab or aac.

3. LEARNING AND ENFORCING
SPECIFICATIONS

3.1 Learning Specifications

Given a song dataset and their respective features, we build
pattern graphs Gf ∈ G by mining the patterns described
in 2. The patterns in G correspond to the set of allowed
patterns, while all others are forbidden.

The synchronous product of Gf can be used to build a
specification graph Gs that can be used to supervise the
output of a machine improviser. This concept originates
from the Control Improvisation framework, which we first
introduced in [8, 9] and have used in IoT applications [1].
We refer the reader to [11] for a thorough explanation.

Algorithm 1 describes the specification mining algo-
rithm. D is a dataset, e.g. Table 1, containing time and fre-
quency domain features, described in section 4, extracted
from songs with or without phrase boundary annotations;
P is a list containing string representations of the regu-
lar expressions that are used to mine patterns. The pattern
graph implementation and the code used to generated this
paper can be found on our github repository 3

Algorithm 1: Specification Mining Algorithm
Input: dataset D over features F ; patterns P
Output: a pattern graph Gf for each f ∈ F

1 for f ∈ F do
2 Gf ← new pattern graph on vertices Σf
3 for song ∈ D do
4 for phrase ∈ song do
5 phrasef ← the sequence of values of the

feature f in phrase
6 label the first element of phrasef as a

starting node in Gf
7 label the last element of phrasef as an

ending node in Gf
8 for a, b ∈ Σf do
9 counts←

countPatternMatches(a, b, phrasef ,P)

10 foreach pattern P with
counts(P ) > 0 do

11 add to Gf the edge (a, b) with
label (P, counts(P ))

In the next section we describe some of the features, or
viewpoints, that we used in this paper to build specifica-
tions that describe relevant musical properties of a song(s).

3 https://github.com/rafaelvalle/music_pattern_
graphs

4. MUSIC SPECIFICATION MINING

We abstract and formalize a song into a sequence of feature
values possibly aligned with a chord progression, phrase-
segmented and including key signature changes. In this
paper, the time unit is the beat, including respective integer
subdivisions. To encode all events in a score, we use an
alphabet which is the product of five alphabets: Σ = Σp ×
Σd × Σa × Σb × Σ12, where
• Σp is the pitches alphabet, i.e. Σp = { > , a0, a#0, · · · };
• Σd is the durations alphabet, i.e. Σd = {�, ♩, ˘ “, . . .}

with ♩ = 1 beat. Note that Σd also includes positive
integer subdivisions of the beat, e.g. for tuplets.

• Σc is the chords alphabet, i.e. Σc = {C, D7#4, . . .};
• Σb is the beat alphabet. For example, if the

smallest duration (excluding fractional durations) is
the eighth and the meter is in 4, then Σb is
{0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5}.

• Σ12 is the binary chroma alphabet. For this, we interpret
the binary chroma as a binary number and encode it with
the respective Unicode string.
Note that the full alphabet enables the creation of data

abstractions, e.g. chord degree. Below we describe the
data abstractions implemented using the alphabet above.
A similar strategy is used in [6,7], where data abstractions
(derived types, viewpoints) are implemented. In our cur-
rent implementation, all the specifications implicitly use
the full alphabet Σ via the product of pattern graphs.

4.1 Time Domain Features

• Event Duration: This feature describes the dura-
tion in beats of silences and notes. It imposes hard
constraints on duration diversity but provides weak
guarantees on rhythmic complexity because it has
no awareness of beat location. Figure 4 provides
one example of such weak guarantees. Further con-
straints can be imposed by combining event duration
and beat onset location.

Figure 4: Selection of event duration specifications
learned from a blues songs dataset. The pattern 1/3 S 1
(1/3, 1, 1/3) is allowed but can produce incomplete tuplets.

• Beat onset location: This feature describes where
events happen within the beat. Cooperatively,
event duration and beat onset location produce com-
plex specifications that allow for rhythmic diver-
sity. These specifications extend the work in [9] by
replacing handmade specifications designed to en-
sure rhythmic tuplet completeness with specifica-
tions learned from data. Figure 5 provides an ex-
ample of such specifications learned from 4/4 songs.
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Figure 5: Beat onset location specifications learned from
a blues songs dataset.

4.2 Frequency Domain Features

• Scale Degree: The scale degree is the identifica-
tion of a note disregarding its octave but regarding
its distance from a reference tonality. Songs usually
impose soft constraints on the pitch space, defining
the set of appropriate scale degrees and transitions
thereof. Figure 6 provides a selection of scale de-
gree mined specifications. Since scale degree can
only provide overall harmonic constraints to each
tone over the scope of the entire song, we use an-
other feature to provide harmonic constraints based
on chord progression, therefore increasing the tem-
poral granularity of the harmonic specifications.

Figure 6: Selection of scale degree specifications learned
from a blues songs dataset. These specifications conform
with the general consent that blues songs include the main
key’s major scale with the “flat seven” (scale degree 10)
and the blue note (scale degree 3). Note that sharp fourths
(scale degree 6) are used as approach tones to scale degrees
5 and 6.

• Interval Classification: Expanding on [9], we re-
place the hand-designed tone classification spec-
ifications, here called interval classification, with
mined specifications. These specifications provide
information about the size (diatonic or leap) and
quality (consonant or dissonant) of the music in-
terval that precedes each tone. Figure 7 illustrates
mined specifications. Although scale degree and in-
terval classification specifications ensure desirable
harmonic guarantees given key and chord progres-
sion, they provide no melodic contour guarantees.

• Melodic Interval: This feature operates on the first
difference of pitch values and is associated with the
contour of a melody. Combined with scale degree
and interval classification, it provides harmonic and
melodic constraints, including melodic contour.

Figure 7: Interval class specifications learned from a blues
songs dataset. The symbols A, B, C, and D, describe tones
reached by consonant step, consonant leap, dissonant (non-
chord tones) step, and dissonant leap respectively. Con-
sonant and dissonant notes preceded by rests, R, are de-
scribed with the symbols I and O respectively.

• Chord Degree: The chord degree is the identifica-
tion of a note regarding its distance in semitones to
the root of a chord. It adds harmonic specificity to
the interval class.

Table 1 provides the reader with a selection of features
extracted from a blues song with chord and phrase number
annotations. The next section analyzes in detail the appli-
cation of pattern graphs and specifications in song summa-
rization, song and style validation, and machine improvi-
sation with formal specifications.

5. EXPERIMENTAL RESULTS

For the experiments in this paper, we learned pattern
graphs and pattern sequences from three non-overlapping
datasets, namely:

Dtrain a dataset of 20 blues songs with chord and phrase
annotations, transcoded from the Real Book of Blues
[18];

Dtest a dataset of 10 blues songs with chord and phrase
annotations, transcoded from the Country Blues
songbook [16];

SAC a dataset, with 10 genres and 25 pieces of music per
genre [19].

pretty midi [22] is used for handling midi data.

5.1 Style and Song Summarization

Pattern graph plots can be used to understand and visual-
ize the patterns of a song or musical style. In section 4 we
provided pattern graph visualizations that described sig-
nificant musical properties of Dtrain. Pattern sequence
plots, on the other hand, offer a visualization that is di-
rectly related to a song’s formal structure. A pattern se-
quence plot is a color sequence visualization of a pattern
sequence extracted from a song; for example, the chroma
pattern sequence (100010010000, T, 000000000000, F,
100000000000), describes: play any inversion of the C
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chord dur measure phrase . . . pitch mel interval beat interval class
0 F7 14/3 1 1 . . . 69 R 1 I
1 F7 1/3 2 1 . . . 65 -4 5/3 B
2 F7 2/3 2 1 . . . 67 2 1 C
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
23 B-7 1 10 3 . . . 67 -1 1 C
24 F7 4 11 3 . . . 65 -2 1 A
25 F7 -4 12 3 . . . R R 1 R

Table 1: Dataframe from Blues Stay Away From Me by Wayne Raney et al. R represents a rest.

major triad two or more times, followed by one rest fol-
lowed by the note C played one time. The conversion of
a feature into color is achieved by mapping each feature
dimension to RGB. Features with more than three dimen-
sions undergo dimensionality reduction to a 3 dimensional
space through non-negative matrix factorization (NMF) 4 .
Figure 8 shows a plot of binary chroma and dimensionality
reduced binary chroma overlaid with the patterns associ-
ated with each time step.

5.2 Song and Style Validation

Song and style validation describe to what extent a song or
a style violates a specification. A violation occurs when a
pattern does not satisfy a specification, i.e. the pattern does
not exist in the pattern graph. Figure 9 provides histograms
of violations obtained by validating Dtest on chord degree
and interval specifications learned from Dtrain.

Given a total of 355 patterns learned from Dtest, there
were 35 chord degree violations and 35 melodic interval
violations, producing an average violation ratio of ≈ 0.02
per song 5 . The dataset used for learning the specifications
is small. A larger dataset will enable us to better investigate
how they are not characteristic of the blues.

For the task of style validation, we build binary chroma
specifications for each genre in the SAC dataset. The spec-
ifications are used separately to validate all genres in the
SAC dataset. Validation is performed with the average
validation ratio, which is computed as the ratio of viola-
tions given number of patterns in the song being validated.
Figure 10 provides the respective violation ratio matrix. 6

These validations can be exploited in style recognition and
we foresee that more complex validations are possible by
using probabilistic metrics and describing pattern graph
nodes as GMMs.

5.3 Machine Improvisation with formal specifications

Machine improvisation with formal specifications is based
on the framework of Control Improvisation. Musically
speaking, it describes a framework in which a controller
regulates the events generated by an improviser such that
all events generated by the improviser satisfy hard (non-
probabilistic) and soft (probabilistic) specifications.

4 We use scikit-learn’s NMF with default parameters
5 (35 + 35)/(355 ∗ 10)
6 Note that this is not a confusion matrix and must not be symmetric.

Using a 12-bar blues excerpt and its chord progression
shown in Figure 12, we navigated the factor oracle [4]
with 75% replication probability to generate improvisa-
tions with specifications generated from Dtrain. In this
task we used duration, beat onset location, chord degree,
interval class and melodic interval joint specifications.

We computed the average melodic similarity between
Dtrain and other sets of improvisation, including: 50 fac-
tor oracle improvisations generated without specifications,
50 factor oracle improvisations generated with specifica-
tions. The melodic similarity is computed using the al-
gorithm described in [23]. As baselines, we also computed
the similarity of Dtrain to the 12 Bar Blues reference word
and to 50 random improvisations. The results in Figure 11
show that the specifications are successful in controlling
the events generated by the improviser, factor oracle, such
that they are more similar to Dtrain and satisfy the speci-
fications learned from it.

Qualitatively, the improvisation without specifications
violates several specifications related to expected harmonic
and melodic behavior, as Figure 12 confirms. For example,
measure 4 in the improvisation without specifications has
chord degrees that violate harmonic specifications. This is
possible because the events generated by the unsupervised
improvisation disregard harmonic context, thus commonly
producing unprepared and uncommon dissonant notes.

The improvisations with specifications are able to keep
overall harmonic coherence despite the use of chromati-
cism. Their melodic contour is rather smooth and the im-
provisations include several occurrences of the ’Til and
Surrounding patterns, as measures 5 and 1 respectively
show.

6. CONCLUSIONS AND FUTURE WORK

This paper investigated the use of pattern graphs and spec-
ification mining for song and style summarization, vali-
dation, and machine improvisation with formal specifica-
tions. Our experimental results show that pattern graphs
can be successfully used to graphically and algorithmically
describe and compare characteristics of a music collection,
and in guiding improvisations.

We are currently investigating smoothing strategies, in-
cluding the use of a larger dataset, for pattern graph learn-
ing so that we can more robustly use probabilistic metrics
for song and style validation.
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Figure 8: Down by the band 311 as found in SAC’s dataset. The top plot shows the raw feature (binary chroma). The
bottom plot shows the dimensionality reduced chroma (NMF with 3 components) with the components scaled and mapped
to RGB. The patterns associated with each event are plotted as grayscale bars. The absence of a grayscale bar represents
the Followed pattern.

Figure 9: Histogram of melodic interval and chord degree
violations. The y-axis represents the patterns that do not
exist in the specification and the x-axis represents their fre-
quency. F and T represent the patterns Followed and ’Till
respectively.

Figure 10: This violation ratio matrix shows that similar
styles have lower violations ratios. Unexpectedly, Rap -
Pop Rap specifications are more violated by Rock - Alter-
native than by Classical - Baroque or Classical - Romantic.

Although for this paper we hard-coded the pattern min-
ing algorithm to avoid regular expression’s long run time,
we are researching sequential pattern mining algorithms
that are fast and easy and flexible to use as re.

Last and most important, we are expanding specifica-
tion mining to real-valued multidimensional features by
expressing pattern graphs nodes as gaussian mixtures.

Figure 11: Normalized Melodic Similarity w.r.t Dtrain.
Wref is the 12-bar blues phrase used as improvisation in-
put. NO SPECS and SPECS are improvisations generated
with the factor oracle with 0.75 replication probability with
and without specifications. The results show that specifi-
cations induce improvisations from that factor oracle that
are closer to Dtrain.

(a) Reference 12-bar blues phrase

(b) Improvisation without specifications

(c) Improvisation with specifications

Figure 12: Factor Oracle improvisations with 0.75 replica-
tion probability on a traditional instrumental blues phrase.
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ABSTRACT

Social knowledge and data sharing on the Web takes many
forms. So too do the ways people share ideas and opin-
ions. In this paper we examine one such emerging form:
the amateur critic. In particular, we examine genius.com,
a website which allows its users to annotate and explain
the meaning of segments of lyrics in music and other writ-
ten works. We describe a novel dataset of approximately
700,000 users’ activity on genius.com, their social con-
nections, and song annotation activity. The dataset en-
compasses over 120,000 songs, with more than 3 million
unique annotations. Using this dataset, we model overlap
in interest or expertise through the proxy of co-annotation.
This is the basis for a complex network model of the ac-
tivity on genius.com, which is then used for community
detection. We introduce a new measure of network com-
munity activity: community skew. Through this analysis
we draw a comparison of between co-annotation and no-
tions of genre and categorisation in music. We show a new
view on the social constructs of genre in music.

1. INTRODUCTION

The near-ubiquitous availability and use of the Web has en-
abled many otherwise dispersed communities to coalesce.
Many of these communities are concerned with the gath-
ering and transfer of knowledge. Perhaps the best known
of this kind of community is that of the editors and con-
tributors at Wikipedia 1 [16, 22]. However, people com-
ing together in a shared virtual space to exchange ideas is
not limited to curation of encyclopedic facts. The Web is
full of many communities; this paper focuses on an emerg-
ing one with a particular relevance to music: genius.com 2 .

1 http://wikipedia.org
2 The website and company began as rapgenius (http://

rapgenius.com) with a strong focus on explaining the nuance, ref-

c⃝ Ben Fields, Christophe Rhodes. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Ben Fields, Christophe Rhodes. “Listen to Me – Don’t Listen
to Me: What Can Communities of Critics Tell Us About Music”, 17th
International Society for Music Information Retrieval Conference, 2016.

Genius.com brings users together through annotation. The
stated purpose, and indeed, general use of the site is to ex-
plain portions of text through annotating them. These an-
notations can themselves be edited and modified, much as
would take place on a website such as Wikipedia. Unlike
on Wikipedia, however, the goal of allowing annotations
is specifically to generate metadata: These annotations are
both opinion and derivative works, criticism for the twitter
age.

We have collected a significant sample of the user activ-
ity on Genius. This sample forms the core of a dataset that
is ripe with potential. To show this, we construct a bipartite
graph model of our Genius sample, connecting users and
works via annotations made on those works. This graph
model is then used to compare the communities formed
around annotation with the genre prescribed to the anno-
tated works. In doing this we seek to test the fitness and
cultural relevance of the prescribed genre to these works.

The remainder of this paper is organized into the fol-
lowing sections. In Section 2 we discuss the relevant con-
texts: social network analytics in general, specific work in
music, complex networks and community detection. From
there, in Section 3 we describe the dataset – the collection
techniques along with various statistics concerning the raw
captured data. In Section 4 we then explore one possible
avenue of use of our dataset, network modelling and com-
munity detection. We look at how detected communities
align with prescribed genre labels for the works in these
communities with a novel metric, community skew. Fi-
nally, we state our conclusions and consider what the next
steps should be in Section 5.

2. BACKGROUND

When considering a social network of criticism such as Ge-
nius, we must consider what the landscape looks like to
place this work in a more complete context.

erences, and in-jokes of rap and hip-hop lyrics. However they re-
branded as ‘Genius’ as they widened their focus, which now in-
cludes lyrics from all genre of music as well as poetry, libretti,
and factual texts such as news articles. See this announcement
from 12 July 2014 http://genius.com/Genius-founders-
introducing-geniuscom-annotated.
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2.1 Music and Social Networks

While Genius has existed in some capacity since July of
2010 3 , it is one of many social networks with user-generated
content (UGC) and an emphasis on music. One of the ear-
liest of these networks was youtube 4 . While youtube is
ostensibly a site for hosting and sharing video, it is also
the single most prolific source of music on the Web 5 . Fur-
ther, its social structure was one of the first on the modern
Web to be extensively studied [4, 17]. It was shown that
youtube, like many other Web-based social networks, has
a power-law roll off in the distribution of its users’ con-
nections to other users and that the users congregate into
clumps of tightly connected communities, showing ‘small-
world’ characteristics.

Other Web-based communities brought together con-
tent creators with a greater explicit emphasis on social con-
nections. In particular, myspace 6 has been looked at, both
in terms of community structures [13] and as a proxy for
understanding song and artist similarity [6, 7]. Further,
these techniques have been used to drive recommenders
and playlist generation [8]. In recent years, Soundcloud 7

has become the Web platform of choice for this combina-
tion of audio recordings and social network connectivity.
It has broadly similar network characteristics [12, Chap-
ter 3] with its own particular traits, reflecting interface and
design decisions as well as the different user composition
of the network. In addition to these networks around com-
plete works, analysis has been done showing associations
between properties of the contributor network for Freesound 8

(an open collection of audio clips) and creative outcomes
among participants [19].

Analogous work has also been done on the listener or
consumer side. In particular various aspects of listening
and sharing behaviour on twitter 9 have been studied. The
twitter microblogging platform has been successfully used
to model artist similarity and descriptors, based on network
ties and other attributes [20]. Extensions of this work then
used twitter to show popularity trends across both time and
space [21]. Going a step further, twitter network analysis
can be used to create and order personalized playlists [14].

2.2 Information and Social Networks

While a significant volume of research has been done on
information gathering social networks, it nearly exclusively
uses Wikipedia as the source social network. As mentioned
in Section 1, Wikipedia aims to be encyclopedic in both
tone and scope, which colours the network significantly.

3 The beginning of their current site can be seen dating back
to 22 July 2010 according to http://web.archive.org/web/
20100615000000*/http://rapgenius.com

4 http://youtube.com
5 http://www.nielsen.com/us/en/press-room/2012/

music-discovery-still-dominated-by-radio--says-
nielsen-music-360.html

6 http://myspace.com, though it has decayed a great deal from
its peak of activity circa 2006-2008

7 http://soundcloud.com
8 urlhttp://www.freesound.org/
9 http://twitter.com

Nevertheless, this work can offer useful insight and ap-
proaches for networks of this type.

Complex network techniques are effective in determin-
ing the most influential nodes across an information net-
work [15]. This can be used to help understand how infor-
mation flows through a social network. Wikipedia editors
can broken down into different classes based on their be-
haviour within the network [11].

3. THE DATASET

In this section we describe the general structure of Genius,
especially as it pertains to the dataset presented in this pa-
per. We go into detail about the process of scraping and
spidering the site to collect the data, highlighting sampling
decisions and noting possible biases. Lastly, we present a
statistical overview of the features of the dataset.

3.1 The Structure of Genius

At its core Genius is a collection of textual representations
of works, most commonly but not exclusively lyrics. Each
of these works are rendered such that an arbitrary sequence
of words may be selected and a user may then write some
commentary about the meaning of this section of the work
(the annotation). An example of this display can be seen in
Figure 1, in this case lyrics for Hypnotize by The Notori-
ous B.I.G. with the line ‘Timbs for hooligans in Brooklyn’
highlighted with the annotation visible.

Once an annotation has been placed by a user, it can be
edited and debated. This process can involve significant
back and forth between users, as those interested within
community voice their point of view as to the meaning of
a line. The result is an annotation that reflects a collec-
tive process: the contributions that have led to the current
state of an annotation are easily viewable, as can be seen in
Figure 2 with the same annotation as the previous figure.

A user maintains a profile on Genius, as is the case on
many social networks. Central to this profile is the his-
tory of the annotations made by the user. As such, a user’s
persona on Genius is effectively the collection of their an-
notations across the site. One such user profile is shown
in Figure 3, that of the user ‘OldJeezy’, the lead contribu-
tor to the previously mentioned on annotation for the work
Hypnotize.

3.2 Collecting the Data

Until recently Genius lacked any kind of machine-readable
API 10 , so our data collection effort restructured data drawn
from the html as presented to a user. The data collection
efforts on Genius are made up of two parts: a spider and a
scraper. The spider, or mechanism to automatically move
through the pages to be collected, sets out to evenly sam-
ple across the space of user IDs, without preference for or
against how active a particular users is on the site. This
algorithm is reasonably straight-forward and relies on the

10 The recently announced API (https://docs.genius.com/)
mitigates the most of the need for further scraping via html, though the
spidering and sampling techniques detailed here are unchanged.
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Figure 1. The lyrics to Hypnotize by The Notorious B.I.G., with an annotation shown for the line ‘Timbs for hooligans in
Brooklyn’. Taken from http://genius.com/44369/The-notorious-big-hypnotize/Timbs-for-my-
hooligans-in-brooklyn on 10 March 2015.

Figure 2. The same lyrics annotation as in Figure 1, but showing the total contribution of the three users who have edited
the annotation for the highlighted text.

Figure 3. The recent annotation history for the user ‘OldJeezy’, the top contributor to the lyrics annotation shown in Figure
1. Taken from http://genius.com/OldJeezy on 10 March 2015
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fact that Genius has sequential integer user IDs. As these
ID are very nearly continuous from 0 to the most recent
ID assigned, it is trivial to approximate a fair draw random
generator to visit the user annotation history pages. Be-
cause of the flat and random mechanism in this spider, a
partial sample is far less likely to introduce a bias toward
a more densely connected graph than spidering methods
that move from one user to another via a common edge
(in this case a mutually annotated work). This implies that
a partial capture will be reasonably representative of the
whole userbase. The corresponding drawback is that any
particular work may not have its entire annotation record
collected, so its relative position in the topography of the
graph (e.g. in terms of degree) may not be accurate, though
this problem will decrease as more of the graph is captured.

To gather the data for each individual page, we created
a screen scraper using Python and the BeautifulSoup 11

toolkit. This scraper is released with an open source li-
cense and is available from github 12 .

The spider and scraper were run during December 2014
collecting user metadata, annotation, works, and works meta-
data from the contributions of 704,438 users. This sample
covers 41.1% of the 1,713,700 users 13 .

This dataset is available for download and reuse, as both
CSV and SQL dump from the Transforming Musicology
dataset repository 14 .

3.3 Statistical Overview

A variety of statistics describing the Genius data set can
be seen in Table 1. As previously mentioned, the dataset
covers the contributions of 704,438 users: 1,256,912 an-
notations on 146,186 unique works. Genius, as is common
among many social networks [2], appears to have a steep
drop off from users who sign up to users who do anything.
This can be seen in the disparity between the total captured
users and the contributing users (704,438 versus 71,129):
10.1% of users have written an annotation.

description count
total users 704,438
total annotations 1,256,912
total works 146,186
contributing users 71,129
annotation edits 2,196,522
annotations with multiple contributors 194,795

Table 1. High-level statistics for Genius dataset.

Our dataset covers some 146,186 unique works and
1,256,912 annotations, giving a mean average of 8.6 an-
notations per work. Further, the dataset contains a total

11 http://www.crummy.com/software/BeautifulSoup/
bs4/doc/

12 http://dx.doi.org/10.5281/zenodo.17515
13 The total user count is an approximation based on the highest suc-

cessfully resolving user ID as on 29 April 2015.
14 Specifically http://genius-annotations.data.t-mus.

org/, note that this dataset does not contain the source lyrics, only the
network structure around the lyrics and their annontations. This is done
for reasons of copyright compliance

of 2,196,522 distinct edits of annotations, giving the mean
annotation 1.75 edits, including its first.

Genius has 15 top-level categories for works on the site.
Each work is assigned exactly one category, which can be
taken as the work’s genre. While that is not quite right
for the non-musical categories, it is a helpful approxima-
tion. The breakdown of the works per category (genre)
are seen in Table 2. The first thing that pops out is that
while the company behind Genius may have decided to
drop ‘rap’ from their name, it still dominates their col-
lection of works, making up almost three-quarters of our
dataset. While the meanings of most of these genre names
are fairly typical, it is worth commenting on the few that
are particular to Genius: ‘x’ is used as a catch-all or miscel-
laneous; ‘screen’ is for screenplays and teleplays; ‘history’
is for both scholarly and lay texts of a historical nature;
‘unbranded’ means our scraper was unable to capture the
assigned genre; ‘tech’ covers prose about technology and
the tech industry; finally ‘meta’ is where contributors to
Genius discuss rules and community standards.

category works count percentage
rap 107270 73.3%
rock 16393 11.2%
lit 9386 6.2%
news 3720 2.5%
pop 3715 2.5%
sports 1140 0.7%
x 1014 0.6%
country 744 0.5%
screen 697 0.4%
r-b 655 0.4%
history 502 0.3%
unbranded 370 0.2%
law 250 0.1%
tech 159 0.1%
meta 151 0.1%

Table 2. Genre breakdown for Genius dataset.

In addition to the top-level categories, Genius supports
work-level social tags. The tags have also been captured
in our data set for all the works. As is typical for tags
any number may be used per work, though the top-level
genre category is repeated as a tag mechanically, so each
work has at least one. Including these top-level categories,
our dataset contains 802 unique tags. The top 10 tags (not
including the categories), along with the count of the works
they’ve been applied to, appears in Table 3.

4. NETWORK ANALYTICS

In an effort to understand what the community of annota-
tors on Genius can tell us about that material they’re anno-
tating, we model our dataset as a graph. We use this graph,
and a transform of it, to observe the community structure of
works based on co-annotation and user-overlap patterns.
Here co-annotation is when a common user annotates a
pair of works. Similarly, user-overlap is when any pair of
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category works count
Rap Genius France 9135
Genius France 6009
Deutscher Rap 5725
Polski Rap 3298
West Coast 1384
Brasil 841
Bay Area 839
Indie Rock 716
Chicago 710
Genius Britian 540

Table 3. Top tags in Genius dataset.

users contribute to any annotation on the same work (not
necessarily the same annotation).

4.1 The Graph Model

We initially model the dataset as a bipartite graph [9]. That
is a graph where each node represents one of two distinct
classes: a work or a user. The edges is this graph are
formed whenever a user has contributed at least one an-
notation to a work. No edges join two nodes of the same
class.

Given this graph we can discuss its topological features
[1]. The graph has 216,943 nodes across both class – 71,129
of those nodes represent all the users that have contributed
an annotation, 145,814 represent the works 15 . The graph
contains 439,835 edges, representing the number of unique
user-work pairs with annotations. While nearly half a mil-
lion in number, this is quite sparse representing only 4.24×
10−5 of the more than 10 billion possible pairs. There-
fore the graph has a average degree of 2.02. This bipartite
graph, serialised as graphml, is also included as part of the
dataset and is available for download as mentioned in Sec-
tion 3.

The remained of this section concerns the detection of
communities of works. In order to do this, we project our
bipartite graph to a songs-as-nodes single class graph with
weighted edges representing the users that co-annotated
linked works. We also only consider the largest connected
component, i.e. the largest number of works for which
there is a path between each pair of works included. This
reduces the number of nodes to 125,044.

4.2 Examining Community

We have performed community detection with three differ-
ent algorithms: fast greedy [5], leading eigenvector [18],
and multilevel [3]. In order to assess the suitability of each
of these inferred community structures, we take the mod-
ularity of each. Here modularity is a measure of the ra-
tio of connections within communities against connections
among communities. The optimum modularity resulting
from each of these communities detection methods, along

15 The careful reader may notice that this is 372 works fewer than the
146,186 works reference in Table 1. This is due to those works URLs not
resolving at the time of the crawl, most likely due to deletion of the work
from the collection after the annotation was made.

method modularity communities
Fast greedy 0.529 498
Leading eigenvector 0.003 11488
Multilevel 0.582 169

Table 4. The optimum modularity scores of each of the
three community detection methods used on the works
graph. The highest modularity, achieved the multilevel
method, is shown in bold.

category community count community skew
meta 16 90.0
law 12 70.0
tech 12 70.0
history 19 36.6
screen 24 35.5
r-b 23 35.0
x 24 23.3
country 19 22.0
sports 19 15.7
pop 38 8.8
news 35 8.4
unbranded 22 6.5
lit 59 5.6
rock 50 2.7
rap 143 1.2

Table 5. The spread of each genre, across detected com-
munities.

with the number of detected communities that give said
modularity, can be seen in Table 4. Based on modularity,
the multilevel community detection measure gives the best
grouping, resulting in 169 distinct detected communities.

While the higher modularity of the multilevel method is
inline with previous research on other small-world graphs,
the low score and high number of communities generated
by the leading eigenvector method is notable and merits
further investigation.

Given the 169 detected communities of works, we can
compare these communities to the prescribed genre labels
to see how (and if) they align. To do this, we generate
a confusion matrix, analogous to what might be used to
evaluate a automatic classification task. However, unlike
in a common classification task, our confusion matrix is
not square, having dimension so of 15 x 169 (the number
of categories by the number of communities). Given the
size of the confusion matrix, it is not practical to visualize
the entire thing, rather we will consider it in the following
reduction. 16 Since there are more than 10 times the de-
tected communities as there are genre categories, we can
see how widespread each genre category is across commu-
nities. That is, how many communities have more than
zero works from a given genre. This can be seen in Ta-
ble 5, which shows that spread seems to correspond with
popularity of the genre label.

16 The raw confusion matrix is available for download as a csv at
http://genius-annotations.data.t-mus.org/
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Beyond the raw counts, we can examine the community
skew of a category Sc which we define as

Sc =
Wc

W
∗ Cc

C
(1)

where Wc is the number of works in category c, W is the
total number of works in the corpus, Cc is the number
communities in the split with at least one work category
c amongst its members, and C is the total number of com-
munities in across the network. Community skew therefore
gives a measure of how widely distributed a given category
label is across communities, normalised to how popular
that label is in the corpus. A community skew of 1 means
that the number of communities covering a genre exactly
mirrors its overall representation in the corpus. Further as
the skew increase away from 1 it show a disproportionate
capture of the communities across the network. Looking at
the community skew in Table 5 this is especially the case
for the meta, law, and tech categories. With a few excep-
tions, the more well represented in the dataset a genre is
the less its skew. This relationship implies that with more
works in a genre community annotators become more dis-
tinct.

5. CONCLUSIONS AND FUTURE WORK

We have introduced the Web community Genius, a collec-
tion of (mostly music related) textual works and criticism
in the form of annotations. We described and data gath-
ering methodology, and using that methodology, collect
the annotation and works metadata for the activity of over
700,000 users, with just over 10% of them active contrib-
utors. We then modelled this dataset as a bipartite graph
of works and users. This graph was then projected into a
single class for community detection. When performing
community detection, the multilevel method was found to
perform best, with a modularity score of 0.582 finding 169
communities. Using these communities we examined the
community skew of each genre across these communities
of works. In these community measures, and skew in par-
ticular, we see that a genre’s definition is clearer as it is
more popular.

While there are many further avenues of research to take
this dataset and these foundations in the future, one in par-
ticular stands out: hybrid-methods using content. Perform-
ing content analysis on the lyrics, such as reading compre-
hension or rhyme structure analysis [10], and then using
the result in tandem with cultural structures as captured by
this work’s network models present many possible further
insights to the organisation of music.
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ABSTRACT

In this paper, we present a way to model long-term rever-
beration effects in under-determined source separation al-
gorithms based on a non-negative decomposition frame-
work. A general model for the sources affected by rever-
beration is introduced and update rules for the estimation
of the parameters are presented. Combined with a well-
known source-filter model for singing voice, an applica-
tion to the extraction of reverberated vocal tracks from
polyphonic music signals is proposed. Finally, an objec-
tive evaluation of this application is described. Perfor-
mance improvements are obtained compared to the same
model without reverberation modeling, in particular by
significantly reducing the amount of interference between
sources.

1. INTRODUCTION

Under-determined audio source separation has been a key
topic in audio signal processing for the last two decades.
It consists in isolating different meaningful ‘parts’ of the
sound, such as for instance the lead vocal from the ac-
companiment in a song, or the dialog from the background
music and effects in a movie soundtrack. Non-negative
decompositions such as Non-negative Matrix Factoriza-
tion [5] and its derivative have been very popular in this
research area for the last decade and have achieved state-
of-the art performances [3, 9, 12].

In music recordings, the vocal track generally contains
reverberation that is either naturally present due to the
recording environment or artificially added during the mix-
ing process. For source separation algorithms, the effects
of reverberation are usually not explicitly modeled and
thus not properly extracted with the corresponding sources.
Some studies [1, 2] introduce a model for the effect of
spatial diffusion caused by the reverberation for a multi-
channel source separation application. In [7] a model for

c© Romain Hennequin, François Rigaud. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Romain Hennequin, François Rigaud. “Long-term rever-
beration modeling for under-determined audio source separation with ap-
plication to vocal melody extraction.”, 17th International Society for Mu-
sic Information Retrieval Conference, 2016. This work has been done
when the first author was working for Audionamix.

the dereverberation of spectrograms is presented for the
case of long reverberations, i.e. when the reverberation
time is longer than the length of the analysis window.

We propose in this paper to extend the model of re-
verberation proposed in [7] to a source separation appli-
cation that allows extracting the reverberation of a spe-
cific source together with its dry signal. The reverbera-
tion model is introduced first in a general framework for
which no assumption is made about the spectrogram of the
dry sources. At this state, and as often in demixing appli-
cation, the estimation problem is ill-posed (optimization
of a non-convex cost function with local minima, result
highly dependent on the initialization, ...) and requires the
incorporation of some knowledge about the source signals.
In [7], this issue is dealt with a sparsity prior on the un-
reverberated spectrogram model. Alternatively, the spec-
trogram sources can be structured by using models of non-
negative decompositions with constraints (e.g. harmonic
structure of the source’s tones, sparsity of the activations)
and/or by guiding the estimation process with prior infor-
mation (e.g. source activation, multi-pitch transcription).
Thus in this paper we propose to combine the generic re-
verberation model with a well-known source/filter model
of singing voice [3]. A modified version of the original
voice extraction algorithm is described and evaluated on an
application to the extraction of reverberated vocal melodies
from polyphonic music signals.

Note that unlike usual application of reverberation mod-
eling, we do not aim at extracting dereverbated sources but
we try to extract accurately both the dry signal and the re-
verberation within the same track. Thus, the designation
source separation is not completely in accordance with our
application which targets more precisely stem separation.

The rest of the paper is organized as follows: Section 2
presents the general model for a reverberated source and
Section 3 introduces the update rule used for its estima-
tion. In Section 4, a practical implementation for which
the reverberation model is combined with a source/filter
model is presented. Then, Section 5 presents experimental
results that demonstrate the ability of our algorithm to
extract properly vocals affected by reverberation. Finally,
conclusions are drawn in Section 6.
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Notation
• Matrices are denoted by bold capital letters: M. The

coefficients at row f and column t of matrix M is
denoted by Mf,t.

• Vectors are denoted by bold lower case letters: v.
• Matrix or vector sizes are denoted by capital letters:
T , whereas indexes are denoted with lower case let-
ters: t.

• Scalars are denoted by italic lower case letters: s.
• � stands for element-wise matrix multiplication

(Hadamard product) and M�λ stands for element-
wise exponentiation of matrix M with exponent λ.

2. GENERAL MODEL

For the sake of clarity, we will present the signal model for
mono signals only although it can be easily generalized to
multichannel signals as in [6]. In the experimental Section
5, a stereo signal model is actually used.

2.1 Non-negative Decomposition

Most source separation algorithms based on a non-negative
decomposition assume that the non-negative mixture spec-
trogram V (usually the modulus or the squared modulus
of a time-frequency representation such as the Short Time
Fourier Transform (STFT)) which is a F ×T non-negative
matrix, can be approximated as the sum ofK source model
spectrograms V̂k, which are also non-negative:

V ≈ V̂ =

K∑

k=1

V̂k (1)

Various structured matrix decomposition have been pro-
posed for the source models V̂k, such as, to name a few,
standard NMF [8], source/filter modeling [3] or harmonic
source modeling [10].

2.2 Reverberation Model

In the time-domain, a time-invariant reverberation can be
accurately modeled using a convolution with a filter and
thus be written as:

y = h ∗ x, (2)

where x is the dry signal, h is the impulse response of the
reverberation filter and y is the reverberated signal.

For short-term convolution, this expression can be ap-
proximated by a multiplication in the frequency domain
such as proposed in [6] :

yt = h� xt, (3)

where xt (respectively yt) is the modulus of the t-th frame
of the STFT of x (respectively y) and h is the modulus of
the Fourier transform of h.

For long-term convolution, this approximation does not
hold. The support of typical reverberation filters are gener-
ally greater than half a second which is way too long for a
STFT analysis window in this kind of application. In this

case, as suggested in [7], we can use an other approxima-
tion which is a convolution in each frequency channel :

yf = h
f ∗ xf , (4)

Where yf , h
f

and xf are the f -th frequency channel of
the STFT of respectively y, h and x.

Then, starting from a dry spectrogram model V̂dry,k of
a source with index k, the reverberated model of the same
source is obtained using the following non-negative ap-
proximation:

V̂rev,k
f,t =

Tk∑

τ=1

V̂dry,k
f,t−τ+1R

k
f,τ (5)

where Rk is the F ×Tk non-negative reverberation matrix
of model k to be estimated.

The model of Equation (5) makes it possible to take
long-term effects of reverberation into account and gen-
eralizes short-term convolution models as proposed in [6]
since when Tk = 1, the model corresponds to the short-
term convolution approximation.

3. ALGORITHM

3.1 Non-negative decomposition algorithms

The approximation of Equation (1) is generally quantified
using a divergence (a measure of dissimilarity) between V
and V̂ to be minimized with respect to the set of parame-
ters Λ of all the models:

C(Λ) = D(V|V̂(Λ)) (6)

A commonly used class of divergence is the element-
wise β-divergence which encompasses the Itakura-Saito
divergence (β = 0), the Kullback-Leibler divergence (β =
1) and the squared Frobenius distance (β = 2) [4]. The
global cost then writes:

C(Λ) =
∑

f,t

dβ(Vf,t|V̂f,t(Λ)). (7)

The problem being not convex, the minimization is gener-
ally done using alternating update rules on each parame-
ters of Λ. The update rule for a parameter Θ is commonly
obtained using an heuristic consisting in decomposing the
gradient of the cost-function with respect to this parameter
as a difference of two positive terms, such as

∇ΘC = PΘ −MΘ, PΘ ≥ 0, MΘ ≥ 0, (8)

and then by updating the parameter according to:

Θ← Θ� MΘ

PΘ
. (9)

This kind of update rule ensures that the parameter re-
mains non-negative. Moreover the parameter is updated in
a direction descent or remains constant if the partial deriva-
tive is zero. In some cases (including the update rules
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we will present), it is possible to prove using a Majorize-
Minimization (MM) approach [4] that the multiplicative
update rules actually lead to a decrease of the cost func-
tion.

Using such an approach, the update rules for a standard
NMF model V̂ = WH can be expressed as:

H← H�
WT

(
V̂�β−2 �V

)

WT V̂�β−1
, (10)

W←W �

(
V̂�β−2 �V

)
HT

V̂�β−1HT
. (11)

3.2 Estimation of the reverberation matrix

When dry models V̂dry,k are fixed, the reverberation matrix
can be estimated using the following update rule applied
successively on each reverberation matrix:

Rk ← Rk �

(
V̂�β−2 �V

)
∗t V̂dry,k

V̂�β−1 ∗t V̂dry,k
(12)

where ∗t stands for time-convolution:

[
V̂�β−1 ∗t V̂dry,k

]
f,τ

=
T∑

τ=t

V̂�β−1
f,τ V̂dry,k

f,τ−t+1. (13)

The update rule (12) obtained using the procedure de-
scribed in Section 3.1 ensures the non-negativity of Rk.
This update can be obtained using the MM approach which
ensures that the cost-function will not increase.

3.3 Estimation with other free model

A general drawback of source separation models that do
not explicitly account for reverberation effects is that the
reverberation affecting a given source is usually spread
among all separated sources. However, this issue can still
arise with a proper model of reverberation if the dry model
of the reverberated source is not constrained enough. In-
deed using the generic reverberation model of Equation
(5), the reverberation of a source can still be incorrectly
modeled during the optimization by other source models
having more degrees of freedom. A possible solution for
enforcing a correct optimization of the reverberated model
is to further constrain the structure of the dry model spec-
trogram, e.g. through the inclusion of sparsity or pitch ac-
tivation constraints, and potentially to adopt a sequential
estimation scheme. For instance, first discarding the re-
verberation model, a first rough estimate of the dry source
may be produced. Second, considering the reverberation
model, the dry model previously estimated can be refined
while estimating at the same time the reverberation matrix.
Such an approach is described in the following section for
a practical implementation of the algorithm to the problem
of lead vocal extraction from polyphonic music signals.

4. APPLICATION TO VOICE EXTRACTION

In this section we propose an implementation of our rever-
beration model in a practical case: we use Durrieu’s algo-

rithm [3] for lead vocal isolation and add the reverberation
model over the voice model.

4.1 Base voice extraction algorithm

Durrieu’s algorithm for lead vocal isolation in a song is
based on a source/filter model for the voice.

4.1.1 Model

The non-negative mixture spectrogram model consists
in the sum of a voice spectrogram model based on a
source/filter model and a music spectrogram model based
on a standard NMF:

V ≈ V̂ = V̂voice + V̂music. (14)

The voice model is based on a source/filter speech pro-
duction model:

V̂voice = (WF0HF0)� (WKHK). (15)

The first factor (WF0HF0) is the source part correspond-
ing to the excitation of the vocal folds: WF0 is a matrix
of fixed harmonic atoms and HF0 is the activation of these
atoms over time. The second factor (WKHK) is the filter
part corresponding to the resonance of the vocal tract: WK

is a matrix of smooth filter atoms and HK is the activation
of these atoms over time.

The background music model is a generic NMF:

V̂music = WRHR. (16)

4.1.2 Algorithm

Matrices HF0, WK, HK, WR and HR are estimated mini-
mizing the element-wise Itakura-Saito divergence between
the original mixture power spectrogram and the mixture
model:

C(HF0,WK,HK,WR,HR) =
∑

f,t

dIS(Vf,t|V̂f,t), (17)

where dIS(x, y) = x
y − log(xy ) − 1. The minimization is

achieved using multiplicative update rules.

The estimation is done in three steps:

1. A first step of parameter estimation is done using
iteratively the multiplicative update rules.

2. The matrix HF0 is processed using a Viterbi decod-
ing for tracking the main melody and is then thresh-
olded so that coefficients too far from the melody are
set to zero.

3. Parameters are re-estimated as in the first step but
using the thresholded version of HF0 for the initial-
ization.
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4.2 Inclusion of the reverberation model

As stated in Section 3, the dry spectrogram model (i.e. the
spectrogram model for the source without reverberation)
has to be sufficiently constrained in order to accurately es-
timate the reverberation part. This constraint is here ob-
tained through the use of a fixed harmonic dictionary WF0

and mostly, by the thresholding of the matrix HF0 that en-
forces the sparsity of the activations.

We thus introduce the reverberation model after the step
of thresholding of the matrix HF0. The two first steps then
remains the same as presented in Section 4.1.2. In the third
step, the dry voice model of Equation (15) is replaced by a
reverberated voice model following Equation (5):

V̂rev. voice
f,t =

T∑

τ=1

V̂voice
f,t−τ+1Rf,τ . (18)

For the parameter re-estimation of step 3, the multi-
plicative update rule of R is given by Equation (12). For
the other parameters of the voice model, the update rules
from [3] are modified to take the reverberation model into
account:

HF0 ← HF0 �
WT

F0

(
(WKHK)�

(
R ∗t (V̂�β−2 �V)

))

WT
F0

(
(WKHK)�

(
R ∗t V̂�β−1

))

(19)

HK ← HK �
WT

K

(
(WF0HF0)�

(
R ∗t (V̂�β−2 �V)

))

WT
K

(
(WF0HF0)�

(
R ∗t V̂�β−1

))

(20)

WK ←WK �

(
(WF0HF0)�

(
R ∗t (V̂�β−2 �V)

))
HT

K(
(WF0HF0)�

(
R ∗t V̂�β−1

))
HT

K

(21)

The update rules for the parameters of the music model
(HR and WR), are unchanged and thus identical to those
given in Equations (10) and (11).

5. EXPERIMENTAL RESULTS

5.1 Experimental setup

We tested the reverberation model that we proposed with
the algorithm presented in Section 4 on a task of lead vocal
extraction in a song. In order to assess the improvement of
our model over the existing one, we ran the separation with
and without reverberation modeling.

We used a database composed of 9 song excerpts of
professionally produced music. The total duration of all
excerpts was about 10 minutes. As the use of rever-
beration modeling only makes sense if there is a signifi-
cant amount of it, all the selected excerpts contains a fair
amount of reverberation. This reverberation was already
present in the separated tracks and was not added artifi-
cially by ourselves. On some excerpts, the reverberation

is time-variant: active on some parts and inactive on other,
ducking echo effect . . . Some short excerpts, as well as the
separation results, can be played on the companion web-
site 1 .

Spectrograms were computed as the squared modulus
of the STFT of the signal sampled at 44100 Hz, with 4096-
sample (92.9 ms) long Hamming window with 75% over-
lap. The length T of the reverberation matrix was arbitrar-
ily fixed to 52 frames (which corresponds to about 1.2 s)
in order to be sufficient for long reverberations.

5.2 Results

In order to quantify the results we use standard metrics of
source separation as described in [11]: Signal to Distorsion
Ratio (SDR), Signal to Artefact Ratio (SAR) and Signal to
Interference Ratio (SIR).

The results are presented in Figure 1 for the evaluation
of the extracted voice signals and in Figure 2 for the ex-
tracted music signals. The oracle performance, obtained
using the actual spectrograms of the sources to compute
the separation masks, are also reported. As we can see,
adding the reverberation modeling increases all these met-
rics. The SIR is particularly increased in Figure 1 (more
than 5dB): this is mainly because without the reverbera-
tion model, a large part of the reverberation of the voice
leaks in the music model. This is a phenomenon which is
also clearly audible in excerpts with strong reverberation:
using the reverberation model, the long reverberation tail is
mainly heard within the separated voice and is almost not
audible within the separated music. In return, extracted
vocals with the reverberation model tend to have more au-
dible interferences. This result is in part due to the fact
that the pre-estimation of the dry model (step 1 and 2 of
the base algorithm) is not interference-free, so that apply-
ing the reverberation model increases the energy of these
interferences.

Figure 1. Experimental separation results for the voice
stem.

1 http://romain-hennequin.fr/En/demo/reverb_
separation/reverb.html
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Figure 2. Experimental separation results for the music
stem.

6. CONCLUSION

In this paper we proposed a method to model long-term ef-
fects of reverberation in a source separation application for
which a constrained model of the dry source is available.
Future work should focus on speeding up the algorithm
since, multiple convolutions at each iteration can be time-
consuming. Developing methods to estimate the reverber-
ation duration (of a specific source within a mix) would
also make it possible to automate the whole process. It
could also be interesting to add spatial modeling for multi-
channel processing using full rank spatial variance matrix
and multichannel reverberation matrices.
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ABSTRACT

We present Vibrato Nonnegative Tensor Factorization, an
algorithm for single-channel unsupervised audio source
separation with an application to separating instrumental or
vocal sources with nonstationary pitch from music record-
ings. Our approach extends Nonnegative Matrix Factor-
ization for audio modeling by including local estimates of
frequency modulation as cues in the separation. This per-
mits the modeling and unsupervised separation of vibrato
or glissando musical sources, which is not possible with
the basic matrix factorization formulation.

The algorithm factorizes a sparse nonnegative tensor
comprising the audio spectrogram and local frequency-
slope-to-frequency ratios, which are estimated at each
time-frequency bin using the Distributed Derivative
Method. The use of local frequency modulations as
separation cues is motivated by the principle of com-
mon fate partial grouping from Auditory Scene Analysis,
which hypothesizes that each latent source in a mixture
is characterized perceptually by coherent frequency and
amplitude modulations shared by its component partials.
We derive multiplicative factor updates by Minorization-
Maximization, which guarantees convergence to a local
optimum by iteration. We then compare our method to the
baseline on two separation tasks: one considers synthetic
vibrato notes, while the other considers vibrato string in-
strument recordings.

1. INTRODUCTION

Nonnegative matrix factorization (NMF) [11] is a popu-
lar method for the analysis of audio spectrograms [16],
especially for audio source separation [17]. NMF mod-
els the observed spectrogram as a weighted sum of rank-1
latent components, each of which factorizes as the outer
product of a pair of vectors representing the constituent

c© Elliot Creager, Noah D. Stein, Roland Badeau, Philippe
Depalle. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Elliot Creager, Noah D. Stein,
Roland Badeau, Philippe Depalle. “Nonnegative tensor factorization with
frequency modulation cues for blind audio source separation”, 17th Inter-
national Society for Music Information Retrieval Conference, 2016.

frequencies and onset regions for some significant com-
ponent in the mixture, e.g. a musical note. Equivalently,
the entire spectrogram matrix approximately factorizes as
a matrix of spectral templates times a matrix of tempo-
ral activations, typically such that the approximate factors
have many fewer elements than the full observation. While
NMF can be used for supervised source separation tasks
with a straightforward extension of the signal model [19],
this necessitates pre-training NMF representations for each
source of interest.

The use of modulation cues in source separation is
popular in the Computational Auditory Scene Analysis
(CASA) [26] literature, which, unlike NMF, typically re-
lies on partial tracking. E.g., [25] isolates individual par-
tials by frequency warping and filtering, while [12] groups
partials via correlations in amplitude modulations. [2],
which more closely resembles our work in the sense of
being data-driven, factorizes a tensor encoding amplitude
modulations for speech separation.

Our approach is inspired by [20] and [21], which
present a Nonnegative Tensor Factorization (NTF) incor-
porating direction-of-arrival (DOA) estimates in an un-
supervised speech source separation task. Whereas use
of DOA information in that work necessitates multi-
microphone data, we address the single-channel case by
incorporating the local frequency modulation (FM) cues at
each time-frequency bin. These cues are combined with
the spectrogram as a sparse observation tensor, which we
factorize in a probabilistic framework. The modulation
cues are adopted structurally by way of an NTF where each
source in the mixture is modeled via an NMF factor and a
time-varying FM factor.

2. BACKGROUND

2.1 Nonnegative matrix factorization

We now summarize NMF within a probabilistic frame-
work. We consider the normalized Short-Time Fourier
Transform (STFT) magnitudes (i.e., spectrogram) of the
input signal as an observed discrete probability distribu-
tion of energy over the time-frequency plane, i.e.,

pobs(f, t) , |X(f, t)|∑
ν,τ |X(ν, τ)| , (1)
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Figure 1: Graphical models for the factorizations in this paper. In each case the input data are a distribution over the
observed (shaded) variables, while the model approximates the observation by a joint distribution over observed and latent
(unshaded) variables that factorizes as specified. F, T, Z, S, and R respectively represent the discrete frequencies, hops,
components, sources, and frequency modulations over which the data is distributed.

∀f ∈ {1, ..., F}, t ∈ {1, ..., T}, where X is the input
STFT and (f, t) indexes the time-frequency plane. NMF
seeks an approximation q to observed distribution pobs that
is a valid distribution over the time-frequency plane and
factorizes as

q(f, t) =
∑

z

q(f |z)q(t|z)q(z) =
∑

z

q(f |z)q(z, t). (2)

Figure 1(a) shows the graphical model for a joint distribu-
tion with this factorization.

We have introduced z ∈ {1, ..., Z} as a latent vari-
able that indexes components in the mixture, typically
with Z chosen to yield an overall data reduction, i.e.,
FZ + ZT � FT . For a fixed z0, q(f |z0) is a vec-
tor interpreted as the spectral template of the z0-th com-
ponent, i.e., the distribution over frequency bins of energy
belonging to that component. Likewise, q(z0, t) is inter-
preted as a vector of temporal activations of the z0-th com-
ponent, i.e., it specifies at what time indices the z0-th com-
ponent is prominent in the observed mixture. Indeed, (2)
can be implemented as a matrix multiplication, with the
usual nonnegativity constraint on the factors satisfied im-
plicitly, since q is a valid probability distribution.

The optimization problem is typically formalized as
minimizing the Kullback-Leibler (KL) divergence between
the observation and approximation, or equivalently as
maximizing the cross entropy between the two distribu-
tions:

maximize
q

∑

f,t

pobs(f, t) log q(f, t)

subject to q(f, t) =
∑

z

q(f |z)q(z, t).
(3)

While the non-convexity of this problem prohibits a glob-
ally optimal solution in reasonable time, a locally optimal
solution can be found by multiplicative updates to the fac-
tors, which were first presented in [10]. We refer to this
algorithm as KL-NMF, but note its equivalence to Proba-
bilistic Latent Component Analysis (PLCA) [18], as well
as a strong connection to topic modeling of counts data.

2.2 NMF for source separation

NMF can be leveraged as a source model within a source
separation task, such that the observed mixture is modeled
as a sum of sources, each of which is modeled by NMF.
Whereas the latent variable z in NMF indexes latent com-
ponents belonging to a source, we now introduce an addi-
tional latent variable s ∈ {1, .., S}, which indexes latent
sources within the mixture. The resulting joint distribution
over observed and latent variables is expressed as

q(f, t, s, z) = q(s)q(f |s, z)q(z, t|s). (4)

Thus the approximation to pobs(f, t) is the marginal distri-
bution

q(f, t) =
∑

s

q(s)q(f, t|s)

=
∑

s

q(s)
∑

z

q(f |s, z)q(z, t|s),
(5)

where q(s0) and q(f, t|s0) represent the mixing coefficient
and NMF source model for the s0-th source in the mixture,
respectively. Figure 1(b) shows the graphical model.

Given a suitable approximation q, we estimate the latent
sources in the mixture via Wiener filtering, i.e.,

Xs(f, t) = X(f, t)q(s|f, t), (6)

where the Wiener gains q(s|f, t) are given by the condi-
tional probabilities 1 of the latent sources given the ap-
proximating joint distribution

q(s|f, t) =
q(f, t, s)

q(f, t)
=

∑
z q(s)q(f |s, z)q(z, t|s)∑

z,s′ q(s
′)q(f |s′, z)q(z, t|s′) .

(7)
The estimated sources can then be reconstructed in the
time-domain via the inverse STFT.

We seek a q that both approximates pobs and yields
source estimates q(f, t|s) close to the true sources. In a
supervised setting, the spectral templates for each source
model can be fixed by using basic NMF on some char-
acteristic training examples in isolation. When the ap-
propriate training data is unavailable, the basic NMF can

1 A convenient result of the Wiener filter gains being conditional distri-
butions over sources is that the mixture energy is conserved by the source
estimates in the sense that

∑
sXs(f, t) = X(f, t) ∀ f, t.
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be extended by introducing priors on the factors or other-
wise adding structure to the observation model to encour-
age, e.g., smoothness in the activations [24] or harmonicity
in the spectral templates [3], which hopefully in turn im-
proves the source estimates. By contrast, our approach ex-
ploits local FM cues directly in the factorization, yielding
an observation model for latent sources consistent with the
sorts of pitch modulations expected in musical sounds.

2.3 Coherent frequency modulation

We now introduce frequency-slope-to-frequency ratios
(FSFR) as local signal parameters under an additive sinu-
soidal model that are useful as grouping cues for the sep-
aration of sources with coherent FM, e.g. in the vibrato
or glissando effects. In continuous time, the additive sinu-
soidal model expresses the s-th source as a sum of com-
ponent partials, 2 each parameterized by an instantaneous
frequency and amplitude, i.e.,

xs(τ) =
P∑

p=1

Ap(τ) cos

(
θp(τ0) +

∫ τ

τ0

ωp(u)du

)
(8)

where p is the partial index, and θp(τ0), Ap(τ) and ωp(τ)
specify the initial phase, instantaneous amplitude, and in-
stantaneous frequency of the p-th partial.

We now consider a source under coherent FM, i.e.,

ωp(τ) , (1 + κs(τ))ωp(τ0) ∀ p (9)

for some modulation function κs with κs(τ0) = 0. E.g.,
κs resembles a slowly-varying sinusoid during frequency
vibrato, or a gradual ramp function during glissando. The
FSFR are then expressed as

υp(τ) ,
ω′p(τ)

ωp(τ)
=

κ′s(τ)

1 + κs(τ)
. (10)

Note that {υp(τ)} are time-varying but independent of the
partial index p for a given source index s. In other words,
the instantaneous FSFR is common to all partials belong-
ing to the same source and can be used as a grouping cue
in unsupervised source separation [7].

2.4 Distributed Derivative Method

We now summarize the Distributed Derivative Method
(DDM) [4, 8] for signal parameter estimation, which we
use to estimate the FSFR at each time-frequency bin. DDM
estimates the parameters of a monochrome analytic signal
under a Q-th order generalized sinusoid model, 3 which is

2 We do not assume any special structure in the partial frequencies,
e.g., harmonicity.

3 It is natural to specify the signal locally (near some time-frequency
bin) as a generalized sinusoid even while the global model remains ad-
ditive sinusoidal. In particular, the notion of a time-frequency-localized
signal follows from the filterbank summation interpretation of the STFT,
and corresponds to the heterodyned and shifted input, prior to low-pass
filtering by the window and downsampling in time [1]. In a slight abuse
of notation, we later absorb the time-frequency indices as parameters in
the analysis atom, i.e., we switch to the overlap-add interpretation of the
STFT without warning.

expressed as

x(τ) = exp

( Q∑

q=0

ηqτ
q

)
, (11)

where η ∈ CQ+1 is the vector of signal parameters, whose
real and imaginary parts specify the log amplitude law and
phase law, 4 respectively. In this work, we specify (11) as
a constant amplitude signal with linear frequency modula-
tion, i.e., η ∈ C3 with <(ηi) = 0 ∀ i. The signal pa-
rameters =(η1) and =(η2) then specify (within multiplica-
tive constants) the instantaneous frequency and frequency
slope, respectively.

The parameters of interest can be estimated by consid-
ering the inner product of the signal with a family of dif-
ferentiable analysis atoms of finite time-frequency support.
In particular, the continuous-time STFT can be expressed
by inner product as

X (f, t) , 〈x(τ), φ(τ ; f, t)〉 =

∫ +∞

τ=−∞
x(τ)φ(τ ; f, t)∗dτ,

(12)
where X (f, t) is the STFT, x(τ) is the input signal, and
φ(τ ; f, t) is a heterodyned window function from some
differentiable family (e.g. Hann), parameterized by its lo-
calization (f, t) in the time-frequency plane. The signal
parameters are solutions to equations of the form

〈x(τ), φ′(τ ; f, t)〉 = −
Q∑

q=1

ηq〈qτ q−1x(τ), φ(τ ; f, t)〉,

(13)
which is linear in {ηq} for q > 0, and permits an STFT-
like computation of both inner products. The right-hand
side of (13) is derived from the left-hand side using inte-
gration by parts, exploiting the finite support of φ(τ ; f, t),
and substituting in the signal derivative x′(τ) from (11).
To estimate the signal parameters at a particular (f0, t0),
we construct a system of linear equations by evaluating
(13) for each φ(τ ; f, t) in a set of nearby atoms Φ, then
solve for η in a least-squares sense. We typically use atoms
in neighboring frequency bins at the same time step, i.e.,
Φ = {φ(τ ; t0, f0 − L−1

2 ), ..., φ(τ ; t0, f0 + L−1
2 )} for

some odd L.
While DDM is an unbiased estimator of the signal

parameters in continuous time, we must implement a
discrete-time approximation on a computer. This intro-
duces a small bias that can be ignored in practice since the
STFT window is typically longer than a few samples [4].

3. PROPOSED METHOD

3.1 Motivation

The NMF signal model is not sufficiently expressive
to compactly represent a large class of musical sounds,
namely those characterized by slow frequency modula-
tions, e.g., in the vibrato effect. In particular, it speci-
fies a single fixed spectral template per latent component

4 The frequency law is trivially computed from the phase law.
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Figure 2: Unfolding the nonzero elements in the observation tensor for a synthetic vibrato square wave note (G5). The hop
index t spans 2 seconds of the input audio, while the bin index f spans half the sampling rate, 0–22.05 kHz.

and thus requires a large number of components to model
sounds with nonstationary pitch. From a separation per-
spective, as the number of latent components grows, so
grows the need for a comprehensive model that can cor-
rectly group components belonging to the same source. To
this end, we appeal to the perceptual theory of Auditory
Scene Analysis [5], which postulates the importance of
shared frequency or amplitude modulations among partials
as a perceptual cue in their grouping [6, 14]. In this work
we focus on FM, although in principle our approach could
be extended to include amplitude modulations. 5 We now
propose an extension to KL-NMF that leverages this so-
called common fate principle and is suitable for the analy-
sis of vibrato signals.

3.2 Compiling the observations as a tensor

DDM yields the local estimates of frequency and fre-
quency slope for each time-frequency bin, from which the
FSFR are trivially computed. We define the (sparse) obser-
vation tensor pobs(f, t, r) ∈ RF×T×R≥0 as an assignment of
the normalized spectrogram into one of R discrete bins for
each (f, t) according the local FSFR estimate, i.e.,

pobs(f, t, r) ,
{
pobs(f, t) if quant(υ(f, t);R) = r

0 else,
(14)

where pobs(f, t) is the normalized spectrogram as in (1)
and υ are the FSFR as in (10), which are quantized by
quant(·;R), possibly after clipping to some reasonable
range of values. Figure 2 shows the spectrogram and FSFR
for a synthetic vibrato square wave.

3.3 Vibrato NTF

As with NMF, we seek a joint distribution q with a par-
ticular factorized form, whose marginal maximizes cross
entropy against the observed data. We propose an observa-
tion model of the form

q(f, t, r) =
∑

s

q(s)q(r|t, s)
∑

z

q(f |s, z)q(z, t|s) (15)

5 In turn, this would increase the dimensionality of the data.

where q(s) represents the mixing, q(r|t, s) repre-
sents the common time-varying FSFR per source, and∑
z q(f |s, z)q(z, t|s) represents the NMF source model.

Figure 1(c) shows the graphical model of the joint distri-
bution. Thus, given pobs, we seek an approximation q that
factorizes as in (15) and maximizes

α(q) ,
∑

f,t,r

pobs(f, t, r) log q(f, t, r)

=
∑

f,t,r

pobs(f, t, r) log
∑

z,s

q(f, t, r, z, s).
(16)

The sum in the argument to the log makes this difficult
to solve outright, so we find a local optimum by itera-
tive Minorization-Maximization (MM) [9] instead. That
is, given q(i), our model at the current (i-th) iteration, we
pick a better q(i+1) by (a) finding a concave minorizing
function β(q; q(i)) such that β(q; q(i)) ≤ α(q) ∀ q and
β(q(i); q(i)) = α(q(i)), and (b) maximizing β(q; q(i)) with
respect to q.

In particular, β(q; q(i)) is derived 6 by applying
Jensen’s inequality to (16), and is expressed as

β(q; q(i)) ,
∑

f,t,r,z,s

pobs(f, t, r)q(i)(z, s|f, t, r) log q(f, t, r, z, s)

q(i)(z, s|f, t, r) ,

(17)

where q(i)(z, s|f, t, r) is the approximate posterior over la-
tent variables given the model at the i-th iteration 7 , com-
puted as

q(i)(z, s|f, t, r) =
q(i)(z, s, f, t, r)∑

z′,s′ q
(i)(z′, s′, f, t, r)

. (18)

For notational convenience we define
ρ(f, t, r, z, s) , pobs(f, t, r)q(i)(z, s|f, t, r) and
discarding the denominator in the log of (17) (constant
w.r.t. q), equivalently write the optimization over the
minorizing function as

max
q

∑

f,t,r,z,s

ρ(f, t, r, z, s) log q(s)q(f |z, s)q(z, t|s)q(r|t, s).

(19)

6 Cf. [20] for a more thorough treatment.
7 Note that the MM iteration specifies an expectation-maximization.
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Figure 3: For single-note analyses, VibNTF encodes the time-varying pitch modulation. The top row shows a synthetic
vibrato square wave note (G5), while the bottom row shows a real recording of a violin vibrato note (B[6). We plot r in the
range [−R2 , R2 ] in figures 3(b) and 3(d) to clarify that the index r represents a zero-mean quantity (the FSFR).

We now alternatively update each factor by separating the
argument in the log in (19) as a sum of logs, each term
of which can be optimized by applying Gibb’s inequal-
ity [13]. That is, given the current model, the optimal
choice for some factor of q(i+1) is the marginal of ρ over
the corresponding variables. E.g.,

q(i+1)(s)←
∑
f,t,r,z ρ(f, t, r, z, s)∑

f,t,r,z,s′ ρ(f, t, r, z, s′)
. (20a)

Likewise, the remaining factor updates are expressed as

q(i+1)(f |z, s)←
∑
t,r ρ(f, t, r, z, s)∑

f ′,t,r ρ(f ′, t, r, z, s)
; (20b)

q(i+1)(z, t|s)←
∑
f,r ρ(f, t, r, z, s)∑

f,t′,r,z′ ρ(f, t′, r, z′, s)
; (20c)

q(i+1)(r|t, s)←
∑
f,z ρ(f, t, r, z, s)∑

f,r′,z ρ(f, t, r′, z, s)
. (20d)

Since ρ is expressed as a product of the current factors and
observed data, the factor updates can be implemented effi-
ciently by using matrix multiplications to sum across inner
dimensions as necessary. The theory guarantees conver-
gence 8 to a local minimum [9], although in practice we

8 For guaranteed convergence, ρ must be recomputed after each factor
update, rather than once per iteration as the notation suggests. However,
in practice we observe convergence without the recomputation.

stop the algorithm after some fixed number of iterations.
The algorithm is initialized by choosing factors of q(0) as
random valid conditional probabilities.

Figure 3 visualizes the FM factor q(r|t, s) estimated by
the proposed algorithm for single note analyses (S = 1) of
both synthetic and real data.

4. EVALUATION

We present a comparison of our proposed method with
the baseline KL-NMF (which our method extends) in a
blind source separation task examining mixtures of two
single-note recordings. We use the BSS EVAL criteria [23]
to evaluate separation performance, which necessitates
the use of artificial mixtures. We report the source-to-
distortion ratio (SDR), source-to-interference ratio (SIR),
and source-to-artifact ratio (SAR), each in dB. Each exper-
iment comprises 500 separations, with the sources in each
trial chosen as specified below and mixed at 0 dB with a
total mixture duration of 2 seconds at 44.1 kHz sampling
rate. We report the average metrics across all sources and
trials.

To use KL-NMF for blind source separation, we must
specify Z = 2, i.e., each mixture component considered as
a source. This baseline should be relatively easy to beat,
since empirically KL-NMF does a poor job of modeling
vibrato signals when Z is small.
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BSS EVAL in dB
Algorithm SDR SIR SAR

(A) Synthetic data
2-part KL-NMF -1.5 ± 0.1 0.1 ± 0.2 6.9 ± 0.2
Vibrato NTF 14.6 ± 1.0 17.0 ± 1.2 23.6 ± 0.7
(B) Real data
2-part KL-NMF 2.8 ± 0.4 8.0 ± 2.1 9.2 ± 0.2
Vibrato NTF 5.8 ± 0.5 9.7 ± 2.2 17.7 ± 0.5

Table 1: Mean and 95% confidence intervals of the
BSS EVAL metrics for 500 unsupervised separations of
two-source mixtures. Experiment A considers synthetic vi-
brato square waves, while experiment B considers single-
note vibrato string instrument recordings.

For Vibrato NTF, we specify S = 2 and Z = 3, i.e.,
for each of the two sources we learn spectral templates and
temporal activations for three components. E.g., consider-
ing a sinusoidal vibrato, the components could model the
source during the crest, midpoint, and trough of the pitch
modulation. We estimate the signal parameters at a partic-
ular (f0, t0) using DDM with a family of L = 5 analysis
atoms (heterodyned Hann functions) in the same hop in-
dex and nearby frequency bins. In order to avoid the influ-
ence of noisy FSFR estimates in the factorization, we apply
some mild post-processing prior to quantization. Specifi-
cally, we implicitly discard FSFR at (f, t) with pobs(f, t)
below the 10th percentile, or outside a reasonable range
of ±4 times the sampling rate by setting them to the data
median. The FSFR are then quantized evenly across their
range into R = 50 discrete values.

For both algorithms, the STFT in (1) is specified by
a 1024-length (23 msec) Discrete Fourier Transform us-
ing a Hann window with 75% overlap between succes-
sive frames. Thus, F = 513, corresponding to the non-
redundant frequency bins, and T = 346, the number of
hops required to cover the mixture duration. Both algo-
rithms are initialized randomly and run for 100 iterations.

Experiment A examines synthetic data, where the
sources are square waves with frequency vibrato, whose
signal parameters are generated at random. The funda-
mental frequency corresponds to a note value selected uni-
formly at random from the three-octave range [A3, G]5].
The number of partials is chosen uniformly at random from
the range [10, 30], and subsequently reduced as necessary
to avoid aliasing. The vibrato modulation function, i.e., κs
in (9), is a sinusoid with depth chosen uniformly at random
in the range of [5%, 20%] of the fundamental and rate cho-
sen log-uniformly at random from the range [0.5, 10] Hz.

Experiment B examines real data, where the sources are
single-note recordings from the McGill University Master
Samples (MUMS) [15], which contains over 6000 single-
note and single-phrase recordings of classical and popu-
lar instruments. We focus our evaluation on string instru-
ments, which exhibit strong frequency modulation in their
vibrato effect [22]. The MUMS subset of string instru-
ment notes with vibrato comprises a total of 250 unique

recordings of violin, viola, cello, and double bass. The
sources are chosen randomly from this subset and trimmed
or padded to 2 seconds as necessary.

Results for both experiments are provided in table 1.
Experiment A shows a dramatic win for Vibrato NTF over
the baseline. We see some variability in the results, which
reflects an optimization over a cost surface with many lo-
cal optima. With random initialization, Vibrato NTF works
either very well or very poorly, so robustness could be im-
proved by a more careful initialization, or alternatively by
regularizing the factorization in such a way as to avoid sub-
optimal solutions.

In experiment B, we see that moving from synthetic
to real data degrades the performance of our proposed
method, although we still beat the baseline by a modest
margin. Interestingly, the baseline performs better on real
data than synthetic, likely because the pitch variations are
less pronounced so KL-NMF fails less frequently. More-
over, the pitch modulations in real data are more com-
plex than in the synthetic case (compare figures 3(b) and
3(d)), and may require more components (larger Z) to be
properly modeled. Vibrato NTF as proposed tends to de-
crease in performance as Z increases, so additional work
is required to improve robustness for the analysis of real
data. We hypothesize that an extension enforcing tempo-
ral continuity in the FM factor, which should be smooth
and monotonic per-source, would enhance the grouping of
components, permitting a larger Z in practice.

5. CONCLUSION

We proposed Vibrato NTF, a novel blind source separa-
tion algorithm that extends NMF by leveraging local esti-
mates of frequency modulation as grouping cues directly
in the factorization. Experimental results using synthetic
data showed a substantial improvement over the baseline,
and validated the FSFR as useful grouping cues in a source
separation task. In the experiment with real recordings,
our method provided a more modest improvement. With
regards to the analysis of real data, we believe the incorpo-
ration of sensible priors on the factors would improve the
separation performance, while careful initalization would
improve the robustness. Further work could include tai-
loring the proposed method to the analysis of polyphonic
sounds, or sounds with mild or no frequency modulation.
Additionally, an extension including coherent amplitude
modulations as a grouping cue is possible within the pro-
posed tensor factorization framework.
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ABSTRACT

In this paper, the problem of drum playing technique
detection in polyphonic mixtures of music is addressed.
We focus on the identification of 4 rudimentary techniques:
strike, buzz roll, flam, and drag. The specifics and the
challenges of this task are being discussed, and different
sets of features are compared, including various features
extracted from NMF-based activation functions, as well
as baseline spectral features. We investigate the capabil-
ities and limitations of the presented system in the case
of real-world recordings and polyphonic mixtures. To de-
sign and evaluate the system, two datasets are introduced: a
training dataset generated from individual drum hits, and ad-
ditional annotations of the well-known ENST drum dataset
minus one subset as test dataset. The results demonstrate
issues with the traditionally used spectral features, and in-
dicate the potential of using NMF activation functions for
playing technique detection, however, the performance of
polyphonic music still leaves room for future improvement.

1. INTRODUCTION

Automatic Music Transcription (AMT), one of the most
popular research topics in the Music Information Retrieval
(MIR) community, is the process of transcribing the musical
events in the audio signal into a notation such as MIDI or
sheet music. In spite of being intensively studied, there
still remain many unsolved problems and challenges in
AMT [1]. One of the challenges is the extraction of addi-
tional information, such as dynamics, expressive notation
and articulation, in order to produce a more complete de-
scription of the music performance.

For pitched instruments, most of the work in AMT
mainly focuses on tasks such as melody extraction [3],
chord estimation [10], and instrument recognition [8]. Few
studies try to expand the scope to playing technique and
expression detection for instruments such as electric gui-
tar [5, 17] and violin [12]. Similarly, the main focus of
AMT systems for percussive instruments has been put on
recognizing the instrument types (e.g., HiHat (HH), Snare

c© Chih-Wei Wu, Alexander Lerch. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Chih-Wei Wu, Alexander Lerch. “On drum playing technique
detection in polyphonic mixtures”, 17th International Society for Music
Information Retrieval Conference, 2016.

Drum (SD), Bass Drum (BD)) and their corresponding on-
set times [2, 6, 14, 18, 20]. Studies on retrieving the playing
techniques and expressions are relatively sparse.

Since playing technique is an important layer of a musi-
cal performance for its deep connection to the timbre and
subtle expressions of an instrument, an automatic system
that transcribes such techniques may provide insights into
the performance and facilitate other research in MIR. In
this paper, we present a system that aims to detect the drum
playing techniques within polyphonic mixtures of music.
The contributions of this paper can be summarized as fol-
lows: first, to the best of our knowledge, this is the first
study to investigate the automatic detection of drum playing
techniques in polyphonic mixtures of music. The results
may support the future development of a complete drum
transcription system. Second, a comparison between the
commonly used timbre features and features based on ac-
tivation functions of a Non-Negative Matrix Factorization
(NMF) system are presented and discussed. The results re-
veal problems with using established timbre features. Third,
two datasets for training and testing are introduced. The
release of these datasets is intended to encourage future
research in this field. The data may also be seen as a core
compilation to be extended in the future.

The remainder of the paper is structured as follows: in
Sect. 2, related work in drum playing technique detection is
introduced. The details of the proposed system and the ex-
tracted features are described in Sect. 3, and the evaluation
process, metrics, and the experiment results are shown in
Sect. 4. Finally, the conclusion and future research direc-
tions are addressed in Sect. 5.

2. RELATED WORK

Percussive instruments, generating sounds through vibra-
tions induced by strikes and other excitations, are among
the oldest musical instruments [15]. While the basic gesture
is generally simple, the generated sounds can be complex
depending on where and how the instrument is being ex-
cited. In western popular music, a drum set, which contains
multiple instruments such as SD, BD, HH, is one of the
most commonly used percussion instruments. In general,
every instrument in a drum set is excited using drum sticks.
With good control of the drum sticks, variations in timbre
can be created through different excitation methods and
gestures [16]. These gestures, referred to as rudiments, are
the foundations of many drum playing techniques. These
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rudiments can be categorized into four types: 1

1. Roll Rudiments: drum rolls created by single or mul-
tiple bounce strokes (Buzz Roll).

2. Paradiddle Rudiments: a mixture of alternative single
and double strokes.

3. Flam Rudiments: drum hits with one preceding grace
note.

4. Drag Rudiments: drum hits with two preceding grace
notes created by double stroke.

There are also other playing techniques that are com-
monly used to create timbral variations in a drum set, such
as Brush, Cross Stick, Rim Shot, etc. Most drum transcrip-
tion systems, however, focus on single strikes instead of
these playing techniques [2, 6, 14, 18, 20].

In an early attempt to retrieve percussion gestures from
the audio signal, Tindale et al. investigated the timbral vari-
ations of the snare drum sounds induced by different ex-
citations [19]. Three expert players were asked to play
on different locations on the snare drums (center, halfway,
edge, etc.) with different excitations (strike, rim shot, and
brush), resulting in a dataset with 1260 individual samples.
The classification results for this dataset based on standard
spectral and temporal features (e.g., centroid, flux, MFCCs,
etc.) and classifiers (e.g., k-Nearest Neighbors (k-NN) and
Support Vector Machine (SVM)) were reported, and an
overall accuracy of around 90% was achieved. Since the
dataset is relatively small, howver, it is difficult to general-
ize the results to different scenarios.

Following the same direction, Prockup et al. further ex-
plored the discrepancy between more expressive gestures
with a larger dataset that covers multiple drums of a standard
drum set [13]. A dataset was created with combinations
of different drums, stick heights, stroke intensities, strike
positions and articulations. Using a machine learning based
approach similar to [19], various features were extracted
from the samples, and a SVM was trained to classify the
sounds. An accuracy of over 95% was reported on multiple
drums with a 4-class SVM and features such as MFCCs,
Spectral features, and the proposed custom-designed fea-
tures.

Both of the above mentioned studies showed promising
results in classifying the isolated sounds, however, they
were not evaluated with real-world drum recordings, and
the applicability of these approaches for transcribing real-
world drum recordings still needs to be tested. Additionally,
the potential impact of polyphonic background music could
be another concern with respect to these approaches.

Another way to retrieve more information from the drum
performance is through the use of multi-modal data [9].
Hochenbaum and Kapur investigated the inclusion of drum
hand recognition in the data by capturing microphone and
accelerometer data simultaneously. Two performers were
asked to play the snare drum with four different rudiments
(namely single stroke roll, double stroke open roll, single

1 http://vicfirth.com/40-essential-rudiments/ Last Access: 2016/3/16

Figure 1. Block diagram of the proposed system (onset
detection is bypassed in the current experiments)

paradiddle and double paradiddle). Standard spectral and
temporal features (e.g., centroid, skewness, zero-crossing
rate, etc.) were extracted from the audio and accelerom-
eter data, and different classifiers were applied and com-
pared. With a Multi-Layer Perceptron (MLP), an accu-
racy of around 84% was achieved for a 2-class drum hand
classification task. It cannot be ruled out that the extra re-
quirement of attaching the sensors to the performers’ hands
might alter the playing experience and result in deviations
from the real playing gestures. Furthermore, this method
does not allow the analysis of existing audio recordings.

In general, the above mentioned studies mainly focus
on evaluating the discriminability of isolated samples. The
evaluation on real-world drum recordings, i.e., recordings
of a drummer continuously playing, is usually unavailable
due to the lack of annotated datasets. In Table 1, different
datasets for drum transcription are presented. It can be
found that most of the datasets only contain annotations
of playing techniques that are easily distinguishable from
the normal strike (e.g., Cross Stick, Brush, Rim Shot). For
playing techniques such as Flam, Drag and Buzz Roll, there
are no datasets and annotations available.

3. METHOD

3.1 System Overview

The block diagram of the proposed system is shown in
Figure 1. The system consists of two stages: training and
testing. During the training stage, NMF activation functions
(see Sect. 3.2.1) will first be extracted from the training data.
Here, the training data only consists of audio clips with one-
shot samples of different playing techniques. Next, features
will be extracted from a short segment around the salient
peak in the activation function (see Sect. 3.2.1). Finally, all
of the features and their corresponding labels will be used
to train a classifier. The classes we focus on in this paper
are: Strike, Buzz Roll, Drag, Flam.

For the testing, a similar procedure is performed. When
a longer drum recording is used as the testing data, an
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Dataset Annotated Techniques Description Total

Data in [15] Strike, Rim Shot, Brush 1 drum (snare),
5 strike positions (from center to edge) 1264 clips

MDLib2.2 [16] Strike, Rim Shot, Buzz Roll, Cross Stick

9 drums,
4 stick heights,
3 stroke intensities,
3 strike positions

10624 clips

IDMT-Drum [9] Strike 3 drums (snare, bass and hihat),
3 drum kits (real, waveDrum, technoDrum) 560 clips

ENST Drum
Minus One Subset [18] Strike, Rim Shot, Brush, Cross Stick 13 drums,

3 drum kits played by 3 drummers 64 tracks

Table 1. An overview of publicly available datasets for drum transcription tasks

additional onset detection step is taken to narrow down the
area of interest. Since the focus of this paper is on playing
technique detection, the onset detection step is bypassed by
adopting the annotated ground truth in order to simulate the
best case scenario. Once the features have been extracted
from the segments, the pre-trained classifier can be used
to classify the playing technique in the recordings. More
details will be given in the following sections.

3.2 Feature Extraction

3.2.1 Activation Functions (AF)

To detect drum playing technique in polyphonic music, a
transcription method that is robust against the influence of
background music is required. In this paper, we applied the
drum transcription scheme as described in [20] for its adapt-
ability to polyphonic mixtures of music. The flowchart of
the process is shown in Fig. 2. This method decomposes
the magnitude spectrogram of the complex mixtures with
a fixed pre-trained drum dictionary and a randomly initial-
ized dictionary for harmonic contents. Once the signal is
decomposed, the activation function hi(n) of each individ-
ual drum can be extracted, in which n is the block index
and i = {HH,SD,BD} indicates the type of drum

All of the audio samples are mono with a sampling rate
of 44.1 kHz. The Short Time Fourier Transform (STFT) of
is computed with a block size of 512 and a hop size of 128,
and a Hann window is applied to each block. The harmonic
rank rh for the partially-fixed NMF is 50, and the drum
dictionary is trained from the ENST drum dataset [7] with
a total number of three templates (one template per drum).
The resulting hi(n) is scaled to a range between 0 and 1
and smoothed using a median filter with an order of p = 5
samples. Since a template in the dictionary is intended to
capture the activity of the same type of drum, the drum
sounds with slightly different timbres will still result in
similar hi(n). Therefore, the extracted activation function
hi(n) can be considered as a timbre invariant transforma-
tion and is desirable for detecting the underlying techniques.
Segments of these activation functions can be used directly
as features or as the intermediate representation for the
extraction of other features.

3.2.2 Activation Derived Features (ADF)

Once the activation functions hi(n) have been extracted
from the audio data, various features can be derived for
subsequent classification. The steps can be summarized as

Figure 2. Flowchart of the activation extraction process,
see [20]

follows: first, for every given onset at index no, a 400 ms
segment centered around hi(no) will be selected. Next,
the segment is shifted to ensure the maximum value is
positioned at the center. From this segment, we extract the
distribution features, the Inter-Onset Interval (IOI) features,
the peak features, and the Dynamic Time Warping (DTW)
features as described below:

1. Distribution features, d = 5: Spread, Skew, Crest,
Centroid, and Flatness. These features are similar to
the commonly used spectral features, which provide
the general description of the pattern.

2. IOI features, d = 2: IOI mean, and IOI standard
deviation. These features are simple statistics of the
IOIs.

3. Peak features, d = 8: side peak to main peak ratio
αi, and side peak to main peak signed block index
difference ∆bi i = {1, 2, 3, 4}. These features are
designed to describe the details of the patterns. To
compute the peak features, first we find the local
maxima and sort them in descending order, then we
calculate the ratio and index difference between the
side peak and the main (largest) peak as features.

4. DTW features, d = 4: the cumulative cost of
a DTW distance between the current and the 4
template activation functions. To compute the
DTW features, a median activation template of each
playing technique is trained from the training data,
and the cumulative cost of every DTW template for
the given segment can be calculated. The examples
of the extracted DTW templates for each technique
are shown in Fig. 3.

The resulting feature vector has a dimension d = 19.
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Figure 3. Examples of the extracted and normalized activa-
tion functions of (top to bottom): Strike, Buzz Roll, Flam,
Drag

Figure 4. Illustration of the parametric forms of (Left)
Flam and (Right) Drag

3.2.3 Timbre Features (TF)

To compare the effectiveness of the activation based fea-
tures, a small set of the commonly used timbre features
as described in [11] is extracted as well. The extraction
process is similar to Sect. 3.2.2, however, instead of using
activation functions, the waveform of a given segment is
used to derive the features. The features are:

1. Spectral features, d = 3: Centroid, Rolloff, Flux

2. Temporal features, d = 1: Zero crossing rate

3. MFCCs, d = 13: the first 13 MFCC coefficients

These features are computed block by block using the
same parameters as described in Sect. 3.2.1. The resulting
feature vectors are further aggregated into one single vector
per segment by computing the mean and standard deviation
of all the blocks. The final feature vector has a dimension
d = 34.

3.3 Dataset

3.3.1 Training Dataset

In this paper, we focus on four different playing techniques
(Strike, Flam, Drag, Buzz Roll) played on the snare drum.
As can be seen in Table 1, only Strike and Buzz Roll can be
found in some of these datasets. Therefore, we generated
a dataset through mixing existing recordings from MDLib
2.2 [13]. Since both Flam and Drag consist of preceding

Techniques Description Total (#clips)

Strike Snare excerpts from
MDLib 2.2 [16] 576

Buzz Roll Snare excerpts from
MDLib 2.2 [16] 576

Flam
144 mono snare excerpts
α = {0.1:0.1:0.7}
∆t = {30:10:60} (ms)

4032

Drag

144 mono snare excerpts
α = {0.15:0.1:0.55}
∆t1 = {50:10:70} (ms)
∆t2 = {45:10:75} (ms)

8640

Table 2. An overview of the constructed dataset

grace notes with different velocity and timing, they can be
modeled with a limited set of parameters as shown in Fig. 4.
The triangles in the figure represent the basic waveform
excited by normal strikes, and the ∆t is the time difference
between neighboring excitations. All the waveforms have
been normalized to a maximum amplitude of -1 to 1, and
the α is the amplitude ratio between the grace note and the
strong note.

In order to have realistic parameter settings for ∆t and α,
we annotated demo videos from Vic Firth’s online lessons
for both Flam 2 and Drag. 3 The final parameter settings
and the details of the constructed dataset are shown in Table
2. The parameters are based on the mean and standard
deviation estimated from the videos. The resulting data
contains all possible combinations of the parameters with
the 144 mono snare Strike in the MDLib 2.2. However, to
ensure the classifier is trained with uniformly distributed
classes, only 576 randomly selected clips are used for Flam
and Drag during the training.

3.3.2 Test Dataset

To evaluate the system for detecting the playing techniques
in polyphonic mixtures of music, the tracks from the ENST
drum dataset minus one subset [7] have been annotated.
The ENST drum dataset contains various drum recordings
from 3 drummers with 3 different drum kits. The minus one
subset, specifically, consists of 64 tracks of drum recordings
with individual channel, mix, and accompaniments avail-
able. Since the playing technique is related to the playing
style of the drummer, only 30 out of 64 tracks contain such
techniques on snare drum. These techniques are annotated
using the snare channel of the recordings, and each tech-
nique is labeled with the starting time, duration, and the
technique index. As a result, a total number of 182 events
(Roll: 109, Flam: 26, Drag: 47) have been annotated, and
each event has a length of approximately 250 to 400 ms. All
of the above mentioned annotations are available online. 4

4. EVALUATION

4.1 Metrics

For evaluating the accuracy on the testing data, we calculate
the micro-averaged accuracy and the macro-averaged accu-

2 http://vicfirth.com/20-flam/ Last Access: 2016/03/16
3 http://vicfirth.com/31-drag/ Last Access: 2016/03/16
4 https://github.com/cwu307/DrumPtDataset
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Figure 5. Results of experiment 1 (left) and experiment 2
(right)

racy [21] to account for the unevenly distributed and sparse
classes. The metrics are defined in the following equations:

micro averaged =

∑K
k=1 Ck∑K
k=1Nk

(1)

macro averaged =
1

K

K∑

k=1

(
Ck

Nk

)
(2)

in which K is the total number of classes, Nk is the total
number of samples in class k, and Ck is the total number
of correct samples in class k. These two metrics have dif-
ferent meanings: while each sample is weighted equally for
the micro-averaged accuracy, the macro-averaged accuracy
applies equal weight to each class, which gives a better
overview of the performance by emphasizing the minority
classes.

4.2 Experiment Setup

In this paper, three sets of experiments are conducted.
The first experiment consists of running a 10-fold cross-
validation on the training data, in the second experiment
the test data is classified with an annotation-informed seg-
mentation, and the third experiment classifies the test data
without the annotation-informed segmentation. Different
feature sets as described in Sect. 3.2, namely AF, ADF, and
TF, are tested using a multi-class C-SVM with Radial Basis
Function (RBF) kernel. For the implementation, we used
libsvm [4] in Matlab. All of the features are scaled to a
range between 0 and 1 using the standard min-max scaling
approach.

4.3 Results

4.3.1 Experiment 1: Cross-Validation on Training Data

In Experiment 1, a 10-fold cross validation on the training
data using different sets of features is performed. The
results are shown in Fig. 5 (left). This experimental setup
is chosen for its similarity to the approaches described in
previous work [13, 19]. As expected, the features allow to
reliably separate the classes with accuracies between 80.9–
96.8% for the different feature sets. Since the training data
contains 576 samples for all classes, the micro-averaged
and marco-averaged accuracy are the same.

Figure 6. Results of experiment 3 without background
music (left) and with background music (right)

4.3.2 Experiment 2: Annotation-Informed Testing

In Experiment 2, the same sets of features are extracted
from the testing data for evaluation. Since the testing data
is a completely different dataset with the real-world drum
recordings, a verification of the feasibility of using the syn-
thetic training data as well as the proposed feature represen-
tations is necessary. For this purpose, we simulate the best
case scenario by using the snare channel as the input with
an annotation-informed process for isolating the playing
techniques. The resulting 182 segments are then classified
using the trained SVM models from Experiment 1. With
ADF, the best performance of 76.0 and 81.3% was achieved
for macro and micro-averaged accuracy, respectively. This
experiment serves as a sanity check to the presented scheme.
Note that strikes are excluded in this experiment, therefore,
the micro-averaged accuracy mainly reflects the accuracy
of the majority class, which is Roll.

4.3.3 Experiment 3: Real-World Testing

Experiment 3 utilizes a more realistic setup and is our main
experiment. Each onset is examined and classified without
any prior knowledge about the segmentation. A fixed region
around each onset is segmented and classified. As a result,
a total number of 2943 onsets (including the previous men-
tioned 182 playing technique events and 2761 strikes) are
evaluated. Since the timbre features do not show promis-
ing results in Experiment 2, they are excluded from this
experiment. To investigate the influence of the background
music, both the recordings of the snare channel and the
complete polyphonic mixtures are tested. The results are
shown in Fig. 6. Without the background music, the best
macro-averaged accuracy is 64.6% using ADF, and the best
micro-averaged accuracy is 78.0% using AF. With the back-
ground music, the best macro-averaged accuracy is 40.4%
using ADF, and the best micro-averaged accuracy is 30.4%
using AF.

4.4 Discussion

Based on the experiment results, the following observations
can be made:

First, as can be seen in Fig. 5, the timbre features
achieve the highest cross-validation accuracy in Experi-
ment 1, which shows their effectiveness in differentiating
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Strike Roll Flam Drag
Strike (2761) 28.9 38.8 5.7 26.6
Roll (109) 8.3 66.1 11.9 13.8
Flam (26) 3.8 53.8 19.2 23.1
Drag (47) 46.8 6.4 4.3 42.6

Table 3. Confusion matrix of Exp. 3 with music and AF (in
%)

our classes. This observation echos the results from the
related work, which demonstrate the usefulness of timbre
features for distinguishing the different sounds. However,
when these features are applied to classify a completely dif-
ferent dataset, they are unable to recognize the same pattern
played with different drum sounds. As a result, the timbre
features achieve the lowest macro-averaged accuracy in Ex-
periment 2, and the micro-averaged accuracy approximates
the Zero-R accuracy by always predicting the majority class.
This result shows that timbre features might not be directly
applicable to detecting the playing techniques in unknown
recordings. The activation functions and activation derived
features, on the other hand, are relatively stable and consis-
tent between the micro and macro-averaged accuracy. This
indicates a better performance for detecting the proposed
playing techniques in the unseen dataset.

Second, in comparison with the AF, the ADF tends to
achieve a higher macro-averaged accuracy than the activa-
tion functions among all experiment results. Furthermore,
the ADF is more sensitive to different playing techniques,
whereas the AF is more sensitive to strikes. These results in-
dicate that the ADF is more capable of detecting the playing
techniques. This tendency can also be seen in the confusion
matrices in Tables 3 and 4, where the ADF performs better
than the AF in Roll and Drag, and slightly worse in Flam.
The AF generally achieves higher micro-averaged accuracy
than the ADF. Since the distribution of the classes is skewed
towards Strike in the testing data, the micro-averaged ac-
curacy of the AF is largely increased by a higher rate of
detecting strikes.

Third, according to the confusion matrices (Tables 3 and
4), Strike and Flam can be easily confused with Roll for
both features in the context of polyphonic mixtures of music.
One possible explanation is that, whenever the signal is not
properly segmented, the activation function will contain
overlapping activities from the previous or the next onset,
which might result in leakage to the original activation and
make it resemble a Roll. The strong skewness towards the
preceding grace notes in the case of Drag makes it relatively
easy to distinguish from Roll for both features.

Fourth, for both activation functions and activation de-
rived features, the detection performance drops drastically
in Experiment 3 with the presence of background music.
The reason could be that with the background music, the
extracted activation function becomes noisier due to the
imperfect decomposition. Since the classification models
are trained on the clean signals, they might be susceptible
to these disturbance. As a result, the classifier might be
tricked into classifying Strike as other playing techniques,

Strike Roll Flam Drag
Strike (2761) 5.8 62.9 3.8 27.6
Roll (109) 5.5 74.3 3.7 16.5
Flam (26) 0.0 61.5 11.5 26.9
Drag (47) 2.1 8.5 19.1 70.2

Table 4. Confusion matrix of Exp. 3 with music and ADF
(in %)

decreasing the micro-averaged accuracy.
Note that the proposed method does not take into account

the onset detection at this moment. By adding the onset
detection process, the detection accuracy will be further
reduced, which decreases the reliability of the approach.

5. CONCLUSION

In this paper, a system for drum playing technique detection
in polyphonic mixtures of music has been presented. To
achieve this goal, two datasets have been generated for train-
ing and testing purposes. The experiment results indicate
that the current method is able to detect the playing tech-
niques from real-world drum recordings when the signal is
relatively clean. However, low accuracy of the system in the
presence of background music indicates that more sophisti-
cated approaches should be applied in order to improve the
detection of playing techniques in polyphonic mixtures of
music.

Possible directions for the future work are: first, in-
vestigate different source separation algorithms as a pre-
processing step in order to get a cleaner representation.
The results of Experiments 2 and 3 show that a cleaner
input representation improves both the micro and macro-
averaged accuracy by more than 20%. Therefore, a good
source separation method to isolate the snare drum sound
could be beneficial. Common techniques such as HPSS
and and other approaches for source separation should be
investigated.

Second, since the results in Experiment 3 implies that the
system is susceptible to the disturbance from background
music, a classification model trained on the slightly noisier
data could expose the system to more variations of the
activation funcitons and possibly increase the robustness
against the presence of unwanted sounds. The influence of
adding different levels of random noise while training could
be evaluated.

Third, the current dataset offers only a limited number
of samples for the evaluation of playing technique detection
in polyphonic mixtures of music. Due to the sparse nature
of these playing techniques, their occurrence in existing
datasets is rare, making the annotation difficult. However,
to arrive at a statistically more meaningful conclusion, ad-
ditional data would be necessary.

Last but not least, different state-of-the-art classifica-
tion methods, such as deep neural networks, could also be
applied to this task in searching for a better solution.
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ABSTRACT

Successfully predicting missing components (entire parts
or voices) from complex multipart musical textures has
attracted researchers of music information retrieval and
music theory. However, these applications were limited
to either two-part melody and accompaniment (MA) tex-
tures or four-part Soprano-Alto-Tenor-Bass (SATB) tex-
tures. This paper proposes a robust framework appli-
cable to both textures using a Bidirectional Long-Short
Term Memory (BLSTM) recurrent neural network. The
BLSTM system was evaluated using frame-wise accura-
cies on the Nottingham Folk Song dataset and J. S. Bach
Chorales. Experimental results demonstrated that adding
bidirectional links to the neural network improves predic-
tion accuracy by 3% on average. Specifically, BLSTM out-
performs other neural-network based methods by 4.6% on
average for four-part SATB and two-part MA textures (em-
ploying a transition matrix). The high accuracies obtained
with BLSTM on both two-part and four-part textures indi-
cated that BLSTM is the most robust and applicable struc-
ture for predicting missing components from multi-part
musical textures.

1. INTRODUCTION

This paper presents a method for predicting missing com-
ponents from complex multipart musical textures. Specif-
ically, we examine two-part melody and accompaniment
(MA) and Soprano-Alto-Tenor-Bass (SATB) chorale tex-
tures. We treat each voice as a part (e.g. the melody of the
MA texture or the Soprano of the SATB texture) and the
problem we address is given an incomplete texture, how
successfully can we generate the missing part. This project
proposes a robust approach that is capable of handling both
textures elegantly and has applications to any style of mu-
sic. Predictions are made using a Bidirectional Long-Short
Term Memory (BLSTM) recurrent neural network that is
able to learn the relationship between components, and

c© I-Ting Liu, Richard Randall. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: I-Ting Liu, Richard Randall. “Predicting Missing Music Com-
ponents with Bidirectional Long Short-Term Memory Neural Networks”,
17th International Society for Music Information Retrieval Conference,
2016.

can thus be trained to predict missing components. This
work demonstrates the capability of the BLSTM system by
conducting experiments on the two tasks mentioned above
with two distinct datasets.

Analyzing music with the aid of computer programs
has attracted researchers of music information retrieval and
music theory over the past twenty years. Music (especially
western tonal music) has always been regarded as a kind
of art with rigorous formalization. Various complex rules
regulate how notes can be and cannot be played together in
complex multipart textures. Such rules change over time
and are subject to multiple factors. As artificial intelli-
gence and machine-learning research advances, it is natu-
ral that computer scientists apply such technique to music
analysis in order to elucidate these rules [2]. Two popu-
lar tasks investigated in this area are (1) generating chord
accompaniments for a given melody in a two-part MA
texture and (2) generating a missing voice for an incom-
plete four-part SATB texture. Successfully accomplish-
ing either task manually is time-consuming and requires
considerable style-specific knowledge and the applications
discussed below are designed to automate and help non-
professional musicians compose and analyze music.

Approaches that treat these problems can be categorized
into two types according to the level of human engagement
in discovering and applying music rules. Early works that
handle incomplete four-part SATB textures were mostly
knowledge-based models. Steels [28] proposed a represen-
tation system to encode musical information and exploited
heuristic search, which takes the form of if-then musical
rules that specifies solutions under different conditions to
generate voices. Ebcioğlu built CHORAL, a knowledge-
based system that includes over 350 rules modeling the
style of Johann Sebastian Bach [8]. Due to the large num-
ber of rules involved, some studies modeled the problem
as a constraint satisfaction problem, as was used by Pachet
and Roy [22] on four-part textures and Ramirez, et al. [25]
on two-part textures. Knowledge-based genetic algorithms
were also used as an alternative method to represent the
rules. Mcintyre [21] implemented a system that harmo-
nizes user-defined melody in Baroque style, and Hall [17]
presented a system that selects combination of attributes to
model the harmonization of J. S. Bach’s chorales. Freitas
and Guimaraes also implemented a system based on ge-
netic algorithms in [11]. The fitness function and genetic
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operators rely on “music knowledges” to suggest chord
progressions for given melodies.

While rules in knowledge-based systems have to be
manually encoded into these systems, rules in probabilis-
tic models and neural networks can be derived by training
corpora without human intervention by the models. Hid-
den Markov Models (HMM) are one of the most com-
mon probabilistic models for the task of generating a chord
sequence given melodies for two-part textures [27]. In
HMM, a pre-selected dataset is used to train a transi-
tion probability matrix, which represents the probability
of changing from one chord to another, and a melody ob-
servation matrix, the probability of encountering each note
when different chords are being played. The optimal chord
sequence is then generated using dynamic programming,
or Viterbi Algorithm. HMM are also used by Allan [1]
to harmonize four-part chorales in the style of J. S. Bach.
In addition to HMM, Markov Model and Bayesian Net-
works are alternative models used for four-part textures by
Biyikoglu [3] and Suzuki, et al. [29]. Raczyński, et al. [24]
proposed a statistical model that combines multiple sim-
ple sub-models. Each sub-model captures different music
aspects such as metric and pitch information, and all of
them are then interpolated into a single model. Paiement,
et al. [23] proposed a multi-level graphical model, which is
proved to capture the long-term dependency among chord
progression better than traditional HMM. One drawback
of probabilistic models is that they cannot correctly handle
data that are not seen in training data. Chuan and Chew [5]
reduced this problem by using a hybrid system for style-
specific chord sequence generation with statistical learning
approach and music theory.

Neural networks have also been used by some re-
searchers. Gang, et al. [13] were one of the earliest that
used neural networks to produce chord harmonization for
given melodies. Jordan’s sequential neural network con-
sisted of a sub-net that learned to identify chord notes for
the melody in each measure, and the result was fed into
the network to learn the relationship between melodies and
chords. The network was later adopted real-time applica-
tion [12, 14]. Consisting of 3 layers, the input layer takes
pitch, metric information and the current chord context,
and the output layer predicts the next chord. Cunha, et
al. [6] also proposed a real-time chord harmonization sys-
tem using multi-layer perceptron (MLP) neural network
and a rule-based sequence tracker that analyzes the struc-
ture of the song in real-time, which provides additional in-
formation on the context of the notes being played.

Hoover, et al. [20] used two Artificial Neural Networks
(ANN) to model the relationship between melodies and ac-
companiment as a function of time. The system was later
extended to generate multi-voice accompaniment by in-
creasing the size of the output layer in [19]. Bellgard and
Tsand [2] trained an effective Bolzmann machine and in-
corporated external constraints so that harmonization fol-
lows the rules of a chorale. Fuelner developed a feed-
forward neural network that harmonizes melodies in spe-
cific styles in [9]. De Prisco, et al. [7] proposed a neural

network that finds appropriate chords to harmonize given
bass lines in four-part SATB chorales by combining three
base networks, each of which models context of different
time lengths.

Although all these previous studies provide valuable in-
sights, a number of constraints exist in their applications.
Most rules encoded in knowledge-based systems are style-
specific, making them hard to apply to other types of mu-
sic efficiently. Probabilistic models and neural networks,
on the other hand, provide a much more adaptable solution
that can be applied to music of different styles by learning
rules from different styles of training data. Nevertheless,
many of the probabilistic models can only handle music
pieces of fixed length. In addition, the transition matrix of
probabilistic models has to be learned using specific mu-
sic representation (e.g. chords) and cannot be generalized
to other representations. Moreover, probabilistic models
tend to ignore long-term dependency among music com-
ponents as they mainly focus on local transitions between
two consecutive components. Existing studies using neural
networks captured long-term dependencies in music and
also are capable of dealing with music pieces of arbitrary
lengths. However, neural networks have been notoriously
hard to train, and their ability to utilize long-term informa-
tion was limited until the introduction of Long-Short Term
Memory (LSTM) cells.

Although BRNNs have access to both past and future
information, they have been notoriously hard to train be-
cause of “vanishing gradients,” a problem commonly seen
in RNNs when training with gradient based methods. Gra-
dient methods, such as Back-Propagation Through Time
(BPTT) [31], Real-Time Recurrent Learning (RTRL) [26]
and their combinations, update the network by flowing er-
rors “back in time.” As the error propagates from layer to
layer, it tends to either explode or shrink exponentially de-
pending on the magnitude of the weights. Therefore, the
network fails to learn long-term dependency between in-
puts and outputs. Tasks with time lags that are greater than
5-10 time steps are already difficult to learn, not to mention
that dependency of music usually spans across tens to hun-
dreds of notes in time, which contributes to music’s unique
phrase structures. Long short term memory (LSTM) [18]
algorithm was designed to tackle the error-flow problem.

In an LSTM hidden layer, fully-connected memory
blocks replace nonlinear units that are often used in feed-
forward neural network. The core of a memory block is
a linear cell that sums up the inputs, which has a self-
recurrent connection of fixed weight 1.0, preserving all
previous information and ensuring they would not vanish
as they are propagated in time. A memory block also con-
tains three sigmoid gating units: input gate, output gate,
and forget gate. An input gate learns to control when in-
puts are allowed to pass into the cell in the memory block
so that only relevant contents are remembered; an output
gate learns to control when the cell’s output should be
passed out of the block, protecting other units from in-
terference from current irrelevant memory contents; a for-
get gate learns to control when it is time to forget already
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remembered value, i.e. to reset the memory cell. When
gates are closed, irrelevant information does not enter the
cell and the state of the cell is not altered. The outputs of
all memory blocks are fed back recurrently to all memory
blocks to remember past values. Finally, adding bidirec-
tional links and LSTM cells improves a neural network’s
ability to employ additional timing information. All of the
above contributes to the fact that the proposed BLSTM
model is flexible and effective in generating the missing
component in an incomplete multipart texture.

2. METHOD

2.1 Music Representation

MIDI files are used as input in both training and testing
phases in this project. Multiple input and output neurons
are used to represent different pitches. At each time, the
value of the neuron associated with the particular pitch
played at that time is 1.0. The values of the rest of the
neurons are 0.0. We avoid distributed encodings and other
dimension reduction techniques and represent the data in
this simple form because this representation is common
and assumes that neural networks can learn a more dis-
tributed representation within hidden layers.

The music is split into time frames and the length of
each frame depends on the type of music. Finding missing
music component can then be formulated as a supervised
classification problem. For a song of length t1, for every
time t from t0 to t1, given input x(t), the notes played at
time t, find the output y(t), which is the missing compo-
nent we try to predict. In other words, for two-part MA
textures, y(t) is the chord played at time t, while for four-
part SATB textures, y(t) is the pitch of the missing part at
time t.

2.2 Generating Accompaniment in Two-Part MA
Texture

2.2.1 Input and Output

The MIDI files are split into eighth note fractions. The
inputs at time t, x(t), are the notes of the melody played
at time t. Instead of representing the notes by their MIDI
number, which spans the whole range of 88 notes on a key-
board, we used pitch-class representation to encode note
pitches into their corresponding pitch-class number. Pitch
class, also known as “chroma,” is the set of all pitches re-
gardless of their octaves. That is, all C notes (C0, C1, ...
etc.) are all classified as pitch-class C. All notes are repre-
sented with one of the 12 numbers corresponding to the 12
semitones in an octave. In addition to pitch-class informa-
tion, two additional values are added as inputs: Note-Begin
unit and Beat-On unit. In order to be able to tell when a
note ends, a Note-Begin unit is used to differentiate two
consecutive notes of the same pitch from one note that is
held for two time frames as was done by [30]. If the note in
the melody is beginning at the time, the value of the Note-
Begin unit is 1.0; if the note is present but duplicates the
previous note or is not played at all, the value of the unit is

0.0. The Beat-On unit, on the other hand, provides metric
information to the network. If the time t is on a beat, the
value of the Beat-On unit is 1.0, otherwise 0.0. If time t
is a rest, the values of all input neurons are 0.0. The time
signature information is obtained via meta-data in MIDI
files.

The outputs at time t, y(t), is the chord played at time
t. We limit chord selection to major, minor, diminished,
suspended, and augmented triads as in [27], resulting in
52 chords in total 1 . The output units represent these 52
chords in a manner similar to the input neurons: the value
of the neuron corresponding to the chord played at that
time has a value of 1.0, and the values of the rest of the
neurons are all 0.0.

2.2.2 Training the Network

The input layer has 14 input neurons: 12 neurons for each
pitch in the pitch class, one neuron for note-begin and one
for beat-on unit. The network consists of two hidden lay-
ers for both forward and backward states, resulting in four
hidden layers in total. In every hidden layer are 20 LSTM
blocks with one memory cell. The output layer uses the
softmax activation function and cross entropy error func-
tion as in [15]. Softmax function is a standard function for
multi-class classification that squashes a K-dimensional
vector x in the range of (0, 1), which takes the form

σ(x)j =
exj

∑K
k=1 e

xk

, for j = 1, ...,K (1)

The softmax function ensures that all the output neurons
sum to one at every time step, and thus can be regarded as
the probability of the output chord given the inputs at that
time.

Each music piece is presented to the network one at a
time, frame-by-frame. The network is trained via standard
gradient-descent Back-Prorogation. A split of data is used
as the validation set for early-stopping in order to avoid
over-fitting of the training data. If there is no improvement
on the validation set for 30 epochs, training is finished and
the network setting with the lowest classification error on
the validation set is used for testing.

2.2.3 Markov Model as Post-Processing

The network trained in 2.2.2 can then be used to predict the
chord associated with each melody note by choosing the
output neuron that has the highest activation at each time.
However, the predicted chord at each time is independent
of the chord predicted in the previous and succeeding time.
While there are forward and backward links in the hidden
layers of the network, there is no recurrent connections
from the final neuron output to the network. The chord
might sound good with the melody, but the transition from
one chord to another might not make sense at all. In fact,

1 We represent the note of the chords with their pitches rather than
pitch names. Therefore, A augmented chord would have the same repre-
sentation as F augmented: the former consists of A, C#, and E#, whose
pitches are the same as that of the component of the latter, F, A, and C#.
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how one chord transits from and to the other typically fol-
lows specific chord-progression rules depending on differ-
ent music styles. A bi-gram Markov Model is thus added
to learn the probability of transitioning from each chord
to possible successors independent of the melody, which
will be referred to as the transition matrix. The transition
matrix is smoothed using linear interpolation with a uni-
gram model. The model also learns the statistics of the
start chords.

Instead of selecting the output neuron with the highest
activations, the first k neurons with the highest activations
are chosen as candidates. Dynamic programming is then
used to determine the optimal chord sequence among the
candidates using the previously-learned transition matrix.

2.3 Generating the Missing Part in Four-Part SATB
Textures

2.3.1 Input and Output

Without loss of generality, we sample the melody at every
eighth note for similar reasons as explained by Prisco, et
al. [7]. Notes that are shorter in length are considered as
passing notes and are ignored here. The inputs at time t,
x(t), are the pitches of the notes played at time t, span-
ning the whole range of 88 notes (A0, C8) on a keyboard,
resulting a 88-dimensional vector. If a note i is played at
time t, the value of the neuron associated with the particu-
lar pitch is 1.0, i.e. xi(t) = 1.0. The number of non-zero
elements in x(t), which are the number notes played each
time, ranges from one to three, depending on the number
of voices present.

For the task of predicting the missing voice in a four-
part texture where the other three voices are present, the
input is polyphonic music. In this case, there are at
most three non-zero elements in xt for every time t, i.e.

∀t
88∑
i=1

xi(t) ≤ 3. If the task is to predict one missing

voice given only one of the three other voices, there is at
most one non-zero element in x(t). The reason why we do
not represent the notes with their pitch-class profile as we
did when handling two-part MA texture is that the network
depends on octave information to identify which voice the
notes belong to. The outputs at time t, y(t), is the pre-
dicted missing note at time t, which falls in the pitch range
of any of the four voices, depending on the task specified
by our training data. Similarly, the value of the neuron as-
sociated with the particular pitch played at the time t is 1.0,
otherwise 0.0.

2.3.2 Training the Network

The network structure is the same as the one used in Sec-
tion 2.2.2 except that the number of input neurons and out-
put neurons are 88, and that we use 20 LSTM blocks for
the first hidden layer and 50 LSTM blocks for the second
hidden layer. Similar to what we did for two-part MA tex-
tures, each music piece is presented to the network one at
a time, frame-by-frame. If the task is to generate one miss-
ing voice given any of the three other voices, then the three
present voices are given to the network individually as if

they are independent melodies. In this case, each music
piece is actually presented to the network three times and
each time only one of the three voices is presented. This
method gave the best results.

2.3.3 Predict Missing Voice with the Trained Network

The trained network is ready to predict the missing voice
by doing an 88-class classification on the input voice. At
each time frame, the neuron with the highest activations
is selected, and the pitch it represents is considered as the
pitch of the missing voice.

3. EVALUATION

3.1 Generating Missing Accompaniment in Two-Part
MA Texture

3.1.1 Dataset

The system’s performance on two-part MA textures is eval-
uated using the Nottingham Dataset [10] transcribed from
ABC format, which is also used in [4] for composing poly-
phonic music. The dataset consists of 1024 double-track
MIDI files, with melody on one track and accompaniment
on the other. The length of the pieces ranges from 10 sec-
onds to 7.5 minutes, the median being 1 minute and 4 sec-
onds. Those without accompaniment and those whose ac-
companiment are more complicated than simple chord pro-
gressions are discarded, resulting in 962 MIDI files com-
prising more than 1000 minutes, in total. Songs not in the
key of C major nor A minor (874 of them) were trans-
posed to C major/A minor after probabilistically deter-
mining their original key using the Krumhansl-Schmuckler
key-finding algorithm.

The chords were annotated at every beat or at every
quarter note. Seventh chords were reduced to triads, and
rests were replaced with previous chords. 60% of the
dataset is selected randomly as training data, 20% as val-
idation data, and 20% as testing data. Training finishes
when validation accuracy does not improve for 30 epochs.
All results for the training and testing sets were recorded
at the time when the classification error on the validation
set is lowest.

3.1.2 Effects of Including Metric Information in Input

Since the network learns the input melody as a sequence in
time and has no access to information other than pitches,
we added Beat-On flag to a frame when it is on a beat
according to the time signature meta-data in MIDI files
(Group iii and iv). We also added Note-Begin (Group ii
and iv) to differentiate two consecutive notes of the same
pitch from two distinctive notes, as mentioned in Sec-
tion 2.2.1. All three groups were sampled every eighth
note, and the MIDI note range (50, 95) was used as the
input range. Table 3.1.2 shows the classification accuracy
of the three groups as well as the one where neither flag is
provided as a reference. Two groups where Beat-On flag
is added, Group iii and iv, perform significantly better than
the groups without the beat information (Group i), with a
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Training Set Test Set
(i) Pitch Information only 72.88% 68.54
(ii) Note-Begin 72.11% 68.86
(iii) Beat-On 75.82% 70.34
(iv) Note-Begin and Beat-On 75.76% 70.61

Table 1. Classification accuracy of the dataset when a
Note-Begin flag, Beat-On flag, and both flags are added
to the inputs.

Training Set Test Set
(i) 8th Note + Range 75.76% 70.65 %
(ii) 8th Note + PC 73.13% 72.05 %
(iii) 16th Note + Range 73.10% 69.50 %
(iv) 16th Note + PC 74.02% 70.67 %

Table 2. Classification accuracy of the dataset when us-
ing various representations of pitches at various sampling
rates.

95% confidence interval of 0.84%, 0.80% and 0.79% indi-
vidually. This is consistent with the fact that chords always
change on a beat or multiples of a beat. Therefore, such in-
formation is crucial to the timing of chord changes in the
network. Note-Begin, on the other hand, does not seem to
improve the accuracy, which is due to the fact that whether
the note is held from the previous time or it is newly started
does not affect chord choices.

3.1.3 Choice of Data Representations

To see how different resolutions of the melody affects the
chord prediction result, we evaluated the performance of
the system using different frame lengths. “8th Note” or
“16th Note” indicates the melodies and accompaniments
were sampled every eighth note or sixteenth note. We
represented the input to the network using only the ac-
tual pitch range that melody notes are played in, which is
MIDI note 50 (D3) to 95 (B6) (Groups i and iii, “Melody
Range”), and using pitch class representation (Groups ii
and iv, “Pitch Class”).

Since the network learns the input melody as a se-
quence in time and have no access to information other
than pitches, we added Beat-On flags to a frame when
it is on a beat according to the time signature meta-data
in MIDI files. We also added Note-Begin flags. Repre-
senting the melodies with their pitch-class number at ev-
ery 8th note (Group ii) could correctly predict the missing
chords approximately 72% of the time when both Note-
Begin and Beat-On information are available. With a 95%
confidence interval at 0.76%, it also significantly outper-
forms the other representation. Table 2 shows the result.

3.1.4 Comparison with Other Approaches

We compared the architecture used in this paper with four
other neural network architectures: Unidirectional LSTM,
Bidirectional recurrent neural network (BRNN), Unidirec-
tional recurrent neural network (RNN), and Multi-layer

Network Training Set Test Set Epochs
BLSTM 75.76% 71.13 % 103
LSTM 71.51% 67.57 % 130
BRNN 68.77% 68.86 % 136
RNN 68.33% 66.58 % 158
MLP 55.16% 54.66 % 120

Table 3. Classification accuracy of the dataset using dif-
ferent neural network architectures.

perceptron network (MLP). Given the variety of differ-
ent datasets and accessibility to code, our comparison is
based on the BLSTM methods described above. Neurons
in BRNN, RNN and MLP networks were sigmoid neurons.
The size of the hidden layers were selected so that the num-
ber of weights are approximately the same (around 32,000)
for all of the networks as in [15]

Table 3 shows the classification accuracy and the num-
ber of epochs required to converge. All groups were sam-
pled at every eighth note, and were provided with both met-
ric information, (Note On and Beat On), during training
and testing. The 95% confidence interval for BLSTM and
LSTM are 0.80% and 0.76%. Using approximately same
number of weights, BLSTM performs significantly better
than other neural networks and also converges the fastest.

3.2 Finding the Missing Part in Four-Part SATB
Textures

3.2.1 Dataset

We evaluated our approach using 378 of J. S. Bach’s four-
part chorales acquired from [16]. MIDI files were all
multi-tracked, one voice on each track. The average length
of the pieces is approximate 45 seconds, the maximum and
minimum being 6 minutes and 17 seconds. Among all
chorales, 102 pieces are in minor mode. All of the chorales
were transposed to C major/A minor using Krumhansl-
Schmuckler key-finding algorithm. As in section 3.1, 60%
of the files were used as training set, 20% as test set, and
20% as validation set, resulting in 226, 76, 76 pieces re-
spectively.

3.2.2 Predicting Missing Voice Given the Other Three
Voices

Table 3.2.2 shows the frame-wise classification accuracy
of the predicted missing voices (Soprano, Alto, Tenor, or
Bass) when the three other voices are given on training and
test sets. The accuracy of predicting missing voices on the
original non-transposed set is also listed for comparison.
All songs were sampled at every eighth note. From the ta-
ble, we can observe a few interesting phenomena. First,
transposing the songs remarkably improves prediction ac-
curacy in both training and test set. This is not surpris-
ing since transposing songs in advance reduces complex-
ity. The same pre-processing is also used by [3] [4] [27].
Second, we see that the network could correctly predict
Soprano, Alto, and Tenor approximately 70% of the time
when the songs were transposed. Specifically, Alto seems
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Soprano Alto
Training Test Training Test

Not Transposed 69.15% 46.82% 63.61% 47.61%
Transposed 77.90% 71.52% 82.65% 73.90%

Tenor Bass
Training Test Training Test

Not Transposed 47.25% 39.85% 45.40% 36.93%
Transposed 78.47% 69.76% 70.09% 61.22%

Table 4. Classification accuracy of the predicted missing
voices, either Soprano, Alto, Tenor, or Bass, when the three
other voices are given on training and testing sets.

Soprano Alto
Training Test Training Test

BLSTM 84.88% 73.86 % 82.65% 73.90 %
BRNN 90.25% 74.37% 85.37% 74.30 %
LSTM 85.27% 70.39% 77.14% 70.45%
RNN 81.90% 72.29% 80.31% 71.73%
MLP 68.74% 66.54% 73.51% 70.03%

Tenor Bass
Training Test Training Test

BLSTM 78.47% 69.76% 70.09% 61.22 %
BRNN 80.95% 70.13% 74.58% 63.74%
LSTM 73.84% 64.89% 65.86% 57.69%
RNN 75.48% 67.20% 69.68% 59.69%
MLP 68.85% 65.68% 58.58% 56.14%

Table 5. Classification accuracy of the predicted missing
voices when three other voices are given using different
network architecture.

to be the easiest to predict (in bold), while Bass is the most
difficult.

3.2.3 Comparison with Other Approaches

Similar to our approach in Section 3.1.4, the size of the hid-
den layers were selected so that the number of weights are
approximately the same (around 63,000) for all of the net-
works. Table 3.2.3 shows the classification accuracy of the
missing voices (either Soprano, Alto, Tenor, or Bass) when
all of the three other voices are present. From the result,
we can see that BLSTM does not have a statistically sig-
nificant performance from BRNN on Soprano, Alto, and
Tenor parts (in bold) and outperforms other neural-network
based methods on all parts. It also shows that including fu-
ture information by using bidirectional connection effec-
tively improves accuracy by 3% on average no matter us-
ing LSTM cells (in BLSTM and LSTM) or logistic cells
(in BRNN and RNN). Note that LSTM, while powerful,
is really hard to train since it requires parameter tuning
and a large dataset. We will need to conduct more experi-
ments in larger scale to explain what properties of LSTM
and BRNN favor which tasks.

4. CONCLUSION

This paper has presented an approach to predicting missing
music components for complex multipart musical textures

using Bidirectional Long-Short Term Memory (BLSTM)
neural networks. We demonstrated the flexibility and ro-
bustness of the system by applying the method to two dis-
tinctive but popular tasks in the computer-music field: gen-
erating chord accompaniment for given melodies in two-
part MA textures and filling the missing voice in four-part
SATB textures. The proposed approach is capable of han-
dling music pieces of arbitrary length as well as various
styles. In addition, the network could be used to generate
missing music components of different forms, i.e. single
notes for four-part SATB textures or chords for two-part
MA textures, by simply altering the number of input and
output neurons.

Two sets of experiments were conducted regarding the
two tasks on two datasets of completely different styles,
and issues that influence prediction accuracies were dis-
cussed. For the task of predicting chord accompaniment in
two-part MA texture, the experimental results showed that
BLSTM network could correctly generate chords for given
melodies 72% of the time, which is significantly higher
than 68%, the best accuracy achieved by using other neural
network based approaches. We also discovered that repre-
senting the melodies using their pitch class profile yielded
the best result.

As for the problem of finding the missing voice in
four-part SATB texture, the experiment demonstrated that
BLSTM network could correctly predict the missing voice
approximately 70% of the time on average when three
other voices are present. Putting the experimental results
on two datasets together, the fact that BLSM outperforms
other neural-network based networks for two-part MA tex-
tures and performs as well as BRNN for four-part SATB
textures showed that the BLSTM network is the optimal
structure for predicting missing components from multi-
part musical textures.
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ABSTRACT

Hindustani classical instrumental concerts follow an
episodic development that, musicologically, is described
via changes in the rhythmic structure. Uncovering this
structure in a musically relevant form can provide for pow-
erful visual representations of the concert audio that is of
potential value in music appreciation and pedagogy. We in-
vestigate the structural analysis of the metered section (gat)
of concerts of two plucked string instruments, the sitar and
sarod. A prominent aspect of the gat is the interplay be-
tween the melody soloist and the accompanying drummer
(tabla). The tempo as provided by the tabla together with
the rhythmic density of the sitar/sarod plucks serve as the
main dimensions that predict the transition between con-
cert sections. We present methods to access the stream
of tabla onsets separately from the sitar/sarod onsets, ad-
dressing challenges that arise in the instrument separation.
Further, the robust detection of tempo and the estimation
of rhythmic density of sitar/sarod plucks are discussed. A
case study of a fully annotated concert is presented, and is
followed by results of achieved segmentation accuracy on
a database of sitar and sarod gats across artists.

1. INTRODUCTION

The repertoire of North Indian (Hindustani) classical music
is characterized by a wide variety of solo instruments, play-
ing styles and melodic material in the form of ragas and
compositions. However, across all these, there is a striking
universality in the concert structure, i.e., the way in which
the music is organized in time. The temporal evolution
of a concert can be described via changes in the rhythm
of the music, with homogenous sections having identical
rhythmic characteristics. The metric tempo and the sur-
face rhythm, two important aspects of rhythm, characterize
the individual sections. Obtaining these rhythm features as
they vary with time gives us a rich transcription for mu-
sic appreciation and pedagogy. It also allows rhythm-base
segmentation with potential applications in concert sum-

c© Vinutha T.P., Suryanarayana Sankagiri, Kaustuv Kanti
Ganguli, Preeti Rao. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Vinutha T.P.,
Suryanarayana Sankagiri, Kaustuv Kanti Ganguli, Preeti Rao. “STRUC-
TURAL SEGMENTATION AND VISUALIZATION OF SITAR AND
SAROD CONCERT AUDIO”, 17th International Society for Music In-
formation Retrieval Conference, 2016.

marization, music navigation. This provides a strong mo-
tivation for the rhythmic analysis of Hindustani classical
concert audio.

Rhythmic analyses of audio has been widely used for
music classification and tempo detection [1–3]. It has also
been applied to music segmentation [4,5] although timbre-
and harmony-based segmentation are more common. Re-
cently, computational descriptions of rhythm were studied
for Indian and Turkish music [6]. Beat detection and cy-
cle length annotation were identified as musically relevant
tasks that could benefit from the computational methods.

In this paper, we focus on the Hindustani classical in-
strumental concert which follows an established structure
via a specified sequence of sections, viz. alap-jod-jhala-
gat [7]. The first three are improvised sections where the
melody instrumentalist (sarod/sitar) plays solo, and are of-
ten together called the “alap”. The gat or composed sec-
tion is marked by the entry of the tabla. The gat is further
subdivided into episodes as discussed later. The structure
originated in the ancient style of dhrupad singing where
a raga performance is subdivided unequally into the men-
tioned temporally ordered sections.

In the present work, we consider concerts of two
plucked string instruments, sitar and sarod, which are ma-
jor components of Indian instrumental music. The two
melodic instruments share common origins and represent
the fretted and unfretted plucked monochords respectively.
Verma et. al. [8] have worked on the segmentation of the
unmetered section (alap) of such concerts into alap-jod-
jhala based purely on the tempo and its salience. They
use the fact that an increase in regularity and pluck density
marked the beginning of jod. Higher pluck density was
captured via increases in the energy and in the estimated
tempo. The transition to jhala was marked by a further rise
in tempo and additionally distinguished by the presence of
the “chikari” strings.

In this paper, we focus on the rhythmic analysis and
segmentation of the gat, or the tabla-accompaniment re-
gion, into its sections. Owing to differences in the rhyth-
mic structure of the alap and the gat, the challenges in-
volved in this task are different from those addressed in
[8]. In the gat, the tabla provides a definite meter to the
concert by playing a certain tala. The tempo, as set by
the tabla, is also called the metric tempo. The tempo of
the concert increases gradually with time, with occasional
jumps. While the tabla provides the basic beats (theka), the
melody instrumentalist plays the composition interspersed
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with raga-based improvisation (“vistaar”). A prominent
aspect of instrumental concerts is that the gat is charac-
terized by an interplay between the melody instrumentalist
and the drummer, in which they alternate between the roles
of soloist and timekeeper [7, 9]. The melody instrument
can switch to fast rhythmic play (“layakari”) over several
cycles of the tabla. Then there are interludes where the
tabla player is in the foreground (“tabla solo”), improvising
at a fast rhythm, while the melody instrumentalist plays the
role of the timekeeper by playing the melodic refrain of the
composition cyclically. Although both these sections have
high surface rhythm, the term “rhythmic density” refers to
the stroke density of the sarod/sitar [10], and therefore is
high only during the layakari sections. The values of the
concert tempo and the rhythmic density as they evolve in
time can thus provide an informative visual representation
of the concert, as shown in [10].

In order to compute the rhythmic quantities of interest,
we follow the general strategy of obtaining an onset detec-
tion function (ODF) and then computing the tempo from it
[11]. To obtain the surface rhythm, we need an ODF sensi-
tive to all onsets. However, to calculate the metric tempo,
as well as to identify sections of high surface rhythm as
originating from the tabla or sarod/sitar, we must discrim-
inate the tabla and sitar/sarod stroke onsets. Both the sitar
and the sarod are melodic instruments but share the per-
cussive nature of the tabla near the pluck onset. The tabla
itself is characterized by a wide variety of strokes, some
of which are diffused in time and have decaying harmonic
partials. This makes the discrimination of onsets particu-
larly challenging.

Our new contributions are the (i) proposal of a tabla-
specific onset detection method, (ii) computation of the
metric tempo and rhythmic density of the gat over a con-
cert to obtain a rhythmic description which matches with
one provided by a musician, (iii) segmentation of the gat
into episodes based on the rhythm analysis. These meth-
ods are demonstrated on a case study of a sarod gat by a
famous artist, and are further tested for segmentation accu-
racy on a manually labeled set of sitar and sarod gats.

In section 2, we present the proposed tabla-sensitive
ODF and test its effectiveness in selectively detecting tabla
onsets from a dataset of labeled onsets drawn from a few
sitar and sarod concerts. In section 3, we discuss the esti-
mation of tempo and rhythmic density from the periodicity
of the onset sequences and present the results on a manu-
ally annotated sarod gat. Finally, we present the results of
segmentation on a test set of sitar and sarod gats.

2. ONSET DETECTION

A computationally simple and effective method of on-
set detection is the spectral flux which involves the time
derivative of the short-time energy [12]. The onsets of both
the percussive as well as the string instrument lead to a sud-
den increase in energy, and are therefore detected well by
this method. A slight modification involves using a bipha-
sic filter to compute the derivative [13]. This enhances the
detection of sarod/sitar onsets, which have a slow decay

in energy, and leads to a better ODF. Taking the logarithm
of the energy before differencing enhances the sensitivity
to weaker onsets. We hereafter refer to this ODF as the
spectral flux-ODF (SF-ODF), and is given by Eq. 1. (h[n]
denotes the biphasic filter as in [13])

SF -ODF [n] = h[n] ∗ log(
N/2∑

k=0

|X[n, k]|) (1)

Figure 1, which contains a sarod concert excerpt, illustrates
the fact that SF-ODF is sensitive to both sarod and tabla on-
sets. In this example, and in all subsequent cases, we com-
pute the spectrum by using a 40ms Hamming window on
audio sampled at 16 kHz. The spectrum (and therefore the
ODF) is computed at 5 ms intervals. Fig. 1(a) shows the
audio waveform where onsets can be identified by peaks in
the waveform envelope. Onsets can also be seen as vertical
striations in the spectrogram (Fig. 1(b)). SF-ODF is shown
in Fig. 1(c). Clearly, SF-ODF is not tabla-selective.

In order to obtain a tabla-sensitive ODF, we need to ex-
ploit some difference between tabla and sarod/sitar onsets.
One salient difference is that in the case of a tabla onset,
the energy decays very quickly (< 0.1 s). In contrast, the
energy of a sitar/sarod pluck decays at a much slower rate
(> 0.5 s). This difference is captured in the ODF that we
propose, hereafter called as P-ODF. This ODF counts the
number of bins in a spectral frame where the energy in-
creases from the previous frame, and is given by Eq. 2.
This method is similar in computation to the spectral flux
method in [12]; we take the 0-norm of the half-wave recti-
fied energy differences, instead of the 2-norm [12] or 1-
norm [14]. However, the principle on which this ODF
operates is different from the spectral flux ODF. P-ODF
detects only those onsets that are characterised by a wide-
band event, i.e., onsets that are pecussive in nature. Unlike
the spectral flux ODF, it does not rely on the magnitude of
energy change. In our work, this proves to be an advantage
as it detects weak onsets of any instrument better, provided
they are wide-band events.

P -ODF [n] =
N/2∑

k=0

1{|X[n, k]| > |X[n− 1, k]|} (2)

From Fig. 1(d), we see that P-ODF peaks at the onset of
a tabla stroke, as would be expected due to the wide-band
nature of these onsets. It also peaks for sarod onsets, as
these onsets have a percussive character. Thus, it is sen-
sitive to all onsets of interest, and can be potentially used
as generic ODF in place of SF-ODF, for sitar/sarod audio.
What is of more interest is the fact that in the region im-
mediately following a tabla onset, this count falls rapidly
while such a pattern is not observed for sarod onsets (see
Fig. 1(d)). This feature is seen because of the rapid de-
crease in energy after a tabla onset. In the absence of any
activity, the value of the ODF is equal to half the number
of bins as the energy changes from frame to frame in a bin
due to small random perturbations.

The sharp downward lobe in P-ODF is a striking feature
of tabla onsets, and can be used to obtain a tabla-sensitive
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Figure 1: (a) Audio waveform, (b) Spectrogram, (c) SF-
ODF, (d) P-ODF and (e) P-T-ODF of an excerpt of a sarod
concert. All ODFs normalised. Tabla onsets marked in
blue solid lines; sarod onsets marked in red dashed lines

ODF. We normalize the mean-removed function to [-1,1]
and consider only the negative peaks of magnitude that ex-
ceed the empirically chosen threshold of 0.3. We call our
proposed tabla-sensitive ODF as P-T-ODF. An example is
shown in Fig. 1(e).

We wish to establish that the P-T-ODF performs better
as a tabla-sensitive ODF than other existing methods. The
spectral flux method is known to be sensitive to both on-
sets, and performs poorly as a tabla-sensitive ODF. How-
ever, one could hope to obtain better results by computing
the ODF on a percussion-enhanced audio. Fitzgerald [15]
proposes a median-filter based method for percussion en-
hancement that exploits the relatively high spectral vari-
ability of the melodic component of a music signal to sup-
press it relative to the more repetitive percussion. We used
this method to preprocess our gat audio to obtain what we
call the enhanced audio signal (tabla is enhanced), and test
the SF-ODF on it. With this as the baseline, we compare
our P-T-ODF applied to the original audio. In parallel, we
wish to justify our claim that the P-ODF is a suitable ODF
for detecting sarod/sitar as well as tabla onsets.

We evaluate our ODFs on a dataset of 930 labeled on-
sets comprising 158 sitar, 239 sarod and 533 tabla strokes
drawn from different sections of 6 different concert gats.
Onsets were marked by two of the authors, by carefully
listening to the audio, and precisely locating the onset in-
stant with the aid of the waveform and the spectrogram.
We evaluate P-ODF and SF-ODF, derived from the origi-
nal audio, for detection of all onsets, with SF-ODF serving
as a baseline. The obtained ROC is shown in Fig. 2(a).
We also evaluate P-T-ODF, derived from the original audio

Figure 2: (a) All-onsets ROC for SF-ODF (blue dia-
monds) and P-ODF (green circles); (b) Tabla-onsets ROC
for SF-ODF on enhanced audio (blue diamonds), and P-T-
ODF on original audio (green circles)

and compare it with SF-ODF from enhanced audio, for de-
tection of tabla onsets. The corresponding ROC is shown
in Fig. 2(b).

We observe that the spectral flux and the P-ODF per-
form similarly in the all-onsets ROC of Fig. 2(a). A close
examination of performance on the sitar and sarod gats
separately revealed that the P-ODF performed marginally
better than SF-ODF on sarod gats, while the performance
of the spectral flux ODF was better than the P-ODF on the
sitar strokes. In the following sections, we use the P-ODF
to detect all onsets in sarod gats and the spectral flux-ODF
on the sitar gats. We also note from Fig. 2(b) that the P-
T-ODF fares significantly better than the SF-ODF applied
on tabla-enhanced signal. The ineffectiveness of Fitzger-
ald’s percussion enhancement is explained by the percus-
sive nature of both instruments as well as the high variation
(intended and unintended) of tabla strokes in performance.
We observed that the median filtering did a good job of
suppressing the sarod/sitar harmonics in but not their on-
sets. The P-T-ODF is established as an effective way to
detect tabla onsets exclusively in both sarod and sitar gats.

3. RHYTHMOGRAMS AND TEMPO
ESTIMATION: A CASE STUDY

A rhythm representation of a gat can be obtained from the
onset detection function by periodicity analysis via the au-
tocorrelation function (ACF) or the DFT. A rhythmogram
uses the ACF to represent the rhythmic structure as it varies
in time [16]. Abrupt changes in the rhythmic structure can
be detected for concert section boundaries. The dominant
periodicity at any time can serve as an estimate of the per-
ceived tempo [5, 11]. Our goal is to meaningfully link the
outcomes of such a computational analysis to the musico-
logical description of the concert.

In this section, we present the musicological and cor-
responding computational analyses of a commercially
recorded sarod gat (Raga Bahar, Madhyalaya, Jhaptal) by
legendary sarodist Ustad Amjad Ali Khan. The musico-
logical description was prepared by a trained musician on
lines similar to the sitar gat case study by Clayton [17] and
is presented next. The computational analysis involved ap-
plying the onset detection methods to obtain a rhythm rep-
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resentation that facilitates the detection of the metric tempo
and rhythmic density as well as the segmentation of the
gat.

3.1 Annotation by a Trained Musician

A musician with over 15 years of training in Hindustani
classical music made a few passes listening to the audio
(duration 14 min) to annotate the gat at three levels. The
first was to segment and label the sequence of distinct
episodes as shown in Table 1. These labels reflect the per-
formers’ (i.e. the sarod and tabla players) intentions as per-
ceived by a trained listener. The next two annotation lev-
els involved marking the time-varying metric tempo and a
measure of the sarod rhythmic density. The metric tempo
was measured by tapping to the tabla strokes that define
the theka (i.e. the 10 beats of the Jhaptal cycle) and com-
puting the average BPM per cycle with the aid of the Sonic
Visualizer interface [18]. The metric tempo is constant or
slowly increasing across the concert with three observed
instants of abrupt change.

The rhythmic density, on the other hand, was obtained
by tapping to the sarod strokes and similarly obtaining a
BPM per cycle over the duration of the gat. Figure 3
shows the obtained curves with the episode boundaries in
the background. We note that the section boundaries co-
incide with abrupt changes in the rhythmic density. The
metric tempo is constant or slowly increasing across the
concert with three observed instants of abrupt change.
The rhythmic density corresponds to the sarod strokes and
switches between being once/twice the tempo in the vis-
taar to four times in the layakari (rhythmic improvisation
by the melody soloist). Although the rhythmic density is
high between cycles 20-40, this was due to fast melodic
phrases occupying part of the rhythmic cycle during the
vistaar improvisation. Since this is not a systematic change
in the surface rhythm, it was not labeled layakari by our
musician. In the tabla solo section, although the surface
rhythm increases, it is not due to the sarod. Therefore, the
tabla solo section does not appear distinctive in the musi-
cian’s markings in Figure 3.

Figure 3: Musicians annotation of tempo and rhythmic
density attributes across the gat. Dashed lines indicate sec-
tion boundaries

Sec. No. Cycles Time (s) Label
1 1-61 0-301 Vistaar *
2 62-73 302-356 Layakari
3 74-77 357-374 Vistaar
4 78-86 375-414 Layakari
5 87-91 415-441 Vistaar
6 92-103 442-490 Tabla solo
7 104-120 491-568 Vistaar
8 121-140 567-643 Layakari
9 141-160 644-728 Vistaar #
10 161-178 729-797 Layakari
11 179-190 798-839 Vistaar

Table 1: Labeled sections for the sarod case study.
*Tempo increases at 67s & 127s; # also at 657s

3.2 Computational Analysis

3.2.1 Rhythmogram

The onset detection methods of Section 2 are applied over
the duration of the concert. We confine our study to two
ODFs based on insights obtained from the ROCs of Fig. 2.
These are the P-ODF for all onsets and the P-T-ODF for
tabla-onsets. Although the P-ODF was marginally worse
than spectral flux in Fig. 2(a), it was found to detect weak
sarod strokes better while the false alarms were irregularly
distributed in time. This property is expected to help us
track the sarod rhythmic density better.

The autocorrelation function of the ODFs is computed
frame-wise, with a window length of 3 seconds and a hop
of 0.5 seconds up to a lag of 1.5 seconds, and is normal-
ized to have a maximum value of 1 in each frame. To im-
prove the representation of peaks across the dynamic range
in the rhythmogram, we perform a non-linear scaling of
the amplitude of the ACF. For the tabla-centric rhythmo-
gram (from P-T-ODF), we take the logarithm of the ACF
between 0.1 and 1; for the generic rhythmogram (from P-
ODF), the logarithm is taken between 0.01 and 1 due to its
inherently wider dynamic range for peaks. The ACF val-
ues below this range are capped to a minimum of -10. This
is followed by smoothing in the lag and time axes by mov-
ing average filters to length 3 and 10 respectively bringing
in short-time continuity.

We thus obtain the two rhythmograms shown in Figures
4 and 5. We note that the P-ODF all-onsets rhythmogram
(Figure 4) captures the homogenous rhythmic structure of
each episode of vistaar, layakari and tabla solo, showing
abrupt changes at the boundaries. Each section itself ap-
pears homogenous except for some spottiness in the se-
quence of low amplitude ACF peaks at submultiple lags
(such as near 0.1s in the region until 300 s).

The tabla-centric rhythmogram (Figure 5), on the other
hand, with its more prominent peaks appearing at lags near
0.5s and multiples, is indicative of a metric (base) tempo of
around 120 BPM. We clearly distinguish from this rhyth-
mogram, the tabla solo segment (where the tabla surface
rhythm shoots up to 8 times the metric tempo). We ob-
serve, as expected, that the sarod layakari sections are
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Figure 4: All-onsets rhythmogram from P-ODF

Figure 5: Tabla centric rhythmogram from P-T-ODF

completely absent from the tabla-centric rhythmogram.

3.2.2 Tempo and surface rhythm estimation

The rhythmograms provide interesting visual representa-
tions of the rhythmic structure. However a visual repre-
sentation that is more amenable to immediate interpreta-
tion by musicians and listeners would have to parallel the
musician’s annotation of Fig. 3. We therefore must process
the rhythmograms further to extract the relevant attributes
of metric tempo and sarod rhythmic density. We present
next the frame-wise estimation of these from the ACF vec-
tors of the smoothened rhythmograms of Figs. 4 and 5.

The basic or metric tempo is obtained from the tabla
rhythmogram (Fig. 5) by maximizing the mean of the
peaks at candidate lags and corresponding lag multi-
ples over the lag range of 50ms to 750ms (1200BPM
to 80BPM). The estimated time-varying metric tempo is
shown in Fig. 6(a) superposed on the ground-truth annota-
tion (x-axis converted to time from cycles as in Fig. 3).
We observe a near perfect match between the two with
the exception of the tabla-solo region, where the surface
rhythm was tracked. We use our knowledge that the sur-
face rhythm would be a multiple of the metric tempo. Di-
viding each tempo value by that multiple that maintains
continuity of the tempo gave us the detected contour of
Fig. 6(a).

The rhythmic density of the sarod is the second mu-
sical attribute required to complete the visual representa-

tion. This is estimated from the generic (P-ODF) rhyth-
mogram of Fig. 4 in a manner similar to that used on
the table-centric version. The single difference is that we
apply a bias favouring lower lags in the maximum likeli-
hood tempo estimation. A weighting factor proportional to
the inverse of the lag is applied. The biasing is motivated
by our stated objective of uncovering the surface rhythmic
density (equivalent to the smallest inter-onset interval).

The obtained rhythmic density estimates are shown in
Fig. 6(b), again in comparison with the ground truth
marked by the musician. The ground-truth markings have
been converted to the time axis while smoothening lightly
to remove the abrupt cycle-to-cycle variations in Fig. 3.
We note that the correct tempo corresponding to the sarod
surface rhythm is captured for the most part. The layakari
sections are distinguished from the vistaar by the doubling
of the rhythmic density. Obvious differences between the
ground-truth and estimated rhythmic density appear in (i)
the table solo region due to the high surface rhythm con-
tributed by tabla strokes. Since P-ODF captures both the
instrument onsets, this is expected. Another step based on
the comparison of the two rhythmograms would easily en-
able us to correct this; (ii) intermittent regions in the 0-300s
region of the gat. This is due to the low amplitude ACF
peaks arising from the fast rhythmic phrases discussed in
Sec. 3.1.

Figure 6: (a) Estimated metric tempo with musician’s
marked tempo. (b) Estimated rhythmic density with musi-
cians marked rhythmic density

4. SEGMENTATION PERFORMANCE

The all-onsets rhythmogram provides a clear visual repre-
sentation of abrupt rhythmic structure changes at the sec-
tion boundaries specified by the ground-truth labels. In
order to algorithmically detect the segment boundaries,
we resort to the method of the similarity distance matrix
(SDM) where peaks in the novelty function derived from
diagonal kernel convolution can help identify instants of
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change [19]. We treat the ACF at each time frame as a
feature vector that contains the information of the local
rhythmic structure. We compute the correlation distance
between the ACF of every pair of frames across the con-
cert to obtain the SDM. The diagonal of the SDM is then
convolved with a checker-board kernel of 25s × 25s to
compute the novelty function. Local maxima in the nov-
elty function are suitably thresholded to locate instants of
change in the rhythmic structure. Figure 7 shows the SDM
and novelty function computed on the rhythmogram of
Figure 5 corresponding to the case study sarod gat. We
observe that all the known boundaries coincide with sharp
peaks in the novelty function. The layakari-vistaar bound-
ary at 644s is subsumed by the sudden tempo change at
657s due to the minimum time resolution imposed by the
SDM kernel dimensions. We next present results for per-
formance of our system on segment boundary detection
across a small dataset of sitar and sarod gats.

Figure 7: SDM and novelty curve for the case study sarod
gat (whose rhythmogram appears in Figure 5). The blue
dashed lines indicate ground-truth section boundaries as
in Table 1. The red dashed lines indicate ground-truth in-
stants of metric tempo jump.

4.1 Dataset

Our dataset for structural segmentation analysis consists of
three sitar and three sarod gats, by four renowned artists.
We have a total of 47 min of sarod audio (including the
case study gat) and 64 min of sitar audio. Just like the case-
study gat, each gat has multiple sections which have been
labelled as vistaar, layakari and tabla solo. Overall we
have 37 vistaar sections, 21 layakari sections and 25 tabla
solo sections. Boundaries have been manually marked by
noting rhythm changes upon listening to the audio. Mini-
mum duration of any section is found to be 10s.

Gat. Dur Method Hit False
No. (min) Used rate Alarms
1 14 P-ODF 13/13 0
2 24 P-ODF 14/14 1
3 9 P-ODF 20/20 2
4 16 SF-ODF 17/17 2
5 21 SF-ODF 11/12 1
6 27 SF-ODF 14/14 4

Table 2: Boundary detection results for 6 gats

4.2 Boundary Detection Performance

For each concert, the novelty function was normalised to
[0,1] range and peaks above a threshold of 0.3 were taken
to indicate boundary instants. We consider the detected
boundary as a hit if it lies within 12.5 s of a marked bound-
ary considering our kernel dimension of 25 s. We expect
to detect instants where there is either a change in surface
rhythm or an abrupt change in the metric tempo. Consis-
tent with our onsets detection ROC study of Section 2, we
observed that the P-ODF method gave better segmentation
results than the spectral flux for sarod gats, while the re-
verse was true for sitar gats. Table 2 shows the correspond-
ing segmentation performance for the sarod (1-3) and sitar
(4-6) gats. We observe a nearly 100% boundary detection
rate with a few false detections in each concert. The false
alarms were found to be triggered by instances of tabla im-
provisation (change in stroke pattern) without a change in
the metric tempo or basic theka.

5. CONCLUSION

Motivated by a compelling visual depiction of the rhythmic
structure of a Hindustani classical sitar concert [10], we set
about an effort to reproduce automatically, with MIR meth-
ods, the manual annotation created by expert musicians.
A novel onset detection function that exploited the stroke
characteristics of the melodic and percussive instrument,
and additionally discriminated the two, proved effective in
obtaining rhythm representations that separately captured
the structural contributions of the tabla and the sitar/sarod.
Tempo detection on the separate rhythm vectors provided
estimates of the metric tempo and rhythmic density of the
sitar/sarod. Segmentation using an SDM on the rhythm
vectors provided section boundary estimates with high ac-
curacy. The system now needs to be tested on a large and
diverse database of sitar and sarod concerts. Further, given
that the rhythmogram contains more information than we
have exploited in the current work, we propose to develop
methods for section labeling and other relevant musical de-
scriptors.
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Serra. In search of automatic rhythm analysis methods
for Turkish and Indian art music. Journal of New Music
Research, 43(1):94–114, 2014.

[7] Bonnie C Wade. Music in India: The classical tradi-
tions, chapter 7: Performance Genres of Hindustani
Music. Manohar Publishers, 2001.

[8] Prateek Verma, T. P. Vinutha, Parthe Pandit, and Preeti
Rao. Structural segmentation of Hindustani concert au-
dio with posterior features. In IEEE International Con-
ference on Acoustics Speech and Signal Processing,
pages 136–140, 2015.

[9] Sandeep Bagchee. Nad: Understanding Raga Music.
Business Publications Inc., India, 1998.

[10] Martin Clayton. Time in Indian Music: Rhythm, Metre,
and Form in North Indian Rag Performance, chapter
11: A case study in rhythmic analysis. Oxford Univer-
sity Press, UK, 2001.

[11] Geoffroy Peeters. Template-based estimation of time-
varying tempo. EURASIP Journal on Applied Signal
Processing, 2007(1):158–171, 2007.

[12] Juan Pablo Bello, Laurent Daudet, Samer Abdal-
lah, Chris Duxbury, Mike Davies, and Mark B San-
dler. A tutorial on onset detection in music signals.
IEEE Transactions on Speech and Audio Processing,
13(5):1035–1047, 2005.

[13] Dik J Hermes. Vowel-onset detection. Journal of the
Acoustical Society of America, 87(2):866–873, 1990.

[14] Simon Dixon. Onset detection revisited. In Proceed-
ings of the 9th International Conference on Digital Au-
dio Effects, volume 120, pages 133–137, 2006.

[15] Derry FitzGerald. Vocal separation using nearest
neighbours and median filtering. In IET Irish Signals
and Systems Conference (ISSC 2012), pages 1–5, 2012.

[16] Kristoffer Jensen. Multiple scale music segmentation
using rhythm, timbre, and harmony. EURASIP Jour-
nal on Advances in Signal Processing, 2006(1):1–11,
2006.

[17] Martin Clayton. Two gat forms for the sitār: a case
study in the rhythmic analysis of north indian music.
British Journal of Ethnomusicology, 2(1):75–98, 1993.

[18] Chris Cannam, Christian Landone, and Mark Sandler.
Sonic visualiser: An open source application for view-
ing, analysing, and annotating music audio files. In
Proceedings of the 18th ACM international conference
on Multimedia, pages 1467–1468, 2010.

[19] Jonathan Foote. Automatic audio segmentation using a
measure of audio novelty. In IEEE International Con-
ference on Multimedia and Expo, volume 1, pages
452–455, 2000.

238 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



TEMPLATE-BASED VIBRATO ANALYSIS OF MUSIC SIGNALS

Jonathan Driedger1, Stefan Balke1, Sebastian Ewert2, Meinard Müller1
1International Audio Laboratories Erlangen, Germany

2Queen Mary University of London
{jonathan.driedger,stefan.balke,meinard.mueller}@audiolabs-erlangen.de

ABSTRACT

The automated analysis of vibrato in complex music sig-
nals is a highly challenging task. A common strategy is
to proceed in a two-step fashion. First, a fundamental fre-
quency (F0) trajectory for the musical voice that is likely to
exhibit vibrato is estimated. In a second step, the trajectory
is then analyzed with respect to periodic frequency modu-
lations. As a major drawback, however, such a method
cannot recover from errors made in the inherently difficult
first step, which severely limits the performance during the
second step. In this work, we present a novel vibrato analy-
sis approach that avoids the first error-prone F0-estimation
step. Our core idea is to perform the analysis directly
on a signal’s spectrogram representation where vibrato is
evident in the form of characteristic spectro-temporal pat-
terns. We detect and parameterize these patterns by locally
comparing the spectrogram with a predefined set of vibrato
templates. Our systematic experiments indicate that this
approach is more robust than F0-based strategies.

1. INTRODUCTION

The human voice and other instruments often reveal char-
acteristic spectro-temporal patterns that are the result of
specific articulation techniques. For example, vibrato is
a musical effect that is frequently used by musicians to
make their performance more expressive. Although a clear
definition of vibrato does not exist [20], it can broadly
be described as a musical voice’s “periodic oscillation in
pitch” [16]. It is commonly parameterized by its rate (the
modulation frequency given in Hertz) and its extent (the
modulation’s amplitude given in cents 1 ). These parame-
ters have been studied extensively from musicological and
psychological perspectives, often in a cumbersome process
of manually annotating spectral representations of mono-
phonic music signals, see for example [5, 10, 18, 20, 22].

To approach the topic from a computational perspec-
tive, the signal processing community has put considerable

1 A cent is a logarithmic frequency unit. A musical semitone is subdi-
vided into 100 cents.
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Figure 1. Template-based vibrato analysis. A matching
vibrato template lets us infer the rate f and extent e of
vibrato present in the music signal.

research efforts into developing automated vibrato analysis
methods for monophonic, as well as for more complex mu-
sic signals with multiple sound sources. While some appli-
cations implicitly exploit spectro-temporal characteristics
of vibrato to approach higher-level tasks such as harmonic-
percussive decomposition [9], singing voice detection [6],
or singing voice separation [21], there also exist methods
for explicitly detecting and parameterizing vibrato com-
ponents in a given music signal. A common approach is
to perform the vibrato analysis in two consecutive steps.
In the first step, a fundamental frequency trajectory (F0-
trajectory) is estimated for the musical voice that is most
likely to exhibit vibrato. This trajectory is then analyzed in
the second step to detect and parameterize periodic mod-
ulation patterns, see for example [4, 8, 12–14, 23]. How-
ever, computing F0-trajectories for complex signals with
multiple instruments is a highly non-trivial and error-prone
task by itself [15]. Therefore, a trajectory estimated in the
first step may not appropriately reflect the relevant modu-
lation patterns. This in turn renders the vibrato detection
and parametrization in the second step problematic, if not
impossible.

To avoid the error-prone F0-estimation step, in this
work we propose a novel approach for automatically ana-
lyzing vibrato components in complex music signals. Our
core idea is to detect spectro-temporal vibrato patterns di-
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rectly in a music signal’s spectrogram by locally com-
paring this representation with a set of predefined vibrato
templates 2 that reflect different vibrato rates and extents.
The measured similarity yields a novel mid-level feature
representation—a vibrato salience spectrogram—in which
spectro-temporal vibrato patterns are enhanced while other
structures are suppressed. Figure 1 illustrates this idea,
showing three different vibrato templates as well as a spec-
trogram representation of a choir with a lead singer who
starts to sing with strong vibrato in the excerpt’s second
half. Time-frequency bins where one of the templates is
locally similar to the spectrogram, thus yielding a high vi-
brato salience, are indicated in red. As we can see, these
time-frequency bins temporally coincide with the anno-
tated vibrato passage at the top of Figure 1. Additionally,
a high vibrato salience does not only indicate the presence
of vibrato in the music signal, but also reveals the vibrato’s
rate and extent encoded in the similarity maximizing tem-
plate.

The remainder of this paper is structured as follows. In
Section 2 we describe our template-based vibrato analysis
approach in detail. In Section 3, we evaluate the perfor-
mance of our proposed method, both by means of a quanti-
tative evaluation on a novel dataset as well as by discussing
illustrative examples. Finally, in Section 4, we conclude
with an indication of possible future research directions.
Note that this paper has an accompanying website at [2]
where one can find all audio examples and annotations
used in this paper.

2. TEMPLATE-BASED VIBRATO ANALYSIS

In this section, we describe our proposed template-based
vibrato analysis approach. We discuss relevant spectro-
gram representations (Section 2.1) and describe how the
vibrato templates are modeled (Section 2.2). Both our
choice of spectrogram representation and the vibrato tem-
plate’s design are motivated by the correlation-like similar-
ity measure that we use to locally compare the templates
with the spectrogram. We then introduce the derivation of
the vibrato salience spectrogram (Section 2.3) and com-
ment on our approach’s computational complexity (Sec-
tion 2.4). As a running example, we use the choir signal
from Figure 1.

2.1 Spectral Representation

Given a discrete music signal x : Z→ R, we first compute
the short-time Fourier transform (STFT) X : Z × Z → C
of x by

X(m, k) =
∑

r∈Z
w(r)·x(r+mH)·exp(−2πikr/N) , (1)

where m is the frame index, k is the frequency index, N
is the frame length, w is a window function, and H is the

2 Note that this approach is conceptually similar to the Hough trans-
form [3], a mathematical tool known from image processing for the de-
tection of parameterized shapes in binary images. However, the Hough
transform is known to be very sensitive to noise and therefore not suitable
for detecting vibrato patterns in spectrograms that are commonly rather
noisy.
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Figure 2. Spectrogram representations of the input sig-
nal x. (a): Magnitude spectrogram. (b): Log-frequency
spectrogram. (c): Binarized log-frequency spectrogram Y .

hopsize (w.l.o.g. we assume m, k ∈ Z). Figure 2a shows
an excerpt of our example signal’s magnitude spectrogram
|X| where one can clearly see wave-like vibrato patterns
in the lead singer’s fundamental frequency and its over-
tones. However, due to the STFT’s linear frequency sam-
pling, the vibrato patterns’ amplitudes increase with higher
overtones.

In the context of our template-based analysis it is de-
sirable that vibrato patterns stemming from the same fre-
quency modulated tone have the same amplitude that di-
rectly reflects the vibrato’s extent. We therefore compute
a log-frequency spectrogram from the STFT X , using a
phase vocoder-based reassignment approach as discussed
in [7, Chapter 8] or [14]. In this representation, which can
be seen in Figure 2b, frequency bands are spaced logarith-
mically and have a constant logarithmic bandwidth speci-
fied in cents. This ensures the desired property in this spec-
trogram representation.

In a last step, we normalize the spectrogram in order to
achieve two goals. First, we aim to make the representa-
tion independent of the signal’s volume such that we can
also detect vibrato in quiet signal passages. Second, when
locally comparing our vibrato templates with the represen-
tation, the resulting similarity measure should yield values
in a fixed range. A method that showed to be simple and
effective to achieve both goals is spectrogram binarization,
where we set the ten percent highest values of each frame
in the log-frequency spectrogram to one and all remaining
values to zero. This yields a binarized log-frequency spec-
trogram Y : Z× Z→ {0, 1}, see Figure 2c. In our exper-
iments, we choose parameters such that Y has a time res-
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Figure 3. Generation of a vibrato template T with a vi-
brato rate f = 5 Hertz, extent e = 50 cent, and a duration
of ` = 0.4 seconds. (a): Sinusoidal vibrato trajectory s.
(b): Vibrato template T .

olution of roughly 150 frames per second and a frequency
resolution of ten bands per semitone.

2.2 Vibrato Templates

Next, we introduce a set T of templates that reflect spectro-
temporal vibrato patterns as expected in Y . Let us model
such a template T ∈ T for vibrato having a rate of f
Hertz, an extent of e cents, and a duration of at least ` sec-
onds. When locally comparing the template T with Y , one
should obtain high similarity values when T is aligned with
a matching spectro-temporal vibrato pattern in Y and low
values otherwise. The idea is therefore to have a positive
portion in T that reflects the spectro-temporal vibrato pat-
tern as well as a negative portion that prevents the template
from correlating well with regions in Y that are homoge-
neously equal to one.

Assuming a sinusoidal vibrato, we can describe the vi-
brato’s trajectory (up to phase) by

s(t) = e sin(2πft) , (2)

t ∈ [0, `]. Figure 3a shows such a trajectory for f =
5 Hertz, e = 50 cent, and ` = 0.4 seconds. The trajec-
tory is then discretized such that its time- and frequency
resolution matches the binarized log-frequency spectro-
gram. Time-frequency bins that are close to s are assigned
with positive values, while bins having a certain distance
from s get negative values. To allow for some tolerance
of the width of vibrato patterns in Y , the remaining time-
frequency bins are defined to be zero. Finally, positive and
negative entries in T are normalized to sum up to one and
minus one, respectively, see Figure 3b.

2.3 Vibrato Salience

In order to locate and parameterize vibrato structures in
the binarized log-frequency spectrogram Y , we aim to
compute a vibrato salience spectrogram S—a kind of
mid-level feature representation—in which vibrato struc-
tures are enhanced while other kinds of structures are sup-
pressed. To this end, we define the vibrato salience spec-
trogram ST for a single vibrato template T : [0 : A− 1]×

𝑚 

𝑘 
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1 

(b) 

(a) 

0 

1 

𝐴 − 1 

0 
𝐵 − 1 0 

Figure 4. Vibrato salience spectrogram computation.
(a): Process to compute ST . The similarity-maximizing
shift (µ, κ) that maps (m, k) onto an index pair in I is indi-
cated by a green arrow. (b): Vibrato salience spectrogram
S.

[0 : B − 1] → R, A,B ∈ N. The computation process is
illustrated in Figure 4a. Let I be the set of all index pairs
(a, b) ∈ [0 : A−1]×[0 : B−1] such that T (a, b) is positive
(the indices of all red entries in Figure 3b). Furthermore,
let

Y (µ,κ)(m, k) = Y (m− µ, k − κ) , (3)

µ, κ ∈ Z, denote a version of Y that is shifted by µ and κ
indices in time- and frequency direction, respectively. In-
tuitively, the vibrato salience ST (m, k) should be high if
Y (m, k) is part of a spectro-temporal vibrato pattern as
reflected by T . To this end, we verify if there is a shift
(µ, κ) that aligns Y (m, k) (red dot in Figure 4a) with one
of the positive entries in the vibrato template T such that
T and Y (µ,κ) are similar (the optimal shift for our exam-
ple in Figure 4a is indicated by a green arrow). To compute
ST (m, k), we therefore maximize the correlation-like sim-
ilarity measure

c(T, Y ) =
A−1∑

a=0

B−1∑

b=0

T (a, b)Y (a, b) (4)

over all shifts (µ, κ) that map (m, k) onto one of the index
pairs in I:

ST (m, k) = max
{(µ,κ):(m,k)−(µ,κ)∈I}

c(T, Y (µ,κ)) . (5)

The full vibrato salience spectrogram can then be com-
puted by maximizing over all vibrato templates T ∈ T :

S(m, k) = max
T∈T

ST (m, k) . (6)
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-0 dB -5 dB -10 dB
Item name Lx Lvib TB-A F0-M TB-A F0-M TB-A F0-M BL

Sound On Sound Demo—Mystery 9.79 1.78 0.83 0.93 0.84 0.86 0.73 0.30 0.31
Giselle—You 5.12 2.99 0.91 0.94 0.91 0.88 0.86 0.53 0.73
Leaf—Full 5.36 1.64 0.84 0.86 0.74 0.29 0.82 0.00 0.46
Phre The Eon—Everybody is Falling Apart 2.47 0.47 0.98 0.97 0.96 0.97 0.95 0.00 0.32
Secretariat—Borderline 7.69 1.98 0.79 0.69 0.73 0.76 0.79 0.00 0.41
Sunshine Garcia Band—For I Am The Moon 12.54 3.36 0.63 0.73 0.67 0.62 0.74 0.44 0.42
Angela Thomas Wade—Milk Cow Blues 4.50 2.10 0.44 0.82 0.32 0.63 0.32 0.00 0.63
Triviul—Dorothy 5.22 0.85 0.77 0.88 0.73 0.85 0.65 0.00 0.28
Funny Valentines—Sleigh Ride 7.18 0.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00

∅ 6.65 1.69 0.80 0.87 0.77 0.76 0.76 0.25 0.39

Table 1. Quantitative evaluation (F-measure), comparing our proposed template-based detection approach TB-A, F0-based
vibrato detection F0-M (manual vibrato selection in F0-trajectories), and a baseline BL. Lengths of the signals (Lx) and
accumulated lengths of ground truth vibrato passages (Lvib) are given in seconds.

Figure 4b shows the vibrato salience spectrogram S re-
sulting from the binarized log-frequency spectrogram Y
shown in Figure 4a. Note that by the vibrato template’s de-
sign and Y (m, k) ∈ {0, 1}, one obtains S(m, k) ∈ [−1, 1]
for all m, k ∈ Z. While the vibrato structures present in
Y are also clearly visible in S, the horizontal structures as
well as the glissando at the excerpt’s beginning do not cor-
relate well with the vibrato templates. They are therefore,
as intended, suppressed in S.

2.4 Computational Complexity

The vibrato salience spectrogram’s derivation as defined in
the previous section is a computationally expensive pro-
cess. When implemented naively, it is necessary to use
a quadruply nested loop to iterate over all combinations of
time-frequency bins (m, k) in Y , vibrato templates T ∈ T ,
index shifts {(µ, κ) : (m, k) − (µ, κ) ∈ I}, and index
pairs (a, b) in T . However, note that many computations
are redundant and that it is therefore possible to optimize
the calculation process, for example by exploiting two-
dimensional convolutions. Furthermore, one can speed
up the derivation by considering only a limited frequency
range in Y as well as by applying further heuristics such
as only taking into account vibrato salience values above a
threshold τ ∈ [−1, 1]. Although still being computation-
ally demanding, the derivation therefore becomes feasible
enough to be used in practice. For example, deriving S
for a music signal with a duration of 60 seconds takes our
MATLAB implementation roughly 40 seconds on a stan-
dard computer.

3. EXPERIMENTS

In this section, we present our experimental results. In
Section 3.1, we quantitatively evaluate our proposed ap-
proach in the context of a vibrato detection task. Then,
in Section 3.2 we demonstrate the method’s potential for
automatically analyzing vibrato rate and extent. Finally,
in Section 3.3, we indicate open challenges and potential
solutions.

3.1 Evaluation: Vibrato Detection

In a first experiment, we considered the task of temporally
identifying vibrato passages in a music signal. We there-
fore compiled a dataset of nine items (see Table 1), which
are excerpts of music signals from the “Mixing Secrets”
multitrack dataset [17]. Each item consists of a mono-
phonic vocal signal xvoc and a polyphonic accompaniment
signal xacc. Annotations of vibrato passages in the vocal
signals were created manually to serve as ground truth for
the subsequent evaluation (none of the accompaniment sig-
nals xacc has vibrato). To vary the difficulty of the vibrato
detection task, we created three different mixes for each
of the items—one were xvoc and xacc were mixed with-
out modification (-0 dB), one were xvoc was attenuated by
-5 dB prior to mixing the signals, and a third mix with xvoc
being attenuated by -10 dB.

To construct an automated vibrato detection procedure
based on our proposed template-based analysis approach,
we first computed vibrato salience spectrograms S for all
of the resulting 27 mix signals. Since only high vibrato
salience values in S are likely to indicate the presence of
spectro-temporal vibrato patterns, we then chose a thresh-
old τ ∈ [−1, 1]. Time instances where the maximal vibrato
salience in a frame exceeded τ were then labeled as having
vibrato while all other time instances were labeled as hav-
ing no vibrato. For this experiment we used a set T of 30
templates, reflecting vibrato rates from five to seven Hertz
in steps of 0.5 Hertz, as well as extents from 50 to 100
cents in steps of 10 cents. These parameters were chosen
particularly to detect the vibrato in singing voice as these
are typical vibrato rates and extents for human singing,
see [10, 11]. All templates had a length corresponding to
` = 0.4 seconds. The threshold τ was experimentally set
to τ = 0.55, yielding good vibrato detection results for all
items in the dataset.

One of this experiment’s main objectives was to com-
pare our template-based method’s performance with F0-
based strategies as discussed in Section 1. To emulate
such an approach, we used MELODIA [14]—a state-of-
the-art algorithm for estimating F0-trajectories of predom-
inant musical voices in complex music signals—to esti-

242 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



mate trajectories for all mix signals. Instead of automat-
ically analyzing the extracted trajectories in a second step,
we then manually inspected them for passages that reflect
vibrato. This was done to obtain an upper bound on the
performance an automated procedure could achieve in this
second step when detecting vibrato solely based on the es-
timated F0-trajectory.

We then computed precision (P), recall (R), and F-
measure (F) for the detection results of our automated
template-based procedure (TB-A), for the procedure based
on the manually inspected F0-trajectory (F0-M), as well
as for a baseline approach that simply labels every time
instance as having vibrato (BL):

P =
TP+ ε

TP+ FP + ε
,R =

TP+ ε

TP+ FN+ ε
,F =

2PR

P + R
. (7)

Here, TP is the number of true positives, FP the number
of false positives, FN the number of false negatives, and
ε > 0 ∈ R is some small number to prevent division by
zero. Note that all music signals and annotations used in
the experiment can be found at this paper’s accompanying
website [2].

The evaluation’s results are summarized in Table 1
which shows for each item its name, the music signal’s
length, the accumulated duration of vibrato in this signal,
as well as the F-measures of TB-A and F0-M for the three
different mixes (-0 dB, -5 dB, and -10 dB). The F-measure
for the baseline BL is indicated in the last column and the
table’s last row indicates mean values. Here we can ob-
serve a clear trend. For mixes where xvoc was not at-
tenuated (-0 dB), both TB-A and F0-M yield average F-
measures (F = 0.80 and F = 0.87) clearly above the
baseline BL (F = 0.39). For this mixing condition, F0-M
outperforms our template-based approach. However, recall
that F0-M constitutes an upper bound on the performance
of F0-based vibrato detection approaches. Automating the
vibrato detection step may therefore result in lower scores.

For mixes where xvoc was attenuated by -5 dB, the av-
erage F-measure of TB-A only slightly decreases to F =
0.77, while the performance of F0-M drops to F = 0.76.
This tendency becomes even more extreme when consider-
ing vocal signals attenuated by -10 dB where TB-A’s per-
formance stays almost constant (F = 0.76) while F0-M’s
average F-measure goes down to F = 0.25, many of the
individual items scoring F-measures of zero.

The reason for this trend becomes obvious when inves-
tigating individual items. Figure 5 depicts the vibrato de-
tection results of both TB-A and F0-M in all mixing con-
ditions for the item Leaf—Full. In the condition -0 dB,
the results of TB-A (Figure 5a) and F0-M (Figure 5b)
coincide well with the ground truth (Figure 5c), leading
to high F-measures (F = 0.84 and F = 0.86). Here,
our template-based analysis approach detects most of the
spectro-temporal vibrato patterns in the signal’s spectro-
gram (time-frequency bins where the vibrato salience ex-
ceeds the threshold τ are indicated in red in Figure 5a).
F0-M also achieves a good result since the F0-trajectory
extracted by MELODIA (indicated in blue in Figure 5b)
captures the singing voice’s fundamental frequency well
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Figure 5. Comparison of TB-A and F0-M for the item
Leaf—Full. (a): TB-A. Automatically derived vibrato pas-
sages are indicated in red. (b): F0-M. Manually annotated
vibrato passages in the trajectory are indicated in blue.
(c): Ground truth annotation.

in this mix. However, this changes when attenuating the
vocal signal by -5 dB. While TB-A still identifies many
vibrato patterns, therefore detecting the vibrato present in
the mix (F = 0.74), the F0-estimation becomes problem-
atic and MELODIA retrieves only a small segment of the
singing voice’s F0-trajectory correctly, leading to a poor
vibrato detection (F = 0.29). When attenuating xvoc
by -10 dB, the F0-trajectory’s estimation fails completely
(F = 0.00) since MELODIA’s assumption of a predom-
inant melodic voice is violated. On the other hand, our
proposed detection procedure is capable of detecting the
vibrato in the mix.

As a final remark, note that our proposed approach also
succeeds to recognize that the item Funny Valentines—
Sleigh Ride does not contain any vibrato at all.

3.2 Evaluation: Vibrato Analysis

As we have seen in the previous section, the vibrato
salience spectrogram S can be used to determine when vi-
brato is present in a music signal. Additionally, when com-
puting S, we also implicitly obtain information about the
vibrato’s parameters. The rate and extent of vibrato present
in the music signal are encoded by the similarity maximiz-
ing vibrato templates T in Equation (6). In Figure 6a, we
see the log-frequency spectrogram of a mixture of piano
music (no vibrato) and three consecutive artificial vibrato
tones. The tones have vibrato rates of seven, five, and ten
Hertz and extents of 40, 200, and 70 cents, respectively.
Time-frequency bins where the vibrato salience exceeds
τ are indicated in red. Note that for this experiment we
used a much larger template set T , consisting of 285 tem-
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Figure 6. Vibrato rate and extent analysis. (a): Log-
frequency spectrogram. Time-frequency bins (m, k) with
S(m, k) > τ are indicated in red. (b)/(c): Vibrato rate and
extent of the template T with the highest vibrato salience
per frame.

plates that reflected vibrato rates from four to eleven Hertz
in steps of 0.5 Hertz, as well as extents from 30 to 210 cents
in steps of 10 cents. Figures 6b/c indicate the vibrato rate
and extent of the vibrato template T that maximized the
vibrato salience per frame. The two plots correctly reflect
the tones’ vibrato rates and extents, while showing only a
few outliers. Note that values in the plots are quantized
since our approach can only give estimates for rates and
extents as they are reflected by one of the templates in T .
This kind of vibrato analysis could be helpful in scenarios
like informed instrument identification when it is known
that different instruments in a music signal perform with
different vibrato rates or extents.

3.3 Challenges

In general, our proposed procedure yields useful analysis
results for the music examples discussed in the previous
sections. We now want to discuss a few difficult examples.

One potential source for incorrect analysis results are
false positives as visualized in Figure 7a, which shows
a log-frequency spectrogram excerpt of Sunshine Garcia
Band—For I Am The Moon from our dataset. In this ex-
cerpt, one of our vibrato templates T is similar enough
(with respect to our similarity measure) to a non-vibrato
spectro-temporal pattern to yield vibrato salience values
above the threshold τ . This could cause incorrect vibrato
detection results or meaningless vibrato parametrizations.
However, we experienced such spurious template matches
to often occur in an isolated fashion. Here, one could ex-
ploit additional cues such as multiple template matches at
the same time instance due to overtone structures of instru-
ments to reinforce the vibrato analysis’ results.
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Figure 7. Error sources for our template-based vibrato
analysis. (a): Spurious template matches. (b): Vibrato
does not have a sinusoidal form.

The opposite situation is visualized in Figure 7b. It
shows a log-frequency spectrogram excerpt of “Gute
Nacht”, a song from Schubert’s “Winterreise” for piano
and tenor. In this excerpt, the singer sings a long note with
strong vibrato. However, although there is a template re-
flecting an appropriate vibrato rate and extent in our tem-
plate set T , the vibrato is not detected by our procedure.
This is the case since by our vibrato template’s design—as
described in Section 2.2—we generally assumed vibrato to
have a sinusoidal spectro-temporal structure. This assump-
tion is violated in the shown vibrato pattern. However, our
approach is conceptually not limited to sinusoidal vibrato
templates and one could further improve the templates’ de-
sign in order to also capture these kind of vibrato patterns.

4. CONCLUSIONS AND FUTURE WORK

In this paper we presented a novel approach for analyzing
vibrato in complex music signals. By locally comparing a
signal’s spectrogram with a set of predefined vibrato tem-
plates, we derived a vibrato salience spectrogram—a kind
of mid-level feature representation—in order to locate and
parameterize spectro-temporal vibrato patterns. Our ap-
proach has the advantage that the analysis does not rely on
the estimation of a (possibly erroneous) F0-trajectory. Ex-
periments indicated that our proposed procedure allows for
a more robust vibrato detection than F0-based approaches,
in particular for complex music signals.

In future work we would like to further explore the use
of vibrato templates in various application scenarios. For
example, deriving spectral masks from the vibrato salience
spectrogram S could open up novel ways of decomposing
a music signal into vibrato and non-vibrato components.
Furthermore, we believe that the use of vibrato templates
could be beneficial for tasks like F0-tracking [14, 19] or
performance analysis [1].
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ABSTRACT

Melody estimation algorithms are typically evaluated by
separately assessing the task of voice activity detection
and fundamental frequency estimation. For both subtasks,
computed results are typically compared to a single human
reference annotation. This is problematic since different
human experts may differ in how they specify a predom-
inant melody, thus leading to a pool of equally valid ref-
erence annotations. In this paper, we address the problem
of evaluating melody extraction algorithms within a jazz
music scenario. Using four human and two automatically
computed annotations, we discuss the limitations of stan-
dard evaluation measures and introduce an adaptation of
Fleiss’ kappa that can better account for multiple reference
annotations. Our experiments not only highlight the be-
havior of the different evaluation measures, but also give
deeper insights into the melody extraction task.

1. INTRODUCTION

Predominant melody extraction is the task of estimating an
audio recording’s fundamental frequency trajectory values
(F0) over time which correspond to the melody. For exam-
ple in classical jazz recordings, the predominant melody
is typically played by a soloist who is accompanied by a
rhythm section (e. g., consisting of piano, drums, and bass).
When estimating the soloist’s F0-trajectory by means of
an automated method, one needs to deal with two issues:
First, to determine the time instances when the soloist is
active. Second, to estimate the course of the soloist’s F0
values at active time instances.

A common way to evaluate such an automated
approach—as also used in the Music Information Retrieval
Evaluation eXchange (MIREX) [5]—is to split the evalua-
tion into the two subtasks of activity detection and F0 es-
timation. These subtasks are then evaluated by comparing
the computed results to a single manually created reference

c© Stefan Balke, Jakob Abeßer, Jonathan Driedger, Chris-
tian Dittmar, Meinard Müller. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Ste-
fan Balke, Jakob Abeßer, Jonathan Driedger, Christian Dittmar, Meinard
Müller. “Towards evaluating multiple predominant melody annotations
in jazz recordings”, 17th International Society for Music Information Re-
trieval Conference, 2016.
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Figure 1. Illustration of different annotations and possible
disagreements. A1 and A2 are based on a fine frequency
resolution. Annotation A3 is based on a coarser grid of
musical pitches.

annotation. Such an evaluation, however, is problematic
since it assumes the existence of a single ground-truth. In
practice, different humans may annotate the same record-
ing in different ways thus leading to a low inter-annotator
agreement. Possible reasons are the lack of an exact task
specification, the differences in the annotators’ experi-
ences, or the usage of different annotation tools [21, 22].
Figure 1 exemplarily illustrates such variations on the basis
of three annotations A1, ..., A3 of the same audio record-
ing, where a soloist plays three consecutive notes. A first
observation is thatA1 andA2 have a fine frequency resolu-
tion which can capture fluctuations over time (e. g., vibrato
effects). In contrast, A3 is specified on the basis of semi-
tones which is common when considering tasks such as
music transcription. Furthermore, one can see that note on-
sets, note transitions, and durations are annotated inconsis-
tently. Reasons for this might be differences in annotators’
familiarity with a given instrument, genre, or a particular
playing style. In particular, annotation deviations are likely
to occur when notes are connected by slurs or glissandi.

Inter-annotator disagreement is a generally known
problem and has previously been discussed in the contexts
of audio music similarity [8, 10], music structure analy-
sis [16, 17, 23], and melody extraction [3]. In general, a
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SoloID Performer Title Instr. Dur.

Bech-ST Sidney Bechet Summertime Sopr. Sax 197
Brow-JO Clifford Brown Jordu Trumpet 118
Brow-JS Clifford Brown Joy Spring Trumpet 100
Brow-SD Clifford Brown Sandu Trumpet 048
Colt-BT John Coltrane Blue Train Ten. Sax 168
Full-BT Curtis Fuller Blue Train Trombone 112
Getz-IP Stan Getz The Girl from Ipan. Ten. Sax 081
Shor-FP Wayne Shorter Footprints Ten. Sax 139

Table 1. List of solo excerpts taken from the WJD. The
table indicates the performing artist, the title, the solo in-
strument, and the duration of the solo (given in seconds).

single reference annotation can only reflect a subset of the
musically or perceptually valid interpretations for a given
music recording, thus rendering the common practice of
evaluating against a single annotation questionable.

The contributions of this paper are as follows. First,
we report on experiments, where several humans anno-
tate the predominant F0-trajectory for eight jazz record-
ings. These human annotations are then compared with
computed annotations obtained by automated procedures
(MELODIA [20] and pYIN [13]) (Section 2). In particu-
lar, we consider the scenario of soloist activity detection
for jazz recordings (Section 3.1). Afterwards, we adapt
and apply an existing measure (Fleiss’ Kappa [7]) to our
scenario which can account for jointly evaluating multi-
ple annotations (Section 3.2). Note that this paper has an
accompanying website at [1] where one can find the anno-
tations which we use in the experiments.

2. EXPERIMENTAL SETUP

In this work, we use a selection of eight jazz recordings
from the Weimar Jazz Database (WJD) [9, 18]. For each
of these eight recordings (see Table 1), we have a pool of
seven annotations A = {A1, . . . , A7} which all represent
different estimates of the predominant solo instruments’
F0-trajectories. In the following, we model an annotation
as a discrete-time function A : [1 : N ] → R ∪ {∗} which
assigns to each time index n ∈ [1 : N ] either the solo’s F0
at that time instance (given in Hertz), or the symbol ‘∗’.
The meaning of A(n) = ∗ is that the soloist is inactive at
that time instance.

In Table 2, we list the seven annotations. For this work,
we manually created three annotations A1, . . . , A3 by us-
ing a custom graphical user interface as shown in Fig-
ure 2 (see also [6]). In addition to standard audio player
functionalities, the interface’s central element is a salience
spectrogram [20]—an enhanced time-frequency represen-
tation with a logarithmically-spaced frequency axis. An
annotator can indicate the approximate location of F0-
trajectories in the salience spectrogram by drawing con-
straint regions (blue rectangles). The tool then automati-
cally uses techniques based on dynamic programming [15]
to find a plausible trajectory through the specified region.
The annotator can then check the annotation by listening to
the solo recording, along with a synchronized sonification
of the F0-trajectory.

Figure 2. Screenshot of the tool used for the manual anno-
tation of the F0 trajectories.

Annotation Description

A1 Human 1, F0-Annotation-Tool
A2 Human 2, F0-Annotation-Tool
A3 Human 3, F0-Annotation-Tool
A4 Human 4, WJD, Sonic Visualiser
A5 Computed, MELODIA [2, 20]
A6 Computed, pYIN [13]
A7 Baseline, all time instances active at 1 kHz

Table 2. Set A of all annotations with information about
their origins.

In addition to the audio recordings, the WJD also in-
cludes manually annotated solo transcriptions on the semi-
tone level. These were created and cross-checked by
trained jazz musicians using the Sonic Visualiser [4]. We
use these solo transcriptions to derive A4 by interpreting
the given musical pitches as F0 values by using the pitches’
center frequencies.
A5 and A6 are created by means of automated meth-

ods. A5 is extracted by using the MELODIA [20] algo-
rithm as implemented in Essentia [2] using the default set-
tings (sample rate = 22050 Hz, hop size = 3 ms, window
size = 46 ms). For obtaining A6, we use the tool Tony [12]
(which is based on the pYIN algorithm [13]) with default
settings and without any corrections of the F0-trajectory.

As a final annotation, we also consider a baseline
A7(n) = 1 kHz for all n ∈ [1 : N ]. Intuitively, this
baseline assumes the soloist to be always active. All of
these annotations are available on this paper’s accompany-
ing website [1].

3. SOLOIST ACTIVITY DETECTION

In this section, we focus on the evaluation of the soloist
activity detection task. This activity is derived from the
annotations of the F0-trajectories A1, . . . , A7 by only con-
sidering active time instances, i. e., A(n) 6= ∗. Figure 3
shows a typical excerpt from the soloist activity annota-
tions for the recording Brow-JO. Each row of this ma-
trix shows the annotated activity for one of our annotations
from Table 2. Black denotes regions where the soloist is
annotated as active and white where the soloist is annotated
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Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.93 0.98 0.92 0.74 0.79 1.00 0.89
A2 0.92 − 0.97 0.92 0.74 0.79 1.00 0.89
A3 0.84 0.84 − 0.88 0.69 0.74 1.00 0.83
A4 0.85 0.86 0.94 − 0.70 0.75 1.00 0.85
A5 0.84 0.84 0.90 0.85 − 0.77 1.00 0.87
A6 0.75 0.76 0.81 0.77 0.65 − 1.00 0.79
A7 0.62 0.62 0.71 0.67 0.55 0.65 − 0.64
∅ 0.80 0.81 0.89 0.83 0.68 0.75 1.00 0.82

Table 3. Pairwise evaluation: Voicing Detection (VD). The
values are obtained by calculating the VD for all possible
annotation pairs (Table 2) and all solo recordings (Table 1).
These values are then aggregated by using the arithmetic
mean.

as inactive. Especially note onsets and durations strongly
vary among the annotation, see e. g., the different durations
of the note event at second 7.8. Furthermore, a missing
note event is noticeable in the annotations A1 and A6 at
second 7.6. At second 8.2, A6 found an additional note
event which is not visible in the other annotations. This
example indicates that the inter-annotator agreement may
be low. To further understand the inter-annotator agree-
ment in our dataset, we first use standard evaluation mea-
sures (e. g., as used by MIREX for the task of audio melody
extraction [14]) and discuss the results. Afterwards, we in-
troduce Fleiss’ Kappa, an evaluation measure known from
psychology, which can account for multiple annotations.

3.1 Standard Evaluation Measures

As discussed in the previous section, an estimated annota-
tion Ae is typically evaluated by comparing it to a refer-
ence annotation Ar. For the pair (Ar, Ae), one can count
the number of time instances that are true positives #TP
(Ar andAe both label the soloist as being active), the num-
ber of false positives #FP (only Ae labels the soloist as
being active), the number of true negatives #TN (Ar and
Ae both label the soloist as being inactive), and the number
false negatives #FN (only Ae labels the soloist as being
inactive).

In previous MIREX campaigns, these numbers are used
to derive two evaluation measures for the task of activity
detection. Voicing Detection (VD) is identical to Recall
and describes the ratio that a time instance which is anno-
tated as being active is truly active according to the refer-
ence annotation:

VD =
#TP

#TP+#FN
. (1)

The second measure is the Voicing False Alarm (VFA) and
relates the ratio of time instances which are inactive ac-
cording to the reference annotation but are estimated as
being active:

VFA =
#FP

#TN+#FP
. (2)

In the following experiments, we assume that all an-
notations A1, . . . , A7 ∈ A have the same status, i. e., each
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Figure 3. Excerpt from Brow-JO. A1, . . . , A4 show the
human annotations. A5 and A6 are results from automated
approaches. A7 is the baseline annotation which considers
all frames as being active.

Ref.
Est.

A1 A2 A3 A4 A5 A6 A7 ∅

A1 − 0.13 0.30 0.27 0.22 0.44 1.00 0.39
A2 0.12 − 0.29 0.26 0.22 0.43 1.00 0.39
A3 0.05 0.07 − 0.14 0.18 0.43 1.00 0.31
A4 0.16 0.16 0.27 − 0.24 0.46 1.00 0.38
A5 0.34 0.35 0.48 0.44 − 0.49 1.00 0.52
A6 0.38 0.38 0.54 0.49 0.35 − 1.00 0.52
A7 0.00 0.00 0.00 0.00 0.00 0.00 − 0.00
∅ 0.17 0.18 0.31 0.27 0.20 0.38 1.00 0.36

Table 4. Pairwise evaluation: Voicing False Alarm (VFA).
The values are obtained by calculating the VFA for all pos-
sible annotation pairs (Table 2) and all solo recordings (Ta-
ble 1). These values are then aggregated by using the arith-
metic mean.

annotation may be regarded as either reference or estimate.
Then, we apply the standard measures in a pairwise fash-
ion. For all pairs (Ar, Ae) ∈ A × A with Ar 6= Ae, we
extract VD and VFA (using the MIR EVAL [19] toolbox)
for each of the solo recordings listed in Table 1. The mean
values over the eight recordings are presented in Table 3
for the VD-measure and in Table 4 for the VFA-measure.

As for the Voicing Detection (Table 3), the values within
the human annotators A1, . . . , A4 range from 0.84 for the
pair (A3, A2) to 0.98 for the pair (A1, A3). This high
variation in VD already shows that the inter-annotator dis-
agreement even within the human annotators is substantial.
By taking the human annotators as reference to evaluate
the automatic approach A5, the VD lies in the range of
0.69 for (A3, A5) to 0.74 for (A2, A5). Analogously, for
A6, we observe values from 0.74 for (A3, A6) to 0.79 for
(A1, A6).

As for the Voicing False Alarm (see Table 4), the val-
ues among the human annotations range from 0.05 for
(A3, A1) to 0.30 for (A1, A3). Especially annotation A3

deviates from the other human annotations, resulting in a
very high VFA (having many time instances being set as
active).

In conclusion, depending on which human annotation
we take as the reference, the evaluated performances of
the automated methods vary substantially. Having multi-
ple potential reference annotations, the standard measures
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n = 1 2 3 4 5
A1

A2

A3

k = 1 1 3 0 1 2 7/15
k = 2 2 0 3 2 1 8/15

1/3 1 1 1/3 1/3

an,k Ae
k

Ao

n

(a)

(b)

Figure 4. Example of evaluating Fleiss’ κ for K = 2
categories, N = 5 frames, and three different annotations.
(a) Annotations. (b) Number of annotations per category
and time instance. Combining Ao = 0.6 and Ae = 0.5
leads to κ = 0.2.

< 0 0− 0.2 0.21− 0.4 0.41− 0.6 0.61− 0.8 0.81− 1

poor slight fair moderate substantial almost perfect

Table 5. Scale for interpreting κ as given by [11].

are not generalizable to take these into account (only by
considering a mean over all pairs). Furthermore, although
the presented evaluation measures are by design limited to
yield values in [0, 1], they can usually not be interpreted
without some kind of baseline. For example, considering
VD, the pair (A2, A3) yields a VD-value of 0.97, sug-
gesting that A3 can be considered as an “excellent” esti-
mate. However, considering that our uninformed baseline
A7 yields a VD of 1.0, shows that it is meaningless to look
at the VD alone. Similarly, an agreement with the trivial
annotation A7 only reflects the statistics on the active and
inactive frames, thus being rather uninformative. Next, we
introduce an evaluation measure that can overcome some
of these problems.

3.2 Fleiss’ Kappa

Having to deal with multiple human annotations is com-
mon in fields such as medicine or psychology. In these
disciplines, measures that can account for multiple anno-
tations have been developed. Furthermore, to compensate
for chance-based agreement, a general concept referred to
as Kappa Statistic [7] is used. In general, a kappa value
lies in the range of [−1, 1], where the value 1 means com-
plete agreement among the raters, the value 0 means that
the agreement is purely based on chance, and a value below
0 means that agreement is even below chance.

We now adapt Fleiss’ Kappa to calculate the chance-
corrected inter-annotator agreement for the soloist activity
detection task. Following [7, 11], Fleiss’ Kappa is defined
as:

κ :=
Ao −Ae

1−Ae
. (3)

In general, κ compares the mean observed agreementAo ∈
[0, 1] to the mean expected agreement Ae ∈ [0, 1] which
is solely based on chance. Table 5 shows a scale for the

SoloID
Comb.

κH κH,5 κH,6 ρ5 ρ6

Bech-ST 0.74 0.60 0.55 0.82 0.75
Brow-JO 0.68 0.56 0.59 0.82 0.87
Brow-JS 0.61 0.47 0.43 0.78 0.71
Brow-SD 0.70 0.61 0.51 0.87 0.73
Colt-BT 0.66 0.55 0.49 0.84 0.74
Full-BT 0.74 0.66 0.61 0.89 0.83
Getz-IP 0.72 0.69 0.64 0.96 0.90
Shor-FP 0.82 0.65 0.58 0.80 0.70
∅ 0.71 0.60 0.55 0.85 0.78

Table 6. κ for all songs and different pools of annotations.
κH denotes the pool of human annotations A1, . . . , A4.
These values are then aggregated by using the arithmetic
mean.

agreement of annotations with the corresponding range of
κ.

To give a better feeling for how κ works, we exemplar-
ily calculate κ for the example given in Figure 4(a). In this
example, we have R = 3 different annotations A1, . . . , A3

for N = 5 time instances. For each time instance, the an-
notations belong to either of K = 2 categories (active or
inactive). As a first step, for each time instance, we add
up the annotations for each category. This yields the num-
ber of annotations per category an,k ∈ N, n ∈ [1 : N ],
k ∈ [1 : K] which is shown in Figure 4(b). Based on these
distributions, we calculate the observed agreement Ao

n for
a single time instance n ∈ [1 : N ] as:

Ao
n :=

1

R(R− 1)

K∑

k=1

an,k(an,k − 1) , (4)

which is the fraction of agreeing annotations normalized
by the number of possible annotator pairs R(R − 1), e. g.,
for the time instance n = 2 in the example, all annotators
agree for the frame to be active, thus Ao

2 = 1. Taking the
arithmetic mean of all observed agreements leads to the
mean observed agreement

Ao :=
1

N

N∑

n=1

Ao
n , (5)

in our example Ao = 0.6. The remaining part for cal-
culating κ is the expected agreement Ae. First, we cal-
culate the distribution of agreements within each category
k ∈ [1 : K], normalized by the number of possible ratings
NR:

Ae
k :=

1

NR

N∑

n=1

an,k , (6)

e. g., in our example for k = 1 (active) results inAe
1 = 7/15.

The expected agreement Ae is defined as [7]

Ae :=

K∑

k=1

(Ae
k)

2 (7)

which leads to κ = 0.2 for our example. According to the
scale given in Table 5, this is a “slight” agreement.

In Table 6, we show the results for κ calculated for dif-
ferent pools of annotations. First, we calculate κ for the
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Figure 5. Raw Pitch Accuracy (RPA) for different pairs of
annotations based on the annotations of the solo recording
Brow-JO, evaluated on all active frames according to the
reference annotation.

pool of human annotations H := {1, 2, 3, 4}, denoted as
κH . κH yields values ranging from 0.61 to 0.82 which is
considered as “substantial” to “almost perfect” agreement
according to Table 5.

Now, reverting to our initial task of evaluating an auto-
matically obtained annotation, the idea is to see how the
κ-value changes when adding this annotation to the pool
of all human annotations. A given automated procedure
could then be considered to work correctly if it produces
results that are just about as variable as the human anno-
tations. Only if an automated procedure behaves funda-
mentally different than the human annotations, it will be
considered to work incorrectly. In our case, calculating
κ for the annotation pool H ∪ {5} yields values ranging
from 0.47 to 0.69, as shown in column κH,5 of Table 6.
Considering the annotation pool H ∪ {6}, κH,6 results in
κ-values ranging from 0.43 to 0.64. Considering the aver-
age over all individual recordings, we get mean κ-values
of 0.60 and 0.55 for κH,5 and κH,6, respectively. Compar-
ing these mean κ-values for the automated approaches to
the respective κH , we can consider the method producing
the annotation A5 to be more consistent with the human
annotations than A6.

In order to quantify the agreement of an automatically
generated annotation and the human annotations in a single
value, we define the proportion ρ ∈ R as

ρ5 :=
κH,5

κH
, ρ6 :=

κH,6

κH
. (8)

One can interpret ρ as some kind of “normalization” ac-
cording to the inter-annotator agreement of the humans.
For example, solo recording Brow-JS obtains the lowest
agreement of κH = 0.61 in our test set. The algorithms
perform “moderate” with κH,5 = 0.47 and κH,6 = 0.43.
This moderate performance is partly alleviated when nor-
malizing with the relatively low human agreement, lead-
ing to ρ5 = 0.78 and ρ6 = 0.71. On the other hand, for
the solo recording Shor-FP, the human annotators had
an “almost perfect” agreement of κH,6 = 0.82. While the
automated method’s approaches were “substantial” with
κH,5 = 0.65 and “moderate” with κH,6 = 0.58. However,
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Figure 6. Modified Raw Pitch Accuracy for different pairs
of annotations based on the annotations of the solo record-
ing Brow-JO, evaluated on all active frames according to
the union of reference and estimate annotation.

although the automated method’s κ-values are higher than
for Brow-JS, investigating the proportions ρ5 and ρ6 re-
veal that the automated method’s relative agreement with
the human annotations is actually the same (ρ5 = 0.78
and ρ5 = 0.71 for Brow-JS compared to ρ5 = 0.80 and
ρ5 = 0.70 for Shor-FP). This indicates the ρ-value’s po-
tential as an evaluation measure that can account for mul-
tiple human reference annotations in a meaningful way.

4. F0 ESTIMATION

One of the used standard measures for the evaluation of the
F0 estimation in MIREX is the Raw Pitch Accuracy (RPA)
which is computed for a pair of annotations (Ar, Ae) con-
sisting of a reference Ar and an estimate annotation Ae.
The core concept of this measure is to label an F0 estimate
Ae(n) to be correct, if its F0-value deviates from Ar(n)
by at most a fixed tolerance τ ∈ R (usually τ = 50 cent).
Figure 5 shows the RPA for different annotation pairs and
different tolerances τ ∈ {1, 10, 20, 30, 40, 50} (given in
cent) for the solo recording Brow-JO, as computed by
MIR EVAL. For example, looking at the pair (A1, A4), we
see that the RPA ascends with increasing value of τ . The
reason for this becomes obvious when looking at Figure 7.
While A1 was created with the goal of having fine grained
F0-trajectories, annotations A4 was created with a tran-
scription scenario in mind. Therefore, the RPA is low for
very small τ but becomes almost perfect when considering
a tolerance of half a semitone (τ = 50 cent).

Another interesting observation in Figure 5 is that the
annotation pairs (A1, A2) and (A1, A3) yield almost con-
stant high RPA-values. This is the case since both an-
notations were created using the same annotation tool—
yielding very similar F0-trajectories. However, it is note-
worthy that there seems to be a “glass ceiling” that can-
not be exceeded even for high τ -values. The reason for
this lies in the exact definition of the RPA as used for
MIREX. Let µ(A) := {n ∈ [1 : N ] : A(n) 6= ∗} be
the set of all active time instances of some annotation in
A. By definition, the RPA is only evaluated on the refer-
ence annotation’s active time instances µ(Ar), where each
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Figure 7. Excerpt from the annotations of the solo
Brow-JO of A1 and A4.

n ∈ µ(Ar) \ µ(Ae) is regarded as an incorrect time in-
stance (for any τ ). In other words, although the term “Raw
Pitch Accuracy” suggests that this measure purely reflects
correct F0-estimates, it is implicitly biased by the activity
detection of the reference annotation. Figure 8 shows an
excerpt of the human annotations A1 and A2 for the solo
recording Brow-JO. While the F0-trajectories are quite
similar, they differ in the annotated activity. In A1, we see
that transitions between consecutive notes are often anno-
tated continuously—reflecting glissandi or slurs. This is
not the case in A2, where the annotation rather reflects in-
dividual note events. A musically motivated explanation
could be that A1’s annotator had a performance analysis
scenario in mind where note transitions are an interesting
aspect, whereas A2’s annotator could have been more fo-
cused on a transcription task. Although both annotations
are musically meaningful, when calculating the RPA for
(A1, A2), all time instances whereA1 is active andA2 not,
are counted as incorrect (independent of τ )—causing the
glass ceiling.

As an alternative approach that decouples the activity
detection from the F0 estimation, one could evaluate the
RPA only on those time instances, where reference and es-
timate annotation are active, i. e., µ(Ar) ∪ µ(Ae). This
leads to the modified RPA-values as shown in Figure 6.
Compared to Figure 5, all curves are shifted towards higher
RPA-values. In particular, the pair (A1, A2) yields modi-
fied RPA-values close to one, irrespective of the tolerance
τ—now indicating that A1 and A2 coincide perfectly in
terms of F0 estimation.

However, it is important to note that the modified RPA
evaluation measure may not be an expressive measure on
its own. For example, in the case that two annotations
are almost disjoint in terms of activity, the modified RPA
would only be computed on the basis of a very small num-
ber of time instances, thus being statistically meaning-
less. Therefore, to rate a computational approach’s per-
formance, it is necessary to consider both, the evaluation
of the activity detection as well as the F0 estimation, si-
multaneously but independent of each other. Both evalua-
tions give valuable perspectives on the computational ap-
proach’s performance for the task of predominant melody
estimation and therefore help to get a better understanding
of the underlying problems.
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Figure 8. Excerpt from the annotations of the solo
Brow-JO of A1 and A2.

5. CONCLUSION

In this paper, we investigated the evaluation of auto-
matic approaches for the task of predominant melody
estimation—a task that can be subdivided into the sub-
task of soloist activity detection and F0 estimation. The
evaluation of this task is not straightforward since the ex-
istence of a single “ground-truth” reference annotation is
questionable. After having reviewed standard evaluation
measures used in the field, one of our main contributions
was to adapt Fleiss’ Kappa—a measure which accounts for
multiple reference annotations. We then explicitly defined
and discussed Fleiss’ Kappa for the task of the soloist ac-
tivity detection.

The core motivation for using Fleiss’ Kappa as an eval-
uation measure was to consider an automatic approach to
work correctly, if its results were just about as variable
as the human annotations. We therefore extended this the
kappa measure by normalizing it by the variability of the
human annotations. The resulting ρ-values allow for quan-
tifying the agreement of an automatically generated anno-
tation and the human annotations in a single value.

For the task of F0 estimation, we showed that the stan-
dard evaluation measures are biased by the activity de-
tection task. This is problematic, since mixing both sub-
tasks can obfuscate insights into advantages and draw-
backs of a tested predominant melody estimation proce-
dure. We therefore proposed an alternative formulation for
RPA which decoupled the two tasks.
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ABSTRACT

In this paper we present a novel method for jointly extract-
ing beats and downbeats from audio signals. A recurrent
neural network operating directly on magnitude spectro-
grams is used to model the metrical structure of the audio
signals at multiple levels and provides an output feature
that clearly distinguishes between beats and downbeats.
A dynamic Bayesian network is then used to model bars
of variable length and align the predicted beat and down-
beat positions to the global best solution. We find that the
proposed model achieves state-of-the-art performance on a
wide range of different musical genres and styles.

1. INTRODUCTION

Music is generally organised in a hierarchical way. The
lower levels of this hierarchy are defined by the beats and
downbeats which define the metrical structure of a musi-
cal piece. While considerable amount of research focused
on finding the beats in music, far less effort has been made
to track the downbeats, although this information is cru-
cial for a lot of higher level tasks such as structural seg-
mentation and music analysis and applications like auto-
mated DJ mixing. In western music, the downbeats often
coincide with chord changes or harmonic cues, whereas in
non-western music the start of a measure is often defined
by the boundaries of rhythmic patterns. Therefore, many
algorithms exploit one or both of these features to track the
downbeats.

Klapuri et al. [18] proposed a system which jointly anal-
yses a musical piece at three time scales: the tatum, tactus,
and measure level. The signal is split into multiple bands
and then combined into four accent bands before being fed
into a bank of resonating comb filters. Their temporal evo-
lution and the relation of the different time scales are mod-
elled with a probabilistic framework to report the final po-
sition of the downbeats.

The system of Davies and Plumbley [5] first tracks the
beats and then calculates the Kullback-Leibler divergence

c© Sebastian Böck, Florian Krebs, and Gerhard Widmer.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Sebastian Böck, Florian Krebs, and
Gerhard Widmer. “JOINT BEAT AND DOWNBEAT TRACKING
WITH RECURRENT NEURAL NETWORKS”, 17th International So-
ciety for Music Information Retrieval Conference, 2016.

between two consecutive band-limited beat synchronous
spectral difference frames to detect the downbeats, exploit-
ing the fact that lower frequency bands are perceptually
more important.

Papadopoulos and Peeters [24] jointly track chords and
downbeats by decoding a sequence of (pre-computed) beat
synchronous chroma vectors with a hidden Markov model
(HMM). Two time signatures are modelled. In a later pa-
per, the same authors [25] jointly model beat phase and
downbeats while the tempo is assumed to be given. Beat
and downbeat times are decoded using a HMM from three
input features: the correlation of the local energy with a
beat-template, chroma vector variation, and the spectral
balance between high and low frequency content.

The system proposed by Khadkevich et al. [17] uses im-
pulsive and harmonic components of a reassigned spectro-
gram together with chroma variations as observation fea-
tures for a HMM. The system is based on the assump-
tion that downbeats mostly occur at location with harmonic
changes.

Hockman et al. [14] present a method designed specif-
ically for hardcore, jungle, and drum and bass music,
that often employ breakbeats. The system exploits on-
set features and periodicity information from a beat track-
ing stage, as well as information from a regression model
trained on the breakbeats specific to the musical genre.

Durand et al. [10] first estimates the time signature by
examining the similarity of the frames at the beat level –
with the beat positions given as input. The downbeats are
then selected by a linear support vector machine (SVM)
model using a bag of complementary features, compris-
ing chord changes, harmonic balance, melodic accents and
pattern changes. In consecutive works [8, 9] they lifted the
requirement of the beat positions to be given and enhanced
their system considerably by replacing the SVM feature se-
lection stage by several deep neural networks which learn
higher level representations from which the final downbeat
positions are selected by means of Viterbi decoding.

Krebs et al. [20] jointly model bar position, tempo,
and rhythmic patterns with a dynamic Bayesian network
(DBN) and apply their system to a dataset of ballroom
dance music. Based on their work, [16] developed a uni-
fied model for metrical analysis of Turkish, Carnatic, and
Cretan music. Both models were later refined by using a
more sophisticated state space [21].
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The same state space has also been successfully applied
to the beat tracking system proposed by Böck et al. [2].
The system uses a recurrent neural network (RNN) similar
to the one proposed in [3] to discriminate between beats an
non-beats at a frame level. A DBN then models the tempo
and the phase of the beat sequence.

In this paper, we extend the RNN-based beat tracking
system in order to jointly track the whole metrical cy-
cle, including beats and downbeats. The proposed model
avoids hand-crafted features such as harmonic change de-
tection [8–10,17,24], or rhythmic patterns [14,16,20], but
rather learns the relevant features directly from the spectro-
gram. We believe that this is an important step towards sys-
tems without cultural bias, as postulated by the “Roadmap
for Music Information Research” [26].

2. ALGORITHM DESCRIPTION

The proposed method consists of a recurrent neural net-
work (RNN) similar to the ones proposed in [2, 3], and is
trained to jointly detect the beats and downbeats of an au-
dio signal in a supervised classification task. A dynamic
Bayesian network is used as a post-processing step to de-
termine the globally best sequence through the state-space
by jointly inferring the meter, tempo, and phase of the
(down-)beat sequence.

2.1 Signal Pre-Processing

The audio signal is split into overlapping frames and
weighted with a Hann window of same length before be-
ing transferred to a time-frequency representation with
the Short-time Fourier Transform (STFT). Two adjacent
frames are located 10 ms apart, which corresponds to a rate
of 100 fps (frames per second). We omit the phase por-
tion of the complex spectrogram and use only the magni-
tudes for further processing. To enable the network to cap-
ture features which are precise both in time and frequency,
we use three different magnitude spectrograms with STFT
lengths of 1024, 2048, and 4096 samples (at a signal sam-
ple rate of 44.1 kHz). To reduce the dimensionality of the
features, we limit the frequencies range to [30, 17000] Hz
and process the spectrograms with logarithmically spaced
filters. A filter with 12 bands per octave corresponds to
semitone resolution, which is desirable if the harmonic
content of the spectrogram should be captured. However,
using the same number of bands per octave for all spectro-
grams would result in an input feature of undesirable size.
We therefor use filters with 3, 6, and 12 bands per octave
for the three spectrograms obtained with 1024, 2028, and
4096 samples, respectively, accounting for a total of 157
bands. To better match human perception of loudness, we
scale the resulting frequency bands logarithmically. To aid
the network during training, we add the first order differ-
ences of the spectrograms to our input features. Hence, the
final input dimension of the neural network is 314. Figure
1a shows the part of the input features obtained with 12
bands per octave.

2.2 Neural Network Processing

As a network we chose a system similar to the one pre-
sented in [3], which is also the basis for the current state-
of-the-art in beat tracking [2, 19].

2.2.1 Network topology

The network consists of three fully connected bidirec-
tional recurrent layers with 25 Long Short-Term Memory
(LSTM) units each. Figures 1b to 1d show the output acti-
vations of the forward (i.e. half of the bidirectional) hidden
layers. A softmax classification layer with three units is
used to model the beat, downbeat, and non-beat classes.
A frame can only be classified as downbeat or beat but
not both at the same time, enabling the following dynamic
Bayesian network to infer the meter and downbeat posi-
tions more easily. The output of the neural network are
three activation functions bk, dk, and nok, which repre-
sents the probability of a frame k being a beat but no down-
beat, downbeat or non-beat position. Figure 1e shows bk
and dk for an audio example.

2.2.2 Network training

We train the network on the datasets described in Sec-
tion 3.1 — except the ones marked with an asterisk (*)
which are used for testing only — with 8-fold cross val-
idation based on a random splits. We initialise the net-
work weights and biases with a uniform random distribu-
tion with range [-0.1, 0.1] and train it with stochastic gradi-
ent decent minimising the cross entropy error with a learn-
ing rate of 10-5 and 0.9 momentum. We stop training if no
improvement on the validation set can be observed for 20
epochs. We then reduce the learning rate by a factor of ten
and retrain the previously best model with the same early
stopping criterion.

2.2.3 Network output thresholding

We experienced that the very low activations at the begin-
ning and end of a musical excerpt can hurt the tracking
performance of the system. This is often the case if a song
starts with a (musically irrelevant) intro or has a long fade
out at the end. We thus threshold the activations and use
only the activations between the first and last time they ex-
ceed the threshold. We empirically found a threshold value
θ = 0.05 to perform well without harming pieces with over-
all low activations (e.g. choral works).

2.3 Dynamic Bayesian Network

We use the output of the neural network as observations
of a dynamic Bayesian network (DBN) which jointly infers
the meter, tempo, and phase of a (down-)beat sequence.
The DBN is very good at dealing with ambiguous RNN
observations and finds the global best state sequence given
these observations. 1 We use the state-space proposed in
[21] to model a whole bar with an arbitrary number of

1 The average performance gain of the DBN compared to simple
thresholding and peak-picking of the RNN activations is about 15% F-
measure on the validation set.
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Figure 1: Signal propagation of a 6 second song excerpt in 4/4
time signature through the network: (a) part of the input features,
(b) the first hidden layer shows activations at onset positions, (c)
the second models mostly faster metrical levels (e.g. 1/8th notes
at neuron 3), (d) the third layer models multiple metrical levels
(e.g. neuron 8 firing at beat positions and neuron 16 around down-
beat positions), (e) the softmax output layer finally models the re-
lation of the different metrical levels resulting in clear downbeat
(black) and beat (green, flipped for better visualisation) activa-
tions. Downbeat positions are marked with vertical dashed lines,
beats as dotted lines.

beats per bar. We do not allow meter changes through-
out a musical piece, thus we can model different meters
with individual, independent state spaces. All parameters
of the DBN are tuned to maximise the downbeat tracking
performance on the validation set.

2.3.1 State Space

We divide the state space into discrete states s to make
inference feasible. These states s(φ, φ̇, r) lie in a three-
dimensional space indexed by the bar position state φ ∈
{1..Φ}, the tempo state φ̇ ∈ {1..Φ̇}, and the time signature
state r (e.g. r ∈ {3/4, 4/4}). States that fall on a downbeat
position (φ = 1) constitute the set of downbeat states D,
all states that fall on a beat position define the set of beat
states B. The number of bar-position states of a tempo φ̇ is
proportional to its corresponding beat period 1/φ̇, and the
number of tempo states depends on the tempo ranges that
the model accounts for. For generality, we assume equal
tempo ranges for all time signatures in this paper but this
could easily changed to adapt the model towards specific
styles. In line with [21] we find that by distributing the
tempo states logarithmically across the beat intervals, the
size of the state space can be reduced efficiently without
affecting the performance too much. Empirically we found
that using N = 60 tempo states is a good compromise
between computation time and performance.

2.3.2 Transition Model

Tempo transitions are only allowed at the beats and follow
the same exponential distribution proposed in [21]. We
investigated “peephole” transitions from the end of every
beat back to the beginning of the bar, but found them to
harm performance. Thus, we assume that there are no tran-
sitions between time signatures in this paper.

2.3.3 Observation Model

We adapted the observation model of the DBN from [2] to
not only predict beats, but also downbeats. Since the ac-
tivation functions (d, b) produced by the neural network
are limited to the range [0, 1] and show high values at
beat/downbeat positions and low values at non-beat posi-
tions (cf. Figure 1e), the activations can be converted into
state-conditional observation distributions P (ok|sk) by

P (ok|sk) =





dk sk ∈ D
bk sk ∈ B
nk

λo−1 , otherwise
(1)

where D and B are the sets of downbeat and beat
states respectively, and the observation lambda λo ∈
[ Φ
Φ−1 ,Φ] is a parameter that controls the propor-

tion of the beat/downbeat interval which is consid-
ered as beat/downbeat and non-beat locations inside one
beat/downbeat period. On our validation set we achieved
the best results with the value λo = 16. We found it to be
advantageous to use both bk and dk as provided by the neu-
ral network instead of splitting the probability of bk among
the N beat positions of the transition model.
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2.3.4 Initial State Distribution

The initial state distribution can be used to incorporate any
prior knowledge about the hidden states, such as meter and
tempo distributions. In this paper, we use a uniform distri-
bution over all states.

2.3.5 Inference

We are interested in the sequence of hidden states s1:K ,
that maximise the posterior probability of the hidden states
given the observations (activations of the network). We
obtain the maximum a-posteriori state sequence s∗1:K by

s∗1:K = arg max
s1:K

p(s1:K |o1:K) (2)

which can be computed efficiently using the well-known
Viterbi algorithm.

2.3.6 Beat and Downbeat Selection

The sequence of beat B and downbeat times D are deter-
mined by the set of time frames k which were assigned to
a beat or downbeat state:

B = {k : s∗k ∈ B} (3)

D = {k : s∗k ∈ D} (4)

After having decided on the sequences of beat and down-
beat times we further refine them by looking for the
highest beat/downbeat activation value inside a window
of size Φ/λo, i.e. the beat/downbeat range of the whole
beat/downbeat period of the observation model (Sec-
tion 2.3.3).

3. EVALUATION

In line with almost all other publications on the topic of
downbeat tracking, we report the F-measure (F1) with a
tolerance window of ±70 ms.

3.1 Datasets

For training and evaluation we use diverse datasets as
shown in Table 1. Musical styles range from pop and rock
music, over ballroom dances, modern electronic dance mu-
sic, to classical and non-western music.

We do not report scores for all sets used for train-
ing, since comparisons with other works are often
not possible due to different evaluation metrics and/or
datasets. Results for all datasets, including additional
metrics can be found online at the supplementary website
http://www.cp.jku.at/people/Boeck/ISMIR2016.html

which also includes an open source implementation of the
algorithm.

Downbeat tracking dataset # files length

Ballroom [12, 20] 2 685 5 h 57 m
Beatles [4] 180 8 h 09 m
Hainsworth [13] 222 3 h 19 m
HJDB [14] 235 3 h 19 m
RWC Popular [11] 100 6 h 47 m
Robbie Williams [7] 65 4 h 31 m
Rock [6] 200 12 h 53 m
Carnatic [28] 176 16 h 38 m
Cretan [16] 42 2 h 20 m
Turkish [27] 93 1 h 33 m
GTZAN [23, 29] * 999 8 h 20 m
Klapuri [18] 3 * 320 4 h 54 m
Beat tracking datasets

SMC [15] * 217 2 h 25 m
Klapuri [18] 3 * 474 7 h 22 m

Table 1: Overview of the datasets used for training and evalua-
tion of the algorithm. Sets marked with asterisks (*) are held-out
datasets for testing only.

3.2 Results & Discussion

Table 2 to 4 list the results obtained by the proposed
method compared to current and previous state-of-the-art
algorithms on various datasets. We group the datasets
into different tables for clarity, based on whether they are
used for testing only, cover western, or non-western music.
Since our system jointly tracks beats and downbeats, we
compare with both downbeat and beat tracking algorithms.

First of all, we evaluate on completely unseen data. We
use the recently published beat and downbeat annotations
for the GTZAN dataset, the Klapuri, and the SMC set (built
specifically to comprise hard-to-track musical pieces) for
evaluation. Results are given in Table 2. Since these re-
sults are directly comparable (the only exception being the
results of Durand et al. on the Klapuri set 4 and of Böck
et al. on the SMC set 5 ), we perform statistical significance
tests on them. We use Wilcoxon’s signed-rank test with a
p-value of 0.01.

Additionally, we report the performance on other sets
commonly used in the literature, comprising both western
and non-western music. For western music, we give results
on the Ballroom, Beatles, Hainsworth, and RWC Popular
sets in Table 3. For non-western music we use the Car-
natic, Cretan, and Turkish datasets and group the results
in Table 4. Since these sets were also used during develop-
ment and training of our system, we report results obtained
with 8-fold cross validation. Please note that the results
given in Table 3 and 4 are not directly comparable because
they were either obtained via cross validation, leave-one-
dataset-out evaluation, with overlapping train and test sets,
or tested on unseen data. However, we still consider them

2 We removed the 13 duplicates identified by Bob Sturm:
http://media.aau.dk/null space pursuits/2014/01/ballroom-dataset.html

3 The beat and downbeat annotations of this set were made indepen-
dently, thus the positions do not necessarily match each other.

4 40 out of the 320 tracks were used for training.
5 The complete set was used for training.
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Test datasets F1 beat F1 downbeat

GTZAN
new (bar lengths: 3, 4) * 0.856 0.640
Durand et al. [9] * - 0.624
Böck et al. [2] * 0.864 -
Davies et al. [5] * 0.806 0.462
Klapuri et al. [18] * 0.706 0.309
Klapuri
new (bar lengths: 3, 4) * 0.811 0.745
Durand et al. [9] ‡ - 0.689
Böck et al. [2] * 0.798 -
Davies et al. [5] * 0.698 0.528
Klapuri et al. [18] ‡ 0.704 0.483
SMC
new (bar lengths: 3, 4) * 0.516
Böck et al. [2] § 0.529
Davies et al. [5] * 0.337
Klapuri et al. [18] * 0.352

Table 2: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on the test datasets. ‡ denotes
overlapping train and test sets, § cross validation, and * testing
only.

to be a good indicator for the overall performance and ca-
pabilities of the systems. For the music with non-western
rhythms and meters (e.g. Carnatic art music contains 5/4
and 7/4 meters) we compare only with algorithms spe-
cialised on this type of music, since other systems typically
fail completely on them.

Western music F1 beat F1 downbeat

Ballroom
new (bar lengths: 3, 4) § 0.938 0.863
Durand et al. [9] †/‡ - 0.778 / 0.797
Krebs et al. [21] § 0.919 -
Böck et al. [2] § 0.910 -
Beatles
new (bar lengths: 3, 4) § 0.918 0.832
Durand et al. [9] †/‡ - 0.815 / 0.842
Böck et al. [2] * 0.880 -
Hainsworth
new (bar lengths: 3, 4) § 0.867 0.684
Durand et al. [9] †/‡ - 0.657 / 0.664
Böck et al. [2] § 0.843 -
Peeters et al. [25] 0.630
RWC Popular
new (bar lengths: 3, 4) § 0.943 0.861
Durand et al. [9] †/‡ - 0.860 / 0.879
Böck et al. [2] * 0.877 -
Peeters et al. [25] 0.840 0.800

Table 3: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on western music datasets. † de-
notes leave-one-set-out evaluation, ‡ overlapping train and test
sets, § cross validation, and * testing only.

Non-western music F1 beat F1 downbeat

Carnatic
new (bar lengths: 3, 4) § 0.804 0.365
—– (bar lengths: 3, 5, 7, 8) § 0.792 0.593
Krebs et al. [21] § 0.805 0.472
Cretan
new (bar lengths: 3, 4) § 0.982 0.605
—– (bar lengths: 2, 3, 4) § 0.981 0.818
—– (bar lengths: 2) § 0.980 0.909
Krebs et al. [21] § 0.912 0.774
Turkish
new (bar lengths: 3, 4) § 0.740 0.495
—– (bar lengths: 4, 8, 9, 10) § 0.777 0.631
—– (tempo: 55..300 bpm) § 0.818 0.683
Krebs et al. [21] § 0.826 0.639

Table 4: Beat and downbeat tracking F-measure comparison
with state-of-the-art algorithms on non-western music datasets.
—– denotes the same system as the line above with altered pa-
rameters in parentheses, § cross validation.

3.2.1 Beat tracking

Compared to the current state-of-the-art [2], the new sys-
tem performs on par or outperforms this dedicated beat
tracking algorithm. It only falls a bit behind on the GTZAN
and SMC sets. However, the results on the latter might be a
bit biased, since [2] obtained their results with 8-fold cross
validation. Although the new system performs better on
the Klapuri set, the difference is not statistically signifi-
cant. All results compared to those of other beat tracking
algorithms on the test datasets in Table 2 are statistically
significant.

Although the new algorithm and [2] have a very similar
architecture and were trained on almost the same develop-
ment sets (the new one plus those sets given in Table 1,
except the SMC dataset), it is hard to conclude whether the
new algorithm performs better sometimes because of the
additional – more diverse – training material or due to the
joint modelling of beats and downbeats. Future investiga-
tions with the same training sets should shed some light on
this question, but it is safe to conclude that the joint train-
ing on beats and downbeats does not harm the beat tracking
performance at all.

On non-western music the results are in the same range
as the ones obtained by the method of Krebs et al. [21], an
enhanced version of the algorithm proposed by Holzapfel
et al. [16]. Our system shows almost perfect beat tracking
results on the Cretan lap dances while performing a bit
worse on the Turkish music.

3.2.2 Downbeat tracking

From Table 2 to 4, it can be seen that the proposed system
not only does well for beat tracking, but also shows state-
of-the-art performance in downbeat tracking. We outper-
form all other methods on all datasets – except Beatles and
RWC Popular when comparing to the overfitted results ob-
tained by the system of Durand et al. [9] – even the sys-
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tems designed specifically for non-western music. We find
this striking, since our new system is not designed specif-
ically for a certain music style or genre. The results of
our method w.r.t. the other systems on the test datasets in
Table 2 are all statistically significant.

It should be noted however, that the dynamic Bayesian
network must model the needed bar lengths for the respec-
tive music in order to achieve this performance. Espe-
cially when dealing with non-western music, this is cru-
cial. However, we do not consider this a drawback, since
the system is able to chose the correct bar length reliably
by itself.

3.2.3 Meter selection

As mentioned above, for best performance the DBN must
model measures with the correct number of beats per bar.
Per default, our system works for 3/4 and 4/4 time signa-
tures, but since the parameters of the DBN are not learnt,
this can be changed during runtime in order to model any
time signature and tempo range.

To investigate the system’s ability to automatically de-
cide on which bar length to select, we performed an exper-
iment and limited the DBN to model only bars with lengths
of three or four beats, both time signatures simultaneously
(the default setting), or bar lengths of up to eight beats.

3 4 3,4 3...5 3...6 3...7 3...8

modelled bar lengths by the DBN [beats/bar]
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Figure 2: Downbeat tracking performance of the new sys-
tem with different bar lengths on the Ballroom set.

Figure 2 shows this exemplarily for the Ballroom set,
which comprises four times as many pieces in 4/4 as in
3/4 time signature. The performance is relatively low if
the system is limited to model bars with only three or
four beats per bar. When being able to model both time
signatures present in the music, the system achieves it’s
maximum performance. The performance then slightly de-
creases if the DBN models bars with a length up to eight
beats per bar, but remains on a relatively high performance
level. This shows the system’s ability to select the correct
bar length automatically.

4. CONCLUSION

In this paper we presented a novel method for jointly track-
ing beats and downbeats with a recurrent neural network
(RNN) in conjunction with a dynamic Bayesian network
(DBN). The RNN is responsible for modelling the metrical
structure of the musical piece at multiple interrelated lev-
els and classifies each audio frame as being either a beat,
downbeat, or no beat. The DBN then post-processes the
probability functions of the RNN to align the beats and
downbeats to the global best solution by jointly inferring
the meter, tempo, and phase of the sequence. The sys-
tem shows state-of-the-art beat and downbeat tracking per-
formance on a wide range of different musical genres and
styles. It does so by avoiding hand-crafted features such as
harmonic changes, or rhythmic patterns, but rather learns
the relevant features directly from audio. We believe that
this is an important step towards systems without any cul-
tural bias. We provide a reference implementation of the
algorithm as part of the open-source madmom [1] frame-
work.

Future work should address the limitation of the system
of not being able to perform time signature changes within
a musical piece. Due to the large state space needed this
is intractable right now, but particle filters as used in [22]
should be able to resolve this issue.
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ABSTRACT

Most music exhibits a pulsating temporal structure, known
as meter. Consequently, the task of meter tracking is of
great importance for the domain of Music Information Re-
trieval. In our contribution, we specifically focus on Indian
art musics, where meter is conceptualized at several hierar-
chical levels, and a diverse variety of metrical hierarchies
exist, which poses a challenge for state of the art analysis
methods. To this end, for the first time, we combine Con-
volutional Neural Networks (CNN), allowing to transcend
manually tailored signal representations, with subsequent
Dynamic Bayesian Tracking (BT), modeling the recurrent
metrical structure in music. Our approach estimates me-
ter structures simultaneously at two metrical levels. The
results constitute a clear advance in meter tracking per-
formance for Indian art music, and we also demonstrate
that these results generalize to a set of Ballroom dances.
Furthermore, the incorporation of neural network output
allows a computationally efficient inference. We expect
the combination of learned signal representations through
CNNs and higher-level temporal modeling to be applicable
to all styles of metered music, provided the availability of
sufficient training data.

1. INTRODUCTION

The majority of musics in various parts of the world can be
considered as metered, that is, their temporal organization
is based on a hierarchical structure of pulsations at differ-
ent related time-spans. In Eurogenetic music, for instance,
one would refer to one of these levels as the beat or tactus
level, and to another (longer) time-span level as the down-
beat, measure, or bar level. In Indian art musics, the con-
cepts of tāl.a for Carnatic and tāl for Hindustani music de-
fine metrical structures that consist of several hierarchical
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levels. However, important differences between meter(s)
in Eurogenetic and Indian art musics are the presence of
non-isochronicity in some of the metrical layers and the
fact that an understanding of the progression of the meter
is crucial for the appreciation of the listener, see, e.g. [3,
p. 199ff]. Again, other cultures might not explicitly define
metrical structure on several layers, but just define certain
rhythmic modes that determine the length of a metrical cy-
cle and some points of emphasis within this cycle, as is the
case for Turkish makam music [2] or Korean music [13].
Common to all metered musics is the fact that the under-
standing of only one metrical level, such as the beat in Eu-
rogenetic music, leads to an inferior understanding of the
musical structure compared to an interpretation on several
metrical layers; a couple dancing a Ballroom dance with-
out a common understanding of beat and bar level will end
up with four badly bruised feet, while a whirling dervish in
Turkey who does not follow the long-term structure of the
rhythmic mode will suffer pain of a rather spiritual kind.

Within the field of Music Information Research (MIR),
the task of beat tracking has been approached by many
researchers, using a large variety of methodologies, see
the summary in [14]. Tracking of meter, i.e., tracking
on several hierarchically related time-spans, was pursued
by a smaller number of approaches, for instance by [9].
[15] were among the first to include experiments that doc-
ument the importance of adapting a model automatically
to musical styles in the context of meter tracking. In recent
years, several approaches to beat and meter tracking were
developed that include such adaptation to musical style, for
instance by applying dynamic Bayesian networks [12] or
Convolutional Neural Networks (CNN) [6] for meter track-
ing, or by combining Bayesian networks with Recurrent
Neural Networks (RNN) for beat tracking in [1].

In this paper, we combine deep neural network and
Bayesian approaches for meter tracking. To this end, we
adapt an approach based on CNN that was previously ap-
plied to music segmentation with great success [18]. To
the best of our knowledge, no other applications of CNNs
to the task of combined tracking at several metrical lev-
els have yet been published, although other groups apply
CNN as well [6]. In this paper, the outputs of the CNN, i.e.,
the activations that imply probabilities of observing beats
and downbeats 1 , are then integrated as observations into a
dynamic Bayesian network. This way, we explore in how
far an approach [18] previously applied to supra-metrical

1 We use these terms to denote the two levels, for the sake of simplicity.
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Dance #Pieces Cycle Length: mean (std)
Cha cha (4/4) 111 1.96 (0.107)

Jive (4/4) 60 1.46 (0.154)
Quickstep (4/4) 82 1.17 (0.018)

Rumba (4/4) 98 2.44 (0.274)
Samba (4/4) 86 2.40 (0.177)
Tango (4/4) 86 1.89 (0.064)

Viennese Waltz (3/4) 65 1.01 (0.015)
Waltz (3/4) 110 2.10 (0.077)

Table 1: The Ballroom dataset. The columns depict
time signature with the names of the dances, number of
pieces/excerpts, and mean and standard deviation of the
metrical cycle lengths in seconds.

structure in music can serve to perform meter tracking as
well. Furthermore, we want to evaluate in how far the
meter tracking performed by the CNN can be further im-
proved by imposing knowledge of metrical structure that is
expressed using a Bayesian model. The evaluation in this
paper is performed on Indian musics as well as Latin and
international Ballroom dances. This choice is motivated by
the fact that meter tracking in Indian musics revealed to be
particularly challenging [8], but at the same time a novel
approach should generalize to non-Indian musics. Our re-
sults improve over the state of the art in meter tracking on
Indian music, while results on Ballroom music are highly
competitive as well.

We present the used music corpora in Section 2. Sec-
tion 3 provides detail on the CNN structure and training,
and Section 4 on the Bayesian model and its combination
with the CNN activations. In both sections we aim at pro-
viding a concise presentation of both methods, emphasiz-
ing the novel elements compared to previously published
approaches. Section 5 illustrates our findings, and Sec-
tion 6 provides a summary and directions for future work.

2. MUSIC CORPORA

For the evaluation of meter tracking performance, we use
two different music corpora. The first corpus consists of
697 monaural excerpts (fs = 44.1 kHz) of Ballroom dance
music, with a duration of 30 s for each excerpt. The cor-
pus was first presented in [5], and beat and bar annotations
were compiled by [10]. Table 1 lists all the eight con-
tained dance styles and their time signatures, and depicts
the mean durations of the metrical cycles and their stan-
dard deviations in seconds. In general, the bar durations
can be seen to have a range from about a second (Viennese
Waltz) to 2.44 s (Rumba), with small standard deviations.

The second corpus unites two collections of Indian art
music that are outcomes of the ERC project CompMusic.
The first collection, the Carnatic music rhythm corpus con-
tains 176 performance recordings of South Indian Carnatic
music, with a total duration of more than 16 hours. 2 The
second collection, the Hindustani music rhythm corpus,

2 http://compmusic.upf.edu/carnatic-rhythm-dataset

Carnatic
Tāl.a #Pieces Cycle Length: mean (std)

Adi (8/4) 50 5.34 (0.723)
Rūpaka (3/4) 50 2.13 (0.239)

Miśra chāpu (7/4) 48 2.67 (0.358)
Khanda chāpu (5/4) 28 1.85 (0.284)

Hindustani
Tāl #Pieces Cycle Length: mean (std)

Tintāl (16/4) 54 10.36 (9.875)
Ektāl (12/4) 58 30.20 (26.258)

Jhaptāl (10/4) 19 8.51 (3.149)
Rūpak tāl (7/4) 20 7.11 (3.360)

Table 2: The Indian music dataset. The columns depict
time signature with the names of the Tāl.a/tāl cycles, the
number of pieces/excerpts, and mean and standard devia-
tion of the metrical cycle lengths in seconds.

contains 151 excerpts of 2 minutes length each, summing
up to a total duration of a bit more than 5 hours. 3 All sam-
ples are monaural at fs = 44.1 kHz. Within this paper we
unite these two datasets to one corpus, in order to obtain a
sufficient amount of training data for the neural networks
described in Section 3. This can be justified by the similar
instrumental timbres that occur in these datasets. How-
ever, we carefully monitor the differences of tracking per-
formance for the two musical styles. As illustrated in Ta-
ble 2, metrical cycles in the Indian musics have longer du-
rations with large standard deviations in most cases. This
difference is in particular accentuated for Hindustani mu-
sic, where, for instance, the Ektāl cycles range from 2.23 s
up to a maximum of 69.73 s. This spans five tempo octaves
and represents a challenge for meter tracking. The rhyth-
mic elaboration of the pieces within a metrical class varies
strongly depending on the tempo, which is likely to create
difficulties when using the recordings in these classes for
training one unified tracking model.

3. CNN FOR METER TRACKING

CNNs are feed-forward networks that include convolu-
tional layers, computing a convolution of their input with
small learned filter kernels of a given size. This allows
processing large inputs with few trainable parameters, and
retains the input’s spatial layout. When used for binary
classification, the network usually ends in one or more
dense layers integrating information over the full input at
once, discarding the spatial layout. The architecture for
this work is based on the one used by Ullrich et al. [18]
on MLS (Mel-scaled log-magnitude spectrogram) features
for their MIREX submission [16]. Therein, CNN-type net-
works have been employed for the task of musical structure
segmentation. [7] have expanded on this approach by intro-
ducing two separate output units, yielding predictions for
‘fine’ and ‘coarse’ segment boundaries. For the research
at hand, we can use this architecture to train and predict

3 http://compmusic.upf.edu/hindustani-rhythm-dataset
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Figure 1: The CNN architecture in use.

beats and downbeats in the same manner with two output
units, enabling the network to exploit information shared
between these two temporal levels.

3.1 Data

For both datasets under examination, we use a train/
validation/test split. The sizes are 488/70/140 for the ball-
room data set and 228/33/66 for the combination of the two
Indian data sets. From the audio files, we compute log-
scaled logarithmic-magnitude spectrograms (LLS) of 80
bands (instead of mel-scaled MLS in [18]), ranging from
80 Hz to 16 kHz. We have found log-scaled features to
work better in early stages of research, most probably be-
cause of their harmonic translational invariance, support-
ing the convolutional filters. The STFT size used is 2048,
with a frame rate of 100 fps. In order to be able to train
and predict on spectrogram excerpts near the beginning
and ending of a music piece, we apply a simple padding
strategy for the LLS features. If the first (or last, respec-
tively) non-zero spectrogram frame has a mean volume of
≥ −40 dBFS, we assume an abrupt boundary and pad the
spectrogram with a −100 dBFS constant. Conversely, we
pad with repeated copies of this first or last non-zero spec-
trogram frame. To either padding, we add ±3 dB of uni-
form noise to avoid unnatural spectral clarity. Over the
entire data sets, we normalize to zero mean and unit vari-
ance for each frequency band, yielding a suitable range of
input values for the CNN.

3.2 Network Structure and training

Figure 1 shows the network architecture used for our ex-
periments, unchanged from our previous experiments in
[18]. On the input side, the CNN sees a temporal win-
dow of 501 frames with 80 frequency bands, equivalent
to 5 seconds of spectral information. The LLS input is
subjected to a convolutional layer of 32 parallel 8× 6 ker-
nels (8 time frames and 6 frequency bands), a max-pooling
layer with pooling factors of 3 × 6, and another convo-
lution of 64 parallel 6 × 3 kernels. Both convolutional
layers employ linear rectifier units. While the first con-
volution emphasizes certain low-level aspects of the time-
frequency patches it processes (for example the contrast

between patches), the subsequent pooling layer spatially
condenses both dimensions. This effectively expands the
scope with regard to the input features for the second con-
volution. The resulting learned features are fed into a dense
layer of 512 sigmoid units encoding the relevance of indi-
vidual feature components of the time-frequency window
and the contribution of individual convolutional filters. Fi-
nally, the network ends in a dense output layer with two
sigmoid units. Additionally, the class information (Indian
tāl.a/tāl class or ballroom style class, which can generally
be assumed to be known) is fed through one-hot coding di-
rectly to the first dense layer. Using this class information
improves results in the range of 1–2%.

During training, the beat and downbeat units are tied to
the target information from the ground-truth annotations
using a binary cross-entropy loss function. The targets are
set to one with a tolerance window of 5 frames, equiva-
lent to 50 milliseconds, around the exact location of the
beat or downbeat. Training weights decline according to a
Gaussian window around this position (‘target smearing’).
Training is done by mini-batch stochastic gradient descent,
using the same hyper-parameters and tweaks as in [18].
The dense layers use dropout learning, updating only 50%
of the weights per training step.

3.3 Beat and downbeat prediction

In order to obtain beat and downbeat estimations from a
trained CNN, we follow the basic peak-picking strategy
described in [18] to retrieve likely boundary locations from
the network output. Note that the class information is pro-
vided in the same way as in the training, which means
that we assume the meter type (e.g., 7/4) known, and tar-
get the tracking of the given metrical hierarchy. The ad-
justable parameters for peak picking have been optimized
on the validation set. Several individual network mod-
els have been trained individually from random initializa-
tions, yielding slightly different predictions. Differently
than in [18] we did not ‘bag’ (that is, average) multiple
models, but rather selected the model with the best results
as evaluated on the validation set. Although the results di-
rectly after peak picking are inferior to bagged models by
up to 3%, the Bayesian post-processing works better on
non-averaged network outputs, as also tested on the val-
idation set. The CNN output vectors that represents the
beat probability will be referred to as P (b), and the vector
representing the downbeat probabilities as P (d), respec-
tively. The results obtained from the peak picking on these
vectors will be denoted as CNN-PP.

4. METER TRACKING USING BAYESIAN
NETWORKS

The Bayesian network used for meter tracking is an ex-
tension of the model presented in [11]. Within the model
in [11], activations from RNN were used as observations in
a Bayesian network for beat tracking in music, whereas in
this paper we extend the approach to the tracking of a met-
rical cycle. We will shortly summarize the principle of the
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algorithm presented in [11] in Section 4.1. In Section 4.2,
we present the extension of the existing approach to meter
tracking using activations from a CNN.

4.1 Summary: A Bayesian meter tracking model

The underlying concept of the approach presented in [11]
is an improvement of [8], and was first described by [19]
as the bar pointer model. In [11], given a series of obser-
vations/features yk, with k ∈ {1, ...,K}, computed from
a music signal, a set of hidden variables xk is estimated.
The hidden variables describe at each analysis frame k the
position Φk within a beat (in the case of beat tracking) or
within a bar (in the case of meter tracking), and the tempo
in positions per frame (Φ̇k). The goal is to estimate the
hidden state sequence that maximizes the posterior (MAP)
probability P (x1:K |y1:K). If we express the temporal dy-
namics as a Hidden Markov Model (HMM), the posterior
is proportional to

P (x1:K |y1:K) ∝ P (x1)

K∏

k=2

P (xk|xk−1)P (yk|xk) (1)

In (1), P (x1) is the initial state distribution,
P (xk|xk−1) is the transition model, and P (yk|xk) is the
observation model. When discretizing the hidden variable
xk = [Φk, Φ̇k], the inference in this model can be per-
formed using the Viterbi algorithm. In this paper, for the
sake of simplicity of representation we do not apply ap-
proximate inference, as for instance in [17], but strictly
follow the approach in [11].

In [11], efficiency of the inference was improved by
a flexible sampling of the hidden variables. The position
variable Φk takes M(T ) values 1, 2, ...,M(T ), with

M(T ) = round

(
Nbeats ∗ 60

T ∗∆

)
(2)

where T denotes the tempo in beats per minute (bpm), and
∆ the analysis frame duration in seconds. In the case of
meter tracking, Nbeats denotes the number of beats in a
measure (e.g., nine beats in a 9/8), and is set to 1 in the
case of beat tracking. This sampling results in one posi-
tion state per analysis frame. The discretized tempo states
Φ̇k were distributed logarithmically between a minimum
tempo Tmin and a maximum tempo Tmax.

As in [11], a uniform initial state distributionP (x1) was
chosen in this paper. The transition model factorizes into
two components according to

P (xk|xk−1) = P (Φk|Φk−1, Φ̇k−1)P (Φ̇k|Φ̇k−1) (3)

with the two components describing the transitions of posi-
tion and tempo states, respectively. The position transition
model increments the value of Φk deterministically by val-
ues depending on the tempo Φ̇k−1, starting from a value
of 1 (at the beginning of a metrical cycle) to a value of
M(T ). The tempo transition model allows for tempo tran-
sitions according to an exponential distribution in exactly
the same way as described in [11].

We incorporated the GMM-BarTracker (GMM-BT) as
described in [11] as a baseline in our paper. The observa-
tion model in the GMM-BarTracker divides a whole note
into 64 discrete bins, using the beat and downbeat anno-
tations that are available for the data. For instance, a 5/4
meter would be divided into 80 metrical bins, and we de-
note this number of bins within a specific meter as Nbins.
Spectral-flux features obtained from two frequency bands,
computed as described in [12], are assigned to one of these
metrical bins. Then, the parameters of a two-component
Gaussian Mixture Model (GMM) are determined in ex-
actly the same way as documented in [12], using the same
training data as for the training of the CNN in Section 3.1.
Furthermore, the fastest and the slowest pieces were used
to determine the tempo range Tmin to Tmax. A constant
number of 30 tempo states were used, a denser sampling
did not improve tracking on any of the validation sets.

4.2 Extension of the Bayesian network: CNN
observations

The proposed extensions of the GMM-BT approach af-
fect the observation model P (yk|xk), as well as the
parametrization of the state space. We will refer to this
novel model as CNN-BT.

Regarding the observation model, we incorporate the
beat and downbeat probabilities P (b) and P (d), respec-
tively, obtained from the CNN as described in Section 3.
Network activations were incorporated in [11] on the beat
level only, and in this paper our goal is to determine in how
far the downbeat probabilities can help to obtain an accu-
rate tracking not only of the beat, but the entire metrical cy-
cle. Let us denote the metrical bins that are beat instances
by B (excluding the downbeat), and the downbeat position
as D. Then we calculate the observation model P (yk|xk)
as follows

P (yk|xk)=





Pk(d)∗Pk(b), Φk∈D,D+1;
Pk(b)∗(1−Pk(d)) Φk∈B,B+1;
(1−Pk(b))∗(1−Pk(d)) else;

(4)
Including the bin that follows a beat and downbeat was

found to slightly improve the performance on the evalua-
tion data. In simple terms, the network outputs P (b) and
P (d) are directly plugged into the observation model. The
two separate probabilities for beats and downbeats com-
bined according to the metrical bin. For instance, down-
beats are also instances of the beat layer, and at these posi-
tions the activities are multiplied in the first row of (4).
The columns of the obtained observation matrix of size
Nbins×K are then normalized to sum to one.

The CNN activations P (b) and P (d) are characterized
by clearly accentuated peaks in the vicinity of beats and
downbeats, as will be illustrated in Section 5. We take
advantage of this property in order to restrict the num-
ber of possible tempo hypotheses Φ̇k in the state space
of the model. To this end, the autocorrelation function
(ACF) of the beat activation function P (b) is computed,
and the highest peak at tempi smaller than 500 bpm is de-
termined. This peak serves as an initial tempo hypothesis

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 265



T0, and we define Tmin=0.4∗T0 and Tmax=2.2∗T0, in or-
der to include half and double tempo as potential tempo
hypotheses into the search space. Then we determine the
peaks of the ACF in that range, and if their number is
higher than 5, we choose the 5 highest peaks only. This
way we obtain Nhyp tempo hypotheses, covering T0, its
half and double value (in case the ACF has peaks at these
values), as well as possible secondary tempo hypotheses.
These peaks are then used to determine the number of po-
sition variables at these tempi according to (2). In order
to allow for tempo changes around these modes, we in-
clude for a mode Tn, n∈{1,...,Nhyp}, all tempi related to
M(Tn)−3,M(Tn)−2,...,M(Tn)+3. This means that for
each of the Nhyp tempo modes we use seven tempo sam-
ples with the maximum possible accuracy at a given anal-
ysis frame rate ∆, resulting in a total of at most 35 tempo
states (for Nhyp=5). Using more modes or more tempo
samples per mode did not result in higher accuracy on the
validation data. While this focused tempo space has not
been observed to lead to large improvements over a log-
arithmic tempo distribution between Tmin and Tmax, the
more important consequence is a more efficient inference.
As will be shown in Section 5, metrically simple pieces are
characterized by only 2 peaks in the ACF between Tmin

and Tmax, which leads to a reduction of the state space
size by more than 50% over the GMM-BT.

5. SYSTEM EVALUATION

5.1 Evaluation measures

We use three evaluation measures in this paper [4]. For F-
measure (0% to 100%), estimations are considered accu-
rate if they fall within a ±70 ms tolerance window around
annotations. Its value is measured as a function of the num-
ber of true and false positives and false negatives. AMLt
(0% to 100%) is a continuity-based method, where beats
are accurate when consecutive beats fall within tempo-
dependent tolerance windows around successive annota-
tions. Beat sequences are also accurate if the beats oc-
cur on the off-beat, or are at double or half the annotated
tempo. Finally, Information Gain (InfG) (0 bits to ap-
proximately 5.3 bits) is determined by calculating the tim-
ing errors between an annotation and all beat estimations
within a one-beat length window around the annotation.
Then, a beat error histogram is formed from the resulting
timing error sequence. A numerical score is derived by
measuring the K-L divergence between the observed error
histogram and the uniform case. This method gives a mea-
sure of how much information the beats provide about the
annotations.

Whereas the F-measure does not evaluate the con-
tinuity of an estimation, the AMLt and especially the
InfG measure penalize random deviations from a more
or less regular underlying beat pulse. Because it is not
straight-forward to apply such regularity constraints on the
downbeat level, downbeat evaluation is done using the F-
measure only, denoting the F-measure at the downbeat and
beat levels as F (d) and F (b), respectively.

Evaluation Measure F (d) F (b) AMLt InfG
CNN-PP 54.29 75.15 60.80 1.820
GMM-BT 63.84 77.00 74.92 1.942
CNN-BT 69.93 80.75 87.46 2.314
CNN-BT (Tann) 73.63 85.27 89.22 2.499

Table 3: Results on Indian music.

Evaluation Measure F (d) F (b) AMLt InfG
CNN-PP 79.30 93.59 88.98 3.216
GMM-BT 77.51 90.67 91.45 2.961
CNN-BT 89.63 93.74 93.89 3.244
CNN-BT (Tann) 90.67 94.81 94.25 3.240

Table 4: Results on Ballroom music.

5.2 Results

Results are presented separately for the Indian and the
Ballroom datasets in Tables 3 and 4, respectively. The first
two columns represent F-scores for downbeats (F (d)) and
beats (F (b)), followed by AMLt and InfG. We evaluated
CNNs with subsequent peak-picking on the network acti-
vations (CNN-PP) as explained in Section 3, the Bayesian
network from [11] using Spectral Flux in its observation
model (GMM-BT), and the Bayesian network that incor-
porates the novel observation model obtained from CNN
activations (CNN-BT). Bold numbers indicate significant
improvement of CNN-BT over CNN-PP, underlining in-
dicates significant improvement of CNN-BT over GMM-
BT. Paired-sample t-tests were performed with a 5% sig-
nificance level. Performing a statistical test over both cor-
pora reveals a significant improvement by CNN-BT over
CNN-PP for all measures, and for F (d) and AMLt over
GMM-BT. These results demonstrate that beat and down-
beat estimations obtained from a CNN can be further im-
proved using a Bayesian model that incorporates hypothe-
ses about metrical regularity and the dynamic development
of tempo. On the other hand, employing CNN activations
yields significant improvements over the Bayesian model
that incorporates hand-crafted features (Spectral Flux).

Figure 2 visualizes the improvement of CNN-BT over
CNN-PP by depicting the network outputs along with
reference annotations, and beat and downbeat estima-
tions from CNN-BT and CNN-PP. It is apparent that
the Bayesian network finds a consistent path through the
pieces that is supported by the network activations as well
as by the underlying regular metrical structure. Both fig-
ures depict examples of Carnatic Adi tāl.a, which has a
symmetric structure that caused tempo halving/doubling
errors when using spectral flux features as in GMM-
BT [8]. In Figure 2a, the spectrogram, especially in the first
two depicted cycles, is characterized by a similar melodic
progression that marks the cycle. The CNN is able to cap-
ture such regularities, leading to an improved performance.
In Figure 2b, the music provides no clear metrical cues in
the beginning, but the output of the CNN-BT can be seen
to be nicely synchronized from the third cycle on (at about
8 s), demonstrating the advantage of the regularity imposed
by the Bayesian network.
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(a) Indian music example 1
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(b) Indian music example 2

Figure 2: Input LLS features and network outputs for beat (upper curve) and downbeat (lower curve) predictions for two music
examples. Ground-truth positions as green vertical marks on top, peak-picking thresholds as red dotted lines, picked peaks from the
CNN-PP as blue circle markers, and final predictions by the Bayesian tracking (CNN-BT) as red vertical marks on the bottom.

Corpus Ballroom Carnatic Hindustani
Correct tempo (%) 97.1 100 81.8
ACF-peaks 2.67 3.60 4.15

Table 5: Some characteristics of the focused state space
in CNN-BT. The first row depicts the percentage of pieces
for which the true tempo was between Tmin=0.4∗T0 to
Tmax=2.2∗T0 that was selected using the autocorrelation
function (ACF) of P (b). The second row depicts the num-
ber of peaks in the ACF in the selected tempo range.

In Table 5, we depict some characteristics of the tempo
states that are chosen in the CNN-BT, as described in Sec-
tion 4.2. We depict the Carnatic and Hindustani musics
separately in order to illustrate differences. It can be seen
that the true tempo is almost always in the chosen range
from Tmin to Tmax for Ballroom and Carnatic music, but
drops to 81.8% for Hindustani music. Furthermore, the
number of peaks in the ACF of P (b) is lowest for the
Ballroom corpus, while the increased number for the Hin-
dustani music indicates an increased metrical complexity
for this style. Indeed, the performance values are gener-
ally lower for Hindustani musics than for Carnatic musics,
with, for instance, the downbeat F-measure F (d) being
0.76 for Carnatic, and 0.64 for Hindustani musics. This is
to some extent related to the extremely low tempi that oc-
cur in Hindustani music, which cause the incorrect tempo
ranges for Hindustani depicted in Table 5.

The last rows in Tables 3 and 4 depict the performance
that is achieved when the correct tempo Tann is given in
CNN-BT. To do this evaluation, we use 30 logarithmically-
spaced tempo coefficients in a range of ±20% around

Tann, in order to allow for gradual tempo changes, exclud-
ing, however, double and half tempo. For the Ballroom
corpus, only marginal improvement can be observed, with
none of the changes compared to the non-informed CNN-
BT case being significant. For the Indian data the improve-
ment is larger, however, again not significantly. This illus-
trates that even a perfect tempo estimation cannot further
improve the results. The reasons for this might be, espe-
cially for Hindustani music, the large variability within the
data due to the huge tempo ranges. The CNNs are not able
to track pieces at extreme slow tempi, due to their limited
temporal horizon of 5 seconds – slightly shorter than the
beat period in the slowest pieces. However, further increas-
ing this horizon was found to generally deteriorate the re-
sults, due to more network weights to learn with the same,
limited amount of training data.

6. DISCUSSION

In this paper, we have combined CNNs and Bayesian net-
works for the first time in the context of meter tracking.
Results clearly indicate the advantage of this combina-
tion that results from the flexible signal representations ob-
tained from CNNs with the knowledge of metrical progres-
sion incorporated into a Bayesian model. Furthermore, the
clearly accentuated peaks in the CNN activations enable us
to restrict the state space in the Bayesian model to certain
tempi, thus reducing computational complexity depending
on the metrical complexity of the musical signal. Limita-
tions of the approach can be seen in the ability to track very
long metrical structures in Hindustani music. To this end,
the incorporation of RNN will be evaluated in the future.
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ABSTRACT

Tempo estimation is a common task within the music infor-
mation retrieval community, but existing works are rarely
evaluated with datasets of music loops and the algorithms
are not tailored to this particular type of content. In addi-
tion to this, existing works on tempo estimation do not put
an emphasis on providing a confidence value that indicates
how reliable their tempo estimations are. In current mu-
sic creation contexts, it is common for users to search for
and use loops shared in online repositories. These loops
are typically not produced by professionals and lack anno-
tations. Hence, the existence of reliable tempo estimation
algorithms becomes necessary to enhance the reusability
of loops shared in such repositories. In this paper, we test
six existing tempo estimation algorithms against four mu-
sic loop datasets containing more than 35k loops. We also
propose a simple and computationally cheap confidence
measure that can be applied to any existing algorithm to
estimate the reliability of their tempo predictions when ap-
plied to music loops. We analyse the accuracy of the algo-
rithms in combination with our proposed confidence mea-
sure, and see that we can significantly improve the algo-
rithms’ performance when only considering music loops
with high estimated confidence.

1. INTRODUCTION

Tempo estimation is a topic that has received consider-
able attention within the music information retrieval (MIR)
community and has had a dedicated task in the Music In-
formation Retrieval Evaluation eXchange (MIREX) since
its first edition in 2005. Tempo estimation consists in the
automatic determination of the “rate of musical beats in
time” [10], that is to say, in the identification of the rate
at which periodicities occur in the audio signal that con-
vey a rhythmic sensation. Tempo is typically expressed in
beats per minute (BPM), and is a fundamental property to
characterise rhythm in music [13]. Applications of tempo
estimation include, just to name a few, music recommen-
dation, music remixing, music browsing, and beat-aware
audio analysis and effects.

c© Frederic Font and Xavier Serra. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Frederic Font and Xavier Serra. “Tempo Estimation for Music
Loops and a Simple Confidence Measure”, 17th International Society for
Music Information Retrieval Conference, 2016.

Our particular research is aimed at automatically anno-
tating user provided music loops hosted in online sound
sharing sites to enhance their potential reusability in music
creation contexts. We can define music loops as short mu-
sic fragments which can be repeated seamlessly to produce
an “endless” stream of music. In this context, BPM is an
important music property to annotate. The kind of music
loops we are targeting can include noisy and low quality
content, typically not created by professionals. This may
increase the difficulty of the tempo estimation task. Tak-
ing that into consideration, it is particularly relevant for
us to not only estimate the tempo of music loops, but to
also quantify how reliable an estimation is (i.e., to pro-
vide a confidence measure). Except for the works de-
scribed in [10, 14] (see below), tempo estimation has been
rarely evaluated with datasets of music loops, and we are
not aware of specific works describing algorithms that are
specifically tailored to this particular case.

In this paper we evaluate the accuracy of six state of
the art tempo estimation algorithms when used to annotate
four different music loop datasets, and propose a simple
and computationally cheap confidence measure that can
be used in combination with any of the existing methods.
The confidence measure we propose makes the assump-
tion that the audio signal has a steady tempo thorough its
whole duration. While this assumption can be safely made
in the case of music loops, it does not necessarily hold for
other types of music content such as music pieces. Hence,
the applicability of the confidence measure we propose is
restricted to music loops. Using our confidence measure
in combination with existing tempo estimation algorithms,
we can automatically annotate big datasets of music loops
and reach accuracies above 90% when only considering
content with high BPM estimation confidence. Such reli-
able annotations can allow music production systems to,
for example, present relevant loops to users according to
the BPM of a music composition, not only by showing
loops with the same BPM but also by automatically trans-
forming loops to match a target BPM. This effectively in-
creases the reusability of user provided music loops in real-
world music creation contexts.

The rest of the paper is organised as follows. In Sec. 2
we give a quick overview of related work about tempo es-
timation. In Sec. 3 we describe the confidence measure
that we propose. Sections 4 and 5 describe the evaluation
methodology and show the results of our work, respec-
tively. We end this paper with some conclusions in Sec. 6.

269



In the interest of research reproducibility, the source code
and one of the datasets used in this paper have been made
available online in a public source code repository 1 .

2. RELATED WORK

A significant number of works within the MIR research
field have been focused on the task of tempo estimation.
In general, tempo estimation algorithms are based on de-
tecting onsets in an audio signal, either as a continuous
function [3, 14, 15] or as discrete events in time [5]. Then,
a dominant period is extracted from the onsets either by
analysing inter-onset intervals, using autocorrelation [11]
or resonating filters [12]. Some approaches perform more
complex operations such as analysing periodicities in dif-
ferent frequency bands [8, 19], performing source separa-
tion [6,9], or using neural networks to learn features to use
instead of usual onset information [1].

While comparative studies of tempo estimation algo-
rithms have been carried out in the past [10, 21], we are
not aware of any study solely devoted to the evaluation of
tempo estimation algorithms for music loops. One of the
typical datasets that some of the existing tempo estima-
tion works use for evaluation is the ISMIR 2004 dataset re-
leased for the tempo induction contest of that year 2 . This
dataset is divided into three subsets, one of them com-
posed of 2k audio loops. Gouyon et. al. [10] published
the evaluation results for the contest considering the dif-
ferent subsets of the dataset, but no significant differences
are reported regarding the accuracies of the tempo esti-
mation algorithms with the loops subset compared to the
other subsets. To the best of our knowledge, the only other
work that uses the loops subset of the ISMIR 2004 dataset
and reports its accuracy separated form other datasets is by
Oliveira et. al. [14]. The authors report lower estimation
accuracies when evaluating with the loops dataset and at-
tribute this to the fact that loops are typically shorter than
the other audio signals (in many cases shorter than 5 sec-
onds).

Surprisingly enough, there has not been much research
on confidence measures for tempo estimation algorithms.
Except for the work by Zapata et al. [22] in which a con-
fidence measure that can be used for tempo estimation is
described (see below), we are not aware of other works di-
rectly targeted at this issue. Among these few, Grosche
and Müller [11] describe a confidence measure for their
tempo estimation algorithm based on the amplitude of a
predominant local pulse curve. By analysing tempo esti-
mation accuracy and disregarding the regions of the analy-
sis with bad confidence, the overall accuracy significantly
increases. Alternatively, Percival and Tzanetakis [15] sug-
gest that beat strength [18] can be used to derive confidence
for tempo candidates, but no further experiments are car-
ried out to asses its impact on the accuracy of tempo esti-
mation. Finally, a very recent work by Quinton et. al. [16]
proposes the use of rhythmogram entropy as a measure of
reliability for a number of rhythm features, and report a

1 https://github.com/ffont/ismir2016
2 http://mtg.upf.edu/ismir2004/contest/tempoContest

statistical correlation between measured entropy and the
resulting accuracies for different tasks.

3. CONFIDENCE MEASURE

Assuming that we obtain a BPM estimate for a given au-
dio signal, the confidence measure that we propose is based
on comparing the duration of the whole audio signal with a
multiple of the duration of a single beat according to the es-
timated BPM. If the actual duration of the signal is close to
a multiple of the duration of a single beat, we hypothesise
that the BPM estimation is reliable. The first thing we do to
compute the confidence measure is to round the estimated
tempo value to its nearest integer. The reasoning behind
this is that it is very unlikely that loops are created with
less than 1 BPM resolution tempo (see Sec. 4.1), and thus
we consider the best BPM estimate of a tempo estimation
algorithm to be its nearest integer. Given the sample rate
SR of an audio signal and its estimated tempo BPMe, we
can estimate the duration (or length) of an individual beat
in number of samples lb as

lb =
60 · SR
BPMe

.

Then, potential durations for the audio signal can be com-
puted as multiples of the individual beat duration, L[n] =
n · lb, where n ∈ Z+. In our computation, we restrict n
to the range 1 ≤ n ≤ 128. This is decided so that the
range can include loops that last from only 1 beat to 128
beats, which would correspond to a maximum of 32 bars
in 4/4 meter. In practice, what we need here is a number
big enough such that we won’t find loops longer than it.
Given L, what we need to see at this point is if any of its
elements closely matches the actual length of the original
audio signal. To do that, we take the actual length of the
audio signal la (in number of samples), compare it with all
elements of L and keep the minimum difference found:

∆l = min{|L[n]− la| : n ≤ 128}.

A value of ∆l near 0 means that there is a close match
between one of the potential lengths and the actual length
of the audio signal. Having computed ∆l, we finally define
our confidence measure as

confidence(L, la) =

{
0 if ∆l > λ

1− ∆l
λ otherwise

,

where λ is a parameter set to half the duration of a single
beat (λ = 0.5 · lb). In this way, if la exactly matches one
of the multiples of lb, the confidence will be 1. If ∆l is
as long as half the duration between beats, the confidence
will be 0 (see Fig. 1, top).

The reasoning behind this simple confidence measure is
that it is very unlikely that, only by chance, an audio sig-
nal has a duration which closely matches a multiple of the
beat duration for a given estimated BPM. This means that
we assume that there is a relation between the duration of
the signal and its BPM, and therefore our proposed confi-
dence will fail if the audio signal contains silence (either at
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Figure 1. Visualisation of confidence computation output according to BPM estimation and signal duration (green curves).
The top figure shows a loop whose annotated tempo is 140 BPM but the predicted tempo is 119 BPM. The duration of the
signal la does not closely match any multiple of lb (dashed vertical lines), and the output confidence is 0.59 (i.e., 1− ∆l

λ ).
The figure at the bottom shows a loop that contains silence at the beginning and at the end, and for which tempo has
been correctly estimated as being 91 BPM. The yellow curve represents its envelope and the vertical dashed red lines the
estimated effective start and end points. Note that la2 closely matches a multiple of lb, resulting in a confidence of 0.97. The
output confidence computed with la, la0 and la1 produces lower values.

the beginning or at the end) which is not part of the loop
itself (i.e., the loop is not accurately cut). To account for
this potential problem, we estimate the duration that the
audio signal would have if we removed silence at the be-
ginning, at the end, or both at the beginning and at the end.
We take the envelope of the original audio 3 and consider
the effective starting point of the loop as being the point in
time ts where the envelope amplitude raises above 5% of
the maximum. Similarly, we consider the effective end te
at the last point where the envelope goes below the 5% of
the maximum amplitude (or at the end of the audio signal if
envelope is still above 5%). Taking ts, te, and la (the orig-
inal signal length), we can then compute three alternative
estimates for the duration of the loop (la0 , la1 and la2 ) by i)
disregarding silence at the beginning (la0 = la− ts), ii) dis-
regarding silence at the end (la1 = te), and iii) disregarding
silence both at the beginning and at the end (la2 = te − ts).
Then, we repeat the previously described confidence com-
putation with the three extra duration estimates la0 , la1 and
la2 . Note that these will produce meaningful results in cases
where the original loop contains silence which is not rele-
vant from a musical point of view, but they will not result in
meaningful confidence values if the loop contains silence
at the beginning or at the end which is in fact part of the
loop (i.e., which is needed for it seamless repetition). Our
final confidence value is taken as the maximum confidence
obtained when using any of la, la0 , la1 and la2 estimated sig-
nal durations (see Fig. 1, bottom).

Because the confidence measure that we propose only
relies on a BPM estimate and the duration of the audio sig-
nal, it can be used in combination with any existing tempo
estimation algorithm. Also, it is computationally cheap to
compute as the most complex operation it requires is the
envelope computation. However, this confidence measure

3 We use the Envelope algorithm from the open-source audio analysis
library Essentia [2], which applies a non-symmetric lowpass filter and
rectifies the signal.

should not be applied to content other than music loops as
it only produces meaningful results under the assumption
that tempo is completely steady across the whole signal.

4. EVALUATION

4.1 Datasets

Our evaluation is conducted using 4 different datasets col-
lected from different sources and containing a total of more
than 35k loops. Table 1 shows basic statistics of each
dataset. We now briefly describe each of the datasets:

• FSL4: This dataset contains user-contributed loops
uploaded to Freesound [7]. It has been built in-
house by searching Freesound for sounds with the
query terms loop and bpm, and then automatically
parsing the returned sound filenames, tags and tex-
tual descriptions to identify tempo annotations made
by users. For example, a sound containing the tag
120bpm is considered to have a ground truth of 120
BPM. Detailed instructions on how this dataset was
created and on how can be reproduced are found in
the source code repository (see Sec. 1).

• APPL: This dataset is composed of the audio loops
bundled in Apple’s Logic Pro 4 music production
software. We parsed the metadata embedded in the
audio files using source code available in a public
repository 5 , and extracted in this way tempo anno-
tations for all the loops.

• MIXL: This dataset contains all the loops bundled
with Acoustica’s Mixcraft 7 music production soft-
ware 6 . Tempo annotations are provided in its loop

4 http://apple.com/logic-pro
5 http://github.com/jhorology/apple-loops-meta-reader
6 http://acoustica.com/mixcraft
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Dataset N instances Total duration Mean loop duration Duration range Tempo range Source
FSL4 3,949 8h 22m 7.63s 0.15s - 30.00s 32 - 300 Freesound
APPL 4,611 9h 34m 7.47s 1.32s - 40.05s 53 - 140 Logic Pro
MIXL 5,451 14h 11m 9.37s 0.32s - 110.77s 55 - 220 Mixcraft 7
LOOP 21,226 50h 30m 8.57s 0.26s - 129.02s 40 - 300 Looperman

Table 1. Basic statistics about the datasets used for evaluation. Additional information and plots can be found in the paper’s
source code repository (see Sec. 1).

browser and can be easily exported into a machine-
readable format.

• LOOP: This dataset is composed of loops down-
loaded from Looperman 7 , an online loop sharing
community. It was previously used for research pur-
poses in [17]. Tempo annotations are available as
metadata provided by the site.

Because of the nature of how the datasets were col-
lected, we found that some of the loops do not have a BPM
annotation that we can use as ground truth or have a BPM
annotation which is outside what could be intuitively con-
sidered a reasonable tempo range. To avoid inconsistencies
with the annotations, we clean the datasets by removing
instances with no BPM annotation or with a BPM anno-
tation outside a range of [25, 300]. Interestingly, we see
that all the loops in our datasets are annotated with inte-
ger tempo values, meaning that it is not common for music
loops to be produced with tempo values with less than 1
BPM resolution. For analysis purposes, all audio content
from the dataset is converted to linear PCM mono signals
with 44100 Hz sampling frequency and 16 bit resolution.

4.2 Tempo estimation algorithms

In our evaluation we compare six existing tempo estima-
tion algorithms. These have been chosen based on their
availability and to represent different approaches to the
tempo estimation task. We now briefly describe each of
the algorithms, further details on how the algorithms work
can be found in corresponding papers.

• Gkiokas12: Gkiokas et. al. [9] propose a tempo
estimation algorithm based on the separation of the
audio signal into its percussive and harmonic com-
ponents. Periodicity analysis is carried out by con-
volving extracted features (filterbank energies for
the percussive component and chroma features for
the harmonic component) with a bank of resonators.
Output tempo value is computed by applying heuris-
tics based on metrical relations knowledge (meter,
tactus, tatum) to the periodicity vector. We use a
Matlab implementation of the algorithm kindly pro-
vided to us by the authors.

• Degara12: Degara et. al. [4] describe a probabilis-
tic approach for beat tracking based on inter-onset-
interval times and a salience measure for individual

7 http://looperman.com

beat estimates. This method builds from previous
probabilistic beat tracking methods such as Klapuri
et. al. [12]. We use the implementation provided in
Essentia, where final estimated tempo is given based
on the mean of estimated beat intervals (see Rhyth-
mExtractor2013 algorithm 8 ).

• Zapata14: Zapata et. al. [20] propose a beat track-
ing algorithm which estimates beat positions based
on computing the agreement of alternative outputs of
a single model for beat tracking using different sets
of input features (i.e., using a number of onset de-
tection functions based on different audio features).
Again, we use the implementation provided in Es-
sentia, which outputs a single BPM estimate based
on estimated beat intervals.

• Percival14: Percival and Tzanetakis [15] describe a
tempo estimation algorithm optimised for low com-
putational complexity that combines several ideas
from existing tempo estimation algorithms and sim-
plifies their steps. The algorithm computes an onset
strength function based on filtered spectral flux from
which tempo lag candidates are estimated using au-
tocorrelation. The most prominent tempo lag is se-
lected and a simple decision tree algorithm is used
to chose the octave of the final BPM output. We use
a Python implementation of the algorithm provided
by the authors in their original paper 9 .

• Böck15: Böck et. al. [1] propose a novel tempo es-
timation algorithm based on a recurrent neural net-
work that learn an intermediate beat-level represen-
tation of the audio signal which is then feed to a bank
of resonating comb filters to estimate the dominant
tempo. This algorithm got the highest score in IS-
MIR 2015 Audio Tempo Estimation task. An im-
plementation by the authors is included in the open-
source Madmom audio signal processing library 10 .

• RekBox: We also include an algorithm from a com-
mercial DJ software, Rekordbox 11 . Details on how
the algorithm works are not revealed, but a freely
downloadable application is provided that can anal-
yse a music collection and export the results in a
machine-readable format.

8 http://essentia.upf.edu/documentation/algorithms reference.html
9 http://opihi.cs.uvic.ca/tempo

10 http://github.com/CPJKU/madmom
11 http://rekordbox.com
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Figure 2. Overall accuracy for the six tempo estimation algorithms tested against the four datasets.

4.3 Methodology

For testing the above algorithms against the four collected
datasets we follow standard practice and adopt the method-
ology described by Gouyon et al. [10]. In addition to the
standard Accuracy 1 and Accuracy 2 measures 12 , we add
an extra measure that we call Accuracy 1e and that repre-
sents the percentage of instances whose estimated BPM is
exactly the same as the ground truth after rounding the esti-
mated BPM to the nearest integer. Accuracy 1e is therefore
more strict than Accuracy 1. The reason why we added this
extra accuracy measure is that, imagining a music creation
context where loops can be queried in a database, it is of
special relevance to get returned instances whose BPM ex-
actly matches that specified as target.

Besides the overall accuracy measurements, we are
also interested in observing how accuracy varies accord-
ing to the confidence values that we estimate (Sec. 3). We
can intuitively imagine that if we remove instances from
our datasets whose estimated BPM confidence is below
a certain threshold, the overall accuracy results will in-
crease. However, the higher we set the minimum confi-
dence threshold, the smaller the size of filtered dataset will
be. Hence, we want to quantify the relation between the
overall accuracy and the total number of music loops that
remain in a dataset after filtering by minimum confidence.
To do that, given one of the aforementioned accuracy mea-
sures, we can define a minimum confidence threshold γ
and a function A(γ) that represents overall BPM estima-
tion accuracy when only evaluating loop instances whose
estimated confidence value is above γ for a given dataset
and tempo estimation algorithm. Similarly, we can de-
fine another function N(γ) which returns the percentage
of instances remaining in a dataset after filtering out those
whose estimated confidence value (for a given tempo esti-
mation method) is below γ. A(γ) and N(γ) can be under-
stood as standard precision and recall curves, and therefore
we can define a combined score measure S(γ) doing the
analogy with an f-measure computation:

12 Accuracy 1 is the percentage of instances whose estimated BPM is
within 4% of the annotated ground truth. Accuracy 2 is the percentage of
instances whose estimated BPM is within a 4% of 1

3
, 1
2

, 1, 2, or 3 times
the ground truth BPM.

S(γ) = 2 · A(γ) ·N(γ)

A(γ) +N(γ)
.

An overall score for a given dataset, tempo estimation
algorithm and accuracy measure can thus be given by tak-
ing the mean of S(γ), S̄.

5. RESULTS

5.1 Overall accuracy

Overall accuracy results show that Percival14 obtains the
highest accuracy scores for all accuracy measures and all
datasets except for the LOOP dataset, in which highest
score for Accuracy 1 is obtained by Zapata14 (Fig. 2).
Considering the data from all datasets at once, mean accu-
racy values for Percival14 range from 47% (Accuracy 1e)
to 73% (Accuracy 2), with an average increase of 7% accu-
racy when compared with the second best-scored method.
With a few exceptions, pairwise accuracy differences be-
tween Percival14 and the second best-scored method in
all datasets and accuracy measures are statistically signif-
icant using McNemar’s test and a significance value of
α = 0.01 (i.e., p � 0.01). We also observe that accu-
racies for the APPL dataset tend to be higher than for other
datasets. This can be explained by the fact that APPL con-
tains professionally created and curated loops, while the
other datasets contain user contributed content, not neces-
sarily created by professionals (Mixcraft’s loop library also
contains content gathered from online repositories).

5.2 Accuracy vs confidence measure

Fig. 3 shows the accuracy of the three best-scoring tempo
estimation algorithms and the number of instances remain-
ing in the dataset when filtering by different values of a
confidence threshold γ (Sec. 4.3). As we expected, we
can see how accuracy increases with γ but the number
of instances decreases. Interestingly, we observe that the
number of instances decays later for estimations performed
with Percival14 algorithm than for the other algorithms.
This reflects the fact that Percival14 produces better BPM
estimates. Filtering by the confidence measure, a potential
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Figure 3. Accuracy vs confidence measure for FSL4
dataset. Lower bounds of the filled areas correspond to
Accuracy 1e, while upper bounds correspond to Accuracy
2. Solid lines represent the number of instances remaining
in the dataset.

user searching for loops in a dataset could define a mini-
mum threshold to get more accurate results at the expense
of getting less loops returned. For instance, if we set a hard
confidence threshold of γ = 0.95 (vertical line in Fig. 3),
we find that the accuracies for Percival14 method range,
on average, from 67% (Accuracy 1e) to 92% (Accuracy 2)
while preserving an average of 52% of the instances. In-
terestingly enough, we observe that when setting that hard
threshold, reported RekBox accuracies outperform these of
Percival14 in all datasets, with an average increase ranging
from 2% for Accuracy 2 to 14% for Accuracy 1e (all sta-
tistically significant with p � 0.01). We attribute this to
the fact that RekBox seems to have a built-in confidence
measure thresholding step in which the algorithm outputs
0 BPM when the analysis does not meet certain confidence
requirements. Therefore, once filtering the datasets by γ
(even with small values), all those instances whose BPM
estimation is 0 BPM get discarded. Nevertheless, it is
also important to note that filtering with the hard threshold,
RekBox only preserves an average of 31% of the instances
(lower than the 52% reported above by Percival14).

If we look at the combined accuracy and confidence
measure S̄ described in Sec. 4.3, we again find that Perci-
val14 obtains the best score in all datasets and for all accu-
racy measures (i.e. for A(γ) computed with Accuracy 1e,
Accuracy 1 or Accuracy 2). This means that Percival14 of-
fers the overall best balance between estimation accuracy
and number of preserved instances in the dataset when fil-
tering by a minimum confidence threshold.

5.3 Comparison of confidence measures

Zapata et. al. [22] propose a confidence measure that can
be used for tempo estimation and that is based on comput-
ing the mutual agreement between an ensemble of tempo
estimation algorithms. To make this confidence measure
numerically comparable to the one we propose, we nor-
malise the confidence output of Zapata et. al. to take val-
ues from 0 to 1. Similarly to Fig. 3, we plot the estimation
accuracy and the number of remaining instances as a func-
tion of a minimum confidence threshold γ (Fig. 4). We ob-
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Figure 4. Comparison of our proposed confidence mea-
sure with the confidence measure proposed in [22] for
FSL4 dataset and Zapata14 tempo estimation algorithm.

serve that Zapata’s confidence measure allows to achieve
accuracies which are around 15% higher than when us-
ing our confidence. However, the number of remaining
instances in the dataset is drastically reduced, and accu-
racy values for γ > 0.75 become inconsistent. Looking at
the S̄ score, we find that Zapata14 in combination with our
confidence measure gets better results than when using the
original measure, with an average S̄ increase of 17%, 29%
and 31% (for the three accuracy measures respectively).
This indicates that our confidence measure is able to better
maximise accuracy and number of remaining instances.

6. CONCLUSION

In this paper paper we have compared several tempo esti-
mation algorithms using four datasets of music loops. We
also described a simple confidence measure for tempo es-
timation algorithms and proposed a methodology for eval-
uating the relation between estimation accuracy and con-
fidence measure. This methodology can also be applied
to other MIR tasks, and we believe it encourages future
research to put more emphasis on confidence measures.
We found that by setting a high enough minimum confi-
dence threshold, we can obtain reasonably high tempo es-
timation accuracies while preserving half of the instances
in a dataset. However, these results are still far from be-
ing optimal: if we only consider exact BPM estimations
(Accuracy 1e), the maximum accuracies we obtain are still
generally lower than 70%. We foresee two complementary
ways of improving these results by i) adapting tempo esti-
mation algorithms to the case of music loops (e.g. taking
better advantage of tempo steadiness and expected signal
duration), and ii) developing more advanced confidence
measures that take into account other properties of loops
such as the beat strength or the rate of onsets. Overall, the
work we present here contributes to the improvement of
the reusability of unstructured music loop repositories.
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[1] Sebastian Böck, Florian Krebs, and Gerhard Widmer.
Accurate Tempo Estimation based on Recurrent Neu-
ral Networks and Resonating Comb Filters. In Proc. of
the Int. Conf. on Music Information Retrieval (ISMIR),
2015.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez,
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ABSTRACT

This paper addresses the question how music information
retrieval techniques originally developed to process audio
recordings can be adapted for the analysis of correspond-
ing brain activity data. In particular, we conducted a case
study applying beat tracking techniques to extract the
tempo from electroencephalography (EEG) recordings
obtained from people listening to music stimuli. We point
out similarities and differences in processing audio and
EEG data and show to which extent the tempo can be
successfully extracted from EEG signals. Furthermore, we
demonstrate how the tempo extraction from EEG signals
can be stabilized by applying different fusion approaches
on the mid-level tempogram features.

1 Introduction

Recent findings in cognitive neuroscience suggest that
it is possible to track a listener’s attention to different
speakers or music signals [1,24], or to identify beat-related
or rhythmic features in electroencephalography (EEG)
recordings 1 of brain activity during music perception. In
particular, it has been shown that oscillatory neural activity
is sensitive to accented tones in a rhythmic sequence [19].
Neural oscillations entrain (synchronize) to rhythmic se-
quences [2,14] and increase in anticipation of strong tones
in a non-isochronous (not evenly spaced), rhythmic se-
quence [3, 4, 10]. When subjects hear rhythmic sequences,
the magnitude of the oscillations changes for frequencies
related to the metrical structure of the rhythm [16, 17].

EEG studies [5] have further shown that perturbations of
the rhythmic pattern lead to distinguishable electrophysio-
logical responses—commonly referred to as event-related
potentials (ERPs). This effect appears to be independent
of the listener’s level of musical proficiency. Furthermore,
[26] showed that accented (louder) beats imagined by a lis-
tener on top of a steady metronome beat can be recognized

1 Electroencephalography (EEG) is a non-invasive brain imaging
technique that relies on electrodes placed on the scalp to measure the
electrical activity of the brain. A recent review of neuroimaging methods
for music information retrieval (MIR) that also includes a comparison of
EEG with different approaches is given in [11].

© Sebastian Stober, Thomas Prätzlich, Meinard Müller.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Sebastian Stober, Thomas Prätzlich,
Meinard Müller. “Brain Beats: Tempo Extraction from EEG Data”, 17th
International Society for Music Information Retrieval Conference, 2016.
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Measurement: EEG 

Figure 1. Question: Can we extract the tempo of a music
recording from brain activity data (EEG) recorded during
listening? The red vertical lines in the audio waveform
(top) and the EEG signal (bottom) mark the beat positions.

from ERPs. EEG signals have also been used to distinguish
perceived rhythmic stimuli [21] with convolutional neural
networks. First preliminary results using autocorrelation
for tempo estimation from the EEG signal during percep-
tion and imagination of music have been reported in [20].

This raises the question whether MIR techniques origi-
nally developed to detect beats and extract the tempo from
music recordings could also be used for the analysis of cor-
responding EEG signals. One could argue that as the brain
processes the perceived music, it generates a transformed
representation which is captured by the EEG electrodes.
Hence, the recorded EEG signal could in principle be
seen as a mid-level representation of the original music
piece that has been heavily distorted by two consecutive
black-box filters—the brain and the EEG equipment.

This transformation involves and intermingles with several
other brain processes unrelated to music perception and is
limited by the capabilities of the recording equipment that
can only measure cortical brain activity (close to the scalp).
It further introduces artifacts caused by electrical noise or
the participant’s movements such as eye blinks. Figura-
tively speaking, this could be compared to a cocktail-party
situation where the listener is not in the same room as the
speakers but in the next room separated by a thick wall.

In this paper, we address the question whether well-
established tempo and beat tracking methods, originally
developed for MIR, can be used to recover tempo infor-
mation from EEG data recorded from people listening to
music, see Figure 1. In the remainder of this paper, we
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Figure 2. Tempogram computation for music signals.
(a) Waveform signal. (b) Novelty curve. (c) Tempogram
representation.

first briefly describe the EEG dataset (Section 2). As a first
contribution, we explain how an MIR technique for tempo
extraction can be applied on EEG signals (Section 3).
Then, in Section 4, we evaluate the tempo extraction on the
EEG signals by comparing it to the tempo extracted from
the corresponding audio signals. As another contribution,
we show that the tempo extraction on EEG signals can
be stabilized by applying different fusion approaches.
Finally, we conclude the paper with a summary and
indication of possible research directions (Section 5).

2 Recording Setup and Dataset

In this study, we use a subset of the OpenMIIR
dataset [22]—a public domain dataset of EEG recordings
taken during music perception and imagination. 2 For our
study, we use only the music perception EEG data from
the five participants p ∈ P := {09,11,12,13,14} 3 who
listened to twelve short music stimuli—each 7s to 16s
long. These stimuli were selected from well-known pieces
of different genres. They span several musical dimensions
such as meter, tempo, instrumentation (ranging from piano
to orchestra) and the presence of lyrics (singing or no
singing present), see Table 1. All stimuli were normalized
in volume and kept similar in length, while ensuring that
they all contained complete musical phrases starting from
the beginning of the piece. The EEG recording sessions
consisted of five trials t ∈ T := {1, ... , 5} in which all
stimuli s ∈ S := {01,02,03,04,11,12,13,14,21,22,23,24}
were presented in randomized order. This results in a
total of |S| · |T | · |P | = 12 · 5 · 5 = 300 trials for the five

2 The dataset is available at https://github.com/sstober/
openmiir

3 The remaining participants in the dataset had some of the stimuli
presented at a slightly different tempo (c.f. [22]), which would not allow
our fusion approaches discussed later in Section 4.
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Figure 3. Tempogram computation for EEG signals. (a)
EEG signal. (b) Local average curve. (c) Normalized EEG
signal (used as novelty curve). (d) Tempogram representa-
tion.

participants, |S| · |T |=12 ·5=60 trials per particpant, and
|P |·|T |=25 trials per stimulus.

EEG was recorded with a BioSemi Active-Two system us-
ing 64+2 EEG channels at 512 Hz. Horizontal and vertical
electrooculography (EOG) channels were used to record
eye movements. As described in [22], EEG pre-processing
comprised the removal and interpolation of bad channels
as well as the reduction of eye blink artifacts by removing
highly correlated components computed using extended
Infomax independent component analysis (ICA) [12] with
the MNE-python toolbox [6].

3 Computation of Tempo Information

In this section, we describe how tempo information can be
extracted both from music and EEG signals. To this end,
we transform a signal into a tempogram T : R × R>0 →
R≥0 which is a time-tempo representation of a signal. A
tempogram reveals periodicities in a given signal, similar
to a spectrogram. The value T (t,τ) indicates how predom-
inant a tempo value τ ∈R>0 (measured in BPM) is at time
position t∈R (measured in seconds) [15, Chapter 14].

In the following, we provide a basic description of the
tempogram extraction for music recordings (Section 3.1)
and EEG signals (Section 3.2). For algorithmic details,

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 277



we refer to the descriptions in [8, 15]. To compute the
tempograms for the experiments in this work, we used
the implementations from the Tempogram Toolbox. 4

Furthermore, we describe how the tempo information of
a tempogram can be aggregated into a tempo histogram
similar to [25] from which a global tempo value can be
extracted (Section 3.3).

3.1 Tempogram for Music Audio Signals

To compute a tempogram, a given music audio signal is
first transformed into a novelty curve capturing note onset
information. In the following, we use a novelty curve
computed as the positive part of a spectral flux, see [8].
Figure 2a shows the waveform of an audio stimulus, which
begins with a set of cue clicks (in beats) followed by a short
music excerpt of the same tempo. In Figure 2b, the novelty
curve extracted from the waveform is shown. The onsets of
the cue clicks are clearly reflected by peaks in the novelty
curve. For the subsequent music excerpt, one can see that
the peaks are similarly spaced as the cue clicks. However,
there are some additional peaks in the music excerpt that
correspond to additional notes or noise. Especially for mu-
sic with soft onsets, the novelty curve may contain some
noise in the peak structures. As for the tempo extraction,
we further transform the novelty curve into an audio tem-
pogram that reveals how dominant different tempi are at a
given time point in the audio signal. In this study, we use a
tempogram computed by short-term Fourier analysis of the
novelty curve with a tempo window of 8 seconds, see [8]
for details. The frequency axis (given in Hz) is trans-
formed into a tempo axis (given in BPM). In Figure 2c, the
audio tempogram of the example is shown, which reveals a
predominant tempo of 160 BPM throughout the recording.

3.2 Tempogram for EEG Signals

In this section, we describe how we extract a tempogram
from EEG signals that were measured when participants
listened to a music stimulus. In principle, we use a similar
approach for the tempo extraction from EEG signals as for
the music recordings.

First, we aggregate the 64 EEG channels into one signal.
Note that there is a lot of redundancy in these channels.
This redundancy can be exploited to improve the signal-
to-noise ratio. In the following, we use the channel aggre-
gation filter shown in Figure 4. It was learned as part of a
convolutional neural network (CNN) during a previous ex-
periment attempting to recognize the stimuli from the EEG
recordings [23]. In [23], a technique called “similarity-
constraint encoding” (SCE) was applied that is motivated
by earlier work on learning similarity measures from rela-
tive similarity constraints as introduced in [18]. The CNN

4 The Tempogram Toolbox contains MATLAB implementa-
tions for extracting various types of tempo and pulse related au-
dio representations [9] A free implementation can be obtained at
https://www.audiolabs-erlangen.de/resources/MIR/
tempogramtoolbox

Figure 4. Topographic visualization of the SCE-trained
channel aggregation filter used to compute a single signal
from the 64 EEG channels (indicated by black dots). The
filter consists of a weighted sum with the respective chan-
nel weights (shown in a color-coded fashion) and a sub-
sequent application of the tanh which results in an output
range of [−1,1].

was trained using triplets of trials consisting of a reference
trial, a paired trial from the same class (i.e., the same
stimulus) and a third trial from a different class. For each
triplet, the network had to predict which trial belongs to the
same class as the reference trial. This way, it learned chan-
nel aggregation weights that produce signals that are most
similar for trials belonging to the same class. In our earlier
experiments, we found that the resulting aggregated EEG
signals capture important characteristics of the music stim-
uli such as downbeats. We hypothesized that the learned
filter from [23] could also be useful in our tempo extraction
scenario, even though it is a very different task. 5

Figure 3a shows an example of an aggregated EEG signal.
From the aggregated EEG signal, we then compute a
novelty curve. Here, opposed to the novelty computation
for the audio signal, we assume that the beat periodicities
we want to measure are already present in the time-domain
EEG signal. We therefore interpret the EEG signal as a
kind of novelty curve. As pre-processing, we normalize
the signal by subtracting a moving average curve, see
Figure 3b. This ensures that the signal is centered around
zero and low frequent components of the signal are
attenuated. The resulting signal (Figure 3c) is then used
as a novelty curve to compute an EEG tempogram that
reveals how dominant different tempi are at a given
time point in the EEG signal (see Figure 3d). Note that,
compared to the audio novelty curve, the EEG novelty
curve is much nosier. As a result, there is more noise in
the EEG tempogram compared to the audio tempogram,
making it hard to determine a predominant global tempo.

3.3 Tempo Histograms

In this section, we explain how we extract a single tempo
value from the audio and EEG tempograms. First, we
aggregate the time-tempo information over the time by

5 We compared the tempo extraction on the SCE-trained channel ag-
gregation with simply averaging the raw data across channels and found
that the tempo extraction on the raw EEG data often performed roughly
10% points worse and was only on par with SCE in the best cases.
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Figure 5. (a) Tempogram for the music signal from Fig-
ure 2 and (b) resulting tempo histogram. (c) Tempogram
for EEG signal from Figure 3 and (d) resulting tempo his-
togram.

computing a tempo histogram H : R>0 → R≥0 from the
tempogram (similar to [25]). A value H(τ) in the tempo
histogram indicates how present a certain tempo τ is
within the entire signal. In Figure 5, a tempogram for a
music recording and an EEG signal are shown along with
their respective tempo histograms. In the audio tempo
histogram, the highest peak at τ = 159 BPM indicates the
correct tempo of the music recording. The tempogram for
the EEG data is much noisier, where it is hard to identify
a predominant tempo from the tempogram. In the tempo
histogram, however, the highest peak in the example corre-
sponds to a tempo of 158 BPM, which is nearly the same as
the main tempo obtained from the audio tempo histogram.

4 Evaluation

In this section, we report on our experiments to show to
which extent the tempo extraction for the audio signals
and the EEG signals are related. In the following, Hs,p,t

denotes to the tempo histogram stemming from the audio
stimulus s∈S, participant p∈P , and trial t∈T (see Sec-
tion 2). An overview of the stimuli is given in Table 1. For
all experiments, we used a tempo window of 8 seconds,
see [7]. Furthermore, we applied a moving average filter on
the EEG data of 0.5 seconds. In Section 4.1, we introduce
our evaluation measures and discuss quantitative results for
different tempo extraction strategies. Then, in Section 4.2,
to better understand the benefits and limitations of our ap-
proach, we look at some representative examples for tem-
pograms and tempo histograms across the dataset.

4.1 Quantitative Results

To determine the tempo a of a given audio stimulus,
we consider the highest peak in the respective audio
tempo histogram Haudio, see Table 1. 6 The EEG tempo

6 The OpenMIIR dataset also provides ground-truth tempi in the meta-
data. Except for stimulus 21 with a difference of 4 BPM, our computed

Table 1. Information about the tempo, meter and length of
the stimuli (with cue clicks) used in this study. Note that
stimuli 1–4 and 11–14 are different versions of the same
song with and without lyrics.

ID Name Meter Length Tempo
with cue [BPM]

1 Chim Chim Cheree (lyrics) 3/4 14.9s 213
2 Take Me Out to the Ballgame (lyrics) 3/4 9.5s 188
3 Jingle Bells (lyrics) 4/4 12.0s 199
4 Mary Had a Little Lamb (lyrics) 4/4 14.6s 159

11 Chim Chim Cheree 3/4 15.1s 213
12 Take Me Out to the Ballgame 3/4 9.6s 188
13 Jingle Bells 4/4 11.3s 201
14 Mary Had a Little Lamb 4/4 15.2s 159
21 Emperor Waltz 3/4 10.3s 174
22 Hedwig’s Theme (Harry Potter) 3/4 18.2s 165
23 Imperial March (Star Wars Theme) 4/4 11.5s 104
24 Eine Kleine Nachtmusik 4/4 10.2s 140

mean 12.7s 175

histogram HEEG is much noisier. To obtain some insights
on the tempo information contained in HEEG, we look
at the tempi corresponding to the highest peak as well as
subsequent peaks. To this end, after selecting the tempo
corresponding to the highest peak, we set the values within
±10 BPM in the neighborhood of the peak in the tempo
histogram to zero. This procedure is repeated until the
top n peaks are selected. In the following, we consider
the first three tempi b1, b2, b3 obtained from a given
tempo histogram and build the sets of tempo estimates
B1 := {b1} (top 1 peak), B2 := {b1,b2} (top 2 peaks), and
B3 := {b1, b2, b3} (top 3 peaks). To determine the error
of the tempo estimates Bn with n ∈ {1,2,3}, we compute
the minimum absolute BPM deviation compared to the
audio tempo: ε(Bn,a) := minb∈Bn

|b − a| . Furthermore,
as small errors are less severe as large errors, we quantify
different error classes with an error tolerance δ ≥ 0. To
this end, we compute the BPM error rate Eδ(Bn) which
is defined as the percentage of absolute BPM deviations
with ε(Bn, a) > δ. In our experiments, we use different
δ∈{0,3,5,7} (given in BPM).

We performed the tempo extraction from the EEG tempo
histograms with three different strategies:

(S1) Single-trial tempo extraction: For each trial, the
tempo is extracted individually. This results in ex-
tracting the tempi from |S| · |P | · |T | = 12 ·5 ·5 = 300
tempo histograms (see Section 4).

(S2) Fusion I: Fixing a stimulus s ∈ S and a participant
p ∈ P , we average over the tempo histograms of the
trials t∈T :

Hs,p(τ) :=
1

|T |
∑

t∈T

Hs,p,t(τ).

This results in extracting the tempi from |S|·|P |=60
tempo histograms.

(S3) Fusion II: Fixing a stimulus s ∈ S, we average the
tempo histograms over the participants p∈P and the

tempi differed at most 1 BPM from the OpenMIIR ground-truth.
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Figure 6. Tables with BPM error rates in percent (left) and absolute BPM error (right) for the set of tempo estimates Bn.
(a) strategy S1. Note that for each participant, there are five columns in the matrix that correspond to the different trials.
(b) strategy S2. (c) strategy S3.
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Figure 7. Tempograms and tempo histograms for stimuli 14, 04, and 24 (top to bottom). The red boxes and lines mark the
audio tempo. The gray histograms in the background were averaged in the fusion strategies. (a) Tempogram for S1. (b)
Tempo histogram for S1, derived from (a). (c) Tempo histogram for S2. Hs,p(τ) was computed from five tempo histograms
(5 trials). (d) Tempo histogram for S3. Hs(τ) was computed from the 25 tempo histograms (5 participants with 5 trials
each).
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trials t∈T :

Hs(τ) :=
1

|P |·|T |
∑

p∈P

∑

t∈T

Hs,p,t(τ).

This results in extracting the tempi from |S| = 12
tempo histograms.

Note that it is a common approach in EEG signal pro-
cessing to average the EEG signals over different trials as
described in [13]. This usually reduces the noise in the
signals. In this study, instead of averaging over the EEG
signals, we averaged over the tempo histograms, which is
a kind of mid-level feature representation.

Figure 6 shows the BPM error rates (left) as well as the
absolute BPM error (right). Each row in the figure corre-
sponds to the results for a different set of tempo estimates
Bn. For n = 1, a strict error tolerance of δ = 0, and
strategy S1, the tempo extraction basically fails, having
a BPM error rate of 98%. This is not surprising, as no
deviation from the audio tempo is allowed. When allowing
a deviation of five BPM (δ=5), the tempo extraction using
only the top peak (n = 1) fails in 78% of the cases. By
applying the fusion strategy S2 for the tempo extraction,
the BPM error rate significantly drops to 75%, which is an
improvement of 3% points. The BPM error rate goes down
to 50% for the fusion strategy S3 which averages over
all trials for a given stimulus. This shows that averaging
stabilizes the results. When looking at the results by
considering the set of tempo estimates B2 (n = 2) and B3

(n = 3), we can see that the second and third peak often
correspond to the expected tempo. For example, for δ =5
and strategy S3, the BPM error rate goes down from 50%
(for n=1), to 33% (for n=2), and 25% (for n=3).

Furthermore, Figure 6 shows that the results strongly
depend on the music stimulus used. The extraction for
stimulus s = 14, for example, works well for nearly all
participants. This is a piece performed on a piano which
has clear percussive onsets. Also, for the first eight stimuli
(01−04 and 11−14) the tempo extraction seems to work
better than for the last four stimuli (21 − 24). This may
have different reasons. For instance, s = 21, s = 23 and
s = 24 are amongst the shortest stimuli in the dataset
and s = 22 has very soft onsets. Furthermore, the stimuli
21–24 are purely instrumental (soundtracks and classical
music) without lyrics.

4.2 Qualitative examples

Figure 7 shows the tempograms and tempo histograms
for some representative examples. We subsequently
discuss the top, middle, and bottom row of the figure
corresponding to stimulus 14, 04, and 24, respectively.

The EEG tempogram shown in Figure 7a (top row) clearly
reflects the correct tempo of the music stimulus. In the
corresponding tempo histogram (b), a clear peak can be
seen at the correct tempo. In the tempo histograms (c) and
(d), corresponding to strategies S2 and S3, one can clearly

see the stabilizing and noise reducing effect of the two
fusion strategies, resulting in a very clear tempo peak.

In Figure 7b (middle row), the tempo histogram does
not reveal the expected tempo. As also indicated by the
tempogram in Figure 7a, the listener does not seem to
follow the beat of the music stimulus. However, when
averaging over the trials of participant p = 11, the tempo
peak near 160 BPM becomes more dominant (see tempo
histogram (c)). When averaging over all trials and all
participants for the stimulus s = 04, the tempo peak
becomes more blurry, but appears at the expected position,
(see tempo histogram (d)).

For the third example in Figure 7 (bottom row), the
tempogram (a) shows predominant values near the correct
tempo. In the corresponding tempo histogram (b), the
correct tempo is revealed by the second peak. However,
the histograms for strategy S2 (c) and S3 (d) lead to very
blurry peaks where the correct tempo peak is not among
the top three peaks. These examples illustrate that the
fusion strategies often stabilize the tempo extraction.
When the data is too noisy, however, these strategies may
sometimes degrade the results.

5 Conclusions

In this paper, we presented a case study where we applied
an MIR tempo extraction technique, originally developed
for audio recordings, to EEG signals. In experiments, we
showed that it is possible to extract the tempo from EEG
signals using a similar technique as for audio signals. We
could see that the averaging over trials and participants
typically stabilized the tempo estimation. Furthermore, we
noticed that the quality of the tempo estimation was highly
dependent on the music stimulus used. Exploring this
effect is beyond the scope of this small study. To properly
understand the reasons for this effect, a large-scale music
perception experiment using stimuli with systematically
adapted tempi would be needed. Possible reasons might
be the complexity of the music stimuli, the presence of
lyrics, the participants, or the applied methodology and
techniques. Investigating these issues could be a starting
point for interdisciplinary research between MIR and
music perception. Supplementary material and code is
available at https://dx.doi.org/10.6084/m9.
figshare.3398545.
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ABSTRACT

The Music Information Retrieval Evaluation eXchange
(MIREX) is a valuable community service, having es-
tablished standard datasets, metrics, baselines, method-
ologies, and infrastructure for comparing MIR methods.
While MIREX has managed to successfully maintain op-
erations for over a decade, its long-term sustainability is
at risk. The imposed constraint that input data cannot
be made freely available to participants necessitates that
all algorithms run on centralized computational resources,
which are administered by a limited number of people.
This incurs an approximately linear cost with the number
of submissions, exacting significant tolls on both human
and financial resources, such that the current paradigm be-
comes less tenable as participation increases. To alleviate
the recurring costs of future evaluation campaigns, we pro-
pose a distributed, community-centric paradigm for system
evaluation, built upon the principles of openness, trans-
parency, reproducibility, and incremental evaluation. We
argue that this proposal has the potential to reduce oper-
ating costs to sustainable levels. Moreover, the proposed
paradigm would improve scalability, and eventually result
in the release of large, open datasets for improving both
MIR techniques and evaluation methods.

1. INTRODUCTION

Evaluation plays a central role in the development of music
information retrieval (MIR) systems. In addition to em-
pirical results reported in individual articles, community
evaluation campaigns like MIREX [6] provide a mecha-
nism to standardize methodology, datasets, and metrics to
benchmark research systems. MIREX has earned a spe-
cial role within the MIR community as the central forum
for system benchmarking. However, the annual operating
costs incurred by MIREX are unsustainable by the MIR
community. Much of these costs derive from one-time ex-
penditures — e.g., the time spent getting a participant’s
algorithm to run — which primarily benefit individual par-
ticipants, but not the MIR community at large. If we, as
a community, are to continue hosting regular evaluation

c© Brian McFee, Eric J. Humphrey, Julián Urbano. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Brian McFee, Eric J. Humphrey, Julián
Urbano. “A Plan for Sustainable MIR Evaluation”, 17th International
Society for Music Information Retrieval Conference, 2016.

campaigns, we will soon require a more efficient and sus-
tainable model.

The evaluation problem has lurked the MIR community
for years. The MIReS Roadmap for Music Information Re-
Search identified it as one of the main technical-scientific
grand challenges in MIR research [20], and during the
ISMIR 2012 conference a discussion panel was held to
explicitly address this issue [17]. Previous research has
discussed some limitations of MIREX-like evaluation and
made general proposals to avoid them [21, 23], and other
community-led platforms have been put forward to try to
minimize them in practice, most notably MusiClef [14]
and the MSD Challenge [11]. However, for different rea-
sons, they have been unable to continue operating.

Reflecting upon the prior work, we propose in this ar-
ticle a sustainable, open framework for community-driven
MIR evaluation campaigns. Our proposal is motivated by
three complementary factors. First, we strive to reduce the
cost of running and maintaining the evaluation framework.
Second, we hope to improve transparency and openness
wherever possible. Third, we plan to establish a sustain-
able framework that will produce open, public data sets
consisting of both inputs and reference annotations. By di-
recting the majority of resources toward the production of
open data, the proposed framework will be of value to the
greater MIR community in perpetuity, and benefits will not
be limited to participants in a particular year’s campaign.

We stress that this document describes not a fully imple-
mented framework, but a specific proposal put forward by
a group of authors dedicated to seeing it put into practice.
Our goal in writing this document at this early stage is to
solicit input from the MIR community before implementa-
tion details have been finalized. In collaboration with the
community, we hope to develop a framework that benefits
as many people as possible and requires minimal financial
support for years to come.

2. MIREX

The Music Information Retrieval Evaluation eXchange is
a framework for the community driven evaluation of MIR
algorithms [6, 7]. The annual tradition of MIREX was es-
tablished early in the lifetime of ISMIR, and drew signif-
icant inspiration from the well-established TREC frame-
work [24]. Thanks in large part to the vision of MIR pio-
neers, the first official iteration took place at ISMIR 2005
after much preliminary work, including a trial run the year
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Figure 1. Number of algorithms run at MIREX over the
course of almost a decade.

prior called the Audio Description Contest (ADC). The
practicalities of MIREX are hosted by the IMIRSEL group
at UIUC, and the organization has successfully earned
multiple grants to jump-start the evaluation effort at IS-
MIR.

At a high level, MIREX operates in the following steps:
1. Identify some task of interest, e.g., chord estimation.
2. Formulate the problem and evaluation metrics.
3. Construct (and annotate) a corpus of data.
4. Release a subset of the data for development pur-

poses; retain the rest as private data for evaluation.
5. Invite participants to submit system implementa-

tions, which then are executed on private servers.
6. Evaluate predicted outputs against reference annota-

tions or human judgments.
7. Repeat steps 5–6 annually. Intermittently revisit step

2 if needed, and steps 3 and 4 if possible.
Importantly, this approach differs from TREC-style

evaluation by operating in an “algorithm-to-data” model,
where facilitators oversee the application of code submis-
sions to privately held data, rather than participants sub-
mitting predictions over a freely available dataset. The
rationale for this decision is understandable. In contrast
to other machine perception domains, such as natural lan-
guage processing, speech recognition, or computer vision,
intellectual property and copyright law imposes stiff penal-
ties on the illegal distribution of recorded music. Due to a
history of litigation from the recording industry, there is a
pervasive sense of fear in the MIR community that sharing
copyrighted audio data would invite crippling lawsuits [6].

However, experience with MIREX over the last decade
has demonstrated that bringing algorithms to data entails
fundamental limitations. First, as a matter of practical-
ity, doing so incurs steep computational and financial costs
that the community cannot hope to sustain indefinitely.
Running hundreds of research systems demands significant
computational resources, which must be either rented or
purchased outright. More often than not, these systems are
research prototypes which require substantial, manual in-
tervention to operate correctly, and are seldom optimized
for efficiency or ease-of-use. While task-dependent run-
time limits are placed on algorithm execution (between 6
and 72 hours), MIREX requires months, if not years, of
annual compute-time.

Input

Reference

Model

Annotator

Prediction

Metrics Scores

StatisticsCollection

Figure 2. Diagram of the standard approach to the bench-
marking of MIR systems.

The financial burden of computation can be negligible
in comparison to the requisite human effort. As a point
of reference, MIREX 2007 alone required “nearly 1000
person-hours” to supervise the execution of 122 algorithms
from 40 teams [6]. As illustrated in Figure 1, the number
of algorithm runs at MIREX has nearly tripled in the years
since. 1 As a rough estimate, the last decade has likely
consumed on the order of 10,000 person-hours just bring-
ing algorithms to data. Not only is this rate unsustainable,
but the combined operating costs only increase with partic-
ipation. Said differently, the worst thing that could happen
to MIREX in its current form is growth.

Operating costs aside, MIREX has indeed produced
valuable insights into the development of MIR systems [6].
Unfortunately, many scientific endeavors are largely im-
peded or, at worst, wholly obfuscated in the current
paradigm. To illustrate, consider the standard approach to
benchmarking MIR systems as depicted in Figure 2. An
input, Xi, is observed by an annotator, A, who produces a
reference output, Yi. Similarly, a system F operates on the
same input, and produces an estimate Ŷi. Each of several
performance metrics,Mj , are applied to these two repre-
sentations, yielding a number of performance scores, Si,j

This process is repeated over a sample of n input-output
pairs, {Xi, Yi} ∈ D, and the sample-wise scores are ag-
gregated into summary statistics, µ, the reliability of which
generally increases with n = |D|.

In the current MIREX formulation, a lack of trans-
parency renders participants scientifically blind in a num-
ber of ways [23]. First, there is no direct access to the
reference annotations Yi, and, in most cases, no access to
the input Xi either. Furthermore, Ŷi is of little use with-
out Xi for context. This makes it exceedingly difficult to
learn from the results of the evaluation. Without access to
the underlying data, how can one diagnose the cause of an
erroneous estimate, or discover avenues for improvement?
Similarly, there is no way to gauge the distribution of the
data or estimate any bias in the sampling, beyond what may
be inferred from public development sets.

The behavior of the human annotators is also obscured,
as are the instructions provided when the annotation was
initially performed [16]. Consequently, the problem for-
mulation itself is effectively hidden, and subject to drift
over time. For the sake of visibility into the evaluation
metrics Mj , the original NEMA infrastructure is open

1 https://www.hathitrust.org/documents/mirex_
htrc_same_rda.pdf
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source, and an ongoing community-led effort continues to
standardize and improve upon these implementations [18].
Still, without access to the data, it is exceedingly difficult
to perform meta-evaluation, like comparing new metrics
on old data, without seeking privileged access to the his-
torical records.

Finally, it is only fair to admit that large scale evaluation
is a considerable undertaking with plenty of room for error
and misinterpretations. Conducting these campaigns in the
open makes it easier to detect and diagnose any missteps.

Due to the issues highlighted above, resources that
could have been devoted to constructing and enlarging
open data sets have instead been absorbed by irrecover-
able operating costs. This is not only detrimental to system
development, but also to evaluation, because it is critical
to routinely refresh the evaluation data to reduce bias and
prevent statistical over-fitting. Without a fresh source of
annotated data, early concerns about the community even-
tually over-fitting to benchmark datasets are beginning to
manifest.

In some cases, this is because the data used for evalu-
ation exists in the wild: one submission in 2011 achieved
nearly perfect scores in chord estimation due to being pre-
trained on the test data. 2 In other cases, participants may
mis-interpret the task guidelines, as evidenced by submis-
sions of offline systems for tasks that are online, or by oth-
ers that mistakenly use annotations from previous folds in a
train-test task. Across the board, hidden evaluation data is
slowly being over-fit by trial and error, as teams implicitly
leverage the weak error signal across campaigns to “im-
prove” systems. These results can be misleading due to the
fixed but unknown biases in the data distribution, which
become apparent when datasets are expanded — like the
introduction of the Billboard dataset to the chord estima-
tion task in 2012 [2] — or as further insight is gained, as
in the disclosure of the meta-data in the music similarity
corpus.

To make matters worse, there is no feasible plan in
place to replenish the evaluation datasets currently used by
MIREX, nor any long-term plans to replace that data when
it inevitably becomes stale. MIREX has primarily relied
upon the generosity of the community to both curate and
donate data for the purposes of evaluation. This approach
also struggles with transparency, making it susceptible to
issues of methodology and problem formulation, and can
hardly be relied upon as a regular resource. Data collection
is a challenging, unavoidable reality that demands a viable
plan going forward.

After a decade of MIREX, we have learned which tech-
niques work and which do not. Most importantly, we
have learned the importance of establishing a collective
endeavor to periodically and systematically evaluate MIR
systems. Unfortunately, we have also learned of the bur-
dens entailed by such an initiative, and the limitations of
its current form.

2 http://nema.lis.illinois.edu/nema_out/
mirex2011/results/ace/nmsd2.html

3. OPEN EVALUATION OF MIR SYSTEMS

Summarizing the previous section, MIREX suffers from
three deficiencies that render the situation untenable:
(i) the financial and labor costs cannot be sustained indefi-
nitely, (ii) the lack of data transparency limits the scientific
value of the endeavor, (iii) the lack of a strategy for obtain-
ing and annotating new data.

Thus, to address these deficiencies, our proposed plan
has three key differentiators from the MIREX model:

(i) Distributed computation reduces operating costs to
scale favorably with increased participation.

(ii) Freely distributable audio facilitates reproducibility
and benefits the entire community.

(iii) Incremental evaluation reduces bias by keeping test
data fresh, and provides a feasible strategy for col-
lecting new data.

3.1 Distributed computation

The primary difficulty in running an evaluation campaign
is computing the outputs of all participating systems. This
difficulty stems from two sources. First is the obvious
computational complexity of running m submissions over
n inputs. Second is the less obvious “human” complex-
ity entailed in the task captains successfully executing the
submitted programs in a foreign environment. While the
computational issues can be ameliorated by running sys-
tems in parallel over multiple machines, the cost in human
effort has no easy solution in the MIREX framework.

An alternative to this framework is exemplified by Kag-
gle. 3 Kaggle competitions are conducted with all input
data publicly available, and participants submit only the
outputs of their systems, e.g., predictions made for each
data point. This paradigm effectively resolves the diffi-
culties listed above: both computation and human effort
are distributed to the participants, rather than centralized
at the evaluation site and task captains. This dramatically
reduces the cost of maintenance and administration. How-
ever, we note a few potential challenges inherent to bring-
ing data to the computation.

First, the input data must be made openly available to
participants. This may increase the risk of bias if partici-
pants (unintentionally) tune their systems to the evaluation
set. To mitigate bias, we propose the use of a large and di-
verse corpus of common tracks which are shared across
all tasks, rather than a collection of small, task-specific
datasets as is done in MIREX. For any given task, only
a subset of the data need to be considered when compar-
ing systems, and the evaluation set may be independently
selected for each task. The knowledge of which items com-
prise a given evaluation subset would remain hidden from
participants at submission time. This implies that each sub-
mission must span the entire corpus, reducing the feasibil-
ity of participants tuning their algorithms to a particular
subset. Moreover, while this requirement increases com-
putational overhead for the participant, it results in a large

3 http://kaggle.com
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collection of outputs for various methods on a common
corpus, which is a valuable data source in its own right.

Second, distributed computation entails its own chal-
lenges with respect to transparency. While MIREX re-
quires submissions to execute on a remote server beyond
the participants’ control, the scheme proposed here drops
that requirement in favor of visibility into system inputs.
Consequently, restrictions on the implementation (e.g.,
running time) would become infeasible, and it may open
the possibility of cheating by manual participant interven-
tion. Using a large corpus with opaque evaluation sets will
limit the practicality of this approach. 4 Obscuring which
items belong to the evaluation subset comes at the expense
of sample-wise measures, however, as doing so would re-
veal the partition. This is not inherently problematic if
done following the completion of a campaign (instead of
powering a continuous leader-board), but would require
changing the evaluation set annually. These are minor con-
cessions, and we argue that open data benefits the commu-
nity at large, since its availability will serve a broader set
of interests over time.

Finally, the proposed scheme assumes that multiple
tasks operate on a common input form, i.e., recorded au-
dio. While the majority of current MIREX tasks do fit into
this framework, at present it precludes those which require
additional input data (score following, singing voice sep-
aration) or user interaction (grand challenges, query-by-
humming/tapping). Our long-term plan is to devise ways
of incorporating these tasks as well, while keeping with
the principles outlined above. This is of course an open
question for further research.

3.2 Open content

For the distributed computation model to be practical, we
first need a source of diverse and freely distributable audio
content. This is significantly easier to acquire now than
when MIREX began, and in particular, a wealth of data
can be obtained from services like Jamendo 5 and the Free
Music Archive (FMA). 6 Both of these sites host a variety
of music content under either public domain or Creative
Commons (CC) licenses. 7 Since CC-licensed music can
be freely redistributed (with attribution), it is (legally) pos-
sible to create and share persistent data archives.

The Jamendo and FMA collections are both large and
diverse, and both can be linked to meta-data: Jamendo
via DBTune to MusicBrainz [19] and FMA to Echo
Nest/Spotify identifiers. Jamendo claims over 500,000
tracks charted under six major categories: classical, elec-
tronic, hip-hop, jazz, pop, and rock. FMA houses approx-
imately 90,000 tracks which are charted under fifteen cat-
egories: blues, classical, country, electronic, experimen-
tal, folk, hip-hop, instrumental, international, jazz, old-
time/historic, pop, rock, soul/rnb, and spoken. These cate-

4 Even in the unlikely event that a participant “cheats” by obtaining
human-generated annotations, the results can be publicly redistributed as
free training data, so the community ultimately wins out.

5 http://jamendo.com
6 http://freemusicarchive.org/
7 https://creativecommons.org/licenses/

gories should not necessarily be taken as ground truth an-
notations, but they reflect the tastes and priorities of their
respective user communities. While there is undoubtedly a
strong western bias in these corpora, the same can be said
of MIREX’s private data and the MIR field itself. How-
ever, using open content at least permits practitioners to
quantify and possibly correct this bias.

Aside from western/non-western bias, there is also the
potential for free/commercial bias. A common criticism
of basing research on CC-licensed music is that the music
is of substantially lower “quality” — which may refer to
either artistry or production value, or both — than com-
mercial music. This point is obviously valid for high-level
tasks such as recommendation, which depend on a vari-
ety of cultural, semantic, and subjective factors beyond the
raw acoustic content of a track. However, for the majority
of MIREX tasks, in particular perceptual tasks like onset
detection or source identification, this is a much more tenu-
ous case. We do, however, note that FMA includes content
by a variety of commercially successful artists, 8 but the
vast majority of content in both sources is provided by rel-
atively unknown artists, which makes it difficult to control
for “quality”.

To help users navigate the collections, both Jamendo
and FMA provide popularity-based charts and community-
based curation, in addition to the previously mentioned
genre categories. Taken in combination, these features can
be leveraged to pre-emptively filter the collections down
to subsets of tracks which are either of interest to a large
number of listeners, of interest to a small number of lis-
teners with specific tastes, or representative of particular
styles. This approach is similar in spirit to previous work
using chart-based sampling, e.g. Billboard [2].

3.3 Incremental evaluation

In its first cycle of operation, the proposed framework re-
quires a new, unannotated corpus of audio. Rather than
fully annotating the corpus up front for each task, we plan
to adopt an incremental evaluation strategy [4].

With incremental evaluation, the set of reference anno-
tations need not be complete: some (most) input examples
will not have corresponding annotations. Consequently,
performance scores are estimated over a subset of anno-
tated tracks, which may itself grow over time. Systems are
ranked as usual, but with a degree of uncertainty inversely
proportional to the number of available annotations.

Initially, uncertainty in the performance estimates will
be maximal, due to a small number of available annota-
tions. Subsequently, as reference annotations are collected
and integrated to the evaluation system, they will be com-
pared to the submissions’ estimated annotations, and pro-
vide incrementally accurate and precise performance esti-
mates. Prior research in both text and video IR has demon-
strated that evaluation against incomplete reference data is
feasible, even when only a small fraction of the annotations
are known [3, 15, 25].

8 https://en.wikipedia.org/wiki/Free_Music_
Archive#Notable_artists
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This raises the question: which inputs are worth anno-
tating? Consider two systems that produce the same anno-
tation for a fixed input example. Whether they are both
right or wrong with respect to the reference annotation,
there is no way to distinguish between them according to
that example, so there is little value in seeking its annota-
tion. Conversely, examples upon which multiple systems
disagree are more likely to produce useful information for
distinguishing among competing systems. Several recent
studies have investigated the use of algorithm disagree-
ment for this issue, be it for beat tracking [8], structural
analysis [13, chapter 4], or chord recognition [9]. Others
have studied alternative methods for music similarity [22],
choosing for annotation the examples that will be most in-
formative for differentiating between systems. In general,
these methods allow us to minimize the required annotator
effort by prioritizing the most informative examples. With
many participating systems, and multiple complex perfor-
mance metrics, prioritizing data for annotation is by no
means straightforward. We hope that the community will
assist in specifying these procedures for each task.

In the proposed framework, annotations may come from
different sources, so it is imperative that we can trust or val-
idate whatever information is submitted as reference data.
Another line of work is thus the development and enforce-
ment of standards, guidelines, and tools to collect and man-
age annotations. This will require developing web services
for music annotation, as well as appropriate versioning and
quality control mechanisms. Quality control is particularly
important if annotations are collected via crowd-sourcing
platforms like Amazon Mechanical Turk. 9

3.4 Putting it all together

In contrast to the outline in Section 2, our proposed strat-
egy would proceed as follows:

1. Identify and collect freely distributable audio.
2. Define or update tasks, e.g., chord transcription.
3. Release a development set (with annotation), and the

remaining unlabeled data for evaluation.
4. Collect predictions over the unlabeled data from par-

ticipating systems.
5. Collect reference annotations, prioritized by dis-

agreement among predictions and informativeness.
6. Estimate and summarize each submission’s perfor-

mance against the reference annotations.
7. Retire newly annotated evaluation data, adding it to

the training set for the next campaign.
8. Go to step 3 and repeat. Revisit steps 1–2 if needed.
Steps 1–3 essentially constitute the startup cost, and

are unavoidable for tasks which lack existing, open data
sets. However, from the perspective of administration,
only steps 3 and 5 require significant human intervention
(i.e., annotation), and both steps directly result in public
goods. In this way, the proposed system will be signifi-
cantly more efficient and cost-effective than MIREX.

9 https://www.mturk.com/

4. DISCUSSION

In this section, we enumerate the goals and implementation
of the proposed framework.

4.1 Timing: why now?

The challenges described in this document, which our pro-
posed strategy aims to address, are not news to the com-
munity. The operating costs of MIREX became apparent
early in its lifetime, and concerns about its sustainability
loom large among researchers. That said, little has been
done to resolve the situation in the intervening years. This
raises an obvious question: why will things change now?

In many ways, the approach taken by MIREX made
perfect sense in the early 2000’s. However, recent infras-
tructural advances, coupled with growth and maturation
of the MIR community, have introduced new possibilities.
First and foremost, creative commons music is now ample,
bringing the dream of sharing data within grasp. Cloud
computing is cheap and ubiquitous, and can dramatically
reduce the administrative costs of evaluation infrastructure
and persistent data storage. Improvements in web infras-
tructure have also resolved many of the challenges of large-
scale data distribution. Finally, browser support for inter-
active applications enables the development of web-based
annotation tools, which significantly reduces the barrier to
entry for annotators.

More broadly speaking, the community has matured
significantly since MIREX began in 2005. Open source
development and reproducible methods are now common-
place, but we remain hindered by the lack of open data
for evaluation. Only by developing frameworks for open
evaluation and data collection, can we further develop as a
scientific discipline.

4.2 Implementation details

Effectively deploying the proposed framework will require
two things: infrastructure development, and hosting. On
the infrastructure side, we can leverage several existing
open source projects: mir eval for scoring [18], JAMS
for data format standardization [10], and CodaLab for run-
ning the evaluation campaign. 10 The last remaining soft-
ware component is a platform for collecting annotations.
In addition to traditional desktop software, browser-based
annotation tools would facilitate distributed data collec-
tion, and a simple content management system could col-
lect annotations as they are completed.

As for hosting, since the burden of executing arbitrary
(submitted) code is removed, the remaining software com-
ponents can reside on either a private university server, or,
more likely, cloud-based hosting such as Amazon Web Ser-
vices. 11 Similarly, the audio data can be distributed via
BitTorrent to participants, or hosted (at some minor cost)
for traditional download.

10 http://codalab.org/
11 https://aws.amazon.com/
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4.3 Data and evaluation integrity

Allowing participants to submit predictions, rather than
software, may raise questions about integrity: how can we
verify the process which generated the predictions? Ulti-
mately, we must rely on participants to be honest in de-
scribing their methods. Although it is possible for a par-
ticipant to manually annotate each track and achieve high
scores, we hope that the scale of the dataset will make
this approach fundamentally impractical. Additionally, in
keeping with the spirit of open science and reproducible
methods, we will encourage participants to link to a repos-
itory containing their software implementation, which can
be used to independently verify the predictions.

When it comes to data integrity, we acknowledge that
music is unique in that its perception is impacted by a
plethora of cultural and experiential factors. In particu-
lar, CC-licensed music may lie outside of the gamut of
commonly studied music, and differences in compositional
style, instrumentation, or production, may lead to difficul-
ties in validation and generalization. While this is unlikely
to impact low-level tasks such as onset detection or instru-
ment identification, more abstract tasks, such as chord es-
timation or structural analysis, may be more sensitive to
selection bias. Relying on curation and chart popularity
as a pre-filter in data selection may help to mitigate these
effects. After collecting an initial set of annotated CC-
licensed music, it will be possible to quantitatively mea-
sure the differences in system performance compared to
existing corpora of commercial music.

4.4 Collecting annotations

Statistically valid evaluation requires a continuous source
of freshly annotated data. At present, we see three potential
sources to satisfy this need.

First is the traditional route of raising funds and paying
expert annotators. This option incurs both a direct financial
cost and various hidden human costs, but is also the most
likely to produce high-quality data, and may in fact be the
only viable path for certain tasks. In the grand scheme of
things, however, the financial burden may not be so se-
vere. As a point of reference, MedleyDB, a well-curated
dataset of over 100 multi-track recordings for a number of
MIR tasks, cost approximately $12 per track to annotate
($1240 total) [1]. 12 The ISMIR Society maintains a mem-
bership of roughly 250 individuals each year: a $5 increase
in membership dues would cover the annotation cost of a
new dataset like MedleyDB annually. Grants or industrial
partnerships could also subsidize annotation costs.

Second, for tasks that require minimal annotator train-
ing, we can leverage either crowd-sourcing platforms, e.g.,
Mechanical Turk, or seek out enthusiastic communities in-
terested in voluntary citizen science for music. Websites
such as Genius 13 (6M monthly active users) and Ulti-
mate Guitar 14 (3M monthly active users) demonstrate the

12 Figures provided via personal communication with the authors.
13 http://genius.com/
14 http://www.ultimate-guitar.com/

existence of these communities for lyrics and guitar tabla-
ture. 15 As witnessed by the success of eBird 16 or Acous-
ticBrainz, 17 motivated people with the right tools can play
a substantial role in scientific endeavors.

Finally, if no funding can be found to annotate data, we
may solicit annotations directly from participants and the
ISMIR community at large. This approach has been effec-
tively used to collect judgements for the audio and sym-
bolic music similarity tasks.

In each case, we will institute a ratification system so
that annotations are independently validated before inclu-
sion in the evaluation set. As mentioned in section 4.2,
web-based annotation tools will enable volunteer contribu-
tion, which can supplement paid annotations.

5. NEXT STEPS: A TRIAL RUN

We conclude by advocating a large-scale instrument iden-
tification task for ISMIR2017. In this task, the presence
of active instruments (under a pre-defined taxonomy) are
estimated over an entire recording. The taxonomy may
be readily adapted from WordNet [12], and refined by
the community, starting at this year’s ISMIR conference.
There are a number of strong motivations for pursuing in-
strument identification. It is an important, classic problem
in MIR, but is currently absent from MIREX. Researchers
typically explore the topic with disparate datasets, and the
problem remains unsolved to an unknown degree. Com-
pared with other music perception tasks, annotation re-
quires a simple interface, e.g., “check all that apply”, and
the task definition itself is relatively unambiguous: a par-
ticular instrument is either present in the mix or not. In-
strument occurrence is largely independent of popularity,
which results in a fairly minimal bias due to the use of CC-
licensed music. Finally, computer vision found fantastic
success with a similar endeavor, known as ImageNet [5],
in which algorithms detect objects in natural images.

The following steps are necessary to realize this goal
within the coming year: (i) establish a robust instrument
taxonomy; (ii) acquire a large sample of audio content;
(iii) build a web-based annotation tool and storage system;
(iv) construct a development set; (v) implement or collect a
few simple algorithms to prioritize content for initial anno-
tation; (vi) perform data collection, through some combi-
nation of paid annotation, crowd-sourcing, and community
support; and finally, deploy an evaluation server and lead-
er-board to accept and score submissions.

Each of these components, while requiring some en-
gineering and organizational efforts, are achievable goals
with the help of the ISMIR community.
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15 Data gathered from http://compete.com, March 2016
16 http://ebird.org/
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ABSTRACT 
Music has been shown to have a profound effect on lis-
teners’ internal states as evidenced by neuroscience re-
search. Listeners report selecting and listening to music 
with specific intent, thereby using music as a tool to 
achieve desired psychological effects within a given con-
text. In light of these observations, we argue that music 
information retrieval research must revisit the dominant 
assumption that listening to music is only an end unto it-
self. Instead, researchers should embrace the idea that 
music is also a technology used by listeners to achieve a 
specific desired internal state, given a particular set of 
circumstances and a desired goal. This paper focuses on 
listening to music in isolation (i.e., when the user listens 
to music by themselves with headphones) and surveys 
research from the fields of social psychology and neuro-
science to build a case for a new line of research in music 
information retrieval on the ability of music to produce 
flow states in listeners. We argue that interdisciplinary 
collaboration is necessary in order to develop the under-
standing and techniques necessary to allow listeners to 
exploit the full potential of music as psychological tech-
nology. 

1. INTRODUCTION 
When the word technology is used in the context of mu-
sic, it generally relates to the development of new digital 
devices or algorithms that support the production, stor-
age, and/or transmission of music.  In this paper we break 
from the conventional use of the word technology in re-
gards to music, reprising a conception of music as a tech-
nology in and of itself.  
In order to understand precisely what music as technolo-
gy means, it is helpful to take a closer look at the mean-
ing of the word technology. Specifically, we use technol-
ogy in the sense of a manner of accomplishing a task es-
pecially using technical processes, methods, or 
knowledge1. We do not contradict the generally accepted 
perspective that music may exist for its own sake. How-
ever, we do take the position that other considerations 
may also be at stake when listeners listen to music. Spe-

                                                
1 http://www.merriam-webster.com/dictionary/technology  

cifically, we hold that there are cases when listeners use 
music as a tool that is directed towards accomplishing a 
task. In these cases, music can be considered as part of a 
method applied by listeners to achieve a goal.  
The notion of music as technology was already coined in 
the area of sociology by DeNora at the end of the millen-
nium [8]. This work characterized music as part of the 
continuing process of self-development, and posited that 
individuals use it to maintain and develop a social identi-
ty as well as a means to self-regulate emotions, moods, 
energy levels, or for the purposes of ‘self care’. In effect, 
it was suggested that people outsource various sorts of 
'emotional work' to music, based on their goals within a 
given context.  
We argue that the moment is now ripe for the music in-
formation retrieval (MIR) community to revisit this no-
tion. In the intervening years, social psychology and neu-
roscience have considerably advanced our understanding 
of how music is used in everyday life, and how it effects 
the brain. Further, music recommender systems show 
signs that they are already reorienting themselves from 
music that users "like" to music that users find useful in a 
particular situation. This development is evident in the 
evolution of how the purpose of music recommender sys-
tems is described in the literature. A 2002 publication 
[36] characterized this purpose as recommending music 
that the user will be interested in, which contrasts with 
the statement of a 2011 publication [12] that a good rec-
ommendation system should...maximize the user's satis-
faction by playing (the) appropriate song at the right 
time. Currently, the unprecedentedly large amount of mu-
sic available online offers new possibilities of finding a 
tight fit with listener needs. Reflecting this focus, a 2015 
publication [32] stated the purpose of music recommend-
er systems to provide guidance to users navigating large 
collections. We draw on these contemporary findings and 
theory to understand how users may better use music as a 
tool in everyday life. 
The contribution of this paper is to revisit and update the 
notion of music as technology, and to link it to a Call to 
Action for MIR and neighboring psychology-oriented 
communities. It should be noted that the socio-
psychological concept of music preference as a potential 
indicator of personality, values and beliefs (and as a ‘so-
cial badge’) is relevant to music consumption behavior, 
fitting into the concept of considering music as a technol-
ogy (to establish belonging), and not yet taken into ac-
count sufficiently in the context of music recommender 
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systems [19]. However, in our paper the focus will not be 
on social listening, but rather on the complementary situ-
ation in which the listener consumes music on their own, 
in relation to achieving a personal goal. 
In our consideration of a technological role of music, we 
go beyond 'self-care', and describe music as a tool that a 
listener may use to achieve the internal state necessary to 
accomplish their goal. We hypothesize that this connects 
to the concept of flow [24]: a desirable internal state that 
has been characterized by complete and total attention, a 
loss of a sense of self, a loss of a sense of the passing of 
time, and the experience that conducting the activity is, in 
and of itself, intrinsically rewarding. In other words, a 
listener in flow state is enjoying the feeling of being ab-
sorbed in their task to such a degree that the passing of 
time is not noticed, and is therefore able to push past ob-
stacles to carry out activities and achieve goals. In later 
sections, we will elaborate on theories regarding the pos-
sible neurophysiological nature of flow states, the effects 
of music on the brain, and how it is that music may assist 
in achieving these internal states. As an initial indication 
of the growing importance of music that allows users to 
accomplish goals, we point to the growing number of art-
ists1 and services2 on the Internet that are providing music 
to help people focus. 
The idea of music as technology should not be considered 
a paradigm shift, but rather as the explicit identification 
of a common phenomenon. This phenomenon has thus 
far escaped the attention of the MIR community because 
the focus of music information retrieval research has been 
firmly set on what music is, rather than on what music 
does. However, there are many examples of work that 
illustrates the breadth of areas in which music is used as a 
tool to accomplish an end. Most widely known is perhaps 
the use of music as a meaning-creating element in story-
telling, especially in film and video, e.g., [35]. Currently 
expanding is the use of music in branding, e.g., within the 
rise of the concept of corporate audio identity [2]. Less 
comfortable to contemplate is the use of music for torture 
e.g., as studied by Cusick [7]. Finally, we mention the 
therapeutic uses of music, as covered recently by Koelsch 
[17]. 
Our work differs in a subtle, but important way from the-
se examples. We look at music as technology from the 
point of view of listeners who make a conscious decision 
to expose themselves to the experience of music to alter 
their internal state in order to achieve a goal that they 
have set for themselves. Later, we will return to the im-
portance of listener control over the choice of music for 
the effectiveness of music as a tool. 
Music as technology has serious implications for music 
information retrieval. If listeners may choose to use mu-
sic as a psychological tool, then it is important for music 
search engines and recommender systems to be sensitive 
to the exact nature of the task that users wish to accom-
plish. It also is important for researchers to judge the suc-

                                                
1 e.g., Delta Notch, https://www.youtube.com/user/DDRfrosh1 
2 e.g., Focus at Will https://www.focusatwill.com 

cess of these systems in terms of their ability to support 
users towards accomplishing tasks. 

To understand music as technology more profoundly and 
fundamentally, collaborations between MIR and the neu-
ro-, cognitive, and social psychological sciences, will be 
essential. Joint research lines involving collaborations 
between these fields will allow for the potential to deter-
mine when and how flow states occur, if they vary in any 
way based on context, and how exactly these states are 
aided by music. 

In summary, this implies two places in which the MIR 
community should be active: i) learning and understand-
ing what users need to put themselves into a flow state, 
and how this depends on what they are doing and on the 
surrounding circumstances, and ii) understanding how 
new music search engines and recommender systems can 
be designed to allow listeners to achieve flow states. 

In the remainder of this paper, we first will review how 
music is used as part of daily life. After this, we consider 
the effects of music on the brain, subsequently connect-
ing to insights in relation to achieving flow state. Based 
on our proposed viewpoint and the reviewed literature, 
we discuss how the MIR research agenda can be broad-
ened in this light, and finish with a Call to Action for in-
terdisciplinary work worth investigating. 

2. LISTENERS USING MUSIC 
2.1 Music as part of daily life 
In the everyday life of the modern human, music has be-
come a constant accompaniment to all manner of daily 
activities [27, 29, 34]. The advent of portable music de-
vices capable of housing vast collections, the ubiquity of 
available musical data via streaming services, and the de-
velopment of technology that allowed for greater ease of 
music production, have all lead to the consumption of 
music on an increasingly individual basis across an in-
creasingly broad range of activities and contexts [10]. 
Music listening is a common occurrence in everyday life, 
yet rarely the sole focus of an activity. A number of stud-
ies have pointed to this conclusion, and we mention some 
key examples here. In an experience sampling study 
where participants completed brief surveys at random in-
tervals throughout their day, 44% of the surveys were 
completed while music listening had taken place within 
any 2-hour period, yet less than 2% of episodes involved 
listening to music as a main activity [32]. A later study 
showed that 38.6% of text messages sent to participants 
randomly throughout the day occurred during music lis-
tening occasions; on occasions where the participants 
were not listening to music, 48.6% indicated that they 
had listened to music since the last text message, yet only 
11.6% of these episodes occurred when music listening 
was the main activity [27]. A more recent survey study 
has shown similar results, with respondents indicating a 
mean of less than 1 hour of active music listening per 
day, yet 2-4 hours of passive music listening [15].  
Along with an increase in music consumption accompa-
nying other activities is the emergence of the belief that 
individual music selections function as a means to 
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achieve various emotional, motivational, or cognitive ef-
fects to the benefit of accomplishing various activities 
[27]. Individuals will report that music is expected to per-
form different functions based on different situations 
[26], an awareness of the specific songs expected to ful-
fill these functions, as well as the expected psychological 
benefits from listening [8]. As such, people have come to 
use music as a piece of technology in their daily lives, 
effectively attempting to outsource various psychological 
tasks to specific song selections. We now go on to dis-
cuss the factors that contribute to listeners successfully 
using music to achieve internal states that may be de-
scribed as flow, which, in turn, support activities or goals. 
2.2 Choosing music for a purpose 
As mentioned above, our perspective on music as tech-
nology regards music as a tool in the hands of listeners 
themselves. In this section, we examine in more detail the 
importance of listener control of music. The perceived 
benefits of music listening have been shown to be more 
positive when the individuals had the ability to choose 
the desired music [27]. Participants indicate preferring 
playlists they created rather than automatically curated 
content [15], and those who chose the music they were 
listening to reported enjoying it more [27]. Furthermore, 
with greater control on the choice of music selection, in-
dividuals reported experiencing greater changes in mood 
along three bipolar factors: 1) positivity, 2) present mind-
edness, and 3) arousal [34]. 
Listeners' preference for control is consistent with the 
idea of music being a means to an end. A number of stud-
ies have shown that listeners use music as psychological 
tool to optimize emotion, mood, and arousal based on the 
very specific needs of a given situation and/or activity [8, 
27, 34]. Interviews have shown that individuals have an 
awareness of specific songs they feel will assist in ac-
complishing various emotional tasks, such as decreasing 
or increasing their arousal, motivating them to take ac-
tion, adjusting their moods, or assisting them to focus [8]. 
Reasons for listening to music have also been shown to 
vary by activity (e.g., doing housework, travelling, study-
ing, dating, getting dressed to go out etc.) [8, 15, 29]. 
Along with the constant growth of the music corpus, a 
means to organize, retrieve and discover appropriate mu-
sic selections is a growing challenge. Despite the preva-
lence of current playlist curation technologies, individu-
als report self-generated playlists to be the organizational 
method of choice [8, 15], an indication of the specificity 
of song selection requirements, above and beyond the 
specificity of individual preference. In the final section of 
the paper, we will return to discuss how, in order to use 
music as technology, users must have at their disposal 
appropriate music information retrieval technology. Next 
we turn to the neuroscience perspective on music as tech-
nology. 

3. MUSIC AND THE BRAIN 
Research in the field of music and emotion suggests 
there are multiple means for music to affect the individu-
al, and that underlying physiological and neurological 
mechanisms should be researched [14]. We highlight two 

posited mechanisms relevant to our discussion: a) brain 
stem reflexes, and b) musical expectancy.  
The degree and manner in which each mechanism results 
in a physiological or neurological response, and by ex-
tension arousal, may be key in understanding why listen-
ers select specific songs given the tasks they have set out 
to accomplish. As the demands of each situation vary, 
the effect of acoustic stimuli on the brain of the listener 
may function to moderate arousal such that an optimal 
internal state is reached. In other words, listeners may be 
selecting songs, and by extension sequences of acoustic 
stimuli, to alter their internal state in order to best meet 
the needs of their situation.  
3.1 Brain stem responses 
The brain stem is believed to be a very old part of the 
brain, and has been shown to be sensitive to loud, low 
frequency, dissonant, suddenly changing sounds [5, 9, 
22]. It is posited that sounds indicative of a sudden 
change, a strong force, or something of large size may 
coincide with an event that requires immediate, urgent 
and reflexive attention. These acoustic qualities shift at-
tention to the stimulus, giving rise to muscular and car-
diovascular responses as well; a by-product of this may 
be the reason bass drum sounds inspire people to dance 
in sync with the music, and why music with faster tem-
pos is more arousing (see [14] and [17]). Furthermore, a 
greater number of brain regions have shown activation at 
the onset of musical samples as opposed to the middle or 
end of these samples [23].  
As such, music that contains such acoustical stimuli, or 
dramatic changes in its acoustic features (e.g., dramatic 
build ups and “drops”), may shift attention to the music 
arousing the listener in the process. Conversely, music 
that is relatively constant may instead serve to 'drown 
out' distracting ambient sounds instead: for example, the 
difference between silence and the rustling of papers is 
far greater than the difference between the rustling of 
papers and background music. As such, music may pro-
vide a constant acoustic backdrop thereby reducing the 
amount of arousal and attentional shifts caused by dis-
tracting sounds in the listener’s environment.  
3.2 Musical expectancy 
Recently, an increasing amount of attention has been de-
voted to expectancy as it relates to music (e.g., as in Hu-
ron's recent work [11]). The ability of the human brain to 
predict events is thought to have been vital to survival, 
and thus plays a prominent role in all cognition. As such, 
meeting or violating expectations in music should result 
in physiological and neurological effects (see [30] and 
[31]). Given that music is essentially an organized pattern 
of sounds, our brains generate predictions as the music 
unfolds over time based on our knowledge of the specific 
musical piece, but also our knowledge of all music [31].  
As only so much information may be encoded at a time, 
the more complex the piece, the greater the number of 
potential prediction errors, the more exposure is required 
to become familiar [31]. In fact, as far back as Berlyne's 
[3] studies, it has been shown that familiarity of a particu-
lar sequence of notes in relation to a corpus results in less 
physiological arousal than unfamiliar sequences of notes, 
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as does simplicity in the melody as opposed to complexi-
ty. These expectations may be used deliberately by com-
posers of music to create a sense of musical tension, only 
to resolve the tension later on in the piece, resulting in 
relaxation and pleasure [18]. In addition, familiarity of a 
piece may lead to anticipation of the pleasure to be expe-
rienced at peak moments in the music, resulting in the 
activation of midbrain dopamine neurons causing atten-
tion to be paid to potential upcoming rewards [31].   
Relevant to our topic, such arousal may divert attention 
from the task to the music [e.g., 13]. On one hand, music 
that adheres to expectations, such as a collection of very 
familiar pieces, may result in less overall arousal than 
pieces that are unfamiliar, very complex, or of an unfa-
miliar genre. On the other hand, familiar pieces that result 
in pleasure and anticipation may also be arousing, divert-
ing attention from the task to the music as well.  

4. MUSIC AND FLOW 
Flow is characterized as a mental state in which one’s 
complete attention is focused on a task, one has lost sense 
of self and of time, and one’s perception of the experi-
ence is positive and rewarding [24]. In this research tradi-
tion, the definition of flow also includes a sense that one's 
subjective level of skill is balanced with the subjective 
challenge of the activity: a too-simple task evokes relaxa-
tion then boredom which in turn causes attention to drift, 
and a too-challenging task evokes vigilance then anxiety 
[24]. As with music use in everyday life, the concept of 
flow is also intertwined with context and activity.   
More recently it has been theorized that flow states may 
emerge during media enjoyment, resulting in neural states 
where attentional and reward centers in the brain are acti-
vated synchronously [40]. Weber and colleagues [40] 
drew a theoretical link between engagement in linear me-
dia (e.g., books, films and video games) and flow states. 
They posit that linear media require mastery of mental 
models: video games require a level of skill that increases 
as one progresses, and films require an understanding of 
the characters and the narrative. It is suggested that these 
contribute the challenge, which in addition to pleasurable 
engagement, coincides with activations of the brain re-
gions necessary to achieve flow. While music is not spe-
cifically discussed, it is a medium that can be consumed 
during various activities, and may function in conjunction 
with these activities to inspire flow states.  
The dopaminergic pathway, which is involved in the ex-
perience of pleasure, is posited to be active during flow 
states [40], and has been shown to be active during expe-
riences of pleasure while listening to music [31]. Of in-
terest in this pathway is the nucleus accumbens, which is 
also thought to be involved in automatic consummatory 
behavior (e.g., drinking or eating), and the striatum 
which also has connections to the brain stem [40]: both 
also been observed in pleasurable responses to music 
[31]. In addition, regions thought to be involved in re-
ward-seeking behaviors, such as the prefrontal and or-
bitofrontal cortices have also been implied in both [31] 
[40].   

While it is not yet clear how specifically music and con-
text may interact to produce a flow state, enough evi-
dence has been accrued for us to suggest two aspects 
worthy of study. Firstly, during tasks in which boredom 
is likely, more arousing music may be selected to induce 
a flow state: by diverting attentional resources to the mu-
sic the challenge of the task increases, as it now requires 
attention to be paid to both the activity and the music. As 
such, music that is more likely to be arousing either by a) 
resulting in responses from the brain stem (e.g., loud, 
frequently changing, or dissonant song selections) or b) 
causing prediction errors (e.g., less familiar, familiar and 
causing anticipation, or more complex) may be more 
suitable. Secondly, during tasks that are challenging or 
otherwise cognitively engaging (e.g., studying or read-
ing) music that is likely to be less arousing either by a) 
resulting in less brain stem activation (e.g., relatively un-
changing or consonant) or b) being predictable without 
anticipation (e.g., somewhat familiar and somewhat liked, 
more simple songs) may be more suitable.  

5. NEW CHALLENGES FOR MIR 
We now turn back to discuss how music as technology 
connects with MIR. The ability of listeners to successful-
ly use music as technology depends on the effectiveness 
of music information retrieval and recommender systems 
in supporting them. We argue for the necessity of multi-
disciplinary research that brings together neuro-, cogni-
tive, and social psychologists, and music information re-
trieval researchers. Such collaboration will allow us to 
understand what makes music helpful for users and what 
makes it appropriate for different tasks. In this section, 
we point to several areas in which the music information 
retrieval is on the right track, and several areas in which 
more effort is needed if users are to truly benefit from 
music as technology. 
First, we return to the relation between the user choosing 
music, and music being perceived as having positive ben-
efits. Taking this connection seriously means taking the 
position that for music to be used effectively as technolo-
gy, it must truly be a tool in the users’ hands (i.e., fully 
under the control of the user). Other work that points out 
the critical role of user control over music selection in-
cludes [38], who observe that the context and the inten-
tions of the user impact which music features are im-
portant. Their music selection interface provides users 
with control over factors such as tempo, mood, and genre, 
and their experiments show that users prefer this control. 
The findings are not surprising given the role of control 
in the success of recommender systems from the user 
point of view [28]. In order to make music a useful tool, 
MIR must start with the choice of the listener to change 
their internal state in order to accomplish a goal. The 
choice may be semi-conscious, or may simply consist of 
going to a place where certain music is playing, or ac-
cepting to stay in that place. Listeners who are unwilling 
or who are not themselves in control are not using music 
as technology. In other words, piping in focus music dur-
ing an exam can be predicted not to improve students' 
ability to concentrate. MIR systems can make music use-
ful as technology by providing results and recommenda-
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tions that are transparent. The importance of transparency 
for recommender systems has long been recognized [33]. 
They should also minimize the effort needed from the us-
er to provide feedback. 
Second, serving listeners who want to use music as a tool 
requires extending today's context-aware recommender 
systems, which are described, for example, in [32]. Par-
ticularly promising is the development of systems to rec-
ommend music for activities, e.g., [39]. In [25] the au-
thors propose a context-aware music recommendation 
system the monitors heart rate and activity level, and rec-
ommends music that helps the user achieve a desired 
heart rate intensity. The challenge of such activity-based 
recommenders is to provide music that serves the com-
mon needs of people engaging in an activity, while taking 
personal taste into account. One aspect of using music as 
technology is blocking out background noise. Context-
aware recommenders will need to develop to be sensitive 
to the acoustic environment, so that they can recommend 
music that will mask it. 
A challenge that has yet to be faced is moving music rec-
ommendation and retrieval away from music that listen-
ers "like" the first time that they hear it, towards music 
that allows them to meet their goals. Currently, the 
ground truth that is used to evaluate the success of rec-
ommender systems does not differentiate “love at first 
listen” from an appreciation that a listener develops over 
a longer period of time on the basis of utility given the 
context and activity. 
We suggest that collaboration between MIR and psychol-
ogy may be appropriate to best determine not only how 
music can better be organized to suit different tasks, but 
also which specific features make certain music helpful, 
or make one selection more suitable for a given activity 
than another.  
Recent years have seen progress in content-based and hy-
brid music recommender systems [32]. These systems 
make use of timbral features (e.g., MFCCs), features re-
lated to the temporal domain, such as rhythmic proper-
ties, and tonal features such as pitch-based features. Our 
discussion revealed the importance of content features 
that might point to a sudden, unexpected event in the mu-
sic that would shift the listener’s attention. We point out 
that recent approaches to exploiting music content may 
only use very short segments of the music, such as the 
deep learning approach in [37]. A future challenge is to 
determine how long a window must be considered in or-
der to determine whether the song contains features that 
disrupt focus. Here again, task specific as well as user-
specific aspects are important.  
Further, the role of familiarity is critical. The importance 
of music freshness is well recognized. For example, Hu 
and Ogihara [12] relate it to a memory model. However, 
playing the same familiar music repeatedly does not pro-
mote focus if the user's sense of anticipation becomes too 
strong. With the vast amounts of music currently availa-
ble online, the possibility is open to creating a music rec-
ommendation system that never repeats itself. 
When music is used as technology, it is important to keep 
in mind that it is the stream and not the individual song 

that is important. Currently, an increasing amount of 
work is carried out in the area of playlist recommendation 
[4]. Whereas many playlists are played on shuffle, 
playlists that most effectively allow the user to achieve 
internal state transformation may have a particular order, 
calling for more work on the generation of ordered 
streams of content items. 
Finally, we anticipate that when listeners use music as 
technology they will want the possibility to query the sys-
tem, instead of relying on a recommendation. Such que-
ries, even though context-based, may not be well fitted to 
the goal that they want to accomplish. Here, it is neces-
sary to understand the type of language that users use to 
express the complexity of their task. To this end, the MIR 
community should further foster insights in information 
seeking and user studies. However, an important differ-
ence with the existing paradigms under which these stud-
ies are conducted (e.g., [6, 20]) is that under the ‘music as 
technology’ paradigm, a query would be expressed in the 
form of a (non-musical) task to be accomplished, rather 
than a directed query to an explicit song (e.g., similarly to 
what was done in [21] on music and narrative). 

6. CALL TO ACTION 
In this work, we pointed out the notion of music as tech-
nology, which we feel currently is overlooked in MIR 
solutions. Connecting this concept to existing literature 
from the psychological sciences, it is clear that pursuing a 
joint research roadmap will be beneficial in both gaining 
fundamental insights into processes and internal states of 
listeners, and finding ways to improve music search en-
gines and recommender systems. To concretize this fur-
ther, we conclude this paper with a Call to Action, formu-
lating interdisciplinary research directions, which will be 
beneficial for realizing the full potential of music as tech-
nology.  
First, research should contribute to a better understanding 
of flow states. The evidence brought together in this pa-
per points to the conclusion that flow is a desirable over-
arching internal state, and is the target state underlying a 
wide range of activities. We further argued that listeners 
choose music that complements an activity to result in a 
net optimal level of cognitive engagement. Under this 
view, music is not an end unto itself, but rather an inex-
tricable part of the activity. More research is needed to 
validate flow as an overarching mental state in practice, 
as well as its antecedents. In addition, how music leads to 
and moderates flow state should be investigated. 
Second, on the basis of a deeper understanding of flow, 
research should work to define new relevance criteria for 
music. Such work will involve understanding which 
kinds of music fit which kinds of tasks, zeroing in on the 
relevant characteristics of the music. We expect this to be 
a formidable challenge, since it must cover perceptual, 
cognitive, and social aspects of music. The contribution 
of users’ personal music experiences and music tastes 
must also be understood. On the one hand, we anticipate 
a certain universal character in the type of music that will 
allow a person to achieve flow state for a given activity. 
On the other hand, we anticipate that a ‘one size fits all’ 
solution will not be optimal, and that relevance criteria 
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must also be flexible enough to capture individuals’ 
needs and preferences. 
Third, once we have defined relevance criteria, we should 
move from there to identify new features, new algo-
rithms, and new system designs. We anticipate that fea-
tures reflecting music complexity and unexpectedness 
will be important, as a few relatively isolated disruptive 
moments can potentially make an entire song unsuitable 
for an activity. This observation points to the need to 
consider the song as a whole, implying, in turn, new MIR 
algorithms. New system designs will be needed to help 
guide users’ music choice without effort, and ideally 
without interrupting their flow state. System designs will 
need to take into account that users may not recognize the 
music that will make them most productive the first time 
they hear it.  Further, even after listeners recognize the 
connection between certain music and their own produc-
tivity levels, they might not be able to express their music 
needs explicitly in music-technical terms. Systems must 
be able to accommodate the types of information and 
feedback that users are able to provide about the kind of 
music that will be most effective for them. 
Finally, once new applications have been developed and 
deployed, they will provide an extremely valuable source 
of information about when listeners use music, allowing 
neuroscientists and psychologists to refine their theories 
of flow and how listeners achieve it in certain situations, 
against the backdrop of scalable and real-world use cases. 
Our suggestion for MIR and the (neuro)psychological 
sciences to connect is not new; for example, it also was 
reflected upon in [1], and recently further interconnection 
possibilities between the disciplines were suggested in 
[16]. Both of these works rightfully point out that such 
collaborations are not trivial, particularly because of 
methodological differences and mismatches. However, 
we believe that the currently described possibilities offer 
fruitful research questions for all disciplines. 
Ultimately, understanding music as technology has the 
potential to profoundly impact not only the MIR domain, 
but the whole ecosystem of music production, delivery 
and consumption. Currently, the success of music is 
judged by the number of downloads or the number of lis-
tens. The idea of music as technology opens up the possi-
bility of evaluating the success of music also in terms of 
the goals that are achieved by listeners. 
Besides considering music as technology, we believe that 
we also should continue to study and enjoy music for its 
own sake. However, the potential of music to help listen-
ers achieve their ends opens the way for creative new us-
es of music, with respect to commercial business models, 
as well as promoting the well-being of listeners. We hope 
that ultimately, music as technology will support listeners 
in coming to a new understanding on how they can use 
music to reach their goals and improve their lives. 
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ABSTRACT 

Despite the increasing popularity of cloud-based music 

services, few studies have examined how users select and 

utilize these services, how they manage and access their 

music collections in the cloud, and the issues or challeng-

es they are facing within these services. In this paper, we 

present findings from an online survey with 198 respons-

es collected from users of commercial cloud music ser-

vices, exploring their selection criteria, use patterns, per-

ceived limitations, and future predictions. We also inves-

tigate differences in these aspects by age and gender. Our 

results elucidate previously under-studied changes in mu-

sic consumption, music listening behaviors, and music 

technology adoption. The findings also provide insights 

into how to improve the future design of cloud-based mu-

sic services, and have broader implications for any cloud-

based services designed for managing and accessing per-

sonal media collections. 

1. INTRODUCTION 

The last decade has been marked by significant and rapid 

change in the means by which people store and access 

music. New technologies, tools, and services have result-

ed in a plethora of choices for users. Mobile devices are 

becoming increasingly ubiquitous, and different access 

methods, including streaming and subscription models, 

have started to replace the traditional model of music 

ownership via personal collections [30]. Cloud-based 

music services are one of the more recently developed 

consumer options for storing and accessing music, and 

the use of cloud-based systems in general is expected to 

increase in the near future. As the popularity of cloud 

computing grows, a number of studies have been pub-

lished regarding uses and attitudes of cloud-based sys-

tems (e.g., [21]). However, few studies specifically inves-

tigate cloud-based music services; many questions re-

garding the use of those services are virtually unexplored. 

For instance, what makes people choose cloud-based mu-

sic services, given numerous streaming choices for ac-

cessing music? What works, and what does not work, in 

existing services, and how can user experiences be im-

proved? What opinions do users hold about cloud-based 

services, especially regarding the longevity, privacy, and 

security of such systems? Answering these questions will 

help elucidate the challenges users are facing in today’s 

complex music access environment, and will inform fu-

ture music access and organization models.  

In this paper, we aim to answer the following research 

questions: 1) How do people commonly use cloud music 

services and manage their cloud music collections, and 

how does streaming usage interact with, support, or sup-

plant cloud music usage?; 2) How do users explain their 

preferences for particular cloud music services and func-

tionalities?; 3) What do users perceive as limitations of 

current services, and what kinds of features do users want 

in a cloud-based music access and management system?; 

and 4) Are there significant differences in perceptions 

and usage of cloud music services which correlate to de-

mographic differences, such as age or gender? 

This study is part of a larger agenda seeking to empiri-

cally ground current understandings of music collecting 

and information-seeking behavior. The explosive growth 

of cloud services in the past five years has demonstrated a 

burgeoning, robust commercial market of products which 

will benefit from new empirical analyses. This work is 

critical in an age where technology and society undergo 

upheavals so frequently that previous models of human 

activity often prove to be oversimplified or obsolete when 

applied to new problems. Empirical work in this area has 

implications for device and software design and devel-

opment, structuring of metadata, consumer behavior, and 

music industry planning, in addition to offering contribu-

tions to academic theory in multiple disciplines. 

2. RELEVANT WORK 

Cloud computing has exploded in popularity since the 

mid-2000s, and scholarly inquiry on the topic has corre-

spondingly increased. User studies of cloud services have 

found a variety of factors influencing consumer adoption 

and retention of cloud services, including ease of use and 

on-demand ubiquity [24, 28], functionality and perceived 

usefulness [1, 28], accessibility across web-enabled de-

vices [21], and support for collaborative projects [21, 24]. 

While online music discovery and consumption has also 

grown dramatically over the course of the nascent 21st 

century, cloud platforms designed specifically for music 

listening and storage are still relatively new; for instance, 

Apple iCloud and Google Play Music, two major compet-

itors in the cloud music marketplace, both launched in 

2011. A great deal of speculative and anecdotal literature 

has arisen around cloud music, including on the cloud’s 

philosophical implications and its potential to disrupt so-
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cioeconomic and cultural notions of ownership [4, 22, 

30]. However, actual user attitudes toward services and 

behavior within these services remain underexplored, re-

flecting a general lack of focus on user experience in 

MIR studies [27]. Furthermore, cloud services afford and 

facilitate functions such as transfer of files between de-

vices, automated organization of files and metadata, shar-

ing, and backup, which previously were cumbersome but 

common user tasks [3]. User behavior thus may have 

changed significantly, or be in transition, from that de-

scribed in studies which are only a few years old. 

Cloud music services also complement, or compete 

with, streaming services for listeners’ ears. User behavior 

on streaming services has received more empirical atten-

tion as the popularity of platforms like Spotify and Pan-

dora has swelled. Hagen [9] conducted a mixed-methods 

study to examine playlist-making behavior in music 

streaming services, finding a heterogeneous set of man-

agement and use strategies. Kamalzadeh et al. [14] inves-

tigated music listening and management both online and 

offline, and found that streaming service use was less fre-

quent than offline listening to personal digital music col-

lections. Lee et al. [15, 16] inquired into user needs for 

music information services and user experience within 

commercial music platforms, noting increased use of 

streaming services and exploring opinions about services 

and features in some depth. Zhang et al. [31] examined 

user behavior on Spotify through quantitative analysis of 

use logs, focusing on device switching habits and fre-

quency and periodicity of listening sessions. Liikkanen 

and Aman [19] conducted a large-scale survey of digital 

music habits in Finland, finding that online streaming 

through Spotify and YouTube were predominant. 

Cesareo and Pastore [5] and Nguyen et al. [23] both exe-

cuted large-scale surveys of streaming music use to as-

sess consumer willingness to pay for services and stream-

ing’s effect on music purchasing and illegal downloading. 

However, detailed user-centered studies which examine 

both cloud and streaming services in concert are lacking 

in the extant literature. 

Our study seeks to enrich understandings of online 

music listeners’ needs, desires, attitudes, and behaviors 

through a large-scale survey of cloud music usage. We 

also seek to explore whether differences in behaviors and 

attitudes about cloud and streaming services correlate to 

demographic differences, particularly age and gender. 

Music sociology, music psychology, and music infor-

mation studies researchers have noted gender differences 

in some aspects of music tastes [8], experiences [18], and 

listening habits [7, 8], but not others [6, 13, 26]. Technol-

ogy use can also differ markedly by gender, e.g. in choice 

of smartphone applications [25], and in adoption and use 

of mobile phones [12] and social networking services 

[10]. Comparatively little attention has been paid to 

whether and how these differences are mirrored in online 

music service usage; exceptions include Berkers [2], who 

used Last.FM user data to examine differences in musical 

taste between genders, and Makkonen et al. [20] and Suki 

[29], both of whom found gender and age differences in 

online music purchasing intentions. 

3. STUDY DESIGN AND METHOD 

This study is a follow-up to an earlier project which in-

vestigated current cloud music usage and the future of 

cloud music practices through semi-structured interviews 

with 20 adult and 20 teen users [17]. This study seeks to 

validate findings from the interviews and surface new in-

sights by surveying a larger number of cloud music ser-

vice users.  

The online survey consisted of 24 questions which 

asked about users’ cloud music service usage, cloud mu-

sic collection management, and general music listening 

behavior. Our question set was generated after the com-

pletion of the interview project, and so our choice of 

questions was partly informed by our interview findings. 

Participants were recruited via online venues such as e-

mail lists, Facebook groups targeted for students attend-

ing the University of Washington, the first author’s social 

network websites, Craigslist, and several online listservs 

and forums related to music (e.g., ISMIR community 

listserv, Allaccessplaylists reddit). We also distributed 

and mailed flyers to 50 physical venues including campus 

locations, record shops, businesses, libraries, and com-

munity centers. Participants were offered an opportunity 

to enter their names in a raffle to win Amazon.com gift 

cards.  

The survey data included quantitative numerical re-

sponses, radio-button and check-all-that-apply multiple 

choice questions, and free response text boxes. Quantita-

tive data was processed via SPSS and Microsoft Excel. 

Answers from open-ended questions were qualitatively 

coded by two coders, employing an iterative process. The 

codebook from [17] was adopted as an initial framework, 

and then was slightly expanded and revised after the first 

round of coding to fully represent the themes in all re-

sponses. Afterwards, we adopted a consensus model [11] 

where two coders compared their coded results and dis-

cussed instances where disagreements in code application 

occurred, aiming to reach a consensus.  

Our recruitment methods, both online and real-world, 

often centered on areas populated by young adults in their 

twenties and thirties, and while it seems intuitively rea-

sonable that this population would be more likely to pat-

ronize cloud services than other demographics, there may 

be significant cloud-using populations we did not reach. 

Our outreach efforts occurred mostly within the United 

States, especially the Puget Sound region, and while we 

allowed for worldwide access to the survey, the majority 

of our respondents were Americans. Of our survey re-

spondents, over 70% were male, which may not neces-

sarily be indicative of actual cloud usage patterns. 

Despite employing a variety of recruitment tactics and 

publicizing the survey in several waves, we received a 

total of 371 responses, of which 198 were complete re-

sponses. Since cloud services are a relatively new service 

industry, we speculate that our recruitment difficulties 

may be due to a general lack of widespread adoption. 

Furthermore, many online music consumers are electing 

to use streaming rather than cloud platforms, making 

them ineligible for our study. 
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4. FINDINGS AND DISCUSSION 

4.1 Participants’ Demographics and Characteristics 

The average age of participants was 29.7 (Stdev: 8.5). 

Most participants (80.8%) were from the United States, 

with the rest from Canada, the United Kingdom, and 16 

other countries. 70.7% of respondents were male, 27.8% 

were female, and the rest selected ‘other’. Participants 

listened to a wide variety of music as well as spoken-

word audio (e.g., comedy, podcasts), with rock, pop, and 

electronic music being the most preferred genres. 

4.2 Usage of Cloud Music Services 

Of the three most commonly used cloud music services, 

Google Play was the predominant service (71.7%), with 

about a quarter of respondents using each of the other 

major services (Amazon Cloud, 25.8%; Apple iCloud, 

23.7%). These services were primarily accessed by 

smartphone (91.9%), laptop (75.8%), desktop computer 

(60.1%), and tablet (51.5%). Devices designed specifical-

ly for music listening, such as cloud-enabled home stereo 

systems (e.g., Sonos) (10.6%) and portable music players 

(8.1%), were much less common. The average reported 

length of cloud music service use was 35.5 months 

(Stdev: 25.8). The frequency of service use tended to be 

high; 66.2% used them on a daily basis (‘almost every 

day’ or ‘more than once a day’), and 20.7% on a weekly 

basis (‘about once a week’ or ‘a few times a week’). 

Table 1 summarizes how participants reported using 

cloud music services. Easier access to music which users 

may or may not own was the primary reason for using 

services, followed by discovery, preservation, manage-

ment, and sharing purposes. When they do use cloud ser-

vices for discovery of new music, 59.6% reported using 

an automatically-generated playlist or using a cloud radio 

feature, 41.9% relied on new music suggestions by the 

service (e.g., advertisements or promotions), and 23.7% 

took suggestions from friends on the cloud. Approximate-

ly one out of four participants (25.3%) did not use cloud 

services for discovering new music. In the prior study, 

interviewees reported that they primarily rely on stream-

ing services like Spotify and Pandora for music discovery 

[17].  

Usage of cloud music services Total 

(n=198) 

To stream music from my collection which 

I do not have on my music playing devices 

171  

(86.4%) 

To listen to music I do not have in my col-

lection 

138  

(69.7%) 

To discover new music or get recommen-

dations about songs and artists 

128  

(64.6%) 

To hold copies of my digital music files in 

case my hard drive dies 

97  

(49.0%) 

To transfer digital music files between 

computers and/or mobile devices 

89 

(44.9%) 

To share music with other people 38 

(19.2%) 

Table 1. Usage of cloud music services.  

4.3 Management of Cloud Music Collections 

The median value of the estimated size of participants’ 

music collections was 2,908 songs (1Q: 300, 3Q: 10,000, 

max: 100,000) or 29.74 GB of disk space (1Q: 5.75, 3Q: 

60, max: 2,500). While many participants had sizable col-

lections, organization was not a pressing issue for most of 

them, as 72.2% stated they relied on automatic organiza-

tion by the service, compared to 24.2% who manually 

organize their collections. 56.6% of participants respond-

ed that they have music that is not uploaded to the cloud. 

The reasons varied, from lack of time/resources to issues 

of limited access (presented in Table 2).  

Reasons for having music not uploaded to 

the cloud 

Total 

(n=112) 

I have not had time to add all of them yet 63  

(56.3%) 

I have enough music in the cloud for my 

needs right now 

40  

(35.7%) 

They are physical items that are hard to 

digitize  

36  

(32.1%) 

My cloud storage is limited 30 

(26.8%) 

I prefer listening to physical items for 

some music and/or like to have physical 

copies of things as well 

28  

(25.0%) 

They are physical items which are not 

readily accessible to me 

15  

(13.4%) 

Table 2. Reasons for having music not uploaded to the 

cloud.  

Although 55.1% of participants responded that they 

purchase or obtain music from cloud services, few did so 

frequently, with approximately three out of four partici-

pants (72.5%) doing it about once a month or less.  

We also asked participants whether they back up their 

music collection in general, and if so, what kinds of strat-

egies they use. Of all participants, 58.6% responded that 

they do back up their collection; of those answering yes, 

48.3% keep local copies of music files as backup on a 

secondary storage device, and 11.2% keep copies on a 

computer. Some participants considered the cloud music 

services to be their backup (23.3%) or backed up their 

music in the cloud using another cloud service such as 

CrashPlan or Google Drive (8.6%). Most of the backup 

efforts were done in digital file formats; only 3.4% kept 

physical copies of CDs, vinyl, etc. as backup.   

4.4 Music Listening Behavior 

YouTube (65.8%), Spotify (57.8%) and Pandora (52.9%) 

were the most popular streaming services, followed by 

SoundCloud (40.6%) and Last.FM (23.5%). With the in-

creasing availability of music streaming features offered 

by cloud and other online music services, we wanted to 

know how much of the music our participants listen to is 

actually owned by them (versus access via streaming). As 

shown in Table 3, the proportions of participants who al-

most always own or almost always stream the music they 

listen to were about equal. Approximately one out of four 

listen to owned music and stream music about the same 

amount. Overall, the distribution is fairly spread out 
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across the different categories, although there were slight-

ly more participants who tend to stream more than own 

music rather than the vice versa.  

Ownership vs. Streaming Total 

(n=197) 

I own almost all the music I listen to 29 (14.7%) 

I mostly listen to the music I own, but 

sometimes stream music I don’t own 

36 (18.3%) 

I listen to music I own and stream about 

the same amount 

52 (26.4%) 

I mostly stream music I don’t own, but 

sometimes listen to the music I own 

50 (25.4%) 

I almost always stream music I don’t own 27 (13.7%) 

Other 3 (1.5%) 

Table 3. Ownership versus Streaming.  

89.4% of participants responded that they use playlists. 

Criteria for generating playlists included personal prefer-

ence (72.9%), mood (59.9%), genre/style (55.4%), ac-

companying activity (e.g., working out, partying, travel-

ing) (50.8%), artists (35.6%), and recent acquisition 

(33.3%). More than half of participants (53.1%) listen to 

playlists that are automatically generated by the services 

instead of (or in addition to) creating their own. 

4.5 Selection Factors, Perceived Limitations, and De-

sired Features 

We asked respondents how they came to use cloud music 

services, what they desired from the services, and what 

kinds of limitations or frustrations had surfaced in their 

usage of the services. When asked how they initially 

found services, respondents chose the option ‘I sought 

out cloud services to fit my music listening needs’ most 

frequently from a predetermined list of choices (47.0%). 

Others had cloud services preinstalled on devices 

(21.7%), found out from friends or family (21.7%), 

through advertising (20.7%), or were signed up automati-

cally due to an existing connection with a cloud provider 

(12.6%). Free-form responses given via the ‘other’ option 

indicated that several users discovered their cloud service 

providers through Internet information sources, such as 

press coverage or blog posts (11 responses). 64.1% of re-

spondents were paying for cloud music access. 

We also asked users which service they preferred of 

those they had tried and why. 184 users responded to this 

open-ended question, though 15 of them noted that they 

only used one service. Qualitative coding of the respons-

es indicated that the most popular reasons were device 

compatibility (29.9%), ease of upload and size of storage 

space (23.4%), brand loyalty (19.0%), price (18.5%), and 

variety and availability of desired music (16.3%). A rep-

resentative user explained that he chose Google Play Mu-

sic “because 1) I use an Android phone & tablet, 2) they 

uploaded my library to their cloud, 3) I jumped on early 

& have a discounted monthly price.” (ID: 103) 

51.0% of participants responded that there is some-

thing they would like to change about the service they 

use. From a predetermined bank of answers, users indi-

cated that the most common factors hindering their use of 

services were lack of good sharing features (40.6%), 

clumsy or unappealing visual design (30.7%), poor gen-

eral functionality or bugginess (30.7%), other missing 

features (26.7%), difficulties with transferring music 

(22.8%), high cost (11.9%), device compatibility issues 

(9.9%), and a lack of storage space (7.9%). Free-form re-

sponses to this question indicated that song access was 

also an issue for some users, due to services’ incomplete 

artist libraries or problems uploading certain file formats. 

Other free-form responses from dissatisfied users related 

to suboptimal playlist or automated radio features, poor 

organizational or metadata-curating functionalities, 

streaming options (such as lack of support for simultane-

ous streaming from multiple devices), and sharing.  

We also asked whether and why users would consider 

switching to another service. Of the 170 respondents who 

answered this question, 47.6% indicated they would con-

sider switching, while 34.7% indicated they would not, 

and 17.6% answered that they might switch or were non-

committal. Of those who said they would switch, pricing 

was by far the most common reason given (43 responses), 

with artist selection (21) and device compatibility (17) 

distant runners-up. For those who said they would not 

switch, the most common thread undergirding responses 

(11) was a sense of inertia. Moving collections from ser-

vice to service is time-consuming and cumbersome, mak-

ing it unappealing to users who have settled in with a 

cloud provider - especially if the user has bought into a 

full software/hardware combination (such as Google Play 

Music and Android devices, or iCloud and Apple devic-

es). For instance, one user noted, “I would not consider 

switching at this time. It would be a hassle to move my 

personal music collection to a new service.” (ID: 342), 

and another replied, “Only if I were to switch to another 

mobile ecosystem.” (ID: 197) The need for compatibility 

across devices and services surfaced repeatedly in quali-

tative coding of the no-switch responses (9 codes, plus 

some inertia comments obliquely referenced this); other 

concerns include artist selection (8), upload/storage needs 

(7) and price (7). Pricing, artist selection, and device 

compatibility also surfaced in the replies of the maybe-

switch respondents, making these common concerns. 

4.6 Differences in Gender and Age  

We initially speculated that there might be marked differ-

ences in cloud service usage by age based on the fact that 

cloud services were introduced recently, but our data in-

dicate that age, overall, was a relatively minor factor in 

explaining cloud service usage variability. We divided 

the participants into three age groups of approximately 

equal size (25 and younger, 26-30, 31 and older) and ran 

chi-square analyses on the responses for most of the sur-

vey questions (excluding open-ended questions) to identi-

fy statistically significant differences. Significant differ-

ences between age groups were observed in questions re-

garding music purchase and paying behavior, as well as 

in choice of device for accessing cloud music services. 

Participants who were 31 or older were more likely to 

pay to use cloud services (X2=11.34, df=2, p=0.003), 

though younger people more frequently purchased or ob-

tained music from cloud services (X2=21.06, df=8, 

p=0.006) (cf. Makkonen’s [20] findings regarding age 

and willingness to pay for music downloads). Older par-
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ticipants also tended to access cloud music via desktop 

computers (X2=12.76, df=2, p=0.002) more than younger 

participants. Younger participants were more likely to use 

YouTube for streaming (X2=7.17, df=2, p=0.028). Nota-

bly, no significant difference was observed by age for the 

question asking about listening to owned music versus 

streaming unowned music, challenging presumptions that 

younger listeners are less concerned with owning music. 

Our survey results indicated that, rather than age, gen-

der seemed to play a larger role in cloud music behavioral 

differences. Almost half of the respondents reported us-

ing cloud services more than once a day, but men tended 

toward daily usage (90.7% of male users reported using 

cloud services ‘a few times a week’ or more), while 

women’s usage was much more evenly distributed be-

tween daily (‘more than once a day’ + ‘almost every 

day’: 36.4%), weekly (‘a few times a week’ + ‘about 

once a week’: 36.4%), or monthly (‘2 or 3 times a month’ 

+ ‘once a month or less’: 27.3%) access and usage 

(X2=42.13, df=5, p=0.000).  

In general, we noted a trend across multiple questions 

indicating that women tended to listen to music within 

their collections and were less likely to listen to music 

they did not already know than men were. Nearly half of 

female participants noted that they ‘mostly’ (20.0%) or 

‘almost always’ (27.3%) listened to music they owned, 

whereas almost half of male participants ‘mostly’ 

(30.7%) or ‘almost always’ (15.0%) streamed music 

(X2=15.05, df=5, p=0.010). Women were far less likely to 

report that they used the services for listening to music 

they did not have in their collections (47.3% for women 

[W]; 79.3% for men [M]; X2=19.37, df=1, p=0.000), and 

made far less use of cloud recommendation and discovery 

functions (36.4% for W; 77.1% for M; X2=29.12, df=1, 

p=0.000), such as new music suggestions (29.1% for W; 

47.1% for M; X2=5.28, df=1, p=0.02), automatically gen-

erated playlists (38.2% for W; 69.3% for M; X2=15.99, 

df=1, p=0.000), and suggestions from friends (12.7% for 

W; 28.6% for M; X2=5.42, df=1, p=0.020), than men did. 

38.2% of female respondents noted that they did not use 

cloud services for music discovery at all, compared with 

19.3% of men (X2=7.60, df=1, p=0.006). One possible 

caveat here is that women reported much higher usage of 

the Pandora streaming service alongside cloud services 

(70.4% for W; 45.4% for M; X2=9.56, df=1, p=0.002). 

Pandora, an Internet radio service with personalization 

features, does not allow for collection building or search 

access to specific songs, and so may be a route to music 

discovery for some female users. However, it is possible 

that the heavier usage of Pandora among women may 

simply be an issue of convenience (Pandora requires no 

upkeep or maintenance once a station is chosen, unless 

the user decides to vote up or down songs she likes or 

dislikes). Women may also be using Pandora’s playlists 

for listening to similar songs (generated based on already 

familiar and preferred songs/artists) rather than seeking 

out channels playing new and unfamiliar music, or for 

listening to more mainstream genres, which they prefer 

more than men, according to Berkers [2]. Lastly, Pando-

ra’s prominence among female users could merely be in-

dicative of targeted advertising; it is mirrored in the site’s 

general user demographics.1 

Women reported using cloud services to purchase mu-

sic more than men did (67.3% for W; 50.0% for M; 

X2=4.76, df=1, p=0.029), but were much less likely to pay 

for the cloud service as a whole than men were (29.1% 

for W; 78.6% for M; X2=42.28, df=1, p=0.000), both con-

firming and complicating Makkonen’s [20] finding that 

women express a higher willingness to pay for music al-

bums and tracks. When asked how they initially found 

out about cloud music services, more males chose the op-

tions ‘I sought out cloud services to fit my music listen-

ing needs’ (32.7% for W; 53.6% for M; X2=6.877, df=1, 

p=0.009) or  ‘through an advertisement’ (9.1% for W; 

24.3% for M; X2=5.70, df=1, p=0.017), while women 

were more likely to choose the responses ‘the service was 

preinstalled on a device I obtained’ (45.5% for W; 12.9% 

for M; X2=24.41, df=1, p=0.000) or ‘a company automat-

ically signed me up for a cloud music service’ (30.9% for 

W; 5.0% for M; X2=24.56, df=1, p=0.000). Perhaps not 

coincidentally, men were far more likely than women to 

report using Google Play Music though many women al-

so used this service (45.5% for W; 82.9% for M; 

X2=27.59, df=1, p=0.000), while women were much more 

likely to use Apple iCloud and very few men were iCloud 

users (54.5% for W; 12.1% for M; X2=38.81, df=1, 

p=0.000). Apple tends to focus on integration of software 

and hardware, and frequently bundles services together. 

This seems to indicate that women are exercising less 

overt consumer choice in selecting a cloud provider, 

which may have implications for service fit and user sat-

isfaction. For instance, women were much more likely 

than men to use the services for transfer between devices 

(70.9% for W; 34.3% for M; X2=21.43, df=1, p=0.000), 

and they were more likely to report problems with trans-

ferring files (47.6% for W; 15.4% for M; X2=9.95, df=1, 

p=0.002) and device compatibility issues (23.8% for W; 

6.4% for M; X2=5.52, df=1, p=0.019) when asked about 

service deficiencies. Suki [29] reports a similar tendency 

of men having a higher level of perceived ease of use 

than women when using online music. Women have 

more music not uploaded to the cloud (76.4% for W; 

49.3% for M; X2=11.50, df=1, p=0.001) which may re-

flect that they have enough music in the cloud for their 

needs now (45.2% for W; 30.4% for M, although not sig-

nificant) and that they prefer to listen to physical copies 

(35.7% for W; 18.8% for M; X2=3.941, df=1, p=0.047). 

4.7 Thoughts on the Trend of Moving to the Cloud 

Our survey concluded with an open-ended question ask-

ing respondents to express other thoughts or opinions 

they had about cloud computing and cloud music storage. 

98 users responded with statements of length varying 

from a single sentence fragment to several paragraphs. 

These responses were qualitatively coded and examined 

for common patterns using a consensus code strategy 

[11]. We found that the codebook developed for our in-

terview project [17] was useful as a starting point, and 

only a few codes were added to this preexisting frame-

                                                           
1 Alexa.com reports that Pandora’s userbase skews strongly fe-

male. http://www.alexa.com/siteinfo/pandora.com 
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work during coding iterations. The most common topic 

which surfaced in these responses was the relationship 

between cloud and streaming music platforms and their 

relative benefits and drawbacks. Alongside this was an 

abiding concern over issues of ownership and access, 

present in nearly a quarter of responses. Users expressed 

keen and sometimes profuse opinions about ownership 

and access modes of listening, just as the interviewees did 

in our project’s first phase [17] - but without explicit 

prompting, and with minimal addressing of the topic in 

earlier survey questions (only one question, discussed in 

Section 4.4, indirectly references this issue). As in [17], 

participants expressed a variety of positions: one uneasy 

user noted, “The entire system of ‘owning music’ is near-

ly obsolete. The legal as well as social ramifications of 

identity ties to cultural objects to which someone else 

controls all access is little understood and downright 

frightening” (ID: 36), and another cloud skeptic stated, 

“It’s scary to think of everything being online without a 

physical copy anywhere. I still purchase CDs and import 

them to my online service because I enjoy having a real 

CD, but appreciate the probabilities of cloud streaming.” 

(ID: 110) Still others saw cloud-based access models as 

an nigh-unstoppable new wave: “These [record] labels 

need to wake up the internet/cloud is not a fad it is the 

future[. S]ure it will be improved upon but I have not 

bought a physical album in years and eventually no one 

will.” (ID: 311) Once again, age was not a reliable pre-

dictor of opinion on ownership/access matters; many un-

der-26 users favored owning files, and several over-30 

users favored access-only streaming systems. Concerns 

over service cost (22 responses), praise or circumspection 

regarding service convenience (20), opinions about artist 

and genre availability (15), and fears or experiences of 

network and data issues (20) and storage caps (15) also 

factored prominently into responses to this call for opin-

ions.  

One topic which was more prominent in our survey 

than the interviews was artist royalties, perhaps influ-

enced by recent news coverage of court cases involving 

streaming royalty payments, as well as the weighing-in of 

high-profile musicians (such as country/pop superstar 

Taylor Swift) on the subject. Some wrote approvingly of 

service handling of royalty payments, such as the user 

who wrote, “I like the fact that the music is now more 

available to more people and that it can be accessed more 

globally while still generating revenue for the artist.” (ID: 

101) Others had more ambivalent reactions: “While as a 

musician I recognize the damage st[r]eaming services 

[have done] to the industry, as a listener the convenience 

is absolutely incredible and has introduced me to so much 

new music.” (ID: 192) Also more prominent in survey 

responses than in the interviews were comments regard-

ing audio quality of services; one user replied, “I would 

never consider going all-streaming, unless I (and the in-

frastructure) were able to do this with full-quality un-

compressed audio... I'm interested in services like PONO 

and TIDAL with ‘high-quality’ audio streaming, but, they 

are too expensive for me to opt in.” (ID: 103) 

5. CONCLUSION AND FUTURE WORK 

Our survey results show that cloud music services are 

primarily used to improve music access by overcoming 

limitations imposed by device storage or lack of owner-

ship. While listening from participants’ own music col-

lections was the top usage of cloud services, streaming 

music they do not own was important as well. This seems 

to signal a desire for merged systems with both cloud and 

streaming features. The services are also used for music 

discovery and management, though less so for sharing 

music. Exploring and implementing better ways to share 

listening experiences may help improve users’ experienc-

es with cloud services. Collection-building and streaming 

approaches divide online music usage, although there is a 

slight preference toward streaming.  

Approximately half of participants reported choosing 

services to fit their needs, although a substantial number 

were influenced by preinstalled options, word of mouth, 

and advertising. Major contributing factors in user service 

choice included device compatibility, ease of upload, 

storage space, brand loyalty, price, and music availabil-

ity. Over half of the participants indicated the desire to 

change something about the services they use. Again, the 

lack of good sharing features was the most commonly 

mentioned factor, followed by dissatisfaction regarding 

the design and functioning of the service. Difficulty 

transferring music was also mentioned by about a quarter 

of participants. Nearly half of respondents indicated they 

would consider switching to another service based on 

price, artist selection, and device compatibility.  

Differences regarding use of cloud music services 

were much more prominent by gender rather than age. 

Women reported listening to music they owned more 

than men, sought out new music less than men, paid for 

services less often, and asserted less consumer choice in 

selecting services than men did. This warrants future in-

vestigation of the underlying reasons for these differ-

ences, and also suggests opportunities for developing mu-

sic services tailored to gender-specific usage. 

In future work, we plan to continue our investigation 

of music users, focusing on two aspects: 1) the meaning 

of personal collections in an increasingly streaming-

dominated environment, and 2) investigation of reasons 

for the differences observed in music selection, listening, 

and sharing between genders.  
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ABSTRACT

This paper presents a statistical multipitch analyzer that
can simultaneously estimate pitches and chords (typical
pitch combinations) from music audio signals in an unsu-
pervised manner. A popular approach to multipitch anal-
ysis is to perform nonnegative matrix factorization (NMF)
for estimating the temporal activations of semitone-level
pitches and then execute thresholding for making a piano-
roll representation. The major problems of this cascading
approach are that an optimal threshold is hard to determine
for each musical piece and that musically inappropriate
pitch combinations are allowed to appear. To solve these
problems, we propose a probabilistic generative model that
fuses an acoustic model (NMF) for a music spectrogram
with a language model (hidden Markov model; HMM) for
pitch locations in a hierarchical Bayesian manner. More
specifically, binary variables indicating the existences of
pitches are introduced into the framework of NMF. The la-
tent grammatical structures of those variables are regulated
by an HMM that encodes chord progressions and pitch co-
occurrences (chord components). Given a music spectro-
gram, all the latent variables (pitches and chords) are esti-
mated jointly by using Gibbs sampling. The experimental
results showed the great potential of the proposed method
for unified music transcription and grammar induction.

1. INTRODUCTION

The goal of automatic music transcription is to estimate the
pitches, onsets, and durations of musical notes contained
in polyphonic music audio signals. These estimated values
must be directly linked with the elements of music scores.
More specifically, in this paper, a pitch means a discrete
fundamental frequency (F0) quantized in a semitone level,
an onset means a discrete time point quantized on a regular
grid (e.g., eighth-note-level grid), and a duration means a
discrete note value (integer multiple of the grid interval).

In this study we tackle multipitch estimation (subtask of
automatic music transcription) that aims to make a binary
piano-roll representation from a music audio signal, where

c© Yuta Ojima, Eita Nakamura, Katsutoshi Itoyama,
Kazuyoshi Yoshii. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Yuta Ojima, Eita Naka-
mura, Katsutoshi Itoyama, Kazuyoshi Yoshii. “A Hierarchical Bayesian
Model of Chords, Pitches, and Spectrograms for Multipitch Analysis”,
17th International Society for Music Information Retrieval Conference,
2016.

Language model

Acoustic model
Spectrograms
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Bases Activations

A♭E♭ E♭ F

Figure 1. Overview of the proposed model consisting of
language and acoustic models that are linked through bi-
nary variables S representing the existences of pitches.

only the existences of pitches are estimated at each frame.
A popular approach to this task is to use non-negative ma-
trix factorization (NMF) [1–7]. It approximates the mag-
nitude spectrogram of an observed mixture signal as the
product of a basis matrix (a set of basis spectra correspond-
ing to different pitches) and an activation matrix (a set of
temporal activations corresponding to those pitches). The
existence of each pitch is then determined by executing
thresholding or Viterbi decoding based a hidden Markov
model (HMM) for the estimated activations [7, 8].

This NMF-based cascading approach, however, has two
major problems. First, it is hard to optimize a threshold for
each musical piece. Second, the estimated results are al-
lowed to be musically inappropriate because the relation-
ships between different pitches are not taken into account.
In fact, music has simultaneous and temporal structures;
certain kinds of pitches (e.g., C, G, and E) tend to simulta-
neously occur to form chords (e.g., C major), which vary
over time to form typical progressions. If such structural
information is unavailable for multipitch analysis, we need
to tackle the chicken-and-egg problem that chords are de-
termined by pitch combinations, and vice versa.

To solve these problems, we propose a statistical method
that can discover chords and pitches from music audio sig-
nals in an unsupervised manner while taking into account
their interdependence (Fig.1). More specifically, we for-
mulate a hierarchical Bayesian model that represents the
generative process of an observed music spectrogram by
unifying an acoustic model (probabilistic model underly-
ing NMF) that represents how the spectrogram is generated
from pitches and a language model (HMM) that represents
how the pitches are generated from chords. A key fea-
ture of the unified model is that binary variables indicating
the existences of pitches are introduced into the framework
of NMF. This enables the HMM to represent both chord
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transitions and pitch combinations using only discrete vari-
ables forming a piano-roll representation with chord labels.
Given a music spectrogram, all the latent variables (pitches
and chords) are estimated jointly by using Gibbs sampling.

The major contribution of this study is to realize unsu-
pervised induction of musical grammars from music audio
signals by unifying acoustic and language models. This ap-
proach is formally similar to, but essentially different from
that to automatic speech recognition (ASR) because both
the models are jointly learned in an unsupervised manner.
In addition, our unified model has a three-level hierarchy
(chord–pitch–spectrogram) while ASR is usually based on
a two-level hierarchy (word–spectrogram). The additional
layer is introduced by using an HMM instead of a Markov
model (n-gram model) as a language model.

2. RELATED WORK

This section reviews related work on multipitch estimation
(acoustic modeling) and on music theory implementation
and musical grammar induction (language modeling).

2.1 Acoustic Modeling

The major approach to music signal analysi is to use non-
negative matrix factorization (NMF) [1–6, 9]. Cemgil et
al. [9] developed a Bayesian inference scheme for NMF,
which enabled the introduction of various hierarchical prior
structures. Hoffman et al. [3] proposed a Bayesian non-
parametric extension of NMF called gamma process NMF
for estimating the number of bases. Liang et al. [6] pro-
posed beta process NMF, in which binary variables are in-
troduced to indicate the needs of individual bases at each
frame. Another extension is source-filter NMF [4], which
further decomposes the bases into sources (corresponding
to pitches) and filters (corresponding to timbres).

2.2 Language Modeling

The implementation and estimation of music theory behind
musical pieces are composed have been studied [10–12].
For example, some attempts have been made to compu-
tationally formulate the Generative Theory of Tonal Mu-
sic (GTTM) [13], which represents the multiple aspects of
music in a single framework. Hamanaka et al. [10] re-
formalized GTTM through a computational implementa-
tion and developed a method for automatically estimating
a tree that represents the structure of music, called a time-
span tree. Nakamura et al. [11] also re-formalized GTTM
using a probabilistic context-free grammar model and pro-
posed inference algorithms. These methods enabled au-
tomatic analysis of music. On the other hand, induction
of music theory in an unsupervised manner has also been
studied. Hu et al. [12] extended latent Dirichlet allocation
and proposed a method for determining the key of a mu-
sical piece from symbolic and audio music based on the
fact that the likelihood of appearance of each note tends
to be similar among musical pieces in the same key. This
method enabled the distribution of notes in a certain key to
be obtained without using labeled training data.

Assuming that the concept of chords is a kind of music
grammar, statistical methods of supervised chord recogni-
tion [14–17] are deeply related with unsupervised musi-
cal grammar induction. Rocher et al. [14] attempted chord
recognition from symbolic music by constructing a directed
graph of possible chords and then calculating the optimal
path. Sheh et al. [15] used acoustic features called chroma
vectors to estimate chords from music audio signals. They
constructed an HMM whose latent variables are chord la-
bels and whose observations are chroma vectors. Maruo
et al. [16] proposed a method that uses NMF for extract-
ing reliable chroma features. Since these methods need
labeled training data, the concept of chords is required in
advance. Approaches to make use of a sequence of chords
in estimating pitches has also been proposed [18,19]. This
method estimates chord progressions and multiple pitches
simultaneously by using a dynamic Bayesian network and
shows better performance even with a simple acoustic model.
Recent works employ recurrent neural networks as a lan-
guage model to describe the relations between pitch com-
binations [20, 21].

3. PROPOSED METHOD

This section explains the proposed method of multipitch
analysis that simultaneously estimates pitches and chords
at the frame level from music audio signals. Our approach
is to formulate a probabilistic generative model for ob-
served music spectrograms and then solve the “inverse”
problem, i.e., given a music spectrogram, estimate unknown
random variables involved in the model. The proposed
model has a hierarchical structure consisting of acoustic
and language models that are connected through a piano
roll, i.e., a set of binary variables indicating the existences
of pitches (Fig. 1). The acoustic model represents the gen-
erative process of a music spectrogram from the piano roll,
basis spectra, and temporal activations of individual pitches.
The language model represents the generative process of
chord progressions and pitch locations from chords.

3.1 Problem Specification

The goal of multipitch estimation is to make a piano roll
from a music audio signal. Let X ∈ RF×T+ be the mag-
nitude spectrogram of a target signal, where F is the num-
ber of frequency bins and T is the number of time frames.
We aim to convert X into a piano roll S ∈ {0, 1}K×T ,
which represents the existences of K kinds of pitches over
T frames. In addition, we attempt to estimate a sequence
of chords Z = {zt}Tt=1.

3.2 Acoustic Modeling

The acoustic model is formulated in a similar way to beta-
process NMF having binary masks [6] (Fig. 2). The given
spectrogram X ∈ RF×T+ is factorized into bases W ∈
RF×K+ , activations H ∈ RK×T+ , and binary variables S ∈
{0, 1}K×T as follows:

Xft|W ,H,S ∼ Poisson
(∑K

k=1WfkHktSkt

)
, (1)
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Figure 2. The overview of the acoustic model based on a
variant of NMF having binary variables (masks).

where {Wfk}Ff=1 is the k-th basis spectrum, Hkt is the
volume of basis k at frame t, and Skt is a binary variable
indicating whether or not basis k is used at frame t.

A set of basis spectra W is divided into two parts: har-
monic spectra and noise spectra. In this study we prepare
Kh harmonic basis spectra corresponding to Kh different
pitches and one noise basis spectrum (K = Kh + 1). As-
suming that the harmonic structures of the same instrument
have the shift-invariant relationships, the harmonic part of
W are given by

{Wfk}Ff=1 = shift
(
{W h

f }Ff=1, ζ(k − 1)
)
, (2)

for k = 1, . . .Kh, where {W h
f }Ff=1 is a harmonic template

structure common to harmonic basis spectra used for NMF,
shift (x, a) is an operator that shifts x = [x1, . . . , xn]T

to [0, . . . , 0, x1, . . . , xn−a]T , and ζ is the number of fre-
quency bins corresponding to the semitone interval.

We put two kinds of priors on the harmonic template
spectrum {W h

f }Ff=1 and a noise basis spectrum {W n
f }Ff=1.

To make the harmonic spectrum sparse, we put a gamma
prior on {W h

f }Ff=1 as follows:

W h
f ∼ G

(
ah, bh

)
(3)

where ah and bh are hyperparameters. On the other hand,
we put an inverse-gamma chain prior [22] on {W n

f }Ff=1 to
induce the spectral smoothness as follows:

GWf |W n
f−1 ∼ IG

(
ηW , ηW

Wf−1

)
,

W n
f |GWf ∼ IG

(
ηW , η

W

GW
f

)
, (4)

where ηW is a hyperparameter that determines the strength
of smoothness andGWf is an auxiliary variable that induces
positive correlation between W n

f−1 and W n
f .

A set of activations H is represented in the same way
as W . If Hkt takes almost zero, Skt has no impact on
NMF. This allows Skt to take one (the corresponding pitch
is judged to be activated) even though the activation Hkt
is almost zero. We can avoid this problem by putting an
inverse-gamma prior for Hkt to induce non-zero values.
To induce the temporal smoothness in addition, we put the
following inverse-gamma chain prior onH:

GHkt|Hk(t−1) ∼ IG
(
ηH ,

ηH
Hk(t−1)

)
,

Hkt|GHkt ∼ IG
(
ηH ,

ηH
GH

kt

)
, (5)

where ηH is a hyperparameter that determines the strength
of smoothness andGHkt is an auxiliary variable that induces
positive correlation between Hk(t−1) and Hkt.

Chord progression

E♭

84 pitches

Binary variables

follows emission probabilities

follows transition probabilities

A♭ E♭ F B♭

Figure 3. The overview of the language model based on
an HMM that stochastically emits binary variables.

3.3 Language Modeling
The language model is an HMM that has a Markov chain of
latent variables Z = {z1, . . . , zT } (zt ∈ {1, . . . , I}) and
emits binary variablesS = {s1, . . . , sT } (st ∈ {0, 1}Kh),
where I represents the number of states (chords) and Kh

represents the number of possible pitches. Note that S is
actually a set of latent variables in the proposed unified
model. The HMM is defined as:

z1|φ ∼ Categorial(φ), (6)

zt|zt−1,ψzt−1
∼ Categorical(ψzt−1

), (7)

Skt|zt, πztk ∼ Bernoulli(πztk) (8)

where ψi ∈ RI is a set of transition probabilities of chord
i, φ ∈ RI is a set of initial probabilities, and πztk indicates
the probability that the k-th pitch is emitted under a chord
zt, We put conjugate priors on these parameters as:

ψi ∼ Dir(1I), φ ∼ Dir(1I), πztk ∼ Beta(e, f),
(9)

where 1I is the I-dimensional all-one vector and e and f
are hyperparameters.

In practice, we represent only the emission probabili-
ties of 12 pitch classes (C, C#, . . ., B) in one octave. Those
probabilities are copied and pasted to recover the emission
probabilities of Kh kinds of pitches. In addition, the emis-
sion probabilities {πik}Kh

k=1 of chord i are forced to have
circular-shifting relationships with those of other chords of
the same type. In this paper, we consider only major and
minor chords as chord types (I = 2× 12) for simplicity.

3.4 Posterior Inference
Given the observed data X , our goal is to calculate the
posterior distribution p(W ,H,S, z,π,ψ|X). Since ana-
lytic calculation is intractable, we use Markov chain Monte
Carlo (MCMC) methods as in [23]. Since the acoustic
and language models share only the binary variables, each
model can be updated independently when the binary vari-
ables are given. These models and binary variables are it-
eratively sampled. Finally, the latent variables (chord pro-
gressions) of the language model are estimated by using
the Viterbi algorithm and the binary variables (pitch loca-
tions) are determined by using parameters having the max-
imum likelihood.

3.4.1 Sampling Binary Variables

The binary variables S are sampled from a posterior distri-
bution that is calculated by integrating the acoustic model
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as a likelihood function and the language model as a prior
distribution according the Bayes’ rule. Note that as shown
in Fig. 1, the binary variables S are involved in both acous-
tic and language models (i.e., the probability of each pitch
being used is determined by a chord, and whether or not
each pitch is used affects the reconstructed spectrogram).
The conditional posterior distribution of Skt is given by

Skt ∼ Bernoulli
(

P1

P1+P0

)
, (10)

where P1 and P0 are given by

P1 = p(Skt = 1|S¬k,t,xt,W ,H,π, z, α) (11)

∝ παzk
∏
f

(
X̂¬kft +WfkHkt

)Xft

exp{−WfkHkt},
P0 = p(Skt = 0|S¬k,t,xt,W ,H,π, α)

∝ (1− πzk)α
∏
f

(
X̂¬kft

)Xft

, (12)

where X̂¬kft ≡
∑
l 6=kWflHltSlt denotes the magnitude

at frame t reconstructed without using the k-th basis and
α is a parameter that determines the weight of the lan-
guage model relative to that of the acoustic model. Such a
weighting factor is also needed in ASR. If α is not equal to
one, Gibbs sampling cannot be used because the normal-
ization factor cannot be analytically calculated. Instead,
the Metropolis-Hastings (MH) algorithm is used by regard-
ing Eq. (10) is used as a proposal distribution

3.4.2 Updating the Acoustic Model

The parameters of the acoustic model W h, W n, and H
can be sampled using Gibbs sampling. These parameters
are categorized into those having gamma priors (W h) and
those inverse-gamma chain priors (W n andH).

Using the Bayes’ rule, the conditional posterior distri-
bution ofW h is given by

W h
fk ∼ G

(∑
tXftλftk + ah,

∑
tHktSkt + bh

)
, (13)

where λftk is a normalized auxiliary variable that is cal-
culated with the latest sampled variables Ŵ , Ĥ , and Ŝ,
as:

λftk =
ŴfkĤktŜkt∑
l ŴflĤltŜlt

. (14)

The other parameters are sampled through auxiliary vari-
ables. Since H and GH are interdependent in Eq. (5) and
cannot be sampled jointly, GH and H are sampled alte-
nately. The conditional posterior ofGH is given by

GHkt ∼ IG
(

2ηH , ηH

(
1
Hkt

+ 1
Hk(t−1)

))
. (15)

Similarly, the conditional posteriors of H , GW , and W n

are given by

Hkt ∼ IG
(
2ηH , ηH

(
1

GH
k(t+1)

+ 1
GH

kt

))
, (16)

GWf ∼ IG
(
2ηW , ηW

(
1
Wn

f
+ 1

Wn
f−1

))
, (17)

W n
f ∼ IG

(
2ηW , ηW

(
1

GW
f+1

+ 1
GW

f

))
, (18)

if the observation X is not taken into account. Using the
Bayes’ rule and Jensen’s inequality as in Eq. (13) and re-
garding Eq. (16) as a prior, the conditional posterior con-

sidering the observationX is written as follows: 1

Hkt ∼ GIG
(

2Skt
∑
f Wfk, δH ,

∑
f Xftλftk − γH

)
,

where γH = 2ηH and δH = ηH( 1
GH

k(t+1)

+ 1
GH

kt

). The

conditional posterior of W n can be derived in the same
manner as follows:

W n
fk ∼ GIG (2

∑
tHktSkt, δW ,

∑
tXftλftk − γW ) ,

where γW = 2ηW and δW = ηW ( 1
GW

f+1

+ 1
GW

f

)

3.4.3 Updating the Language Model

The latent variablesZ are sampled from the following con-
ditional posterior distribution:

p(zt|S,π,φ,Ψ) ∝ p(s1, . . . , st, zt), (19)

where π is the emission probabilities, φ is the initial prob-
abilities, and Ψ = {ψ1, . . . ,ψI} is a set of the transi-
tion probabilities from each state. The right-hand side of
Eq. (19) is further factorized using the conditional inde-
pendence over Z and S as follows:

p(s1, . . . , st, zt)

= p(st|zt)
∑
zt−1

p(s1, . . . , st−1, zt−1)p(zt|zt−1), (20)

p(s1, z1) = p(z1)p(s1|z1) = φz1p(s1|πz1). (21)

Using Eqs. (20) and (21) recursively, p(s1, . . . , sT |zT ) can
be efficiently calculated via forward filtering and the last
variable zT is sampled according to zT ∼ p(s1, . . . , sT |zT ).
If the latent variables zt+1, . . . , zT are given, zt is sampled
from a posterior given by

p(zt|S, zt+1, . . . , zT ) ∝ p(s1, . . . , st, zt)p(zt+1|zt). (22)

Since p(s1, . . . , st, zt) can be calculated in Eq. (20), zt is
recursively sampled from zt ∼ p(s1, . . . , st, zt)p(zt+1|zt)
via backward sampling.

The posterior distribution of the emission probabilities
π is given by using the Bayes’ rule as follows:

p (π|S, z,φ,Ψ) ∝ p (S|π, z,φ,Ψ) p (π) . (23)

This is analytically calculable because p (π) is a conjugate
prior of p (S|π, z,φ,Ψ). Let Ci be the number of occur-
rences of chord i ∈ {1 . . . I} inZ and ci ≡

∑
t∈{t|zt=i} st

be a K-dimensional vector that denotes the sum of st un-
der the condition zt = i. The parameters π are sampled
according to a conditional posterior given by

π ∼ Beta (e+ cik, f + Ci − cik) . (24)

The posterior distributions of the transition probabili-
ties ψ and the initial probabilities π are given similarly as
follows:

p(φ|S, z,π,Ψ) ∝ p(z1|φ) p(φ) (25)

p(ψ|S, z,π,φ) ∝∏tp(zt|zt−1,ψzt−1
) p(ψzt−1

). (26)

Since p(φ) and p (ψi) are conjugate priors of p(z1|φ) and
p(zt|zt−1,ψzt−1

), respectively, these posteriors can be eas-
ily calculated. Let ei be the unit vector whose i-th element

1 GIG(a, b, p) ≡ (a/b)
p
2

2Kp(
√
ab)

xp−1 exp(−ax+ b
x

2
) denotes a general-

ized inverse Gaussian distribution.
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is 1 and ai be the I-dimensional vector whose j-th element
denotes the number of transition from state i to state j. The
parameters φ and ψi are sampled according to conditional
posteriors given by

φ ∼ Dir (1I + ez1) , ψi ∼ Dir (1I + ai) . (27)

4. EVALUATION

We report comparative experiments we conducted to eval-
uate the performance of our proposal model in pitch esti-
mation. First, we confirmed in a preliminary experiment
that correct chord progressions and emission probabilities
were estimated from the piano-roll by the language model.
Then, we estimated the piano-roll representation from acous-
tic audio signals by using the hierarchical model and the
acoustic model.

4.1 Experimental Conditions

We used 30 pieces (labeled as “ENSTDkCl”) selected from
the MAPS database [24]. We converted them into monau-
ral signals and truncated each of them to 30 seconds from
the beginning. The magnitude spectrogram was made by
using the variable-Q transform [25]. The 926 × 10075
spectrogram thus obtained was resampled to 926 × 3000
by using MATLAB’s resample function. Moreover, we
used harmonic and percussive source separation (HPSS)
[26] as a preprocessing. Unlike the original study, HPSS
was performed in the log-frequency domain. Median fil-
ter is applied over 50 time frames and 40 frequency bins
each. Hyperparameters were empirically determined as
I = 24, ah = 1, bh = 1, an = 2, bn = 1, c = 2, d = 1, e =
5, f = 80, α = 1300, ηW = 800000 and ηH = 15000.
The emission probabilities are obtained for 12 notes, which
are expanded to cover 84 pitches. In practice, we fixed the
probability of internal transition (i.e. p(zt+1 = zt|zt)) to
a large value (1− 8.0× 10−8) and assumed that the prob-
abilities of transition to a different state follow Dirichlet
distribution as shown in section 3.4.3 We implemented the
proposed method by using C++ and a linear algebra library
called Eigen3. The estimation was conducted with a stan-
dard desktop computer with an Intel Core i7-4770 CPU
(8-core, 3.4 GHz) and 8.0 GB of memory. The processing
time for the proposed method with one music piece (30
seconds as mentioned above) was 15.5 minutes .

4.2 Chord Estimation for Piano Rolls

We first verified that the language model properly esti-
mated the emission probabilities and a chord progression.
As an input, we combined correct binary piano-roll repre-
sentations for 84 pitches (MIDI numbers 21–104) of the
pieces we used. Since each representation has 3000 time-
frames and we used 30 pieces, the input was 84×90000
matrix. We evaluated the precision of chord estimation
as the ratio of the number of frames whose chords were
estimated correctly to the total number of frames. Since
we prepared two chord types for each root note, we treated
“major” and “7th” in the ground-truth chords as “major” in
the estimated chords, and “minor” and “minor 7th” in the

Figure 4. Emission probabilities estimated in the prelimi-
nary experiment. The left corresponds to major chords and
the right corresponds to minor chords.

ground-truth chords as “minor” in the estimated chords.
In evaluation, other chord types were not used in evalua-
tion and chord labels were estimated to maximize the pre-
cision since we estimated chords in an unsupervised man-
ner. Since original MAPS database doesn’t contain chord
information, one of the authors labeled chord information
for each music piece by hand 2 .

The experimental results shown in Fig. 4 shows that ma-
jor chords and minor chords, which are typical chord types
in tonal music, were obtained as emission probabilities.
This implies that we can obtain the concept of chord from
piano-roll data without any prior knowledge. The pre-
cision was 61.33%, which indicates our model estimates
chords correctly to some extent even in an unsupervised
manner. On the other hand, other studies on chord estima-
tion have reported higher score [15, 16]. This is because
that they used labeled training data and that they evaluated
their method with popular music, which has clearer chord
structure than classical music we used.

4.3 Multipitch Estimation for Music Audio Signals

We then evaluated our model in terms of the frame-level
recall/precision rates and F-measure:

R =
∑

t ct∑
t rt
, P =

∑
t ct∑
t et
, F = 2RP

R+P , (28)

where rt, et, and ct are respectively the numbers of ground
truth, estimated and correct pitches at the t-th time-frame.
To cope with the arbitrariness in octaves of the obtained
bases, estimated results for the whole piece were shifted
by octaves and the most accurate one was used for the
evaluation. We conducted a few comparative experiments
under the following conditions: 1) Chords were fixed and
unchanged during a piece (the acoustic model), 2) the lan-
guage model was pre-trained using the correct chord labels
and a correct piano-roll, and the learned emission proba-
bilities were used in estimation (pre-trained with chord),
3) the language model was pre-trained using only a cor-
rect piano-roll, and the learned emission probabilities were
used in estimation (pre-trained without chord). we evalu-
ated the performances under the second and the third con-
ditions by using cross-validation.

As shown in Table 1, the performance of the proposed
method in the unsupervised setting (65.0%) was better than
that of the acoustic model (64.7%). As shown in Fig. 5, the
F-measure improvement due to integrating the language
model for each piece correlated positively with the preci-

2 The annotation data used for evaluation is available on
http://sap.ist.i.kyoto-u.ac.jp/members/ojima/mapschord.zip
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Condition F R P
The integrated model 65.0 67.3 62.8
The acoustic model 64.7 64.7 64.7

Pre-trained w/ chord 65.5 65.3 65.6
Pre-trained w/o chord 65.0 65.5 64.6

Table 1. Experimental results of multipitch analysis for 30
piano pieces labeled as ENSTDkCl.
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Figure 5. Correlation between estimated chord precision
and the improvement of F-measure.

sion of chord estimation for each piece (correlation coeffi-
cient r = 0.33). This indicates that refining the language
model also improves the pitch estimation.

Moreover, as shown in Fig. 6, major and minor chords
like those in Fig. 4 were obtained as emission probabilities
directly from music audio signals without any prior knowl-
edge. This implies that frequently used chord types can
be inferred from music audio signals automatically, which
would be useful in music classification or similarity anal-
ysis. The performance in the supervised setting (65.5%)
was better than the performance obtained in the unsuper-
vised settings. Since there exist published piano scores
with chord labels, this setting is considered to be prac-
tical. Although this difference was statistically insignifi-
cant (standard error was about 1.5%), F-measures were im-
proved for 25 pieces out of 30. Moreover, the improvement
exceeded 1% for 15 pieces. The example of pitch estima-
tion shown in Fig. 7 indicates that insertion errors at low
pitches are reduced by integrating the language model. On
the other hand, insertion errors in total increased in the in-
tegrated model. This is because the constraint on harmonic
partials (shift-invariant) is too strong to appropriately esti-
mate the spectrum of each pitch. As a result, the overtones
that should be expressed by a single pitch are expressed
by multiple inappropriate pitches that do not exist in the
ground-truth.

There would be much room for improving the perfor-
mance. The acoustic model has the strong constraint on
harmonic partials as mentioned above. This constraint can
be relaxed by introducing source-filter NMF [4], which
further decomposes the bases into sources corresponding
to pitches and filters corresponding to timbres. Our model
corresponds the case the number of filters is one, and in-
crement of the number of filters would contribute to ex-
press difference in timbres (e.g., difference between the
timbre of high pitches and that of low pitches). The lan-
guage model, on the other hand, can be refined by intro-
ducing other music theory such as keys. Some methods
that treat the relationship between keys and chords [27],

Figure 6. Emission probabilities learned from estimated
piano-roll. Chord structures like those in Fig. 4 were ob-
tained.

Figure 7. Estimated piano-rolls for MUS-
bk xmas5 ENSTDkCl. Integrating the language model
redeuced Insertion errors at low pitches.

or keys and notes [12], have been studied. Moreover, the
language model focus on reducing unmusical errors such
as insertion errors in adjacent pitches, and is difficult to
cope with errors in octaves or overtones. Modeling tran-
sitions between notes (horizontal relations) will contribute
to solve this problem and to improve the accuracy.

5. CONCLUSION

We presented a new statistical multipitch analyzer that can
simultaneously estimate pitches and chords from music au-
dio signals. The proposed model consists of an acoustic
model (a variant of Bayesian NMF) and a language model
(Bayesian HMM), and each model can make use of each
other’s information. The experimental results showed the
potential of the proposed method for unified music tran-
scription and grammar induction from music audio signals.
On the other hand, each model has much room for perfor-
mance improvement: the acoustic model has a strong con-
straint, and the language model is insufficient to express
music theory. Therefore, we plan to introduce a source-
filter model as the acoustic model and to introduce the con-
cept of key in the language model.

Our approach has a deep connection to language acqui-
sition. In the field of natural language processing (NLP),
unsupervised grammar induction from a sequence of words
and unsupervised word segmentation for a sequence of char-
acters have actively been studied [28,29]. Since our model
can directly infer musical grammars (e.g., concept of chords)
from either music scores (discrete symbols) or music audio
signals, the proposed technique is expected to be useful for
an emerging topic of language acquisition from continuous
speech signals [30].
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ABSTRACT

The Valence, Arousal and Dominance (VAD) model for
emotion representation is widely used in music analysis.
The ANEW dataset is composed of more than 2000 emo-
tion related descriptors annotated in the VAD space. How-
ever, due to the low number of dimensions of the VAD
model, the distribution of terms of the ANEW dataset tends
to be compact and cluttered. In this work, we aim at finding
a possibly higher-dimensional transformation of the VAD
space, where the terms of the ANEW dataset are better
organised conceptually and bear more relevance to music
tagging. Our approach involves the use of a kernel expan-
sion of the ANEW dataset to exploit a higher number of
dimensions, and the application of distance learning tech-
niques to find a distance metric that is consistent with the
semantic similarity among terms. In order to train the dis-
tance learning algorithms, we collect information on the
semantic similarity from human annotation and editorial
tags. We evaluate the quality of the method by clustering
the terms in the found high-dimensional domain. Our ap-
proach exhibits promising results with objective and sub-
jective performance metrics, showing that a higher dimen-
sional space could be useful to model semantic similarity
among terms of the ANEW dataset.

1. INTRODUCTION

One of the fundamental properties of music is the ability
to convey emotions [27]. Consequently, there is a great
interest in representing and classifying music according to
emotions in areas like music information retrieval, music
recommendation and personalisation [11–13, 27]. It has
been proven that listeners enjoy looking for and discov-
ering music using mood-based queries, which represents
33% of music queries according to [13]. This is an im-
portant reason that urged psychologist and musicologist to
investigate different paradigms for the representation and

c© Michele Buccoli, Massimiliano Zanoni, György
Fazekas, Augusto Sarti, Mark Sandler. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Michele Buccoli, Massimiliano Zanoni, György Fazekas, Augusto Sarti,
Mark Sandler. “A higher-dimensional expansion of affective norms for
English terms for music tagging”, 17th International Society for Music
Information Retrieval Conference, 2016.
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Figure 1: Distribution of the ANEW dataset in the VA
space

modelling of emotion related descriptors [11–13].
Dimensional approaches to emotion conceptualisation

focus on describing emotional states in a continuous space,
where emotion states are represented as points or distribu-
tions in an N-dimensional space. Specific emotion terms
can be localised in such continuous space and it is possible
to define a metric in a way that the distance between points
is proportional to the semantic distance between emotions.
The most influential dimensional models so far [1, 25] are
proposed by Russell [19] and Thayer [24]. Russell de-
vised a circumplex model of affect which consists of a two-
dimensional, circular structure involving the dimensions of
arousal (A), linked to the degree of activation or excite-
ment, and valence (V), linked to the degree of pleasant-
ness. A third dimension related to dominance (D) was later
proposed to express the degree of control and to possibly
distinguish different and overlapping moods. [8, 21].

The increasing need of a continuous affective model
led to the creation of the ANEW dataset [4] for Psycho-
logical research. This dataset is composed of 2,476 En-
glish words with positions in the VAD space. Despite it
is a generic dataset, the large amount of terms in ANEW
makes it a powerful resource also for the Music Emotion
Recognition (MER) community, including applications for
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Type Symbol Num
Terms

Details

Terms
Dataset

DANEW 2,476 Mean in V, A, D di-
mensions

Implicit
Distance

MILM10K 240,
450

Tag compact rep-
resentation from
an LSA with
k = 10, 20, 50, 100
components

Explicit
Distance

MHD 180 Human annotation of
semantic similarity
between terms from
ANEW

Explicit
Clustering

MHC 100 Human clustering of a
subset of ANEW

Table 1: Summary of the collected data

automatic music annotation and retrieval [5, 20]. Unfortu-
nately, ANEW terms in the VAD space tend to have a very
uniform and compact distribution concentrated around the
centre of the space as shown in Figure 1 for the VA sub-
space. Although the use of a substantial set of terms pro-
vides a very representative model of a large variety of emo-
tions, to deal with a compact and cluttered distribution can
be problematic in many musical applications. For this rea-
son, typically only a subset of the terms is used, leading
to a loss in the exhaustiveness of the model. A higher-
dimensional mood space drawn from the ANEW dataset,
where the terms are distributed following some concep-
tual organisation can benefit several applications. These
include semantic music annotation, recommendation and
mood-based music retrieval [2].

In this study, we investigate the construction of higher-
dimensional emotional spaces from ANEW by means of
kernel expansion techniques applied to the VAD space. Al-
though the transformation has the effect to produce a more
sparse distribution of terms, it is not clear if the semantic
distance between concepts is well represented by the met-
ric in the new space. To solve this problem, we first aim to
find a distance reflecting conceptual organisation of terms
by applying distance learning techniques [3,10,26]. Given
some constraints between terms, these methods search for
a linear transformation of the space that is semantically rel-
evant. That is, the ideal learnt distance closely correlates
with semantic differentiae given by users in a specific task
for a subset of the ANEW terms. We generate the set of
constraints using “a priori” information collected through
a subjective test where participants were asked to specify
the semantic similarity between pairs of terms in the con-
text of music. We then perform Latent Semantic Analy-
sis on emotion related annotations for a large set of music
pieces.

Under the hypothesis that the terms may be improved
by this transformation, we validate the approach by cluster-
ing in the new high-dimensional space. We subsequently
evaluate the resulting clusters with objective and subjec-
tive metrics. Tests show promising results given these new
learnt distance metrics and provide an insight into how a
better configuration in the high-dimensional space can be
achieved.
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Figure 2: Absolute Pearson Correlation of the self-
similarity matrices computed or collected from different
sources of data.

2. DATASET CONSTRUCTION

In this section, we describe three datasets created to pro-
vide constraints for semi-supervised learning as well as to
validate our approach. A summary of the collected data is
provided in Table 1.

2.1 Terms in the ANEW Dataset

The terms in the ANEW dataset [4] is already annotated for
the Valence, Arousal and Dominance dimensions with a
value between 0 and 10 by Psychology class students. For
each term, we consider the normalised average (between 0
and 1) of the annotations.

2.2 Implicit Distance Annotation

We compute a similarity distance matrix among emotion
related descriptors by performing Latent Semantic Anal-
ysis (LSA) on the I-Like-Music 1 (ILM) dataset denoted
ILM10K. This is composed of 10,199 tracks from com-
mercial music annotated with crowed sourced editorial and
social tags [2,20] with weights corresponding to the preva-
lence of each tag.

From the tags in ILM10K, we first discard the tags that
are not included in the ANEW dataset. We then filter the
tags that are rarely used by means of two thresholds on
the number of times the tag is used in ILM10K: 15 times,
leading to a set of T = 240 terms and 5 times leading to
T = 450 terms. We build a track-tag matrix using the re-
maining tags and compute a k-component approximation
of this matrix via LSA, keeping different numbers of com-
ponents k to test different degrees of approximations. We
set k = 10, 20, 50, 100 components to produce the set of
matrices DILM10K ∈ RT×k.

From DILM10K , we compute the similarity between
tags as the Euclidean distance between the correspondent

1 http://www.ilikemusic.com/
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Figure 3: Block diagram of the clustering approach

rows, producing the matrix MILM10K . We also com-
pute the normalised matrix D̂ILM10K , composed by the
L2 normalised rows of DILM10K , so that the Euclidean
distance of the former is equal to the cosine distance of the
latter and compute the (cosine) distance matrix M̂ILM10K .

2.3 Human Distance Annotation

We conducted an online survey and asked annotators to de-
fine the perceived mood similarity in the context of music
between pairs of descriptors with a value between 0 (very
similar) and 1 (not similar at all). 504 people participated
in the survey. From the data we kept only the terms that
received at least 2 annotations leading to T = 180 and we
compose the sparse matrix MHD.

2.4 Human Clustering Annotation

We conducted a second online survey and asked annota-
tors to group the set of top 100 descriptors in the dataset.
15 people participated in the survey, leading to the matrix
MHC with T = 100 terms, where each entry (i, j) indi-
cates the number of people that grouped together the i-th
and j-th terms.

2.5 Further Considerations

In Figure 2 we show the absolute Pearson correlations be-
tween the similarity matrices from the different sources of
data we have mentioned so far. The human distance anno-
tation exhibits a modest correlation with the Euclidean dis-
tance defined in the VA or VAD space. The annotations on
distance between terms is also somewhat correlated with
the distance that can be inferred from editorial tags. In the
rest of this study, we aim to find a space where the defined
distance metric provides a better representation of the per-
ceived similarity in musical emotion.

3. HIGH-DIMENSIONAL SPACE LEARNING

The block diagram of our approach is shown in Figure 3.
The VA or VAD coordinates for the ANEW dataset are
processed using kernel expansion. In order to better rep-
resent the perceived similarity, we first rotate and translate
the expanded dataset by means of distance learning algo-
rithms.We then use the collected annotations to build con-
straints for learning the metric distance.
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Figure 4: Boxplot of the Silhouette indices for the differ-
ent scenarios

3.1 Kernel Expansion

Given a generic vector x ∈ RN , we define its kernel ex-
pansion the vector φx = Φ(x) ∈ RP , with P ≥ N ,
that is the result of the mapping function Φ. We expand
our original dataset (both VA and VAD coordinates) with
the following mapping functions: normalisation with re-
spect to the L2 norm, to include the cosine distance, i.e.,
Φ(x) = x/|x|2; polynomial expansion with degrees two
and three, to include nonlinear distance, i.e., Φ(x)2 =
[x1, ..., xN , x

2
1, ..., x

2
N , x1x2, ..., x1xN , ..., xN−1, xN ] for

the polynomial expansion of degree two, where x1, ..., xN
are the components of x (the third degree polynomial ex-
pansion is computed accordingly); approximate feature
map of a Radial Basis Function (RBF) kernel by Monte
Carlo expansion of its Fourier Transform [17].

3.2 Constrains Building

In order to facilitate the training of distance learning al-
gorithms, we use similarity matrices obtained from hu-
man annotations introduced in Sections 2.2, 2.3, 2.4. Our
method relies on the definition of a set of Must-Link (ML)
and Cannot-Link (CL) constraints. Treating the similar-
ity as a tendency of terms to be grouped together, ML
constraints force a pair of terms to be in the same group,
whereas CL constraints force a pair of terms to be in differ-
ent groups. In the distance learning techniques, the space
is transformed such that the pairs of points of the ML set
are closer together while the pairs of points in the CL set
are far apart.

As far as the ILM10K dataset is concerned, we compute
the ML and CL constraints by computing the mean value
µ and standard deviation σ of the matrices MILM10K

and empirically defining two thresholds thl = µ − 2σ,
thh = µ + 2σ. We compose the set of ML constraints
by considering those pairs of terms which are close in the
space defined by LSA, hence whose distance is lower than
thl. Similarly, we compose the CL set with those pairs of
terms that are far from each other, i.e., whose distance is
higher than thh. We compose another set of constrains in
the same way from the matrices M̂ILM10K .
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We use a similar approach to compose the ML and
CL constraints from the Human Distance annotations. We
compute the mean value µ and standard deviation σ of the
annotations in the matrix MHD and we empirically define
the thresholds thl = µ− σ, thh = µ+ σ.

As far as the Human Clustering annotations are con-
cerned, we compute the mean value µ and standard devi-
ation σ of the non-zero entries of the matrix MHC , i.e.,
of the number of people who annotated two terms as be-
longing to the same clusters, and define the soft threshold
th = {µ−σ}. We compose ML with the pair of terms that
have been grouped together by more than th people and
we compose CL with the zero entries of MHC .

3.3 Distance Learning

Given x, y ∈ RN two generic vectors, we can weight the
contribution of each components and the inter-correlation
among them by defining a Mahalanobis (symmetric,

square) matrix A ∈ RN×N and computing:

d(x,y) =
√

(x− y)ᵀA(x− y)

=
√

(Lx− Ly)ᵀ(Lx− Ly),
(1)

that is the Euclidean distance between the projected vec-
tors over the subspace defined by L, with LᵀL = A.

Distance metric learning is the sub-field of machine
learning that aims at finding the best subspace L, from a set
of constraints. Using the constraints as described in Sec-
tion 3.2, we compute a set of subspaces for each combina-
tion of input, kernel expansions and constraints. It is worth
remembering that with the Mahalanobis distance, only
translation and rotation operations are performed. How-
ever, the application of kernels on the sample data allows
nonlinear transformation of the original space of data.

We employ the following distance metric learning algo-
rithms [6]:

• Iterative Projection [26] (IP), computes the Maha-
lanobis matrix by means of an iterative minimisation
of the distance of the ML data with the constraint to
keep CL data far apart

• Relative Components Analysis [3] (RCA), learns a
Mahalanobis matrix that assigns large weights to
more relevant components and low weights to irrele-
vant ones, by using chunklets, i.e., subset of data that
belong to the same group (i.e., have been defined in
the ML set)

• Neighbourhood Components Analysis [10] (NCA)
is a component analysis that computes an optimal
Mahalanobis matrix for the K-nearest neighbour
clustering algorithm.

4. EXPERIMENTAL SETUP AND EVALUATION

As previously discussed, our aim is to find a transforma-
tion of the ANEW space with improved conceptual organ-
isation of terms that is relevant in a musical context. We
expect terms that are semantically similar in this context
to be close and dissimilar terms to be far apart. For this
reason, we validate our approach by clustering in the trans-
formed space.

Specifically, we perform three evaluations: i) we eval-
uate the resulting clusters by mean of the Silhouette qual-
ity index as objective metric; ii) we compare the result-
ing clusters with those obtained by clustering the tags of
the ILM10K dataset; iii) we compare the resulting clusters
with those obtained from manual annotation.

In the ILM10K dataset we consider the results obtained
with both T = 240 and 450 tags. This is because the for-
mer is less noisy, while the latter provides more informa-
tion and constrains. We will then specify in the single cases
which dataset achieved the mentioned results.

4.1 Unsupervised and Semi-Supervised Clustering

In order to provide a robust evaluation, we apply several
clustering techniques. We experimentally choose to re-
trieve the 6 best representative clusters, given the large
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Scenario Features Algorithm Constraints Silhouette
Unsupervised Norm. VA K-Means 0.5287
Semi-Supervised Norm. VA SC MHC , th = µ− σ 0.5240
IP Distance Learning VAD kmeans MHD 0.5432
RCA Distance Learning VAD, poly 3 degree AHC MHC , th = µ− σ 0.6864
NCA Distance Learning VA, poly 2 degree kmeans M̂ILM10K , T = 240, k = 10 0.5456

Table 2: Best results for the Silhouette metric

Scenario Features Algorithm Constraints ILM10K Compl. Hom. V-score
Unsup. VA, poly 3 degree SC AHC M̂ILM10K , k = 100 0.0877 0.1334 0.1058
Semi-Sup. VAD poly 2 degree AHC MHD AHC M̂ILM10K , k = 100 0.0955 0.1347 0.1118
IP Dist. VA SC MHD AHC M̂ILM10K , k = 100 0.0929 0.1371 0.1107
RCA Dist. VAD kmeans MHD AHC M̂ILM10K , k = 100 0.0869 0.1290 0.1038
NCA Dist. VA, poly 2 degree AHC MHD AHC M̂ILM10K , k = 100 0.0959 0.1421 0.1145

Table 3: Best results of the Homogeneity, Separation and V-measure metrics for the comparison with the clusters generated
by ILM10K dataset (240 terms)

number of configurations we need to test. We employ the
following algorithms resulted to be effective in the context
of music tag analysis and aggregation (from [16]):

• K-Means [14] is the common unsupervised cluster-
ing algorithm;

• Semi-Supervised Non-negative Matrix Factorisation
[7] (SS-NMF) applies NMF techniques to the self-
distance matrix of the samples;

• Spectral Clustering [22] (SC) employs a low-
dimension reduction of the similarity matrix be-
tween samples before applying the K-means algo-
rithm;

• Agglomerative Hierarchical Clustering [23] (AHC)
performs a bottom-up clustering: initially every
sample is a cluster, then the closest clusters merge
together until the final number of clusters is reached.

In this study we use the SS-NMF, SC and AHC algorithms
in both unsupervised and semi-supervised fashion. In
semi-supervised algorithms, the clustering can be guided
by constraints. Here we use the ML and CL constraints
computed in Section 3.2.

In order to validate the actual contribution of the dis-
tance learning techniques, we compare the results of our
approach with the results obtained with both unsupervised
and semi-supervised clustering of the ANEW dataset.
Hence, we have three scenarios: i) unsupervised cluster-
ing of the transformed (but not learned) space (Unsup.) ;
ii) the semi-supervised clustering of the transformed (but
not learned) space (SemiSup.); iii) our approach, that is the
unsupervised clustering of the learned space (Dist. Learn).
Please note that the first scenario also includes the cluster-
ing of non-transformed space using the Euclidean distance.

4.2 Objective metrics

We evaluate the objective quality of clustering by using the
Silhouette index that is defined as [16]:

silhouette =
1

|D|
∑

s∈D

b− a
max(a, b)

∈ [−1, 1], (2)

where a and b are the mean distance between the s-th sam-
ple and all other points in the same cluster and in the next
nearest cluster, respectively and D is the dataset of sam-
ples. High (positive) values of Silhouette indicate dense
well-separated clusters, values around 0 indicate overlap-
ping clusters and low (or negative) values indicate incor-
rect clusters. In Figure 4 we show the boxplots of Silhou-
ette metric for the different scenarios, while in Table 2 we
show the configurations that generate the best results for
each scenario.

It is clear that the application of Distance Learning
techniques outperforms unsupervised and semi-supervised
techniques, even with different configurations of kernels,
algorithms and constraints. In particular, the best perfor-
mance is obtained with the AHC over the third degree
polynomial expansion of the VAD dataset, with a trans-
lation learned using the RCA technique with Human Clus-
tering.

We can also notice that the semi-supervised scenario
performs on average worse than the unsupervised scenario.
This is because the Silhouette index evaluates the resulting
clusters with respect of the position of the input data, that
is not moved from the original position. The estimated
clusters are therefore more noisy, which confirms the ad-
vantage of distance learning techniques to transform the
space.

4.3 Subjective metrics - Comparison with Clustering
of ILM10K

We compare the clusters obtained with the different ap-
proaches with the clusters obtained from ILM10K data.
We consider the homogeneity and completeness metrics
[18]. The former evaluates whether each estimated clus-
ter contains only members of a group in the ground truth,
while the latter estimates whether the samples of a given
group belongs to the same estimated cluster. We also con-
sider the V-measure, i.e., the harmonic mean of homogene-
ity and completeness. To avoid overfitting issues, we eval-
uate only the configurations that are not trained with the
constraints generated from the ILM10K dataset.
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Scenario Features Algorithm Constraints P R F
Unsup. VAD, RBF kmeans 0.8012 0.3512 0.4883
Semi-Sup. VAD, RBF AHC MHD 0.7646 0.3986 0.5240
IP Dist. VAD, RBF AHC M̂ILM10K , T = 240, k = 100 0.6979 0.3915 05016
RCA Dist. VA, poly 3 degree AHC M̂ILM10K , T = 240, k = 50 0.6622 0.7241 0.6918
NCA Dist. VAD, RBF kmeans M̂ILM10K , T = 240, k = 10 0.7971 0.4124 0.5289

Table 4: Best results for the Precision, Recall and F-measure metric for the comparison with the human annotated clusters

We show the distribution of results for the different sce-
narios in Figure 5. We notice the results are fairly low,
showing that the organisation given by the expanded and
possibly learnt ANEW dataset is very different from that
obtained from editorial tags on a real music annotation ap-
plication. This confirms the necessity to find a space for the
ANEW dataset which is more useful for MIR applications.
However, it is clear that our approach can only slightly im-
prove the task. In Table 3 we list the configurations that
lead to the best performance. These are all obtained with
the 240-term subset of the ILM10K dataset. The AHC over
the normalised ILM10K dataset with 100 components is
the one that best matches all scenarios, from which we can
infer that the clustering of the ANEW dataset resembles a
clustering based on cosine distance with a large number of
components. The best results is reached using NCA tech-
nique with a AHC over the polynomial- expanded dataset,
by means of annotated distance again.

4.4 Subjective metrics - Comparison with Human
Annotations

We finally compare the obtained clusters with those col-
lected from human annotations. Since the correctly
grouped terms, i.e., the amount of True Positive (TP ) ex-
amples are more specific and relevant than the correctly
non-grouped ones (True Negative, TN ), we consider the
Precision (P ) and Recall (R) metrics that focus on the
number of TP examples. The Precision indicates the ra-
tios of True Positive over the total estimated assignments,
i.e., P = |TP |/(|TP | + |FP |), while the Recall defines
the number of TP over the total assignments in the ground
truth, i.e., R = |TP |/(|TP | + |FN |). We also consider
the F-measure (F ) as the harmonic mean of the two met-
rics [15]. To avoid overfitting, we evaluate only configu-
rations that are not trained with the constraints generated
from the human annotations on clustering.

In Figure 6 we show the distribution of results for the
different scenarios and configurations. In general, Preci-
sion is higher than Recall, showing that the estimated clus-
tering is not capable of retrieving all the corrected groups.
The F-measures are mostly distributed between 0.3 and
0.5, which is an average result. We can clearly see that
some configuration from RCA Distance Learning are able
to improve the average Recall and improve the F-measure
reaching almost at 0.7. In Table 4 we list the best con-
figurations for each scenarios. The RCA Distance Learn-
ing technique clearly outperforms the other approaches and
matches very closely the human annotations, i.e., the hu-
man way to organise the emotional-related descriptors. We

can notice that once again, the best results are obtained
by using the AHC over some polynomial expansion of the
dataset. However, the constraints based on distance anno-
tations are less helpful for emulating the human organisa-
tion of terms than the ones based on editorial and social
tags (ILM10K).

5. CONCLUSIONS

We introduced a novel approach consisting of kernel ex-
pansion, constraint building from music task specific hu-
man annotation and finally distance learning to transform
the ANEW dataset and obtain a distribution of terms with
better conceptual organisation compared to the conven-
tional VA or VAD space. This facilitates applications
that require computer representation of music emotions,
including music emotion recognition and music tagging,
music recommendation or interactive musical applications
such as [9] and [2].

Average and maximum results presented in Section 4
prove that distance learning techniques are effective in
the improvement of the organisation of concepts of the
ANEW dataset. In particular, hierarchical clustering of
the RCA-learned space based on the polynomial expan-
sion of VA/VAD space outperforms the other configura-
tions. The paper also introduces a new task along with a
set of techniques that proved successful as a first attempt.
This provides useful insight into improving the organisa-
tion of mood terms to better reflect application specific
semantic spaces. Future work involves the collection of
additional “a priori” information for improving the robust-
ness of evaluation, as well as further assessment of the con-
structed high-dimensional space within other MIR applica-
tions.

6. ACKNOWLEDGEMENTS

This work was part funded by the FAST IMPACt EPSRC
Grant EP/L019981/1 and the EC H2020 research and inno-
vation grant AudioCommons (688382). Sandler acknowl-
edges the support of the Royal Society as a recipient of a
Wolfson Research Merit Award.

7. REFERENCES

[1] A. Aljanaki, Y.-H. Yang, and M. Soleymani. Emotion
in music task at mediaeval 2015. In Working Notes Pro-
ceedings of the MediaEval 2015 Workshop, 2015.

[2] A. Allik, G. Fazekas, M. Barthet, and M. Sandler. my-
moodplay: an interactive mood-based music discovery
app. In proc. 2nd Web Audio Conference (WAC), 2016.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 321



[3] A. Bar-Hillel, T. Hertz, N. Shental, and D. Weinshall.
Learning distance functions using equivalence rela-
tions. In Proc. of the 20th International Conference on
Machine Learning (ICML), 2003.

[4] M. M. Bradley and P. J. Lang. Affective norms for en-
glish words (anew): Stimuli, instruction manual and
affective ratings. Technical report, C-1, The Center for
Research in Psychophysiology, University of Florida.,
Gainesville, FL, USA, 1999.

[5] M. Buccoli, M. Zanoni, A. Sarti, and S. Tubaro. A mu-
sic search engine based on semantic text-based query.
In IEEE International Workshop on Multimedia Signal
Processing (MMSP), 2013.

[6] C.J. Carey and Y. Tang. metric-learn python package.
http://github.com/all-umass/metric-learn, 2015.

[7] Y. Chen, M. Rege, M. Dong, and J. Hua. Non-negative
matrix factorization for semi-supervised data cluster-
ing. Knowledge and Info. Systems, 17(3):355–379,
2008.

[8] R. Cowie, G. McKeown, and E. Douglas-Cowie. Trac-
ing emotion: an overview. International Journal of
Synthetic Emotions, Special Issue on Benefits and Lim-
itations of Continuous Representations of Emotions,
pages 1–17, 2012.

[9] G. Fazekas, M. Barthet, and M. Sandler. Novel meth-
ods in facilitating audience and performer interaction
using the mood conductor framework. Lecture Notes
In Computer Science (LNCS): Sound, Music, and Mo-
tion, 8905:122–147, 2014.

[10] J. Goldberger, G. E. Hinton, S. T. Roweis, and
R. Salakhutdinov. Neighbourhood components analy-
sis. In L. K. Saul, Y. Weiss, and L. Bottou, editors, Ad-
vances in Neural Information Processing Systems 17,
pages 513–520. MIT Press, 2005.

[11] P. N. Juslin and J. A. Sloboda, editors. Music and Emo-
tion Theory and Research. Series in Affective Science.
Oxford University Press, 2001.

[12] P. N. Juslin and J. A. Sloboda. Handbook of Music and
Emotion: Theory, Research, Applications. OUP Ox-
ford, 2011.

[13] J. A. Lee and J. S. Downie. Survey of music informa-
tion needs, uses, and seeking behaviors: preliminary
findings. In Proc. of the 5th International Society for
Music Information Retrieval (ISMIR), 2004.

[14] J. MacQueen et al. Some methods for classification
and analysis of multivariate observations. In Proc. of
the 5th Berkeley Symposium on Mathematical Statis-
tics and Probability. Oakland, CA, USA., 1967.

[15] C. D. Manning, P. Raghavan, H. Schütze, et al. Intro-
duction to information retrieval, volume 1. Cambridge
university press Cambridge, 2008.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay. Scikit-learn: Machine learning in Python. Journal
of Machine Learning Research, 12:2825–2830, 2011.

[17] A. Rahimi and B. Recht. Weighted sums of random
kitchen sinks: Replacing minimization with random-
ization in learning. In Advances in Neural Information
Processing Systems 22, 2009.

[18] A. Rosenberg and J. Hirschberg. V-measure: A con-
ditional entropy-based external cluster evaluation mea-
sure. In Proc. of the Conference on Empirical Methods
in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL), 2007.

[19] J. A. Russell. A circumplex model of affect. Journal of
personality and social psychology, 39(6):1161–1178,
1980.

[20] P. Saari, G. Fazekas, T. Eerola, M. Barthet, O. Lartillot,
and M. Sandler. Genre-adaptive semantic computing
and audio-based modelling for music mood annotation.
IEEE Transactions on Affective Computing, (99):1–1,
2015.

[21] K. R. Scherer. Which emotion can be induced by mu-
sic? what are the underlying mechanisms? and how
can we measure them? Journal of New Music Re-
search, 33(5):239–251, 2004.

[22] J. Shi and J. Malik. Normalized cuts and image seg-
mentation. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 22(8):888–905, 2000.

[23] R. Sibson. Slink: an optimally efficient algorithm for
the single-link cluster method. The Computer Journal,
16(1):30–34, 1973.

[24] J.F. Thayer. Multiple indicators of affective responses
to music. Dissertation Abst. Int., 47(12), 1986.

[25] F. Weninger, F. Eyben, and B. Schuller. On-line
continuous-time music mood regression with deep re-
current neural networks. In proc. IEEE International
Conference on Acoustics, Speech and Signal Process-
ing (ICASSP), 2014.

[26] E. P. Xing, A. Y. Ng, M. I. Jordan, and S. Russell.
Distance metric learning with application to clustering
with side-information. Advances in neural information
processing systems, 15:505–512, 2003.

[27] Y.-H. Yang and H. H. Chen. Music Emotion Recogni-
tion. CRC Press, 2011.

322 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



   A LATENT REPRESENTATION OF USERS, SESSIONS, AND 
SONGS FOR LISTENING BEHAVIOR ANALYSIS 

Chia-Hao Chung Jing-Kai Lou Homer Chen 
National Taiwan University 
b99505003@ntu.edu.tw 

KKBOX Inc. 
kaelou@kkbox.com 

National Taiwan University 
homer@ntu.edu.tw 

ABSTRACT 
Understanding user listening behaviors is important to the 
personalization of music recommendation. In this paper, 
we present an approach that discovers user behavior from 
a large-scale, real-world listening record. The proposed 
approach generates a latent representation of users, 
listening sessions, and songs, where each of these objects 
is represented as a point in the multi-dimensional latent 
space. Since the distance between two points is an 
indication of the similarity of the two corresponding 
objects, it becomes extremely simple to evaluate the 
similarity between songs or the matching of songs with 
the user preference. By exploiting this feature, we 
provide a two-dimensional user behavior analysis 
framework for music recommendation. Exploring the 
relationships between user preference and the contextual 
or temporal information in the session data through this 
framework significantly facilitates personalized music 
recommendation. We provide experimental results to 
illustrate the strengths of the proposed approach for user 
behavior analysis. 

1. INTRODUCTION 
Analyzing the listening behavior of users involves 
identifying and representing the music preferences of 
users. However, the music preference of a user is 
dynamic and varies with the listening context [1], such as 
time, location, user’s mood, etc. How to take the 
contextual information into consideration for music 
recommendation is an important research issue [1]–[3]. In 
this work, we focus on the analysis of dynamic listening 
behavior and use the obtained information to personalize 
music recommendation. 

Music and user preference are commonly represented 
using a taxonomy of musical genres, such as hip-hop, 
rock, jazz, etc. In this approach, the preference of a user 
is represented as a probability distribution of the genres 
that the user listened to. Although simple and easy to 
implement, the main drawback of this approach is that 
there is not a uniform taxonomy for music, making genre 
identification ambiguous and subjective [4]. In addition, 
it often lacks the kind of granularity needed to distinguish 
between songs of the same genre.  

In practice, it is often required to describe the music 
preference of a user with a fine precision. This requires a 
good metric to measure the similarity between songs. 
Therefore, besides the uniformity and granularity 
requirements, a music preference representation scheme 
has to provide an effective similarity measurement. Many 
approaches based on latent representation have been 
proposed [5], [7] to meet all three requirements. These 
approaches represent songs and user preferences by one 
single scheme. The unified representation, which is a 
multi-dimensional vector, is learned from a listening 
record or a rating record. Each dimension of the vector 
represents a latent feature of songs and user preferences. 
Therefore, each song or user is an object represented by a 
vector in a latent space, making the evaluation of 
similarity between songs or the matching between songs 
and users a simple matter of distance measure between 
vectors.  

The music preference of a user may change with the 
listening session [3], [8]. A listening session here refers 
to a sequence of songs (and the associated time code) 
which a user continuously listened to. It contains 
information related to the listening experience of the user. 
To account for the dynamic nature of music preference, 
we incorporate the notion of session into the learning 
stage of a latent representation. In our approach, each 
session of the listening record of a user is also 
represented as an object in the latent space. The 
contextual information, such as the time of day and the 
device used for music listening, associated with each 
session enables the analysis of user preference at a fine 
level. 

 © Chia-Hao Chung, Jing-Kai Lou, Homer Chen. 
Licensed under a Creative Commons Attribution 4.0 International 
License (CC BY 4.0). Attribution: Chia-Hao Chung, Jing-Kai Lou, 
Homer Chen. “A Latent Representation of Users, Sessions, and Songs
for Listening Behavior Analysis”, 17th International Society for Music 
Information Retrieval Conference, 2016. 

Fig. 1. A two-dimensional latent space representation of 
three users listening to 403 songs in 60 sessions. Each 
user, session, or song is represented by a point in the 
latent space, and each user is surrounded by the songs 
played by the user and the listening sessions during 
which the songs are played. 

323



   
In addition, each user, session, or song can be plotted 

as a point in a two-dimensional latent space, as illustrated 
in Fig. 1. Clearly, this provides an intuitive way to 
visualize or analyze the relationship between songs and 
user preferences. We exploit this feature of latent space 
for listening behavior analysis. 

To the best of our knowledge, this paper is among the 
first that introduce the notion of session to the 
representation learning for music recommendation and 
proposes an approach that generates the latent 
representation of users, sessions, and songs (Sections 3 
and 4). The proposed latent representation is a powerful 
basis for visual analysis of user preference in a two-
dimensional space and enables the discovery of a user’s 
listening behavior that would otherwise be difficult to do 
with conventional representations (Section 5). In addition, 
we propose an effective method to evaluate the 
performance of a latent representation for listening 
behavior discovery (Section 6). 

2.  REVIEW 
Statistical approaches that analyze the dynamic nature of 
music preference have been reported in the literature. 
Herrera et al. [2] adopted a circular statistic method to 
identify the temporal pattern of music listening. Zheleva 
et al. [3] proposed a session-based probabilistic graphical 
model to characterize music preference and showed the 
usefulness of session to capture the dynamic preference 
of a user. The importance of these two pieces of work is 
that they show users’ listening behaviors (patterns) can be 
discovered and used to predict future user behaviors.  

Approaches that generate a latent representation of 
users and songs for music recommendation have been 
reported. Dror et al. [5] adopted a matrix factorization 
method to characterize each user or song as a low-
dimensional latent vector and to approximate the user 
preference (i.e. a rating) as the inner product of a user 
vector and a song vector. The temporal dynamics of 
music preference and the taxonomy of musical genres are 
considered jointly to improve the performance of music 
recommendation. Moore et al. [7] proposed a dynamic 
probabilistic embedding method to generate a 
representation of users and songs for music preference 
analysis. Each user or song is represented as a point in a 
two-dimensional space, and the position of each point is 
allowed to gradually change over time. The trajectory of 
a point shows the long-term variation in music preference. 
Recently, Chen et al. [9] introduced a network 
embedding method to enhance music recommendation. 
The social relationship between users is exploited to learn 
a latent representation of social listening, which is fed to 
a factorization machine to improve the performance of 
music recommendation. 

3. LATENT REPRESENTATION LEARNING 
In our latent space approach, a network that describes the 
relationship between users, sessions, and songs stored in 
a listening record is first constructed, then a network 
embedding method is applied to learn the latent 

representation from the network. The details are 
described in this section.  
3.1 Network Construction 
The basic idea to construct a network that describes the 
relationship between users and songs is to consider each 
user or song as an object in the network and connect each 
user with the songs the user listened to [9]. To account 
for the dynamic nature of music preference, we further 
incorporate listening sessions into the network 
construction and consider each user, session, or song as 
an object in the network. A user is connected with all 
sessions of the user, and a session is connected with all 
songs appearing in the session. This makes the network 
capture the dynamic music preferences of users. 
3.2 Network Embedding 
A network embedding method aims at learning the latent 
representation of objects in a network. Such 
representation captures the relationship between the 
objects in the network. Objects having a similar 
neighborhood in the network are represented by similar 
vectors.  In our approach, the DeepWalk algorithm [10] is 
applied to learn the latent representation. This algorithm 
consists of a random walk procedure and an update 
procedure. 

A network consists of a set of vertices representing the 
objects and a set of edges connecting related vertices. The 
random walk procedure uniformly samples a random 
vertex as the root of a random walk, and then uniformly 
samples a random vertex from the neighbors of the 
current vertex as the next vertex until the maximum 
walking length L is reached. The procedure repeats until 
each vertex serves as the root of R random walks, where 
R is a predetermined number. The total number of 
random walks generated in this procedure is thus equal to 
the number of vertices in the network multiplied by R. 
The vertices visited in a random walk are processed next. 

The latent representation of each vertex of is initially a 
d-vector of random variables, where d denotes the 
dimension of the latent space. The update procedure [11], 
[12] takes the random walks one by one as input and 
progressively refines the latent representation of objects 
in two steps.  The first step creates a probability formula 
for each vertex in a random walk, starting from the first 
one. Specifically, for a vertex vi in a random walk and a 
neighborhood window w, the conditional probability that 
the set of vertices {vi-w, …, vi-1} appears in the backward 
window of vi and {vi+1, …, vi+w} appears in the forward 
window of vi is expressed as 
 
 
which is called the co-occurrence probability because it 
indicates the likelihood that these two sets of vertices are 
in the neighborhood of vi in a random walk. If the order 
of the vertices in each window is ignored, the co-
occurrence probability can be rewritten as 
 

(1) 
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In the second step, the vector of vi is optimized by 
maximizing P(vj | vi). To enhance computational 
efficiency, a binary tree with all vertices of the network 
as the leaves is constructed to convert the maximization 
to a tree traversal process [13]. A path of the tree 
traversal is specified by a sequence of nodes {b1, b2, …, 
bk} in the binary tree, where k is the length of the path, b1 is the root of the binary tree and bk is the leaf node 
representing vj. Then the conditional probability P(vj | vi)  can be rewritten as 
 

(2) 
 
Each conditional probability P(bl+1 | vi, bl) is modeled by 
a logistic function and can be rewritten as 
 

(3) 
 
where Φ(vi) maps vi to its vector, and Ψ(bl) maps bl to its 
vector. Then, a stochastic gradient descent method [14] 
and a back-propagation algorithm [15] are applied to 
optimize Φ and Ψ. The update procedure repeats until the 
optimization for each vertex in each random walk is 
processed. The optimized Φ is the latent representation of 
each vertex in the network. 

4. OUR APPROACH 
The three basic steps of the proposed approach are shown 
in Fig. 2. The first step involves the preparation of a 
listening record, the second step involves the construction 
of a network and the learning of a latent representation 
from the network, and the third step involves the analysis 
of user behavior. The first and second steps are described 
in this section, and the third step is described in Section 5. 
4.1 Preparation 
We obtain a listening record of one hundred thousand 
users from a leading online music service provider [18] 
and use it in this work. The listening record contains 
every listening event of these users from January 1, 2015 
to June 30, 2015, and each event contains seven fields: 
timestamp, user, session, listening device, song title, 
artist(s) of the song, and music tag(s) of the song. All 
users are anonymized to maintain privacy.  

A session, which indicates the listening experience of 
a user, is defined as a sequence of events of the user with 
the following constraints: The gap between any two 
neighboring events in a session is shorter than 10 minutes, 
and the listening device stays the same in a session. 

The music tags are used for visual analysis in Section 
5, showing either genre or language information of a song. 
A genre tag indicates the musical style of the song, and a 

language tag indicates the language of the song. We also 
obtain the popularity of each song by taking the logarithm 
of its playcount for the visual analysis. 

The listening record is split in to training set and 
testing set. We adopt the real-life split strategy [16] and 
split the listening record into two parts: before and after 
00:00:00, June 1, 2015. The last 80 sessions of each user 
in the first part are selected as training data, and the first 
20 sessions of each user in the second part are selected as 
the testing data. Users with insufficient sessions or 
sessions with less than 5 songs in either set are discarded. 
In addition, because a cold start problem [16] may occur 
if songs in the testing set are not in the training set, we 
discard such events from the testing set. Table 1 shows 
the data statistics. The testing set is used for performance 
evaluation in Section 6.  
4.2 Representation Learning 
Using the training set, a user-session-song network is 
constructed as described in Section 3.1, and the 
DeepWalk algorithm is applied to generate the latent 
representation of users, sessions, and songs from the 
network. We set the parameters of the learning algorithm 
as the following: The length of a random walk L is 40, 
the number of random walks starting from a vertex R is 
20, and the window size w is 6. A two-dimensional latent 
representation is generated for visual analysis (Section 5), 
and a 128-dimensional latent representation is generated 
for performance evaluation (Section 6).  

5. VISUALIZATION AND ANALYSIS 
A two-dimension latent space provides an intuitive way 
to visualize the relationship between songs and user 
preferences. We perform a visual analysis of the general 
trend of listening preference and then the individual 
listening behavior in such space. The details of these 
operations are described in this section.  
5.1 General Trend of Listening Preference 
We can get an idea of the general trend of listening 
preference with respect to the song properties (the 
language of songs, the musical genre, and the song 
popularity) by examining the distribution of songs in the 
latent space. The two-dimensional latent space learned 
from the training set is plotted in Fig. 3. In each plot, 
25,000 songs are plotted, and each song is marked with a 
specific color according to the property of the song.   

In Fig. 3 (a), songs are colored according to the 
language of songs. There are songs in six different 
languages in our dataset where Western songs take a 
large proportion. We can see that songs of the same 
language are close and form a cluster in the latent space. 
This suggests that the user listening preference is strongly 
related to the song language and that a user tends to listen 
to songs of the languages that the user is familiar with. 

 #events #users #songs 
Training set 33,790,690 33,292 441,796 
Testing set 8,797,016 19,831 219,377 

Table. 1. Data statistics. 
 Fig. 2. Overview of our approach. 
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We can also see that some clusters are located closely. 
For example, Mandarin songs and Hokkien songs are 
located closely or even mixed together. This indicates 
that a part of users who listen to Mandarin songs are 
likely to listen to Hokkien songs as well.  

In Fig. 3 (b), songs are colored according to the 
musical genre. Clearly, songs of the same genre are 
located in the same area in the latent space. The similarity 
between genres is reflected on their distance. For example, 
Jazz songs are close to classical songs, and electronic 
songs are close to hip-hop songs. Combining Figs. 3 (a) 
and (b), we can see that Westerns songs contain many 
genres, such as hip-hop, rock, electronic, jazz, and 
classical songs, and Mandarin songs are mostly pop 
songs. 

In Fig. 3 (c), songs are colored according to the 
popularity. The popularity of each song is obtained by 
taking the logarithm of the playcount of the song. For 
easy visualization, all songs are divided in to five levels 
in terms of popularity. Clearly, the most popular songs 
are near the origin of the latent space, and unpopular 
songs are far from the origin. It indicates that most users 
listen to the most popular songs, a typical long tail 
phenomenon of music listening [17]. Combining Figs 3 
(a), (b), and (c), we can see that Western, Mandarin and 
Korean pop songs are more popular than other songs in 
our dataset. 
5.2 Individual Listening Behavior  
The individual behavior is analyzed through the 
distribution of sessions and songs associated with a user 
in latent space. A session is close to the songs that appear 
in the session, and sessions form a cluster if they contain 
similar songs. Fig. 4 shows the analyses for nine example 
users. In each plot, the sessions and songs associated with 
a user are plotted.  

One important discovery is that users can be divided 
into two types, one with a single preference and the other 
with dynamic preference. For some users, the sessions are 
mostly located in one small area in the latent space. This 

means that the users listens to the same songs most of the 
time and hence belong to the first type. For other users, 
the sessions have a wide distribution and form several 
clusters. This indicates that the users belong to the second 
type.  

In order to analyze the dynamic preference of an 
individual, we distinguish sessions by the context 
information (the device used for listening and the time of 
day). In Fig. 5, we color each session according to the 
device used for listening, and we can clearly see that the 
sessions form clusters according to the listening device. 
This indicates there is a strong relevance between the 
music preference and the listening device. For example, a 

 

 

 Fig. 4. Listening behavior analysis for nine example 
users. The sessions and songs associated with a user are 
plotted in each plot, where a red point represents a user, a 
blue point represents a session, and a gray point 
represents a song.  

 (a) (b) (c) 
Fig. 3. The two-dimensional latent space learned from the training set is shown in three plots. In each plot, 25,000 songs 
are randomly selected, and each song is specified by a point and marked with a specific color according to the property 
of the song. The proportion of songs with each property is showed in the legend. (a) Each song is marked according to 
the song language. (b) Each song is marked according to the genre, and (c) Each song is marked according to the 
popularity (Level 5 indicates the most popular songs), and songs with high popularity are overlaid over those with low 
popularity. 
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user may listen to rock songs through computer and listen 
to pop songs through mobile phone. This kind of listening 
behavior can be found on many users in our dataset. In 
Fig. 6, we color each session according to the time of day, 
and each plot shows a user whose music preference is 
related to the time for music listening. However, this kind 
of listening behavior is not easy to be observed on users. 
Probably it is because the relationship between time and 
music preference is too complex to be explained. 

An interactive system for individual behavior analysis 
can be designed based on the latent space. For example, 
when we select a session, the system would highlight the 
songs that appear in the session so that we can further 
discover the user preference in each session. 

6. PERFORMANCE EVALUATOIN 
Two experiments are designed to evaluate the 
effectiveness of a latent representation for listening 
behavior prediction. The first one involves retrieving 
similar songs (i.e. songs that appear in the same session), 
and the second one involves recommending songs that 
match a user’s preference in a session. Each experiment 
is considered a retrieval problem whose goal is to retrieve 
songs relevant to a query object (user, session, or song) as 
many as possible. Specifically, a query object is selected 
according to a given testing session, and songs that 
appear in the testing session are considered relevant to the 
query object. For a query object, its k nearest neighboring 
songs in the latent space are retrieved, and the 
performance is evaluated in terms of how well the 
retrieved songs match the relevant songs. In each 
experiment, 200,000 sessions in the testing set are 
randomly selected for testing. Because the average length 
of the testing sessions is 20 songs, k (the number of 
retrieved songs) is set to {10, 15, …, 50}. 

Two standard evaluation metrics for retrieval problem 
are applied here: Recall and precision:  

|  ∩ |
| |                               4  

|  ∩ |
| |                            5  

where  is the set of songs that appear in a testing 
session and   is the set of retrieved songs. A high recall 
means that most of relevant songs are retrieved, and a 
high precision means that most of the retrieved songs are 

relevant songs. The average recall and precision for all 
testing sessions are reported. 

The performances of the following four methods are 
reported for comparison. 

 Random: k songs are randomly selected from the 
dataset as the retrieved songs. 

 Popularity: The popularity of each song is obtained 
by calculating its playcount in the training set, and 
the k most popular songs are considered the 
retrieved songs. 

 Matrix factorization (MF) [6]: The vector  for 
user u and the vector  for song i are learned by 
solving the optimization problem  

min
∗, ∗

∑ ‖ ‖ ‖ ‖, ,    (6) 
where 1 log 1  is the confidence 
value of the playcount  of user u for song i, and λ 
is a regularization parameter. Songs are retrieved 
according to the inner product between vectors.  

 User-song network (U-S): A simplified network, 
where a user directly connects to all songs the user 
listened to, is constructed. The vectors for users and 
songs are learned from the network using the 
DeepWalk algorithm. Songs are retrieved according 
to the Euclidean distance between vectors. 

For fair comparison, the dimension of the latent 
representations (vectors) learned by MF, U-S, and the 
proposed method is fixed to 128. 
6.1 Experiment for Retrieval of Similar Songs 
This experiment evaluates the ability of the representation 
of songs to capture the similarity between songs. Because 
songs in a session usually have similar properties, this 
experiment is to find songs that appear in the same testing 
session. Specifically, the first song in each testing session 
is selected as a query object to retrieve its k nearest 
neighbor songs, and the remaining songs in the testing 
session are considered relevant to the query object. 

The performances of various methods are compared in 
in Fig. 7. We can see that the proposed approach 
outperforms MF and U-S, showing the effectiveness of 
adding session objects into the learning stage of a latent 
representation. We can also see that the popularity-based 
method works slightly better than the random method, 
showing that many users tend to listen to the popular 
songs. This is consistent with our observation (i.e. the 
long tail phenomenon) in Section 5.1.  

  Fig. 5. The sessions are distinguished by the device used 
for music listening. Each plot illustrates a user whose 
music preference is related to the listening device.  

 Fig. 6. Each plot shows a user whose music preference is 
related to the time for music listening. The sessions tend 
to form clusters according to the time (hour of day).  
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6.2 Experiment for Music Recommendation 
This experiment evaluates the effectiveness of a latent 
representation to recommend songs to a user in a testing 
session. The vector for the user is used to retrieve its k 
nearest neighbor songs, and the songs in the testing 
session are considered relevant songs.  

As discussed in Section 5.2, a user may have dynamic 
preference, so only considering the user vector for every 
session of the user is not enough. With our observation 
that there are many users whose preferences are related to 
the listening device, we use the session vector to 
recommend songs. For each testing session, a reference 
session that belongs to the same user of the testing 
session and that is through the same listening device is 
selected as a query object, and the vector for the reference 
session is used to retrieve its k nearest neighbor songs. 

The performance comparison is shown in Fig. 8. We 
can see that if the user vector is used, the proposed 
approach outperforms MF when k is higher than 20. If the 
session vector is considered, the performance of proposed 
approach is significantly improved. It shows the benefit 
of exploiting the contextual information (device 
information) to capture the dynamic music preference of 
a user.  

7. DISCUSSION 
Besides the network embedding method adopted in this 
work, factorization is another approach that can be 
applied to generate the latent representation of objects. A 
factorization method approximates the interactions (e.g. 
ratings or counts) between objects as the inner product of 
the vectors representing the objects. In contrast, as we can 
see in Eqn. (3), the network embedding method maps all 
objects into the same latent space (Φ) and makes similar 
objects close to each other in the latent space. This 
enables us to visually analyze the relationship between 

objects in the latent space. Moreover, the network 
embedding method learns the relationship between 
objects that do not have explicit links between them, such 
as two users who listen to the same songs. Such 
relationship cannot be learned by the factorization 
method. A comprehensive comparison between the 
network embedding and factorization methods (e.g. user-
session-song factorization) is an interesting topic for 
future work. 

8. CONCLUSION 
Knowledge of the behavior of music listeners is 
important to music recommendation. In this paper, we 
have described an approach to address this issue. The 
proposed approach generates the latent representation of 
users, sessions, and songs from a listening record. Such 
representation makes the relationship between these 
objects easy to analyze. We have performed a visual 
analysis of user behavior and preference in a two-
dimensional latent space and illustrated the strengths of 
the proposed approach by comparing its music 
recommendation and retrieval performances with various 
methods. We have also shown that the information 
obtained from the two-dimensional analysis is useful for 
personalized music recommendation. The contextual 
information associated with each session enables both 
user preference analysis and music recommendation at a 
fine level. 
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ABSTRACT

We examine quality issues raised by the development of
XML-based Digital Score Libraries. Based on the authors’
practical experience, the paper exposes the quality short-
comings inherent to the complexity of music encoding, and
the lack of support from state-of-the-art formats. We also
identify the various facets of the “quality” concept with
respect to usages and motivations. We finally propose a
general methodology to introduce quality management as a
first-level concern in the management of score collections.

1. INTRODUCTION

There is a growing availability of music scores in digital
format, made possible by the combination of two factors:
mature, easy-to-use music editors, including open-source
ones like MuseScore [10], and sophisticated music nota-
tion encodings. Leading formats today are those which
rely on XML to represent music notation as structured doc-
uments. MusicXML [7] is probably the most widespread
one, due to its acceptance by major engraver softwares
(Finale, Sibelius, and MuseScore) as an exchange format.
The MEI initiative [13, 9], inspired by the TEI, attempts
to address the needs of scholars and music analysts with
an extensible format [8]. Recently, the launch of the W3C
Music Notation Community Group [15] confirms that the
field tends towards its maturity, with the promise to build
and preserve large collections of scores encoded with ro-
bust and well-established standards. We are therefore fac-
ing emerging needs regarding the storage, organization and
access to potentially very large Digital Libraries of Scores
(DSL). It turns out that building such a DSL, particularly
when the acquisition process is collaborative in nature,

c© Vincent Besson, Marco Gurrieri, Philippe Rigaux, Al-
ice Tacaille, Virginie Thion. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Vincent
Besson, Marco Gurrieri, Philippe Rigaux, Alice Tacaille, Virginie Thion.
“A METHODOLOGY FOR QUALITY ASSESSMENT IN COLLAB-
ORATIVE SCORE LIBRARIES”, 17th International Society for Music
Information Retrieval Conference, 2016.

gives rise to severe quality issues. In short, we are likely
to face problems related to validity (measure durations,
voices and parts synchronization), consistency (heteroge-
neous notations, high variability in the precision of meta-
data, undetermined or inconsistent editorial rules), com-
pleteness (missing notes, directives, ornamentation, slurs
or ties), and accuracy (music, lyrics).

There are many reasons for this situation. First, encod-
ing formats have changed a lot during the last decades. We
successively went through HumDrum and MIDI to finally
come up with modern XML formats such as MusicXML
and MEI [14]. A lot of legacy collections have been con-
verted from one encoding to the other, losing information
along the way. Given the cost and time to edit scores,
incorporating these collections in a modern repository is
a strong temptation, but requires to accept, measure, and
keep track of their quality shortcomings.

Second, the flexibility of music notation is such that it is
extremely difficult to express and check quality constraints
on the representation. Many of the formats we are aware
of for instance do not impose that the sequence of events
in a measure exactly covers the measure duration defined
by the metrics. As another example, in polyphonic mu-
sic, nothing guarantees that the parts share the same metric
and same duration. So, even with the most sophisticated
encoding, we may obtain a score presentation which does
not correspond to a meaningful content (the definition of
which is context-dependent), and will lead to an incorrect
layout (if not a crash) with one of the possible renderers.

Third, scores are being produced by individuals and in-
stitutions with highly variables motivations and skills. By
“motivation”, we denote here the purpose of creating and
editing a score in digital format. A first one is obviously
the production of material for performers, with various lev-
els of demands. Some users may content themselves with
schematic notation of simple songs, whereas others will
aim at professional editing with high quality standards.
The focus here is on rendering, readability and manage-
ability of the score sheets in performance situation. An-
other category of users (with, probably, some overlap) are
scientific editors, whose purpose is rather an accurate and
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long-term preservation of the source content (including
variants and composer’s annotations). The focus will be
put on completeness: all variants are represented, editor’s
corrections are fully documented, links are provided to
other resources if relevant, and collections are constrained
by carefully crafted editorial rules. Overall, the quality
of such projects is estimated by the ability of a document
to convey as respectfully as possible the composer’s in-
tent as it can be perceived through the available sources.
Librarians are particularly interested by the searchability
of their collections, with rich annotations linked to tax-
onomies [12]. We finally mention analysts, teachers and
musicologists: their focus is put on the core music mate-
rial, minoring rendering concerns. In such a context, part
of the content may be missing without harm; accuracy, ac-
cessibility and clarity of the features investigated by the
analytic process are the main quality factors.

Finally, even with modern editors, qualified authors,
and strong guidelines, mistakes are unavoidable. Editing
music is a creative process, sometimes akin to a free draw-
ing of some graphic features whose interpretation is be-
yond the software constraint checking capacities. A same
result may also be achieved with different options (e.g., the
layer feature of Finale), sometimes yielding a weird and
convoluted encoding, with unpredictable rendering when
submitted to another renderer.

The authors of the present paper are in charge of the pro-
duction, maintenance and dissemination of digital libraries
of scores encoded in XML (mostly, MEI). NEUMA is an
open repository of scores in various formats, managed by
the IReMus 1 , and publicly accessible at http://neuma.
huma-nm.fr. The CESR 2 publishes rare collections of
Renaissance music for scholars and musicians (see, e.g.,
the “Lost voices” project, http://digitalduchemin.
org). Both institutions have been confronted with the need
to address issues related to the consistent production of
high-level quality corpora, and had to deal with the poor
support offered by existing tools. The current, ad-hoc,
solution adopted so far takes the form of editorial rules.
The approach is clearly unsatisfying and unable to solve
the above challenges. Even though we assume that the
scores are edited by experts keen to comply with the rec-
ommendations, nothing guarantees that they are not misin-
terpreted, or that the guidelines indeed result in a satisfying
encoding. Moreover, rules that are not backed up by auto-
matic validation safeguards are clearly non applicable in a
collaborative context where un-controlled users are invited
to contribute to the collections.

In the rest of the paper we position our work with
respect to the field of quality management in databases
and Digital Libraries (Section 2) and propose a general
methodology to cope with quality issues in the specific area
of digital score management. Section 3 exposes a qual-
ity management model. We apply this model to represent
data quality metrics, usages and goals, as explained in Sec-
tion 4, which includes our initial taxonomy of data quality

1 Institut de Recherche en Musicologie, http://iremus.cnrs.fr.
2 Centre d’Etudes Supérieures de la Renaissance, http://cesr.

univ-tours.fr.

metrics for score libraries. Finally, Section 5 recalls the
contributions and outlines our perspectives.

2. QUALITY MANAGEMENT IN DATABASES
AND DIGITAL LIBRARIES

Much published data suffers from endemic quality prob-
lems. It is now well-recognized that these problems may
lead to severe consequences, and that managing the quality
of data conditions the success of most existing information
systems [5]. Data quality is a complex concept, which em-
braces different semantics depending on the context [11].
It is described through a set of quality dimensions aiming
to categorize criteria of interest. Classical quality dimen-
sions are completeness (the degree to which needed infor-
mation is present in the collection), accuracy (the degree to
which data are correct), consistency (the degree to which
data respect integrity constraints and business rules) and
freshness (the degree to which data are up-to-date). Data
quality over a dimension is measured according to a set of
metrics that allow a quantitative definition and evaluation
of the dimension. Examples of metrics are “the number of
missing meta-data” for the evaluation of the completeness,
and “the number of conflicting duplicates” for consistency.
These are simple examples but the literature proposes a
large range of dimensions and metrics, conceptualized in
quality models [4]. Of course, not all the existing dimen-
sions and metrics may be used for evaluating data quality
in a given operational context. An important property con-
cerning data quality is that it is defined according to fitness
for use of data, meaning that quality measurement involves
dimensions and metrics that are relevant to a given user for
a given usage. User u1 may be concerned by some quality
metrics for a specific usage, by some other metrics for an-
other one, and they can be completely different than those
needed by user u2.

The literature proposes general methodologies for man-
aging data quality [3]. We focus here on its assessment.
Roughly speaking, each assessment methodology includes
a quality definition stage and a quality measurement one.
In the first stage, the quality definition consists in eliciting
data quality requirements. Concretely, this means choos-
ing quality dimensions and metrics of interest, and even-
tually thresholds associated with. Because data quality is
fitness for use (depends on the context), defining data qual-
ity is not trivial. Dedicated methodological guidelines may
be followed like the Goal Question Metric [2], which pro-
poses to define quality metrics according to a top-down
analysis of quality requirements. For each user (or each
user role) and for each of his/her usages of data, conceptual
goals are identified. Goals specify the intent of measure-
ment according to a usage of data. Each goal is then re-
fined into a set of operational quality questions. Each such
question is itself expressed in terms of a set of quantitative
quality metrics with possible associated thresholds (ex-
pected values). Measuring the quality metrics enables to
(partly) answer to the quality questions, and consequently
enables to decide whether data satisfy the requirements for
the given goal (and each usage by extension).
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Data quality methodologies are designed at a generic
level, leading to difficulties for their implementation in a
specific context (operational context and available infor-
mation system and data). Additional context-dependent
quality methodologies are then needed. We propose such a
methodology for an explicit and systematic data quality as-
sessment in DSL. To our knowledge, such a methodology
has never been proposed in the MIR literature so far.

3. OUR QUALITY MANAGEMENT MODEL

We assume a very general organization of a DSL, where
atomic objects are scores, organized in collections. We
further assume that scores are encoded as structured docu-
ments (typically in MusicXML or MEI) that supply a fine-
grained representation of all their structural, content, and
rendering aspects.

The main components of the model are (i) modelization
of metrics at the score level and collection levels, and of
their relationships, (ii) definition of usages and goals, ex-
pressed with respect to these metrics, and (iii) computation
of quality metrics. We present these concepts in order.

3.1 Quality schema

The initial step to address quality issues is to determine
the set of relevant indicators, or metrics, that support the
quality evaluation, and how they are related to each other.

Figure 1. Quality schema: score-level and collection-level
metrics

In our context, we consider score-level metrics, com-
puted from individual scores, and collection-level met-
rics, essentially computed by aggregation from the score
level. We use lowercase/uppercase symbols (e.g., m or M
to specifically represent, resp., score-level and collection-
level elements (metrics, values, or functions), and small
capitals (e.g., M) when they do not need to be distin-
guished. We denote byMsc the set of score-level quality
metrics, Mcoll the set collection-level metrics, and asM
their unionMsc ∪Mcoll.

Metrics are clustered in quality dimensions. For sim-
plification reasons, we suppose that (i) a metric belongs to
exactly one quality dimension and that (ii) each metric is
relevant for every score/collection of the library (the model
can easily be extended if these restrictions are too strong).
For each metric m ∈ M, we denote by dom(m) the do-
main of the metric.

Each DSL has therefore to determine a two-levels
organization of dimensions and metrics that constitutes

the quality schema. Fig. 1 shows its general form.
The value of each (score-level) metric mi is computed
from an atomic object (a score) by some function fi.
The domain of a metric can be a Boolean (“the tempo
is / is not missing”), an integer (“n measures are com-
plete”), a rational (“position is given for x notes out
of y”), etc. In the case of numeric domains, for
convenience, we map each value to a predefined scale
S of the form {very poor(1), poor(2), borderline(3),
good(4), very good(5), not relevant(⊥)} easily adapt-
able if needed.

The value of a (collection-level) metric Mj is obtained
by an aggregation function Fj which operates over the
score-level metric vectors. As an illustration, imagine that
we aim at representing the syntactic consistency Ms of a
collection, defined as a standard variation from the follow-
ing score-level values: presence of bars mb, presence of
directives md, presence of ornamentation mo. Then the
aggregation function Fs takes as input a set of triplets
(vb, vd, vo), which denotes values for mb, md and mo

resp., one for each score of the collection. In the general
case, an aggregation function F might take into account
the whole set of score-level values.

3.2 Usages, goals, and profiles

Consistency
m1 mi mi+1

Dimension

Metrics …
Completeness

mk…
Accuracy

… …

…

Score-level taxonomy

Collection-level taxonomy

g1 gj… gj+1 gk… …

Consistency
M1 Mp Mp+1

Dimension

Metrics …
Completeness

Mq…
Accuracy

… …

…

Score-level 
goals

G1 Gp… Gp+1 Gq… …
Collection-level

goals

G1 Gp… Gp+1 Gq… …

G1 Gp… Gp+1 Gq… …

usage A

usage B
usage C

Vincent Alice

g1 gj… gj+1 gk… …

usage a

usage c

Figure 2. Usages, metric goals, and profiles

Assume now that a quality schema is defined for a DSL
managing a set of collections. We are then able to propose
to the DSL users a support to express their quality require-
ments. The main concepts at this level are usages, metric
goals and profiles (Fig. 2). A quality metric goal assigns an
expected quality level for a metric as a threshold th ∈ S.

A user can express requirements as a set of goals rel-
ative to a subset of the metrics, ignoring those which she
deems irrelevant in the context of a specific usage. For
instance a melodic analyst can, for this usage, choose to
safely ignore the quality metrics that pertain to directives
or lyrics. Conversely, for publication purposes, directives
and lyrics quality will be required to match a high-quality
threshold, whereas analytic annotations are irrelevant. Re-
quirements are therefore usage-related, and take for each
usage the form of a set of goals on the metrics specifically
relevant for this usage. The specification of such a require-
ment constitutes what we call a quality profile.
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From a methodological point of view, each quality pro-
file, including embedded quality dimensions and metrics,
is defined by following the Goal Question Metric approach
(see Section 2). Each metric and dimension appearing in a
profile is intrinsically added to the general quality schema.
In other words, the set M of metrics may be defined by
union of all metrics appearing in the profiles, which are
the relevant metrics identified by the users of the DSL.

3.3 Measurements

A specific module of the DSL is in charge of comput-
ing the metrics measurements. As summarized by Fig. 3,
this requires to synchronize each score s with the vector
f1(s), f2(s), · · · , fk(s), · · · representing its quality mea-
surements with respect to the schema.

A

Scores

Collection

…

Consistency
m1 mi mi+1

Dimension

Metrics …
Completeness

mk…
Accuracy

… …
…

Consistency
M1 Mp Mp+1

Dimension

Metrics …
Completeness

Mq… … …

…

Score-level taxonomy

Collection-level taxonomy

v1 vj… vj+1 vk… …

v1 vj… vj+1 vk… …

v1 vj… vj+1 vk… …

…

compute (f i, …. fk)
compute (f i, …. fk)

compute (f i, …. fk)
score metrics
values

Aggregation
(F1…Fq…)

V1 Vp… Vp+1 Vq… …
Quality
report

Accuracy

Figure 3. Metrics computation

Likewise, the set of measurements for some collec-
tion C must be computed from the quality measure-
ments of the scores that belong to C. One obtains
a summary of quality indicators relative to C that we
call quality report. More formally, the quality report
of a collection C (resp. of a score s) is a function
QRC : Mcoll → ∪M∈Mcoll

dom(M) (resp. QRs :
Msc → ∪m∈Msc

dom(m)) that assigns a value for C
(resp. score s) to each metric ofMcoll (resp.Msc).

Technically, the main issue is to maintain a quality re-
port that faithfully reflects the content of the collection. If
the collection is created once for all and never updated, a
single batch computation is enough. In general, though,
collections are extended, scores are modified, and we have
to take those changes into account. At the score level,
a trigger seems an appropriate solution: any change of
the score results in the execution of the metrics functions
f1, · · · , fk. Things are more complicated at the collection
level. First, a change in some score does necessarily im-
pact the collections metrics, or at least all of them. Second,
one has to carefully consider aggregation functions which
can be computed incrementally (e.g., count()) from those
that require a brand new computation from their full input
(e.g., avg()). Our current implementation adopts a simple
recompute-everything strategy, but more sophisticated ap-
proaches need to be investigated in the future.

3.4 Matching goals and measurements

Let us now consider how we exploit our two main artifacts:
user goals on one side, measurements and reports on the
other side. This actually depends on the user’s role: pub-
lishers are responsible for inserting and updating scores
and collections, whereas consumers can only browse and
read. Both a them can define a profile, but for different
purposes in the system.
Consumer role and information retrieval. A data con-
sumer may define a profile specifying the expected qual-
ity level of data that is needed for a given usage. This
profile may be used as a filter by retrieving only appro-
priate data of the DSL, at the collection or score level, or
for recommendation functionalities by suggesting collec-
tion or scores of the DSL that respects the profile.

As an example of this filtering facility, one of our DSL
supplies a Web front-end interface to browse the collec-
tions, some of which exhibit a poor rendering on average,
yet are useful for teaching purposes. To limit their access,
we can define a usage browse with high rendering metric
goals, assigned to the anonymous user. Anyone access-
ing to the Web UI without logging in will automatically
adopt this default usage and will access only to high-level
graphic scores. Connected users can be given access to the
teaching collections via another specific usage.
Publisher role and data creation/update. A publisher
may define a profile that specifies the needed quality level
of data to be achieved before publishing, which may sus-
pend the publishing of the collections or scores that do not
respect the profile. This kind of practice goes beyond the
control of the quality by the publisher as it also makes it
possible to expose a quality certification, for specific us-
ages (profiles) of data available in the platform.

More formally, a quality report QR satisfies a profile P
iff each quality metric goal of P is satisfied by the values of
QR. Given a set (of collections or scores) S and a profile
P , the filtering of S according to a profile P is the set
{e ∈ S |QRe satisfies P}.

4. APPLICATION: GOALS AND USAGES FOR
MEI COLLECTION

We interviewed librarians in charge of the two DSL
NEUMA and THE LOST VOICES PROJECT (simply de-
noted by LOST VOICES in the following). Following the
Goal Question Metric approach (driven by data use cases,
see [2] for details), we exhibited a set of relevant quality
questions and metrics for data quality management.

4.1 User requirements for NEUMA

Production of scores. NEUMA is an open repository of
scores in MusicXML and MEI. Contributions to NEUMA

come either from musicologists for on-line publication
purposes, with highly ranked quality standards, or from
legacy sources (KernScores for instance, converted to
XML formats). For on-line editions, a clean and consistent
rendering is required, as well as an homogeneous presenta-
tion of the scores of a same collection. The level of details
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of meta-data should not strongly vary from one score to the
other (in a same collection). Legacy collections are incor-
porated in NEUMA for teaching or research purposes.
Usage of scores. All the scores submitted to the library are
processed with a uniform workflow, which includes pro-
duction of Lilypond scripts for rendering purposes, conver-
sion from/to Music/MEI, extraction of textual and musical
features for indexing, etc. Applying this workflow exac-
erbates the heterogeneity of the input and reveals a lot of
discrepancies and variations in the tolerance levels of the
various tools that need to access the score representation.
Lilypond for instance hardly accepts incomplete measures,
whereas this is tolerated and corrected as much as possible
by most MusicXML-based editors. A same meta-data field
(e.g., authors, title) can be found in many different places
in MusicXML (things are better with MEI), resulting in an
erratic rendering with any tool other than the initial editor.
Quality concerns. A common concern met by all users is
the need to obtain a decent visualization of a score. Here,
“decent” means that any user accessing a score in the li-
brary should be able to display it with a desktop tool with-
out a strong readability impact. Unfortunately, this turns
out to be difficult to achieve. A score created with a spe-
cific engraver E1 may contain issues, which are tolerated
by E1 but result in an awful rendering with E2. In gen-
eral, having a valid MusicXML or MEI document does not
guarantee that it can correctly be visualized as a score.

If we leave apart the readability problems, specific
usages dictate the quality demands and at which level
(score or collections) these demands take place. The Bach
chorales for instance are supplied by an external source
with accurate music representation, but missing lyrics.
This obviously keeps them from any use in a performance
perspective, but preserves their interest for music analysis
purpose.

4.2 User requirements for LOST VOICES

Production of scores. LOST VOICES is a library of
Early European (mostly Renaissance) music scores. It is
maintained by a research institution with two main goals:
(i) publish (on regular score sheets and on-line) rare col-
lections of Renaissance works, (ii) design and promote
advanced editorial practices regarding scholar editions of
early music sources, often incomplete or fragmented. All
the produced scores are encoded in MEI and must comply
to very detailed editorial rules. We cannot of course list
them all: they cover usage of ancient and modern clefs,
presence of incipits, bars and alterations, signs used for
mensural notation, text/music association, etc.
Usage of scores. Scores intended for on-line edition
must be submitted to an additional manual process to be
compatible with MEI-based rendering tools (VexFlow 3 or
Verovio 4 ). This includes in particular a specific encoding
of variants and missing fragments.
Quality concerns. Most of the editorial rules cannot be au-
tomatically checked, and this gives rise to two major issues

3 http://www.vexflow.com
4 http://www.verovio.org

Syntactic accuracy at the score level
Question – Are measures filled and complete?
Metric – Proportion of syntactically accurate measures over
the total number of measures in the score; 1 for non-measured
music.
Question – Do parts have the same length?
Metric – Proportion of non outliers length parts over (all) the
parts of the score.
Question – Is the voice nomenclature correct?
Metric – Boolean (yes/no).

Table 1. Syntactic accuracy questions and metrics

related to quality management. First, all scores have to be
double-checked (i.e., by the person that initially encodes
the scores and by a supervisor), a very time-consuming
process. Second, the library cannot as such be opened to
external contributions, due to the complexity of rules and
of the lack of automatic control that would reject inputs
falling to match the required encoding requirements.

4.3 Quality Metrics

Based on the previous studies, we defined an initial taxon-
omy of two DSL quality schemas for, resp., NEUMA and
LOST VOICES. It is worth noting that the two schemas are
significantly distinct, which supports our design choice of
a DSL-level modeling of quality requirements.

Due to space restrictions, we illustrate the schemas with
a tiny sample of the collected metrics requirements, fo-
cusing on consensual quality dimensions of literature: the
consistency, the accuracy and the completeness. Other di-
mensions could be considered if needed. For instance, con-
sidering a provenance dimension of data (e.g. author, cur-
rency, timeliness, volatility) could be relevant.

4.3.1 Score Level

Accuracy is defined as the closeness between data value
and their considered correct representation. Classically,
two kinds of accuracy are considered: the syntactic ac-
curacy and the semantic one. Syntactic accuracy in turn
takes two forms. One might first check if the data respect
an adequate format (validity). External constraints may
also be introduced as goals representing specific editorial
rules. For instance LOST VOICES requires a specific voice
nomenclature (Superius; Cantus; Altus; Contratenor). In
all cases, all the metrics in this dimension can automati-
cally be computed from the score encoding. Table 1 con-
tains a few examples.
Semantic accuracy measures the closeness of a value to
a considered true real-world value. Its measurement sup-
poses that there is somewhere a reference for the score con-
tent, and cannot thus be evaluated by merely looking at an
individual document. For the time being, our schemas do
not include semantic accuracy metrics. We defer alterna-
tive approaches to future work (see Section 5).

Completeness measures in what extent the score contains
all the required information. Table 2 contains some exam-
ples. It is worth recalling that defining a metric, and mea-
suring its value, does not constitute an absolute indicator

334 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Completeness at the score level
Question – Is there a figured bass?
Metric – Boolean.
Question – Are lyrics present (for vocal music only)?
Metric – Boolean.
Question – Are meta-data fields present?
Metric – Proportion of available and syntactically required
meta-data fields.

Table 2. Completeness questions and metrics

Consistency at the score level
Question – Are rendering options consistently used in the
score encoding?
Metric – Proportion of rendering options detected among a set
of given ones (e.g., note heads, beaming, positioning, spacing,
clef changes).
Question – Are performance indications uniformly present?
Metric – Uniform encoding of slurs, articulation symbols, etc.

Table 3. Consistency questions and metrics

of the DSL quality. Measuring the presence of a figured
bass for instance is only important in some usages, and for
specific corpora, and its absence does not mean that the
corpora are not fit for other usages.

Consistency, at the score level, mostly denotes a uniform
encoding of notational features. Positioning information
for score elements (notes, chords), fingering, uniform and
constant representation of the figured bass are relevant ex-
amples for our use cases (see Table 3).

4.3.2 Collection Level

Most of the collection-level metrics are obtained by an ag-
gregation process, which summarizes one or several score-
level measurements spread over the collection. In the sim-
plest form, each metric at the score-level allows to define a
corresponding metric at the collection-level, which is com-
puted as an average or standard deviation of the score-level
metric. Another part of the collection-level metrics are
simply not inferred from the collection level. We give a
few examples of representative situations.
Accuracy measurements are typically obtained by simple
statistical calculation. The (syntactic) accuracy metrics re-
lated to measures for instance compute the ratio of scores
that contains incomplete measures. Another, less directly
computable aspect, is related to the collection structure and
presentation. NEUMA for instance requires a fixed order-
ing of the scores in a collection (Table 4). Note that the
later metrics (as many of the same kinds) requires an ex-
ternal information which might be, if available, a public
reference of the collection content.
Completeness of a collection (Table 5) measures to what
extent the collection is complete enough w.r.t. an expected
population size. Here, again, this either requires an exter-
nal information of reference, or an evaluation by an expert
or a group of experts.
Consistency measures in what extend scores of a collection
respect a uniform representation (in Table 6).

Collection accuracy
Question – Are measures correctly encoded?
Metric – Ratio of correct measures.
Question – Are scores ordered as required?
Metric – Deviation from the required order.

Table 4. Collection accuracy questions and metrics

Collection completeness
Question – Is the collection population complete enough?
Metric – Proportion of available scores over the expected ref-
erence population.

Table 5. Collection completeness questions and metrics

Collection consistency
Question – Are (meta-)data supplied uniformly supplied?
Metrics – Standard deviations of the collection population for
metrics of Tables 1, 2 and 3.

Table 6. Collection consistency questions and metrics

5. CONCLUSION AND PERSPECTIVES

In this paper, we proposed a methodology for assessing
data quality in a DSL, based on user preferences. Our ap-
proach defines a generic data model that supports the spec-
ification of quality schemas, lets users define their goals
with respect to the schema of their DSL, and matches us-
ages against quality evaluation. We used this approach for
two real digital libraries, and formalized with our model
the users’ requirements. The implementation is currently
in progress for all the metrics that can be evaluated without
any external information. This covers syntactic accuracy at
the score level, and collection-level aggregated metrics.

Our proposal is a first step that must be completed in
several directions. First, several of the metrics identified
during our preliminary study cannot be evaluated from the
notation itself, but require an external reference. A first
solution is a collaborative evaluation (some methodolo-
gies were proposed e.g. in [6, 1]), for instance based on
crowdsourcing. This approach is particularly relevant for
the quality dimensions that require external skills like, e.g.,
semantic accuracy mentioned in 4.3. Another one is to ex-
ploit open semantic web data by interlinking the DSL col-
lections with other data sources [16].

A second important perspective is to address another
aspect of quality management, namely quality improve-
ment techniques [4]. Such an improvement can be fully
automatic in some specific cases (e.g., filling incomplete
measures with rests) but in general, the goal is to help
users to identify the insert/update process deficiencies, and
to suggest effective improvement strategies.

To our knowledge, no previous work in the literature
has proposed metrics for the quality evaluation of music
notation. We believe that the topic is important given the
lack of constraints of current formats, and the growing
production of XML encoded scores.
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ABSTRACT

We introduce aligned hierarchies, a low-dimensional rep-
resentation for music-based data streams, such as record-
ings of songs or digitized representations of scores. The
aligned hierarchies encode all hierarchical decompositions
of repeated elements from a high-dimensional and noisy
music-based data stream into one object. These aligned hi-
erarchies can be embedded into a classification space with
a natural notion of distance. We construct the aligned hier-
archies by finding, encoding, and synthesizing all repeated
structure present in a music-based data stream. For a data
set of digitized scores, we conducted experiments address-
ing the fingerprint task that achieved perfect precision-
recall values. These experiments provide an initial proof of
concept for the aligned hierarchies addressing MIR tasks.

1. INTRODUCTION

From Foote’s field-shifting introduction of the self-
similarity matrix visualization for music-based data
streams in [9] to the enhanced matrix representations in
[11, 17] and hierarchical segmentations in [14, 18, 21],

music information retrieval (MIR) researchers have been
creating and using representations for music-based data
streams in pursuit of addressing a variety of MIR tasks,
including structure tasks [10, 14, 17, 18], comparison tasks
[2–4,11], and the beat tracking task [1,5,8,13]. These rep-
resentations are often tailored to a particular task, limited
to a single layer of information, or committed to a single
decomposition of structure. As a result most of the rep-
resentations for music-based data streams provide narrow
insight into the content of the data stream they represent.

In this work, we introduce aligned hierarchies, a novel
representation that encodes multi-scale pattern information
and overlays all hierarchical decompositions of those pat-
terns onto one object by aligning 1 these hierarchical de-
compositions along a common time axis. This representa-

1 We note that ‘alignment’ in this case refers to placing found structure
along a common axis, not to matching a score to the recording of a piece.

c© Katherine M. Kinnaird. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Katherine M. Kinnaird. “Aligned Hierarchies: A Multi-Scale Structure-
Based Representation for Music-Based Data Streams”, 17th International
Society for Music Information Retrieval Conference, 2016.

tion uncovers repeated structures observed in matrix rep-
resentations widely used in MIR (such as self-similarity
matrices, self-dissimilarity matrices, and recurrence plots)
and can be used to visualize all decompositions of the re-
peated structures present in a particular music-based data
stream as well as the relationships between the repeats
in that data stream. By including and aligning all re-
peated structures found in a music-based data stream, the
aligned hierarchies exist in the middle ground of represen-
tations between the density of information in Foote’s self-
similarity matrix visualization [9] and the sparsity of infor-
mation in representations like those found in [1,11,14,20].

Beyond the visualization benefits, aligned hierarchies
have several compelling properties. Unlike many repre-
sentations in the literature, the aligned hierarchies can be
embedded into a classification space with a natural dis-
tance function. This distance function serves as the basis
for comparing two music-based data streams by measuring
the total dissimilarity of the patterns present. Additionally,
the aligned hierarchies can be post-processed to narrow our
exploration of a music-based data stream to certain lengths
of structure, or to address numerous MIR tasks, including
the cover song task, the segmentation task, and the chorus
detection task. Such post-processing techniques are not the
focus of this paper and will be explored further in future
work. In this paper, as a proof of concept for our approach
to MIR comparison tasks, we use aligned hierarchies to
perform experiments addressing the fingerprint task on a
data set of digitized scores.

There are previous structure-based approaches to the
cover song task, such as [1, 11, 20], that do not use the
formal segmentation of pieces of music and instead, use
enhanced matrix representations of songs as the basis of
their comparisons. Like those in [9], these representations
compare the entire song to itself, but fail to intuitively show
detailed structural decompositions of each song. In [2–4],
a variety of music comparison tasks are addressed by de-
veloping a method of comparison based on audio shingles,
which encode local information. In this work, we use audio
shingles as the feature vectors to form the self-dissimilarity
matrices representing the scores in the data set.

In Section 2, we introduce the aligned hierarchies and
the algorithm that builds them. In Section 3, we define
the classification space that aligned hierarchies embed into
and the associated distance function. In Section 4, we re-
port on experiments using aligned hierarchies to address
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the fingerprint task for a data set of digitized scores, and
we summarize our contributions in Section 5.

2. ALIGNED HIERARCHIES

In this section, we define the aligned hierarchies for a
music-based data stream and present a motivating exam-
ple. We introduce the three phases for constructing the
aligned hierarchies with discussions about the purpose and
motivation for each phase. For simplicity, we will use
‘song’ to refer to any kind of music-based data stream.

The algorithm finds meaningful repetitive structure in
a song from the self-dissimilarity matrix representing that
song. The algorithm aligns all possible hierarchies of that
structure into one object, called the aligned hierarchies of
the song. The aligned hierarchiesH has three components:
the onset matrix BH with the length vector wH and anno-
tation vector αH that together act as a key for BH .

The onset matrix BH is an (n× s)-binary matrix,
where s is the number of time steps in the song, and where
n is the number of distinct kinds of repeated structure
found in the song. We define BH as follows

(BH)i,j =





1 if an instance of ith repeated
structure begins at time step j,

0 otherwise
(1)

The length vector wH records the lengths of the re-
peated structure captured in the rows of BH in terms
of number of time steps, and the annotation vector αH
records the labels for the groups of repeated structure en-
coded in these rows. These labels restart at 1 for each dis-
tinct length of repeated structure and serve to distinguish
groups of repeated structure with the same length from
each other. We note that we can exchange any two rows in
BH representing repeats with the same length without los-
ing any information stored in the aligned hierarchies and
without changing either wH or αH .

2.1 Motivating Example

Suppose we have a song that has two kinds of non-
overlapping repetitive structure, such as a verse and a cho-
rus, denoted V and C, respectively, appearing in the or-
der V CV CV . We say that the song has the segmenta-
tion V CV CV , where V and C are the repeated sections.
We can segment the song in several ways: {V,C, V, C, V },
{(V C), (V C), V }, or {V, (CV ), (CV )}, with (V C) rep-
resenting the piece of structure composed of the V struc-
ture followed by the C structure and similarly for (CV ).
Noting that both (V C) and (CV ) can be decomposed into
smaller pieces, we would like to find an object that captures
and synthesizes all possible decompositions. Figure 1 is a
visualization of one such object where the V structure is 3
beats long and the C structure is 5 beats long.

The object that produces the visualization shown in Fig-
ure 1 is known as the aligned hierarchies, and it encodes the
occurrences and lengths of all the repeated structure found
in a song. In Figure 1, we see that repeats of (V C) and
the repeats of (CV ) overlap in time, but are not contained

in each other. We also note that all decompositions of the
repeats of (V C) and (CV ) are encoded in this object.

In this example, we have four kinds of repeated struc-
tures: V , C, (V C), and (CV ). Therefore BH associ-
ated to the aligned hierarchies will have four rows, one
corresponding to each kind of repeated structure, and 19
columns, one for each beat. Listing the rows in order of
the lengths of the repeated structures and the initial occur-
rences of those repeats, we have that BH is a sparse matrix
with 1’s for the V structure at {(1,1), (1,9), (1,17)}, with
1’s for the C structure at {(2,4), (2,12)}, with 1’s for the
(V C) structure at {(3,1), (3,9)}, and with 1’s for the (CV )
structure at {(4,4), (4,12)}. Then wH is the column vector
[3, 5, 8, 8]t and αH is [1, 1, 1, 2]t.

V V V

C C

(V C) (V C)

(CV ) (CV )

Beats
1 4 9 12 17 20

Figure 1: Visualization of aligned hierarchies for a song
with segmentation V CV CV incorporating all possible de-
compositions of the song with V structure 3 beats long and
C structure 5 beats long.

2.2 Building the Aligned Hierarchies

The construction of the aligned hierarchies begins with ei-
ther a self-similarity matrix or a self-dissimilarity matrix.
By beginning with a matrix representation for a song, we
assume that we do not have access to the original presen-
tation of the song, such as the audio recording, score, or
midi file. In a world with proprietary data, extremely high-
dimensional data, and limited or restricted access to data,
we believe that it is important to develop robust techniques
for representing and comparing songs beginning from a
data representation that cannot be reverse engineered back
to the original presentation of the data. For this work, we
will use a self-dissimilarity matrix to represent each song;
an example of one for the score of Chopin Mazurka Op. 6,
No. 1 is shown in Figure 3a.

Our construction of the aligned hierarchies for a song is
motivated by the fact that repeated structures in a song are
represented as diagonals of small-valued entries in D, the
self-dissimilarity matrix representing the song [6, 16, 17].
If such a diagonal of length k exists inD beginning at entry
(i, j), then the section of the song beginning at time step i
that is k time steps long is a repeat of the k time step long
section beginning at time step j, and vice versa. We call
these sections a pair of repeats of size k.

We construct the aligned hierarchies from simple and
meaningful repetitive structure present in a song. For ex-
ample, suppose a sequence of five chords is played repeat-
edly in a song. We do not regard repetitions of just the
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first three chords as meaningful repeats, unless there is at
least one instance in the song of those three chords without
the last two or at least one instance of the last two chords
without the first three.

Building the aligned hierarchies has three phases:

1. Extract repeated structure of all possible lengths
from D, the self-dissimilarity matrix of the song

2. Distill extracted repeated structure into their essen-
tial structure components

3. Build aligned hierarchies for the song using the es-
sential structure components

2.2.1 Phase 1 - Extract Repeated Structure from
Self-Dissimilarity Matrix D
There are four steps to extracting repeated structure from
D. First, we define what repeats are, in context of the data
and task at hand. Second, we extract the coarsest repeated
structure from D. Third, we use this found structure to
uncover further repeated structure hidden by the presenta-
tion of the song as D. Lastly, we create groups of repeated
structure from the extracted pairs of repeats. In this last
step, we enforce a mimicking how humans notice and in-
terpret patterns by removing any group of repeated struc-
ture that contains overlapping repeats.

Step 1: Based on the data and the task of interest, we set
a threshold T that defines how similar two sections must
be in order to be considered repeats of each other and then
threshold D accordingly. We note that many ways exist in
the literature to set this threshold, such as [2, 10, 11, 16].
The resulting thresholded matrix T is a binary matrix of
the same dimensions as D and is given by

Ti,j =
{

1 if Di,j < T
0 otherwise

(2)

Step 2: We next find and extract pairs of coarse repeats
in the song, by finding all non-zero diagonals in T , record-
ing relevant information about the pair of repeats, and fi-
nally removing the associated diagonal from T . We loop
over all possible repeat lengths, beginning with the largest
possible structure (the number of columns in T ) and end-
ing with 1 (the smallest possible structure).

To find simple and meaningful structure of exactly
length k represented by diagonals of exactly length k, we
must remove all diagonals of length greater than k. Sup-
pose that we did not remove diagonals of length (k + 1)

before searching for diagonals of length k, and let d̂i,j be
one such diagonal of 1’s in T . Then along with the other
diagonals of length k, our algorithm would find two diag-
onals of length k: one starting at (i, j) and another starting
at (i + 1, j + 1). Our algorithm would not be able to tell
that these diagonals of length k are contained in the diago-
nal d̂i,j or that together these diagonals make the diagonal
d̂i,j . Thus our algorithm would not be finding simple and
meaningful repeated structure in the song as required.

Step 3: Once we have extracted all diagonals from T ,
we use the smaller extracted repeated structure to find ad-
ditional repeated structures hidden in the coarse repeats.

Suppose we examine a piece of text where a certain word
is repeated both by itself and in a repeated phrase. In the
previous step, our algorithm would find the repeated word
on its own and the repeated phrase, but would not detect
the repeated word as part of that repeated phrase. In this
step, our algorithm realizes that our repeated word is part
of the repeated phrase and that the repeated phrase breaks
up into at most three pieces, those being: 1) the part of
the phrase before our repeated word, 2) the repeated word
itself, and 3) the part of the phrase after the repeated word.

V C N V C V

t = 1 10 15 30 40 45 55
t = 1

10

15

30

40

45

55

(a) T for a toy song with sections marked
Start Time Step Start Time Step Repeat Length

VC 1 31 15
V 1 46 10
V 31 46 10

(b) Pairs of repeats after Step 2 of Phase 1, the initial extraction
from T with sections marked

Start Time Step Start Time Step Repeat Length
VC 1 31 15
V 1 46 10
V 31 46 10
V 1 31 10
C 11 41 5

(c) Pairs of repeats after Step 3 of Phase 1, the second part of
extraction with sections marked

Figure 2: Thresholded matrix T and the pairs of repeats
uncovered after each step of repeat extraction for toy song
with segmentation V CNV CV

Consider the song with segmentation V CNV CV and
with the thresholded distance matrix T shown in Figure 2a.
In the initial extraction, the algorithm finds three pairs of
repeats, two pairs encoding repeats of the V structure by
itself and one pair encoding two repeats of (V C), as shown
in Table 2b. But the algorithm has not detected that the pair
of (V C) repeats contain the smaller found V structure as
well as the yet to be isolated C structure. In this step, as
shown in Table 2c, by using either of the pairs of V repeats,
we find that the pair of (V C) repeats does contain a pair of
V repeats as well as a pair of smaller repeats that is not the
same as the V structure, known as the C structure.

Step 4: In the last step of this phase, we form groups
of repeats from the pairs of repeats such that each kind of
repeated structure has exactly one group of repeats associ-
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ated to it. For the example shown in Figure 2a, we have
three groups: one associated to (V C), another associated
to V , and a third associated to C.

To mimic human segmentation of music, we check that
each group does not contain repeats that overlap in time.
For the example in Section 2.1, we are more likely to de-
scribe the structure of a popular song by saying “the verse
and chorus are repeated twice together followed by the
verse again,” than by saying “the verse, chorus, and verse
are repeated together twice such that those two repeats
overlap at one verse.” Thus we do not encode the repeated
structure (V CV ) in the aligned hierarchies shown in Fig-
ure 1, even though it occurs twice in V CV CV .

2.2.2 Phase 2 - Distill Essential Structure Components

Just like words that are composed of syllables, musical el-
ements, such as motifs and chord progressions, are com-
posed of smaller components. In this step, we distill re-
peats of the song into their essential structure components,
the building blocks that form every repeat in the song.

By definition, we allow each time step to be contained
in at most one of the song’s essential structure compo-
nents. In this phase, we pairwise compare groups of re-
peats, checking if the repeats in a given pair of groups over-
lap in time. If they do, we divide the repeats in a similar
fashion as used in Step 3 in Phase 1, forming new groups
of repeats that do not overlap in time. We iterate this pro-
cess, dividing repeats as necessary, until each time step is
contained in at most one repeated structure. The repeats
remaining at the end of this phase are our essential struc-
ture components. For the example in Section 2.1 shown
in Figure 1, the essential structure components are the in-
stances of the V and C structures. Figure 3b is a visualiza-
tion of the essential structure components for the score of
Chopin’s Mazurka Op. 6, No. 1.

2.2.3 Phase 3 - Construct Aligned Hierarchies from
Essential Structure Components

In this final phase, we build the aligned hierarchies from
the essential structure components. We employ a process
that is akin to taking right and left unions of the essential
structure components to find all possible non-overlapping
repeats in the song. We encode these repeats in the on-
set matrix and form the length and annotation vectors that
together are the key for the onset matrix. Figure 4 is a visu-
alization of the aligned hierarchies for a score of Chopin’s
Mazurka Op. 6, No. 1.

3. COMPARING ALIGNED HIERARCHIES

To compare aligned hierarchies, we embed them into a
classification space with a distance function measuring
the total dissimilarity between pairs of songs. In Sec-
tion 3.1, we explain how aligned hierarchies embed into
this classification space, and we present the distance func-
tion used for comparing aligned hierarchies of songs in
Section 3.2. 2

2 The proofs for the material in this section can be found in the author’s
doctoral thesis [12].

(a) Self-dissimilarity matrix D. Black denotes values near 0.

(b) Essential structure components

Figure 3: Visualizations for a score of Chopin’s Mazurka
Op. 6, No. 1 with repeat markers observed.

3.1 Classification Space for Aligned Hierarchies

To define (S∗)n, the space that we embed aligned hierar-
chies into, while simultaneously demonstrating how this
embedding occurs, we begin by representing aligned hier-
archies as a sequence of matrices.

Definition 3.1. Given a particular song with s time steps
and its aligned hierarchies H , we define a sequence of s
binary matrices

{
Bk
}s
k=1

where the kth binary matrix Bk

is the rows of BH such that wH = k, which are the rows
corresponding to repeats of exactly k time steps. If there
are no repeats of exactly k time steps, then Bk is a row of
s zeros. For brevity, we will use

{
Bk
}

for
{
Bk
}s
k=1

.

We note that each binary matrix in
{
Bk
}

does not have
a pair of vectors acting as a key for it, as we have in H .
Our definition of

{
Bk
}

naturally encodes the information
from wH in

{
Bk
}

. Similarly, we construct αH so that the
labels for the groups of repeats restart at 1 for each distinct
repeat length l. Thus, for each l, the label corresponding to
a row in Bl ∈

{
Bk
}

is simply that row’s index in Bl.
We recall that we can exchange any two rows of BH

with wH = l without changing the annotation labels.
So we say that two matrices encoding repeats of exactly
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Figure 4: Visualization of aligned hierarchies for a score
of Chopin’s Mazurka Op. 6, No. 1 with repeat markers
observed.

length l are the same if one is a row permutation of the
other. Therefore the space that we embed the aligned hier-
archies into must inherit this notion of matrix equality.

Definition 3.2. Let S be the space of (m×t)-binary matri-
ces with m, t ∈ Z≥1. Consider the symmetric group Sm,
the group of all permutations for the rows of the matrices.
The matrix denoted Mσ(r) ∈ S is the matrix with the rows
of M ∈ S in the order prescribed by σ(r) ∈ Sm.

Proposition 3.1. Let ∼ be the relation on S such that for
M,Q ∈ S , we say that M ∼ Q if M = Qσ(r), for some
σ(r) ∈ Sm. Then ∼ is an equivalence relationship on S.

Definition 3.3. Let S∗ be the quotient space S/∼. Then
the product space (S∗)n is composed of n-copies of S∗.

We embed H into (S∗)n by setting t = s, the number
of time steps in the song, and choosing m = κmax, where
κmax = max

l∈{1,...,s}

{
r|r is the number of rows in Bl

}
. Then

we place each Bl ∈
{
Bk
}

into the lth space of (S∗)n. So
the lth quotient space in (S∗)n corresponds to the classifi-
cation space of patterns of length l present in songs.

Notation: The elements of product space (S∗)n are
sequences of elements in S∗, pedantically denoted as
(qg)ng=1 with qg ∈ S∗, for each g ∈ {1, . . . , n}. For
brevity, we will use (qg) for (qg)ng=1.

3.2 Metric for Comparing Aligned Hierarchies

To define a metric on the space (S∗)n that will measure the
total dissimilarity between two songs represented by their
aligned hierarchies, we begin by defining a function that
measures the dissimilarity between patterns of a fixed size
present in those two aligned hierarchies.

Definition 3.4. Let || · ||1 be the entry-wise 1-norm. Given
any s1, s2 ∈ S∗, let f : S∗ × S∗ → R be the function
given by

f(s1, s2) = min
δ∈s1
β∈s2

||δ − β||1 (3)

Proposition 3.2. The function f : S∗ × S∗ → R is a
distance function.

To define the metric that measures the total dissimilarity
between two songs, we use the above function f to com-
pute the dissimilarity between the repeated patterns at each
size and total the measured dissimilarities. This gives us
the total dissimilarity between the repeated patterns of all
sizes present in two aligned hierarchies.

Corollary 1. Let (qg), (rg) ∈ (S∗)n. The function
dH : (S∗)n × (S∗)n → R is a distance function, where
dH is given by

dH ((qg), (rg)) =
n∑

g=1

f(qg, rg). (4)

4. PROOF OF CONCEPT RESULTS

In this section, we consider the fingerprint task for a data
set of digitized musical scores. These experiments serve as
a proof of concept for our method of comparing songs via
their aligned hierarchies. With the exception of the feature
extraction, the code implementing the creation and com-
parison of aligned hierarchies is written in MATLAB. 3

4.1 Data Set and Features

Our data set is based on 52 Mazurka scores by Chopin.
For each score, we download two human-coded, digitized
versions, called **kern files, posted on the KernScore on-
line database [19]. 4 The first version has the repeated sec-
tions repeated as many times as marked in the score and
the second has the repeated sections presented only once
per time written. For scores that have no sections that are
repeated in their entirety, we download the single **kern
file twice, marking one copy as having the repetitions re-
peated and the second copy as having the repetitions not
repeated. Each version of a score is referred to as a song
and there are 104 songs in our data set.

In this data set, the notion of time is in terms of beats
with one time step per beat. For each beat, we extract the
chroma feature vector, encoding the amount of each of the
12 Western pitch classes present in that beat [15]. To do

3 The URL to the code used for the experiments can be found at
https://github.com/kmkinnaird/ThesisCode/releases/tag/vT.final2

4 The **kern files can be accessed at:
http://kern.humdrum.org/search?s=t&keyword=Chopin

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 341



this, we used the music21 Python library [7]. 5 We form
audio shingles, that encode local contextual information,
by concatenating γ consecutive chroma feature vectors, for
a fixed integer γ.

We create a symmetric self-dissimilarity matrixD using
a cosine dissimilarity measure between all pairs of audio
shingles. Let ai, aj be the audio shingles for time steps i
and j, respectively. Then we define

Di,j =
(
1− < ai, aj >

||ai||2||aj ||2

)
(5)

By setting γ, we set the smallest size of repeated struc-
ture that can be detected. For this work, we set γ = 6 or
γ = 12. Assuming that the average tempo of a Mazurka is
approximately 120 beats per minute, if γ = 6, our shingles
encode about 3 seconds of information similar to the audio
shingles in [2,3]. Similarly, if γ = 12, our shingles encode
four bars of three beats each or about 6 seconds.

4.2 Evaluation Procedure

For all of our experiments, given a particular threshold, we
construct the aligned hierarchies for each score. We com-
pute the pairwise distances between the songs’ representa-
tions as described in Section 3.2. Using these pairwise dis-
tances, we create a network for the data set with the songs
in the data set as the nodes. In the fingerprint task, we only
match songs that are exact copies of each other, and so we
define an edge between two nodes if the distance between
the two aligned hierarchies associated to the songs is 0.

We evaluate the results of our experiments by comput-
ing the precision-recall values for the resulting network
compared against a network representing the ground truth,
which is formed by placing edges between the two identi-
cal copies of the score present in the data set. This ground
truth was informed by a data-key based on human-coded,
meta-information about the scores.

For each experiment, we set γ, the width of the audio
shingles, and T , the threshold value for defining when two
audio shingles are repeats of each other. The choice of γ
and T affects the amount of structure classified as repeats,
which impacts whether or not a song has aligned hierar-
chies to represent it. If a song does not have aligned hier-
archies, due to the choice of γ and T , we remove the node
representing that song from consideration in both our ex-
periment network and in our ground truth network, as there
would be nothing for our method to use for comparison.

4.3 Results

We conducted 10 experiments with the threshold
T ∈ {0.01, 0.02, 0.03, 0.04, 0.05} and with γ ∈ {6, 12}.
Each experiment yielded a perfect precision-recall value.
For the experiment with T = 0.01 and γ = 12, we had
5 songs without aligned hierarchies including 2 pairs of
songs based on scores without repeated sections. For the
experiment with T = 0.02 and γ = 12, we had 1 song
without aligned hierarchies, but this song was based on a

5 See http://web.mit.edu/music21/ for information about music21.

score with repeated sections and thus, under the fingerprint
task, would not be matched to another song in our data set.

We note that our method did discover an error in the
data key for the Mazurka scores. According to the human-
coded, meta-information, Mazurka Op. 17, No. 1 was clas-
sified as having sections marked in the score as being re-
peated. However, the score of Mazurka Op. 17, No. 1 in
fact does not have any sections marked to be repeated. Our
algorithm correctly detected this error, and we corrected
our version of the data key for these Mazurka scores. The
corrected data key is our ground truth, which is what our
precision-recall values are based on. To our knowledge,
there is no published work using this data set, therefore
we cannot provide numerical comparisons between our
method and other ones.

For all 10 experiments, we have correctly identified all
scores, with aligned hierarchies, that do not have sections
marked in the score to be repeated. Based on the construc-
tion of the score data set, a perfect recall rate was expected.
More interestingly, the perfect precision rate means that we
do not falsely match scores using the aligned hierarchies.

5. CONCLUSION

In this paper, we have introduced the aligned hierarchies,
an innovative, multi-scale structure-based representation
for music-based data streams. The aligned hierarchies pro-
vide a novel visualization for repeated structure in music-
based data streams. Differing from the literature of en-
hanced matrix representations, instead of showing a com-
parison of a data stream to itself, the visualization of the
aligned hierarchies synthesizes all possible hierarchical de-
compositions of that data stream onto one time axis, al-
lowing for a straightforward understanding of the tempo-
ral relationships between the repeated structures found in a
particular data stream.

The aligned hierarchies also provide a mathemati-
cally rigorous method for comparing music-based data
streams using this low-dimensional representation. We
performed experiments addressing the fingerprint task for
data based on digitized scores. These experiments had per-
fect precision-recall rates and provided a proof of concept
for the aligned hierarchies.

In future work, we will develop post-processing tech-
niques for the aligned hierarchies. These techniques will
allow us to address additional MIR tasks, such as the cover
song task and the chorus detection task. We also will con-
tinue to develop the theory and metrics associated with
aligned hierarchies and their derivatives.
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ABSTRACT

Music content analysis (MCA) systems built using scat-
tering transform features are reported quite successful in
the GTZAN benchmark music dataset. In this paper, we
seek to answer why. We first analyse the feature extraction
and classification components of scattering-based MCA
systems. This guides us to perform intervention experi-
ments on three factors: train/test partition, classifier and
recording spectrum. The partition intervention shows a de-
crease in the amount of reproduced ground truth by the
resulting systems. We then replace the learning algorithm
with a binary decision tree, and identify the impact of spe-
cific feature dimensions. We finally alter the spectral con-
tent related to such dimensions, which reveals that these
scattering-based systems exploit acoustic information be-
low 20 Hz to reproduce GTZAN ground truth. The source
code to reproduce our experiments is available online. 1

1. INTRODUCTION

Music content analysis (MCA) systems trained and tested
in [2] reproduce a large amount of the ground truth of
the benchmark music dataset GTZAN [18], and are among
the “best” reported in the literature [14]. They use sup-
port vector machines (SVM) classifiers trained on fea-
tures extracted from audio by the scattering transform, a
non-linear spectrotemporal modulation representation us-
ing a cascade of wavelet transforms [8]. The mathemati-
cal derivation of the scattering transform enforces invari-
ances to local time and frequency shifts, which is a desir-
able property for music classification tasks. Scattering fea-
tures are considered to have perceptual relevance [2], and
can be related to modulation features [5]. Such features
are potentially useful for timbre-related music classifica-
tion tasks, such as instrument recognition [11], or genre
recognition [7].

Reproducing the ground truth of a dataset does not nec-
essarily reflect the ability of a system to address a particu-

1 https://code.soundsoftware.ac.uk/projects/scatter-analysis
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ternational Society for Music Information Retrieval Conference, 2016.

ω""

• Acoustic information below 20 Hz (outside the lim-
its of human hearing) both without and with modu-
lations (feature b and c vectors)

– enormous difference of FoM between training
regimens

– it is likely that the faults of the dataset provide
significant amount of identifying information
to most of the labels.

– (“rock” particularly relevant?)
– there appears to be little additional discimina-

tive information using the 1.6 Hz modulation
of rectified FB1 bands.

• Acoustic information above 4186 Hz
– without using the modulation, the FoM are not

as good as those from using acoustic informa-
tion below 20 Hz.

– including the modulations makes a remarkable
difference in the FoM.

– the FoM for “rock” appears to have become
very poor now.

• Combining all feature dimensions from acoustic in-
formation below 20 Hz and above 4186 Hz.

– (Rock recovers partly)

3.3 Filtering Intervention

An oracle intervention attempts to make a system S be-
have in certain ways for a test dataset D , by applying a
transformation T to the input signals. In our case, S is
a Support Vector Machines classifier trained with different
scattering feature sets (a - f, as defined in Table 1) com-
puted from the excerpts in the train partition of GTZAN
under condition (ii) of Section 3.1. D , thus, is the test
partition of GTZAN under the same condition. The trans-
formation T we apply is a time-invariant filtering based
on near-perfect reconstruction filters [3].

In deflation mode, the oracle attempts to make the sys-
tem’s performance consistent with a system randomly se-
lecting labels in a procedure as follows [3]:

1. Identify all recordings in D that S maps “cor-
rectly”.

2. Create a transformation T .
3. Apply T to all recordings found in (1).
4. Have S map transformed recordings.
5. Find the recordings that S maps “correctly”.
6. For each recording in (1) that System now maps

“correctly” in (5), replace it in D with its trans-
formed version.

7. Return to (1); repeat until performance of S is con-
sistent with random Figures-of-Merit, or a maxi-
mum number of iterations is reached.

If we see the number of errors S makes increases notably,
we conclude that its performance strongly relies upon the
factors transformed by T .

Figure 3 shows our results from 30 deflation steps for
feature sets (a-f). The first step corresponds to the error
on the “original” test set. We observe two different be-
haviours. Error rates in feature sets (a, b) increase rapidly
in a similar fashion, while scattering-based feature sets

with more than one layer (c-f) show more robustness to
the effects of these filters. Table 4 summarises the over-
all changes. These results suggest that features generated
by deeper layers of the scattering transform are capturing
characteristics other than the short-term spectrum of the
audio signal.
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Figure 3. Error rate over 30 steps of filtering-based oracle
deflation for feature sets (a - f).

Set Features Orig. ER Final ER
a �-MFCC, 740 ms 0.220 0.784
b Time Scattering, l = 1 0.208 0.684
c Time Scattering, l = 2 0.120 0.416
d Time & Freq Scattering, l = 2 0.128 0.368
e Time & Freq Scattering, l = 2, Adap. Q1 0.144 0.440
f Time Scattering, l = 3 0.164 0.360

Table 4. Overall changes in computed error rate (ER) in
30 steps of filtering-based oracle deflation for feature sets
(a - f) (see Fig. 3).

We also check how the performance of these systems is
affected by the attenuation of the transformation T for two
particular GTZAN classes: disco and metal. We first
define a mean attenuation level for each filter with steps
of 0.5 dB, from 0.5 dB to 9 dB within ±0.01 dB. Then,
for each feature set and mean attenuation level, we per-
form 10 iterations of a deflation process (30 steps each). In
this way, we attempt to minimise the effect of potentially
destructive filters (e.g., completely removing low frequen-
cies) in the average performance for each feature set and
attenuation level. Figure 4 shows the results we obtain for
feature sets (a - f) considering both disco and metal
classes. We observe that systems using feature sets (a, b)
behave similarly, increasing their error rates rapidly when
we augment the attenuation levels. This suggests that SVM
music classification systems with a single layer of scatter-
ing transform features (l = 1) are highly reliant on spec-
tra to reproduce the ground truth of GTZAN. Behaviour of
deeper layers (l > 1), on the other hand, is more robust to
filtering transformations.

Figure 1. Schematic representation of a music content
analysis (MCA) system [16].

lar task [12–15]. In this paper, we analyse scattering-based
MCA systems to determine why they reproduce so much
GTZAN ground truth. Our approach involves system anal-
ysis and experimental interventions. System analysis in-
volves decomposing an MCA system into its components
to understand how each contributes to its overall behaviour.
Our system analysis of scattering-based MCA systems in
Sec. 2 shows that they use some information from inaudi-
ble frequencies, i.e., below 20 Hz [4]. Experimental in-
terventions, on the other hand, involve testing hypotheses
about what a system is actually doing by altering some fac-
tor to see how system behaviour changes. In Sec. 3, we per-
form intervention experiments to confirm that scattering-
based MCA systems exploit information below 20 Hz to
reproduce GTZAN ground truth. When we attenuate that
information, ground truth reproduction decreases.

We conceive our work here as a case study within the
development of an improved systematic methodology for
evaluating MCA systems. This is one challenge posed in
the Music Information Retrieval (MIR) Roadmap [10], and
exemplifies the pipeline in [15]. In Sec. 4 we discuss the
implications of our results, and suggest how they might be
integrated in a general evaluation framework.

2. SYSTEM ANALYSIS

Using the formalism of [16], an MCA system S maps
a recording universe RΩ — a particular realisation of an
intangible music universe Ω — to a description universe
SV,A. As shown in Fig. 1, this mapping is decomposed
into two stages. First, a feature extractor E maps RΩ to a
feature universe SF,A′ ; then, a classifier C maps SF,A′ to
SV,A.

The environment and definition of the MCA systems
in [2] are as follows. RΩ consists of time-domain sig-
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ID F Feature Description
a R252 Mel-frequency spectrogram (84 coefficients, 740-

ms frames, 50% overlap), concatenated with first-
and second-order time derivatives over the se-
quence of feature vectors 2

b R85 First-order (l = 1) time-scattering features (effec-
tive sampling rate 2.7 Hz)

c R747 Second-order (l = 2) time scattering features (ef-
fective sampling rate 2.7 Hz)

d R1574 First-order time-frequency scattering features
e R1907 First-order time-frequency-adaptive scattering

features
f R2769 Third-order (l = 3) time scattering features (ef-

fective sampling rate 2.7 Hz)

Table 1. Description of SF,A′ (feature universes) used
in [2]. A′ permits only vector sequences of length 80.

nals of duration about 30 seconds uniformly sampled at
Fs = 22050 Hz (the sampling rate of GTZAN). SV,A is the
set of the 10 GTZAN labels. SF,A′ is a space consisting
of sequences of 80 elements of a vector vocabulary F. All
MCA systems trained in [2] use the same SV,A, the same
learning method to build the classifiers, but different SF,A′ .
More specifically, the semantic rulesA′ are the same for all
systems (sequences of length 80), with only a difference in
the feature vocabulary, F. Table 1 describes the six differ-
ent SF,A′ appearing in [2].

We now analyse the two components of the systems
built using first- (“b vectors”) and second-layer (“c vec-
tors”) time scattering features (see Table 1). Systems built
using f vectors can be understood as a further iteration
of the process described here. In addition to that, the in-
clusion of frequency-scattering features (d and e vectors),
does not affect our conclusions.

2.1 Feature extractors of b and c (Eb and Ec)

The feature extraction procedure begins by first extending
a recording to be of length 221 = 2097152 samples us-
ing what is referred to in the code as “padding” by “sym-
metric boundary condition with half-sample symmetry”:
the N ≈ 5 · 217 samples of r ∈ RΩ are concatenated
with the same but time-reversed, then concatenated with
its first ∼ 50000 samples, and its last ∼ 50000 samples,
and finally the time-reversed samples again. This “padded”
signal is then transformed into the frequency domain by
the FFT. The complex spectrum is then multiplied by the
magnitude response of each of 85 filters of a filterbank
designed using a scaling function and dilations of a one-
dimensional Gabor mother wavelet with 8 wavelets per oc-
tave up to a maximum dilation of 273/8. (The bandwidth
of the lowest 11 bands are made constant.) Figure 2(a)
shows the magnitude responses of the bands of this fil-
terbank (FB1). Each spectrum product is then reshaped
— equivalent to decimation in the time-domain —, trans-
formed to the time domain by the inverse FFT, and then
windowed to the portion corresponding to r in the padded
sequences.

Next, the time-series output of each band of FB1 is rec-
tified, padded using the same padding method as above,

2 [2] does not actually compute ∆- and ∆-∆-MFCCs, but instead
cyclically time-shifts the sequence of MFCCs ahead and behind by one
frame so that the classifier has flexibility in learning a transformation.
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(a) Filterbank 1 (FB1)
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(b) Filterbank 2 (FB2)

Figure 2. Magnitude responses of the bands in the filter-
banks for scattering feature IDs b and c.

transformed into the frequency domain by the FFT, and
then multiplied by the magnitude response of each of 25
filters of a filterbank designed with a scaling function
and dilations of a one-dimensional Morlet mother wavelet,
with 2 wavelets per octave up to a maximum dilation of
223/2. Figure 2(b) shows the magnitude responses of the
bands of this filterbank (FB2). Each FB2 spectrum prod-
uct is then reshaped — again, equivalent to decimation in
the time-domain —, transformed to the time domain by
the inverse FFT, and then windowed corresponding to the
original forward-going sequence in the padded sequences
(length 80). Finally, Eb retains only those values related to
the DC filter of FB2, and computes the natural log of all
values (added with a small positive value). This results in
80 b vectors. For creating 80 c vectors, Ec takes those FB2
time-series outputs with non-negligible energy, 3 “renor-
malises” each non-zero frequency band (to account for en-
ergy captured in the first layer of scattering coefficients),
and takes the natural log of all values (added with a small
positive value).

Figure 3 shows the relationship between the dimensions
of b and c vectors and the centre frequencies of FB1 and
FB2 bands. For display purposes, the bottom-most row is
from the scaling function of FB2. The 85 dimensions of a
b vector are at bottom, with dimensions [1, 75:85] coming
from FB1 bands with centre frequencies below 20 Hz. Di-
mensions [1, 75:85, 737:747] of a c vector come from such
bands. Dimensions [2:12] of a b vector, and [2:12, 86:268]
of a c vector, are from FB1 bands with centre frequencies
above 4186 Hz (pitch C8).

3 In fact, not every rectified FB1 band output is filtered by all FB2
bands because filtering by FB1 will remove all frequencies outside its
band.
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Figure 3. Relationship of b and c vector dimensions to FB1 and FB2 band centre frequencies. Dimensions [1, 75:85] of b
vectors, and [1, 75:85, 737:747] of c vectors, are from bands with centre frequencies below 20 Hz.

2.2 Classifier C

Define the number of support vectors of a trained SVM as
|SV |. Classifiers C of the MCA systems in [2] are charac-
terised by a set of support vectors V ∈ F|SV |, a Gaussian
kernel parameter γ, a weight matrix W ∈ R|SV |×45, and
a bias vector ρ ∈ R45. (45 is the number of pair-wise
combinations of the 10 elements in SV,A, i.e., label 1 vs.
label 2, label 1 vs. label 3, etc.) C maps SF,A′ to SV,A
by majority vote from the individual mappings of all ele-
ments fj ∈ F of a sequence from r ∈ RΩ by an SVM
classifier C ′. C ′, thus, maps F to SV,A by computing 45
pair-wise decisions by means of sign(WT e−γK(f) − ρ),
where K(f) is a vector of squared Euclidean norm of dif-
ferences between f and all vj ∈ V. C ′ then maps f to
SV,A by majority vote from the 45 pair-wise decisions.

The authors of [2] use LibSVM 4 to build C ′ using a
Gaussian kernel with a subset of the feature vectors (down-
sampled by 2). They optimise the SVM parameters by grid
search and 5-fold cross-validation on a training set. Lib-
SVM uses a 1 vs. 1 strategy to deal with multiclass classi-
fication problems, so each support vector receives a weight
for each of the nine possible pair-wise decisions involving
the class associated with the support vector. The matrix W
contains weights associated with all possible 45 pair-wise
decisions. The training of the SVM also generates the vec-
tor ρ containing a bias term for each pair-wise decision.

3. SEARCHING FOR THE MUSIC

We now report three intervention experiments we design
to answer our question: how are scattering-based MCA
systems reproducing so much GTZAN ground truth? We
adapt the code used for the experiments in [2] (available
online 5 ). The experiments performed in [2] do not con-
sider the known faults of GTZAN [14], so in Sec. 3.1 we
reproduce them using two different train-test partitioning
conditions. We observe a decrease in performance, but
not as dramatic as seen in past re-evaluations [14]. In
Sec. 3.2, we replace the classifier C with a binary deci-
sion tree (BDT) trained with different subsets of scattering

4 https://www.csie.ntu.edu.tw/˜cjlin/libsvm/
5 http://www.di.ens.fr/data/software

features. This leads us to identify the impact of specific
feature dimensions. The analysis of the feature extractor in
Sec. 2.1 allows us to relate such dimensions with spectral
bands of the audio signal. In Sec. 3.3, we alter the spec-
tral content of the test recordings and observe how GTZAN
ground truth reproduction changes. This reveals that these
scattering-based MCA systems exploit acoustic informa-
tion below 20 Hz.

3.1 Partitioning intervention

The benchmark music dataset GTZAN contains faults (e.g.,
repetitions) that can affect the amount of ground truth that
an MCA system reproduces [14]. This amount often de-
creases when we train and test it using a “fault-filtered”
partition of GTZAN, as done in [6, 14]. This suggests that
the faults in the dataset are related to the amount of ground
truth reproduced by a system.

While [2] evaluates the performance of the scattering-
based MCA systems using 10-fold stratified cross-
validation, we employ two different hold-out train-test par-
titioning conditions. The first is RANDOM, which mimics
the train-test procedure in [2]: we randomly select 75%
of the recordings of each label for the training set, leav-
ing the remaining 25% for the testing set. The second
is FAULT, which is the “fault-filtered” partitioning proce-
dure in [6], with the training and validation sets merged.
This partitioning condition considers various problems of
the dataset: we remove 70 replicated or distorted record-
ings [14]; we then assign by hand 640 recordings to the
training set and the remaining 290 to the testing set, avoid-
ing repetition of artists across partitions [9]. Due to mem-
ory constraints, we decrease by a factor of 4 the number of
scattering features in the pre-computation of the Gaussian
kernel of the SVM. This reduces the computational cost
without sacrificing much performance. 6

Table 2 shows the normalised accuracies (mean recalls)
of our systems along with those reported in [2] for the six
features described in Table 1. We see the differences be-
tween the results in [2] and ours in RANDOM are small,
and most of them within reason considering the standard

6 We acknowledge Joakim Andén and Vincent Lostanlen for their valu-
able advice.
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Original GTZAN recordings Attenuated [0, 20] Hz
ID Reported in [2] RANDOM FAULT RANDOM FAULT
a 82.0 ± 4.2 78.00 53.29 39.20 30.09
b 80.9 ± 4.5 79.20 54.96 31.60 22.42
c 89.3 ± 3.1 88.00 66.46 50.80 44.47
d 90.7 ± 2.4 87.20 68.49 62.40 55.11
e 91.4 ± 2.2 85.60 68.61 64.80 44.52
f 89.4 ± 2.5 83.60 68.32 64.80 53.16

Table 2. Normalised accuracies (mean recall) in GTZAN
dataset obtained by scattering-based MCA systems in [2]
and our systems using RANDOM and FAULT partition-
ing conditions, trained and tested with the original GTZAN
recordings (left) and versions ones with information below
20 Hz (right) attenuated (see Sec. 3.3).

N RANDOM FAULT
1 52.99 51.82
2 65.05 65.27
3 71.42 71.62
4 75.53 75.80
5 79.48 79.74

Table 3. Cumulative percentage of variance captured by
the N highest principal components of b vectors in the
training sets of RANDOM and FAULT partitioning condi-
tions.

deviations reported in [2]. In RANDOM, we see an in-
crease of accuracy when we include second-order scatter-
ing features, i.e., b to c. We find that adding depth to the
features, however, does not increase further the amount of
ground truth reproduced, and even decreases it when we
include third-order features (c to f), contrary to what is
reported in [2]. Most importantly, we observe a consider-
able decrease in the amount of ground truth reproduced by
all systems between RANDOM and FAULT. Figures 4(a)
and 4(b) show the figure-of-merit (FoM) of the systems
trained and tested in RANDOM and FAULT with b vec-
tors, respectively. We see recalls and F-measures of every
label decrease except for “classical”, which increase.

Figure 5 shows the eigenvectors of the first five prin-
cipal components of first-layer scattering features (b vec-
tors) in the training sets of RANDOM and FAULT. (Table 3
shows the percentage of variance captured by the first N
principal components.) We see large changes in the low-
est and highest dimensions of the fourth component. This
suggests that these dimensions of the scattering features
capture information that differs in both training sets, which
may play a role in the performance differences we observe.
The characteristics of C and C ′, however, make it difficult
to determine the influence that each individual feature di-
mension (or subset of dimensions) has in the overall per-
formance of a system. For this reason, in Section 3.2 we
replace the SVM by a binary decision tree (BDT) classi-
fier, which allows an easier interpretation of SF,A′ and its
relationship with SV,A.

3.2 Classifier intervention

SVM classifiers generate decision boundaries in multi-
dimensional spaces. While this can benefit prediction, it
hampers their interpretability. In our case, this implies that

(a) RANDOM

(b) FAULT

(c) RANDOM, information below 20 Hz attenuated

Figure 4. Figure-of-merit (FoM) obtained with b vec-
tors by SVM systems trained and tested in (a) RANDOM
and (b) FAULT (Sec. 3.1), as well as (c) SVM trained in
RANDOM and tested in recordings with content below 20
Hz attenuated (Sec. 3.3). Column is ground truth, row is
prediction. Far-right column is precision, diagonal is re-
call, bottom row is F-score, lower right-hand corner is nor-
malised accuracy. Off-diagonals are confusions.
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Figure 5. Eigenvectors of the first five principal compo-
nents (labelled) of b vectors in the training sets of (a) RAN-
DOM (79.74% of variance captured) and (b) FAULT
(79.48% of variance captured) partitioning conditions.

ID RANDOM FAULT
a 72.80 45.70
b 71.60 42.35
c 80.00 49.91
d 79.20 46.81
e 79.60 44.77
f 79.20 46.48

Table 4. Normalised accuracies (mean recall) in GTZAN
for MCA systems built using binary decision tree classi-
fiers using features described in Table 1, trained and tested
with RANDOM and FAULT partitioning conditions.

the relevance of each individual dimension of the scatter-
ing feature vectors gets blurred. We now replace the SVM
classifiers used in [2] by BDT, consisting of a set of rules
defined by linear splits of the feature space one dimension
at a time. BDT are considered to be among the easiest
learning methods to construct and understand [1], at the
cost of potentially less accuracy.

Table 4 shows the normalised accuracies we obtain with
MATLAB’s BDT classifier, 7 for the two partitioning con-
ditions defined in Sec. 3.1, using the different feature vec-
tors described in Table 1. Clearly, there exists a major
difference between the two training conditions, similar to
what Table 2 shows for SVM. We see a decrease of around
8 percentage points in the amount of ground truth repro-
duced by each of the BDT systems in RANDOM compared
to the SVM systems in Table 2. On the other hand, when
training the BDT systems in FAULT, we observe falls in
performance with respect to RANDOM at least as large as
those reported in Table 2. This suggests that the amount of

7 http://uk.mathworks.com/help/stats/classificationtree-class.
html
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Figure 6. Proportion of ground truth reproduced by BDT
classifiers trained with single dimensions of b vectors in
RANDOM and FAULT partitioning conditions.

ground truth reproduced by the systems in both conditions
differ due to distinct information being captured by the fea-
ture extractors, and not necessarily as an effect of the clas-
sification algorithm. The training of the SVM classifier,
if anything, appears to mitigate the potential performance
decrease in c-f vectors.

We now explore differences in reproduced GTZAN
ground truth between partitioning conditions by each di-
mension of the scattering features individually. We thus
train and test BDTs with each of the 85 dimensions of b
vectors in both RANDOM and FAULT. Figure 6 shows the
classification accuracies we obtain. We see clear differ-
ences between conditions, especially in dimensions iden-
tified in Sec. 2.1 as belonging to bands close to or outside
the limits of normal human hearing (namely [1, 70:85]).

We also explore how much ground truth BDT systems
can reproduce using solely information below 20 Hz. BDT
systems trained with dimensions 1 and 75:85 of b vec-
tors achieve a 60.40% of normalised accuracy in RAN-
DOM, which is close to the performance originally re-
ported in [18] for the GTZAN dataset. In FAULT, how-
ever, the normalised accuracy drops to 22.47%. Adding di-
mensions 737:747 from c vectors (modulations from FB2
of information below 20 Hz) only marginally increases
the performance in both conditions. These results suggest
that our scattering-based MCA systems could be exploiting
acoustic information from below 20 Hz. We next perform
interventions to test this hypothesis.

3.3 Filtering intervention

We now see how the amount of ground truth reproduced
by a scattering-based an MCA system changes when we
attenuate acoustic information below 20 Hz. We thus ap-
ply a fifth-order Butterworth high-pass filter to attenuate
all frequencies below 20 Hz by at least 30 dB to the test
recordings in both RANDOM and FAULT. We check that
we do not perceive differences between filtered and non-
filtered versions. We then use the SVM systems in Sec. 3.1
to predict labels in the filtered test recordings. The two
right-most columns of Table 2 show the normalised accu-
racies we obtain. We clearly see that the figures drop from
those reported in Sec. 3.1. In particular, the decrease of
accuracy using b vectors in RANDOM is close to 50 per-
centage points, while that using features generated from
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deeper scattering layers is smaller but still notable. Sys-
tems trained in FAULT also suffer in the performance mea-
sured.

Figure 4(c) shows the FoM obtained by an SVM trained
in FAULT with b vectors and tested in high-pass filtered
recordings. We note that the changes in FoM between
Figs. 4(a) and 4(c) do not always match those reported in
Sec. 3.1 between Figs. 4(a) and 4(b). More precisely, re-
call and F-measure decrease instead of increase in “classi-
cal”, and increase instead of decrease in “country”. This
suggests that partitioning and information below 20 Hz are
distinct factors affecting the amount of ground truth sys-
tems reproduce, notwithstanding an interaction between
them as suggested by Figs. 5 and 6. Our results allow
us to conclude that the scattering-based MCA systems
trained and tested in [2] benefit from partitioning and ex-
ploit acoustic information below 20 Hz to reproduce a large
amount of GTZAN ground truth.

4. DISCUSSION

Our analysis in Sec. 2.1 shows how first- and second-layer
time-scattering features relate to acoustic information. We
see that several dimensions of such features capture infor-
mation at frequencies below 20 Hz, which is inaudible to
humans [4].

We find in the intervention experiments in Secs. 3.1
and 3.2 that partitioning affects the amount of GTZAN
ground truth scattering-based systems reproduce. Remov-
ing the known faults of the dataset and avoiding artist repli-
cation across folds leads to a decrease in the FoM we ob-
tain, but to a lesser extent than previous re-evaluations of
other MCA systems [6, 14]. We also note that differences
between the first principal components of first-layer time-
scattering features lay mainly within the dimensions corre-
sponding to frequency bands below 20 Hz.

When we replace the SVM classifier with a BDT
(Sec. 3.2), we see differences in the amount of reproduced
ground truth similar to those we find for SVM systems be-
tween partitioning conditions. This suggests that the dis-
tinct acoustic information the scattering features capture
causes differences in performance, regardless of the par-
ticular learning algorithm employed. Furthermore, we find
that BDT systems trained with individual dimensions of
first-layer time-scattering features reproduce an amount of
GTZAN ground truth larger than that expected when se-
lecting randomly. Again, we see differences between par-
titioning conditions, especially in the dimensions captur-
ing information below 20 Hz. Moreover, we reproduce
almost as much GTZAN ground truth as the one origi-
nally reported in [18] by using a BDT trained in RANDOM
with only information below 20 Hz. This result suggests
that acoustic information below 20 Hz present in GTZAN
recordings may inflate the performance of MCA systems
trained and tested in the benchmark music dataset.

Our system analysis in Sec. 2 and intervention experi-
ments in Sec. 3.1 and 3.2 point toward information present
in frequencies below 20 Hz playing an important role in
the apparent success of the scattering-based MCA systems

we examine. The results of our experiments in Sec. 3.3
clearly reveal that the amount of GTZAN ground truth
SVM scattering-based systems reproduce decreases when
we attenuate that information in test recordings. This im-
plies these systems are using inaudible information. We
conclude that the scattering-based MCA systems in [2]
exploit acoustic information not controlled by partition-
ing and below 20 Hz to reproduce a large amount of
GTZAN ground truth. Machine music listening is an ex-
citing prospect as it complements and even extends human
abilities, but we dispute the relevance of acoustic infor-
mation below 20 Hz to address the problem intended by
GTZAN [18].

The results of our three intervention experiments sug-
gest a complex relationship between the accuracy mea-
sured of a system, the contribution of its feature extraction
and machine learning components, and the conditions of
the training and testing dataset. We already know that the
faults and partitioning of GTZAN can have significant ef-
fects on an outcome, and that there is an interaction with
the components of a system [14,17]. Our experiments here
show for the systems we examine that acoustic information
below 20 Hz can greatly affect an outcome, and that this
interacts with the components of a system and the dataset
partitioning. This thus calls into question the interpretation
of the results reported in [2] (column 2 of Table 2) as unbi-
ased estimates of system success. In future work, we will
specify more complex measurement models, e.g., [17].

Understanding how and why a system works is essential
to determine its suitability for a specific task, not to men-
tion its improvement. Our work here demonstrates the use
of system analysis and the intervention experiment to ad-
dress this problem. For instance, our conclusions suggest
modifying the FB1 filterbank in the scattering features ex-
tractor to avoid capturing information below 20 Hz. They
also suggest removing information below 20 Hz from any
element of RΩ as a pre-processing step before training an
MCA system, if relevant.

5. CONCLUSION

In this paper, we report several steps we followed to de-
termine what the scattering-based MCA systems reported
in [2] have actually learned to do in order to reproduce
the ground truth of GTZAN. We show how performing sys-
tem analysis guides our design of appropriate intervention
experiments. The results lead us to conclude that these
MCA systems benefit not only from the partitioning of the
dataset, but also from acoustic information below 20 Hz.

Our work here constitutes steps toward a holistic analy-
sis of MCA systems — an action point for MIR evaluation
identified in [10]. Our ultimate goal is to help develop a
general MIR research pipeline that integrates system anal-
ysis and interventions, and is grounded in formal princi-
ples of statistical design of experiments, e.g., [3]. Such
a pipeline will provide a solid empirical foundation upon
which to build machine music listening systems and tech-
nologies [15].
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ABSTRACT 

We present a novel rhythm tracking architecture that 
learns how to track tempo and beats through layered 
learning. A basic assumption of the system is that humans 
understand rhythm by letting salient periodicities in the 
music act as a framework, upon which the rhythmical 
structure is interpreted. Therefore, the system estimates 
the cepstroid (the most salient periodicity of the music), 
and uses a neural network that is invariant with regards to 
the cepstroid length. The input of the network consists 
mainly of features that capture onset characteristics along 
time, such as spectral differences. The invariant proper-
ties of the network are achieved by subsampling the input 
vectors with a hop size derived from a musically relevant 
subdivision of the computed cepstroid of each song. The 
output is filtered to detect relevant periodicities and then 
used in conjunction with two additional networks, which 
estimates the speed and tempo of the music, to predict the 
final beat positions. We show that the architecture has a 
high performance on music with public annotations. 

1. INTRODUCTION 

The beats of a musical piece are salient positions in the 
rhythmic structure, and generally the pulse scale that a 
human listener would tap their foot or hand to in conjunc-
tion with the music. As such, beat positions are an emer-
gent perceptual property of the musical sound, but in var-
ious cases also dictated by conventional methods of no-
tating different musical styles. Beat tracking is a popular 
subject of research within the Music Information Retriev-
al (MIR) community. At the heart of human perception of 
beat are the onsets of the music. Therefore, onset detec-
tion functions are commonly used as a front end for beat 
tracking. The most basic property that characterize these 
onsets is an increase in energy in some frequency bands. 
Extracted onsets can either be used in a discretized man-
ner as in [9, 18, 19], or continuous features of the onset 
detection functions can be utilized [8, 23, 28]. As infor-
mation in the pitch domain of music is important, chord 
changes can also be used to guide the beat tracking [26].  

After relevant onset functions have been extracted, the 

periodicities of the music are usually determined by e.g. 
comb filters [28], the autocorrelation function [10, 19], or 
by calculating the cepstroid vector [11]. Other ways to 
understand rhythm are to explicitly model the rhythmic 
patterns [24], or to combine several different models to 
get better generalization capabilities [4]. To estimate the 
beat positions, hidden Markov models [23] or dynamic 
Bayesian networks (DBNs) have been used [25, 30].  

Although onset detection functions often are computed 
by the spectral flux (SF) of the audio, it has become more 
common to learn onset detection functions with a neural 
network (NN) [3, 29]. Given the success of these net-
works it is not surprising that the same framework has 
been successfully used also for detecting beat positions 
[2]. When these network try to predict beat positions, 
they must understand how different rhythmical elements 
are connected; this is a very complex task.  
 
1.1 Invariant properties of rhythm 

When trying to understand a new piece of music, the lis-
tener must form a framework onto which the elements of 
the music can be deciphered. For example, we use scales 
and harmony to understand pitch in western music. The 
tones of a musical piece are not classified by their fun-
damental frequency, but by their fundamental frequency 
in relation to the other tones in the piece. In the same 
way, for the time dimension of music, the listener builds 
a framework, or grid, across time to understand how the 
different sounds or onsets relate to each other. This 
framework need not initially be at the beat level. In fact, 
in various music pieces, beat positions are not the first 
perceptually emergent timing property of the music. In 
some pieces, we may first get a strong sense of repetition 
at downbeat positions, or at subdivisions of the beat. In 
either of these cases, we identify beat positions after an 
initial framework of rhythm has been established. If we 
could establish such a correct framework for a learning 
algorithm, it would be able to build better representations 
of the rhythmical structure, as the input features would be 
deciphered within an underlying metrical structure. In 
this study we try to use this idea to improve beat tracking.  

2. METHOD 

In the proposed system we use multiple neural networks 
that each try to model different aspects related to rhythm, 

 © Anders Elowsson. Licensed under a Creative Commons 
Attribution 4.0 International License (CC BY 4.0). Attribution: Anders 
Elowsson. “Beat Tracking with a Cepstroid Invariant Neural Network”, 
17th International Society for Music Information Retrieval Conference, 
2016. 
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as shown in Figure 1. First we process the audio with 
harmonic/percussive source separation (HP-separation) 
and multiple fundamental frequency (MF0) estimation. 
From the processed audio, features are calculated that 
capture onset characteristics along time, such as the SF 
and the pitch flux (PF). Then we try to find the most sali-
ent periodicity of the music (which we call the cepstroid), 
by analyzing histograms of the previously calculated on-
set characteristics in a NN (Cep Network). We use the 
cepstroid to subsample the flux vectors with a hop size 
derived from a subdivision of the computed cepstroid. 
The subsampled vectors are used as input features in our 
cepstroid invariant neural network (CINN). The CINN 
can track beat positions in complex rhythmic patterns, 
because the previous processing has made the input vec-
tors invariant with regards to the cepstroid of the music. 
This means that the same neural activation patterns can 
be used for MEs of different tempi. In addition, the speed 
of the music is estimated with an ensemble of neural net-
works, using global features for onset characteristics as 
input. As the last learning step, the tempo is estimated. 
This is done by letting an ensemble of neural networks 
evaluate different plausible tempo candidates. Finally, the 
phase of the beat is determined by filtering the output of 
the CINN in conjunction with the tempo estimate; and 
beat positions are estimated.  

An overview of the system is given in Figure 1. In 
Sections 2.1-2.4  we describe the steps to calculate the in- 

 
Figure 1. Overview of the proposed system. The audio is 
first processed with MF0 estimation and HP-separation. 
Raw input features for the neural networks are computed 
and the outputs of the neural networks are combined to 
build a model of tempo and beats in each song.  

put features of our NNs and in Section 2.5 we give an 
overview of the NNs. In Section 2.6-2.9 we describe the 
different NNs, and in Section 2.10, we describe how the 
phase of the beat is calculated. 

2.1 Audio Processing 

The audio waveform was converted to a sampling fre-
quency of 44.1 kHz. Then, as a first step, HP-separation 
was applied. This is a common strategy (e.g. [16]), used 
to isolate the percussive instruments, so that subsequent 
learning algorithms can accurately analyze their rhythmic 
patterns. The source separation of our implementation is 
based on the method described in [15]. With a median 
filter across each frame in the frequency direction of a 
spectrogram, harmonic sounds are detected as outliers, 
and with a median filter across each frequency bin in the 
time direction, percussive sounds are detected as outliers. 
We use these filters to extract a percussive waveform P1 
and a harmonic waveform H1, from the original wave-
form O. We further suppress harmonic sounds in P1 (such 
as traces of the vocals or the bass guitar) by applying a 
median filter in the frequency direction of the Constant-Q 
transform (CQT), as described in [11, 13]. This additional 
filtering produces a clean percussive waveform P2, and a 
harmonic waveform H2 consisting of the traces of pitched 
sounds filtered out from P1.  

The task of tracking MF0s of the audio is usually per-
formed by polyphonic transcription algorithms (e.g. [1]). 
From several of these algorithms, the frame-wise MF0s 
can be extracted at the semi-tone level. We used a frame-
wise estimate from [14], extracted at a hop size of 5.8 ms 
(256 samples). 

2.2 Calculating Flux Matrices P', S' and V'  

Three types of flux matrices (P', S' and V') were calculat-
ed, all extracted at a hop size of 5.8 ms. 

2.2.1 Calculating 𝑃" 

Two spectral flux matrices (𝑃#"  and 𝑃$" ) were calculated 
from the percussive waveforms P1 and P2. The short time 
Fourier transform (STFT) was applied to P1 and P2 with a 
window size of 2048 samples and the spectral flux of the 
resulting spectrograms was computed. Let 𝑋&,(  represent 
the magnitude at the ith frequency bin of the jth frame of 
the spectrograms. The SF for each bin is then given by  

𝑃′&,(	 = 𝑋&,( − 𝑋&,(-.                        (1) 

In this implementation we used a step size s of 7 (40 ms). 

2.2.2 Calculating 𝑉′ 

The vibrato suppressed SF was computed for waveforms 
containing instruments with harmonics (H1, H2 and O), 
giving the flux matrices (𝑉01

" , 𝑉02
"  and 𝑉3" ). We used the 

algorithm for vibrato suppression first described in [12] 
(p. 4), but changed the resolution of the CQT to 36 bins 
per octave (down from 60) to get a better time resolution. 

B
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First, the spectrogram is computed with the CQT. Then, 
shifts of a peak by one bin, without an increase in sound 
level, are suppressed by subtracting the sound level of 
each bin of the new frame, with the maximum sound lev-
el of the adjacent bins in the old frame. This means that 
for the vibrato suppressed SF (𝑉′), Eqn (1) is changed by 
including adjacent bins and calculating the maximum 
value before applying the subtraction.  

     𝑉′&,(	 = 𝑋&,( − max(𝑋&-#,(-. , 𝑋&,(-., 𝑋&8#,(-.)       (2) 

2.2.3 Calculating 𝑆′ 

When listening to a melody, we use pitch in conjunction 
with onset positions to infer the rhythmical structure. 
Therefore, it seems beneficial to utilize the pitch dimen-
sion of music in the beat tracking as well. We calculated 
the PF by applying the same function as described for the 
SF in Eqn (1) to the “semigram” – the estimated MF0s in 
a pitchogram, interpolated to a resolution of one semitone 
per bin. The output is the rate of change in the semigram, 
covering pitches between midi pitch 26 and 104, and we 
will denote this feature matrix as 𝑆′.  

2.3 Calculating Histograms HP, HS, CP, and CS 

Next we compute two periodicity histograms HP and HS 
from the flux matrices 𝑃#" and 𝑆", and then transform them 
into the cepstroid vectors CP and CS.  

The processing is based on a method recently intro-
duced in [11]. In this method, a periodicity histogram of 
inter-onset intervals (IOIs) is computed, with the contri-
bution of each onset-pair determined by their spectral 
similarity and their perceptual impact. The basic idea is 
that the IOI of two strong onsets with similar spectra 
(such as two snare hits) should constitute a relevant level 
of periodicity in the music. In our implementation we in-
stead apply the processing frame-wise on 𝑃#" and 𝑆", using 
the spectral similarity and perceptual impact at each inter-
frame interval. We use the same notion of spectral simi-
larity and perceptual impact as in [11] when computing 
HP from 𝑃#", but when we compute HS from 𝑆", the notion 
of spectral distance is replaced with tonal distance. First 
we smooth 𝑆′ in the pitch direction with a Hann window 
of size 13 (approximately an octave). We then build a his-
togram of tonal distances for each frame, letting n repre-
sent the nth semitone of 𝑆′ and k the kth frame, giving us 
the tonal distance at all histogram positions a 

∀𝑎 ∈ {1	, ⋯ ,1900} 	 𝑆′D8&	E − 𝑆′D8&8F	E 		(3)
#HI

EJ$K&J-LH,-IL,⋯	,LH

 

By using the grid defined by i in Eqn (3), we try to 
capture similarities in a few consecutive tones. The grid 
stretches over 100 frames, which corresponds to roughly 
0.5 seconds. The idea is that repetitions of small motives 
occurs at musically relevant periods. 

To get the cepstroid vector from a histogram, the dis-
crete cosine transform (DCT) is first applied. The result-
ing spectrum unveils periodically recurring peaks of the 

histogram. In this spectral representation, frequency rep-
resents the period length and magnitude corresponds to 
salience in the metrical structure. We then interpolate 
back to the time domain by inserting spectral magnitudes 
at the position corresponding to their wavelength. Finally, 
the Hadamard product of the original histogram and the 
transformed version is computed to reduce noise. The re-
sult is a cepstroid vector (CP, CS). The name cepstroid 
(derived from period) was chosen based on similarities to 
how the cepstrum is computed from the spectrum. 

2.4 Calculating Global SF and PF  

Global features for the SF and PF were calculated for our 
speed estimation. We extracted features from the feature 
matrices of Section 2.2. The matrices were divided into 
log-spaced frequency bands over the entire spectrum by 
applying triangular filters as specified in Table 1. 

Feature Matrices 𝑃#" 𝑃$" 𝑆′ 𝑉3"  𝑉01
"  𝑉02

"  
Number of bands 3 3 1,2,4 3 3 3 

Table 1. The feature matrices are divided into bands. 

After the filtering stage we have 22 feature vectors, and 
each feature vector X is converted into 12 global features. 
We compute the means 𝑋, 𝑋H.$ and 𝑋H.L, where 0.2 and 
0.5 represents the element-wise power (3 features). Also, 
X is sorted based on magnitude into percentiles, and Hann 
windows of widths {41, 61}, centered at percentiles {31, 
41} are applied (4 features). We finally extract the per-
centiles at values {20, 30, 35, 40, 50} (5 features). 

2.5 Neural Network Settings 

Here we define the settings for all neural networks. In the 
subsequent Sections 2.6-2.9, further details are provided 
for each individual NN. All networks were standard feed-
forward neural networks with one to three hidden layers.  

2.5.1 Ensemble Learning 

We employed ensemble learning by creating multiple in-
stances of a network and averaging their predictions. The 
central idea behind ensemble learning is to use different 
models that are better than random and more or less un-
correlated. The average of these models can then be ex-
pected to provide a better prediction than randomly 
choosing one of them [27]. For the Tempo and Speed 
networks, we created an ensemble by randomly selecting 
a subset of the features for the training of 20 networks 
(Tempo) or 60 networks (Speed). For the CINN, only 3 
networks were used in the ensemble due to time con-
straints, and all features were used in each network. 

2.5.2 Target values 

The target values in the networks are defined as: 

• Cep - Classifying if a frame represents a correct (1) 
or an incorrect cepstroid (0). The beat interval, 
downbeat interval, and duple octaves above the 
downbeat or below the beat were defined as correct. 
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• CINN - Classifying if the current frame is at a beat 

position (1), or if it is not at a beat position (0). 
• Speed - Fitting to the log of the global beat length.  
• Tempo - Classifying which of two tempo candidates 

that is correct (1) and which is incorrect (0). 

2.5.3 Settings of the Neural Networks 

We use scaled conjugate descent to train the networks. In 
Table 2, settings of the neural networks are defined. 

 Hidden Epoch EaSt EnLe OL 
Cep {20, 20, 20} 600 100 - LoSi 

CINN {25} 1000  3- LoSi 
Speed {6, 6, 6} 20 4 6040 Li 
Tempo {20, 20} 100  2060 LoSi 

Table 2. The settings for the neural networks of the sys-
tem. Hidden, denotes the size of the hidden layers and 
Epoch is the maximum number of epochs we ran the net-
work. EaSt defines how many epochs without an increase 
in performance that were allowed for the internal valida-
tion set of the neural networks. EnLe is specified as NENF, 
where NE is the number of ensembles and NF is the 
number of randomly drawn features for each ensemble. 
OL specifies if a logistic activation function (LoSi) or a 
linear summation (Li) was used for the output layer.  

The activation function of the first hidden layer was 
always a hyperbolic tangent (tanh) unit, and for subse-
quent hidden layers it was always a rectified linear unit 
(ReLU). The use of a mixture of tanh units and ReLUs 
may seem unconventional but can be motivated. The suc-
cess of ReLUs is often attributed to their propensity to 
alleviate the problem of vanishing gradients [17]. Vanish-
ing gradients are often introduced by sigmoid and tanh 
units when those units are placed in the later layers, be-
cause gradients flow backwards through the network dur-
ing training. With tanh units in the first layer, only gradi-
ents for one layer of weight and bias values will be af-
fected. At the same time, the network will be allowed to 
make use of the smoother non-linearities of the tanh units. 

2.6 Cepstroid Neural Network (Cep) 

In the first NN we compute the most salient periodicity of 
the music. To do this we use the cepstroid vectors (CP 
and CS) previously computed in Section 2.3. First, two 
additional vectors are created from both cepstroid vectors 
by filtering the vectors with a Gaussian 𝜎 = 7.5, and a 
Laplacian of a Gaussian 𝜎 = 7.5. Then we include octave 
versions, by interpolating to a time resolution given by  

1
2

E
,											

1
2

E
×

1
3
,									∀𝑛 ∈ {	−2, −1, 0, 1, 2}							(4) 

Finally, much like one layer and one receptive field of a 
convolutional neural network, we go frame by frame 
through the vectors, trying to classify each histogram 
frame as correct or incorrect, depending on if that particu-
lar time position corresponds to a correct cepstroid. The 

input features are the magnitude values of the vectors at 
each frame. As true targets, the beat interval and the 
downbeat interval, as well as duple octaves above the 
downbeat and duple octaves below the beat are used. The 
output of the network is our final cepstroid vector (C) and 
the highest peak is used as our cepstroid (𝐶).  

2.7 Cepstroid Invariant Neural Network (CINN) 

After the cepstroid has been computed, we use it to derive 
the hop size h for our grid in each ME, at which we will 
subsample the input vectors of the network. By setting h 
to an appropriate multiple of the cepstroid, the input vec-
tors of songs with different tempo (but potentially a simi-
lar rhythmical structure) will be synchronized; and the 
network can therefore make use of the same neural acti-
vation patterns for MEs of different tempi. This enables 
the CINN to easily identify distinct rhythmical patterns 
(similar to the ability of a human listener). We want a hop 
size between approximately 50-100 ms, and therefore 
compute which duple ratio of 70 ms that is closest to the 
current cepstroid  

						 min
EJ⋯,-$,-#,H,#,$,⋯

log$
70
𝐶 2E

																							(5)	 

The value of n, which minimizes the function above, is 
then used to calculate the hop size h of the ME by 

ℎ =
𝐶
2E
																																												(6) 

The rather coarse hop size (50-100 ms) is used as we 
wish to include features from several seconds of audio, 
without the input layer becoming too large. However, to 
make the network aware of peaks that slips through the 
coarse grid, we perform a peak picking on the vector 𝑃#", 
which we have first computed by summing 𝑃#" across fre-
quency. For each grid position, we write the magnitude of 
the closest peak, the absolute distance to the closest peak, 
as well as the sign of the computed distance to three fea-
ture vectors that we will denote by 𝑃.  

Just as for the speed features described in Section 2.4, 
we filter the feature matrices 𝑃#", 𝑆′ and 𝑉3"  with triangular 
filters to extract feature vectors. In summary, for each 
grid position, we extract features by interpolating over the 
16 feature vectors defined in Table 3.  

Feature 𝑃′# 𝑃 𝑆′ 𝑉3 
Number of bands/features 6 3 6 1 

Table 3. Feature vectors that are interpolated to the grid 
defined by the cepstroid. 

For each frame we try to estimate if it corresponds to a 
beat (1) or not (0). We include 38 grid-points in each di-
rection from the current frame position, resulting in a 
time window of 2 ∙ ℎ ∙ 38  seconds. At ℎ = 70	ms , the 
time window is approximately 5.3 seconds. The comput-
ed beat activation from the CINN will be denoted as the 
beat vector 𝐵 in the subsequent processing. 
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2.8 Speed Neural Network 

Octave errors are a prevalent problem in tempo estima-
tion and beat tracking, and different methods for choosing 
the correct tempo octave have previously been proposed 
[13]. It was recently shown that a continuous measure of 
the speed of the music can be very effective at alleviating 
octave errors [11]. We therefore compute a continuous 
speed estimate, which guides our tempo estimation, using 
the input features described in Section 2.4. The ground 
truth annotation of speed 𝐴. , is derived from the loga-
rithm of the annotated beat length 𝐴𝐵b 

𝐴. = log$ 𝐴𝐵b                                   (7) 

Eqn (7) is motivated by our logarithmic perception of 
tempo [6]. As we have very few annotations (1 per ME), 
we increase the generalization capabilities with ensemble 
learning. We also use an inner cross validation (5-fold) 
for the training set. If this is not done, the subsequent 
tempo network will overestimate the relevance of the 
computed speed, rendering a decrease in test perfor-
mance.  

2.9 Tempo Neural Network 

The tempo is estimated by finding tempo candidates, and 
letting the neural network perform a classification be-
tween extracted candidates to pick the most likely tempo. 
First, the candidates are extracted by creating a histogram 
𝐻d  of the beat vector 𝐵  (that we previously extracted 
with the CINN). The energy at each histogram bin is 
computed as the sum of the product of the magnitudes of 
the frames of 𝐵 at the frame offset given by a 

∀𝑎 ∈ 1	,⋯ ,1900 											 𝐵& ∙ 𝐵&8F
&

																				(8) 

We process the histogram to extract a cepstroid vector 
𝐶d, by using the same processing scheme as described for 
𝐶e  in Section 2.3. Peaks are then extracted in both 𝐻d 
and 𝐶d, and the corresponding beat length of the histo-
gram peaks are used as tempo candidates.  

The neural network is not directly trained to classify if 
a tempo candidate is correct or incorrect. Instead, to cre-
ate training data, each possible pair of tempo candidates 
are examined, and the network is trained to classify 
which of the two candidates in the pair that correspond to 
the correct tempo (using only pairs with one correct can-
didate for the training data).  

For testing, the tempo candidate that receives the high-
est probability in its match-ups against the other candi-
dates is picked as the tempo estimate. This idea was first 
described in [11] (in that case without using any preced-
ing beat tracking and using a logistic regression without 
ensemble learning). Input features are defined for both 
tempo candidates in the pair by their corresponding beat 
length Bl. We compute: 

• The magnitude at Bl in 𝐻d, 𝐶d and in the feature vec-
tors used for the Cep NN (see Section 2.6). We in-
clude octave ratios as defined in Eqn (4). 

• We compute 𝑥 = log2 𝐵𝑙 − 𝑆𝑝𝑒𝑒𝑑 . Then sgn(𝑥)  and 
𝑥  are used as features. 

• A Boolean vector for all musically relevant ratios 
defined in Eqn (4), where the corresponding index is 
1 if the pair of tempo candidates have that ratio. 

We constrain possible tempo candidates to the range 
23-270 BPM. This range is a bit excessive for the given 
datasets, but will allow the system to generalize better to 
other types of music with more extreme tempi. 

2.10   Phase Estimation 

At the final stage, we detect the phase of the beat vector 
and estimate the beat positions. The tempo often drifts 
slightly in music, for example during performances by 
live musicians. To model this in a robust way, we com-
pute the CQT of the beat vector. The result is a spectro-
gram where each frequency corresponds to a particular 
tempo, the magnitude corresponds to beat strength, and 
where the phase corresponds to the phase of the beat at 
specific time positions. The beat vector is upsampled 
(100 times higher resolution) prior to applying the CQT, 
and we use 60 bins per octave. We filter the spectrogram 
with a Hann window of width one tempo octave (60 
bins), centered at the frequency that corresponds to the 
previously computed tempo. As a result, any magnitudes 
outside of the correct tempo octave are set to 0 in the 
spectrogram. When the inverse CQT (ICQT) is finally 
applied to the filtered spectrogram, the result is a beat 
vector which resembles a sinusoid, where the peaks cor-
respond to tentative beat positions. With this processing 
technique we have jointly estimated the phase and drift, 
using a fast transform which seems to be suitable for beat 
tracking. 

The beat estimations are finally refined slightly by 
comparing the peaks of the computed sinusoidal beat vec-
tor with the peaks of the original beat vector from the 
CINN. Let us define a grid i, consisting of 100 points, 
onto which we interpolate phase deviations that are with-
in ± 40 % of the estimated beat length. We then create a 
“driftogram” M by evaluating each estimated beat posi-
tion j, adding 1 to each drift position Mi, j where a peak 
was found in the original beat vector. The driftogram is 
smoothed with a Hann window of size 17 across the beat 
direction and size 27 across the drift direction. To adjust 
the beat position, we use the the maximum value for each 
beat frame of M.  

3. EVALUATION 

3.1 Datasets 

We used the three datasets defined in Table 4 to evaluate 
our system. The Ballroom datasets consist of ballroom 
dance music and was annotated by [20, 24]. The Hains-
worth dataset [21] is comprised of varying genres, and 
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the SMC dataset [22] consists of MEs that were chosen 
based on their difficulty and ambiguity. Tempo annota-
tions were computed by picking the highest peak of a 
smoothed histogram of the annotated inter-beat intervals. 

Dataset Number of MEs Length 
Ballroom 698 6h 4m 

Hainsworth 222 3h 20m 
SMC 217 2h 25m 

Table 4. Datasets used for evaluation, and their size. 

3.2 Evaluation Metrics 

There are several different metrics for beat tracking, all 
trying to capture different relevant aspects of the perfor-
mance. For an extensive review of different evaluation 
metrics, we refer the reader to [7].  

F-measure is calculated from Recall and Accuracy, 
using a limit of ± 70 ms for the beat positions. P-Score 
measures the correlation between annotations and detec-
tions. CMLc is derived by finding the longest Correct 
Metrical Level with continuity required and CMLt is 
similar to CMLc but does not require continuity. AMLc 
is derived by finding the longest Allowed Metrical Level 
with continuity required. This measure allows for several 
different metrical levels and off-beats. AMLt is Similar 
as AMLc but does not require continuity. The standard 
tempo estimation metric Acc1 was computed from the 
output of the Tempo Network. It corresponds the fraction 
of MEs that are within 8 % of the annotated tempo. 

3.3 Evaluation procedure 

We used a 5-fold cross validation to evaluate the system 
on the Ballroom dataset. More specifically, the training 
fold was used to train all the different neural networks of 
the system. After all networks were trained, the test fold 
was evaluated on the complete system and the results re-
turned. Then the procedure was repeated with the next 
train/test-split. The Hainsworth and SMC datasets were 
evaluated by running the MEs on a system previously 
trained on the complete Ballroom dataset.  

As a benchmark for our cross-fold validation results on 
the Ballroom dataset, we use the cross-fold validation re-
sults of the state-of-the-art systems for tempo estimation 
[5], and beat tracking [25]. The systems were evaluated 
on a song-by-song basis with data provided by the au-
thors. To make statistical tests we use bootstrapping for 
paired samples, with a significance level of p < 0.01. For 
the Hainsworth and SMC dataset, benchmarking is most 
appropriate with systems that were trained on separate 
training sets. We use [16] as a benchmark for tempo es-
timation, and [8] as a benchmark for beat tracking. 

4. RESULTS 

4.1 Tempo 

The tempo estimation results (Acc1), are shown in Table 
5, together with the results of the benchmarks.  

      (Acc1)   Ballroom  Hainsworth      SMC 
 Proposed      0.973*       0.802     0.332 
 Böck [5]      0.947*       0.865*     0.576* 
 Gkiokas [16]      0.625       0.667     0.346 

Table 5. The results for our tempo estimation system in 
comparison with the benchmarks. Results marked with 
(*) were obtained from cross-fold validation. Results in 
bold are most relevant to compare. Statistical significance 
for systems with song-by-song data in comparison with 
the proposed system is underlined.  

4.2 Beat tracking 

Table 6 shows the performance of the system, evaluated 
as described in Section 3.2.  

Ballroom F-Me P-Sc CMLc CMLt AMLc AMLt 
Proposed 92.5* 92.2* 86.8* 90.3* 89.4* 93.2* 
Krebs [25] 91.6* 88.8* 83.6* 85.1* 90.4* 92.2* 
                                        Hainsworth 
Proposed 74.2 77.7 57.6 67.6 65.0 79.2 
Davies [8] - - 54.8 61.2 68.1 78.9 
                                             SMC 
Proposed 37.5 49.4 14.9 22.5 20.9 33.2 

Table 6. The results for our proposed system in compari-
son with the benchmarks. Results marked with (*) were 
obtained from a cross-fold validation. Statistical signifi-
cance for systems with song-by-song data in comparison 
with the proposed system is underlined. 

5. SUMMARY & CONCLUSIONS 

We have presented a novel beat tracking and tempo esti-
mation system that uses a cepstroid invariant neural net-
work. The many connected networks make it possible to 
explicitly capture different aspects of rhythm. With a Cep 
network we compute a salient level of repetition of the 
music. The invariant representations that were computed 
by subsampling the feature vectors allowed us to obtain 
an accurate beat vector in a CINN. By applying the CQT 
to the beat vector, and then filtering the spectrogram to 
keep only magnitudes that corresponds to the estimated 
tempo before applying the ICQT, we computed the phase 
of the beat. Alternative post processing strategies, such as 
applying a DBN on the beat vector, could potentially im-
prove the performance. The results are comparable to the 
benchmarks both for tempo estimation and beat tracking. 
This indicates that the ideas put forward in this paper are 
important, and we hope that they can inspire new network 
architectures for MIR. Tests on hidden datasets for the 
relevant MIREX tasks would be useful to draw further 
conclusion regarding the performance. 
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ABSTRACT

Speech recognition in singing is still a largely unsolved
problem. Acoustic models trained on speech usually pro-
duce unsatisfactory results when used for phoneme reco-
gnition in singing. On the flipside, there is no phonetically
annotated singing data set that could be used to train more
accurate acoustic models for this task.

In this paper, we attempt to solve this problem using
the DAMP data set which contains a large number of re-
cordings of amateur singing in good quality. We first align
them to the matching textual lyrics using an acoustic model
trained on speech.

We then use the resulting phoneme alignment to train
new acoustic models using only subsets of the DAMP sin-
ging data. These models are then tested for phoneme reco-
gnition and, on top of that, keyword spotting. Evaluation
is performed for different subsets of DAMP and for an un-
related set of the vocal tracks of commercial pop songs.
Results are compared to those obtained with acoustic mo-
dels trained on the TIMIT speech data set and on a version
of TIMIT augmented for singing. Our new approach shows
significant improvements over both.

1. INTRODUCTION

Automatic speech recognition encompasses a large variety
of research topics, but the developed algorithms have so
far rarely been adapted to singing. Most of these tasks be-
come harder when used on singing because singing data
has different characteristics, which are also often more va-
ried than in pure speech [12] [2]. For example, the typical
fundamental frequency for women in speech is between
165 and 200Hz, while in singing it can reach more than
1000Hz. Other differences include harmonics, durations,
pronunciation, and vibrato.

Speech recognition in singing can be used in many in-
teresting practical applications, such as automatic lyrics-
to-music alignment, keyword spotting in songs, language
identification of musical pieces or lyrics transcription.

A first step in many of these tasks is the recognition
of phonemes in the audio recording. We showed in [9]
that phoneme recognition is a bottleneck in tasks such as

c© Anna M. Kruspe. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Anna
M. Kruspe. “Bootstrapping a system for phoneme recognition and key-
word spotting in unaccompanied singing”, 17th International Society for
Music Information Retrieval Conference, 2016.

language identification and keyword spotting in singing.
Other publications also demonstrate that phoneme reco-
gnition on singing is more difficult than on speech [15] [5]
[12]. This is further compounded by the fact that models
are usually trained on pure speech data.

As shown on a small scale in [5] and [9], recognition
gets better when singing is used as part of the training
data. This has so far not been done comprehensively due
to the lack of singing data sets annotated with phonemes or
words.

In this paper, we present a new approach to training
acoustic models on actual singing data. This is done by
first assembling the data from a set of recordings of unac-
companied singing and the matching textual lyrics. These
lyrics are then automatically aligned to the audio data using
models trained solely on speech. Next, the resulting an-
notated data sets are used to train new acoustic models for
phoneme recognition in singing. We then evaluate the pho-
neme recognition results on different subsets of the singing
corpus and on an unrelated data set of vocal tracks. Finally,
we also use the recognized phonemes to perform keyword
spotting.

This paper is structured as follows: We first present the
state of the art in section 2 and the data sets in section 3.
Then, we describe our proposed approach in more detail in
section 4. The experiments and their results are presented
in sections 5 and 6. Finally, we give a conclusion in section
7 and make suggestions for future experiments in section
8.

2. STATE OF THE ART

2.1 Phoneme recognition in singing

As described in [12], [2], and [9], there are significant dif-
ferences between speech and singing audio, such as pitch
and harmonics, vibrato, phoneme durations and pronuncia-
tion. These factors make phoneme recognition on singing
more difficult than on speech. It has only been a topic of
research for the past few years.

Fujihara et al. first presented an approach using Pro-
babilistic Spectral Templates to model phonemes in [3].
The phoneme models are gender-specific and only model
five vowels, but also work for singing with instrumental ac-
companiment. The best result is 65% correctly classified
frames.

In [4], Gruhne et al. describe a classical approach that
employs feature extraction and various machine learning
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algorithms to classify singing into 15 phoneme classes.
It also includes a step that removes non-harmonic com-
ponents from the signal. The best result of 58% correctly
classified frames is achieved with Support Vector Machine
(SVM) classifiers. The approach is expanded upon in [17].

Mesaros presented a complex approach that is based
on Hidden Markov Models which are trained on Mel-
Frequency Cepstral Coefficients (MFCCs) and then adap-
ted to singing using three phoneme classes separately [15]
[14]. The approach also employs language modeling and
has options for vocal separation and gender and voice ad-
aptation. The achieved phoneme error rate on unaccompa-
nied singing is 1.06 without adaptation and 0.8 with sin-
ging adaptation using 40 phonemes (the error rate greater
than one means that there were more insertion, deletion,
or substitution errors than phoneme instances). The results
also improve when using gender-specific adaptation (to an
average of 0.81%) and even more when language modeling
is included (to 0.67%).

Hansen presents a system in [5] which combines the
results of two Multilayer Perceptrons (MLPs), one using
MFCC features and one using TRAP (Temporal Pattern)
features. Training is done with a small amount of singing
data. Viterbi decoding is then performed on the resulting
posterior probabilities. On a set of 27 phonemes, this ap-
proach achieves a recall of up to 48%.

Finally, we trained new models for phoneme recogni-
tion in singing by modifying speech data to make it more
“song-like” [11]. We employed time-stretching, pitch-
shifting, and vibrato generation algorithms. Using a model
trained on speech data with all three modifications, we ob-
tained 18% correctly classified frames (6% improvement)
and a weighted phoneme error rate of 0.71 (0.06 improve-
ment).

Generally, comparing the existing approaches is not tri-
vial since different datasets, different phoneme sets, and
different evaluation measures are used.

2.2 Keyword spotting in singing

A first approach to keyword spotting in singing was presen-
ted in [9]. This approach employs keyword-filler HMMs
which detect the keyword. The recognition is performed
on phoneme posteriorgrams, which were generated with
acoustic models trained on speech. We obtained F1 mea-
sures of 33% for spoken lyrics and 24% for a-capella sin-
ging. Using post-processing techniques on the posterior-
grams, the a-capella result was improved up to 27%.

In [10], we improved upon this result by employing
phoneme duration modeling algorithms. The best result
on a-capella singing was an F1 measure of 39%.

In [1], HMM models and position-HMM-DBNs were
employed to search for certain phrases of lyrics in traditio-
nal Turkish music. The approach obtained an F1 measure
of 13% for the 1-best result.

3. DATA SETS

3.1 Speech data sets

For training our baseline phoneme recognition models, we
used the well-known Timit speech data set [7]. Its trai-
ning section consists of 4620 phoneme-annotated English
utterances spoken by native speakers. Each utterance is a
few seconds long.

Additionally, we also trained phoneme models on a mo-
dification of Timit where pitch-shifting, time-stretching,
and vibrato were applied to the audio data. This process
was described in [11]. The data set will be referred to as
TimitM.

3.2 Singing data sets

3.2.1 Damp

For training models specific to singing, we used the DAMP
data set, which is freely available from Stanford Univer-
sity 1 [16]. This data set contains more than 34,000 re-
cordings of amateur singing of full songs with no back-
ground music, which were obtained from the Smule Sing!
karaoke app. Each performance is labeled with metadata
such as the gender of the singer, the region of origin, the
song title, etc. The singers performed 301 English lan-
guage pop songs. The recordings have good sound quality
with little background noise, but come from a lot of diffe-
rent recording conditions.

No lyrics annotations are available for this data set, but
we obtained the textual lyrics from the Smule Sing! web-
site 2 . These were, however, not aligned in any way. We
performed such an alignment on the word and phoneme
levels automatically (see section 4.1).

Out of all those recordings, we created several different
sub-data sets:
DampB Contains 20 full recordings per song (6000 in

sum), both male and female.
DampBB Same as before, but phoneme instances were

discarded until they were balanced and a maximum
of 250,000 frames per phoneme where left, where
possible. This data set is about 4% the size of
DampB.

DampBB small Same as before, but phoneme instances
were discarded until they were balanced and 60,000
frames per phoneme were left (a bit fewer than the
amount contained in Timit). This data set is about
half the size of DampBB.

DampFB and DampMB Using 20 full recordings per
song and gender (6000 each), these data sets were
then reduced in the same way as DampBB. DampFB
is roughly the same size, DampMB is a bit smaller
because there are fewer male recordings.

DampTestF and DampTestM Contains one full recor-
ding per song and gender (300 each). These data
sets were used for testing. There is no overlap with
any of the training data sets.

1 https://ccrma.stanford.edu/damp/
2 http://www.smule.com/songs
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# Keywords
2 eyes
3 love, away, time, life, night
4 never, baby, world, think, heart,

only, every
5 always, little

Table 1: All 15 tested keywords, ordered by number of
phonemes.

Order-13 MFCCs plus deltas and double-deltas were ex-
tracted from all data sets and used in all experiments.

3.2.2 Acap

We also ran some tests on a small data set of the vocal
tracks of 15 pop songs, which were hand-annotated with
phonemes and words. This data set was first presented
in [5]. Despite the small size, we provide results on this
data set for comparison with our previous approaches, and
because the ground truth annotations can be assumed to be
correct (in contrast with the automatically generated anno-
tations of the Damp-based data sets).

3.3 Keywords

From the 301 different song lyrics of the Damp data sets,
15 keywords were chosen by semantic content and fre-
quency to test our keyword spotting algorithm. Each key-
word occurs in at least 50 of the 301 songs. The keywords
are shown in table 1.

4. PROPOSED APPROACH

4.1 Lyrics alignment

Since the textual lyrics were not aligned to the singing au-
dio data, we first performed an automatic alignment step.
A monophone HMM acoustic model trained on Timit using
HTK was used. Alignment was performed on the word and
phoneme levels. This is the same principle of so-called
“Forced Alignment” that is commonly used in Automatic
Speech Recognition [8] (although it is commonly done on
shorter utterances). We hand-checked some examples and
found the alignment to already be very good over-all. Of
course, errors cannot be avoided when doing automatic for-
ced alignment. We considered repeating this process with
the newly trained models, but preliminary tests suggested
that this would not improve the alignments very much.

The resulting annotations were used in the following ex-
periments. This approach provided us with a large amount
of annotated singing data, which could not feasibly have
been done manually.

4.2 New acoustic models

Using these automatically generated annotations, we
then trained new acoustic models on DampB, DampBB,
DampBB small, DampFB, and DampMB. Models were
also trained on Timit and TimitM.

All models are DNNs with three hidden layers of 1024,
850, and again 1024 dimensions with a sigmoid activation

function. The output layer corresponds to 37 monophones.
Inputs are either frame-wise MFCCs (39 dimensions) or
MFCCs with 4 context frames on either side (351 dimen-
sions).

4.3 Phoneme recognition and evaluation

Using these models, phoneme posteriorgrams were then
generated on the test data sets (DampTestF, DampTestM,
and Acap). For all non-gender dependent acoustic models,
results over both of the DampTest sets were averaged.

The recognized phonemes were then evaluated using
the percentage of correct frames, the phoneme error rate,
and the weighted phoneme error rate as evaluation measu-
res (see [11]). In the case of the DampTest data sets, the
results were compared to the automatic alignment results,
which is a potential source of error.

4.4 Keyword spotting and evaluation

Finally, the phoneme posteriorgrams were evaluated for
keyword spotting. A keyword-filler HMM algorithm was
employed. Keyword-filler HMMs consist of two sub-
HMMs: One to model the keyword and one to model eve-
rything else (=filler). The keyword HMM has a simple
left-to-right topology with one state per keyword phoneme.
The filler HMM is a fully connected loop of all phone-
mes. When the Viterbi path with the highest likelihood
passes through the keyword HMM rather than the filler
loop, the keyword is detected. We previously employed
this approach in [9]. However, the evaluation data set ba-
sed on Damp is a different, much bigger set of recordings.
The keyword set was changed to better reflect frequently
occurring words in these songs. Additionally, the keyword
detection was performed on whole songs, which may be
more realistic for practical applications. For comparison,
results on our old data set (Acap) for whole songs are also
provided below. Song-wise F1 measures were calculated
for evaluation.

5. PHONEME RECOGNITION EXPERIMENTS
AND RESULTS

5.1 Experiment A: Comparison of models trained on
Timit and Damp data sets

In our first experiments, we generated phoneme posterior-
grams on the data sets DampTestF and DampTestM using
the models trained on the two variants of Timit and on the
three differently-sized Damp training sets that were not
split by gender. The results are averaged over both sets.
For comparison, we also generated these posteriorgrams
on Acap. The results for the DampTest sets in terms of per-
centage of correct frames, phoneme error rate, and weigh-
ted phoneme error rate are shown in figure 1.

Models trained on the modified version of Timit already
show some improvement over plain Timit [11], but even
the small Damp training set improves the result signifi-
cantly more. As mentioned before, this data set is actually
smaller than Timit. The percentage of correct frames rises
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(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 1: Evaluation measures for the results obtained on the DampTest data sets using models trained on Timit and on
various Damp-based data sets.

from 13% to 19%, the phoneme error rate sinks from 1.27
to 1.04, and the weighted phoneme error rate from 0.9 to
0.77.

When the whole set of 6000 recordings is used for trai-
ning (DampB), the percentage of correct frames even rises
to 23%, while the phoneme error rate falls to 0.8 and the
weighted phoneme error rate to 0.6. When using the smal-
ler, more balanced version (DampBB), these results are so-
mewhat worse, but not much, with 23% correct frames, a
phoneme error rate of .86, and a weighted phoneme error
rate of 0.65. This is particularly interesting because this
data set is only 4% the size of the bigger one and training
is therefore much faster.

The results on the Acap data set show a similar impro-
vement, but are better in general. The percentage of cor-
rectly classified frames jumps from 12% to 22%, 25%, and
27% for DampBB small, DampB, and DampBB respec-
tively. The weighted phoneme error rate sinks from 0.8
to 0.69, 0.61, and 0.56. Since this data set is has been an-
notated by hand and is completely different material from
the training data sets, we are confident that our approach is
able to model the properties of each phoneme, rather than
reproducing the model that was used for aligning the sin-
ging training sets. The somewhat better values might be
caused by these more accurate annotations, too, or by the
fact that these are recordings of professional singers who
enunciate more clearly.

5.2 Experiment B: Influence of context frames

We then ran the same experiment again, but this time used
models that were trained with 4 context frames on either
side of each input frame. This provides more long-term
information. The results are shown in figure 2. (In each
figure, the “No context” part is the result from the previous
experiment).

Surprisingly, using context frames did not improve the
result in any case except for the DampBB small models.
Since this is the smallest data set, this improvement might
happen just because the context frames virtually provide
more training data for each phoneme. In the other cases,
there already seems to be a sufficient amount of training
data and the context frames may blur the training data ins-

tead of providing more information about the context of
each phoneme. Additionally, it is possible that this ap-
proach compounds error that were made in the automatic
alignment in the case of the bigger Damp training data sets.

The same effect can be observed when calculating these
values on the hand-annotated Acap test data set. We there-
fore decided to not employ context frames in the following
experiments. This also speeds up the training process.

5.3 Experiment C: Comparison of gender-dependent
models

Finally, we generated phoneme posteriorgrams using mo-
dels that were only trained on recordings of the same gen-
der. I.e., for phoneme recognition on the DampTestF set,
we used a model trained only on female singing recordings
(DampFB). The results are shown in figure 3. (Note that
the results for DampB and DampBB are different from the
previous experiments because the test data sets were split
by gender).

Surprisingly, the results do not improve when using
gender-specific acoustic models. The percentage of cor-
rect frames, when compared to the results using the mo-
dels trained on the DampBB drops sligthly from 23% to
21% for the female test set, and stays at 23% for the male
one. The weighted phoneme error rate rises from 0.65 to
0.68 and from 0.65 to 0.69 for the female and male test
sets respectively.

This might happen because the training data sets are
slightly smaller, but, more likely, because some variation in
the singing voices might be lost when using training data
of only one gender. In singing, pitches cover a broader
range than in speech. This effect might take away some of
the improvement usually seen in speech recognition when
using gender-specific models.

6. KEYWORD SPOTTING EXPERIMENTS AND
RESULTS

6.1 Experiment D: Comparison of models trained on
Timit and Damp data sets

We then performed keyword spotting on the phoneme pos-
teriorgrams from Experiment A. The results in terms of F1
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(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 2: Evaluation measures for the results obtained on the DampTest data sets using models trained on Timit and on
various Damp-based data sets with no context and with 8 context frames.

(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 3: Evaluation measures for the results obtained on the DampTestM and DampTestF data sets using models trained
on Damp-based data sets, mixed and split by gender.

measure across the whole DampTest sets are shown in fi-
gure 4a. Figure 4b show the results of the same experiment
on the small Acap data set.

Across all keywords, we obtain a document-wise F1

measure of 0.35 using the posteriorgrams generated with
the Timit model on the DampTest data sets. This result
is slightly higher for the TimitM models and rises to 0.45
using the model trained on the small DampBB small sin-
ging data set. Surprisingly, the model trained on DampBB
is only slightly better than the much smaller one. Using the
very big DampB training data set, the F1 measure reaches
0.47.

On the hand-annotated Acap test set, the difference is
even more pronounced, rising from 0.29 for the Timit mo-
del to 0.5 for DampB. This might, again, be caused by the
more accurate annotations or by the higher-quality singing.
Additionally, the data set is much smaller with fewer oc-
currences of each keyword, which could emphasize both
positive and negative tendencies in the detection.

6.2 Experiment E: Comparison of gender-dependent
models

We also performed keyword spotting on the posteriorgrams
generated with the gender-dependent models from Experi-
ment C. The results are shown in figure 5.

In contrast to the phoneme recognition resultes from
Experiment C, the gender-dependent models perform
slightly better for keyword spotting than the mixed one of
the same size, and almost as good as the one trained on
much more data (DampB). The F1 measures for the fe-
male test set are 0.48 for the DampB model, 0.45 for the

(a) F1 measures for keyword
spotting results on the Damp-
Test data sets.

(b) Keyword spotting results
on the Acap data set.

Figure 4: F1 measures for keyword spotting results using
posteriorgrams generated with various acoustic models.

DampBB model, and 0.46 for the DampFB model. For the
male test set, they are 0.46 and 0.45 for the first two, and
0.46 for the DampMB model.

6.3 Experiment F: Individual analysis of keyword
results

Figure 6 shows the individual F1 measures for each key-
word using the best model (DampB), ordered by their oc-
currence in the DampTest sets from high to low (i.e. num-
ber of songs which include the song). There appears to
be a tendency for more frequent keywords to be detected
more accurately. This happens because a high recall is of-
ten achievable, while the precision depends very much on
the accuracy of the input posteriorgrams. The more fre-
quent a keyword, the easier it also becomes to achieve a
higher precision for it.
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Figure 5: F1 measures for keyword spotting results on
the DampTestM and DampTestF data sets using mixed and
gender-dependent models.

Figure 6: Individual F1 measures for the results for each
keyword, using the acoustic model trained on DampB.

As shown in literature [18], the detection accuracy also
depends on the length of the keyword: Keywords with
more phonemes are usually easier to detect. This might ex-
plain the relative peak for “every”, “little”, and “always”,
in contrast to “eyes” or “world”. Since keyword detection
systems tend to perform better for longer words and most
of our keywords only have 3 or 4 phonemes, this result is
especially interesting.

One potential source of error are sequences of phone-
mes that overlap with our keywords, but are not included
in the calculation of the precision. Equally spelled words
were included, but split phrases or other spellings were not
(e.g. “away” as part of “castaway” would be counted, but
“a way” would not be counted as “away”). This might arti-
ficially lower our results and we will look into possibilities
for improvement in the future. Additionally, only one pro-
nunciation for each keyword was provided, but there may
be several possible.

7. CONCLUSION

In this paper, we trained new acoustic models on a large
corpus of unaccompanied singing recordings. Since no an-
notations for these existed, we first had to automatically
align lyrics to them. The new models could then directly
be trained on these automatic annotations. To our know-
ledge, this has not been done before for singing.

We trained three different models with mixed gender
recordings: One on 6000 full recordings of 301 songs, one
on just 4% of this data, and one which was balanced by
phonemes and is roughly half the size of the medium-sized

one. We then tested their performance on two other subsets
of the same corpus which did not overlap with the training
data, and on a small unrelated data set of commercial vocal
tracks which were hand-annotated.

In all cases, the three new models showed a strong im-
provement over those trained only on speech. Even the
model trained on the smallest set produced a jump in cor-
rectly classified frames from 13% to 19%, and in weighted
phoneme error rate from 0.9 to 0.77 on the large test set.
With the model trained on the medium-sized data set, we
obtained 23% correct frames and a weighted phoneme er-
ror rate of 0.65. With the biggest one, the weighted pho-
neme error rate falls to 0.6. The results are similar on the
small hand-annotated test set.

We also tested acoustic models with 8 context frames,
and models trained on gender-specific data. Neither of
them showed improvement over the first ones.

We then performed keyword spotting for 15 keywords
on phoneme posteriorgrams generated with these new mo-
dels using a keyword-filler approach. The resulting F1

measure rises from 0.35 for the models trained on speech
to 0.47 for our new models. This result is especially inte-
resting because most of the keywords have few phonemes.
For keyword spotting, gender-dependent models perform
slightly better than mixed-gender models of the same size.

8. FUTURE WORK

So far, we have only tested this approach using MFCC fea-
tures. As shown in our previous experiments [9], other
features like TRAP or PLP may work better on singing.
So-called log-mel filterbank features have also been used
successfully with DNNs [6]. Another interesting factor is
the size and configuration of the classifiers, of which we
have only tested one so far. Since the alignment appears
to provide valid training data, we believe the features and
model configuration could be the greatest sources of im-
provement.

We showed that there is only a slight amount of impro-
vement between the model trained on all 6000 songs and
the one trained only on 4% of this data. It would be interes-
ting to find the exact point at which additional training data
does not further improve the models. On the evaluation
side, a keyword spotting approach that allows for pronun-
ciation variants or sub-words may produce better results.
Language modeling might also help to alleviate some of
the errors made during phoneme recognition.

These models have not yet been applied to singing with
background music, which would be interesting for practi-
cal applications. Since this would probably decrease the
result when used on big, unlimited data sets, more speci-
fied systems would be more manageable, e.g. for specific
music styles, sets of songs, keywords, or specialized ap-
plications. Searching for whole phrases instead of short
keywords could also make the results better usable in prac-
tice.

As shown in [13] and [2], alignment of textual lyrics
and singing already works well. A combined approach that
also employs textual information could be very practical.
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ABSTRACT

Twitter is one of the leading social media platforms, where
hundreds of millions of tweets cover a wide range of top-
ics, including the music a user is listening to. Such #now-
playing tweets may serve as an indicator for future charts,
however, this has not been thoroughly studied yet. There-
fore, we investigate to which extent such tweets correlate
with the Billboard Hot 100 charts and whether they allow
for music charts prediction. The analysis is based on #now-
playing tweets and the Billboard charts of the years 2014
and 2015. We analyze three different aspects in regards
to the time series representing #nowplaying tweets and the
Billboard charts: (i) the correlation of Twitter and the Bill-
board charts, (ii) the temporal relation between those two
and (iii) the prediction performance in regards to charts
positions of tracks. We find that while there is a mild cor-
relation between tweets and the charts, there is a temporal
lag between these two time series for 90% of all tracks. As
for the predictive power of Twitter, we find that incorporat-
ing Twitter information in a multivariate model results in a
significant decrease of both the mean RMSE as well as the
variance of rank predictions.

1. INTRODUCTION

The microblogging platform Twitter has long since become
one of the leading social media platforms, serving 271 mil-
lion active users, who publish approximately 500 million
tweets every day [3]. On Twitter, users for instance share
their opinions about various topics, post interesting arti-
cles, let the world know what they are currently doing, and
interact with other users. Furthermore, users share what
music they are currently listening to in so-called #now-
playing tweets. These tweets can be identified by one of
the hashtags #nowplaying, #listento or #listeningto, and
typically feature title and artist of the track the user is lis-
tening to (e.g. “#NowPlaying Everlong – Foo Fighters

c© Eva Zangerle, Martin Pichl, Benedikt Hupfauf, Günther
Specht. Licensed under a Creative Commons Attribution 4.0 Interna-
tional License (CC BY 4.0). Attribution: Eva Zangerle, Martin Pichl,
Benedikt Hupfauf, Günther Specht. “Can Microblogs Predict Music
Charts? An Analysis of the Relationship between #Nowplaying tweets
and Music Charts ”, 17th International Society for Music Information
Retrieval Conference, 2016.

http://spoti.fi/J1Gqhs”). The majority of such tweets are
automatically generated by music players or music stream-
ing platforms (as in the previous example tweet, Spotify).

#nowplaying tweets have already been analyzed in re-
gards to the listening behavior of users from around the
world [20], or to perform user-specific music recommen-
dation tasks [24]. Also, Schedl and Tkalčič looked into
the genre distribution within #nowplaying tweets, in par-
ticular, the use of social media of classical music enthu-
siasts [21]. Kim et al. present a prediction analysis of
Billboard charts based on Twitter data [13]. The authors
crawled #nowplaying tweets and the Billboard Hot 100
over the course of 10 weeks and extracted tweets that con-
tain a song or artist already contained in the charts. The
actual prediction was then performed by a classification
task based on the number of tweets about the given track
and artist, and the number of weeks the track has already
been in the Billboard Hot 100. The results indicate that
the future success of a track, which is already in the charts,
can be predicted accurately. However, we argue that only
using those tweets which feature artists or songs currently
in the Billboard Hot 100, and using information about how
long a certain song has already been in the charts limits
this approach and its general applicability. Furthermore,
the study by Kim et al. was limited to an analysis period
of 10 weeks.

Following up on this research, we are interested in gen-
eralizing the hypothesis of chart prediction based on Twit-
ter data, and look into how suitable #nowplaying tweets
are when it comes to predicting the Billboard Hot 100.
Therefore, we shed light on the following research ques-
tions (RQ) in this study:

• RQ1: To which extent do #nowplaying-tweets re-
semble the Billboard Hot 100?

• RQ2: How are #nowplaying tweets and the Bill-
board Hot 100 temporally related?

• RQ3: How can Twitter data be exploited for predict-
ing music charts?

In this work, we model the Billboard charts data as well
as the Twitter data as time series [10]. Based on this data,
we look into three different aspects to answer the research
questions: (i) the correlation of Twitter-activity regarding
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musical tracks and the Billboard charts, (ii) the temporal
relation of tweets and charts to investigate whether there is
a timely offset between Twitter and the Billboard Hot 100
charts and (iii) the predictive power of #nowplaying-tweets
with respect to the Billboard Hot 100.

The contribution of this work can be summarized as fol-
lows: To the best of our knowledge, this is the first pa-
per providing a deep analysis on the relationship between
#nowplaying tweets and charts. Furthermore, our study is
based on data collected over two years, covering a time
frame substantially longer than previous research and par-
ticularly, utilizing time series to perform the analyses. We
find that the basic correlation of time series representing
the Billboard Hot 100 and Twitter performance of all in-
dividual tracks is moderate. When performing a cross-
correlation analysis to compute a time-agnostic correlation
analysis, the correlation coefficient is 0.57. Analyzing the
lag between the two time series shows that the temporal
offset between musical tweets and charts would allow for
a prediction from a temporal perspective for 41% of all
tracks. Our prediction experiments show that Twitter data
enhances the quality of charts rank predictions as the mul-
tivariate model incorporating both Billboard and Twitter
data reduces the prediction error significantly and further
also reduces the error variance significantly.

The remainder of this paper is structured as follows.
Section 2 presents background information and approaches
related to our analyses. Section 3 introduces the dataset un-
derlying our analyses, and Section 4 describes the analyses
methods we facilitate. Section 5 presents the results of our
analysis, and Section 6 discusses our findings in the light
of the posed research question. Section 7 concludes the
paper.

2. BACKGROUND AND RELATED WORK

Research related to the analyses presented in this paper can
be categorized into the following categories: (i) charts and
hit prediction based on Twitter data, (ii) analyses of musi-
cal tweets and (iii) time series analyses in social media.

Kim et al. [13] present the first approach to predict the
success of songs in terms of their Billboard Hot 100 rank-
ings based on Twitter data. Therefore, the authors facilitate
a dataset comprising 10 weeks of #nowplaying tweets, and
the Billboard Hot 100 of the same time period. The au-
thors use three different features for their further computa-
tions: a song’s popularity on Twitter, an artist’s popularity
on Twitter, and the number of weeks a song was in the
Billboard Hot 100. Based on these features, the authors
compute the Pearson correlation coefficient between the
chart-ranking of a particular song in the Billboard Hot 100,
and each of the aforementioned features. They find that
the song popularity obtains the highest correlation with the
ranking of the given songs. In a second step, the authors
build different regression models (linear, quadratic linear,
and support vector regression models) to predict the rank-
ing of a certain song. The authors find that using all three
features with a support vector regression model produces
the best prediction performance (r2=0.75). As for detect-

ing whether a certain song will be a hit, the authors di-
vide their dataset into hits and non-hits and try to predict
whether a random non-hit song will be a hit by using ran-
dom forest classification. The results show that hits (chart
rank 1-10) can be predicted with a precision value of 0.92
and a recall value of 0.88. However, these prediction tasks
are only performed for songs which are already in the Bill-
board Hot 100. Incorporating the number of weeks a song
was in the charts requires knowledge of the charts and as
a consequence, such a method cannot be applied to new
songs which are possibly about to enter the charts.

Generally, #nowplaying tweets have been in the focus
of researchers aiming to detect musical preference patterns
from around the world. However, except for Kim et al.,
none of these approaches aim to predict charts based on
this data. Hauger and Schedl extract genre patterns for
regions of the world based on geolocation information of
#nowplaying tweets [20]. Schedl et al. also analyse the
listening behavior of Twitter users with a particular focus
on geospatial aspects [19]. Following up on this research,
Schedl and Tkalčič looked into the general genre distri-
bution among tweets, with an emphasis on classical mu-
sic [21]. Furthermore, Pichl et al. facilitate #nowplaying
tweets from the streaming platform Spotify to recommend
artists to users [16].

Social media data has been modeled as time series for
a variety of analyses, e.g., for predicting the stock market
based on emotion within social media [7]. Similarly, time
series have been used for modeling mood information ex-
tracted from Twitter [6] or the detection of influenza epi-
demics via Twitter [8]. Further, Sakaki et al. facilitate
time series for real-time event detection [18]. Huang et
al. model the user of tags on Twitter as a time series to
understand how hashtags are used on Twitter [12]. Also,
Twitter models data as time series to monitor the health
and success of their services as well as to detect anomalies
in regards to spikes in user attention [4, 5].

3. DATA

In the following, we describe the data used for the per-
formed analyses. In principle, we require data from two
different sources, gathered over the same time frame: #now-
playing tweets, and information about the charts at the given
time. As for the set of musical tweets, we choose to base
our analyses on a dataset the #nowplaying dataset provided
by Zangerle et al. [25] as it is the most extensive dataset of
#nowplaying tweets publicly available, which is constantly
updated. In total, we utilize all of the 111,260,925 #now-
playing tweets that are available for the years 2014 and
2015. These tweets form the basis of our analysis. To eval-
uate to what extent Twitter data can be used to predict the
charts, we choose to use the Billboard Hot 100 as a refer-
ence, as they are one of the most influential indicators for
the popularity of songs [2]. Analogously to the work by
Schedl and Tkalčič [21], we are aware that the Billboard
charts reflect the U.S. market only. Within the Billboard
charts, the songs are ranked according to a score computed
based on radio airplay, sales and streaming activity [1].
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We crawled the top 100 of each week of the years 2014
and 2015 from the Billboard Website [2]. In total, we gath-
ered 886 distinct songs. On average, a track stays within
the Hot 100 for 11.74 weeks (SD=10.58), the minimum
number of weeks for a track within the Hot 100 is one week
and the maximum is 58 weeks.

4. METHODS

This section describes the methods implemented in our
study. We propose three analyses to investigate whether
the prediction of charts is possible (i) from a correlation
perspective, (ii) from a temporal perspective with respect
to the distribution and popularity of songs on Twitter and
in the charts, and (iii) a prediction perspective analyzing
to which extent Twitter data can contribute to predicting
future charts for given songs.

To be able to compare #nowplaying tweets and the Bill-
board Hot 100, we quantify the overlap of musical tweets
and charts by counting how many tweets refer to a song
on the charts. We aim to match tweets against all tracks
that have been on the charts since 2011 to ensure a maxi-
mum overlap. We iterate over all tweets and all songs that
have been in the charts in nested loops and match title and
artist independently. The track title is considered success-
fully matched, if it is a substring of the tweet (case insen-
sitive). Matching the artist is more complex, as there are
several formats, for instance “Michael Jackson” and “Jack-
son, Michael”, in use. Moreover, there are many ways to
list featured artists: “Bad Meets Evil Featuring Bruno Mars
– Lighters”, “Bad Meets Evil – Lighters Featuring Bruno
Mars”, or sometimes, featured artists are simply neglected.
For this reason, the artist string is split at keywords and
symbols, such as “feat.”, “ft.”, “&”, etc. If more than half
of the resulting tokens can be found in the tweet (again,
case insensitive), the artist counts as successfully matched.
We consider a track matched, if both track title and artist
were matched successfully.

Based on the gathered and preprocessed data on both
Twitter and the Billboard Hot 100, we model both of these
as time series [10] to compute the analyses as described in
the following.

4.1 Correlation of Rankings

In a first step we aim to analyze to which extent Twitter
data and Billboard Hot 100 data correlate. We perform a
detailed correlation analysis of the popularity of each track
in both the Billboard and the #nowplaying dataset. Kim
et al. provide a correlation analysis (using Pearson corre-
lation) for (i) the log of the track’s playcount and (ii) the
log of the artist’s playcount and (iii) the number of weeks
the song was in the Billboard Hot 100. The authors de-
fine the playcount as the median number of mentions of
the respective track or artist per day for a given week. We
extend this analysis by aggregating the playcounts for a
given week not only by using the median of the playcounts
of the days of a week, but also computing the mean num-
ber of playcounts per track per day and the sum of play-

counts for a given week. If a track was not on the Billboard
charts in a given week, we consider its rank as 0. Based on
this extracted information, we compute the Pearson corre-
lation coefficient for the track and artist playcounts and the
Billboard time series [15]. As for the log of the track’s
playcount and log of artist’s playcount, we rely on Spear-
man’s ρ [22] due to the data’s ordinal scale and the fact
that the logarithm is a non-monotonic transformation of
the data [11].

4.2 Temporal Relationship of Tweets and Charts

As we aim to analyze to which extent Twitter data resem-
bles trends in the Billboard Hot 100 and hence, allows for a
prediction of future Billboard charts, we are naturally inter-
ested in the temporal relationship between Twitter and the
Billboard charts. I.e., we analyze whether Twitter does—
from a timely perspective—represent trending tracks ear-
lier than those are reflected in the Billboard Hot 100.

To investigate this matter, we propose to perform a cross-
correlation analysis of the time series based on Twitter and
the time series based on Billboard data for any given music
track. In principle, cross-correlation is used to compute the
similarity of two signals or time series as a function of the
lag between these two signals [14]. This allows for a cor-
relation analysis independent of temporal shifts between
the time series while at the same time obtaining informa-
tion about the lag between the time series. Along the lines
of previous research we consider a time lag optimal if it
maximizes the correlation of the two signals [23]. This
allows to compute the maximum correlation between two
time series independent of timely shifts (i.e., Twitter data
and Billboard data) and determine the lag between these
time series. I.e., if we determine a negative lag for a given
track, this implies that Twitter data would allow to predict
future charts from a timely perspective.

For the computation of the cross-correlation we rely on
the median number of mentions of each track per week
on Twitter as this measure has shown to provide the high-
est correlation value with the Billboard charts (cf. Sec-
tion 5.1).

4.3 Prediction of Billboard Charts

For the prediction of future Billboard charts, we aim to
forecast the performance of a given track in regards to
its rank in the future based on past and present observa-
tions. Mostly, a regression approach facilitating univari-
ate or multivariate time series is applied for such tasks [9].
Therefore, we propose to evaluate the quality of predic-
tions based on Billboard charts only, Twitter charts only
and a combined approach. In particular, we propose to
compute three prediction models to evaluate the predictive
power of the individual approaches: (i) an autoregressive
time series model (AR) based on solely the Billboard time
series (we utilize this method as a baseline), (ii) extract
the lag from the cross-correlation analysis, shift the time
base and compute an AR-model based on the difference
between the Twitter and Billboard time series to be able
to evaluate the Twitter time series in regards to predicting
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Aggregation Method for Playcounts
Measure Median Mean Sum

track playcount 0.50 (481) 0.49 (469) 0.49 (453)
log(track playcount) 0.49 (457) 0.48 (453) 0.47 (442)
artist playcount 0.37 (378) 0.37 (364) 0.37 (358)
log(artist playcount) 0.40 (398) 0.38 (389) 0.38 (389)

Table 1: Mean Correlation Coefficients (p < 0.01); Numbers in Parenthesis: Number of Significantly Correlating Tracks

the Billboard charts and (iii) utilize information from both
Billboard and Twitter to perform a combined prediction ap-
proach using a vector autoregressive model for multivariate
time series (VAR). Such a VAR model computes predic-
tions based on multiple time series, in our case, Billboard
data and Twitter data (particularly, the median number of
tweets about each track). As for the training of the models,
we rely on the Ordinary Least Squares (OLS) method [9].
We evaluate these three models in regards to their rank
prediction accuracy using the standard evaluation measure
root mean squared error (RMSE) [9].

5. RESULTS

In the following section we present the results of our anal-
yses in the light of the research questions posed. We firstly
present the results of the correlation analysis and subse-
quently provide the results of the cross-correlation analysis
to look into the temporal relationship between Twitter and
Billboard. Based on these findings, we present the results
of the prediction analysis for Billboard charts.

5.1 Correlation of Tweets and Charts

Firstly, we analyze the correlation of the measures describ-
ing the performance of each track extracted from the #now-
playing dataset (cf. Section 4.1). Therefore, we compute
the correlation between the mean, median and the sum of
playcounts of the track and its rank within the Billboard
Hot 100. The results of this analysis can be seen in Ta-
ble 1, where we list the mean correlation coefficient across
all tracks within the dataset. Please note that we only con-
sider those tracks for which we can find a significant cor-
relation (p < .01). As can be seen, we observe the highest
correlation values for the track playcount with a moder-
ate correlation of 0.50 for 481 of 886 tracks (54.29% of
all tracks in the dataset). Figure 1a shows the correlation
distribution for all tracks with a significant correlation at
the p < 0.01-level. We observe both positively correlated
and negatively correlated tracks. We also observe that—in
line with the findings by Kim et al. [13]—using the median
value of all track counts of a given week to represent the
performance of any given track on Twitter shows the high-
est correlation values throughout all configurations. Also,
the level of correlation obtained is in line with those ob-
served by Kim et al. as those reach a correlation value of
0.56 for the log of the track playcount [13]. To answer
RQ1, we find that there is a moderate correlation between
#nowplaying playcount numbers and Billboard charts.

Performing an explorative study on the time series rep-
resentations of given tracks in the Twitter dataset as well
as the Billboard dataset shows a timely lag between these
two signals, which we investigate further in the next exper-
iment.

5.2 Temporal Relationship of Tweets and Charts

To gain a deeper understanding for the temporal relation-
ship between tweets and charts, we perform a cross-corr-
elation analysis of the respective time series. As described
in Section 4.2, this analysis allows for determining the lag
between two time series. Figure 2a depicts the distribution
of lags detected for all tracks in the dataset. We observe
that the lag histogram shows its highest peaks at -1 and
1 weeks, implying that a substantial number of tracks are
mentioned and trending on Twitter either one week before
or after these occur and evolve on the Billboard Hot 100
charts. At the same time, the histogram also shows that
there also is a substantial number of tracks with a positive
time lag. I.e., maximum correlation is reached when shift-
ing the Twitter signal to a later point in time. In total, 286
tracks feature a negative lag (41.09%), whereas 335 tracks
(48.13%) feature a positive lag and 75 tracks (10.77%) fea-
ture no lag. Table 2 shows a five-number summary of the
distribution of time lags (cf. row “all”). On average, the lag
between Twitter and the Billboard charts is positive (1.47),
whereas the median value is 0.

Min Q1 Med Mean Q3 Max

All -17.0 -2.0 0.0 1.47 5.0 17.0
TF -17.0 -2.0 0.0 0.97 4.0 17.0

Table 2: Five-Number Summary: Temporal Lag (TF refers
to those tracks that first occur on Twitter)

We can now utilize the computed lag to shift the base
of the time series such that they are maximally correlated.
This cross-correlation analysis shows that the mean corre-
lation for all tracks is now 0.57 in contrast to 0.50. The
correlation distribution of the playcount measure after the
base shift is shown in Figure 1b, where the improvement is
clearly visible as the distribution is now shifted towards the
right, now only containing positive correlation coefficients
in contrast to Figure 1a, where we still observe negative
correlation coefficients. The median correlation coefficient
is slightly increased from 0.50 to 0.57 when computing the
cross-correlation coefficient for all tracks.
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(a) Correlation (b) Cross-Correlation

Figure 1: Histogram of Correlation Coefficients for Track Playcounts

In a second step, we repeat the experiment based on the
set of tracks which first occur on Twitter before they ac-
tually appear on the Billboard Hot 100. I.e., we extract
all tracks for which we observe that they first appear on
Twitter and at a later point in time on the charts. This re-
sults in a total of 619 tracks. This experiment aims to look
into tweets, which would actually allow for a prediction
of Billboard charts as these tracks are featured and trend-
ing on Twitter before they actually appear in the Billboard
Hot 100 charts. Figure 2b shows the lags resulting from a
cross-correlation analysis of these tracks. As can be seen,
the lag distribution is slightly shifted towards the left, i.e.,
this subset of tweets features lower lags. Table 2 shows the
five-number summary of this distribution (cf. row “TF”
for Twitter First). Directly comparing the distribution to
the lag distribution of all tracks shows that the mean lag
is lower, reaching 0.97 weeks. For 69 tracks (11.14%) we
do not observe a lag between Twitter and Billboard. 286
tracks (46.20%) feature a positive lag, whereas 264 tracks
(42.64%) feature a negative lag. I.e., for 264 tracks a pre-
diction based on Twitter charts seems possible from a tem-
poral perspective.

To answer RQ2, we observe that 89.23% of all tracks
actually feature a temporal lag and that 41.09% of all tracks
feature a negative lag. I.e., a prediction of charts based on
Twitter data is possible from a temporal perspective. When
shifting the base of the time series according to the lag, the
correlation is increased to 0.57. Looking at the subset of
tracks which appear on Twitter first, we observe a negative
time lag for 264 tracks, which accounts for 42.64%, which
would allow for a prediction.

5.3 Prediction of Charts

Based on the findings of the previous analyses, we aim to
investigate the usefulness of Twitter data for the prediction
of Billboard charts in the following. Therefore, we now
present the results of a autoregression approach to predict-
ing future Billboard charts. We applied the Augmented
Dickey-Fuller test to confirm stationarity in the time se-
ries [17].

Table 3 shows the 5-point-summary of the results of the
three proposed prediction models in terms of the RMSE
values obtained: The Billboard-based autoregressive model
(BB), the Twitter-based AR model (T) and the multivariate
model combining Twitter and Billboard data (V). Please
note that outliers are omitted (we consider all tracks that
are more distant than 1.5 interquartile ranges from the up-
per or lower quartile as outliers). As can be seen, the au-
toregressive approach based only on Twitter data works
substantially worse than the other two approaches, the me-
dian of the RMSE distribution being 116.1. In contrast,
autoregressive prediction based on the Billboards model
(and hence, the baseline) reaches a median RMSE of 26.8
and the VAR model reaches the lowest median RMSE with
12.6. Figure 3 shows a boxplot of the RMSE of the VAR
and the Billboard autoregressive model. As can be seen,
the VAR model also features a lower variance within the
predicted ranks. The mean RMSE—indicated by a dia-
mond in the boxplot—is also clearly lower for the VAR
model (14.1 vs. 26.8, hence, a 48.38% lower value). Due
to the non-normal distribution of the data, we apply a Mann-
Whitney U test to test for significant differences in the pre-
diction performance of the VAR and Billboard AR model
and the result shows a significantly lower RMSE for the
VAR-model (p < 0.05). A Levene’s test of equality of
RMSE variance shows that the VAR model reaches signif-
icantly lower error variance in terms of ranking predictions
than the Billboard AR model (p < 0.01).

Regarding RQ3, we can therefore observe that combin-
ing Twitter and Billboard data enhances the quality of pre-
dictions. We show that the RMSE is significantly lower
when incorporating Twitter information. Similarly, we show
that the error variance of predictions is significantly de-
creased using a multivariate model.

6. DISCUSSION

In the following section, we discuss the results presented
in the previous section, and put them into context in order
to confirm or disprove our hypothesis that Twitter musical
data can be used for predicting music charts.
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(a) All Tracks (b) Tracks First Appearing on Twitter

Figure 2: Distribution of Temporal Lags between Twitter and Billboard Hot 100

Figure 3: Boxplot of RMSE of Prediction Models (Dia-
mond: Mean Value)

As for the correlation between the time series of the
Billboard Hot 100 ranks of tracks and the time series of
the tweet playcounts, we observe moderate correlation. In
line with the findings by Kim et al. [13], who observe a cor-
relation coefficient of 0.56 between the Billboard Hot 100
and the logarithm of the track playcounts, our dataset fea-
tures a maximum correlation between Billboard and Twit-
ter of 0.50. Our dataset represents a long-term view on
the relationship between Twitter and the Billboard charts
as we performed the analyses over the course of two years,
whereas Kim et al. observed a window of 10 weeks.

Based on the performed evaluation, we find that from
a temporal perspective, approximately 41% of all #now-
playing tweets can be used to predict music charts as these
appear on Twitter before they actually appear on the charts.

Min Q1 Med Mean Q3 Max

T 16.3 84.5 116.1 148.6 178.2 388.4
BB 0.51 9.5 16.8 26.8 33.8 107.0
V 0.27 5.5 12.6 14.1 21.9 29.3

Table 3: Five-Number Summary: Charts Prediction
RMSE (T: Twitter AR, BB: Billboard AR, V: VAR model)

However, the lag between the two time series is rather low
and more importantly, the mean lag across all tracks is
positive. Therefore, we argue that approaches exploiting
this temporal shift for predictions does not seem promis-
ing. However, using Twitter data to enhance chart predic-
tions based on Billboard data has shown to provide promis-
ing results. Our evaluation of autoregressive prediction
approaches shows that incorporating Twitter data in the
prediction process using a multivariate model significantly
lowers the RMSE as well as the variance of the RMSE.
I.e., we are able to predict the rank of tracks more accu-
rately while at the same time providing a lower error mar-
gin for predictions. Hence, we come to the conclusion that
#nowplaying data is able to contribute to better charts pre-
diction and can be utilized as an additional sensor which
allows for enhancing chart predictions. However, we have
to note that solely relying on Twitter data for charts pre-
diction has shown to be highly error-prone and perform-
ing substantially worse than both the Billboard AR and the
VAR model presented.

Another limiting factor we are aware of is the demo-
graphic gap between the user base of Twitter and the av-
erage consumer in the U.S. music market (represented by
the Billboard Hot 100 charts).

7. CONCLUSION

Based on a dataset gathered from Twitter and the Billboard
charts over the course of 2014 and 2015, we analyzed the
relationship between Twitter and the Billboard charts in re-
gards to whether tweets could be utilized for predicting fu-
ture Billboard charts. Therefore, we performed a three-fold
analysis of the dataset. These experiments showed that in
principle, Twitter and Billboard time series for tracks share
a moderate correlation which is influenced by a timely shift
between those two. We further find that there is a nega-
tive timely lag for 41% of all tracks. As for the predictive
power of #nowplaying charts we find that a multivariate
model incorporating both Billboard and Twitter data sig-
nificantly reduces the prediction error while at the same
time, the error variance is significantly reduced.
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ABSTRACT 

In the last 20 years, Music Information Retrieval (MIR) 

has been an expanding research field, and the MIREX 

competition has become the main evaluation venue in 

MIR field. Analyzing recent results for various tasks of 

MIREX (MIR Evaluation eXchange), we observed that 

the evolution of task solutions follows two different 

patterns: for some tasks, the results apparently hit 

stagnation, whereas for others, they seem getting better 

over time. In this paper, (a) we compile the MIREX 

results of the last 6 years, (b) we propose a configurable 

quantitative index for evolution trend measurement of 

MIREX tasks, and (c) we discuss possible explanations 

or hypotheses for the stagnation phenomena hitting some 

of them. This paper hopes to incite a debate in the MIR 

research community about the progress in the field and 

how to adequately measure evolution trends. 

1. INTRODUCTION 

In the last 20 years, mainly due to growth of audio data 

available in the Internet, Music Information Retrieval 

(MIR) has been an expanding field of research. It 

encompasses various problems or tasks, whose solutions 

have impact in music market. Since 2005, the MIR 

Evaluation eXchange (MIREX) [7] is the main evaluation 

“arena” in MIR field, proposing datasets, tasks and 

metrics to compare MIR solutions. A shallow analysis of 

its results shows they are continuously evolving for some 

tasks, whereas they seem stagnated for other ones. 

There are several MIR and MIREX meta-analysis pa-

pers [6][7][23][24]. However, to our knowledge, a trans-

versal study over stagnation of results on MIR tasks is 

lacking, as well as an index for evolution trend measure-

ment. Also, stagnation phenomenon on many of these 

tasks is not yet being deeply discussed by the community. 

Both the existence of common reasons and task 

specific reasons for stagnation on MIR tasks are very 

probable. Therefore, a deep study of stagnation 

phenomena is task-dependent, and demands the analysis 

of techniques, datasets and metrics used in recent years. 

Then, it is out of the scope of this paper to perform a deep 

analysis on the reasons of stagnation for each one of the 

MIREX tasks. This paper intends, instead, to provoke 

researchers involved with MIREX tasks (stagnated or 

not) to test some general hypotheses we suggest, and to 

propose their own task specific hypotheses. 

Understanding of stagnation phenomena may be 

improved by objective evolution trends measurement. 

Comparing evolution trends between different datasets or 

metrics, for a given task, possibly help to identify how 

metrics and datasets bias observable results, or how each 

sub-problem of the task is more or less developed. In 

addition, evolution trends comparison between different 

tasks provide an overall picture of evolution in MIR 

research, drawing attention to what kind of methods and 

strategies are being used on developing tasks that could 

be adapted for stagnated ones. 

This paper presents an accurate empirical analysis of 

MIREX recent results. It also proposes a configurable 

quantitative index for evolution trends measurement. 

Finally, it raises some hypotheses and questions that 

could possibly explain stagnation phenomena and/or 

hopefully help MIR research community to exchange 

more information about it in order to move forward. 

Section 2 presents method used to analyze data. We 

explain and formalize a configurable index for evolution 

measurement on Section 3. Section 4 raises hypotheses 

about possible causes of stagnation. Section 5 draws 

some general conclusions on the performed analysis. 

Finally, future works are listed on Section 6. 

2. METHOD 

MIREX is the MIR competition that became the main 

evaluation venue in MIR field. It has been running since 

2005. According to MIREX 2015 final results’ poster, 

107 researchers from 64 teams participated in the last 

edition and submitted algorithms for 21 active tasks, 

resulting in 402 runs, over 47 different datasets [11].  

MIREX contributions to the MIR community are 

evident. Influential MIR researchers have identified four 

key contributions of MIREX: “training and induction into 

MIR”, “dissemination of new research”, “dissemination 

of data” and “benchmarking and evaluation” [7]. 

In order to evaluate research progress in MIR tasks, 

we could have tried to compare results published in 
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recent years. However, we decided to focus analysis in 

MIREX because it can be more systematic, since: (1) 

MIREX tasks are well defined, and (2) submissions from 

different years to a given task/subtask run over the same 

datasets and (3) the results are evaluated using the same 

metrics. We do acknowledge the limitations of this 

methodological choice, since not all MIR algorithms 

developed have been evaluated in MIREX competition. 

But, for the sake of comparison precision and 

extensiveness, it seemed to be the best choice. 

A timeline of tasks, subtasks and datasets used for 

each task or subtask was constructed with data collected 

from MIREX results between 2010 and 2015 [11]. In 

order to analyze tendencies, it is necessary to consider a 

relevant time frame, as well as to guarantee comparisons 

over time are consistent. As inclusion criterion, only tasks 

for which there was at least one dataset used for at least 

five editions since 2010 were admitted. The rationale of 

this choice is that observing a unique dataset ensures 

consistency and comparability of results, whereas 

considering at least five editions provides a reliable time 

window for trend analysis. Though, from all 28 tasks 

proposed between the first edition in 2005 and the last in 

2015, 4 tasks were discontinued until 2008, other 6 tasks 

were considered very recent (started in 2013 or later), 

whereas the remaining 18 tasks were analyzed in this 

study, including 3 active tasks in 2014 which did not run 

in 2015. 

We assumed datasets and methods for metrics 

computation did not change, except when explicitly 

documented on the task’s MIREX official wiki or results’ 

pages [11]. Among the remaining candidates, one dataset 

for each task or subtask was chosen to collect data for 

analysis. When more than one dataset was available, 

older datasets were preferred, to allow future researches 

to extend this work by comparing backwards. For Audio 

Genre Classification task, two datasets were equally 

older: Mixed Set and Latin. Mixed Set was then chosen, 

as a more generic set tends to provide a more realistic 

picture of the state of the art. 

Among 18 analyzed tasks, 3 tasks presented more 

than one subtask. “MF0 Estimation & Tracking” is 

divided into “MF0 Estimation” and “Note Tracking”. 

Actually, we believe that they could be two different 

tasks themselves, due to the different nature of their 

objectives. Then, both subtasks were analyzed. For 

“Query-by-tapping” (QBT), two subtasks are available: 

“QBT with symbolic input” (subtask 1) and “QBT with 

wave input” (subtask 2). We analyzed subtask 1, since 

onset files allow participants to concentrate on similarity 

matching, which is the main objective of the task, instead 

of onset detection. Finally, “Query-by-Singing/ 

Humming” (QBSH) presented two subtasks: “Classic 

QBSH evaluation” and “Variants QBSH evaluation”. 

Classic evaluation (subtask 1) was chosen, since the 

variants evaluation adds constraints to the original 

problem – for instance, considering queries as variants of 

“ground-truth” midi. 

Each task has several metrics computed. As our 

analysis needs to rank results, for the sake of comparison, 

one metric for each task or subtask was chosen. As this 

analysis aims to understand evolution of the state of the 

art on each task, more general metrics were assumed to 

provide a more realistic picture of each task’s 

performance. Then, metrics often used in MIREX Overall 

Results Posters [11] and metrics measuring overall 

performance were chosen, at the expense of those 

measuring a given characteristic of the algorithms. For 

instance, F-Measure was preferred when tasks also 

compute Precision and Recall, as Precision and Recall 

compute specific performances whereas F-Measure 

relates to both Precision and Recall. 

Considering the chosen metrics, top results for each 

task were analyzed. We then noticed that two groups 

emerged: “tasks presenting stagnated results” and “tasks 

presenting evolving results”. The first group included 

tasks which presented no significant improvement on 

results in the last years of the competition. And the 

second group included tasks whose results’ evolution is 

noticeable in the last six years. Of course, there is a high 

level of subjectivity on deciding when a given task is 

evolving (and at which pace), or stagnated. For a 

systematic analysis, a quantitative index for evolution 

measurement is necessary.  

3. AN INDEX FOR EVOLUTION MEASUREMENT 

To perform our study, we needed a quantitative index for 

measuring results’ evolution trends, in order to 

distinguish stagnated results from evolving ones. In this 

section we introduce what we called “Weighted 

Evolution Measurement Index” (WEMI), and we discuss 

its semantics. 

Measuring stagnation phenomena by just looking to 

evolution graphs has limitations, as similar graphs may 

 

Figure 1. Examples of different evolution trends: (a) stagnation trend; (b) continuous evolution trend; and (c) recovery 

from recent stagnation trend. 
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Figure 2. Some tasks results evolution plots (3 top results per year) and respective WEMI values (w=0.6 and 

c=0.0713): (A) “Audio Music Mood Classification”; (B) “Music Structure Segmentation”; (C) “Audio Chord Estima-

tion”; (D) “Audio Melody Extraction”; (E) Query-by-Singing/Humming”; and (F) “Score Following”; top historical re-

sults (squares) were used for trend analysis. 

be hard to distinguish. For a state of the art analysis of 

trends, we must be able to objectively differentiate 

continuous from intermittent evolution, as well as 

measure how evolution occurred over time and 

consistently compare evolution of different tasks. For 

instance, consider Figure 1, which shows different 

hypothetical evolution scenarios. In all cases, results 

evolve from 0.2 to 0.8, so the first and the last result of all 

series coincide (overall error drop was exactly the same). 

However, the way evolution occurred is different in each 

case, so evolution trends are not the same. First series (a) 

shows a clear stagnation trend, as no recent improvement 

occurred after a huge improvement in the past. Second 

series (b) shows a continuous evolution of results, with 

small improvements every year. Finally, third series (c) 

shows a huge recovery from a recent stagnation period, 

as recent improvements occurred after many years 

without any improvement. Therefore, it is interesting that 

an index for evolution trend measurement can be properly 

balanced to differentiate these scenarios. In addition, such 

an index must be consistent in scenarios of complete 

stagnation (i.e., no evolution since the beginning of the 

series). 

Considering that we are interested in state of the art 

evolution, it does make sense to discard results which did 

not overcome the top result achieved so far. Then, the 

proposed index considers evolution as a monotonically 

increasing function. Figure 2 shows various examples of 

actual top results per year, and results selected for trend 

analysis. 

The index we propose considers a series of results 

from year i to year f (in this study, i = 2010 and f = 

2015). According to the chosen metric and state of 

development of each task, bias may occur if we observe 

top results directly. In order to avoid it, we consider 

relative error drop rate from one year to the next. 

Error, in a given year y, such that i ≤ y ≤ f, is defined 

as: 

                                       (1) 

 

Where rj is the top result achieved in year j. The error 

drop rates are then computed for each pair of successive 

years (y-1 and y, such that  i+1 ≤  y  ≤  f ), as: 

 

       
  

                                              

 

Recent evolution is reinforced by higher weights of 

error drop rates for recent years, so that recent 

improvements tend to push WEMI up more than results 

achieved many years ago, even if the error drop rate in 

both cases was the same. 

Continuous evolution is reinforced with a direct 

proportionality between WEMI and the number of actual 

improvements within the time frame. This way, WEMI 

tends to be higher when continuous evolutions are 

achieved each year, in comparison with the situation in 

which the same overall evolution is achieved from one 

year to the next, at once. Then, WEMI is defined as: 

 

      
              

 
     

          
     

   
 

   
          

 

The number of improvements over previous top result 

between i+1 and f (i.e., the number of times ∆ej is larger 
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Task Dataset Used Metric Observed YHTR q OEDR WEMI 

Audio Music Sim. and Retr. Default Av. Fine Score Human Eval. 2011 1 0.04 0.0188 

Audio Music Mood Classif. MIREX 2007 Normalized Class. Accuracy 2011 1 0.14 0.0202 

Music Structure Segment. MIREX 2009 Frame Pair Clust. F-Measure 2012 1 0.10 0.0216 

Audio Tag Classification Maj/Min Tag Tag Classification Accuracy 2011 1 0.11 0.0254 

MFFE&T – MF0 Estimat. MIREX 2009 Chroma Precision 2011 1 0.36 0.0324 

Audio Class. Comp. Ident. MIREX 2009 Normalized Class. Accuracy 2011 1 0.39 0.0341 

Symbolic Melodic Simil. Essen Col. "Fine" score1 2013 2 0.12 0.0398 

Audio Key Detection MIREX 2005 Weighted Key Score 2013 1 0.26 0.0540 

Audio Chord Estimation MIREX 20092 Weigh. Chord Symbol Recall 2011 1 0.87 0.0608 

Classic Query-by-Tapping Roger Jang Simple Count 2012 1 0.29 0.0738 

Audio Onset Detection MIREX 2005 Average F-Measure 2013 3 0.40 0.0801 

Audio Genre Classification Mixed Popular3 Normalized Class. Accuracy 2014 2 0.37 0.0829 

Audio Melody Extraction MIREX 2005 Overall Accuracy 2014 2 0.33 0.0901 

Audio Tempo Estimation MIREX 2006 Average P-Score 2015 2 0.18 0.1014 

Audio Beat Tracking MCK F-Measure 2015 4 0.20 0.1038 

MFFE&T – Note Tracking MIREX 2009 Average F-Measure4 2014 3 0.58 0.1731 

Query-by-Singing/Humm. Roger Jang Simple Count 2015 1 0.51 0.2353 

Score Following5 Not identified6 Total Precision 2015 4 0.83 0.4225 

Audio Cover Song Identif. Mixed Collec. Total num. of cov. id. in top 107 2013 1 N/A N/A 

1 Sum of fine-grained human similarity decisions. | 2 Major/minor triads classification. | 3 Also known as US Pop Music. | 
4 For onset only over chroma. | 5 Also known as “Real Time Audio to Score Alignment”. | 6 MIREX result pages men-

tions 3 datasets, but we could not identify which one was considered for the results in provided tables. | 7 Metric “mean 

number of covers identified in top 10 (average performance)” would be preferable, but is not available for all years. 

Table 1. Analyzed tasks’ general information; WEMI computed for w = 0.6 and c = 0.0713; YHTR stands for “Year of 

Historical Top Result”; OEDR stands for “Overall Error Drop Rate”, computed as OEDR = 1 – (e2015/e2010). 

than zero, for i+1 ≤  j ≤  f) is called q (if no improvement 

occurred, WEMI must be zero). Two configurable 

constants, w and c, are defined such that 0 < w ≤ 1 and c 

> 0. Clearly, the closer w is to zero, the greatest the 

weight of recent improvements on final index, whereas 

the closer it is to 1, more equalized weights are used. 

Also, the closer c is to zero, the lowest the weight of 

constant evolution on final WEMI value. In this study, 

we computed WEMI for a variety of w and c values 

(results are available at https://goo.gl/bxwrDy). Balancing 

w and c depends mainly on the importance one gives to 

recent against continuous evolution. Therefore, we 

believe a discussion on MIR community about this trade 

off would lead to more appropriate balancing of the index 

for MIREX tasks, considering the goal of identifying 

bottlenecks of evolution and/or evaluation. 

The “Audio Cover Song Identification” task could not 

have WEMI computed, as expected “total number of 

covers identified in top 10” (T10) is not available. 

However, results almost doubled T10 from 908 in 2010 

to 1714 in 2013, regardless of the absence of 

improvements in other MIREX editions. 

A total of 18 tasks were analyzed, with “MF0 

Estimation & Tracking” comprising two subtasks. This 

resulted in 19 task/subtasks. Table 1 shows a summary of 

the analysis, with examples of output for w = 0.6 and c = 

0.0713 (the average weighted sum of error drop rates of 

all tasks, considering w = 0.6). 

WEMI is a first proposal and a provocation for a 

broader discussion about evolution measurement indexes 

for MIR tasks, especially on MIREX competition. 

Objective and early identification of stagnation trends 

may raise earlier discussions in the community about the 

appropriateness of metrics, datasets or current methods 

for a given task, probably helping to shorten future 

stagnation periods or to improve current metrics and/or 

datasets. Evidently, computing WEMI for a single metric 

of a task may be misleading. On the other hand, 

computing it for many metrics of a task will probably 

lead to a greater understanding of specific bottlenecks in 

task evaluation and/or evolution. 

4. SOME STAGNATION HYPOTHESES 

Stagnation on most MIR task results is already 

acknowledged by MIR community, as in the case of 

singer identification in polyphonic audio [13], music  

transcription [2],  emotion and genre classification 

[14][19], music similarity [8][18], and so on. In spite of 

this acknowledgement, there is not much discussion 

about possible hypothesis which could explain the 

phenomena.  Sturm [22], among others [23][24], have 
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recently raised questions about the experimental validity 

in MIR evaluation, stating reliable evaluation remains 

neglected in MIR research. Even though, data put 

together in this research inspire some questions. This 

paper intends to provoke this kind of questions, and its 

explanation hypotheses. 

In order to encourage this discussion, identifying 

whether MIREX manages to satisfactorily measure 

improvements of performance for its various tasks is 

necessary. If this is true, why so many of them are 

stagnated? Temporary solution stagnation phenomena are 

a normal stage in scientific development. However, some 

mechanisms could be employed to shorten them. 

As we said before, since the explanations for 

stagnation may be task-dependent, it is difficult to 

provide general explanations for stagnation, and then 

hints on how to overcome it. Nevertheless, from some 

discussion on the literature of specific tasks, coupled with 

our own experience in MIR, we have formulated two 

hypotheses that may possibly help researchers to move 

forward. These hypotheses are not meant to be correct, 

but rather to start a transversal discussion among 

stagnated tasks. 

The first hypothesis is: MIR approaches should 

perhaps be more musical knowledge-intensive.  

According to Downie [6], in 2008, community members 

were becoming aware of the limitations of MIR “generic 

approaches”, i.e. the application of information retrieval 

solutions for music, without relying on musically 

meaningful features. However, since then, most of works 

in MIREX seems to still rely on more generic IR 

techniques than on an in-depth use of specific music 

knowledge. It is true that embedding music expert 

knowledge pawn generality of the approaches, but 

perhaps this could be path to move away from stagnation. 

Let’s take “Audio Chord Estimation” as an example. 

Chord estimation is apparently stuck into a kind of glass 

ceiling. Very often, approaches are agnostic, neglecting 

contextual information or musical knowledge after 

feature selection. The most successful approaches in 

MIREX often use probabilistic machine learning 

techniques, mostly through neural networks, as HMM, 

MLN or Bayesian [3][17][20][25]. A few approaches 

make use of specialist knowledge, applying it on the 

lower levels of symbolic information, in order to improve 

feature vector quality [4][12]. A deeper study on “Audio 

Chord Estimation” state of the art, performed by McVicar 

et al. [16], observed advances in feature extraction and 

modeling stage, as well as expert musical knowledge use 

for model training, but no musical knowledge use for 

post-processing, for instance. 

Musical creation process is essentially artistic. Then, 

perplexity of harmonic sequences in real world tends to 

be high, implying less predictability. In fact, one cannot 

talk about a correct or wrong chord sequence, as in most 

classification problems. A composer not only is free to 

create novel chord sequences, but he or she tends to look 

for them. Therefore, purely probabilistic approaches are 

limited by the predictability of analyzed corpus, meaning 

that uncommon (artistically novel) chord sequences may 

be misrecognized. In addition, other variables may 

interfere in harmonic sequences, such as genre (jazz 

harmony differs strongly from rock harmony) or style (a 

given musician tends to prefer some chord sequences). 

There are evidences that musical knowledge can 

improve chord estimation [21][1][5][15]. Therefore, we 

believe that improvements can be achieved using musical 

knowledge on higher levels of information and contextual 

information to decide what chord is represented by a 

given feature vector. By higher levels of information we 

basically mean musical theory applied over symbolic 

information. For instance, the use of functional harmonic 

analysis, which has been proved to add relevant 

information to chord sequences [21][5], to chose, among 

candidate chords, the ones which lead to more 

meaningful chord sequences, even when their feature 

vector are not the first options provided by a feature 

vector based classifier. 

Music structure information has also been shown to 

add relevant contextual information for chord estimation 

[15]. For instance, the classification of “easy” chords first 

and the use of this information to help classification of 

“harder” ones, according to the harmonic meaning of the 

sequence they would lead to, or using harmonically 

similar pieces already classified of the same song 

(sometimes with better conditions to feature extraction 

and classification, such as less noise, transients, arpeggios 

or ornamentation) may lead to improvement on current 

results. 

The second hypothesis is: the number of techniques 

employed by the MIREX community is perhaps too 

limited. It is very difficult to prove that a particular 

technique is not used by the community, as failed 

attempts are rarely published. But observing recent 

ISMIR publications, we noticed that each task presents a 

small set of often used techniques. For instance, chord 

estimation tends to rely mostly on HMM, but also on 

MLN or Bayesian networks, for classification. 

To reinforce our hypothesis, we analyze the impact of 

a specific technique in MIREX results, showing how the 

use of a new technique can affect results. Chosen 

technique was Deep Learning, which dates back to the 

Neo-cognition introduced by K. Fukushima in 1980 [9], 

but only a few years ago have been found promising for 

MIR. 

In 2012, Humphrey warned about the lack of deep 

learning approaches in MIR research [10]. Analyzing the 

top results from 2010 to 2015, among the 19 

tasks/subtasks considered in this work, we can notice 

that, in the last 3 years, 11 tasks had their results 

improved, but only 3 of the improvements came from 

approaches using deep learning techniques, according to 
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the technical reports submitted to MIREX. This may 

suggest that (1) deep learning is not being extensively 

explored yet in MIR and (2) if deep learning could 

improve results in three of the tasks, it is fair to consider 

there are possibly other techniques, yet not explored, with 

similar potential. 

Regarding the first assertion, it might be due to the 

lack of enough labeled data, meaning that some tasks are 

not even eligible for Deep Learning yet. In this case, it 

would be fair to consider the creation of new datasets or 

enlargement of existing ones as a possible path to 

overcome stagnation on these tasks.  

Of course, other hypotheses could be deeper 

investigated. For instance, the lowest WEMI values (even 

for several different w and c values) belong to tasks 

which use human generated ground truth data. Further 

investigation of this relation could lead to relevant 

information. Unsuitability or limitation of the datasets 

and metrics of the stagnated tasks are worth to 

investigate. However many of these hypotheses are task 

dependent and such an investigation would be better 

performed by specialists on each task. 

5. CONCLUSIONS 

Trying to understand recent practical advances in MIR 

research, a compilation of the last 6 years of MIREX 

results for 18 tasks (one of them comprised of two sub-

tasks) was performed. Aiming to encourage discussion on 

how to measure progress in MIR, we propose a 

configurable quantitative index of improvement, the 

“Weighted Evolution Measurement Index” (WEMI), in 

order to objectively measure trends on each task, in a 

comparable way, reinforcing recent and continuous 

advances. We believe such an index may help 

understanding bottlenecks of evolution or measurement 

issues, by comparing different datasets and metrics for a 

given task (intra-task analysis), as well as helping to 

overcome stagnation, by task comparisons, observing 

whether methods and strategies of evolving tasks are 

being applied to stagnated ones (inter-task analysis). The 

index can be balanced, according to the community’s 

understanding of what is most relevant: continuous or 

recent evolution. Also, we raise hypotheses and questions 

about stagnation affecting many of MIR tasks and we 

point some possible insights on this matter. We believe 

that a deeper discussion in MIR community about 

stagnation phenomena affecting many of MIR tasks may 

help to find general mechanisms or strategies which will 

allow overcoming it, as well as improving MIREX 

interest and relevance. 

6. FUTURE WORK 

It would be possible to obtain a more detailed overview 

of MIREX tasks’ trends with a number of additional 

information, for instance: (1) comparing WEMI 

computed for other metrics or other datasets, in a given 

task, will probably help understanding if metrics or 

datasets are biasing observable evolution trends at first 

sight; and/or (2) a deeper study on discrepant results (for 

instance, “Classical Composer Identification, 2011” and 

“Chord Estimation, 2011”, as seen in Figure 2) in order to 

identify overfitting or other distortions of top result will 

certainly improve accuracy. Another interesting 

improvement would be adaptation of WEMI so that total 

weights sum is normalized by the time window, as this 

would allow more consistent comparisons between time 

windows of different lengths, if this makes sense in a 

given context. Finally, a formal evaluation of the index is 

still missing. 
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ABSTRACT

Many studies in music classification are concerned with
obtaining the highest possible cross-validation result. How-
ever, some studies have noted that cross-validation may
be prone to biases and that additional evaluations based
on independent out-of-sample data are desirable. In this
paper we present a methodology and software tools for
cross-collection evaluation for music classification tasks.
The tools allow users to conduct large-scale evaluations of
classifier models trained within the AcousticBrainz plat-
form, given an independent source of ground-truth anno-
tations, and its mapping with the classes used for model
training. To demonstrate the application of this methodol-
ogy we evaluate five models trained on genre datasets com-
monly used by researchers for genre classification, and use
collaborative tags from Last.fm as an independent source
of ground truth. We study a number of evaluation strate-
gies using our tools on validation sets from 240,000 to
1,740,000 music recordings and discuss the results.

1. INTRODUCTION

Music classification is a common and challenging Music
Information Retrieval (MIR) task, which provides practical
means for the automatic annotation of music with seman-
tic labels including genres, moods, instrumentation, and
acoustic qualities of music. However, many researchers
limit their evaluations to cross-validation on small-sized
datasets available within the MIR community. This leaves
the question of the practical value of these classifier mod-
els for annotation, if the goal is to apply a label to any
unknown musical input.

In the case of genre classification, Sturm counts that
42% of studies with experimental evaluation use publicly
available datasets, including the famous GTZAN music
collection (23%, or more than 100 works) and the ISMIR-
2004 genre collection (17.4%), both of which contain no
more than 1000 tracks. There is some evidence that such
collections sizes are insufficient [7]. The MIREX annual

c© Dmitry Bogdanov, Alastair Porter, Perfecto Herrera,
Xavier Serra. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Dmitry Bogdanov, Alastair
Porter, Perfecto Herrera, Xavier Serra. “Cross-collection evaluation for
music classification tasks”, 17th International Society for Music Infor-
mation Retrieval Conference, 2016.

evaluation includes a genre classification task, 1 which is
currently run on a collection of 7000 tracks annotated with
10 genres, which is not publicly available to researchers.
Some studies employ larger datasets, annotating genre us-
ing web-mined sources [11,17,18]. It has been shown that
some datasets have flaws, including inconsistent and con-
troversial labeling, absence of artist filters, and presence of
duplicate examples (for example, GTZAN [20]).

Cross-validation is routinely used as a method for ap-
proximating a classifier’s performance in real-world con-
ditions, but such estimation is not free from some pitfalls.
The ability of trained classifier models to generalize re-
mains under question when following this method [14].
As some studies have noted, typical k-fold cross-validation
on small-sized collections is prone to biases and additional
evaluations based on independent out-of-sample data are
desirable in order to avoid them [2,8,12]. Cross-collection
validation is also suggested in other domains [1, 3–5, 13].

In order to address these problems and be able to better
assess the performance of music classifier models, we pro-
pose a cross-collection evaluation process, that is, an eval-
uation of models on independent sets of music tracks anno-
tated with an independent ground-truth source (which we
call validation sets). In this paper we present a methodol-
ogy and software tools for such evaluation for music clas-
sification tasks. We use AcousticBrainz, 2 a community-
based platform for gathering music information from au-
dio [16]. It contains MIR-related music features for over
3 million recordings including duplicates (we use the term
recording to refer to a single analysis of music track). It
provides the functionality to create datasets consisting of
recordings and associated ground truth, training classifier
models, and applying them to recordings present in Acous-
ticBrainz. A number of models trained on genre datasets
used within MIR are already included. Our tools allow
the AcousticBrainz community to conduct cross-collection
evaluations of classifier models trained on the AcousticBrainz
website given any independent source of ground-truth an-
notations for recordings and a mapping between a model’s
classes and the classes within that ground truth.

In order to demonstrate the proposed methodology and
tools, we evaluate five genre classifier models trained on
MIR genre datasets. We build a genre ground truth for
recordings in AcousticBrainz using collaborative tags from

1 http://music-ir.org/mirex
2 https://acousticbrainz.org
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Last.fm 3 and consider various evaluation strategies for map-
ping the classifier models’ outputs to the ground-truth classes.
We use our tools on validation sets from 240,000 to 1,740,000
recordings and discuss the obtained results. Finally, we
publish our genre ground-truth dataset on our website.

2. CROSS-COLLECTION EVALUATION
METHODOLOGY

We define cross-collection evaluation to be an evaluation
of a classifier model on tracks in a validation set annotated
with an independent ground-truth source. We propose that
the validation set is obtained or collected from a differ-
ent source to the data used for training. This is distinct
from holdout validation where a part of a dataset is used
to verify the accuracy of the model. Because of the data’s
different origin it provides an alternative view on the fi-
nal performance of a system. We develop tools based on
this methodology for use in AcousticBrainz, because of the
commodity of its infrastructure for building and evaluating
classifiers, and the large amount of music recordings which
it has analyzed.

2.1 Evaluation strategies

We consider various evaluation strategies concerning the
comparison of a classifier’s estimates and the ground-truth
annotations in a validation set. A direct mapping of classes
between the ground truth and the classifier is not always
possible due to differences in their number, names, and ac-
tual meaning. Therefore, it is necessary to define a map-
ping between classes. Class names may imply broad cate-
gories causing difficulties in determining their actual cov-
erage and meaning, and therefore inspection of the con-
tents of the classes is advised. The following cases may
occur when designing a mapping: a) a class in the classi-
fier can be matched directly to a class in the validation set;
b) several classes in the classifier can map to one in the val-
idation set; c) one class in the classifier can map to many
in the validation set; d) a class in the validation set cannot
be mapped to any class in the classifier; e) a class in the
classifier cannot be mapped to any class in the validation
set. The case d) represents the subset of the validation set
which is “out of reach” for the classifier in terms of its cov-
erage, while e) represents the opposite, where the model is
able to recognize categories unknown by the ground truth.
We show an example of such a mapping in Section 3.3.
The design of the mapping will affect evaluation results.

Validation sets may vary in their size and coverage and
may contain a wider range of annotations than the classifier
being evaluated. We consider the following strategies:

• S1: Use only recordings from the validation set whose
ground truth has a matching class in the classifier. For
example, if a recording is only annotated with the class
electronic, and this class does not appear in the classifier,
we discard it.

3 http://www.last.fm

• S2: Use all recordings in the validation set and treat
recordings from classes that do not exist in the classi-
fier as an incorrect classification.

The validation set may have multiple class annotations per
recording (e.g., in case of genre annotations, both pop and
rock could be assigned to the same recording). Where the
validation set has more than one ground-truth class for a
recording we consider different methods of matching these
classes to classifiers’ estimates:

• ONLY: Only use recordings that have one ground-truth
class, and discard the rest of the recordings when com-
puting evaluation metrics.

• ALL: When a recording has more than one ground-truth
class, accept an estimate as correct if it matches any of
them, even though for the rest of the classes it would be
considered a misclassification.

There may be duplicate recording representing the same
music track (as is the case for AcousticBrainz, for which
inconsistent classifier estimates have been observed). We
consider two ways of dealing with them:

• D1: Remove all recordings that have duplicates from the
evaluation.

• D2: Treat all recordings independently.

2.2 Evaluation metrics

Using class mappings one can compute confusion matri-
ces for a classifier model for all combinations of S1/S2
with ONLY/ALL and D1/D2. The confusion matrix counts
the percentage of correct classifier class estimates for each
ground-truth class in the validation set. When a record-
ing has more than one ground-truth class in method ALL,
the recording is counted in all associated classes. Results
are combined in the case when a class in the model is
mapped to more than one class in the validation set. We
estimate accuracy, the percentage of correctly recognized
recordings. This value can be skewed due to difference in
the sizes of each ground-truth class, and therefore we also
compute normalized accuracy by scaling match counts ac-
cording to the number of recordings within each class.

2.3 Tools for cross-collection evaluation

We have developed a set of tools as part of AcousticBrainz
which let users train and evaluate classifier models. 4 Our
tools let a user evaluate the quality of this model using
an independent validation set. They can conduct any of
the evaluation strategies mentioned above for any classi-
fier model trained using AcousticBrainz.

To use our tools, a user first creates two datasets in
AcousticBrainz. They define one dataset to be used to train
a model, and the other to be used as the validation set. To
ensure reliability of the accuracy results, the user can per-
form artist filtering [6, 15] during both the training and the

4 We use the existing model training process, which selects best SVM
parameters in a grid search using cross-validation and trains a model us-
ing all the data [10]. More details on the model training process are pro-
vided at https://acousticbrainz.org/datasets
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cross-collection evaluation process. With artist filtering,
during training we randomly select only one recording per
artist for the model. On cross-collection evaluation, only
recordings by artists different from the ones present in the
training data are used. To get the artist of a recording we
use the MusicBrainz API to request artist information for a
recording using its MBID. Classes are randomly truncated
to the same size, with a lower limit of 200 instances per
class.

An interface lets the user map classes from the classifier
dataset to classes in the validation set. In the case that there
are no suitable matches, a class can be discarded from con-
sideration during evaluation. The tools generate a report
including statistics on the employed dataset and ground
truth, accuracy values and confusion matrices. The re-
sults can be exported as HTML, LaTeX, or other machine-
readable formats for further use. The tool is integrated into
the AcousticBrainz server 5 to make this cross-collection
evaluation process available for all AcousticBrainz users.

3. EVALUATION OF GENRE CLASSIFIER
MODELS

We applied our evaluation methodology to assess five genre
classifiers, three of which were already available within
AcousticBrainz. We built two more classifiers using the
dataset creator on the AcousticBrainz website with two
previously published sources for genre annotation. We built
an independent ground truth by mining folksonomy tags
from Last.fm.

3.1 Music collections and classifier models

• GTZAN Genre Collection (GTZAN). 6 A collection
of 1000 tracks for 10 music genres (100 per genre) [23],
including blues, classical, country, disco, hip-hop, jazz,
metal, pop, reggae, and rock. The GTZAN collection
has been commonly used as a benchmark dataset for
genre classification, due to it being the first dataset of
this kind made publicly available [22].

• Music Audio Benchmark Data Set (MABDS). 7 A col-
lection of 1886 tracks retrieved from an online music
community and classified into 9 music genres (46–490
per genre) [9] including alternative, electronic, funk/soul/rnb,
pop, rock, blues, folk/country, jazz, and rap/hiphop.

• AcousticBrainz Rosamerica Collection (ROS). A col-
lection of 400 tracks for 8 genres (50 tracks per genre)
including classical, dance, hip-hop, jazz, pop, rhythm &
blues, rock, and speech (which is more a type of audio
than a musical genre). The collection was created by a
professional musicologist [7].

• MSD Allmusic Genre Dataset (MAGD). A collection
of genre annotations of the Million Song Dataset, de-
rived from AllMusic [17]. We mapped MAGD to the
AcousticBrainz collection, 8 which reduced the size of

5 https://github.com/metabrainz/acousticbrainz-server
6 http://marsyasweb.appspot.com/download/data_sets
7 http://www-ai.cs.uni-dortmund.de/audio.html
8 http://labs.acousticbrainz.org/million-song-dataset-mapping

Classifier Accuracy Normalized Random Size Number
accuracy baseline of classes

GTZAN 75.52 75.65 10 1000 10
MABDS 60.25 43.5 11.1 1886 9
ROS 87.56 87.58 12.5 400 8
MAGD 47.75 47.75 9.09 2266 11
TAG 47.87 47.87 7.69 2964 13

Table 1: Cross-validation accuracies (%) for all classifier
models.

the dataset from 406,427 to 142,969 recordings and ap-
plied an artist filter (keeping only one recording per artist).
The resulting dataset used for training contained 11 gen-
res (206 tracks per genre) including pop/rock, electronic,
rap, jazz, rnb, country, international, latin, reggae, vocal,
and blues. 9

• Tagtraum genre annotations (TAG). A collection of
genre annotations for Million Song Dataset, derived from
Last.fm and beaTunes [18] (CD2C variation). As with
MAGD, we mapped the dataset (reducing the size from
191,408 to 148,960 recordings) and applied an artist fil-
ter, resulting in 13 genres including rock, electronic, pop,
rap, jazz, rnb, country, reggae, metal, blues, folk, world
and latin (228 tracks per genre). 10

The models for GTZAN, MABDS, and ROS are pro-
vided in AcousticBrainz as baselines for genre classifica-
tion but these collections were trained without artist fil-
tering, as the recordings in these datasets are not asso-
ciated with MBIDs. 11 We inspected available metadata
for these collections and gathered non-complete artist lists
for artist filtering in our cross-collection evaluation. We
were able to identify 245 artists for 912 of 1000 record-
ings for GTZAN [19], 1239 artists for all 1886 recordings
for MABDS, and 337 artists for 365 of 400 recordings for
ROS.

Table 1 presents accuracies and normalized accuracies
for the considered models obtained from cross-validation
on training. The accuracies for GTZAN, MABDS, and
ROS models are reported on the AcousticBrainz website.
In general we observe medium to high accuracy compared
to the random baseline. The results obtained for GTZAN
are consistent with 78–83% accuracy observed for a num-
ber of other state-of-the-art methods on this collection [21].
Confusion matrices 12 do not reveal any significant mis-
classifications except for MABDS, for which alternative,
funk/soul/rnb, and pop classes were frequently misclassi-
fied as rock (more than 35% of cases).

3.2 Preparing an independent ground truth

Last.fm contains tag annotations for a large number of mu-
sic tracks by a community of music enthusiasts. While
these tags are freeform, they tend to include commonly

9 New age and folk categories were discarded due to insufficient num-
ber of instances after artist filtering keeping equal number of recordings
per class.

10 Similarly, new age and punk categories were removed.
11 https://acousticbrainz.org/datasets/accuracy
12 Available online: http://labs.acousticbrainz.org/ismir2016
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recognized genres. We used the Last.fm API to get tag
names and counts for all recordings in the AcousticBrainz
database. Tag counts for a track are weighted, where the
most applied tag for the track has a weight of 100. As tags
are collaborative between users, we expect them to repre-
sent the “wisdom of the crowds”. We obtained tags for
1,031,145 unique music tracks. Data includes 23,641,136
tag-weight pairs using 781,898 unique tags.

Genre tags as entered by users in Last.fm vary in their
specificity (e.g., “rock”, “progressive rock”). Meanwhile,
the classifiers that we evaluate estimate broad genre cat-
egories (according to their class names). Therefore, we
matched Last.fm tags to genres, and grouped these genres
to broader “top-level” genres which we then matched to the
output classes of our classifiers. We used a tree of genres 13

from beets, 14 a popular music tagger which uses data from
MusicBrainz, Last.fm, and other sources to organize per-
sonal music collections. This genre tree is constructed
based on a list of genres on Wikipedia, 15 further moder-
ated by the community to add a wider coverage of music
styles. 16 The tree includes 16 top-level genres: african,
asian, avant-garde, blues, caribbean and latin american,
classical, country, easy listening, electronic, folk, hip hop,
jazz, pop, rhythm & blues, rock, and ska. 17 The taxonomy
provided by the genre tree may not always be grounded on
acoustical/musical similarity. For example, the asian top-
level category includes both traditional music and western-
influenced styles such as j-pop; jazz includes bebop, free
jazz, and ragtime; electronic includes both electroacoustic
music and techno. Similar inconsistencies in the contents
of classes are not uncommon in genre datasets [18], and
have been observed in GTZAN by [20], and also in our
informal reviews of other datasets.

We matched tags directly to genres or subgenres in the
tree and then mapped them to their top-level genre. Weights
were combined for multiple tags mapped to the same top-
level genre. Unmatched tags were discarded. We removed
tracks where the weight of the top tag was less than 30,
normalized the tags so that the top tag had a weight of
100 and again discarded tags with a weight of less than 30.
After the cleaning process, we gathered genre annotations
for 778,964 unique MBIDs, corresponding to 1,743,674
AcousticBrainz recordings (including duplicates).

3.3 Genre mappings

We created mappings between the classes of the classifier
models and the validation set (Table 2). We created no
mapping for ‘disco’ on GTZAN, ‘international’ and ‘vo-
cal’ on MAGD, and ‘world’ on TAG as there were no clear
matches. For ROS we did not map ‘speech’ as it did not
represent any musical genre. Recordings estimated by clas-
sifiers as these classes were ignored during evaluation.

13 https://github.com/beetbox/beets/blob/0c7823b4/beetsplug/

lastgenre/genres-tree.yaml
14 http://beets.io
15 https://en.wikipedia.org/wiki/List_of_popular_music_genres
16 The list from Wikipedia contains only modern popular music genres
17 We discarded the comedy and other genres

3.4 Results

Using our tools, we performed an evaluation using sets
from 240,000 to 1,740,000 recordings. Table 3 presents
the accuracies and number of recordings used for the eval-
uation of each classifier model. We bring attention to the
S2-ONLY-D1 strategy as we feel that it reflects a real world
evaluation on a variety of genres, while being relatively
conservative in what it accepts as a correct result (the ONLY-
D1 variation). Also of note is the S1-ONLY-D1 strategy
as it evaluates the classifiers on a dataset which reflects
their capabilities in terms of coverage. We present con-
fusion matrices for the S2-ONLY-D1 strategy in Table 4
for MAGD and TAG models (confusion matrices differ lit-
tle across all evaluation strategies according to our inspec-
tion). 18

Inspection of confusion matrices revealed a few surpris-
ing genre confusions. The MABDS model confuses all
ground-truth genres with electronic (e.g., blues 64%, folk
62% of recordings misclassified). This tendency is consis-
tent with inspection of this model’s estimates in the Acous-
ticBrainz database (81% estimated as electronic). No pat-
tern of such misclassification was present in the confu-
sion matrix during the training stage. Although this model
was trained on unbalanced data, electronic was among the
smallest sized classes (only 6% of the MABDS collection).
Similarly, the GTZAN model tends to estimate all music as
jazz (>73% of recordings of all genres are misclassified),
which is again consistent with genre estimates in Acous-
ticBrainz (90% estimated as jazz), with no such problems
found during training.

The ROS model does not misclassify genres as harshly,
confusing pop with rhythm & blues (26%), jazz with clas-
sical (21%), electronic with hip hop and rhythm & blues,
jazz with rhythm & blues, and rhythm & blues with pop
(<20% of cases for all confusions). For the MAGD model
we see misclassifications of pop with rhythm & blues (21%),
pop with carribean & latin and country, and rhythm &
blues with blues (<15%). The TAG model performed bet-
ter than MAGD, with no genre being misclassified for an-
other more than 15% of the time, though we see a moderate
amount of blues, electronic, folk, and pop instances being
confused with rock as well as rhythm & blues with blues.
The confusions for all three models make sense from mu-
sicological and computational points of view, evidencing
how controversial genre-tagging can be, and that the com-
puted features may not be specific enough to differentiate
between genre labels.

3.5 Discussion

In general, considering exclusion/inclusion of the duplicate
recordings in the evaluation (D1/D2), we observed that the
differences in accuracy values are less than 4 percentage
points for all models. We conclude that duplicates do not
create any strong bias in any of our evaluation strategies
even though the sizes of D1/D2 testing sets vary a lot.

18 Complete results for all classifier models are available at:
http://labs.acousticbrainz.org/ismir2016
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Ground truth GTZAN MABDS ROS MAGD TAG

african - - - - -
asian - - - - -
avant-garde - - - - -
blues blues blues - blues blues
caribbean and latin american reggae - - latin, reggae latin, reggae
classical classical - classical - -
country country folk/country - country country
easy listening - - - - -
electronic - electronic dance electronic electronic
folk - folk/country - - folk
hip hop hip-hop rap/hiphop hip-hop rap rap
jazz jazz jazz jazz jazz jazz
pop pop pop pop pop/rock pop
rhythm and blues - funk/soul/rnb rnb rnb rnb
rock rock, metal rock, alternative rock pop/rock metal, rock
ska - - - - -

Table 2: Mapping between classifier classes and ground-truth genres.

Model Strategy Recordings Accuracy Normalized
accuracy

GTZAN S1-ALL-D1 274895 13.68 12.78
S1-ALL-D2 1235692 10.72 12.73
S1-ONLY-D1 242346 13.27 12.95
S1-ONLY-D2 1053670 10.35 12.91
S2-ALL-D1 373886 10.06 6.39
S2-ALL-D2 1623809 8.16 6.37
S2-ONLY-D1 292840 8.99 6.42
S2-ONLY-D2 1214253 6.93 6.37

MABDS S1-ALL-D1 361043 31.76 17.52
S1-ALL-D2 1660333 31.13 16.75
S1-ONLY-D1 292220 28.39 18.44
S1-ONLY-D2 1277695 27.44 17.96
S2-ALL-D1 386945 29.63 9.86
S2-ALL-D2 1743034 29.65 9.42
S2-ONLY-D1 302448 26.41 10.40
S2-ONLY-D2 1302343 25.82 10.15

ROS S1-ALL-D1 320398 51.73 47.36
S1-ALL-D2 1518024 50.12 45.32
S1-ONLY-D1 269820 50.46 52.52
S1-ONLY-D2 1229136 48.82 51.72
S2-ALL-D1 379302 43.70 20.72
S2-ALL-D2 1683696 45.19 19.83
S2-ONLY-D1 296112 43.12 23.58
S2-ONLY-D2 1252289 45.19 23.24

MAGD S1-ALL-D1 323438 59.35 42.13
S1-ALL-D2 1505105 59.91 40.41
S1-ONLY-D1 265890 59.56 48.34
S1-ONLY-D2 1184476 60.83 48.40
S2-ALL-D1 347978 55.92 23.70
S2-ALL-D2 1590395 57.36 22.73
S2-ONLY-D1 272426 56.36 27.35
S2-ONLY-D2 1187287 58.94 27.56

TAG S1-ALL-D1 327825 59.85 44.46
S1-ALL-D2 1482123 60.58 42.12
S1-ONLY-D1 265280 59.51 52.97
S1-ONLY-D2 1139297 60.49 52.77
S2-ALL-D1 342544 57.35 27.79
S2-ALL-D2 1532129 58.67 26.32
S2-ONLY-D1 268543 56.94 33.13
S2-ONLY-D2 1147231 58.62 33.10

Table 3: Cross-collection evaluation accuracies (%) for all
classifier models.

Similar conclusions can be made with respect to the in-
clusion of recordings with conflicting genre ground truth
(ONLY/ALL). Conflicting cases of genre annotations only
account for 21% of our validation set. In the case of our

Last.fm annotations, multiple labeling of ground truth does
not affect our results, still, one should explore both strate-
gies to ensure that the same holds for other ground truths.

The only large difference in accuracy values is observed
when comparing S1 and S2 strategies—S1 yields higher
accuracies as all additional recordings in S2 are considered
incorrect no matter what the classifier selects. Normalized
accuracy allows us to assess the performance of a classifier
given a hypothetical validation set with an equal number of
instances per class. In our S2 strategy, many validation set
classes not matched to a classifier class, and therefore con-
sidered incorrect, contained a small number of recordings
(e.g., african, asian, avant-garde, and easy listening; see
Table 4). Because of this we observe a larger difference in
normalized accuracies between S1 and S2.

Based on the results we conclude that the models for
ROS, MAGD and TAG perform the best. Their normalized
accuracies are two times better than other classifiers un-
der any condition. Interestingly, the ROS model is trained
on the smallest collection (400 tracks, compared to 1000
tracks for GTZAN and 1886 tracks for MABDS, and over
2000 for MAGD an TAG), while we expected that it would
suffer from insufficient training size.

What can be the reason for such a differing performances
of models? MAGD uses as its source genre annotations
made by experts from Allmusic, while the ROS collection
was created by a musicologist specifically for the task of
content-based music classification, which may be the rea-
son for their better performance. The annotations in TAG
were taken from two different sources, and were only used
when both sources agreed on the genre [18].

4. CONCLUSIONS

The majority of studies on music classification rely on esti-
mating cross-validation accuracy on a single ground truth,
while it has been criticized as being shortsighted to shed
light on the real capacity of a system to recognize music
categories [21]. In our study we go beyond this approach
and show an additional way to ascertain the capacity of
classifiers by evaluating across collections. We believe that
cross-collection generalization is an interesting metric to
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Ground-truth Estimated genre
genre size (%) blues carribean & latin country electronic hip hop jazz pop, rock rhythm & blues

(blues) (latin, reggae) (country) (electronic) (rap) (jazz) (pop/rock) (rnb)

blues 2.7 48.30 8.54 11.27 2.88 1.31 8.94 13.16 5.61
carribean & latin 1.9 6.98 57.11 4.70 5.64 6.88 7.44 3.04 8.20
country 4.3 14.09 8.28 61.89 1.00 0.43 2.24 8.38 3.67
electronic 20.1 2.01 4.57 0.90 59.28 6.22 4.35 16.22 6.45
hip hop 2.3 1.22 10.39 0.14 8.77 65.63 1.08 3.80 8.97
jazz 7.7 9.39 7.00 3.68 2.87 1.02 67.22 4.60 4.22
pop 5.8 4.63 18.65 18.23 7.12 3.47 2.87 23.98 21.05
rhythm & blues 3.4 16.36 13.87 11.88 3.66 5.93 5.00 10.74 32.56
rock 43.9 7.60 6.26 6.10 7.14 0.82 2.48 67.38 2.23
african 0.3 13.09 33.54 10.22 8.38 6.13 9.20 4.50 14.93
asian 1.2 2.13 16.85 7.72 8.35 2.58 3.66 35.34 23.36
avant-garde 0.2 14.33 8.26 5.51 12.40 5.92 20.11 30.72 2.75
classical 2.2 4.85 4.05 5.73 4.30 0.45 66.05 13.86 0.70
easy listening 0.4 9.52 13.79 27.59 6.62 2.21 18.07 14.06 8.14
folk 3.1 15.55 14.80 28.92 5.75 0.89 10.71 20.14 3.24
ska 0.7 4.80 39.28 5.71 13.90 9.21 2.16 19.66 5.28

(a) MAGD. Columns for pop and rock are summed together as they match the same model class

Ground-truth Estimated genre
genre size (%) blues carribean & latin country electronic folk hip hop jazz pop rhythm & blues rock

(blues) (latin, reggae) (country) (electronic) (folk) (rap) (jazz) (pop) (rnb) (metal, rock)

blues 2.7 48.09 4.70 6.57 1.08 7.17 0.63 9.55 3.45 6.72 12.04
carribean & latin 1.9 3.47 59.11 3.26 2.93 4.37 5.56 6.96 4.47 6.77 3.12
country 4.3 11.58 5.29 51.90 0.37 11.15 0.15 2.55 6.13 3.18 7.70
electronic 20.1 0.82 4.53 0.81 53.66 5.45 5.82 2.62 9.33 3.33 13.63
folk 3.1 6.03 4.46 11.23 3.20 47.22 0.35 5.30 7.53 2.59 12.09
hip hop 2.3 0.83 9.14 0.11 7.03 0.31 67.00 1.52 2.30 8.75 3.00
jazz 7.7 7.68 5.19 2.15 1.43 4.93 0.71 65.56 3.28 6.05 3.02
pop 5.8 3.76 9.24 11.43 4.02 8.56 2.40 4.10 35.78 8.38 12.32
rhythm & blues 3.4 12.59 11.40 8.37 1.96 3.73 4.45 5.29 11.82 31.94 8.46
rock 43.9 4.19 2.65 3.61 2.95 5.15 0.57 1.59 7.54 1.99 69.76
african 0.3 12.43 29.94 5.37 5.08 14.12 5.65 7.34 7.34 8.19 4.52
asian 1.2 1.63 6.64 3.47 4.52 3.94 2.67 1.98 52.76 6.12 16.26
avant-garde 0.2 8.38 5.67 2.47 9.25 14.43 4.19 16.40 4.07 4.93 30.21
classical 2.2 5.78 1.64 4.76 1.73 30.75 0.16 41.08 5.38 2.19 6.53
easy listening 0.4 6.81 7.07 17.38 2.97 21.05 0.79 14.76 15.20 5.94 8.03
ska 0.7 3.00 42.24 4.00 9.71 0.75 9.66 1.15 5.36 3.55 20.57

(b) TAG

Table 4: Confusion matrices for S2-ONLY-D1 strategy. Original class names for the classifiers are listed in parentheses.
Misclassifications >10% are shaded light gray and >20% dark gray.

take into account for validating the robustness of classi-
fier models. We propose a methodology and software tools
for such an evaluation. The tools let researchers conduct
large-scale evaluations of classifier models trained within
AcousticBrainz, given an independent source of ground-
truth annotations and a mapping between the classes.

We applied our methodology and evaluated the perfor-
mance of five genre classifier models trained on MIR genre
collections. We applied these models on the AcousticBrainz
dataset using between 240,000 and 1,740,000 music record-
ings in our validation sets and automatically annotated these
recordings by genre using Last.fm tags. We demonstrated
that good cross-validation results obtained on datasets fre-
quently reported in existing research may not generalize
well. Using any of the better-performing models on Acous-
ticBrainz, we can only expect a 43–58% accuracy accord-
ing to our Last.fm ground truth when presented with any
recording on AcousticBrainz. We feel that this is still not
a good result, and highlights how blurred the concept of
genres can be, and that these classifiers may be “blind”
with respect to some important musical aspects defining

some of the genres. More research effort is required in
designing musically meaningful descriptors and making
them error-resistant, as well as understanding the relation-
ships between different genre taxonomies.

Importantly, the application of the proposed methodol-
ogy is not limited to genres and can be extended to other
classification tasks. In addition to the proposed methodol-
ogy and tools, we release a public dataset of genre annota-
tions used in this study. 19 In our future work we plan to in-
vestigate and publish more independent sources of ground-
truth annotations, including annotations by genre and mood,
that will allow researchers to conduct more thorough eval-
uations of their models within AcousticBrainz.
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ABSTRACT

In this paper, we introduce a novel Conditional Random
Field (CRF) system that detects the downbeat sequence
of musical audio signals. Feature functions are computed
from four deep learned representations based on harmony,
rhythm, melody and bass content to take advantage of the
high-level and multi-faceted aspect of this task. Downbeats
being dynamic, the powerful CRF classification system al-
lows us to combine our features with an adapted temporal
model in a fully data-driven fashion. Some meters being
under-represented in our training set, we show that data
augmentation enables a statistically significant improve-
ment of the results by taking into account class imbalance.
An evaluation of different configurations of our system
on nine datasets shows its efficiency and potential over a
heuristic based approach and four downbeat tracking algo-
rithms.

1. INTRODUCTION

Musical rhythm can often be organized in several hierar-
chical levels. These levels don’t always correspond to mu-
sical events and have a regular temporal interval that can
change over time to follow the musical tempo. One of
these levels is the tatum level and is at the time scale of
onsets. The next one is often the beat level and can be in-
tuitively understood as the hand clapping or foot tapping
level. Then in several music traditions there is the bar level
that groups beats of different accentuation together. The
first beat of the bar is called the downbeat. The aim of this
work is to automatically find the downbeat positions from
musical audio signals. The downbeat is useful to musi-
cians, composers and conductors to segment, navigate and
understand music more easily. Its automatic estimation is
also useful for various applications in music information
retrieval, computer music and computational musicology.

This task is receiving more attention recently. With
the increasing number of annotated music files and refined
learning strategies, methods using probabilistic models and

c© Simon Durand, Slim Essid. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Simon Durand, Slim Essid. “Downbeat Detection with Conditional
Random Fields and Deep Learned Features”, 17th International Society
for Music Information Retrieval Conference, 2016.

machine learning algorithms tend to be the most success-
ful [4, 13, 18]. Once a downbeat detection function has
been extracted, most systems use a temporal model to take
advantage of the structured organization of downbeats and
output the downbeat sequence. It includes heuristics [3],
dynamic programming [25], hidden Markov models [23]
and particle filters [18] among others.

In this work, we propose for the first time a Conditional
Random Field (CRF) framework for the task of downbeat
tracking. First, four complementary features related to har-
mony, rhythm, melody and bass content are extracted and
the signal is segmented at the tatum level. Adapted convo-
lutional neural networks (CNN) to each feature character-
istics are then used for feature learning. Finally, a feature
representation concatenated from the last and/or penulti-
mate layer of those networks is used to define observation
feature functions and is fed into a Markovian form of CRF
that will output the downbeat sequence.

1.1 Related work

A CRF framework is used in [7] and [16] for the field of
beat tracking. However, the optimal weights of the ob-
servations and transitions feature functions are not directly
learned from the data.

The system presented in [14] uses an interesting idea
of limiting engineered hypotheses by segmenting the data
in onsets and learning the activation of downbeats with a
Support Vector Machine classifier. Contrary to our work,
it requires manual annotation of either the first part of the
tested song or of a very similar song and outputs an in-
termediary downbeat activation function as opposed to the
final downbeat positions.

In [6], the same segmentation, low-level feature extrac-
tion and complementary CNNs are used. However, the
proposed system includes three main differences:

• We are not only using an individual output per down-
beat candidate but a detailed high-level representa-
tion also coming from the penultimate layer of the
neural networks. Besides, we don’t optimize indi-
vidual features on isolated downbeat occurrences,
but features from all the deep networks simultane-
ously on a whole structured downbeat sequence.

• We are using another type of classifier, namely CRF,
known to be more effective than Hidden Markov
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Models especially in high dimensional settings due
to being a discriminative classifier.

• A fully data driven approach, after extracting low-
level features, is adopted. It takes advantage of data
augmentation procedures to allow for a proper train-
ing of the CRF classifiers, limiting the use of ad-hoc
heuristics and hand-crafted data transformations.

2. FEATURE LEARNING

The feature learning part of our system is the same as
in [6]. We first segment the audio signal in tatums as seen
in figure 1. We then simplify the downbeat detection task
to a classification problem where the goal is to find which
tatums are at a downbeat position. Human perception of
downbeats depending on several musical cues, we then
extract four low-level features related to melody, rhythm,
harmony and bass content. Each low-level feature input,
shown in figure 2, is fed to a convolutional neural net-
work adapted to its characteristics. The bass content neu-
ral network (BCNN) targets melodic and percussive bass
instruments. The melodic neural network (MCNN) targets
relative melodic patterns which are known to play a role
in human perception of meter regardless of their absolute
pitch [29] with max pooling. The harmonic neural network
(HCNN) learns how to detect harmonic change in the in-
put and is trained on all different harmony transposition by
data augmentation. Finally, the rhythmic neural network
(RCNN) aims at learning length specific rhythmic patterns
with multi-label learning, instead of sudden changes in the
rhythm feature that are not very indicative of a downbeat
position. For more details about the motivations behind the
design choices made for each network the interested reader
is referred to [6].

3. CRF SYSTEM FOR DOWNBEAT TRACKING

Two high-level feature representations coming from the
last and penultimate layer of each network are then used
as input to a Conditional Random Field (CRF) classifier.

3.1 CRF-based classification

CRF [19] are a powerful class of discriminative classi-
fiers for structured input–structured output data prediction,
which have proven successful in a variety of real-world
classification tasks [26, 27] and also in combination with
neural networks [24]. They model directly the posterior
probabilities of output sequences y = (y1, · · · , yn) given
input observation sequences x = (x1, · · · ,xn) according
to:

p(y|x;θ) = 1

Z(x,θ)
exp

D∑

j=1

θjGj(x,y)

where Gj(x,y) are feature functions describing the ob-
servations, θj are the model parameters (assembled as
θ = [θj ]1≤j≤D), and Z(x) is a normalizing factor that
guarantees that p(y|x) is a well defined probability, which
sums to 1.

Owing to the sequential nature of the downbeat classi-
fication problem, we use a Markovian form of CRF, where
the transition feature functions, denoted by tj , are defined
on two consecutive labels, in a linear-chain fashion, and
observation feature functions, denoted by vj , depend on
single labels, so that:

p(y|x;θ) = 1

Z(x,θ)
exp





n∑

i=1

Do∑

j=1

θjvj(yi,x, i)

+
n∑

i=1

Dt∑

j=1

θjtj(yi−1, yi,x, i)



 . (1)

More specifically, the transition feature functions we
use are such that tj(yi−1 = k, yi = l,x, i) = I(yi =
l)I(yi−1 = k), where I(.) is the indicator function (equal
to 1 if its argument is true and otherwise equal to 0). As
for the observation feature functions they are chosen to be
of the form vj(yi = l,x, i) = ejI(yi = l) where ej are
obtained by the feature representation learned by the net-
works presented in section 2. Actually, two schemes are
envisaged here. In the first variant, the ej features are taken
to be directly the final outputs of the bass, melodic, har-
monic and rhythmic networks. Alternatively, we added the
output of the penultimate layer 1 which can be viewed as
lower level features that were optimized, as part of the net-
work training processes, to discriminate downbeats from
tatums. The deep network penultimate layer output is a
powerful feature representation that can be used as an in-
put to a dedicated classifier to improve accuracy [9]. The
last layer of our networks being essentially a linear com-
bination of the penultimate layer features followed by a
normalization to map them to probabilities, the CRF clas-
sifier is a good fit for the final weighting of those features,
based on the more optimal output-sequence level maxi-
mum a posteriori criterion p(y|x; θ), compared to the static
criterion optimized in the last layer of the networks. The
harmonic network penultimate layer dimension is of 1000
and each of the other networks penultimate layer dimen-
sion is of 800.

3.2 Defining the output-space

The set of output labels Y j
i represents the position i of

a tatum in a j tatum-long bar, with i ∈ {1...j} and
j ∈ {3, 4, 5, 6, 7, 8, 9, 10, 12, 16}. We consider an addi-
tional label for bars containing more than 16 tatums for a
total of 81 labels. This way, the feature function weights
depend on the bar length, in tatums, and the position in-
side the bar. For instance, the sixth tatum of a 6 tatum-long
bar Y 6

6 and the sixth tatum of a 8 tatum-long bar Y 8
6 have

different musical properties. In the first case, we want the
transition feature functions to emphasize the next output
to be the first tatum of a 6 tatum-long bar Y 6

1 . In the sec-
ond case, we want to emphasize the next output to be the
seventh tatum of a 8 tatum-long bar instead Y 8

7 . The ob-
servation features, taking into account one or two bars of

1 before the ReLU to keep information about negative units
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Figure 1. Model overview. The signal is quantized in tatums. Four low-level features related to harmony, rhythm, melody
and bass content are extracted. High-level feature representations are learned with four convolutional networks adapted to
each feature characteristics. The networks penultimate layer, along with the downbeat likelihood, are fed in a CRF to find
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(c) and bass content neural network (d).

temporal context, will also be rather different and are better
treated separately. It is therefore important to distinguish
those two outputs for a consistent decoding.

3.3 Labeling the training data

The training data being only annotated in beat and down-
beat, defining its labels is not straightforward. First, bars of
2, 11, 13, 14 and 15 tatums are not present in our model for
efficiency, robustness and because they are barely present
in most music datasets but they can’t be ignored to train
the model efficiently. They are then annotated to the most
common neighbor bar-length: 14 and 15 tatum-long bars
are annotated as 16 tatum-long bars. 11 and 13 tatum-long
bars are annotated as 12 tatum-long bars. The last state of
those metrical levels is either removed or repeated to do
so. 2 tatum-long bars are annotated as 3 tatum-long bars if
the following bar is a 3 tatum-long bar for continuity or as
4 tatum-long bar otherwise as they are the most common
neighbor for a duple meter.

Second, the beginning and end of songs are sometimes
not properly estimated or annotated and considering or
ignoring all observations before the first or after the last

downbeat can lead to training problems. For the begin-
ning of songs, we removed the samples that where more
than one bar before the first annotated downbeat as they
were not reliable enough. We then annotated the bar pre-
ceding the first downbeat with the same classes than the
bar containing the first downbeat for continuity, and finally
removed samples in this first bar randomly. It allows the
initialization of the position inside the bar to be random-
ized. The procedure is applied in reverse for the end of
songs.

Although extensive tests were not performed, we obtain
a gain in performance by about 4 percent points (pp) by us-
ing this annotation process compared to a simple represen-
tation of all these non conventional cases by an additional
label.

3.4 Handling class-imbalance with data augmentation

Not all metrical level are well represented in the used
datasets. In fact, {3,4,6,8,12,16} tatum-long bars, i.e. bars
of 3 and 4 beats, represent more than 96% of the data and
will be the focus of the CRF model. In this subset, bars
of 3 beats will be represented by 3, 6, and roughly half of
12 tatum-long bars. This represents approximately 15% of
the data. Those metrical levels are then non negligible but
under-represented. Such data imbalance is known to create
difficulties while training classifiers like CRFs. We there-
fore balance our dataset with data augmentation. We use
time-stretching by a factor of 1.1 and 0.9 and pitch shift-
ing by±1 semitone on 3-beats-per-bar songs to do so. The
implementation is done thanks to the muda package pre-
sented in [20]. We will study in the experiments the added
value of the data augmentation.

4. EXPERIMENTAL SETUP

4.1 Evaluation methods

We use the F-measure and a statistical test to assess the
performance of our system:

F-measure: The F-measure is the harmonic mean of the
precision (ratio of detected downbeat that are relevant)
and the recall (the ratio of relevant downbeat detected). It
is an instantaneous measure of performance that is used
in the MIREX downbeat tracking evaluation 2 . We use a

2 http://www.music-ir.org/mirex/wiki/2016:
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tolerance window of ±70ms. The configuration with the
best F-measure with be highlighted in bold. We do not
take into account the first 5 seconds and last 3 seconds
of audio in our evaluation metric since the annotation is
sometimes missing or not very reliable there.

Statistical tests: To assess statistical significance, we per-
form a Friedman’s test and a Tukey’s honestly significant
criterion (HSD) test with a 95% confidence interval. Sys-
tem(s) with a statistically significant improvement over the
rest on the whole dataset will be underlined.

4.2 Databases

We use nine different databases in this work, for a total of
1511 audio tracks of about 43 hours of audio music. Using
multiple datasets allows us to see the performance of our
system on different music styles and be robust to different
annotation strategies.

RWC Classical [10]: 60 western classical pieces, from 1
to 10 minutes. We removed the last track as the annotation
seemed inconsistent.

RWC Jazz [10]: 50 jazz tracks from 2 to 7 minutes.

RWC music genre [11]: 92 music tracks from various
music styles, from 1 to 10 minutes. We removed the tradi-
tional Japanese songs and the a Capella song as we don’t
have the corresponding audio.

RWC Pop [10]: 80 Japanese Pop music and 20 American
Pop music tracks from 3 to 6 minutes.

Beatles 3 : 179 songs from The Beatles.

Ballroom 4 : 698 30-second long excerpts from various
ballroom dance music.

Hainsworth [12]: 222 excerpts from 30 second to 1
minute from various music styles. It is to note that the cur-
rent downbeat annotation can significantly be improved.
Klapuri subset [15]: The downbeat annotations for this

dataset are lacking in some files. Full cleaning will be
done in future work but we use a subset of 4 relatively diffi-
cult genres for downbeat tracking : Jazz, Electronic music,
Classical and Blues with 10 randomly selected excerpts for
each genre.

Quaero 5 : 70 songs from various Pop, Rap and Electronic
music hits.

4.3 General train/test procedure

We use a leave-one-dataset-out approach, meaning that we
train and validate our system on all but one dataset and
test it on the remaining one. Compared to standard cross-
validation, this procedure was chosen to be more fair to
non machine learning methods that are blind to the test
set and to supervised algorithms using the same approach.
However, it is limiting the ability of the deep networks and

Audio_Downbeat_Estimation
3 http://isophonics.net/datasets
4 http://www.ballroomdancers.com
5 http://www.quaero.org

Dataset ll ll + da pl pl + da
RWC Jazz 65.3 66.0 65.5 66.1
RWC Class 44.3 44.3 43.8 45.9
Hainsworth 62.9 65.9 64.5 66.0
RWC Genre 66.2 68.1 69.1 69.3
Klapuri subset 67.1 71.2 67.4 71.5
Ballroom 78.0 77.3 79.0 80.9
Quaero 83.5 83.8 83.1 82.7
Beatles 84.0 84.1 84.4 85.2
RWC Pop 87.2 85.1 86.7 87.4
Mean 70.9 71.8 71.5 72.8

Table 1. F-measure results for different configurations of
the presented system. ll means the features come from
the network last layer and pl means that features from the
penultimate layer were also used. da means data augmen-
tation was used.

the CRF model to work on test data from styles not of-
ten seen in the training set. Two notable examples are the
RWC Classical and RWC Jazz music datasets.

4.4 CRF training

For CRF training we use the Pycrfsuite toolbox [21]. The
CRF parameters are learned as classically done in a maxi-
mum likelihood sense using both `2 and `1-regularisation,
thus in an elastic-net fashion, so as to promote sparse so-
lutions, and solved for using the L-BFGS algorithm. The
optimal values of the regularisation parameters were se-
lected by a 4-fold cross-validation on the training set. For
the last layer features, the grid for the optimal `2 value
is [100,10,1.0,0.1,0.01,0.001,0.0001]. Since there are only
four features out of the networks, we don’t need feature se-
lection and the `1 parameter was set to 0. When adding the
penultimate layer features, the grids for the optimal `1 and
`2 values were [10,100] and [0.1,0.01,0.001] respectively.

5. RESULTS AND DISCUSSION

5.1 Impact of the data augmentation:

Configuration using data augmentation will be abbrevi-
ated by ”da”, and their F-measure results for each dataset
is shown in table 1. We can see an improvement on all
datasets, except on the RWC Pop and Quaero datasets. In-
deed, the number of songs containing 3 or 6 tatums per
bar is very limited there. Overall the F-measure improve-
ment is of +0.9 percent point using last layer features (ab-
breviated by ”ll”) and of +1.3 pp using penultimate layer
features (abbreviated by ”pl”).

5.2 Impact of the penultimate layer:

F-measure results of configurations adding the penultimate
layer output as features is also shown in table 1. Using
the penultimate layer increases the results overall by 0.6
pp with the non augmented data and by 1.0 pp with the
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Dataset [23] [22] [3] [17] [6] pl + da
RWC Jazz 39.6 47.2 42.1 51.5 70.9 66.1
RWC Class 29.9 21.6 32.7 33.5 51.0 45.9
Hainsworth 42.3 47.5 44.2 51.7 65.0 66.0
RWC Genre 43.2 50.4 49.3 47.9 66.1 69.3
Klapuri 47.3 41.8 41.0 50.0 67.4 71.5
Ballroom 45.5 50.3 50.0 52.5 80.1 80.9
Quaero 57.2 69.1 69.3 71.3 81.2 82.7
Beatles 53.3 66.1 65.3 72.1 83.8 85.2
RWC Pop 69.8 71.0 75.8 72.1 87.6 87.4
Mean 47.6 51.7 52.2 55.8 72.6 72.8

Table 2. F-measure results for compared algorithms. [23],
[22] and [3] are unsupervised. [17] and [6] are supervised
algorithms also trained with a leave-one-dataset-out ap-
proach. [6] uses the same training sets and [17] uses sim-
ilar training sets, with the addition of the Boeck [1, 2],
Rock [28] and Robbie Williams [8] datasets and the sub-
traction of the Klapuri subset and the Quaero dataset.

augmented data. Its impact on the bigger datasets (Ball-
room, Beatles, RWC Pop, RWC Genre, Hainsworth), rep-
resenting 85% of the songs is more important than for the
smaller datasets. Besides, using both the data augmenta-
tion and the penultimate layer allows the CRF model to
have the best performance on all datasets but one, and to
have a statistically significant improvement over the other
configurations.

5.3 Comparison to other algorithms:

We compared our best system to the ones of Krebs et
al. [17], Peeters et al. [23], Davies et al. [3] and Papadopou-
los et al. [22]. We also compared to a system using the
same neural networks but with a different feature combi-
nation and temporal model [6]. In this system, the out-
put of the four networks is averaged and a Viterbi model
with hand-crafted transition and emission probabilities is
used to decode the downbeat sequence. Due to space con-
straints, we do not add [4] and [5] since they are close to [6]
in terms of architecture and produce worse results. Results
are shown in the table 2. With the new CRF system pro-
posed here, the improvement is substantially better in all
datasets compared to [17], [23], [3] and [22]. While the im-
provement averaged across datasets is moderate compared
to [6], we observe a statistically significant improvement 6 .
Overall results are held back by the performance on RWC
Classical and RWC Jazz. The used training sets barely
contain these music styles while we are exploiting a fully
data-driven approach. The leave-one-dataset-out approach
might be too restrictive when dealing with very distinctive
music datasets. However, when more appropriate train-
ing data is available, the CRF model has a better potential,
as results on RWC Genre indicates. This dataset includes

6 It is to note that the comparison between the data augmented system
and [6] is fair since the networks were trained on the same data, and the
feature combination and temporal model steps of the heuristic model is
blind to any data.
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Figure 3. Selected transition weights for the 6 and 8 tatum-
long bars. It corresponds to the output labels Y 6

1 to Y 6
6 and

Y 8
1 to Y 8

8 . (a) Weight of the transition feature function in
the presented CRF model. (b) Coefficients of the transition
matrix in [6]. As an illustration, inside the red rectangle
pointed by an arrow are all the coefficients corresponding
to a transition inside a 6 tatum-long bar. There is a weight
at the bottom left corner of this rectangle with a value close
to 1. It corresponds to the weight of the transition from Y 6

6

to Y 6
1 .

more than 30% of Jazz and Classical music songs and has
a significantly better performance with the new temporal
model (69.3% F-measure compared to 66.1% in [6]). In
this case the RWC Jazz and RWC Classical datasets were
part of the training set and the CRF system was able to
model these styles more accurately. In fact, the perfor-
mance on Classical and Jazz music pieces on RWC Genre
is improved by 6.8 pp, which is even better than the 3.1
pp overall. It highlights the potential of the data-driven
proposed system, where relevant annotated data has a big
impact on performance.

5.4 Analysis of the transition features:

The output space being similar with the one defined in [6],
we can compare the transition coefficients. Due to space
constraints, we limit our analysis to bars of 6 and 8 tatum
of the pl + da CRF model. They correspond to the most
common bars in the used datasets. The transition coeffi-
cients can be seen in figure 3. The first observation is that
the general intuition of moving circularly inside a bar is in-
deed learned by the CRF model as seen with the stronger
weights of the transition feature function close to the diag-
onal of the figure. We also see that the proposed learned
CRF model transition coefficients are more detailed while
they seem more binary in [6]. The proposed system is less
restrictive in metrical changes as can be seen by the coef-
ficient of the output transitions Y 6

6 → Y 8
1 and Y 8

8 → Y 6
1

in particular. It can be because the observation features are
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IHCNN IRCNN IMCNN IBCNN

11.3 42.1 9.0 37.7

Table 3. Mean impact of each feature representation on
the pl + da CRF model.

reliable enough to avoid false metrical changes between 6
and 8 tatum-long bars. Finally, we see that some transitions
have strong negative weights in the CRF model. Y 8

4 → Y 8
1

and Y 8
7 → Y 8

5 have the top negative weights, both at -
3.9. In the first case, it corresponds to going back to the
downbeat after 4 tatums and in the second case to going
back to the downbeat after 16 tatums while being in a 8
tatum-long bar. Finding the difference between a 4, 8 and
16 tatum-long bar is indeed quite difficult perceptively and
for the networks. There can be one part of the song where
the chords or the rhythmic patterns change twice as fast or
twice as slow, which could misled the observation features.
The negative weights can therefore emphasize a metrical
continuity in the decoding.

5.5 Ability to find the correct metrical level:

To evaluate the ability of the system to find the correct met-
rical level, we use the continuity-based metric focusing on
the total proportion of correct regions at the correct met-
rical level (CMLt) with a tolerance window of ±17.5% of
the inter-beat-interval 7 . The proposed system obtains a
CMLt of 61.5% while [6] obtains a CMLt of 56.6%. The
CRF model is therefore more efficient to find the correct
metrical level compared to [6]. It can be explained by the
fact that every downbeat and non downbeat outputs have a
different observation features while all the non downbeat
states and all the downbeat states had the same observation
feature respectively in the compared system. Besides, as
seen above, the transition coefficients of the CRF model
are better to avoid octave errors on duple meters while the
compared system makes more errors there.

5.6 Analysis of the selected features:

We looked at the weight of the pl + da CRF model to see
if a feature representation had more impact than others to
detect the downbeat sequence. To do so we calculated the
sum of the absolute learned weight value belonging to each
feature representation:

IXCNN =
∑

j∈XCNN

|θj | (2)

with X ∈ {H,R,M,B}. Results are shown in table 3 af-
ter a normalization inside and across datasets. It is to note
that they are consistent for each dataset and each label. We
can see that the rhythmic and bass content networks have
a larger impact on the CRF model. It can be surprising
knowing that the harmonic network is the best performing
network in [6]. However, the rhythmic and bass content
networks were trained to recognize the downbeat sequence

7 We don’t consider ±17.5% of the inter-downbeat-interval since it
would be too permissive.

on the whole input and not a single downbeat per input
only. It allows them to encode information about the met-
rical level that is useful for the CRF model.

6. CONCLUSIONS

We presented a Conditional Random Field system based
on multiple deep learned feature representations for the
task of downbeat tracking. Using the networks penultimate
layer feature representation with 3 beats per bar augmented
data, we outperformed 5 compared downbeat tracking al-
gorithms overall. While we need the training and test data
to come from similar music styles to make full use of our
powerful temporal model, it holds more potential com-
pared to heuristic based approaches and could be more eas-
ily adapted to different music styles.

Future work will focus on learning the deep networks
and the conditional random field models jointly and on re-
fining the initial temporal segmentation.
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ABSTRACT

To advance research on automatic music transcription
(AMT), it is important to have labeled datasets with suf-
ficient diversity and complexity that support the creation
and evaluation of robust algorithms to deal with issues
seen in real-world polyphonic music signals. In this paper,
we propose new datasets and investigate signal processing
algorithms for multipitch estimation (MPE) in choral and
symphony music, which have been seldom considered
in AMT research. We observe that MPE in these two
types of music is challenging because of not only the
high polyphony number, but also the possible imprecision
in pitch for notes sung or played by multiple singers
or musicians in unison. To improve the robustness of
pitch estimation, experiments show that it is beneficial to
measure pitch saliency by jointly considering frequency,
periodicity and harmonicity information. Moreover, we
can improve the localization and stability of pitch by the
multi-taper methods and nonlinear time-frequency reas-
signment techniques such as the Concentration of Time
and Frequency (ConceFT) transform. We show that the
proposed unsupervised methods to MPE compare favor-
ably with, if not superior to, state-of-the-art supervised
methods in various types of music signals from both
existing and the newly created datasets.

1. INTRODUCTION

The ability to identify concurrent pitches in polyphonic
music is considered admirable by most people. Through-
out history, such an ability has been symbolic of a music
genius, with the most popular legendary story possibly
being Mozart’s transcription of Allegri’s Miserere at the
age of fourteen. An interesting question is then whether
computers can also possess the ability and perform auto-
matic music transcription (AMT). A great deal of research
has been done in the music information retrieval (MIR)

c© Li Su, Tsung-Ying Chuang and Yi-Hsuan Yang.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Li Su, Tsung-Ying Chuang and
Yi-Hsuan Yang. “Exploiting frequency, periodicity and harmonicity
using advanced time-frequency concentration techniques for multipitch
estimation of choir and symphony”, 17th International Society for Music
Information Retrieval Conference, 2016.

community to develop AMT algorithms, but to date it is
still an unsolved problem [4].

AMT is challenging for multiple reasons. One such
challenge has to do with the creation of labeled multip-
itch data with diversity, for the labeling process requires
considerable expertise and is usually time-consuming [24].
Existing multipitch datasets are often small in size and
limited in diversity, and in combination they still cannot
represent the rich variety found in music performances.
For example, to our knowledge, there is no labeled multip-
itch data for choir, one of the most common type of music
through the ages and cultures and also known as the theme
featuring the legendary story of Mozart. As the evaluation
of AMT algorithms requires labeled data, the transcription
of choir music remains largely unexplored.

The rich variety of music also poses challenges in
designing features robust to variations in timbre, genre, and
type of performance. For example, it is difficult to design
a feature that performs equally well in characterizing the
pitch information in both piano and choir music, for they
are fairly different — the latter involves a group of people
singing in unison but each having her or his own vocal
characteristics and control of pitch. This specific issue of
possible imprecision in pitch has rarely been dealt with in
the literature, possibly due to the scarcity of related labeled
data. The shift-invariant Probabilistic Latent Component
Analysis (PLCA) algorithm [3] can support non-ideal
tuning and frequency so might be able to partially address
this issue, but such an evaluation has not been reported
before. Moreover, while PLCA is a supervised algorithm
that demands the availability of data, we are interested in
unsupervised algorithms.

This work attempts to address the aforementioned is-
sues for multipitch estimation (MPE), a sub-task of AMT.
Specifically, we propose new datasets and discuss the char-
acteristics and distinct technical issues of MPE for choir
and symphony music. Besides, by extending a previous
work [23] we propose an unsupervised approach that inter-
prets a pitch event in three dimensions — frequency, peri-
odicity and harmonicity. Moreover, we introduce recent
advance in time-frequency (TF) analysis, including the
Synchrosqueezing Transform (SST) and the Concentration
of Time and Frequency (ConceFT) method, to improve the
stablization and localization of pitch information in our
feature representation. Result shows that that the proposed
unsupervised methods compare favorably with state-of-
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the-art supervised methods in various types of music.
Finally, a simple decision fusion framework also shows the
effectiveness of combining multiple MPE methods.

2. PROBLEM DEFINITION

To facilitate our discussion on feature representation, we
focus on the feature design for frame-level transcription
of polyphonic music, namely the MPE sub-task. Other
transcription sub-tasks such as note tracking and timbre
streaming [7] are not discussed in this paper.

We refer to a multipitch signal as a superposition of
multiple “perceptually mono-pitch” signals. This partic-
ular type of mono-pitch signal can be produced either
by a single performer, with rather well-defined pitch and
loudness, or by a group of performers playing instruments
or singing in unison. The latter case, often referred to as
“chorus” or “ensemble” sounds, has quite different signal-
level characteristics from the former. The major difference
lies in the small, independent variations in the fundamental
frequency (F0), a.k.a. the voice flutter phenomenon [25].
For example, early research in choral music showed that
the “dispersion of F0” (measured as the bandwidths of
partial tones) among three reputable choirs varied typically
in the range of 20–30 cents [17]. It is also found that
the pitch scatter (i.e., the standard deviation of F0 across
singers, averaged over the duration of each tone [17, 25])
among choir basses is 10–15 cents [26]. Previous work on
the synthesis of chorus/ensemble effect also adjusted pitch
scatter parameters in similar ranges [12, 18].

We assume that every sound contributing to the mono-
pitch signal of interest is composed of a series of sinusoidal
components which are with nearly integer multiples of the
F0, i.e., every sound has low inharmonicity. In this way,
the bandwidth of each partial is mainly determined by the
amount of the frequency variations of every sound. Be-
sides, we ignore issues of missing fundamental or stacked
harmonics found in real-world polyphonic signals, for they
both have been discussed in our previous work [23]. In
summary, we assume the signal under analysis has discern-
able F0s and small but nonzero degree of inharmonicity
and pitch scatter.

3. RELATED WORK

3.1 Pitch saliency features

For a signal x(t) with multiple periodicities, a pitch
candidate is determined by 1) a frequency representation
V (t, f) that reveals the saliency of every fundamental
frequency and its harmonic frequencies (i.e., its integer
multiples) in a signal, 2) a periodicity representation
U(t, q) that reveals the saliency of every fundamental
period and its integer multiples in a signal, 1 and 3) the
constraints on harmonicity described as follows: at a
specific time t0, a pitch candidate f0 = 1/q0 is the true
pitch when there exists Mv,Mu ∈ N such that [23]:

1 The fundamental period of a periodic signal x(t) is defined as the
smallest q such that x(t + q) = x(t). Since q is measured in time, we
refer to q as in the lag domain, to distinguish it from t in the time domain.

1. A sequence of prominent peaks found at V (t0, f0),
V (t0, 2f0), . . ., V (t0,Mvf0).

2. A sequence of prominent peaks found at U(t0, q0),
U(t0, 2q0), . . ., U(t0,Muq0).

An MPE algorithm following this approach has been
found useful in transcribing a wide variety of music,
including complicated music signals like symphony [23].
The frequency representation being used is the short-time
Fourier transform (STFT). For a window function h(t), the
STFT of x(t) is formulated by

V (h)
x (t, f) =

∫
x(τ)h(τ − t)e−j2πf(τ−t)dτ . (1)

For periodicity representations, an important one for MPE
is the the generalized cepstrum [16, 28]:

U
(h,gξ)
x (t, q) =

∫
gξ(V

(h)
x (t, f))e−j2πqudu , (2)

where q is referred to as lag or quefrency, and gξ(·) is a
nonlinear scaling function defined by either g1(y) = |y|γ
or g2(y) = (|y|γ−1)/γ, 0 < γ ≤ 2. We remark that when
γ = 2, U (h,g1)

x becomes the ACF according to the Wiener-
Khinchin theorem, and when γ → 0, U (h,g2)

x approximates
to the real cepstrum. U

(h,g1)
x and U

(h,g2)
x are different

merely in the scale and the zero-quefrency term, so for
simplicity we use U (h,g1)

x in this paper. We will omit ξ in
the notation and simply denote U (h,gξ)

x (t, q) as U (h)
x (t, q).

3.2 Multi-taper time-frequency analysis

In conventional STFT, the spectrum is estimated by only
one window function. In contrast, multi-taper TF anal-
ysis estimates the spectrum by averaging of the spectral
estimation of multiple windows (i.e., tapers) [27]. The
main purpose of multi-tapering is to stabilize the spectrum
estimation by reducing the variance due to noises or
boundary of the segments. The tapers are basically orthog-
onal to each other, and their estimates are approximately
uncorrelated. Therefore, the average of them can reduce
the variance. To be more specific, given z = [ν1, . . . , νJ ],
a set of J-taper window with good concentration in the
TF plane, where νi ∈ RT is a window of length T for
i = 1, 2, . . . , J , and z forms an orthonormal basis in RT ,
the multi-taper STFT is given by 1

J

∑J
j=1 V

(νj)
x (t, f), the

average of every V (νj)
x (t, f).

Although rarely seen in the literature of MIR, the
multi-tapering method has been found useful in several
different applications in speech processing such as speaker
identification and emotion recognition [1, 14], because of
its stable output of feature representation.

3.3 Synchrosqueezing Transform (SST)

SST is a special case of time-frequency reassignment [2],
a class of nonlinear TF analysis techniques. In a nut-
shell, it aims at moving the spectral-leakage terms caused
by Heisenberg-Gabor uncertainty to the center of mass
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of true component, and therefore sharpens the harmonic
peaks and achieves high localization [5]. SST uses the
frequency reassignment vectors estimated by the instan-
taneous frequency deviation (IFD). In music processing,
such a method can better discriminate closely-located
components, and applications have be found in music
processing tasks such as chord recognition, synthesis, and
melody extraction [11, 13, 20, 22].

Let V (h)
x = |V (h)

x |eΦhx . The IFD, Ω
(h,θv)
x , is defined as

the time derivative of the instantaneous phase term Φhx:

Ω(h,θv)
x (t, η) :=

∂Φhnx
∂t

= −= V
(Dh)
x (t, η)

V
(h)
x (t, η)

∣∣∣∣∣
Nv

, (3)

where = means the imaginary part and Nv := {f :

|V (hn)
x (t, f)| > θv} gives a threshold so as to avoid

computation instability when |V (hn)
x (t, f)| is very small.

This formulation (3) can be derived by definition. The SST
is therefore represented as

S(h,θv)
x (t, f) =

∫

Nv

V (h)
x (t, η)δ

(
|f − Ω(h)

x (t, η)|
)

dη .

(4)
As the result of our analysis is not sensitive to the value

of the parameter θv , we set θv to 10−6 of the root mean
square energy of the signal under analysis throughout the
paper. For convenience, we also omit θv in the notation
and simply denote Ω

(h,θv)
x and S(h,θv)

x as Ω
(h)
x and S(h)

x .

3.4 ConceFT

The main drawback of the TF reassignment is the spurious
terms contributed by inaccurate IFD estimation resulting
from correlations between noise and the window function.
To achieve both localization and stability at the same time,
a solution is the multi-taper SST, the average of multiple
SST computed by a finite set of orthogonal windows
[30]. Recently, Daubechies, Wang and Wu improved this
idea and proposed the ConceFT method [6]. ConceFT
emphasizes the use of over-complete windows rather than
merely orthogonal windows, by assuming that a spurious
term in a specific TF location just appears sparsely for the
TF representations using different windows. Theoretical
analysis proves that the ConceFT leads to sharper estimates
of the instantaneous frequencies for signals that are cor-
rupted by noise. Experiments also showed that ConceFT
is useful in estimating the instantaneous frequencies with
a fluctuated trajectory [6], a case similar to pitch scatter.

The over-complete window functions for ConceFT is
generated from z. This set of window functions h =
[h1, . . . , hN ] with N windows is constructed as h1(t) =

ν1(t) and hn(t) =
∑J
j=1 rnjνj(t) for j = 2, . . . , J ,

n = 2, . . . , N , and rn = [rn1, . . . , rnJ ] is a random vector
with unit norm. In ConceFT we need J > 1 and N ≥ J .
In contrast, a single window TF analysis requires J = 1
and N = 1, where h = h1. ConceFT is represented by

C(h)
x (t, f) =

1

N

N∑

n=1

S(hn)
x (t, f) . (5)

We refer the reader with interest to [6] for a summary of
the current progress in this direction.

For simplicity, we use J = 2 in this paper. Specifically,
we use the Hamming window 0.54 + 0.46 cos (2πt/T ) for
ν1, and the sine window sin (2πt/T ) for ν2. Obviously, ν1

is orthogonal to ν2, and the spectrum of ν1 is concentrated
to zero frequency whereas ν2 has a zero at f = 0.

4. PROPOSED METHOD

4.1 Combining frequency and periodicity

An intuitive way to combine the frequency and periodicity
representations is to multiply V (hn)

x and U (hn)
x , after map-

ping the latter from time-quefrency into the TF domain:

W (hn)
x (t, f) = |V (hn)

x (t, f)|U (hn)
x

(
t,

1

f

)
. (6)

This approach has been mentioned in previous work on
single pitch detection [19], where the F0 is determined
simply by f0(t) = arg maxf W

(hn)
x (t, f). Please note

that here we only consider the co-occurrence of salience
in the frequency and periodicity representations, and so far
the constraints of harmonicity have not been included. A
threshold on either V (hn)

x or U (hn)
x for removing unwanted

terms is also critical to system performance. We will
consider these issues below.

4.2 Constraints on harmonicity

To identify the location of the harmonic components in the
STFT, one may use pseudo-whitening, a preprocessing step
of estimating the spectrum envelope [15]. This method,
however, is unreliable for a spectrum whose envelope is
not smoothly varying or not supported by a large number
of harmonics. This happens to be the case in choral music,
since the singers tend to sing with more power in the F0
region rather than in the singer’s format region [21].

To address this issue, we propose to assess whether a
component at (t, f) is a sinusoidal component by using
the IFD, instead of the spectral envelope. The rational is:
as small |Ω(h)

x | implies that the corresponding component
in STFT is close to the true component, we can assume
that |Ω(h)

x | is bounded by a positive value θs around the
harmonic components in the STFT. We have accordingly
the constraint on harmonicity in frequency representation:

Ns := {f : max
[
|Ω(hn)
x (t, (1 : Mv)f)|

]
< θs} , (7)

where we use (t, (1 : Mv)f) as the shorthand for the set
of points {(t, f), (t, 2f), . . . , (t,Mvf)}. That is, for an F0
at (t0, f0), we require that |Ω(h)

x (t0, f0)| is smaller than θs
at (t0, f0) and its integer multiples. Similarly, for a fun-
damental period event at (t0, q0), the amplitude of U (hn)

x

should be above a threshold θc not only at (t0, q0) but also
the multiples of its period. This leads to the constraint on
sub-harmonicity in periodicity representation:

Nc := {f : min
[
U (hn)
x (t, (1 : Mu)q)

]
> θc} . (8)
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With (3), (7) and (8), we have a more succinct feature
representation Y (hn)

x (t, f) by removing most of the non-
harmonic-related terms in W (hn)

x (t, f):

Y (hn)
x (t, f) = W (hn)

x (t, f)
∣∣∣
N
, (9)

where N := Nv ∩ Ns ∩ Nc. Moreover, to enhance
localization of this multipitch feature, we consider syn-
chrosqueezing operation on Y (hn)

x (instead of on V (hn)
x ):

S(hn)
x (t, f) :=

∫

N

Y (hn)
x (t, η)δ

(
|f − Ω(hn)

x (t, η)|
)

dη ,

(10)
Finally, by modifying (4), the multi-taper or ConceFT-
based multipitch feature is obtained from averaging either
Y

(hn)
x or S(hn)

x over n = 1, 2, . . . , N , respectively:

B(h)
x (t, f) =

1

N

N∑

n=1

Y (hn)
x (t, f) , (11)

C(h)
x (t, f) =

1

N

N∑

n=1

S(hn)
x (t, f) . (12)

In the experiments we will compare the performance of the
four features formulated in (9)–(12).

4.3 Implementation issues

There are several ways to sample the value ofU (hn)
x (t, 1/f)

from U
(hn)
x (t, q), the simplest way being assigning every

components in q to the bin closest to f = 1/q. However,
the problem is there are usually insufficient low-quefrency
points in U (hn)

x (t, q) to represent the high-frequency part
in U (hn)

x (t, 1/f). For example, there are only 34 points
in U

(hn)
x to represent frequencies ranging from 1 kHz

to 4 kHz for a signal sampled at 44.1 kHz. A simple
yet effective solution is to linearly interpolate U (hn)

x (t, q)
into a fine grid with 0.4 Hz spacing, 2 and then have
U

(hn)
x (t, 1/f) =

∑
j∈P(f) U

(hn)
x (t, qj), where P(f) :=

{j : 1/(f + 0.5/T ) < qj < 1/(f − 0.5/T )}. A short-pass
lifter described in [23] is also applied to U (hn)

x (t, q).
Another issue of this mapping scheme is that the low-

frequency part could be overemphasized since the summa-
tion is over a wide quefrency range and thereby cannot
reveal true salience of pitch. This is not a critical issue
if the dynamic information of each note is not required in
transcription, but such dynamic information is needed here
for late fusion. To address this, in our implementation we
use a binarized version of U (hn)

x to treat it as a mask in
filtering out unwanted harmonic peaks in V (hn)

x , by setting
U

(hn)
x (t, q) = 1 if U (hn)

x (t, q) > θc and 0 otherwise.

5. EXPERIMENT

5.1 Datasets

To provide available source for the research on transcribing
music with pitch scatter, we propose two new datasets,

2 Pilot studies show that finer grid spacing results in smoother feature
representation but provides no significant empirical gains in MPE.

directly named Choir and Symphony here, which contain 5
excerpts of choral music from 3- to 8-part, and 5 excerpts
of symphony, respectively. The length of the excerpts
ranges from 18 to 108 seconds, totaling 5 minutes and
40 seconds. Information of each note events, including
onset, offset, pitch name and instrument, are annotated by
a professional pianist using the annotation methodology
proposed in [24]. The audio, annotation, and other detailed
information will be made public through a website. 3

To test the generalizability of the proposed method,
we also experiment on another two commonly used MPE
datasets — Bach10 [8] and TRIOS [9]. The former
contains ten quartets of four different instruments, while
the latter consists of five pieces of fully synthesized music
of piano and two other pitched instruments. The sampling
rate of all the audio files is 44.1 kHz.

5.2 Numerical illustration

For all the proposed features, we empirically set the
window length T to 0.14 second, hop size H to 0.01
second and use θc = 2 × 10−4. For Y (h1)

x and B(h)
x , we

set N = 1 and θs = 3 bins (21.43 Hz); and for S(h1)
x and

C
(h)
x , we set N = 10 and θs = 1 bin (7.14 Hz), a narrower

bandwidth to enhance localization. The nonlinear scaling
factor of gξ in (2) is set to 0.15.

Figure 1 shows in row the ground truth, V (h1)
x (t, f),

U
(h1)
x (t, 1/f),W (h1)

x (t, f) andC(h)
x (t, f) of four 5-second

excerpts sampled respectively from the four datasets in-
troduced in Section 5.1. Notice that U (h1)

x (t, 1/f) shown
here is after thresholding of (7) to avoid negative values.
We apply a power scale (·)0.1 in drawing the figures.

The second and third columns show that V (h1)
x (t, f) or

U
(h1)
x (t, 1/f) alone is not a good multipitch feature since

the former suffers from unwanted harmonic terms and the
latter from “sub-harmonic” ones. However, most of these
terms are removed in W (h1)

x , as seen in the fourth column.
Furthermore, in the rightmost column, C(h)

x achieves very
sharp components with few noises; it also nicely localizes
the pitches. Notably, we see that the STFT components
in Choir and Symphony spread widely and are much more
fluctuated than those in Bach10 and TRIOS (due to severe
pitch scatter), but the sharpness of the components in C(h)

x

of the four samples are almost the same.
It can also be seen that there are still some challenging

cases in the symphony due to its high complexity. For ex-
ample, the short pitch activation above 1kHz in the ground
truth (pizzicato of the 1st violin) remains unrecalled even
in C(h)

x . This is a subject of future work.

5.3 Piano roll output and post-processing

To obtain the piano roll output, all the features are pro-
cessed first by a moving median filter with length 0.21
second to enhance smoothness, and then by a peak peaking
process to pertain local maxima and discard other non-
peak terms. Then, the MPE result, represented in piano

3 https://sites.google.com/site/lisupage/research/new-methodology-
of-building-polyphonic-datasets-for-amt
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Figure 1. Illustration of the ground truth, V (h1)
x (t, f), U (h1)

x (t, 1/f),W (h1)
x (t, f) andC(h)

x (t, f) of four 5-second excerpts.
V

(h1)
x : STFT; U (h1)

x : generalized cepstrum; W (h1)
x : combination of STFT and generalized cepstrum; C(h)

x : the proposed
representation with ConceFT. First row: ‘01-AchGottundHerr.wav’ (i.e. Bach’s Ach Gott und Herr, wie gros und schwer,
BWV 255) in quartet (violin, clarinet, saxophone and bassoon). Second row: Mozart’s Trio in Eb major ‘Kegelstatt’,
K.498, in piano, clarinet and viola. Third row: William Byrd, Ave Verum Corpus, in SATB choir. Fourth row: Tchaikovsky,
Symphony No.6, Op.74 (Pathetique), Mov.2., in flute, oboe, clarinet, bassoon, horn, trumpet and strings.

roll O(t, p), where p = 13, 14, . . . , 76 is the piano roll
number from A1 (55 Hz) to C7 (2,093 Hz), is obtained
by O(t, p) =

∑
F(p)X(t, f), where F(p) = {f : 440 ×

2(p−49−0.5)/12 ≤ f < 440 × 2(p−49+0.5)/12} (notice that
A4 is the 49th key on the piano), and X denotes one of the
feature representations described in (9)–(12).

The results of the proposed and baseline algorithms are
refined by the same post-processing steps. The first step
removes isolated pitches that are above C5 and leave any
other pitches in the affinity of 0.1 second by more than
an octave. This is done because composers usually prefer
smaller intervals within one octave in the high-pitch range.
The second step is again a moving median filter with length
also 0.21 second for smoothness.

5.4 Baselines and evaluation

Three baseline methods are considered. The first baseline
is the unsupervised method proposed in our previous
work [23], which also combines information of frequency,
periodicity and harmonity, but its harmonicity constraint
was performed on the piano roll representation rather than
directly on the TF representation. We did not use advanced
TF analysis such as SST and ConceFT in the prior work
[23]. Moreover, the method of computing the adaptive
threshold of spectral representation is also different. We
use the parameters suggested in [23], and the nonlinear
scaling factor for generalized cepstrum is also set to 0.15.

The second one is an unsupervised method based on the
Constrained Non-negative Matrix Factorization (C-NMF)
algorithm proposed by Vincent et al. [29]. 4 For the
experiment on all datasets, we set β = 0.5 for computing
the β-divergence and the value of ϑ = −32 dB for
thresholding the activation patterns in C-NMF.

The third baseline is a supervised method based on
the shift-invariant PLCA proposed by Benetos et al. [3]. 5

This approach uses labeled data to learn five templates for
each pitch of each instrument and voice. The templates
are learned from the single notes of the RWC instrument
dataset [10], which contains various instruments as well
as five vowels of human voice including soprano, alto,
tenor and bass. We set the parameter for instrument
activation sz = 1.3, the parameter for source contribution
su = 1.1 and the parameter for pitch shifting sh = 1.1,
all similar to [3]. To facilitate the comparison between
the supervised and unsupervised approaches to MPE, we
employ an instrument-informed setting that uses templates
learned from different instruments for different music
pieces, which might have given PLCA some advantages.

Moreover, to investigate cross-model behaviors of the
algorithms, we experiment with a late fusion scheme that
combines our method with PLCA. We first normalized

4 http://www.irisa.fr/metiss/members/evincent/
multipitch_estimation.m

5 https://code.soundsoftware.ac.uk/projects/
amt_mssiplca_fast
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Table 1. Experiment result. Y (h1)
x , B(h)

x , S(h1)
x and C(h)

x are described in (9), (10), (11), (12), respectively. Y (h1)
x : single-

window, without synchrosqueezing; B(h)
x : single-window, with synchrosqueezing; S(h1)

x : overcomplete-window, without
synchrosqueezing; C(h)

x : overcomplete-window, with synchrosqueezing

Dataset
Proposed Baseline Proposed+PLCA (Late fusion)

Y
(h1)
x B

(h)
x S

(h1)
x C

(h)
x [23] C-NMF PLCA Y

(h1)
x B

(h)
x S

(h1)
x C

(h)
x

Bach10 83.96 83.29 79.18 82.13 81.97 79.78 70.57 82.39 82.14 82.69 82.04
TRIOS 66.30 66.30 60.23 66.26 64.09 59.40 64.93 71.10 70.79 70.35 70.57
Choir 57.44 59.71 51.29 61.18 44.98 45.62 61.07 64.36 64.88 64.06 65.31

Symphony 49.14 50.44 46.95 50.33 48.82 40.34 47.04 51.73 52.46 51.02 51.86

every frame of the piano roll output by its l2 norm, then
combine them through linear superposition, and finally
discard the terms which are smaller than a threshold ε:

Ōfusion = (αŌPLCA + (1− α)Ōproposed − ε)+ , (13)

where Ō is the normalized piano roll output, α ∈ [0, 1]
controls the relative weights of the two methods, and
(x)+ = max(0, x) is a hard thresholding function.

We evaluate the accuracy of MPE using the micro-
average frame-level F-score, which counts the number
of true positives, false positives and false negatives over
all the frames within a dataset and then calculates the
harmonic mean of the precision and recall rates.

6. RESULT

Table 1 lists the F-scores on the four datasets using the
proposed methods using features (9)–(12), three baseline
methods and late fusion of proposed features with PLCA.
The main findings are reported below.

First, the four proposed methods outperform the three
baselines in general. Although the method [23] adopted
the same approach of combining frequency and periodicity
information as the proposed methods do, it was reported
to be sensitive to γ, the nonlinear scaling factor in com-
puting the generalized cepstrum. Besides, the method
[23] cannot benefit from the constraint on harmonics,
especially in the case of Choir, as the estimation of the
spectral threshold and noise terms is rather inaccurate
without IFD information. C-NMF also performs poorly
for such challenging musical signals. In comparison to the
two unsupervised baselines, PLCA performs fairly well in
Choir and Symphony, perhaps because it uses supervised
templates and allows template shifting in pitch [3].

Second, among the proposed methods, we find the
multi-taper ones B(h)

x and C
(h)
x do perform better than

those use only one window, i.e., Y (h1)
x and S

(h1)
x , for

datasets with pitch scatter (i.e., Choir and Symphony).
However, for Bach10 and TRIOS, where most of the
pitches are played with only one instrument, multi-tapering
and SST do not give better performance, as there is no need
to reduce the variance of a spectral peak of a single source.

Moreover, the method using single-window SST S
(h1)
x

performs the worst among the proposed methods, as its
nonlinearity usually gives rise to unwanted speckle terms,
a major known drawback of SST [6]. This problem

is nicely solved by ConceFT, as we can see that C(h)
x

outperforms S(h1)
x by around 10% in Choir and 3% in

Symphony. This suggests the need to introduce multi-
tapering to stabilize the estimation, when feature localiza-
tion is an important requirement for the system.

Finally, a grid search over the four datasets shows that
the optimal result of late fusion is achieved by setting
α = 0.05 (i.e. emphasizing the proposed method) and ε =

3 × 10−5. Combining PLCA and C(h)
x achieves 65.31%

for Choir, which amounts to more than 4% improvement
over C(h)

x . Combining PLCA and Y (h)
x further improves

the F-score by 4.8%. However, less improvement is
found in Bach10 and Symphony, possibly because that
the former already has limited space for improvement and
the latter is rather complicated such that some information
cannot be well captured by both method. Although the
weighting on PLCA is small, PLCA does capture some
critical information missed by the proposed methods. This
suggests the importance of fusing different MPE models,
in particular unsupervised and supervised ones.

7. CONCLUSION

To improve the robustness of MPE algorithms in dealing
with diverse music signals, we introduce and incorporate
novel TF analysis tools including SST and ConceFT to en-
hance the stability and localization of multipitch features.
The proposed unsupervised methods also measure pitch
saliency by jointing considering frequency, periodicity and
harmonicity. Result on two newly created datasets of
choral and symphony music demonstrates the superiority
of the proposed methods for MPE in music signals featur-
ing pitch scatter. Slightly better result can be obtained by
combining our methods and the supervised method PLCA.
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ABSTRACT

The Semantic Web has made it possible to automati-
cally find meaningful connections between musical pieces
which can be used to infer their degree of similarity. Simi-
larity in turn, can be used by recommender systems driving
music discovery or playlist generation. One useful facet
of knowledge for this purpose are fine-grained genres and
their inter-relationships.

In this paper we present a method for learning genre
ontologies from crowd-sourced genre labels, exploiting
genre co-occurrence rates. Using both lexical and con-
ceptual similarity measures, we show that the quality of
such learned ontologies is comparable with manually cre-
ated ones. In the process, we document properties of cur-
rent reference genre ontologies, in particular a high degree
of disconnectivity. Further, motivated by shortcomings of
the established taxonomic precision measure, we define a
novel measure for highly disconnected ontologies.

1. INTRODUCTION

In the 15 years since Tim Berners-Lee’s article about the
Semantic Web [2], the Linking Open Data Community
Project 1 has successfully connected hundreds of datasets,
creating a universe of structured data with DBpedia 2 at
its center [1, 3]. In this universe, the de facto standard for
describing music, artists, the production workflow etc. is
The Music Ontology [15]. Examples for datasets using it
are MusicBrainz/LinkedBrainz 3 , 4 and DBTune 5 . While
in practice taking advantage of Linked Open Data (LOD)
is not always easy [9], semantic data has been used suc-
cessfully, e.g. to build recommender systems. Passant et
al. outlined how to use LOD to recommend musical con-
tent [14]. An implementation of this concept can be found

1 http://www.w3.org/wiki/SweoIG/TaskForces/
CommunityProjects/LinkingOpenData

2 http://wiki.dbpedia.org/
3 http://musicbrainz.org/
4 http://linkedbrainz.org/
5 http://dbtune.org/

c© Hendrik Schreiber. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Hen-
drik Schreiber. “Genre Ontology Learning:
Comparing curated with crowd-sourced ontologies”, 17th International
Society for Music Information Retrieval Conference, 2016.

in [13]. Tatlı et al. created a context-based music rec-
ommendation system, using genre and instrumentation in-
formation from DBpedia [18]. Di Noia et al. proposed a
movie recommender based on LOD from DBpedia, Free-
base 6 , and LinkedMDB 7 [8]. And recently, Oramas et
al. created a system for judging artist similarity based on
biographies linked to entities in LOD-space [11]. Many of
these approaches are trying to solve problems found in rec-
ommender systems relying on collaborative filtering, like
cold start or popularity bias [4].

Among other data, genre ontologies are a basis for these
systems. They allow the determination of degree of simi-
larity for musical pieces (e.g. via the length of the shortest
connecting path in the ontology graph), even if we have
no other information available. Surprisingly, we know lit-
tle about the genre ontologies contained in repositories like
DBpedia. How large and deep are they? How well do they
represent genre knowledge? Are they culturally biased?
How interconnected are genres in these ontologies?

While editors of LOD ontologies often follow estab-
lished rules, it is an inherent property of any ontology that
its quality is subjective. An alternative are learned ontolo-
gies. Naturally, they do not represent objective truth either,
but instead of relying on design principles, they use empir-
ical data. An interesting question is: How do curated genre
ontologies compare with learned ontologies?

In the following we are attempting to answer some of
these questions. Section 2 starts with proposing a method
for building a genre ontology from user-submitted genre
tags. In Section 3, we describe the existing genre ontolo-
gies DBpedia and WikiData as well as two new ontologies
created with the method from Section 2. In Section 4, we
describe evaluation measures loaned from the field of on-
tology learning. Our results are discussed in Section 5, and
our conclusions are presented in Section 6.

2. BUILDING THE GENRE GRAPH

As shown in [16], it is possible to create genre taxonomy
trees from user-submitted genre labels. These trees have
been proven useful for inferring a single top-level genre
for a given sub-genre. Unfortunately, taxonomy trees are
insufficient when attempting to model the complex inter-
genre relations found in the real world. The concept of a
fusion-genre for example, i.e. a connection between two

6 http://www.freebase.com/ — to be shut-down soon.
7 http://www.linkedmdb.org/
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otherwise separate taxonomy trees, is impossible to repre-
sent. Therefore, an ontology is commonly regarded as the
preferred structure to model genres and their relations.

Similar to [5], we define a genre ontology as a struc-
ture O = (C, root,≤C) consisting of a set of concepts
C, a designated root concept and the partial order ≤C on
C ∪ {root}. This partial order is called concept hierarchy.
The equation ∀c ∈ C : c ≤C root holds for this concept
hierarchy. For the sake of simplicity, we treat the relation
between genre names and genre concepts as a bijection,
i.e. we assume that each genre name corresponds to ex-
actly one genre concept and vice versa.

To construct a genre ontology based on suitably normal-
ized labels, we first create a genre co-occurrence matrixM
as described in [16]. The set C = {c1, c2, ..., cn} contains
n genres. Each user submission is represented by a sparse
vector u ∈ Nn with

ui =

{
1, if ci = user-submitted genre
0, otherwise.

(1)

Each song is represented by a vector s ∈ Rn. Each s
is defined as the arithmetic mean of all user submissions u
associated with a given song. Thus si describes the relative
strength of genre ci. Co-occurrence rates for a given genre
ci with all other genres can be computed by element-wise
averaging all s for which si 6= 0 is true:

Mi = s, ∀s with si 6= 0;M ∈ Rn×n (2)

Unlike [16], we normalize the co-occurrence rates from
M so that the maximum co-occurrence rate of one genre
with another is 1. This normalized co-occurrence matrix
is called N . Just like M , N is asymmetric. For example,
alternative strongly co-occurs with rock, but rock
co-occurs not as strongly with alternative. We take
advantage of this by defining a rule that helps us find sub-
genres: If a genre ci co-occurs with another genre cj more
than a minimum threshold τ , cj co-occurs with ci more
than a minimum threshold υ, and ci co-occurs with cj more
than the other way around, then we assume that ci is a sub-
genre of cj . More formally:

∀ci, cj ∈ C : ci <C cj iff
ci 6= cj ∧Ni,j > τ ∧Nj,i > υ ∧Ni,j > Nj,i

(3)

Note, that this rule allows one genre to be the sub-genre
of multiple other genres. τ controls the co-occurrence rate
it takes to be recognized as sub-genre. A low τ leads to
more sub-genres and fewer top-level genres. υ ensures that
the relationship is not entirely one-sided. As an extreme
example, a negative υ would require no co-occurrence of
genre cj with ci, but ci could still be a sub-genre of cj .

Applying (3) makes it easy to find top-level genres, but
the resulting hierarchy is rather flat. If a genre is more than
one node away from root, the rule does not perform well,
when it comes to deciding whether a genre is either a sub-
genre or a sibling. The reason lies in the fixed parameters
τ and υ, which are suitably chosen to find top-level genres,
but not sub-genres two or more levels deep. To better de-
termine deep sub-genre relationships starting from a given

top-level genre, we apply (3) recursively on each hierarchi-
cal sub-structure. So if C′ ⊂ C is the set of sub-genres for
a ck ∈ C, then the co-occurrence matrix N ′ for C′ can be
computed just likeN . BecauseN ′ is normalized, the same
τ and υ are suitable to find C′’s top-level genres, i.e. ck’s
direct children. Recursion stops, when the sub-structure
consists of at most one genre.

3. ONTOLOGIES

In order to evaluate learned ontologies, we need at least one
ontology that serves as reference. This is different from a
ground truth, as it is well known that a single truth does
not exist for ontologies: Different people create different
ontologies, when asked to model the same domain [6, 10,
12, 17]. We chose DBpedia and WikiData as references,
which are described in Sections 3.1 and 3.2. Using the
definitions and rules from Section 2, we constructed two
ontologies. One based on submissions by English speaking
users and another based on submissions by international
users. They are described in Sections 3.3 and 3.4.

3.1 DBpedia Genre Ontology

DBpedia is the suggested genre extension for The Music
Ontology and therefore a natural choice for a reference on-
tology. 8 The part of DBpedia related to musical genres is
created by extracting Wikipedia’s genre infoboxes. For this
to succeed, the DBpedia creation process requires that such
infoboxes exist, and that there is a defined mapping from
localized infobox to ontology properties. Informally we
found that for the English edition of Wikipedia both con-
ditions are usually met. This is not always true for other
language editions, e.g. German.

Wikipedia’s guidelines 9 define three possible hierar-
chical relations between genres:

• Sub-genre: heavy metal < thrash metal,
black metal, death metal, etc.

• Fusion: industrial < industrial metal
∧ heavy metal < industrial metal.

• Derivative: post punk < house,
alternative rock, dark wave, etc.

The derivative relation differs from sub-genre and fu-
sion in that derivative genres are considered “separate or
developed enough musicologically to be considered par-
ent/root genres in their own right”. As the relation does
not fit the general concept of sub-genre or sub-class, we
excluded it when building the ontology. Further, we were
unable to find a formal definition for the DBpedia rela-
tion stylistic origin. Based on sample data we interpreted
it as the inverse of derivative. As such it was also ex-
cluded. While this made sense for most genres, it did not
for some. The hip hop infobox for example, lists East

8 As source for this work, we used DBpedia Live, http://live.
dbpedia.org.

9 https://en.wikipedia.org/wiki/Wikipedia:
WikiProject_Music/Music_genres_task_force/
Guidelines#Genrebox
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Figure 1. Connected vs. disconnected genres in the four
used ontologies. Parameters for generated ontologies: τ =
0.17, υ = 0.0001, |CEng|= 1000, |CIntl|= 1041.

Coast hip hop and West Coast hip hop as re-
gional scenes, but not as sub-genres or derivatives. Un-
fortunately, in DBpedia, regional scene is not defined as a
special genre relation, like sub-genre, but just as a plain
property. In contrast, both Wikipedia articles on East
Coast hip hop and West Coast hip hop start
with assuring a sub-genre relationship to hip hop. Also,
both DBpedia entries list hip hop as the stylistic ori-
gin. We found similar issues with techno and Detroit
techno, and other genres.

At the time of writing, the DBpedia-based ontology,
created as described above, consisted of 1151 genres with
a maximum hierarchy depth of 6. 629 genres (54.6%) did
not have any super- or sub-genres (Figure 1). We will refer
to it as ODBpedia. In order to increase the chances of find-
ing corresponding genres in other ontologies, we normal-
ized the raw genre names as well as their aliases found via
DBpedia wikiPageRedirects (Wikipedia entries for concep-
tually identical terms).

Loaning from graph theory, we call genres without
super- or sub-genres disconnected. Ontologies consisting
exclusively of disconnected genres we call trivial.

3.2 WikiData Genre Ontology

Unlike DBpedia, WikiData is not a parsed version of
Wikipedia, but an independent database of structured data
for anyone to edit. Currently, WikiData defines just one
relation between musical genres: sub-class.

In an informal evaluation, we found that, with regard to
genres, WikiData is still evolving. While East Coast
hip hop for example is listed as a sub-genre of hip
hop, West Coast hip hop had no parent at the time
of writing. Another example is techno and Detroit
techno. Detroit techno existed as an entity, but
was not of type music genre, and techno was not con-
nected to it in any way. On the plus side, translations of
genre names are easily accessible via localized labels for
each genre. For matching we used normalized versions of
these labels.

At the time of writing, the WikiData-based genre on-
tology consisted of 547 genres, 276 (50.5%) genres were
disconnected, and the hierarchy-depth was 5. We will refer
to this ontology as OWikiData.

3.3 English Language Ontology

Using the rules defined in Section 2, we constructed an on-
tology based on the top n genre labels submitted by users
to the central database of beaTunes 10 , a consumer music
application [16]. Given the relevance of English in Western
pop-culture and the fact that our referenceODBpedia offers
data based on the English edition of Wikipedia, we only
considered submissions by users with English as their sys-
tem language. We will refer to this ontology asOEng. Nat-
urally,OEng is strongly biased towards English culture and
contains English genre names almost exclusively. Also, as
it is generated from user submitted labels, it contains noise.

Using τ = 0.17 and υ = 0.0001 for the top 1000 En-
glish genres, we found 209 (20.9%) disconnected genres
and the maximum hierarchy-depth was 4.

Because we mentioned hip hop and techno as
problematic examples before, here is what we found for
OEng: While neither East Coast hip hop nor West
Coast hip hop occur in the top 1000 English genres,
East Coast rap and West Coast rap do. They
both have rap as a parent, which in turn is a child of
hip hop. Techno does occur as genre, but Detroit
techno is not in the top 1000 (rank 1557). When using
the top 1600 genres as source, Detroit techno has
techno and electronica as parents.

3.4 International Ontology

In addition to OEng, we generated an international ontol-
ogy named OIntl based on submissions by users with the
system languages French, German, Spanish, Dutch, or En-
glish. These are the five languages with the most submis-
sions in the beaTunes database. The ontology was created
with the goal of being less anglocentric.

Because, the database contains different numbers of
submissions per language, we normalized each submis-
sion’s weight on a per language basis to ensure equal in-
fluence. To represent the chosen languages in the selec-
tion of the most used genres, we used the intersection of
the top n language-specific genres. For n = 400 this re-
sulted in a set of 1041 genres, 534 of which also occur in
the English top 1000 genres. The sub-set of non-English
genre names mostly consists of genuinely new additions
like Kölsch and Deutsch Pop, and translations like
Kindermuziek and psychedelische Rock. The
situation regarding hip hop and techno is similar to
OEng. Using τ = 0.17 and υ = 0.0001 we found that
234 (22.5%) genres were disconnected and the maximum
hierarchy-depth was 5.

4. EVALUATION MEASURES

Ontologies can be compared on different levels. In
the following, we are going to concentrate on lexical
(Section 4.1) and conceptual (Section 4.2) aspects. For
both viewpoints measures have been established in the on-
tology learning community (see e.g. [7, 19]).

10 http://www.beatunes.com/
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4.1 Lexical Measures

Let OR denote a reference ontology, and OC an ontology
we wish to evaluate. Correspondingly, CR is the set of con-
cepts contained in OR, and CC the concepts in OC. As
we assume a bijective relation between lexical terms and
concepts, lexical precision (LP ) is defined as the ratio be-
tween the number of concepts in both ontologies and the
number of concepts in OC:

LP (OC,OR) =
|CC ∩ CR|
|CC|

(4)

Lexical recall (LR) is defined as the ratio between the
number of concepts in both ontologies and the number of
concepts in OR [5]:

LR(OC,OR) =
|CC ∩ CR|
|CR|

(5)

Finally, the lexical F-measure (LF ) is defined by:

LF (OC,OR) =
2 · LP · LR
LP + LR

(6)

4.2 Conceptual Measures

The similarity of two concepts ci ∈ CC and cj ∈ CR can
be measured by comparing their semantic cotopies [10].
A basic semantic cotopy is defined as the set containing
all super- and sub-concepts for a given concept including
itself. The common semantic cotopy (csc) is similar, but
only takes concepts into account that are members of both
ontologies we wish to compare. Additionally, the concept
for which we are building the cotopy is excluded (<C in-
stead of ≤C). Both modifications are intended to minimize
the influence of lexical similarity [5]:

csc(ci,OC,OR)

= {cj ∈ CC ∩ CR|cj <CC ci ∨ ci <CC cj} (7)

The local taxonomic precision (tpcsc) is defined as the
ratio between the size of the intersection of the cotopies for
two concepts, and the size of the cotopy of just the concept
to evaluate:

tpcsc(ci, cj ,OC,OR)

=
|csc(ci,OC,OR) ∩ csc(cj ,OC,OR)|

|csc(ci,OC,OR)|
(8)

tpcsc is undefined for |csc(ci,OC,OR)|= 0 (division
by zero). In the spirit of [5], i.e. to avoid unjustifiably high
values for trivial ontologies, we define tpcsc = 0 for this
case. Based on the local tpcsc, we define a global taxo-
nomic precision (TPcsc) as the mean tpcsc for all concepts
in CC ∩ CR [7]:

TPcsc(OC,OR)

=
1

|CC ∩ CR|
∑

c∈CC∩CR
tpcsc(c, c,OC,OR) (9)

Table 1

n Eng/DBpedia LP Eng/WikiData LP Intl/DBpedia LP Intl/WikiData LP Eng/DBpedia Eng/DBpedia Eng/WikiData Eng/WikiData Intl/DBpedia Intl/DBpedia Intl/WikiData Intl/WikiData WikiData/DBpedia DBpedia/WikiData WikiData/DBpedia

1 1 8.68809730668983
4E-4

1.0 0.00183486238532
1101

1.0 2 1 0.00173761946133
79669

1.0 0.00366972477064
2202

1.0 1 0.0 1 0.0 2 0.0 2 0.0 0.306 0.646 0.642 0.304 5 0.415285714285714

2 2 0.00173761946133
79669

1.0 0.00366972477064
2202

1.0 2 2 0.00173761946133
79669

1.0 0.00366972477064
2202

1.0 2 0.0 2 0.0 2 0.0 2 0.0 20000 0.415285714285714

3 3 0.00260642919200
69507

1.0 0.00550458715596
3303

1.0 6 3 0.00347523892267
59338

0.66666666666666
66

0.01100917431192
6606

1.0 3 0.0 3 0.0 6 0.00691443388072601 6 0.0

4 4 0.00260642919200
69507

0.75 0.00550458715596
3303

0.75 9 4 0.00521285838401
3901

0.66666666666666
66

0.01284403669724
7707

0.77777777777777
78

4 0.0051948051948052 4 0.0109289617486339 9 0.0103448275862069 9 0.0252707581227437

5 5 0.00347523892267
59338

0.8 0.00733944954128
4404

0.8 11 5 0.00608166811468
2885

0.63636363636363
64

0.01467889908256
8808

0.72727272727272
73

5 0.00692041522491349 5 0.0145454545454545 11 0.0120481927710843 11 0.0287769784172662

6 6 0.00434404865334
4918

0.83333333333333
34

0.00917431192660
5505

0.83333333333333
34

12 6 0.00695047784535
18675

0.66666666666666
66

0.01651376146788
991

0.75 6 0.00864304235090752 6 0.0181488203266788 12 0.0137575236457438 12 0.0323159784560144

7 7 0.00521285838401
3901

0.85714285714285
71

0.01100917431192
6606

0.85714285714285
71

15 7 0.00955690703735
8819

0.73333333333333
33

0.02201834862385
3212

0.8 7 0.0103626943005181 7 0.0217391304347826 15 0.0188679245283019 15 0.0428571428571429

8 8 0.00521285838401
3901

0.75 0.01284403669724
7707

0.875 15 8 0.00955690703735
8819

0.73333333333333
33

0.02201834862385
3212

0.8 8 0.0103537532355479 8 0.0253164556962025 15 0.0188679245283019 15 0.0428571428571429

9 9 0.00608166811468
2885

0.77777777777777
78

0.01467889908256
8808

0.88888888888888
88

16 9 0.00955690703735
8819

0.6875 0.02385321100917
4313

0.8125 9 0.0120689655172414 9 0.0288808664259928 16 0.0188517566409597 16 0.0463458110516934

10 10 0.00608166811468
2885

0.7 0.01651376146788
991

0.9 17 10 0.00955690703735
8819

0.64705882352941
18

0.02568807339449
5414

0.82352941176470
58

10 0.0120585701981051 10 0.0324324324324324 17 0.0188356164383562 17 0.0498220640569395

12 12 0.00608166811468
2885

0.58333333333333
34

0.02018348623853
211

0.91666666666666
66

19 12 0.00955690703735
8819

0.57894736842105
27

0.02568807339449
5414

0.73684210526315
79

12 0.0120378331900258 12 0.0394973070017953 19 0.0188034188034188 19 0.049645390070922

14 14 0.00781928757602
0852

0.64285714285714
29

0.02385321100917
4313

0.92857142857142
86

21 14 0.01129452649869
6786

0.61904761904761
91

0.02935779816513
7616

0.76190476190476
19

14 0.015450643776824 14 0.0465116279069768 21 0.0221843003412969 21 0.0565371024734982

16 16 0.00868809730668
9836

0.625 0.02752293577981
6515

0.9375 25 16 0.01303214596003
4752

0.6 0.03486238532110
092

0.76 16 0.0171379605826907 16 0.053475935828877 25 0.0255102040816327 25 0.0666666666666667

18 18 0.01042571676802
7803

0.66666666666666
66

0.03119266055045
8717

0.94444444444444
44

32 18 0.01476976542137
2719

0.53125 0.04036697247706
422

0.6875 18 0.0205303678357571 18 0.0603907637655417 32 0.0287404902789518 32 0.0762564991334489

20 20 0.01129452649869
6786

0.65 0.03302752293577
982

0.9 36 20 0.01563857515204
1704

0.5 0.04220183486238
532

0.63888888888888
88

20 0.022203245089667 20 0.063716814159292 36 0.0303285593934288 36 0.0791738382099828

22 22 0.01216333622936
577

0.63636363636363
64

0.03302752293577
982

0.81818181818181
82

40 22 0.01563857515204
1704

0.45 0.04220183486238
532

0.575 22 0.0238704177323103 22 0.0634920634920635 40 0.0302267002518892 40 0.0786324786324786

24 24 0.01390095569070
3735

0.66666666666666
66

0.03669724770642
202

0.83333333333333
34

44 24 0.01737619461337
967

0.45454545454545
453

0.04770642201834
8627

0.59090909090909
09

24 0.0272340425531915 24 0.070298769771529 44 0.0334728033472803 44 0.0882852292020374

26 26 0.01390095569070
3735

0.61538461538461
54

0.04036697247706
422

0.84615384615384
61

47 26 0.01911381407471
7638

0.46808510638297
873

0.05321100917431
193

0.61702127659574
47

26 0.0271877655055225 26 0.0770577933450088 47 0.0367278797996661 47 0.097972972972973

28 28 0.01563857515204
1704

0.64285714285714
29

0.04220183486238
532

0.82142857142857
14

50 28 0.01998262380538
662

0.46 0.05321100917431
193

0.58 28 0.0305343511450382 28 0.0802792321116929 50 0.0383014154870941 50 0.0974789915966386

30 30 0.01737619461337
967

0.66666666666666
66

0.04403669724770
6424

0.8 53 30 0.02172024326672
4587

0.47169811320754
72

0.05504587155963
303

0.56603773584905
66

30 0.0338696020321761 30 0.0834782608695652 53 0.0415282392026578 53 0.100334448160535

35 35 0.01911381407471
7638

0.62857142857142
86

0.04954128440366
973

0.77142857142857
15

65 35 0.02519548218940
052

0.44615384615384
62

0.06605504587155
964

0.55384615384615
39

35 0.0370994940978078 35 0.0931034482758621 65 0.0476973684210526 65 0.118032786885246

40 40 0.02172024326672
4587

0.625 0.05504587155963
303

0.75 71 40 0.02867072111207
6455

0.46478873239436
62

0.07339449541284
404

0.56338028169014
09

40 0.0419815281276238 40 0.102564102564103 71 0.0540098199672668 71 0.12987012987013

45 45 0.02519548218940
052

0.64444444444444
45

0.06238532110091
7435

0.75555555555555
55

82 45 0.03301476976542
137

0.46341463414634
15

0.08440366972477
065

0.56097560975609
76

45 0.048494983277592 45 0.115254237288136 82 0.0616382806163828 82 0.146730462519936

50 50 0.02693310165073
849

0.62 0.06605504587155
964

0.72 92 50 0.03475238922675
934

0.43478260869565
216

0.08807339449541
285

0.52173913043478
26

50 0.051623646960866 50 0.121008403361345 92 0.0643604183427192 92 0.150706436420722

55 55 0.02953953084274
5437

0.61818181818181
82

0.07155963302752
294

0.70909090909090
91

102 55 0.03735881841876
629

0.42156862745098
04

0.09541284403669
725

0.50980392156862
74

55 0.0563847429519071 55 0.13 102 0.068635275339186 102 0.160741885625966

60 60 0.03127715030408
341

0.6 0.07889908256880
734

0.71666666666666
67

113 60 0.04083405734144
222

0.41592920353982
3

0.10642201834862
386

0.51327433628318
59

60 0.0594549958711808 60 0.142148760330579 113 0.0743670886075949 113 0.17629179331307

65 65 0.03475238922675
934

0.61538461538461
54

0.08623853211009
175

0.72307692307692
31

123 65 0.04430929626411
8156

0.41463414634146
34

0.11376146788990
826

0.50406504065040
65

65 0.0657894736842105 65 0.154098360655738 123 0.0800627943485086 123 0.18562874251497

70 70 0.03822762814943
5276

0.62857142857142
86

0.09357798165137
615

0.72857142857142
85

133 70 0.04778453518679
409

0.41353383458646
614

0.12293577981651
377

0.50375939849624
06

70 0.0720720720720721 70 0.165853658536585 133 0.0856697819314642 133 0.1976401179941

75 75 0.04083405734144
222

0.62666666666666
67

0.09908256880733
946

0.72 149 75 0.05125977410947
0024

0.39597315436241
61

0.13394495412844
037

0.48993288590604
03

75 0.0766721044045677 75 0.174193548387097 149 0.0907692307692308 149 0.210374639769452

80 80 0.04257167680278
019

0.6125 0.10275229357798
166

0.7 165 80 0.05473501303214
596

0.38181818181818
183

0.14495412844036
698

0.47878787878787
876

80 0.0796100731112916 80 0.1792 165 0.0957446808510638 165 0.222535211267606

85 85 0.04517810599478
7145

0.61176470588235
3

0.10825688073394
496

0.69411764705882
35

175 85 0.05734144222415
291

0.37714285714285
717

0.14862385321100
918

0.46285714285714
286

85 0.0841423948220065 85 0.187301587301587 175 0.0995475113122172 175 0.225

90 90 0.04778453518679
409

0.6111111111111112 0.11376146788990
826

0.68888888888888
89

189 90 0.05907906168549
0875

0.35978835978835
977

0.15045871559633
028

0.43386243386243
384

90 0.088638195004029 90 0.195275590551181 189 0.101492537313433 189 0.223433242506812

95 95 0.04865334491746
308

0.58947368421052
63

0.11926605504587
157

0.68421052631578
95

204 95 0.06168549087749
783

0.34803921568627
45

0.15779816513761
47

0.42156862745098
04

95 0.0898876404494382 95 0.203125 204 0.10479704797048 204 0.229639519359146

100 100 0.05125977410947
0024

0.59 0.12477064220183
487

0.68 220 100 0.06516072980017
376

0.34090909090909
09

0.16697247706422
02

0.41363636363636
364

100 0.0943245403677058 100 0.210852713178295 220 0.109409190371991 220 0.237908496732026

110 110 0.05473501303214
596

0.57272727272727
28

0.13577981651376
148

0.67272727272727
27

284 125 0.07819287576020
852

0.31690140845070
425

0.20183486238532
11

0.38732394366197
18

110 0.0999206978588422 110 0.225954198473282 284 0.125435540069686 284 0.265379975874548

120 120 0.06255430060816
682

0.6 0.15045871559633
028

0.68333333333333
33

345 150 0.09035621198957
429

0.30144927536231
886

0.22752293577981
653

0.35942028985507
246

120 0.113296616837136 120 0.246616541353383 345 0.13903743315508 345 0.278651685393258

130 130 0.06516072980017
376

0.57692307692307
69

0.15963302752293
58

0.66923076923076
92

411 175 0.10338835794960
903

0.28953771289537
71

0.24587155963302
754

0.32603406326034
06

130 0.117096018735363 130 0.257777777777778 411 0.152368758002561 411 0.280334728033473

140 140 0.07037358818418
767

0.57857142857142
86

0.17064220183486
24

0.66428571428571
43

484 200 0.11381407471763
684

0.27066115702479
34

0.26238532110091
745

0.29545454545454
547

140 0.125484120836561 140 0.271532846715328 484 0.160244648318043 484 0.277939747327502

150 150 0.07298001737619
461

0.56 0.17981651376146
79

0.65333333333333
33

551 225 0.12250217202432
667

0.25589836660617
06

0.28440366972477
066

0.28130671506352
09

150 0.12913143735588 150 0.282014388489209 551 0.165687426556992 551 0.282846715328467

160 160 0.07645525629887
055

0.55 0.18715596330275
23

0.6375 621 250 0.12684622067767
16

0.23510466988727
857

0.29541284403669
726

0.25925925925925
924

160 0.134248665141114 160 0.28936170212766 621 0.164785553047404 621 0.276157804459691

170 170 0.08079930495221
546

0.54705882352941
18

0.19449541284403
67

0.62352941176470
59

698 275 0.13727193744569
94

0.22636103151862
463

0.31192660550458
72

0.24355300859598
855

170 0.140802422407267 170 0.296503496503496 698 0.170903190914008 698 0.273531777956557

180 180 0.08166811468288
444

0.52222222222222
23

0.19633027522935
78

0.59444444444444
44

770 300 0.14335360556038
226

0.21428571428571
427

0.33211009174311
93

0.23506493506493
506

180 0.141247182569497 180 0.295172413793103 770 0.17178552837064 770 0.275285171102662

190 190 0.08427454387489
14

0.51052631578947
37

0.20183486238532
11

0.57894736842105
27

840 325 0.14943527367506
515

0.20476190476190
476

0.35045871559633
03

0.22738095238095
238

190 0.144668158090977 190 0.299319727891156 840 0.17277749874435 840 0.275812274368231

200 200 0.08861859252823
631

0.51 0.20917431192660
552

0.57 908 350 0.15725456125108
6

0.19933920704845
814

0.37064220183486
24

0.22246696035242
292

200 0.15099925980755 200 0.306040268456376 908 0.175813501699854 908 0.278045423262216

210 210 0.09383145091225
022

0.51428571428571
42

0.21651376146788
992

0.56190476190476
19

973 375 0.16159860990443
092

0.19116135662898
254

0.37798165137614
68

0.21171634121274
41

210 0.158706833210874 210 0.312582781456954 973 0.175141242937853 973 0.271409749670619

220 220 0.09817549956559
514

0.51363636363636
37

0.22385321100917
432

0.55454545454545
46

1041 400 0.16507384882710
685

0.18251681075888
568

0.38532110091743
12

0.20172910662824
21

220 0.164843180160467 220 0.318954248366013 1041 0.173357664233577 1041 0.264817150063052

230 230 0.09991311902693
31

0.5 0.22568807339449
543

0.53478260869565
22

1184 450 0.17376194613379
67

0.16891891891891
891

0.40917431192660
55

0.18834459459459
46

230 0.166545981173063 230 0.31741935483871 1184 0.171306209850107 1184 0.257952573742047

240 240 0.10165073848827
107

0.4875 0.22935779816513
763

0.52083333333333
34

1332 500 0.18331885317115
55

0.15840840840840
842

0.42935779816513
764

0.17567567567567
569

240 0.168224299065421 240 0.318471337579618 1332 0.16995569875151 1332 0.249334043686734

250 250 0.10512597741094
701

0.484 0.23486238532110
093

0.512 1484 550 0.19287576020851
432

0.14959568733153
64

0.44954128440366
975

0.16509433962264
15

250 0.172733761598858 250 0.322012578616352 1484 0.168500948766603 1484 0.241498275012321

300 300 0.12076455256298
871

0.46333333333333
33

0.27155963302752
295

0.49333333333333
335

1637 600 0.20156385751520
417

0.14172266340867
44

0.46238532110091
746

0.15394013439218
082

300 0.191592005513439 300 0.350295857988166 1637 0.166427546628407 1637 0.230980751604033

350 350 0.13032145960034
752

0.42857142857142
855

0.29724770642201
837

0.46285714285714
286

1794 650 0.21285838401390
095

0.13656633221850
614

0.48073394495412
847

0.14604236343366
778

350 0.199866755496336 350 0.362011173184358 1794 0.166383701188455 1794 0.224027362120564

400 400 0.13640312771503
04

0.3925 0.31376146788990
83

0.4275 1947 700 0.22067767158992
18

0.13045711350796
096

0.48807339449541
287

0.13662044170518
747

400 0.202450032237266 400 0.361904761904762 1947 0.163976759199484 1947 0.213483146067416

450 450 0.14422241529105
126

0.36888888888888
89

0.33394495412844
04

0.40444444444444
444

2112 750 0.22849695916594
265

0.12452651515151
515

0.49908256880733
95

0.12878787878787
878

450 0.20737039350406 450 0.365829145728643 2112 0.161201348452344 2112 0.204742190440346

500 500 0.15638575152041
703

0.36 0.35412844036697
25

0.386 2263 800 0.23892267593397
046

0.12152010605391
074

0.51192660550458
71

0.12328767123287
67

500 0.218049666868565 500 0.369377990430622 2263 0.161101347393087 2263 0.198717948717949

550 550 0.16420503909643
788

0.34363636363636
363

0.36880733944954
13

0.36545454545454
55

2562 900 0.25282363162467
42

0.11358313817330
211

0.54128440366972
47

0.11514441842310
695

550 0.222222222222222 550 0.367123287671233 2562 0.156746566119041 2562 0.189893788220148

600 600 0.16941789748045
177

0.325 0.38532110091743
12

0.35 2887 1000 0.25977410947002
605

0.10356771735365
432

0.55779816513761
47

0.10529961898164
185

600 0.222729868646488 600 0.366812227074236 2887 0.148093115403665 2887 0.177156177156177

650 650 0.18071242397914
858

0.32 0.4 0.33538461538461
54

3550 1200 0.28410078192875
76

0.09211267605633
802

0.58899082568807
34

0.09042253521126
76

650 0.230982787340366 650 0.364853556485356 3550 0.139119336311423 3550 0.156776556776557

700 700 0.18766290182450
043

0.30857142857142
855

0.41467889908256
883

0.32285714285714
284

4220 1400 0.30234578627280
63

0.08246445497630
332

0.61834862385321
1

0.07985781990521
328

700 0.233387358184765 700 0.363052208835341 4220 0.129584807298455 4220 0.141448058761805

750 750 0.19287576020851
432

0.296 0.42201834862385
323

0.30666666666666
664

4886 1600 0.32145960034752
39

0.07572656569791
24

0.64220183486238
54

0.07163323782234
957

750 0.233561283534982 750 0.355212355212355 4886 0.122577439125393 4886 0.128889707236236

800 800 0.20330147697654
213

0.2925 0.43302752293577
984

0.295 5550 1800 0.33275412684622
07

0.06900900900900
901

0.66238532110091
74

0.06504504504504
505

800 0.239876986160943 800 0.35092936802974 5550 0.11431129682137 5550 0.118457752255947

850 850 0.20764552562988
706

0.28117647058823
53

0.44036697247706
424

0.28235294117647
06

6240 2000 0.34491746307558
646

0.06362179487179
487

0.67706422018348
62

0.05913461538461
538

850 0.23888055972014 850 0.344086021505376 6240 0.107427952915708 6240 0.108769344141489

900 900 0.21546481320590
79

0.27555555555555
555

0.45871559633027
525

0.27777777777777
78

9726 3000 0.38748913987836
664

0.04585646720131
606

0.72110091743119
26

0.04040715607649
599

900 0.24183325207216 900 0.346020761245675 9726 0.0820079065918911 9726 0.0765261415636257

950 950 0.22154648132059
08

0.26842105263157
895

0.47155963302752
296

0.27052631578947
367

13360 4000 0.41442224152910
51

0.03570359281437
126

0.74311926605504
59

0.03031437125748
503

950 0.242741551642075 950 0.3438127090301 13360 0.0657432292743436 13360 0.058252427184466

1000 1000 0.22502172024326
672

0.259 0.47522935779816
516

0.259 17028 5000 0.44048653344917
466

0.02977448907681
4657

0.76513761467889
91

0.02448907681465
821

1000 0.240818224081822 1000 0.335275080906149 17028 0.055778645690082 17028 0.0474591703181016

1100 1100 0.23718505647263
25

0.24818181818181
817

0.49724770642201
84

0.24636363636363
637

20746 6000 0.46307558644656
82

0.02569169960474
3084

0.79082568807339
45

0.02077508917381
6638

1100 0.242558862727677 1100 0.329483282674772 20746 0.0486824679179796 20746 0.0404865905781786

1200 1200 0.24152910512597
742

0.23166666666666
666

0.50275229357798
17

0.22833333333333
333

1200 0.236495108464483 1200 0.31404011461318 0 0

1300 1300 0.24847958297132
927

0.22 0.51743119266055
05

0.21692307692307
69

1300 0.233374133006936 1300 0.305691056910569 0 0

1400 1400 0.25543006081668
11

0.21 0.53211009174311
93

0.20714285714285
716

1400 0.230497843982752 1400 0.298200514138817 0 0

1500 1500 0.26064291920069
504

0.2 0.53944954128440
37

0.196 1500 0.2263296869106 1500 0.287530562347188 0 0

1600 1600 0.26672458731537
796

0.191875 0.55596330275229
36

0.189375 1600 0.223191566703017 1600 0.282517482517482 0 0

1700 1700 0.27454387489139
88

0.18588235294117
647

0.56330275229357
8

0.18058823529411
766

1700 0.221676604700105 1700 0.273496659242762 0 0

1800 1800 0.27888792354474
37

0.17833333333333
334

0.57614678899082
57

0.17444444444444
446

1800 0.217553371738394 1800 0.267803837953092 0 0

1900 1900 0.28670721112076
45

0.17368421052631
58

0.58899082568807
34

0.16894736842105
262

1900 0.216322517207473 1900 0.262576687116564 0 0

2000 2000 0.29192006950477
845

0.168 0.6 0.1635 2000 0.213265629958743 2000 0.256974459724951 0 0

2500 2500 0.31277150304083
406

0.144 0.61834862385321
1

0.1348 2500 0.197206244864421 2500 0.221346469622332 0 0

3000 3000 0.33709817549956
56

0.12933333333333
333

0.64954128440366
98

0.118 3000 0.186942905324018 3000 0.199717912552891 0 0

3500 3500 0.34839270199826
24

0.11457142857142
857

0.65871559633027
52

0.10257142857142
858

3500 0.172436035261234 3500 0.177503090234858 0 0

4000 4000 0.35794960903562
12

0.103 0.67522935779816
52

0.092 4000 0.159968938070278 4000 0.161936193619362 0 0

4500 4500 0.36924413553431
8

0.09444444444444
444

0.69174311926605
5

0.08377777777777
778

4500 0.150415855600779 4500 0.149454905847374 0 0

5000 5000 0.37532580364900
087

0.0864 0.69357798165137
62

0.0756 5000 0.140464965046334 5000 0.13633904418395 0 0

6000 6000 0.39357080799304
95

0.0755 0.71376146788990
82

0.06483333333333
334

6000 0.126695567053559 6000 0.118869365928189 0 0

7000 7000 0.40660295395308
427

0.06685714285714
285

0.72293577981651
38

0.05628571428571
4286

7000 0.114832535885167 7000 0.104440026507621 0 0

8000 8000 0.41876629018245
004

0.06025 0.73577981651376
15

0.050125 8000 0.105343678286526 8000 0.0938560561732007 0 0

10000 10000 0.43961772371850
566

0.0506 0.75412844036697
25

0.0411 10000 0.0907541924491077 10000 0.0779516358463727 0 0

15000 15000 0.47002606429192
006

0.03606666666666
6664

0.79082568807339
45

0.02873333333333
3333

15000 0.0669927558665098 15000 0.0554519137986491 0 0

20000 20000 0.49695916594265
854

0.0286 0.81100917431192
67
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Figure 2. Lexical precision LP and recall LR for learned
ontologies OEng and OIntl based on different genre num-
bers. ODBpedia and OWikiData serve as reference ontolo-
gies (with a fixed number of genres).

OC OWikiData OEng OIntl

LP 0.644 0.260 0.183
LR 0.306 0.226 0.166
LF 0.415 0.242 0.174

TPcsc 0.098 0.187 0.193
TRcsc 0.114 0.220 0.212
TFcsc 0.105 0.202 0.202

TPcon 0.266 0.237 0.240
TRcon 0.319 0.278 0.268
TFcon 0.290 0.256 0.253

Table 1. Results for OR= ODBpedia, τ = 0.17, υ =
0.0001, |CEng|= 1000, |CIntl|= 1041.

The taxonomic recall (TRcsc) is:

TRcsc(OC,OR) = TPcsc(OR,OC) (10)

Finally, the taxonomic F-measure (TFcsc) is defined by:

TFcsc(OC,OR) =
2 · TPcsc · TRcsc

TPcsc + TRcsc
(11)

5. RESULTS AND DISCUSSION

We measured the similarity of all four ontologies using
varying parameters for the learned ones. Section 5.1 re-
ports lexical results, Section 5.2 conceptual results. In
Section 5.3 we discuss our findings.

5.1 Lexical Results

How similar are the ontologies on the lexical level? For
the reference ontologies ODBpedia and OWikiData this is
easy to answer: LP/LR/LF (OWikiData,ODBpedia) =
0.64/0.31/0.42 (Table 1). Given their respective sizes, the
highest possible values for this pairing are 1.00/0.48/0.64
(if CWikiData ⊂ CDBpedia).
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OC ODBpedia OEng OIntl

LP 0.303 0.259 0.202
LR 0.638 0.473 0.384
LF 0.411 0.335 0.264

TPcsc 0.114 0.174 0.181
TRcsc 0.098 0.151 0.149
TFcsc 0.105 0.162 0.163

TPcon 0.319 0.305 0.357
TRcon 0.266 0.274 0.303
TFcon 0.290 0.288 0.328

Table 2. Results for OR= OWikiData, τ = 0.17, υ =
0.0001, |CEng|= 1000, |CIntl|= 1041.

Table 1

n Eng/DBpedia LP Eng/WikiData LP Intl/DBpedia LP Intl/WikiData LP Eng/DBpedia Eng/DBpedia Eng/WikiData Eng/WikiData Intl/DBpedia Intl/DBpedia Intl/WikiData Intl/WikiData WikiData/DBpedia DBpedia/WikiData WikiData/DBpedia
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Figure 3. Lexical F-measure LF for learned ontolo-
gies OEng and OIntl based on different genre numbers.
ODBpedia and OWikiData serve as reference ontologies
(with a fixed number of genres).

For the learned ontologies, the answer depends on the
number of genres used during generation. Not surpris-
ingly, we observed that recall increases with the num-
ber of genres, while precision decreases. When com-
paring precision/recall values for the learned ontologies
with ODBpedia and OWikiData, values for OWikiData

are predominantly higher, indicating a greater similarity
with the learned ontologies (dashed lines in Figure 2).
This is also reflected in the lexical F-measure shown
in Figure 3. While LFmax(OEng,ODBpedia) is only
0.24, LFmax(OEng,OWikiData) is 0.37—just 0.05 be-
low LF (OWikiData,ODBpedia), shown as dotted line.
For OIntl, the LFmax values are lower than their
OEng counterparts: LFmax(OIntl,ODBpedia) is 0.18 and
LFmax(OIntl,OWikiData) is 0.28. In all cases, the number
of genres needed to achieve LFmax approximately equals
the number of genres in the reference ontology.

When generated for very few genres, both learned on-
tologies reach LP = 1.0 for either reference ontology,
as they all contain the top genres rock, pop, etc. The
achievable LR values however, differ significantly. At a
very low precision level, both learned ontologies reach no
more than LR = 0.5 with ODBpedia as reference. In con-
trast, at the same precision level, with OWikiData as refer-
ence, LR is greater than 0.74 (Figure 2). We investigated
what might be the reason for the low recall for ODBpedia

and came to the conclusion that it contains many genres

that are unlikely to be found in standard genre tags, e.g.
Music of Innsbruck or Music of Guangxi.

5.2 Conceptual Results

Just like the lexical results, conceptual results depend on
the number of genres considered and of course the refer-
ence used. Additionally, τ and υ influence the outcome.

We found that values for υ ≤ 0.0001 hardly affect
TP/TR/TF results, when the learned ontology is com-
pared with ODBpedia or OWikiData. However, inspection
of the learned ontologies shows, that a very low υ causes
some genres to have significantly more parents than the
average genre. Consequently, they connect unrelated parts
of the ontology. Examples for this are canadian and
seventies. We argue that neither is really a musical
genre, but rather an orthogonal concept—a region and an
era, respectively. This also explains why TP/TR/TF are
unaffected, as by definition they are only influenced by
genres that appear in both the learned and the reference on-
tology. Being orthogonal to the genre concept, they never
occur in a reference ontology. We further observed, that υ
values greater than 0.0001 affect TP/TR/TF negatively.
The following data are therefore based on υ = 0.0001.

We investigated how τ influences TP/TR/TF by
calculating TFcsc for OEng (|CEng|=1000) and OIntl

(|CIntl|=1041) with ODBpedia and OWikiData as reference
ontologies. Based on Figure 4, we chose τ = 0.17 as a
value reasonably suited for all ontologies.

Keeping τ and υ constant, how are taxo-
nomic results influenced by the number of genres?
TFcsc(OEng,ODBpedia) peaks around 160 gen-
res with TFmax = 0.31. The same is true for
TFcsc(OEng,OWikiData) with TFmax = 0.32. For
TFcsc(OIntl,ODBpedia) we found TFmax around 285 gen-
res with a value of 0.26 and for TFcsc(OIntl,OWikiData)
around 411 genres with 0.28 (Figure 5a). In all cases,
TFcsc peaks for genre numbers that are well below the
number of genres in the reference ontology. This makes
sense as all ontologies, to a large degree, consist of
disconnected genres that cannot contribute to a higher
TFcsc. But even for most non-TFmax genre numbers,
TFcsc values involving the learned ontologies are higher
than TFcsc(OWikiData,ODBpedia) = 0.12, depicted as
the dotted line in Figure 5a. It appears, as if both OEng

and OIntl are taxonomically more similar to ODBpedia

and OWikiData than ODBpedia to OWikiData or the other
way around. Upon closer inspection, we attributed this
to the greater intersection of disconnected genres from
ODBpedia and OWikiData. 47.6% of the genres in the
lexical intersection CDBpedia ∩ CWikiData are disconnected
in at least one of the two ontologies. But only 36.9% of
the OWikiData intersection with OEng and 38.6% of the
intersection with OIntl are disconnected. Even lower are
the values for ODBpedia: Just 17.7% of the intersection
with OEng and 16.7% of the intersection with OIntl are
disconnected. As defined in Section 4.2, disconnected
genres lead to zero tpcsc values. This significantly
contributes to ODBpedia and OWikiData achieving lower
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Figure 4. Taxonomic F-measure TFcsc for OEng

(|CEng|=1000) and OIntl (|CIntl|=1040) compared with
ODBpedia and OWikiData for varying τ values.
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Figure 5. Taxonomic F-measures TFcsc and TFcon for
learned ontologies and different genre numbers compared
with ODBpedia and OWikiData. τ = 0.17, υ = 0.0001.

TP/TR/TF values, when compared with each other,
than a pairing that does not have as many disconnected
genres in common. By removing all disconnected genres
from CC ∩ CR before calculating TPcsc, we calculated
the connected taxonomic precision (TPcon), which results
in higher values for all pairings, and especially for
(ODBpedia,OWikiData) (Figure 5b). The problem with
genre ontologies is, that from a taxonomic point of view,
the reference ontologies are, to a large degree, trivial.
TPcon attempts to work around the problem by accepting
that there are disconnected genres and ignores them when
calculating TP .

5.3 Discussion

The results show that, using the proposed method, it
is possible to create an ontology that is almost as sim-
ilar to OWikiData as the alternative reference ontology
ODBpedia—on both the lexical and conceptual level. When
comparing learned ontologies with the more comprehen-
sive ODBpedia, the results are not quite as good: while
it is possible to generate an ontology that is as similar to
ODBpedia as OWikiData on the conceptual level, it was not

Children’s Music

Children Children’s Kindermusik

Figure 6. Declinations and translations in OIntl.

possible on the lexical level due to the many uncommon
genres contained in DBpedia.

Sourcing genre tags from international instead of just
English users has proven detrimental to lexical similar-
ity, when comparing with either ODBpedia or OWikiData.
When inspecting OIntl, we noted translations and decli-
nations of genre names. They are often close relatives in
the generated hierarchy (e.g. Figure 6). On one hand, this
clearly contributed to worse lexical results. On the other
hand, we see this as a potentially useful property. Differ-
ent crowd-sourced notations in a reference ontology sim-
plify lookups, because there is no mismatch between the
names that are really being used and the names that occur
in the ontology. Furthermore, it allows easy measurement
of semantic similarity for unknown notations or transla-
tions, e.g. via the length of the shortest connecting path. It
also adds a cultural dimension, as children’s music
and Kindermusik are clearly the same genre, but a par-
ent looking for music may prefer music from its own cul-
ture and chooses one genre over the other.

All differences put aside, one must not forget that the
mentioned ontologies can be linked and thus complement
each other. A missing connection in one ontology, may
be made through another one. The generated ontolo-
gies can be found at http://www.tagtraum.com/
learned_ontologies.html and contain sameAs-
relations with WikiData and DBpedia.

6. CONCLUSION AND FUTURE WORK

DBpedia and WikiData both consist of two parts: The first
part contains disconnected genres that have neither parents
nor sub-genres. It has little value in a taxonomic sense, but
can still serve as linkable data in LOD-space. The second
part is an imperfect, but rich, interconnected hierarchy of
relatively popular genres that can be used for similarity es-
timation and therefore recommender systems. Because of
the way DBpedia is created, not all language editions are
represented equally well.

By exploiting co-occurrence rates of user submitted
genre labels, we were able to learn new genre ontologies.
Using established lexical and conceptual similarity mea-
sures, we successfully demonstrated the validity of the pro-
posed learning method. Further, to improve conceptual
similarity measures with largely trivial reference ontolo-
gies, we proposed an additional measure, the connected
taxonomic precision.

Future work may add translation recognition and im-
prove genre name normalization. Taking advantage of
learned genre ontologies may lead to interesting new music
information retrieval applications.
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ABSTRACT

Blind source separation usually obtains limited perfor-
mance on real and polyphonic music signals. To overcome
these limitations, it is common to rely on prior knowledge
under the form of side information as in Informed Source
Separation or on machine learning paradigms applied on
a training database. In the context of source separation
based on factorization models such as the Non-negative
Matrix Factorization, this supervision can be introduced
by learning specific dictionaries. However, due to the
large diversity of musical signals it is not easy to build
sufficiently compact and precise dictionaries that will well
characterize the large array of audio sources. In this
paper, we argue that it is relevant to construct genre-
specific dictionaries. Indeed, we show on a task of
harmonic/percussive source separation that the dictionaries
built on genre-specific training subsets yield better perfor-
mances than cross-genre dictionaries.

1. INTRODUCTION

Source separation is a field of research that seeks to
separate the components of a recorded audio signal. Such
a separation has many applications in music such as up-
mixing [9] (spatialization of the sources) or automatic
transcription [35] (it is easier to work on single sources).
The separation task is difficult due to the complexity and
the variability of the music mixtures.

The large collection of audio signals can be classified
into various musical genres [34]. Genres are labels cre-
ated and used by humans for categorizing and describing
music. They have no strict definitions and boundaries but
particular genres share characteristics typically related to
instrumentation, rhythmic structure, and pitch content of
the music. This resemblance between two pieces of music

c© Clément Laroche, Hélène Papadopoulos, Matthieu
Kowalski, Gaël Richard. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Clément
Laroche, Hélène Papadopoulos, Matthieu Kowalski, Gaël Richard.
“Genre specific dictionaries for harmonic/percussive source separation”,
17th International Society for Music Information Retrieval Conference,
2016.

has been used as an information to improve chord tran-
scription [23, 27] or downbeat detection [13] algorithms.
Genre information can be obtained using annotated labels.
When the genre information is not available, it can be
retrieved using automatic genre classification algorithms
[26, 34]. Such classification have never been used to
guide a source separation problem and this may be due
to the lack of annotated databases. The recent availability
of large evaluation databases for source separation that
integrate genre information motivates the development of
such approaches. Furthermore, Most datasets used for
Blind Audio Source Separation (BASS) research are small
in size and they do not allow for a thorough comparison of
the source separation algorithms. Using a larger database
is crucial to benchmark the different algorithms.

In the context of BASS, Non-negative Matrix Factoriza-
tion (NMF) is a widely used method. The goal of NMF is
to approximate a data matrix V ∈ Rn×m

+ as

V ≈ Ṽ =WH (1)

with W ∈ Rn×k
+ , H ∈ Rk×m

+ and where k is the rank
of factorization [21]. In audio signal processing, the input
data is usually a Time-Frequency representation such as
a Short Time Fourier Transform (STFT) or a constant-
Q transform spectrogram. Blind source separation is a
difficult problem and the plain NMF decomposition does
not provide satisfying results. To obtain a satisfying
decomposition, it is necessary to exploit various features
that make each source distinguishable from one another.
Supervised algorithms in the NMF framework exploit
training data or prior information in order to guide the
decomposition process. For example, information from the
scores or from midi signals can be used to initialize the
learning process [7]. The downside of these approaches is
that they require well organized prior information that is
not always available. Another supervised method consists
in performing prior training on specific databases. A
dictionary matrix Wtrain can be learned from database
in order to separate the target instrument [16, 37]. Such
method requires minimum tuning from the user. However,
within different music pieces of an evaluation database, the
same instrument can sound differently depending on the
recording conditions and post processing treatments.
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In this paper, we focus on the task of Harmonic Per-
cussive Source Separation (HPSS). HPSS has numerous
applications as a preprocessing step for other audio tasks.
For example the HPSS algorithm [8] can be used as a
preprocessing step to increase the performance for singing
pitch extraction and voice separation [14]. Similarly, beat
tracking [6] and drum transcription algorithms [29] are
more accurate if the harmonic instruments are not part of
the analyzed signal.

We built our algorithm using the method developed
in [20]: an unconstrained NMF decomposes the audio
signal in a sparse orthogonal part that are well suited for
representing the harmonic component, while the percus-
sive part is represented by a regular nonnegative matrix
factorization decomposition. In [19], we have adapted
the algorithm using a trained drum dictionary to improve
the extraction of the percussive instruments. As the user
databases typically cover a wide variety of genres, instru-
mentation may strongly differ from one piece to another. In
order to better manage the variability and to build effective
dictionaries, we propose here to use genre specific training
data.

The main contribution of this article is that we develop
a genre specific method to build NMF drum dictionaries
that gives consistent and robust results on a HPSS task.
The genre specific dictionaries are able to improve the
separation score compared to a universal dictionary trained
from all available data (i.e. a cross-genre dictionary).

The rest of the paper is organized as follows. Section
2 defines the context of our work, Section 3 presents the
proposed algorithm while Section 4 describes the construc-
tion of specific dictionaries. Finally Section 5 details the
results of the HPSS on 65 audio files and we suggest some
conclusions in Section 6.

2. TOWARD GENRE SPECIFIC INFORMATION

2.1 Genre information

Musical genre is one of the most prominent high level mu-
sic descriptors. Electronic Music Distribution has become
more and more popular in recent years and music cata-
logues never stop to increase (the biggest online services
now propose around 30 million tracks). In that context,
associating a genre to a musical piece is crucial to help
users finding what they are looking for. As mentioned in
the introduction, genre information has been used as a cue
to improve some content-based music information retrieval
algorithms. If an explicit definition of musical genres is
not really available [3], musical genre classification can be
performed automatically [24].

Source separation has been used extensively in order to
help the genre classification process [18,30] but, at the best
of our knowledge, the genre information has never been
exploited to guide source separation algorithm.

2.2 Methods for dictionary learning

Audio data is largely redundant as it often contains mul-
tiple correlated versions of the same physical event (note,

drum hits...) [33] hence the idea to exploit this redundancy
to reduce the amount of information necessary for the
representation of a musical signal.

Many rank reduction methods, such as Single Value De-
composition (K-SVD) [1], Vector Quantization (VQ) [10],
Principal Component Analysis (PCA) [15], or Non neg-
ative matrix factorization (NMF) [32] are based on the
principle that our observations can be described by a sparse
subset of atoms taken from a redundant representation.
These methods provide a small subset of relevant templates
that are later used to guide the extraction of a target
instrument.

Building a dictionary using K-SVD has been a suc-
cessful approach in image processing [39]. However this
method does not scale well to process large audio signals
as the computational time is unrealistic. Thus a genre
specific dictionary scenario cannot be considered in this
framework.

VQ has been mainly used for audio compression [10]
and PCA has been used for voice extraction [15]. However
these methods have not been used yet as a pre-processing
step to build a dictionary.

Finally, in the NMF framework, some work has been
done to perform a decomposition with learned dictionaries.
In [12], a dictionary is built using a physical model of the
piano. This method is not adapted to build genre specific
dictionaries as the model cannot easily take into account
the genre information. A second way to build a dictionary
is to directly use the STFT of an instrument signal [37].
This method does not scale well if the training data is
large, thus it is not possible to use it to build genre specific
dictionaries. Finally, another method to build a dictionary
is to compute a NMF decomposition on a large training set
specific to the target source [31]. After the optimization
process of the NMF, theW matrix from this decomposition
is used as a fixed dictionary matrix Wtrain. This method
does not give satisfying results on pitched instruments
(i.e., harmonic instruments) and the dictionary needs to be
adaptated for example using linear filtering on the fixed
templates [16]. Compared to state of the art methods, fixed
dictionaries provide good results for HPSS [19]. However,
the results have a high variance because the dictionaries
are learned on general data that do not take into account
the large variability of drum sounds. A nice property of
the NMF framework is that the rank of the factorization
determines the final size of the dictionary and it can be
chosen small enough to obtain a strong compression of
the original data. The limitations of the current methods
motivated us to build genre specific data using NMF in
order to obtain relevant compact dictionaries.

2.3 Genre information for HPSS

Current state-of-the-art unsupervised methods for HPSS
such as complementary diffusion [28] and constrained
NMF [5] cannot be easily adapted to use genre informa-
tion. We will not discuss these methods in this article.

However supervised methods can be modified to uti-
lize genre information. In [17] the drum source sepa-
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ration is done using a Non-Negative Matrix Partial Co-
Factorization (NMPCF). The spectrogram of the signal
and the drum-only data (obtained from prior learning) are
simultaneously decomposed in order to determine com-
mon basis vectors that capture the spectral and temporal
characteristics of the drum sources. The percussive part of
the decomposition is constrained while the harmonic part
is completely unconstrained. As a result, the harmonic part
tends to decompose a lot of information from the signal
and the separation is not satisfactory (i.e., the harmonic
part contains some percussive instruments). A drawback of
this method is that it does not scale when the training data
is large and the computation time is significantly larger
compared to other methods.

By contrast, the approach introduced and detailled
in [19, 20] appears to be a good candidate to test the genre
specific dictionaries: they can be easily integrated to the
algorithm without increasing the computation time.

3. STRUCTURED PROJECTIVE NMF (SPNMF)

3.1 Principle of the SPNMF

Using a similar model as in our preliminary work [20], let
V be the magnitude spectrogram of the input data. The
model is then given by

V ≈ Ṽ = VH + VP , (2)

with VP the spectrogram of the percussive part and VH
the spectrogram of the harmonic part. VH is approximated
by the projective NMF decomposition [38] while VP is
decomposed by NMF components which leads to:

V ≈ Ṽ =WHW
T
HV +WPHP . (3)

The data matrix is approximated by an almost orthogonal
sparse part that codes the harmonic instruments VH =
WHW

T
HV and a non constrained NMF part that codes the

percussive instruments VP = WPHP . As a fully unsu-
pervised SPNMF model does not allow for a satisfying
harmonic/percussive source separation [20], we propose
here to use a fixed genre specific drum dictionary WP in
the percussive part of the SPNMF.

3.2 Algorithm optimization

In order to obtain such a decomposition, we can use a
measure of fit D(x|y) between the data matrix V and the
estimated matrix Ṽ . D(x|y) is a scalar cost function and
in this article, we use the Itakura Saito (IS) divergence. A
discussion about the possible use of other divergences can
be found in [19].

The SPNMF model gives the optimization problem:

min
WH ,WP ,HP≥0

D(V |WHW
T
HV +WPHP ) (4)

A solution to this problem can be obtained by iterative
multiplicative update rules following the same strategy
as in [22, 38]. Using formula from Appendix 7, the
optimization process is given in Algorithm 1, where ⊗ is
the Hadamard product and all division are element-wise
operation.

Input: V ∈ Rm×n
+ and Wtrain ∈ Rm×e

+ Output:
WH ∈ Rm×k

+ and HP ∈ Re×n
+ Initialization;

while i ≤ number of iterations do
HP ← HP ⊗ [∇HP

D(V |Ṽ )]−

[∇HP
D(V |Ṽ )]+

WH ←WH ⊗ [∇WH
D(V |Ṽ )]−

[∇WH
D(V |Ṽ )]+

i = i+ 1
end
XP =WtrainHP and XH =WHW

T
HV

Algorithm 1: SPNMF with a fixed trained drum dictio-
nary matrix.

3.3 Signal reconstruction

The percussive signal xp(t) is synthesized using the mag-
nitude percussive spectrogram XP = WPHP . To recon-
struct the phase of the percussive part, we use a Wiener
filter [25] to create a percussive mask as:

MP =
X2

P

X2
H +X2

P

(5)

To retrieve the percussive signal as:

xp(t) = SFTF−1(MP ⊗X). (6)

Where X is the complex spectrogram of the mixture. We
use a similar procedure for the harmonic part.

4. CONSTRUCTION OF THE DICTIONARY

In this section we detail the building process of the drum
dictionary. We present in Section 4.1 tests conducted on
the SiSEC 2010 database [2] in order to find the optimal
size to build the genre specific dictionaries. In Section
4.2 we describe the training and the evaluation database.
Finally, in Section 4.3, we detail the protocol to build the
genre specific dictionaries.

4.1 Optimal size for the dictionary

The NMF model is given by (1). If V is the power
spectrum of a drum signal, The matrix W is a dictionary
or a set of patterns that codes the frequency information of
the drum. The first step to build a NMF drum dictionary is
to select the rank of factorization. In order to avoid over-
fitting, the algorithm is optimized using databases different
from the database used for evaluation, described in Section
4.2.

We run the optimization tests on the public SiSec
database [2]. The database is composed of four poly-
phonic real-world music excerpts and each music signal
contains percussive, harmonic instruments and vocals. The
duration of the recordings is ranging from 14 to 24 s. In
the context of HPSS, following the same protocol as in [5],
we do not consider the vocal part and we build the mixture
signals from the percussive and harmonic instruments only.
The signals are sampled at 44.1 kHz. We compute the
STFT with a 2048 sample long Hann window with a 50%
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overlap. Furthermore, the rank of factorization of the
harmonic part of the SPNMF algorithm is set to k = 100,
as in [19].

A fixed drum dictionary is built using the database
ENST-Drums [11]. For this, we concatenate 30 files where
the drummer is playing a drum phrase that result in an
excerpt of around 10 min duration. We then compute an
NMF decomposition with different ranks of factorization
(k = 12, k = 50, k = 100, k = 200, k = 300, k = 500,
k = 1000 and k = 2000) on the drum signal alone to
obtain 8 drum dictionaries.

These dictionaries are then used to perform a HPSS on
the four songs of the SiSEC database using the SPNMF
algorithm (see Algorithm 1). The results are compared by
means of the Signal-to-Distortion Ratio (SDR), the Signal-
to-Interference Ratio (SIR) and the Signal-to-Artifact Ra-
tio (SAR) of each of the separated sources using the BSS
Eval toolbox provided in [36].

k=12 k=50 k=100 k=200 k=300 k=500 k=1000 k=2000

0

5

10

15
Mean decomposition results

d
B

 

 

SDR
SIR
SAR

Figure 1: Influence of k on the S(D/I/A)R on the SiSEC
database.

The results in Figure 1 show that the optimal value
for the SDR and SIR is reached for k = 100, then the
SDR decreases for k > 200. For k > 500 the harmonic
signal provided by the algorithm contains most of the
original signal therefore the SAR is very high but the
decomposition quality is poor. For the rest of the article,
the size of the drum dictionaries will be k = 100.

4.2 Training and evaluation database

The evaluation tests are conducted on the Medley-dB
database [4] composed of polyphonic real-world music
excerpts. It consists in 122 music signals and 85 of them
contain percussive instruments, harmonic instruments and
vocals. The signals that do not contain a percussive part
are excluded from evaluation. The genres are distributed
as follows: Classical (8 songs), Singer/Songwriter (17
songs), Pop (10 songs), Rock (20 songs), Jazz (11 songs),
Electronic/Fusion (13 songs) and World/Folk (6 songs). It
is important to note that, because the notion of genre is
quite subjective (see Section 2), the Medley-dB database
uses general genre labels that cannot be considered to be
precise. There are many instances where a song could
have fallen in multiple genres, and the choices were made
so that each genre would be as acoustically homogeneous
as possible. Moreover, as we are only working with the

Genre Artist Song
Classical JoelHelander Definition

MatthewEntwistle AnEveningWithOliver
MusicDelta Beethoven

Electronic/Fusion EthanHein 1930sSynthAndUprightBass
TablaBreakbeatScience Animoog
TablaBreakbeatScience Scorpio

Jazz CroqueMadame Oil
MusicDelta BebopJazz
MusicDelta ModalJazz

Pop DreamersOfTheGhetto HeavyLove
NightPanther Fire
StrandOfOaks Spacestation

Rock BigTroubles Phantom
Meaxic TakeAStep
PurlingHiss Lolita

Singer/Songwriter AimeeNorwich Child
ClaraBerryAndWooldog Boys
InvisibleFamiliars DisturbingWildlife

World/Folk AimeeNorwich Flying
KarimDouaidy Hopscotch
MusicDelta ChineseYaoZu

Non specific JoelHelander Definition
TablaBreakbeatScience Animoog
MusicDelta BebopJazz
DreamersOfTheGhetto HeavyLove
BigTroubles Phantom
AimeeNorwich Flying
MusicDelta ChineseYaoZu

Table 1: Song selected for the training database.

instrumental part of the song (the vocals are omitted), the
Pop label (for example) is similar to the Singer/Songwriter.
We separate the database into training and evaluation files,
as detailed in the next section.

4.3 Genre specific dictionaries

Seven genre-specific drum dictionaries are built using 3
songs of each genre. In addition, a cross-genre drum
dictionary is built using half of one song of each genre.
Finally, a dictionary is built using the 10 min excerpt
of pure drum signals from the ENST-Drums database
described in Section 4.1. The Medley-dB files selected for
training are given in Table 1 and excluded from evaluation.

With the results from Section 4.1 the dictionaries are
built as follows: for every genre specific subset of the
training database, we perform a NMF on the drum signals
with k = 100. The resulting W matrices of the NMF are
then used in the SPNMF algorithm as the WP matrix (see
Algorithm 1).

5. RESULTS

In this section, we present the results of the SPNMF with
the genre specific dictionaries on the evaluation database
from Medley-dB.

5.1 Comparison of the dictionaries

We perform a HPSS on the audio files using the SPNMF
algorithm with the 9 dictionaries built in Section 4.3. The
results on each song are then sorted by genres and the
average results are displayed using box-plots. Each box-
plot is made up of a central line indicating the median of
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the data, upper and lower box edges indicating the 1st and
3rd quartiles while the whiskers indicate the minimum and
maximum values.

Figures 2, 3 and 4 show the SDR, SAR and SIR results
for all the dictionaries on the Pop subset, giving an overall
idea of the performance of the dictionaries inside a specific
sub-database. The Pop dictionary leads to the highest SDR
and SIR and the non specific dictionaries are not perform-
ing as well. On this sub-database, the genre specific data
gives relevant information to the algorithm. As stated in
Section 4.2, some genres are similar to others, explaining
why the Rock and the Singer dictionaries are also providing
good results. An interesting result is that compared to the
non specific dictionaries, the Pop dictionary has a lower
variance. Genre information allows for a higher robustness
to the variety of the songs within the same genre. Samples
of the audio results can be found on the website 1 .

Figure 2: Percussive (left bar)/Harmonic (right bar) SDR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

Figure 3: Percussive (left bar)/Harmonic (right bar) SIR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

On Table 2, we display the mean separation score for all
the genre specific dictionaries compared to the non specific
dictionary. The dictionary built on the ENST-drums is
giving results very similar to the universal dictionary built
on the Medley-dB database. For the sake of concision
we only display the results using the universal dictionary
from Medley-dB. On the database Singer/Songwriter, Pop,
Rock, Jazz and World/Folk, the genre specific dictionaries

1 https://goo.gl/4X2jk5

Figure 4: Percussive (left bar)/Harmonic (right bar) SAR
results on the Pop sub-database using the SPNMF with

the 9 dictionaries.

outperform the universal dictionary on the harmonic and
percussive separation.

5.2 Discussion

The cross-genre dictionary as well as the ENST-drum
dictionary are outperformed by the genre specific dic-
tionaries. The information from the music of the same
genre is not altered by the NMF compression and provides
drum templates closer to the target drum. The databases
Classical and Electronic/Fusion are composed of songs
where the drum is only playing for a few moments. Sim-
ilarly on some songs of the Electronic/Fusion database,
the electronic drum reproduces the same pattern during
the whole song making the drum part very redundant.
As a result, in both cases the drum dictionary does not
contain a sufficient amount of information to outperform
the universal dictionary. Because of these two factors, the
genre specific dictionaries are not performing correctly.

It can be noticed that overall the harmonic separation is
giving much better results than the percussive extraction.
The fixed dictionaries are creating artefact as the percus-
sive templates do not correspond exactly to the target drum
signal. A possible way to alleviate this problem would
be to adapt the dictionaries but this would require the use
of hyper parameters and that is not the philosophy of this
work [20].

6. CONCLUSION

Using genre specific information in order to build more
relevant drum dictionaries is a powerful approach to im-
prove the HPSS. The dictionaries still have an imprint of
the genre after the NMF decomposition and the additional
information is properly used by the SPNMF to improve
the source separation quality. This is a first step in order to
produce dictionaries capable of separating a wide variety
of audio signal.

Future work will be dedicated into building a blind
method to select the genre specific dictionary in order to
perform the same technique on database where the genre
information is not available.
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Genre Classical Electronic/Fusion Jazz Pop Rock Singer/Songwriter World/Folk
Percussive separation
Genre specific (dB)

SDR -1.6 -0.6 0.4 2.5 -0.2 0.6 0.4
SIR 8.2 15.2 9.6 12.3 19.8 11.5 6.1
SAR 5.9 0.3 2.1 3.4 0.3 4.5 16.3

Non specific (dB)
SDR -0.0 -0.3 -0.7 2.0 -2.2 -0.0 -3.6
SIR 11.3 17.0 9.6 12.6 18.3 13.0 2.8
SAR 8.1 0.4 0.9 2.7 2.3 1.8 12.1

Harmonic Separation
Genre specific (dB)

SDR 7.5 1.6 13.0 5.1 2.1 7.2 4.9
SIR 10.6 1.8 13.3 5.0 2.2 11.5 13.5
SAR 18.2 23.5 28.5 24.5 36.0 28.5 22.7

Non specific (dB)
SDR 6.0 1.3 12.7 4.8 1.9 7.5 4.6
SIR 7.1 1.4 12.8 4.9 2.9 7.5 13.3
SAR 27.2 27.7 29.9 26.2 34.3 31.9 21.6

Table 2: Average SDR, SIR and SAR results on the Medley-dB database.

7. APPENDIX: SPNMF WITH THE IS
DIVERGENCE

The Itakura Saito divergence gives us the problem,

min
WH ,WP ,HP≥0

V

Ṽ
− log(V

Ṽ
)− 1.

The gradient wrt WH gives

[∇WH
D(V |Ṽ )]−i,j = (ZV TWH)i,j + (V ZTWH)i,j ,

with Zi,j = ( V
WHWT

HV+WPHP
)i,j . The positive part of the

gradient is

[∇WH
D(V |Ṽ )]+i,j = (φV TWH)i,j + (V φTWH)i,j ,

with
φi,j = (

I

WHWT
HV +WPHP

)i,j .

and I ∈ Rf×t;∀i, j Ii,j = 1.
Similarly, the gradient wrt HP gives

[∇HP
D(V |Ṽ )]− =WT

P V

and

[∇HP
D(V |Ṽ )]+ = 2WT

P WHW
T
HV +WT

P WPHP .
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ABSTRACT

We introduce good-sounds.org, a community driven
framework based on freesound.org to explore the concept
of goodness in instrumental sounds. Goodness is conside-
red here as the common agreed basic sound quality of an
instrument without taking into consideration musical ex-
pressiveness. Musicians upload their sounds and vote on
existing sounds, and from the collected data the system is
able to develop sound goodness measures of relevance for
music education applications. The core of the system is a
database of sounds, together with audio features extracted
from them using MTG’s Essentia library and user annota-
tions related to the goodness of the sounds. The web front-
end provides useful data visualizations of the sound at-
tributes and tools to facilitate user interaction. To evaluate
the framework, we carried out an experiment to rate sound
goodness of single notes of nine orchestral instruments. In
it, users rated the sounds using an AB vote over a set of
sound attributes defined to be of relevance in the charac-
terization of single notes of instrumental sounds. With the
obtained votes we built a ranking of the sounds for each
attribute and developed a model that rates the goodness for
each of the selected sound attributes. Using this approach,
we have succeeded in obtaining results comparable to a
model that was built from expert generated evaluations.

1. INTRODUCTION

Measuring sound goodness, or quality, in instrumental
sounds is difficult due to its intrinsic subjectivity. Never-
theless, it has been shown that there is some consistency
among people while discriminating good or bad music per-
formances [1]. Furthermore, recent studies have demon-
strated a correlation between the perceived music quality
and the musical performance technique [2]. Bearing this
in mind, in a previous work [3] we proposed a method
to automatically rate goodness by defining a set of sound

c© Giuseppe Bandiera, Oriol Romani Picas, Hiroshi
Tokuda, Wataru Hariya, Koji Oishi, Xavier Serra. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Giuseppe Bandiera, Oriol Romani Picas, Hiroshi Tokuda,
Wataru Hariya, Koji Oishi, Xavier Serra. “Good-sounds.org: a frame-
work to explore goodness in instrumental sounds”, 17th International So-
ciety for Music Information Retrieval Conference, 2016.

attributes and by using a set of good/bad labels given by
expert musicians. The definition of goodness was treated
as a classification problem and an outcome of that work
was a mobile application (Cortosia R©) that gives goodness
scores in real-time for single notes on a scale from 0 to
100. This score was computed considering the distribu-
tion of the features values in the classification step. While
developing that system we realized that we could improve
the scores, specially their correlation with the perceptual
sound goodness, if we could use more training data and in-
clude a range of goodness levels given by users rather than
the binary good/bad labels that we used. However, the task
of labeling sounds this way would have been very time
consuming and we would also need more sounds, cover-
ing the whole range of sound goodness. To address these
issues we are now crowdsourcing the problem. We have
developed a website, good-sounds.org, on which users can
upload sound content and can tag and rate sounds in vari-
ous ways.

2. GOOD-SOUNDS.ORG

Good-sounds.org 1 is an online platform to explore the
concept of goodness in instrumental sounds with the help
of a community of users. It provides social community
features in the web front-end and a framework for sound
analysis and modeling in the background. It also includes
an API to access the collected data.

2.1 Description

The website has been designed from a user perspective,
meant to be modern and to provide a seamless experience.
It makes use of state of the art design concepts and com-
munity oriented web technologies. The web front-end in-
cludes three main sections: (1) a page to list and visua-
lize the uploaded sounds as shown in Figure 1, (2) a page
to upload and describe sounds as shown in Figure 2 and
(3) a section to gather user ratings and annotations. The
visualization page shows a list of all the sounds and it
includes filter options to narrow down the results, being
able to show things like specific instruments or sounds up-
loaded a certain date. The upload page allows users to
add sounds into the site and also provides a recording tool

1 https://good-sounds.org
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Figure 1. Good-sound.org sound list page.

Figure 2. Good-sound.org sound upload page.

built using Web Audio API 2 . The annotation section has
been designed for the specific experiment explained in Sec-
tion 3. The website backend is based on the experience we
have obtained in all these years developing and maintain-
ing freesound [2] . It is written in Python using the Django
web application framework. The metadata is stored in a
PostgreSQL database while the sound files plus other ana-
lysis files are stored locally in the server. An API accepts
requests from authorized clients to upload sounds (cur-
rently through the mobile app Cortosia) and retrieve statis-
tics from the users community. At this time, the website
supports 11 instruments, it includes 8470 unique sounds
and there are 363 active users.

2.2 Content

The main data stored in good-sounds.org consists of
sounds and the metadata accompanying them. When up-

2 http://www.w3.org/TR/webaudio/

loading sounds, the users can choose between three differ-
ent types of Creative Commons licenses for their content:
Universal, Attribution or Attribution Non-Commercial. As
soon as a sound is uploaded, it is analyzed using the
freesound extractor [4], thus obtaining a number of low-
level audio features, and the system generates an mp3 ver-
sion of the file together with images of the waveform and
spectrogram. The audio, image and audio feature files are
stored in the good-sounds server and the metadata is stored
in the PostgreSQL database.

2.2.1 Segmentation

One of the critical audio processing steps performed in
good-sounds.org is the segmentation of the uploaded sound
files to find appropriate note boundaries. Given that the au-
dios come from different and not well controlled sources,
they might include all kinds of issues (ex. silence at be-
ginning and end or background noise) that can difficult the
subsequent feature extraction steps. Considering that the
sounds we are working with are all monophonic pitched
instrument sounds, we can base the segmentation mainly
on pitch. Our approach extracts pitch using Essentia’s [5]
implementations of the YinFFT algorithm [8] and the Yin
time based algorithm [6]. Then the sound is segmented
into notes using pitch contours [7] and signal RMS with
Essentias PitchContourSegmentation algorithm. The seg-
mentation data is also stored in the database. This allows
us to build client-side data visualizations that effectively
reflect the quality of the segmentation algorithm and the
user can modify the parameters for this algorithm and re-
run it on the fly from the website. The results of this ite-
ration is immediately shown on the same page, for an easy
comparison of the results, as it is shown in Figure 3.

Figure 3. Good-sound.org segmentation visualisation
page.

2.2.2 Descriptors

The feature extraction module is based on the freesound
extractor module of Essentia. It computes a subset of its
spectral, tonal and temporal descriptors. With it, the audios
are first resampled to 44.1kHz sampling rate. The descrip-
tors are then extracted across all the frames using a 2048
window size and 512 hop window size. We then compute
statistical measures (mean, median and standard deviation)
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of the descriptors which are the values stored as JSON files
in the server. The list of the descriptors extracted is shown
in Table 1.

3. EXPERIMENT

As a test case to evaluate the usefulness of the good-
sounds.org framework we setup an experiment to rate the
goodness of single notes. The goal of the experiment was
to build models from both the uploaded sounds and the
community annotations, with which we can then automat-
ically rate the sound goodness. We compared the results of
the obtained models with the ones we got in our previous
work using expert annotations.

3.1 Dataset

The data used in this experiment comes from several
sources. First, we uploaded all the sounds from our pre-
vious work to the website, together with the expert annota-
tions. Since the website has been public for a few months,
we also had sounds uploaded by users, both directly and
through the mobile app (using the API). Then, user anno-
tations on the sounds according to a goodness scale where
collected using a voting task. These annotations use a set
of sound attributes that affect sound goodness. These at-
tributes were defined in our previous article [3] by consult-
ing with a group of music experts:

• dynamic stability: the stability of the loudness.

• pitch stability: the stability of the pitch.

• timbre stability: the stability of the timbre.

• timbre richness: the quality of the timbre.

• attack clarity: the quality of the attack.

The sounds from the recording sessions are also uploaded
to freesound and thus are openly accessible. We also
provide a tool that allow the good-sounds.org users to
link their accounts to their freesound ones and upload the
sounds there.

3.1.1 Sounds

For this experiment we only used single note sounds. At
the time of the experiment there were sounds for 5467 sin-
gle notes of 9 instruments. We show the list of sounds per
instrument in Table 2. The sounds we recorded ourselves
from the recording sessions are uncompressed wave files,
while the ones uploaded by users to the website are in dif-
ferent audio formats.

3.1.2 Annotations

We distinguish two kinds of annotations: (1) recording
annotations and (2) community annotations. The recor-
ding annotations are the ones coming from the recording
sessions that we did and consists of one tag per sound.
This tag says if the sound is a good or a bad example
of each sound attribute (e.g. bad-timbre-stability, good-
attack-clarity). Those are the annotations used later on for

instrument number of sounds
cello 935
violin 802

clarinet 1360
flute 1434

alto sax 352
baritone sax 292

tenor sax 292
soprano sax 343

trumpet 738

Table 2. Number of sounds in the experiment’s dataset.

a first evaluation of the models and are only available for
the sounds we recorded ourselves. The community anno-
tations are the ones generated from the user votes and used
in this work to explore goodness. In order to be able to
rate a sound in a goodness scale we need annotations on
a wide range of different goodness levels. We originally
thought of asking the community to rate sounds in a scale
of goodness but we discarded this option because of the
following:

• the task can be excessively demanding.

• without a reference sound the criteria of different
users can differ extremely.

• with a reference sound we influence the users crite-
ria, thus annotations can be less generalisable.

Instead, we designed a user task that gave as outcome
a ranked list of the sounds based on the goodness for each
sound attribute. An A/B multi vote task was used for this
purpose. Two sounds are presented and the user is asked to
decide which sound is better according to one or more of
the sound attributes. One vote is stored for each selected
attribute. A list of the votes per instruments (considering
all sound attributes) is shown in Table 3. In order to prevent
random votes in the task we run checks periodically. This
checks consists of two sounds; one being a bad example of
a sound attribute regarding the expert annotations and the
other being a good example. The task is presented to the
users the first time they vote and also randomly after some
votes. If the user does not vote for the expected sound in
the reference task, his next votes are not used. The votes
of this user are again taken into account if he succeeds to
pass the reference task.

3.1.3 Rankings

In order to have learning data in a wide range of good-
ness we built rankings with the community votes for each
sound attribute. The position of a sound in the ranking
represents its goodness level. To build them we count the
number of wins and the number of votes of each sound in
the database. Then the sounds are sorted according to two
parameters:

• total number of votes: number of participations in
the voting task.
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spectral tonal temporal
spectrum, barkbands,
melbands, flatness, crest, rolloff,
decrease, hfc, pitch salience, flatness db,
skewness, kurtosis, spectral complexity,

pitch yinfft, pitch yin, pitch confidence, zerocrossingrate, loudness, centroid,

flatness sfx,

Table 1. Descriptors extracted by Essentia library present in good-sounds.org.

instrument number of votes
cello 140
violin 90

clarinet 293
flute 305

alto sax 78
baritone sax 59

tenor sax 14
soprano sax 21

trumpet 230

Table 3. Number of votes in good-sounds for the dataset’s
experiment.

• ratio between wins and votes: the ratio between the
number of wins and the total number of participa-
tions in the voting task.

Using these parameters for building the rankings we as-
sure that the sounds in the top are the ones voted more
times, as being better than others, and not sounds with few
votes but high percentage of wins.

3.2 Learning

The goal of our learning process is to build a model for
each instrument that is able to rate each sound attribute
in a 0 to 100 score. To do so we want to find a set of
features that highly correlate with the rankings extracted
in the previous step. Our approach uses a regression model
to predict the score. These predictions are then used as
samples of the final score function. The final score is then
computed as an interpolation of the samples.

3.2.1 Models

We want to find the combination of regression model and
set of features that better describes the rankings. For such a
purpose we tried different regression algorithms available
in scikit-learn [9]. As one of the outputs of the project is
a system that rates the goodness of sounds in real-time we
want to restrict the number of features in order to maintain
a low computational cost. For each one of the algorithms
we build a model for each ranking using one, two or three
features and we compute the average prediction score of
the model across all the options. The prediction score R2

or Coefficient of Determination is defined as follows:

R2 = (1− u/v) (1)

where
u =

∑
((ytrue − ypred)2) (2)

Regression model Avg. score Score variance
SVR 3 features -1.208 5.4436
SVR 2 features -1.2411 5.3895
SVR 1 feature -1.4254 5.6554

Table 5. Performance of SVR model with different num-
ber of features.

and

v =
∑

((ytrue −
n∏

i=1

ytrue)
2) (3)

Where ytrue is the set of ground truth annotations and
ypred the set of predictions, having both the same length.
The best possible score R2 is 1.0 and it can be negative.
The variance of the prediction score across all the rankings
and set of features is also computed. The number of fea-
tures that give the best score for each ranking is taken into
account to compute an average number of features for each
regression model. A comparison of the performance of the
different models is shown in Table 4.

As we can see in the table, the SVR (Epsilon-Support
Vector Regression) model has the best average score across
all the rankings and using all possible combination of fea-
ture sets (up to 3 features). It also has the lowest score
variance so we can expect the model to be robust across
the different instruments and sound attributes. However
the average number of features is almost two and the com-
putation of two features at each frame of all the sounds in
the database can be computationally expensive. For this
reason we tested how good the model can be if we force it
to use less than three features. We show the results of such
a comparison in Table 5.

The results show that the differences between using one
or three features are not too big so we decided to use SVR
with a single feature in order to maintain a low computa-
tional cost for future applications of the system. We then
tried all possible combinations of parameters (kernel, de-
gree of polynomially, cost parameter..) to find the best
model for each instrument and sound attribute.

3.2.2 Scores

From the model we predict the ranking position of a sound
and we map this position into a 0 to 100 score of the sound
attribute. The final goodness score is computed as the aver-
age score across the five attributes. We compute the sound
attribute scores of all the sounds in the database to test the
distribution of the scores according to the feature value.
For example, a distribution of the score for the timbre sta-
bility of flute is shown in Figure 4.
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Regression model Avg. score Score variance Average of features
SVR -1.208 5.4436 1.843
Ridge -2.644 31.005 2.166
KRR -1.79 10.798 1.906

Linear regression -3.503 30.03 1.718
RANSAC -3.202 17.532 1.478
Theilsen -4.14 37.135 1.781

Table 4. Performance of the different regression models.

Figure 4. Distribution of scores of flute timbre stability.

The resulting distributions are not balanced. For this
reason we push the scores of each sound attribute to fit a
Gaussian distribution. This gives us balanced distributions
and it also allows us to refine the scores by tweaking the
parameters of the gaussian function. A result of this pro-
cess is shown in Figure 5. The final score is computed
interpolating the feature according to these tuned distribu-
tions.

Figure 5. Distribution of scores of flute timbre stability
after normalisation.

3.2.3 Models evaluation

In order to evaluate the models we want to check the cor-
relation between the scores and the rankings as we ex-
pect the sounds ranked in the first positions to have the

highest scores. We evaluate this correlation using Kendall
Rank Correlation Coefficient [10], commonly referred as
Kendalls tau coefficient. We use the implementation avail-
able in the scipy library, that is based on the tau-b version.
Its computation, given two rankings x and y of the same
size is defined by the following equation:

τ =
(P −Q)√

((P +Q+ T ) ∗ (P +Q+ U))
(4)

where P is the number of concordant pairs, Q the number
of discordant pairs, T the number of ties only in x, and U
the number of ties only in y. If a tie occurs for the same
pair in both x and y, it is not added to either T or U . The
values range from -1 to 1, where 1 indicates strong agree-
ment and -1 strong disagreement. We compute τ between
the score and the ranking position for all the sounds that
are contained in the rankings. The results for each sound
attribute and instrument are shown in Table 6.

4. CONCLUSIONS

In this article we presented a web based framework for
exploring sound goodness in instrumental sounds using a
community of users. The framework provides an easy way
to collect sounds and annotations as well as tools to ex-
tract and store music descriptors. This allows us to explore
the concept of sound goodness in a controlled and flexi-
ble environment. Furthermore, the website is useful to the
community as a place in which to discuss the issues affect-
ing sound goodness as well as a learning tool to improve
their playing techniques. As a way to evaluate the frame-
work we extended our previous work by using annotations
from the community collected through a voting task. The
models built using this approach provide an automatic rat-
ing of goodness for each attribute that tends to match the
expert annotations collected in our previous work. The re-
sults should improve with more annotations from the com-
munity. As future work we want to design new tasks to
collect user annotations and build new models according
to them.
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Sound attribute Flute Violin Clarinet Trumpet Cello Violin Alto sax Baritone sax Soprano Average
timbre stability 0.37 0.65 0.46 0.38 0.28 0.65 0.33 0.73 0.73 0.51
dynamic stability 0.41 0.33 0.24 0.44 0.64 0.33 0.33 0.31 0.31 0.37
pitch stability 0.42 0.46 0.22 0.38 0.58 0.46 1 1 0.81 0.59
timbre richness 0.04 0.35 0.32 0.11 0.21 0.35 1 0.56 1 0.43
attack clarity 0.33 0.59 0.38 0.3 0.18 0.59 0 0.34 0.35 0.34

Table 6. Kendall tau coefficient between the scores and the rankings of each sound attribute.
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ABSTRACT

This paper presents and tests a method for improving the
predictive power of derived viewpoints in multiple view-
points systems. Multiple viewpoint systems are a well es-
tablished method for the statistical modelling of sequen-
tial symbolic musical data. A useful class of viewpoints
known as derived viewpoints map symbols from a basic
event space to a viewpoint-specific domain. Probability es-
timates are calculated in the derived viewpoint domain be-
fore an inverse function maps back to the basic event space
to complete the model. Since an element in the derived
viewpoint domain can potentially map onto multiple basic
elements, probability mass is distributed between the ba-
sic elements with a uniform distribution. As an alternative,
this paper proposes a distribution weighted by zero-order
frequencies of the basic elements to inform this probability
mapping. Results show this improves the predictive perfor-
mance for certain derived viewpoints, allowing them to be
selected in viewpoint selection.

1. INTRODUCTION

Multiple viewpoint systems [7] are an established statis-
tical learning approach to modelling multidimensional se-
quences of symbolic musical data. Music is presented as a
series of events comprising of basic attributes (e.g. pitch,
duration) modelled by a collection of viewpoints. For ex-
ample, pitch may be modelled by pitch interval, pitch class,
or even pitch itself. Statistical structure for each view-
point is captured with a Markovian approach, usually in
the form of a Prediction by Partial Match (PPM) [2] suf-
fix tree. Predictions from different viewpoints modelling
the same basic attribute are combined, weighting towards
viewpoints with lower uncertainty in terms of Shannon en-
tropy [24]. The system can be viewed as a mixture of
experts, or ensemble method machine learning approach
to symbolic music, dynamically using specialised models
which are able to generalise data in order to find structure.

The current research explores a problem associated with
a collection of viewpoints known as derived viewpoints.
Derived viewpoints apply some function to basic attributes

c⃝ Thomas Hedges, Geraint Wiggins. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Thomas Hedges, Geraint Wiggins. “Improving Predic-
tions of Derived Viewpoints in Multiple Viewpoint Systems”, 17th Inter-
national Society for Music Information Retrieval Conference, 2016.

aiming to capture some relational structure between basic
attributes (e.g. pitch interval), or to generalise sparse data
(e.g. pitch class). During training, elements from the basic
attribute domain are mapped onto the derived viewpoint
domain with a surjective function. Viewpoint models must
be combined over a shared alphabet in order to calculate
probability estimates, therefore, an inverse function maps
from the derived viewpoint domain to the basic attribute
domain. Where a derived element maps onto several basic
elements, probability mass from the derived element is dis-
tributed uniformly between the basic elements [17]. This
can be problematic for derived viewpoints with small do-
mains mapping onto large basic attribute domains as the
derived elements could refer to many basic elements. Such
viewpoints may generalise sparse data and find useful sta-
tistical structure, but this information is lost when mapping
back to the basic attribute domain. This is especially preva-
lent where the zero-order (or unigram) distribution of the
basic attribute domain is of low entropy, such that a few el-
ements are very frequent and the rest relatively infrequent.

This paper proposes a method for improving predictions
from derived viewpoints. The basic premise behind the
method is to use the zero-order distribution of the basic
attribute to weight the probabilities from the derived view-
point when mapping back to the basic attribute. This en-
ables the derived viewpoint to take advantage of the zero
order statistics of basic attributes in a way which is not
possible if the basic and derived viewpoints are modelled
separately. After a review of research using multiple view-
point systems (Section 2), the system used in the current
paper is presented (Section 3), and a detailed description
of the proposed method given (Section 4). The method is
tested on individual derived viewpoints (Section 5.1) be-
fore being applied to various full multiple viewpoint sys-
tems, including viewpoint selection (Section 5.2).

2. RELATED RESEARCH

Multiple viewpoint systems have become an important tool
for statistical learning of music since their inception over
twenty-five years ago [3]. This section reviews their uses
and applications to both musical and non-musical domains.

Early multiple viewpoint systems [3, 7, 16] focussed on
monophonic melodic music, namely chorale and folksong
melodies. The seminal paper [7] uses hand-constructed
multiple viewpoint systems with a corpus of 100 Bach
chorales. Results show that a system of four viewpoints
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capturing pitch, sequential pitch interval, scale degree, du-
rational, and metrical information performs best. The sys-
tem can be used as a generative tool, using a random walk
process to generate a chorale in the style of the train-
ing corpus. Further work with monophonic melodic mu-
sic can be seen with the Information Dynamics of Music
(IDyOM) model [16], which is developed as a cognitive
model of melodic expectation. The PPM* algorithm is re-
fined [20] with a thorough evaluation of smoothing meth-
ods, as well as the methods for combining predictions from
various individual models, and the method for construct-
ing viewpoint systems [17]. IDyOM is found to closely
correlate with experimental data of melodic expectation
from human participants, accounting for 78% of variance
when predicting notes in English hymns [19], and 83% of
variance for British folksongs [21]. Multiple viewpoint
systems have also been applied successfully to Northern
Indian raags [25], Turkish folk music [23], and Greek
folk tunes [6], strengthening their position as a general,
domain-independent statistical learning model for music.

Multiple viewpoint systems can be applied to poly-
phonic musical data, modelling some of the harmonic as-
pects of music. Musical data with multiple voices is di-
vided into vertical slices [4] representing collections of
simultaneous notes, i.e. chords. Relationships between
voices can be captured with the use of linked viewpoints
between voices. This approach has been utilised exten-
sively for the harmonisation of four-part chorales [27, 28].
Harmonic structure can also be modelled directly from
chord symbols [5, 10, 22], removing the problems of spar-
sity and equivalence associated with chord voicing.

Strong probabilistic models of expectation for sequen-
tial data can be used for segmentation and chunking.
IDyOM is compared to rule-based models for boundary
detection in monophonic melodic music in [18], with the
statistical model performing comparably rule-based sys-
tems. Similar methods have been applied to segmenting
natural language at the phoneme and morpheme level [9].
These segmentation studies utilise the fact that certain in-
formation theoretic properties, namely information con-
tent, can be used to predict boundaries in sequences. The
ability for multiple viewpoint systems to model the infor-
mation theoretic properties of sequences, as well as their
general approach to statistical learning, makes them an at-
tractive basis for cognitive architectures capable of general
learning, finding higher order structure, and computational
creativity [29].

3. A MULTIPLE VIEWPOINT SYSTEM FOR
CHORD SEQUENCES

This section presents a brief technical description of the
multiple viewpoint system and corpus used in the current
research. The corpus consists of 348 chord sequences from
jazz standards in lead sheet format from The Real Book
[11] compiled by [15]. This gives a suitably large corpus
of 15,197 chord events, represented as chord symbols (e.g.
Dm7, Bdim, G7). The Real Book is core jazz repertoire
comprising of a range of composers and styles, indicating

it is a good candidate for studying tonal jazz harmony. The
viewpoint pool is derived from similar multiple viewpoint
systems dealing with chord symbol sequences [5, 10].

3.1 Harmonic Viewpoints

Three basic attributes, Root, ChordType, and
PosInBar, are used to represent chord labels. Root is
the functional root of the chord as a pitch class assuming
enharmonic equivalence. ChordType represents the
quality of the chord (e.g. major, minor seventh) and are
simplified to a set of 13 (7, M, m7, m, 6, m6, halfdim,
dim, aug, sus, alt, no3rd, NC) for practical reasons. 1 NC
represents the special case where no harmonic instruments
are instructed to play in the score. PosInBar represents
the metrical position in the current bar measured in
quavers. Since, by definition, a chord must be stated at
the start of each bar, this is a sufficient basic attribute to
represent any durational or temporal information in the
chord sequence.

The following viewpoints are derived from Root.
RootInt is the root interval in semitones modulo-12
between two adjacent chords, returning the symbol -1
if either is NC. MeeusInt categorises root move-
ment (RootInt) using root progression theories [14].
The symbol 1 represents dominant root progressions
(RootInt = 1,2,5,8,9), -1 for subdominant progres-
sions (RootInt = 3,4,7,10,11), 0 for no root movement
(RootInt = 0), -2 for a diminished fifth (RootInt
= 6), and -3 when either root is NC. Since tonal
harmony progresses predominantly in perfect fifths, the
ChromaDist viewpoint simply represents the mini-
mum number of perfect fifths required to get from one
root to the next, or the smallest distance around a cy-
cle of fifths, with -1 representing the NC case. All
of these viewpoints return the undefined symbol, ⊥,
for the first event of a piece when the previous event
does not exist. RootIntFiP, MeeusIntFiP, and
ChromaDistFiP, apply RootInt, MeeusInt and
ChromaDist to the current event and the first event
of the piece instead of the previous event. Finally, a
threaded viewpoint (see [7]), RootInt ⊖ FiB, measures
RootInt between chords on the first beats of successive
bars.

Three viewpoints are derived from ChordType, al-
lowing chord types to be categorised in a number of ways.
MajType assigns a 1 to all chords where the third is ma-
jor, a 2 to all chords where the third is minor and a 0 to
all chords without a third. 7Type assigns a 1 to all chords
with a minor 7th, and a 0 to all other chords, (except a
NC which is given a -1 symbol.) FunctionType as-
signs all chords with a major third and minor seventh a 0
(dominant chords), all other chords with a major third a 1
(major tonics), all chords with a minor third and minor sev-
enth a 2 (pre-dominant), all other minor chords a 3 (minor
tonic), and NC a -1. Table 1 summarises all of the har-
monic viewpoints presented in this section over a sample
chord sequence.

1 See [10] for a detailed explanation of chord type simplification.
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Bm7 D7 NC GM7

Root 11 2 -1 7
ChordType min 7 NC maj
PosInBar 0 0 2 0
RootInt ⊥ 3 -1 -1
MeeusInt ⊥ -1 -3 -3

ChromaDist ⊥ 3 -1 -1
RootIntFiP ⊥ 3 -1 8
MeeusIntFiP ⊥ -1 -3 1
ChromaDistFiP ⊥ 3 -1 4
RootInt ⊖ FiB ⊥ 3 ⊥ 5

MajType 0 1 -1 1
7Type 1 1 -1 0

FunctionType 2 0 -1 1

Table 1. Sample chord sequence with basic and derived
viewpoints.

3.2 System Description

A fully detailed model description is beyond the scope
of this paper, however, broadly the system follows the
IDyOM model [16], branching from the publicly available
LISP implementation [1]. The system estimates probabil-
ities of sequences of events in a basic event space ξ with
viewpoints, τ , operating over sequences formed from el-
ements of a viewpoint alphabet [τ ]. Formally, a view-
point modelling a type τ comprises of a partial function
Ψτ : ξ∗ ⇀ [τ ], a type set ⟨τ⟩ specifying the basic types
the viewpoint is capable of predicting, and a PPM* model
trained from sequences in [τ ]. In order to make predictions
over the basic event space ξ, symbols are converted back
from [τ ] with the inverse function Ψ′ : ξ∗ × [τ ] → 2[τb]

where τb is the basic type associated by τ . This many-
to-one mapping means that a single derived sequence can
represent multiple basic event sequences.

Long-term (LTM) and short-term (STM) models [7] are
used to capture both the general trends of the style mod-
elled and the internal statistical structure of the piece being
processed. An LTM consists of the full training set, whilst
the STM is built incrementally from the current piece and
is discarded after it has been processed. Predictions from
all viewpoints within the LTM/STM are combined first,
before combining the LTM and STM predictions. Predic-
tion combination is achieved with a weighted geometric
mean [17], favouring the least uncertain models accord-
ing to their Shannon entropy. 2 Various smoothing meth-
ods are employed, allowing novel symbols to be predicted
and predictions from different length contexts to be com-
bined in a meaningful way without assuming a fixed order
bound [20].

Multiple viewpoint systems are assessed quantitatively
with methods from information theory [13]. The main per-
formance measure is mean information content h̄, repre-
senting the number of bits required on average to represent
each symbol in the sequence of length J (1).

2 For reference, all model combinations in this paper are achieved with
an LTM-STM bias of 7 and a viewpoint bias of 2 see [17] for details.

h̄
(
eJ
1

)
= − 1

J

J∑

i=1

log2 p
(
ei | ei−1

i−n+1

)
(1)

4. USING ZERO-ORDER STATISTICS TO
WEIGHT Ψ′

The focus of this paper is to improve predictions from de-
rived viewpoints by weighting probabilities after the in-
verse mapping function Ψ′ has been applied. Firstly, it is
useful to show in detail cases where certain derived view-
points would be poor predictors for a basic attribute.

Where a derived viewpoint maps an element onto a
large number of basic elements, a certain amount of infor-
mation is lost by dividing the probability mass uniformly.
Suppose a prediction from MajType returns a high prob-
ability for a major chord, mapping onto a ‘7’, ‘M7’, ‘6’,
‘alt’ or ‘aug’ ChordType. ‘7’ and ‘M7’ chords are very
common, whilst ‘alt’ and ‘aug’ chords are comparatively
rare. Since MajType must distribute probability mass
equally to all five of these basic elements, a considerable
amount of information is lost and it remains a poor predic-
tor of ChordType. The predictive strength of these kinds
of viewpoints are to generalise data which will become
sparse, specifically in sequence prediction when match-
ing contexts in the PPM* model. This strength is likely to
be reduced by the uniform distribution of probability mass
and could make these viewpoints poor predictors; return-
ing high mean information content estimates and remain-
ing unselected in viewpoint selection.

A general approach to counter this loss of information is
to weight probabilities with the zero-order (unigram) fre-
quencies when distributing probability mass from a derived
element to the relevant basic elements. For reference, (2)
shows a probability estimate of a basic element, p(tτb

),
calculated by uniformly distributing the probability mass
of a derived element, p(tτ ), following [17]. B represents
the set of basic elements that are mapped onto from the
derived element tτ . The proposed alternative, shown in
(3), uses probabilities from the zero-order model p0(tτb

)
to weight the distribution of probability mass from tτ to
tτb

. As with PPM* predictions, probability mass must be
reserved for unseen symbols in the basic element alpha-
bet, so a smoothing method and −1th order distribution is
utilised. Using an established smoothing framework [20],
(4) shows an interpolated smoothing method with escape
method C, an order bound of 0 and with no update exclu-
sion. c(tτb

) is the number of times the symbol tτb
occurs

the training set, J is the length of the training set, [τb] is
the alphabet of the basic viewpoint, and [τb]

s the observed
alphabet of the basic viewpoint.

p(tτb
) =

p(tτ )

|B| (2)

pw(tτb
) = p(tτ )

p0(tτb
)∑

i∈B p0(i)
(3)
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p0(tτb
) =

c(tτb
)

J + |[τb]s|
+ ...

|[τb]
s|

J + |[τb]s|
· 1

|[τb]| + 1 − |[τb]s|

(4)

A demonstration of this process is shown in Figure 1.
FunctionType is used to predict the next ChordType
symbol with an LTM model given the context Am7, D7,
Bm7, Bbm7. The top chart shows a strong expectation
of a pre-dominant chord which could map onto a m7,
halfdim, or dim ChordType. With an unweighted Ψ′ (2)
from FunctionType to ChordType, these three ba-
sic elements are all given equal probability (middle chart).
However, since m7 is far more common than halfdim and
dim, a more accurate probability distribution could be one
weighted (3) by the zero-order frequencies (bottom chart),
assigning a high probability to m7. This approach allows
the powerful generalisation of derived viewpoint models
to be combined efficiently with more specific predictions
from the basic viewpoint.
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Figure 1. Top: probability distribution of
FunctionType following the context Am7, D7,
Bm7, Bbm7. Middle and bottom: probability distributions
for ChordType predicted by FunctionType with
an unweighted (middle) and zero-order weighted Ψ′

(bottom).

5. TESTING THE IMPACT OF WEIGHTING Ψ′

To investigate the effect of weighting Ψ′
τ with a zero or-

der model, the mean information content, h̄ (1), is used
as a performance metric to compare predictions with the
weighted and unweighted inverse mapping function. In
all cases, h̄ is calculated with a 10-fold cross-validation
of the corpus. The effect of the weighting on individ-
ual derived viewpoints is observed first (Section 5.1) be-
fore comparing the impact on full multiple viewpoint sys-
tems (Section 5.2). The STM is an unbounded interpolated
smoothing model with escape method D using update ex-
clusion, and the LTM an unbounded interpolated smooth-
ing model with escape method C without update exclu-
sion [20]. These parameters have been found to be optimal
for the current corpus [10].

For the individual viewpoints, it is expected that de-
rived viewpoints which abstract heavily from their basic
viewpoint will benefit most from weighting Ψ′. Typically,
these are viewpoints derived from ChordType, for ex-
ample, MajType reduces the alphabet of ChordType
from 13 down to 3. By contrast, it is expected that the
impact of weighting Ψ′ will be far smaller for derived
viewpoints with a close to one-to-one mapping between
alphabets (e.g. RootInt), if significant at all. When con-
structing a full multiple viewpoint system it is hoped that
weighting Ψ′ will help more derived viewpoints to be se-
lected over basic viewpoints. Not only should this give a
lower mean information content, but also produce a more
compact viewpoint model. Successful derived viewpoints
should abstract information away from basic viewpoints
onto smaller alphabets without a loss in performance.

5.1 Individual Viewpoints Results

Six derived viewpoints for predicting Root and
ChordType are chosen for testing, as well as the
basic viewpoints themselves for reference. Table 2
shows the mean information content calculated using
both weighted and unweighted Ψ′ functions. Effect
size measured by Cohen’s d = h̄1−h̄2

σpooled
across all pieces

(n = 348) is used to quantify the relative performance for
each viewpoint. A one-sided paired t-test across pieces
assesses statistical significance between the means at the
p < .001 level, marked with a *.

Strikingly, the derived viewpoints predicting
ChordType benefit most from the weighting method,
all with effect sizes greater than 1.7 and an absolute
improvement of around 0.9 bit/symbol. By contrast,
the impact of the weighting on the viewpoints derived
from Root is small and inconsistent, with effect sizes of
around 0.1 or less. Indeed, weighting Ψ′ has a marginally
negative impact on RootInt, although only by 0.016
bits/symbol. It is likely that this is because in the majority
of cases RootInt has a one-to-one mapping with Root,
except for the NC case where a RootInt symbol of -1
maps onto the full alphabet of Root. It is interesting
to note that none of the individual derived viewpoints
are able to predict their basic viewpoint better than the
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Derived
Viewpoint

Unweighted
Ψ′

Weighted
Ψ′ d

ChordType 1.807 1.807 .000
MajType 3.270 2.315 1.977*
7Type 3.249 2.371 1.766*

FunctionType 3.060 2.080 1.731*
Root 2.259 2.259 .000

RootInt 2.297 2.313 -.030
MeeusInt 3.152 3.076 .129*

ChromaDist 2.688 2.681 .009

Table 2. Predicting ChordType (top) and Root (bot-
tom) with weighted and unweighted Ψ′. Performance dif-
ference is measured by Cohen’s d = h̄1−h̄2

σpooled
. * marks dif-

ferences which are statistically significant at the p <.001
level according to a one-sided paired t-test.

basic viewpoint itself, even with a weighted Ψ′. At this
point their impact on full multiple viewpoint systems is
unknown and must be tested with a viewpoint selection
algorithm.

5.2 Viewpoint Selection Results

A viewpoint selection algorithm is a search algorithm to
find the locally optimal multiple viewpoint system given
a set of candidate viewpoints. Following [17], the current
research uses a forward stepwise algorithm which, starting
from the empty set of viewpoints, alternately attempting
to add and then delete viewpoints from the current system,
greedily selecting the best system according to h̄ at each
iteration. For this study a stopping criteria is imposed such
that the new viewpoint system must improve h̄ by at least
an effect size of d > .005, or more than 0.5% of a standard
deviation.

Predicting the Root and ChordType together, given
the metrical position in the bar (PosInBar), is chosen
as a cognitively tangible task for the multiple viewpoint
system to perform. In order to predict the two basic at-
tributes simultaneously they are considered as the merged
attribute Root⊗ChordType. Merged attributes are sim-
ply a cross product of basic attributes, equivalent to linked
viewpoints [7], and have been found to be an effective
method for predicting multiple highly correlated basic at-
tributes [10]. An unbounded interpolated smoothing model
with escape method C for both STM and LTM is found
to be optimal for predicting merged attributes in the cur-
rent corpus [10], with update exclusion used in the STM
only. Using all of the basic and derived viewpoints speci-
fied in Section 3.1 and allowing linked viewpoints consist-
ing of up to two constituent viewpoints, or three if one is
PosInBar, a pool of 64 candidate viewpoints for selec-
tion is formed.

The unweighted Ψ′ system goes through five iterations
of viewpoint addition (without deletion) before termina-
tion returning h̄ = 3.037 (Figure 2). By contrast, the
weighted Ψ′ system terminates after seven viewpoint ad-
ditions with a lower h̄ of 3.012 (Figure 3). The difference

between these results is found to be statistically significant
with a paired one-sided t-test at the .001 level (df = 347
t = 5.422 p < .001). However, more importantly, the
effect size is found to be small, d = .026, owing to the ab-
solute different of .025 bits/symbols between the means.
Since the termination criteria is somewhat arbitrary (an
appropriate value for d is hand-selected), the unweighted
system was allowed to continue up to seven iterations to
match the weighted system. This returns h̄ = 3.025,
which is still found to be significantly outperformed by the
weighted model (df = 347 t = 3.725 p < .001, effect size
d = .017).

In the context of the current study the viewpoints cho-
sen from both viewpoint selection runs is highly rele-
vant. The unweighted Ψ′ selects only basic viewpoints
and viewpoints derived from Root. No viewpoints de-
rived from ChordType are selected, nor MeeusInt or
ChromaDist. This is to be expected given the findings in
Section 5.1, where derived viewpoints with an unweighted
Ψ′ are found to be poor predictors of ChordType. By
contrast, during viewpoint selection with a weighted Ψ′,
linked viewpoints containing FunctionType are added
on the third and sixth iterations and MeeusInt on the
fourth iteration. This means that not only does the
weighted Ψ′ model perform slightly better in terms of
h̄, but is also more compact since the average viewpoint
alphabet size of the seven linked viewpoints selected is
124.4, as opposed to 169 for the unweighted Ψ′ model. 3

6. CONCLUSIONS AND DISCUSSION

This paper has presented a new method for improving pre-
dictions from derived viewpoints by weighting Ψ′ (the
function which maps from the derived to basic alphabet of
a viewpoint) with the zero-order frequencies of the basic
attribute. Results show that such a weighting significantly
improves the performance of derived viewpoints which ab-
stract heavily away from their basic viewpoint, notably
MajType, 7Type, and FunctionType. On the other
hand, viewpoints derived from Root, such as RootInt,
MeeusInt, and ChromaDist, see only marginal im-
provements or slight decreases in performance. It has been
shown that weighting Ψ′ allows more derived viewpoints
to be chosen in viewpoint selection. This produces a model
which returns a slightly lower mean information content
than its unweighted counterpart. This model is also slightly
more computationally efficient owing to the smaller alpha-
bet sizes of the selected viewpoints. In practical terms, this
creates a model that has a closer fit to the training data
whilst taking slightly less time to run for any of the tasks
outlined in Section 2 (computational modelling of expec-
tation, segmentation, and automatic music generation).

This paper studied weighting only by zero-order fre-
quency. Useful future research might explore alterna-
tive weighting schemes beyond the zero-order frequencies,
such as first-order Markov, or even more aggressive, ex-
ponential weighting schemes. Furthermore applying the

3 Note that PosInBar is a given attribute and so contributes an al-
phabet size of only 1 during the prediction phase.
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(7 + RootInt⊖ FiB⊗ ChordType)

Figure 2. Viewpoint selection for multiple viewpoint mod-
els using unweighted Ψ′. Viewpoints added at each itera-
tion are shown below the graph. Bracketed viewpoints and
the dotted line indicate viewpoints added after termination.
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Figure 3. Viewpoint selection for multiple viewpoint mod-
els using weighted Ψ′. Viewpoints added at each iteration
are shown below the graph.

weighting schemes to a range of domains, genres, and cor-
pora beyond jazz harmony is necessary to prove the meth-
ods presented in this paper can be universally applied.

The weighting of Ψ′ for derived viewpoints appears to
be successful as it combines a more general, abstracted
model capable of finding statistical regularities with the
more fine-grained model of the basic viewpoint. It could be
argued that this is already achieved by multiple viewpoint
systems in that they combine predictions from multiple
models at various levels of abstraction in an information-
theoretically informed manner. However, if the effect of
weighting Ψ′ with a zero-order model was entirely sub-
sumed by viewpoint combination then almost identical
viewpoints would be chosen during the viewpoint selec-
tion process, which is not the case (Section 5.2). As the
results stand, the weighted Ψ′ model selects more derived
viewpoints, forming a more compact model and performs
slightly better in terms of mean information content.

The compactness of multiple viewpoint systems is rel-
evant both to computational complexity and their relation-
ship with cognitive representations. Searching a suffix tree
for the PPM* algorithm with the current implementation
using Ukkonen’s algorithm [26] is achieved in linear time
(to the size of the training data J), but must be done |[τ ]|
times to return a complete prediction set over the viewpoint
alphabet [τ ], giving a time complexity of O(J |[τ ]|). Se-
lecting viewpoints with a smaller alphabet size has, there-
fore, a substantial impact on the time complexity for the
system. As a model for human cognition [19], selecting
viewpoints with smaller alphabets without a loss of perfor-
mance is equivalent to building levels of abstraction when
learning cognitive representations [29].

Additionally, the weighted Ψ′ model constructs more
convincing viewpoint systems from a musicological per-
spective. Chord function is an important aspect of jazz
music [12] and tonal harmony in general, where common
cadences progress in pre-dominant, dominant, tonic, pat-
terns. Therefore, the fact that ChordType is selected
over MajType and 7Type suggests that chord function as
signified by the third and seventh of the chord together is
more important than the quality of the third (modelled by
MajType) or seventh (modelled by 7type) separately.
Similarly, the selection of MeeusInt in the model sug-
gests that functional theories for root progressions may be
useful descriptors of tonal harmony. On the other hand,
ChromaDist, which considers rising and falling progres-
sions by a perfect fifth equivalent, is not selected. This sup-
ports the notion that harmonic progressions in tonal har-
mony are goal-oriented and strongly directional [8].
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ABSTRACT

The goal of live song identification is to recognize a song
based on a short, noisy cell phone recording of a live per-
formance. We propose a system for known-artist live song
identification and provide empirical evidence of its feasi-
bility. The proposed system represents audio as a sequence
of hashprints, which are binary fingerprints that are derived
from applying a set of spectro-temporal filters to a spectro-
gram representation. The spectro-temporal filters can be
learned in an unsupervised manner on a small amount of
data, and can thus tailor its representation to each artist.
Matching is performed using a cross-correlation approach
with downsampling and rescoring. We evaluate our ap-
proach on the Gracenote live song identification bench-
mark data set, and compare our results to five other base-
line systems. Compared to the previous state-of-the-art,
the proposed system improves the mean reciprocal rank
from .68 to .79, while simultaneously reducing the average
runtime per query from 10 seconds down to 0.9 seconds.

1. INTRODUCTION

This paper tackles the problem of song identification based
on short cell phone recordings of live performances. This
problem is a hybrid of exact-match audio identification and
cover song detection. Similar to the exact-match audio
identification problem, we would like to identify a song
based on a short, possibly noisy query. The query may
only be a few seconds long, and might be corrupted by ad-
ditive noise sources as well as convolutive noise based on
the acoustics of the environment. Because song identifica-
tion is a real-time application, the amount of latency that
the user is willing to tolerate is very low. Similar to the
cover song detection problem, we would like to identify
different performances of the same song. These perfor-
mances may have variations in timing, tempo, key, instru-
mentation, and arrangement. In this sense, the live song
identification problem is doubly challenging in that it in-
herits the challenges and difficulties of both worlds: it is
given a short, noisy query and expected to handle perfor-
mance variations and to operate in (near) real-time.

c© TJ Tsai, Thomas Prätzlich, Meinard Müller. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: TJ Tsai, Thomas Prätzlich, Meinard Müller. “Known-
Artist Live Song ID: A Hashprint Approach”, 17th International Society
for Music Information Retrieval Conference, 2016.

To make this problem feasible, we must reduce the
searchable set to a tractable size. One way to accom-
plish this is shown by the system architecture in Figure 1.
When a query is submitted, the GPS coordinates of the
cell phone and the timestamp information are used to as-
sociate the query with a concert, which enables the sys-
tem to infer who the musical artist is. Once the artist has
been inferred, the problem is reduced to a known-artist
search: we assume the artist is known, and we would like
to identify which song is being played. The known-artist
search is more tractable because it constrains the set of
possible songs to the musical artist’s studio recordings. In
this work, we will focus our attention on the known-artist
search.

One important assumption in Figure 1 is that the musi-
cal artist or group is popular enough that its concert sched-
ule (dates and locations) can be stored in a database. So,
for example, this system architecture would not work for
an amateur musician performing at a local restaurant. It
would work for popular artists whose concert schedule is
available online.

Exact-match audio identification and cover song detec-
tion have both been explored fairly extensively (e.g. [25]
[1] [22] [20] [19] [7]). There are several successful com-
mercial applications for exact-match music identification,
such as Shazam and SoundHound. Both tasks have ben-
efited from standardized evaluations like the TRECVid
content-based copy detection task [13] and the MIREX
cover song retrieval task [4]. There have also been a num-
ber of works on identifying related musical passages based
on query fragments [8] [10] [2], but most of these works
assume a fragment length that is too long for a real-time
application (10 to 30 seconds). Additionally, these works
mostly focus on classical music, where performed works
are typically indicated on a printed program and where the
audience is generally very quiet (unlike at a rock concert).

In contrast, live song identification based on short cell
phone queries is relatively new and unexplored. One ma-
jor challenge for this task, as with many other tasks, is col-
lecting a suitable data set. Rafii et al. [15] collect a set
of cell phone recordings of live concerts for 10 different
bands, and they propose a method for song identification
based on a binarized representation of the constant Q trans-
form. In this work, we propose an approach based on a bi-
narized representation of audio called hashprints coupled
with an efficient, flexible method for matching hashprint
sequences, and we explore the performance of such an ap-
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Figure 1. System architecture of the live song identifi-
cation system. Using GPS and timestamp information,
queries are associated with a concert in order to infer the
artist.

proach on the live song identification task.
This paper is organized as follows. Section 2 describes

the proposed system. Section 3 describes the evaluation of
the system. Section 4 presents some additional analyses of
interest. Section 5 concludes the work.

2. SYSTEM DESCRIPTION

Figure 2 shows a block diagram of the proposed known-
artist search system. There are four main system compo-
nents, each of which is described below.

2.1 Constant Q Transform

The first main system component is computing a con-
stant Q transform (CQT). The CQT computes a time-
frequency representation of audio using a set of logarith-
mically spaced filters with constant Q-factor. 1 This rep-
resentation is advantageous for one very important reason:
the spacing and width of the filters are designed to match
the pitches on the Western musical scale, so the represen-
tation is especially suitable for considering key transposi-
tions. In our experiments, we used the CQT implementa-
tion described by Schörkhuber and Klapuri [18]. Similar
to the work by Rafii et al. [15], we consider 24 subbands
per octave between C3 (130.81 Hz) and C8 (4186.01 Hz).
To mimic the nonlinear compression of the human audi-
tory system, we compute the log of the subbands’ local
energies. At the end of this processing, we have 121 log-
energy values every 12.4 ms.

2.2 Hamming Embedding

The second main system component is computing a Ham-
ming (binary) embedding. Using a Hamming representa-
tion has two main benefits. First, it enables us to store
fingerprints very efficiently in memory. In our implemen-
tation, we represent each audio frame in a 64-dimensional
Hamming space, which allows us to store each hashprint in
memory as a single 64-bit integer. Second, it enables us to
compute Hamming distances between fingerprints very ef-
ficiently. We can compute the Hamming distance between

1 The Q-factor refers to the ratio between the filter’s center frequency
and bandwidth, so a constant Q-factor means that each filter’s bandwidth
is proportional to its center frequency.

Figure 2. Block diagram for a known-artist search. Mul-
tiple pitch-shifted versions of the original studio tracks are
considered to handle the possibility that the live perfor-
mance is performed in a different key.

two hashprints by performing a single logical xor opera-
tor on two 64-bit integers, and then counting the number
of bits in the result. This computation offers significant
savings compared to computing the Euclidean distance be-
tween two vectors of floating point numbers. These com-
putational savings will be important in reducing the latency
of the system.

Our Hamming embedding grows out of two basic prin-
ciples: compactness and robustness. Compactness means
that the binary representation is efficient. This means that
each bit should be balanced (i.e. 0 half the time and 1 half
the time) and that the bits should be uncorrelated. Note that
any imbalance in a bit or any correlation among bits will
result in an inefficient representation. Robustness means
that each bit should be robust to noise. In the context of
thresholding a random variable, robustness means maxi-
mizing the variance of the random variable’s probability
distribution. To see this, note that if the random variable
takes a value that is close to the threshold, a little bit of
noise may cause the random variable to fall on the wrong
side of the threshold, resulting in an incorrect bit. We can
minimize the probability of this occurring by maximizing
the variance of the underlying distribution. 2

The Hamming embedding is determined by applying a
set of 64 spectro-temporal filters at each frame, and then
encoding whether each spectro-temporal feature is increas-
ing or decreasing in time. The spectro-temporal filters are
learned in an unsupervised manner by solving the sequence
of optimization problems described below. These filters
are selected to maximize feature variance, which maxi-
mizes the robustness of the individual bits. Consider the
CQT log-energy values for a single audio frame along with
its context frames, resulting in a R121w vector, where w
specifies the number of context frames. We can stack a
bunch of these vectors into a large RM×121w matrix A,
where M corresponds (approximately) to the total num-
ber of audio frames in a collection of the artist’s studio
tracks. Let S ∈ R121w×121w be the covariance matrix of
A, and let xi ∈ R121w denote the coefficients of the ith

spectro-temporal filter. Then, for i = 1, . . . , 64, we solve
the following sequence of optimization problems:

2 Since the random variable is a linear combination of many CQT val-
ues, the distribution will generally be roughly bell-shaped due to the cen-
tral limit theorem.
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maximize xTi Sxi

subject to ‖xi‖22 = 1

xTi xj = 0, j = 1, . . . , i− 1.

(1)

The objective function is simply the variance of the fea-
tures resulting from filter xi. So, this formulation max-
imizes the variance (i.e. robustness) while ensuring that
the filters are uncorrelated (i.e. compactness). The above
formulation is exactly the eigenvector problem, for which
very efficient off-the-shelf solutions exist.

Each bit in the hashprint representation encodes
whether the corresponding spectro-temporal feature is in-
creasing or decreasing in time. We first compute delta
spectro-temporal features at a separation of approximately
one second, and then we threshold the delta features at
zero. The separation of one second was determined em-
pirically, and the threshold at zero ensures that the bits are
balanced. Note that if we were to threshold the spectro-
temporal features directly, our Hamming representation
would not be invariant to volume changes (i.e. scaling the
audio by a constant factor would change the Hamming rep-
resentation). Because we threshold on delta features, each
bit captures whether the corresponding spectro-temporal
feature is increasing or decreasing, which is a volume-
invariant quantity.

2.3 Search

The third main system component is the search mech-
anism: given a query hashprint sequence, find the best
matching reference sequence in the database. In this work,
we explore the performance of two different search strate-
gies. These two systems will be referred to as hashprint1
and hashprint2 (abbreviated as hprint1 and hprint2 in Fig-
ure 3). In both approaches, we compute hashprints every
62 ms and usingw = 20 context frames. These parameters
were determined empirically.

The first search strategy (hashprint1) is a subsequence
dynamic time warping (DTW) approach based on a Ham-
ming distance cost matrix. The subsequence DTW is a
modification of the traditional DTW approach which al-
lows one sequence (the query) to begin anywhere in the
other recording (the reference) with no penalty. One ex-
planation of this technique can be found in [11]. We allow
{(1, 1), (1, 2), (2, 1)} transitions, which allows live ver-
sions to differ in tempo from studio versions by a factor
up to two. We perform subsequence DTW of the query
with all sequences in the database, and then use the align-
ment score (normalized by path length) to rank the studio
tracks.

The second search strategy (hashprint2) is a cross-
correlation approach with downsampling and rescoring.
First, the query and reference hashprint sequences are
downsampled by a factor of B. For example, when B = 2
every other hashprint is discarded. Next, for each reference
sequence in the database, we determine the frame offset
that maximizes bit agreement between the downsampled
query sequence and the downsampled reference sequence.

The bit agreement at this offset is used as a match score for
the reference sequence. After sorting all of the sequences
in the database by their downsampled match score, we
identify the top 10 candidate sequences. We then rescore
these top 10 candidate sequences using the full hashprint
sequence (i.e. without downsampling). Finally, we re-
sort the top 10 candidate sequences based on their refined
match score. The resulting ranking is the final output of
the system. The advantage of the second search strategy
is computational efficiency: we first do a rough scoring of
the sequences, and only do a more fine-grained scoring on
the top few candidate sequences.

2.4 Pitch Shifting

The fourth main system component is pitch shifting. A
band might perform a live version of a song in a slightly
different key than the studio version, or the live version
may have tuning differences. To ensure robustness to these
variations, we considered pitch shifts up to four quarter
tones above and below the original studio version. So, the
database contains nine hashprint sequences for each studio
track. When performing a search, we use the maximum
alignment score from the nine pitch-shifted versions as the
aggregate score for a studio track. We then rank the studio
tracks according to their aggregate scores.

2.5 Relation to Previous Work

It is instructive to interpret the above approach in light of
previous work. Using multiple context frames in the man-
ner described above is often referred to as shingling [2] or
time delay embedding [20], a technique often used in mu-
sic identification and cover song detection tasks. It allows
for greater discrimination on a single feature vector than
could be achieved based only on a single frame. The tech-
nique of thresholding on projections of maximum variance
is called spectral hashing [26] in the hashing literature. It
can be thought of as a variant of locality sensitive hash-
ing [3], where the projections are done in a data-dependent
way instead of projecting onto random directions. So, we
can summarize our approach as applying spectral hash-
ing to a shingle representation, along with a modification
to ensure invariance to volume changes (i.e. threshold-
ing on delta features). This approach was first proposed
in an exact-match fingerprinting application using reverse-
indexing techniques [23]. Here, instead of using the Ham-
ming embedding to perform a table lookup, we instead use
the Hamming distance between hashprints as a metric of
similarity in a non-exact match scenario.

There are, of course, many other ways to derive a Ham-
ming embedding. The previous work by Rafii et al. [15]
performs the Hamming embedding by comparing each
CQT energy value to the median value of a surrounding
region in time-frequency. Many recent works have ex-
plored Hamming embeddings learned through deep neural
network architectures [17] [12], including a recent work
by Raffel and Ellis [14] proposing such an approach for
matching MIDI and audio files. One advantage of our pro-
posed method is that it learns the audio fingerprint rep-
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Artist Name Genre # Tracks
Big K.R.I.T. hip hop 71
Chromeo electro-funk 44
Death Cab for Cutie indie rock 87
Foo Fighters hard rock 86
Kanye West hip hop 92
Maroon 5 pop rock 66
One Direction pop boy band 60
Taylor Swift country, pop 71
T.I. hip hop 154
Tom Petty rock, blues rock 193

Table 1. Overview of the Gracenote live song identifica-
tion data. The database contains full tracks taken from
artists’ studio albums. The queries consist of 1000 6-
second cell phone recordings of live performances (100
queries per artist).

resentation in an unsupervised manner. This is particu-
larly helpful for our scenario of interest, since collecting
noisy cell phone queries and annotating ground truth is
very time-consuming and labor-intensive. Our proposed
method also has the benefit of requiring relatively little
data to learn a reasonable representation. This can be help-
ful if, for example, the artist of interest only has tens of stu-
dio tracks. In such cases, a deep auto-encoder [9] may not
have sufficient training data to converge to a good repre-
sentation. So, our method straddles two different extremes:
it is adaptive to the data (unlike the fixed representation
proposed in [15]), but it works well with small amounts
of data (unlike representations based on deep neural net-
works).

3. EVALUATION

We will describe the evaluation of the proposed system in
three parts: the data, the evaluation metric, and the results.

3.1 Data

We use the Gracenote live song identification data set. This
is a proprietary data set that is used for internal benchmark-
ing of live song identification systems at Gracenote. The
data comes from 10 bands spanning a range of genres, in-
cluding rock, pop, country, and rap. There are two parts
to the data set: the database and the queries. The database
consists of full tracks taken from the artists’ studio albums.
Table 1 shows an overview of the database, including a
brief description of each band and the number of studio
tracks. Note that the number of tracks per artist ranges
from 44 (for newer groups like Chromeo) up to 193 (for
very established musicians like Tom Petty). The queries
consist of 1000 short cell phone recordings of live per-
formances, and were generated in the following fashion.
For each band, 10 live audio tracks were extracted from
Youtube videos, each from a different song. The videos
were all recorded from smartphones during actual live per-
formances. For each cell phone recording, the audio was

Figure 3. Mean reciprocal rank for five baseline systems
and the two proposed systems (hprint1, hprint2).

cropped to exclude any non-music material at the begin-
ning or end (e.g. applause, introducing the song, etc). Fi-
nally, ten 6-second segments evenly spaced throughout the
cropped recording were extracted. Thus, there are 100 6-
second queries for each band, totaling 1000 queries.

3.2 Evaluation Metric

We use mean reciprocal rank (MRR) as our evaluation met-
ric [24]. This measure is defined by the equation

MRR =
1

N

N∑

i=1

1

Ri

whereN is the number of queries andRi specifies the rank
of the correct answer in the ith query. When a song has two
or more studio versions, we define Ri to be the best rank
among the multiple studio versions. The MRR is a succinct
way to measure rankings when there is an objective correct
answer. Note that when a system performs perfectly — it
returns the correct answer as the first item every time —
it will have an MRR of 1. A system that performs very
poorly will have an MRR close to 0. Higher MRR is better.

3.3 Results

Figure 3 compares the performance of the proposed hash-
print1 and hashprint2 systems with five different baselines.
The first two baselines (HydraSVM [16] and Ellis07 [6])
are open-source cover song detection systems. The next
two baselines (Panako [21] and Shazam [25]) are open-
source audio fingerprinting systems. 3 The fifth baseline
is the previously proposed live song identification system
by Rafii et al. [15]. In order to allow for a more fair com-
parison, we also ran this baseline system with four quar-
ter tone pitch shifts above and below the original studio

3 For the Shazam baseline, we used the implementation by Ellis [5].
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Figure 4. Breakdown of results by artist. The first three
letters of the artist’s name is shown at bottom.

recording. The two rightmost bars in Figure 3 show the
performance of the hashprint1 and hashprint2 systems, re-
spectively. Figure 4 shows the same results broken down
by artist.

There are four things to notice in Figures 3 and 4.
First, cover song and fingerprinting approaches perform
poorly. The first four baseline systems suggest that exist-
ing cover song detection and existing audio fingerprinting
approaches may not be suitable solutions to the live song
identification problem. Audio fingerprinting approaches
typically assume that the underlying source signal is iden-
tical, and may not be able to cope with the variations found
in live performances. On the other hand, cover song detec-
tion systems typically assume that an entire clean studio
track is available, and may not cope well with short, noisy
queries. Second, the proposed systems improve upon the
previous state-of-the-art. Comparing the three rightmost
systems, we see that the two proposed systems improve the
MRR from .68 (rafii) up to .78 (hashprint1) and .79 (hash-
print2). Given the reciprocal nature of the evaluation met-
ric, this amounts to a major improvement in performance.
Third, the more computationally efficient version of the
proposed system (hashprint2) has the best performance. In
system design, we often sacrifice accuracy for efficiency.
But in this case, we observe no degradation in system per-
formance while reducing computational cost. The reason
for this, as we will see in Section 4, is because the extra de-
grees of freedom in the DTW matching are not necessary.
We will also investigate the runtime performance of these
systems in the next section. Fourth, performance varies
by artist. We see a wide variation in MRR from artist to
artist, but all three live song identification systems gener-
ally agree on which artists are ‘hard’ and which are ‘easy’.
One major factor determining this difficulty level is how
much variation there is between an artist’s studio recording
and live performance. The other major factor, of course, is

Matching Downsample MRR Runtime (s)
DTW - .78 29.3
xcorr 1 .81 3.43
xcorr 2 .80 1.26
xcorr 3 .79 .90
xcorr 4 .77 .76
xcorr 5 .73 .69

Table 2. Effect of downsampling on a cross-correlation
matching approach. The third and fourth columns show
system performance and average runtime required to pro-
cess each 6-second query. The top row shows the per-
formance of a DTW matching approach for comparison.
The first and fourth rows correspond to the hashprint1 and
hashprint2 systems shown in Figure 3.

how many studio tracks are in the database. Note that the
best performance (Chromeo) and worst performance (Tom
Petty) correlate with how many studio tracks the artist had.

4. ANALYSIS

In this section, we investigate two different questions of
interest about the proposed systems.

4.1 Runtime

The first question of interest to us is “What is the runtime
of the proposed systems?” Since live song identification is
a real-time application, the amount of latency is a very im-
portant consideration. Table 2 shows the average runtime
of a cross-correlation approach across a range of downsam-
pling rates. This is the average amount of time required to
process each 6-second query. 4 The runtime for a subse-
quence DTW approach is also shown for reference. The
first and fourth rows (highlighted in bold) correspond to
the hashprint1 and hashprint2 systems shown in Figure 3.

There are three things to notice about Table 2. First,
cross-correlation is unilaterally better than DTW. When we
compare the first two rows of Table 2, we see that switch-
ing from DTW to cross-correlation drastically reduces
the runtime (from 29.3s to 3.43s) while simultaneously
improving the performance (from .78MRR to .81MRR).
These results are an indication that the extra degrees of
freedom in the DTW matching are not beneficial or neces-
sary. Across a short 6-second query, it appears that we can
simply assume a 1-to-1 tempo correspondence and allow
the context frames in each hashprint to absorb slight mis-
matches in timing. Of course, this conclusion only gener-
alizes to the extent that these 10 artists are representative
of other live song identification scenarios.

Second, downsampling trades off accuracy for effi-
ciency. When we compare the bottom five rows of Table 2,
we see a tradeoff between MRR and average runtime: as
downsampling rate increases, we sacrifice performance for
efficiency. For a downsampling rate of 3 (the hashprint2

4 Note that the runtime scales linearly with the size of the database. So,
for example, the runtime for Tom Petty will be longer than for Chromeo.
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Figure 5. Learned filters for Big K.R.I.T. (top four rows)
and Taylor Swift (bottom four rows). The filters are or-
dered first from left to right, then from top to bottom. Each
filter spans .372 sec and covers a frequency range from C3
to C8.

system), we can reduce the average runtime to under a sec-
ond, while only sacrificing a little on accuracy (MRR falls
from .81 to .79). Note that the previously proposed system
by Rafii et al. [15] has a self-reported runtime of 10 sec-
onds per query, so the hashprint2 system may offer sub-
stantial improvement in runtime efficiency. 5

Third, there is a floor to the runtime. Note that using
a downsampling rate higher than 3 only benefits the aver-
age runtime marginally. This is because there is a fixed
cost (about .5 seconds) for computing the CQT. The down-
sampling can only improve the time spent searching the
database, but the time required to compute the query hash-
prints is a fixed cost. In a commercial application, how-
ever, the CQT could be computed in a streaming manner,
so that the effective latency experienced by the user is de-
termined by the search time. Such an optimization, how-
ever, is beyond the scope of this work.

4.2 Filters

The second question of interest to us is “What do the
learned filters look like?” This can provide intuition about
what type of information the hashprint is capturing. Fig-
ure 5 shows the top 32 learned filters for Big K.R.I.T. (top
four rows) and Taylor Swift (bottom four rows). The fil-
ters are arranged first from left to right, and then from top
to bottom. Each filter spans .372 sec (horizontal axis) and
covers a frequency range from C3 to C8 (vertical axis).

There are three things to notice about the filters in Fig-
ure 5. First, they contain both temporal and spectral mod-
ulations. Some of the filters primarily capture modula-
tions in time, such as filters 3, 4, 5, and 8 in the first row.
Some filters primarily capture modulations in frequency,
such as the filters in row 3 that contain many horizontal
bands. Other filters capture modulations in both time and

5 Since we re-implemented this baseline system without optimizing for
runtime efficiency, we rely on the self-reported runtime in [15].

frequency, such as filters 15 and 16 (in row 2), which seem
to capture temporal modulations in the higher frequencies
and spectral modulations in the lower frequencies. The im-
portant thing to notice is that both types of modulations
are important. If our hashprint representation only consid-
ered the CQT energy values for a single context frame, we
would hinder the representational power of the hashprints.

Second, the filters capture both broad and fine spectral
structures. Many of the filters capture pitch-like quanti-
ties based on fine spectral structure, which appear as thin
horizontal bands. But other filters capture very broad spec-
tral structure (such as filter 6, row 1) or treat broad ranges
of frequencies differently (such as filters 15 and 16, previ-
ously mentioned). Whereas many other feature representa-
tions often focus on only fine spectral detail or only broad
spectral structure, the hashprint seems to be capturing both
types of information.

Third, the filters are artist-specific. When we compare
the filters for Big K.R.I.T. and the filters for Taylor Swift,
we can see that the hashprint representation adapts to the
characteristics of the artist’s music. The first four filters
of both artists seem to be very similar, but thereafter the
filters begin to reflect the unique characteristics of each
artist. For example, more of the filters for Big K.R.I.T.
seem to emphasize temporal modulations, perhaps an indi-
cation that rap tends to be more rhythmic and percussion-
focused. In contrast, the filters for Taylor Swift seem to
have more emphasis on pitch-related information, which
may indicate music that is more based on harmony.

5. CONCLUSION

We have proposed a system for a known-artist live song
identification task based on short, noisy cell phone record-
ings. Our system represents audio as a sequence of hash-
prints, which is a Hamming embedding based on a set of
spectro-temporal filters. These spectro-temporal filters can
be learned in an unsupervised manner to adapt the hash-
print representation for each artist. Matching is performed
using a cross-correlation approach with downsampling and
rescoring. Based on experiments with the Gracenote live
song identification benchmark, the proposed system im-
proves the mean reciprocal rank of the previous state-of-
the-art from .68 to .79, while simultaneously reducing the
average runtime per query from 10 seconds down to 0.9
seconds. Future work will focus on characterizing the ef-
fect of various system parameters such as number of con-
text frames, Hamming dimension, and database size.
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[19] J. Serra, E. Gómez, and P. Herrera. Audio cover song
identification and similarity: background, approaches,
evaluation, and beyond. In Advances in Music Infor-
mation Retrieval, pages 307–332. Springer, 2010.

[20] J. Serra, X. Serra, and R. Andrzejak. Cross recurrence
quantification for cover song identification. New Jour-
nal of Physics, 11(9):093017, 2009.

[21] J. Six and M. Leman. Panako: a scalable acoustic fin-
gerprinting system handling time-scale and pitch mod-
ification. In Proceedings of the International Society
for Music Information Retrieval (ISMIR), 2014.

[22] R. Sonnleitner and G. Widmer. Quad-based audio fin-
gerprinting robust to time and frequency scaling. In
Proceedings of the International Conference on Dig-
ital Audio Effects, 2014.

[23] T. Tsai and A. Stolcke. Robust and efficient multi-
ple alignment of unsynchronized meeting recordings.
IEEE/ACM Transactions on Audio, Speech, and Lan-
guage Processing, 24(5):833–845, 2016.

[24] E.M. Voorhees. The TREC-8 question answering track
report. In Proceedings of the 8th Text Retrieval Confer-
ence, pages 77–82, 1999.

[25] A. Wang. An industrial-strength audio search algo-
rithm. In Proceedings of the International Society
for Music Information Retrieval (ISMIR), pages 7–13,
2003.

[26] Y. Weiss, A. Torralba, and R. Fergus. Spectral hashing.
In Advances in Neural Information Processing Systems
21 (NIPS’09), pages 1753–1760, 2009.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 433



LEARNING TEMPORAL FEATURES USING A DEEP NEURAL
NETWORK AND ITS APPLICATION TO MUSIC GENRE

CLASSIFICATION

Il-Young Jeong and Kyogu Lee
Music and Audio Research Group

Graduate School of Convergence Science and Technology, Seoul National University, Korea
{finejuly, kglee}@snu.ac.kr

ABSTRACT

In this paper, we describe a framework for temporal
feature learning from audio with a deep neural network,
and apply it to music genre classification. To this end,
we revisit the conventional spectral feature learning frame-
work, and reformulate it in the cepstral modulation spec-
trum domain, which has been successfully used in many
speech and music-related applications for temporal feature
extraction. Experimental results using the GTZAN dataset
show that the temporal features learned from the proposed
method are able to obtain classification accuracy compara-
ble to that of the learned spectral features.

1. INTRODUCTION

Extracting features from audio that are relevant to the task
at hand is a very important step in many music information
retrieval (MIR) applications, and the choice of features has
a huge impact on the performance. For the past decades,
numerous features have been introduced and successfully
applied to many different kinds of MIR systems. These
audio features can be broadly categorized into two groups:
1) spectral and 2) temporal features.

Spectral features (SFs) represent the spectral character-
istics of music in a relatively short period of time. In a mu-
sical sense, it can be said to reveal the timbre or tonal char-
acteristics of music. Some of popular SFs include: spec-
tral centroid, spectral spread, spectral flux, spectral flatness
measure, mel-frequency cepstral coefficients (MFCCs) and
chroma. On the other hand, temporal features (TFs) de-
scribe the relatively long-term dynamics of a music signal
over time such as temporal transition or rhythmic charac-
teristics. These include zero-crossing rate (ZCR), temporal
envelope, tempo histogram, and so on. The two groups are
not mutually exclusive, however, and many MIR applica-
tions use a combination of many different features.

The abovementioned features - be it spectral or tempo-
ral - have one thing in common: they are all ‘hand-crafted’

c© Il-Young Jeong and Kyogu Lee. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Il-Young Jeong and Kyogu Lee. “learning temporal features
using a deep neural network and its application to music genre classifica-
tion”, 17th International Society for Music Information Retrieval Confer-
ence, 2016.

features, which are highly based on the domain knowledge
or signal processing techniques. With the rapid advances
in the field of machine learning and deep learning in par-
ticular, however, more recent works have become less de-
pendent of using the standard audio features but instead try
to ‘learn’ optimal features [4]. These approaches usually
take no preprocessing step [1] or least, such as a magnitude
spectrum [2,12] or mel-scale filter banks [1,10], but just let
the machine learn the optimal features for a given task. Al-
though a number of feature learning approaches have been
proposed so far for many MIR-related applications, most
of them have focused on learning SFs for a short-time sig-
nal [2, 12]. In case of TFs, on the other hand, few studies
tried to apply deep learning models but it was limited to
training the classification model from the high-level fea-
tures [11, 14].

In this paper, we endeavor to learn TFs using a deep
neural network (DNN) from a low-level representation. By
reversing the conventional SF learning and temporal aggre-
gation, we aim to learn TFs for a narrow spectral band and
summarize them by using spectral aggregation. Further-
more, we parallelize SF and TF learning frameworks, and
combine the two resulting features to use as a front end to
a genre classification system. We expect this approach to
provide a performance gain because each learned feature
conveys different types of information present in a musical
audio.

2. CONVENTIONAL FRAMEWORK FOR
SPECTRAL FEATURE LEARNING

In this section, we briefly revisit how SFs are extracted
using a DNN in a typical classification framework [12].
Figure 1 (a) shows the block diagram of its overall frame-
work, which is similar to the proposed method for temporal
feature learning except the input representation and feature
aggregation. Let si be a single channel waveform of i-th
music data with a label yi. Here, the label can be various
high-level descriptor, including genre, mood, artist, chord,
and tag. A magnitude spectrogram of si, Xi, is computed
using short-time Fourier transform (STFT) defined by
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Figure 1. Overall frameworks for (a) conventional spectral feature learning and (b) proposed temporal feature learning.
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best viewed in color.

Xi(f, t) =

∣∣∣∣∣
N−1∑

n=0

si (Λt+ n)w (n) exp

(
−j 2πfn

N

)∣∣∣∣∣ ,

(1)
where f and t denote a index of frequency bin and time
frame, and N and Λ indicate a size and a shift of win-
dow function w, respectively. |·| denotes the absolute op-
erator. A different time-frequency representation such as
mel-spectrogram is also widely used [1, 10].

In order to remove the bias and reduce the variance, X
is normalized that all frequency bins have zero-mean and
unit variance across all the frames in training data as fol-
lows:

X̄i(f, t) =
Xi(f, t)− µX(f)

σX(f)
, (2)

where µX(f) and σX(f) denote mean and standard devia-
tion of the magnitude spectrogram of training data in f -th
frequency bin, respectively. Sometimes amplitude com-
pression or PCA whitening is added to a preprocessing
step [10].

The training scheme is to learn a DNN model so that
each normalized spectrum x̄i,t = [X̄i(0, t), . . . , X̄i(N/2, t)]
(N/2 instead of N due to its symmetry) belongs to the tar-
get class of the original input yi. In other words, it can

be considered as a frame-wise classification model. After
training the DNN, the activations of the hidden layers are
used as features.

Because many high-level musical descriptors cannot be
defined within a very short segment of time, the frame-
wise features usually go through a feature aggregation step
before classification. The aggregation is done within the
specific time range, typically 3-6s, and depending on the
applications various aggregation methods exist, including
mean, variance, maximum, minimum, or moments [3]. The
dimension of the final feature depends on the number of
aggregation methods.

To summarize, the above spectral feature extraction
framework for musical applications has three steps: 1) pre-
processing (STFT, normalization), 2) feature learning
(DNN), and 3) temporal aggregation (e.g., average and vari-
ance over frames). In the next section, we propose how
each step can be modified to extract the temporal features.

3. PROPOSED FRAMEWORK

In this section, we present the proposed method for tem-
poral feature learning using the normalized cepstral mod-
ulation spectrum (normalized CMS or NCMS) and DNN.
Overall procedure is illustrated in Figure 1 (b).
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3.1 Normalized cepstral modulation spectrum

We first transform a music signal to the quefrency- normal-
ized version of CMS [8,9] because a cepstrogram is shown
to be a more robust representation to capture the dynamics
of the overall timbre than a spectrogram. Although there
are some variations of CMS such as mel-cepstrum modu-
lation spectrum [15], we expect that CMS is able to min-
imize the information loss in the procedure. To compute
the NCMS, the magnitude spectrogram in Eq. (1) is first
transformed into a cepstrogram domain, which is harmonic
decomposition of a logarithmic magnitude spectrum using
inverse discrete Fourier transform (DFT). A cepstrogram
is computed from a magnitude spectrogram X as follows:

Ci(q, t) =
1

N

N−1∑

f=0

ln (Xi(f, t) + ε) exp

(
j

2πqf

N

)
, (3)

where q is a quefrency index, and ε is a small constant to
regularize a log operation. In this work, we empirically set
ε to be 10−4.

Similar to spectrogram normalization shown in Eq. (2),
cepstrogram is normalized so as to have zero-mean and
unit variance across quefencies:

C̄i(q, t) =
Ci(q, t)− µC(q)

σC(q)
, (4)

where µC(q) and σC(q) denote mean and standard devia-
tion of q-th quefrency bin in a cepstrogram of training data,
respectively.

To analyze the temporal dynamics from the data, the
shift invariance has to be considered since the extracted
TFs are expected to be robust against its absolute location
in time or phase. Some approaches were proposed for this
purpose, such as l2-pooling [5], but we chose a modulation
spectrum because it is simpler to compute. In addition,
modulation spectral characteristics can be analyzed over a
few seconds instead of a whole signal, and thus are suitable
for efficiently analyzing the local characteristics. The mod-
ulation spectrum of normalized cepstrogram is obtained as
follows:

Mi(q, v, u) =

∣∣∣∣∣
uΦ+T−1∑

t=uΦ

C̄i(q, t) exp

(
−j 2πvt

T

)∣∣∣∣∣ , (5)

where v denotes the index of modulation frequency bin and
u is the index of the sliding window that is T frames long
with a Φ frames shift.

Finally, before being used as an input to a DNN, M is
normalized for each modulation frequency v to have zero-
mean and unit variance as in Eq. (2) as follows:

M̄i(q, v, u) =
Mi(q, v, u)− µM (v)

σM (v)
, (6)

where µM (v) and σM (v) denote mean and standard devi-
ation of v-th modulation frequency over the training data.

3.2 Temporal feature learning using deep neural
network

The next step for temporal feature learning is the same as
that of the spectral feature learning. The only difference
is that an input vector of the DNN is now a normalized
cepstral modulation spectrum m̄i,q,u = [M̄i(q, 0, u), . . . ,
M̄i(q, T/2, u)], 0 ≤ q ≤ N/2 which we expect better
describes the long-term temporal properties over time for
each quefrency.

3.3 Feature aggregation and combination

The output of a DNN in the previous section is a quefrency-
wise feature, and therefore we need to aggregate it to be
more appropriate as a front end to a classifier. We use the
same aggregation method - i.e., mean and variance - as we
do in SF aggregation but only across quefrencies this time.

We believe that SFs described in Section 2 and TFs ex-
plained above represent the musical characteristics from
different perspectives that can complement each other. By
setting the time window size for temporal aggregation in
SF to be same as that for modulation analysis in TF, say
5s, we can combine the two features and construct a com-
plementary feature set.

In the following section, we test the effectiveness of the
proposed approach and present the results obtained using a
benchmark music dataset.

4. EXPERIMENTS

4.1 Data preparation

To evaluate the proposed TFs and compare it with conven-
tional SFs, we conducted genre classification task with the
GTZAN database, which consists of 1,000 30-second long
music clips with the sampling rate of 22,050 Hz [16]. Each
clip is annotated with one of 10 genres and for each genre
there are 100 clips. Even though some drawbacks and lim-
its were indicated [13], it is still one of the most widely
used datasets for music genre classification.

We examined the two different partitioning methods.
First, we randomly divided the data into three groups: 50%
for training, 25% for validation, and 25% for testing, main-
taining the balance among genres. We performed the ex-
periment four times to present the averaged results. This
random partitioning gaurantees that the equal number of
music clips is distributed among the different genres. How-
ever, random partitioning of the GTZAN dataset may lead
to the numerical evaluation results that cannot be trusted
because many clips in the GTZAN dataset are from the
same artists. Therefore, we also tried the ‘fault-filtered’
partitioning, which manually divides the dataset into 443/
197/290 to avoid the repetition of artist across training, val-
idation, and testing sets [6].

4.2 Parameter setting

Parameters in the proposed framework are basically in-
spired from the conventional work [12]. For STFT, we
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used Hanning window of N=1024 samples with half over-
lap of Λ=512. For NCMS, the number of frames and shift
to analyze the temporal dynamics were set to be T=214
and Φ=107, respectively, which is the closest to 5s and
2.5s, respectively. The number of input units for DNN is
thus 513 and 108, respectively, due to its symmetry. DNN
is designed to have 3 hidden layers and each layer has 50
units for both spectral and temporal model. In other words,
the network has a size of 513-50-50-50-10 for SF and 108-
50-50-50-10 for TF. Rectified linear unit (ReLU) that is
defined as f(x) = max(0, x) was applied for the nonlin-
earity in every hidden layer, and the softmax function was
used for the output layer. We did not use dropout or regu-
larization terms since it did not help to improve the accu-
racy in our work, which is similar as previous work [12].

DNN was trained using mini-batch gradient descent with
0.01 step size and 100 batch size for both conventional and
proposed algorithm. Optimization procedure was done af-
ter 200 epoches. By means of early-stopping strategy, the
model which scores the lowest cross-entropy for the vali-
dation data is decided to be a final model with 10 patience.

In the aggregation stage, the outputs in the last hidden
layer were aggregated using average and variance. In case
of SF, the number of frames and shift for aggregation are
set to be 214 and 107, respectively, which are the same
as the temporal modulation window for TF. Although con-
ventional studies also tried more complex model with var-
ious settings [2, 12], such as increasing the number of hid-
den units and aggregating with all the hidden layer, in this
work we did not consider this kind of model settings since
it is out of our scope. As shown in Figure 3, the proposed
model with a simple setting already exceed the classifi-
cation accuracy of the conventional approach with more
complex model.

4.3 Genre classification

We performed genre classification using random forest (RF)
with 500 trees as a classifier. Each music clip of 30s was
first divided into a number of 5s-long short segments with
2.5s overlap. We then performed classification on each
5s-long segment, and used majority voting to classify the
whole music clip. It is noted that both training and val-
idation data were used to train RF since it does not re-
quire additional data for validation. The entire classifica-
tion process, including training and testing, is illustrated in
Figure 2.

Detailed results for each genre with the two partition-
ing methods are shown in Figure 3 and Figure 4. In case
of random partitioning, overall accuracy of 72.6% was ob-
tained using TFs, and 78.2% using SFs, respectively. The
accuracy improved up to 85.0% when the two features are
jointly used. Moreover, the combined features achieved the
highest F-scores for all the genres except classical. Theses
results suggest that the each type of feature contains infor-
mation that helps improve genre classification.

With fault-filtered partitioning, the accuracy decreased
in general, which is consistent with the results presented
in [6]. Contrary to random partioning, however, the pro-

Spectrogram

Output layer
(softmax)

AggregationRandom forest
genre

DNN training

RF training & 
testing

lossinput

NCMS

Spectral
DNN

Temporal 
DNN

Figure 2. Overall framework for genre classification using
conventional spectral features [12] and proposed temporal
features.

posed TFs show much higher accuracy of 65.9% compared
to 48.3% of SFs. Considering that the main difference be-
tween random and fault-filtered partitioning is artist repe-
tition across train, validation and test sets, a possible ex-
planation for this is that SFs are a better representation that
captures similarity between the songs by the same artists.
From the combined features, we obtained 59.7% accuracy
which is lower than TFs alone. We believe that this unex-
pected performance degradation is due to the fact that the
results were obtained from one trial with a fixed partition,
which may have caused a bias. From an additional experi-
ment where the classifier was trained using the training and
testing sets and tested on the validation set, we obtained
50.3%, 57.4%, and 63.5% accuracies from SFs, TFs, and
combined features, respectively.

4.4 Feature visualization

To visually inspect the performance of different features,
we visualized the features from test data using a 2-dimen-
sional projection with t-sne [7]. Figure 5 and Figure 6 show
the scatter plots of three different features, using random
and fault-filtered partitioning, respectively. Although the
classification accuracies are higher with random partition-
ing, it is not clearly represented in the figures. This may
suggest that the higher performance with random partition-
ing is because of artist repetition, as explained in Section
4.3.

4.5 Discussion

Although the experimental results presented in the previ-
ous section are not sufficient to draw a firm conclusion, we
can find some insights from our study worthy of further
discussions. First, musical audio is an intrinsically time-
varying signal, and understanding temporal dynamics is
critical to better represent music. This has been done in
various ways but we have demonstrated that using a more
appropriate representation from the start helps achieve bet-
ter performance.

The suitable domain for the analysis of temporal char-
acteristics also leaves a room for more in-depth discus-
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blues 86.0 2.0 1.0 4.0 0.0 0.0 0.0 0.0 4.0 4.0 85.1
classical 0.0 96.0 0.0 1.0 0.0 4.0 0.0 0.0 0.0 0.0 95.0
country 5.0 1.0 89.0 3.0 1.0 1.0 1.0 3.0 9.0 6.0 74.8

disco 2.0 0.0 3.0 63.0 3.0 2.0 1.0 1.0 3.0 22.0 63.0
hiphop 0.0 0.0 0.0 9.0 75.0 0.0 2.0 1.0 15.0 1.0 72.8

jazz 2.0 1.0 2.0 1.0 0.0 92.0 0.0 1.0 4.0 2.0 87.6
metal 1.0 0.0 1.0 1.0 8.0 0.0 91.0 0.0 0.0 6.0 84.3

pop 0.0 0.0 0.0 7.0 5.0 0.0 0.0 89.0 8.0 7.0 76.7
reggae 2.0 0.0 3.0 5.0 7.0 0.0 0.0 1.0 54.0 5.0 70.1

rock 2.0 0.0 1.0 6.0 1.0 1.0 5.0 4.0 3.0 47.0 67.1
F 85.6 95.5 81.3 63.0 73.9 89.8 87.5 82.4 61.0 55.3 78.2

(a)

blues 68.0 1.0 11.0 0.0 1.0 4.0 4.0 0.0 3.0 8.0 68.0
classical 0.0 93.0 0.0 0.0 0.0 7.0 0.0 0.0 2.0 2.0 89.4
country 7.0 0.0 76.0 7.0 2.0 2.0 0.0 0.0 5.0 21.0 63.3

disco 2.0 0.0 3.0 70.0 0.0 0.0 3.0 11.0 11.0 11.0 63.1
hiphop 1.0 0.0 0.0 6.0 82.0 0.0 1.0 7.0 5.0 0.0 80.4

jazz 2.0 3.0 2.0 0.0 0.0 82.0 0.0 0.0 0.0 1.0 91.1
metal 3.0 0.0 0.0 5.0 5.0 0.0 82.0 0.0 2.0 7.0 78.8

pop 0.0 0.0 1.0 2.0 7.0 0.0 0.0 70.0 10.0 2.0 76.1
reggae 7.0 0.0 1.0 1.0 0.0 0.0 0.0 6.0 58.0 3.0 76.3

rock 10.0 3.0 6.0 9.0 3.0 5.0 10.0 6.0 4.0 45.0 44.6
F 68.0 91.2 69.1 66.4 81.2 86.3 80.4 72.9 65.9 44.8 72.6

(b)

blues 91.0 1.0 0.0 2.0 0.0 1.0 0.0 0.0 2.0 4.0 90.1
classical 0.0 95.0 0.0 1.0 0.0 4.0 0.0 0.0 0.0 0.0 95.0
country 4.0 1.0 92.0 5.0 2.0 0.0 0.0 3.0 2.0 11.0 76.7

disco 0.0 0.0 1.0 74.0 1.0 0.0 1.0 2.0 8.0 7.0 78.7
hiphop 0.0 0.0 0.0 7.0 88.0 0.0 0.0 2.0 7.0 0.0 84.6

jazz 1.0 1.0 4.0 0.0 0.0 95.0 0.0 0.0 0.0 1.0 93.1
metal 0.0 0.0 1.0 0.0 7.0 0.0 95.0 0.0 0.0 5.0 88.0

pop 0.0 0.0 0.0 5.0 1.0 0.0 0.0 88.0 6.0 7.0 82.2
reggae 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.0 70.0 3.0 93.3

rock 4.0 2.0 1.0 6.0 0.0 0.0 4.0 5.0 5.0 62.0 69.7
F 90.5 95.0 83.6 76.3 86.3 94.1 91.3 85.0 80.0 65.6 85.0

(c)

Figure 3. Figure of merit (FoM, ×100) with random par-
titioning for (a) the conventional spectral features, (b) the
proposed temporal features, and (c) the combined features.
Each row and column represents the predicted and true
genres respectively. The elements in the matrix denote
the recall (diagonal), precision (last column), F-score (last
row), confusions (off-diagonal), and overall accuracy (the
last element of diagonal). The higher values of recall, pre-
cision, and F-score between (a) and (b) are emphasized in
bold.

sion. While NCMS shows good performance in our exper-
iments, it is probable that there exists a representation that
can better describe temporal properties in music. One pos-
sible way would be analyzing temporal dynamics of SFs
learned from DNN. It might be able to minimize the fea-
ture extraction step, and the process should be simpler by
concatenating the spectral/temporal DNNs in series.

5. CONCLUSION

In this paper, we presented a novel feature learning frame-
work using a deep neural network. In particular, while
most studies have been trying to learn the spectral features
from a short music segment, we focused on learning the
features that represent the long-term temporal characteris-
tics, which are expected to convey different information
from that in the conventional spectral features. To this

blues 41.9 0.0 13.3 27.6 0.0 3.7 0.0 0.0 3.8 15.6 40.6
classical 9.7 96.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 90.9
country 0.0 0.0 43.3 0.0 18.5 14.8 0.0 0.0 0.0 15.6 48.1

disco 3.2 0.0 16.7 20.7 0.0 25.9 0.0 13.3 3.8 28.1 18.2
hiphop 9.7 0.0 0.0 20.7 25.9 0.0 7.4 3.3 7.7 6.3 30.4

jazz 32.3 3.2 6.7 0.0 0.0 22.2 0.0 0.0 7.7 3.1 27.3
metal 3.2 0.0 0.0 0.0 0.0 0.0 88.9 0.0 0.0 6.3 88.9

pop 0.0 0.0 10.0 3.4 29.6 25.9 0.0 76.7 15.4 3.1 48.9
reggae 0.0 0.0 3.3 0.0 22.2 3.7 0.0 3.3 61.5 15.6 53.3

rock 0.0 0.0 6.7 27.6 3.7 3.7 3.7 3.3 0.0 6.3 12.5
F 41.3 93.8 45.6 19.4 28.0 24.5 88.9 59.7 57.1 8.3 48.3

(a)

blues 54.8 0.0 3.3 6.9 0.0 11.1 0.0 0.0 0.0 12.5 63.0
classical 0.0 100 6.7 0.0 0.0 18.5 0.0 0.0 0.0 0.0 81.6
country 0.0 0.0 76.7 0.0 3.7 3.7 0.0 3.3 7.7 12.5 71.9

disco 3.2 0.0 3.3 58.6 0.0 0.0 14.8 26.7 0.0 15.6 47.2
hiphop 3.2 0.0 3.3 3.4 88.9 0.0 14.8 13.3 11.5 3.1 61.5

jazz 32.3 0.0 0.0 0.0 0.0 66.7 0.0 0.0 0.0 3.1 62.1
metal 0.0 0.0 3.3 0.0 0.0 0.0 63.0 3.3 7.7 0.0 81.0

pop 0.0 0.0 0.0 0.0 7.4 0.0 0.0 50.0 11.5 0.0 75.0
reggae 0.0 0.0 3.3 27.6 0.0 0.0 0.0 0.0 57.7 9.4 55.6

rock 6.5 0.0 0.0 3.4 0.0 0.0 7.4 3.3 3.8 43.8 66.7
F 58.6 89.9 74.2 52.3 72.7 64.3 70.8 60.0 56.6 52.8 65.9

(b)

blues 67.7 0.0 13.3 17.2 0.0 3.7 0.0 0.0 3.8 9.4 60.0
classical 0.0 100 0.0 0.0 0.0 7.4 0.0 0.0 0.0 0.0 93.9
country 0.0 0.0 66.7 0.0 0.0 40.7 0.0 0.0 0.0 25.0 51.3

disco 0.0 0.0 10.0 44.8 7.4 3.7 7.4 16.7 0.0 34.4 35.1
hiphop 0.0 0.0 0.0 10.3 59.3 0.0 3.7 3.3 15.4 0.0 64.0

jazz 25.8 0.0 6.7 0.0 0.0 29.6 0.0 0.0 0.0 0.0 44.4
metal 0.0 0.0 0.0 0.0 0.0 0.0 85.2 0.0 0.0 6.3 92.0

pop 0.0 0.0 0.0 3.4 29.6 3.7 0.0 73.3 15.4 3.1 59.5
reggae 0.0 0.0 0.0 17.2 3.7 0.0 0.0 0.0 65.4 15.6 60.7

rock 6.5 0.0 3.3 6.9 0.0 11.1 3.7 6.7 0.0 6.3 15.4
F 63.6 96.9 58.0 39.4 61.5 35.6 88.5 65.7 63.0 8.9 59.7

(c)

Figure 4. Figure of merit (FoM, ×100) with fault-filtered
partitioning. Details are the same as Figure 3.

end, we used a normalized cepstral modulation spectrum
as an input to DNN, and introduced a feature aggregation
method over quefrencies. Experiments with genre classi-
fication show that the proposed temporal features yielded
performance comparable to or better than that of the spec-
tral features, depending on the partitioning methods of the
dataset. We plan to apply the proposed method to vari-
ous MIR-related tasks, including mood classification or in-
strument identification where spectral features are predom-
inantly used. We also intend to develop a single framework
in which both spectral and temporal features are jointly
learned.
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Figure 5. 2-dimensional scatter plots using t-sne [7] with random partitioning for (a) the conventional spectral features,
(b) the proposed temporal features, and (c) the combined features. Each marker represents a 5s excerpt of a music signal
whose genre is labeled as in (d).
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Figure 6. 2-dimensional scatter plots using t-sne [7] with fault-filtered partitioning. Details are the same as Figure 5.
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ABSTRACT

In this paper we present PRIMA: a new model tailored to
symbolic music that detects the meter and the first down-
beat position of a piece. Given onset data, the metrical
structure of a piece is interpreted using the Inner Metric
Analysis (IMA) model. IMA identifies the strong and weak
metrical positions in a piece by performing a periodicity
analysis, resulting in a weight profile for the entire piece.
Next, we reduce IMA to a feature vector and model the
detection of the meter and its first downbeat position prob-
abilistically. In order to solve the meter detection prob-
lem effectively, we explore various feature selection and
parameter optimisation strategies, including Genetic, Max-
imum Likelihood, and Expectation-Maximisation algo-
rithms. PRIMA is evaluated on two datasets of MIDI files:
a corpus of ragtime pieces, and a newly assembled pop
dataset. We show that PRIMA outperforms autocorrelation-
based meter detection as implemented in the MIDItoolbox
on these datasets.

1. INTRODUCTION

When we listen to a piece of music we organise the stream
of auditory events seemingly without any effort. Not only
can we detect the beat days after we are born [31], as
infants we are able to develop the ability to distinguish
between a triple meter and duple meter [18]. The pro-
cessing of metrical structure seems to be a fundamental
human skill that helps us to understand music, synchron-
ize our body movement to the music, and eventually con-
tributes to our musical enjoyment. We believe that a sys-
tem so crucial to human auditory processing must be able
to offer great merit to Music Information Retrieval (MIR)
as well. But what exactly constitutes meter, and how can
models of metrical organisation contribute to typical MIR

problems? With the presentation of the PRIMA 1 model we
aim to shed some light on these matters in this paper.

The automatic detection of meter is an interesting and
challenging problem. Metrical structure has a large influ-

1 Probabilistic Reduction of Inner Metric Analysis

c© W. Bas de Haas, Anja Volk. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: W. Bas de Haas, Anja Volk. “Meter Detection in Symbolic Music
Using Inner Metric Analysis”, 17th International Society for Music In-
formation Retrieval Conference, 2016.

ence on the harmonic, melodic and rhythmic structure of a
piece, and can be very helpful in many practical situations.
For instance, in [30] a statistical exploration of common
syncopation patterns in a large corpus of symbolic rag-
time pieces is presented. For correct analysis of synco-
pation patterns knowledge of the meter is essential. How-
ever, many corpora lack reliable meter annotations, mak-
ing automatic meter detection a prerequisite for rhythmic
pattern analysis. Similarly, chord recognition algorithms
have been shown to improve when metrical information is
taken into account, e.g. [3]. Finally, also melodic similarity
estimation benefits from (automatically derived) metrical
information. Humans appear to be more tolerant to note
transformations placed on weak metrical positions [11].

In this paper we present PRIMA: a new model for de-
tecting the meter and the first downbeat in a sequence of
onsets. Where most other approaches reduce the problem
to a binary duple / triple meter detection, PRIMA estimates
all time signatures that are available in the training set and
also detects the first downbeat position. PRIMA’s architec-
ture is outlined as follows: the model employs Inner Metric
Analysis [28, IMA] to determine the strong and weak met-
rical positions in an onset sequence. The IMA is folded into
one-bar profiles, which are subsequently optimised. This
metrical analysis feature serves as input to a probabilistic
model which eventually determines the meter. Finally, two
feature optimisation strategies are discussed and evaluated.

PRIMA is trained and tested on two datasets of MIDI

files: the RAG collection [30] and the newly collected
FMpop collection. The main motivation for choosing
the RAG collection for evaluation is that there is a clear
need for meter and first downbeat detection for facilitat-
ing corpus-based studies on this dataset. Since Ragtime
is a genre that is defined by syncopated rhythms [30], in-
formation on meter and the location of the first downbeat
is crucial for corpus-based rhythm analyses. In order to as-
sess the flexibility of PRIMA, we also train and evaluate the
model on a new dataset of pop music: the FMpop collec-
tion. All data has been produced by music enthusiasts and
is separated into a test and a training set. Both datasets are
too big to manually check all meter annotations. There-
fore, we assume that in the training set the majority of the
meters are correctly annotated. In the test set, the meter
and first downbeat positions are manually corrected, and
this confirms the intuition that the majority of the meters is
correct, but annotation errors do occur.

Taks description: We define the meter detection task
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as follows: given a series of onsets, automatically detect
the time signature and the position of the first beat of the
bar. This first beat position is viewed as the offset of the
meter measured from the starting point of an analysed seg-
ment, and we will refer to this offset as the rotation of the
meter. 2 After all, a metrical hierarchy recurs every bar, and
if the meter is stable, the first beat of the bar can easily be
modelled by rotating the metrical grid. In this paper we
limit our investigation to the 2

2, 2
4, 4

4, 3
4, 6

8, 12
8 meters that oc-

cur at least in 40 pieces of the dataset (five different meters
in the RAG, four in the FMpop Collection). Naturally, ad-
ditional meters can be added easily. In the case of duple /
triple classification 2

2, 2
4, and 4

4 are considered duple meters
and 3

4, 6
8, and 12

8 are considered triple meters. Within this
study we assume that the meter does not change through-
out an analysed segment, and we consider only MIDI data.

Contribution: The contribution of this paper is
threefold. First, we present a new probabilistic model for
automatically detecting the meter and first downbeat pos-
ition in a piece. PRIMA is conceptually simple, based on
a solid metrical model, flexible, and easy to train on style
specific data, Second, we present a new MIDI dataset con-
taining 7585 pop songs. Furthermore, for small subsets
of this new FMpop Collection and a collection of ragtime
pieces, we also present new ground-truth annotations of
the meter and rotation. Finally, we show that all variants
of PRIMA outperform the autocorrelation-based meter de-
tection implemented in the MIDItoolbox [5].

2. RELATED WORK

The organisation of musical rhythm and meter has been
studied for decades, and it is commonly agreed upon that
this organisation is best represented hierarchically [13].
Within a metrical hierarchy strong metrical positions can
be distinguished from weaker positions, where strong po-
sitions positively correlate with the number of notes, the
duration of the notes, the number of equally spaced notes,
and the stress of the notes [16]. A few (computational)
models have been proposed that formalise the induction of
metrical hierarchies, most notable are the models of Steed-
man [20], Longuet-Higgins & Lee [14] Temperley [21],
and Volk [28]. However, surprisingly little of this work
has been applied to the automatic detection of the meter
(as in the time signature) of a piece of music, especially in
the domain of symbolic music.

Most of the work in meter detection focusses on the au-
dio domain and not on symbolic music. Although large in-
dividual differences exists, in the audio domain the meter
detection systems follow a general architecture that con-
sists of a feature extraction front-end and a model that
accounts for periodicities in the onset or feature data. In
the front-end typically features are used that are associated
with onset detection such as spectral difference, or flux,
and energy spectrum are used [1]. Or, in the symbolic case,

2 We chose the new term rotation for the offset of the meter because
the musical terms generally used to describe this phenomenon, like ana-
crusis, upbeat figure, or pickup, are sometimes interpreted differently.

one simply assumes that onset data is available [9, 22], like
we do in this paper.

After feature extraction the periodicity of the onset data
is analysed, which is typically done using auto-correlation
[2, 23], a (beat) similarity matrix [6, 8], or hidden Markov
models [17, 12]. Next, the most likely meter has to be
derived from the periodicity analysis. Sometimes statist-
ical machine learning techniques, such as Gaussian Mix-
ture Models, Neural Networks, or Support Vector Ma-
chines [9], are applied to this task, but this is less com-
mon in the symbolic domain. The free parameters of these
models are automatically trained on data that has meter an-
notations. Frequently the meter detection problem is sim-
plified to classifying whether a piece uses a duple or triple
meter [9, 23], but some authors aim at detecting more fine-
grained time signatures [19, 24] and can even detect odd
meters in culturally diverse music [10]. Albeit focussed on
the audio domain, for a relatively recent overview of the
field we refer to [24].

2.1 Inner Metric Analysis

Similar to most of the meter detection systems outlined in
the previous section PRIMA relies on periodicity analysis.
However, an important difference is that it uses the Inner
Metric Analysis [28, IMA] instead of the frequently used
autocorrelation. IMA describes the inner metric structure
of a piece of music generated by the actual onsets opposed
to the outer metric structure which is associated with an
abstract grid annotated by a time signature in a score, and
which we try to detect automatically with PRIMA.

What distinguishes IMA from other metrical models,
such as Temperley’s Grouper [21], is that IMA is flexible
with respect to the number of metric hierarchies induced.
It can therefore be applied both to music with a strong
sense of meter, e.g. pop music, and to music with less pro-
nounced or ambiguous meters. IMA has been evaluated in
listening experiments [25], and on diverse corpora of mu-
sic, such as classical pieces [26], rags [28], latin american
dances [4] and on 20th century compositions [29].

IMA is performed by assigning a metric weight or a
spectral weight to each onset of the piece. The general idea
is to search for all chains of equally spaced onsets within a
piece and then to assign a weight to each onset. This chain
of equally spaced onsets underlying IMA is called a local
meter and is defined as follows. Let On denote the set of
all onsets of notes in a given piece. We define every subset
m ⊂ On of equally spaced onsets to be a local meter if
it contains at least three onsets and is not a subset of any
other subset of equally spaced onsets. Each local meter can
be identified by three parameters: the starting position of
the first onset s, the period denoting the distance between
consecutive onsets d, and the number of repetitions k of
the period (which equals the size of the set minus one).

The metric weight of an onset o is calculated as the
weighted sum of the length km of all local meters m that
coincide at this onset (o ∈ m), weighted by parameter p
that regulates the influence of the length of the local meters
on the metric weight. Let M(`) be the set of all local
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meters of the piece of length at least `, then the metric
weight of an onset, o ∈ On, is defined as follows:

W`,p(o) =
∑

{m∈M(`):o∈m}
kpm. (1)

The spectral weight is calculated in a similar fashion,
but for the spectral weight each local meter is extended
throughout the entire piece. The idea behind this is that the
metrical structure induced by the onsets stretches beyond
the region in which onsets occurs. The extension of a local
meter m is defined as ext(ms,d,k) = {s+ id,∀i} where i
is an integer number. For all discrete metrical positions t,
regardless whether it contains an onset or not, the spectral
weight is defined as follows:

SW`,p(t) =
∑

{m∈M(`):t∈ext(m)}
kpm. (2)

In this paper we have used the standard parameters p = 2,
and ` = 2. Hence, we consider all local meters that exist in
a piece. A more elaborate explanation of the IMA including
examples can be found in [28].

3. IMA BASED METER DETECTION

In this section we will outline the PRIMA model in a
bottom-up fashion. We start with the input MIDI data, and
describe how we transform this into onset data, perform
IMA and finally optimise a feature based on IMA. Next, we
explain how this feature is used in a probabilistic model to
detect the meter and rotation of sequence of onsets, and we
elaborate on two different training strategies.

3.1 Quantisation and Preprocessing

Before we can perform IMA, we have to preprocess the
MIDI files to obtain a quantised sequence of onsets. The
following preprocessing steps are taken:

To be able to find periodicities, the onset data should
be quantised properly. Within Western tonal music duple
as well as triple subdivisions of the beat occur commonly.
Hence, we use a metrical grid consisting of 12 equally
spaced onset positions per quarter note. With this we can
quantise both straight and swung eight notes. Here, swing
refers to the characteristic long-short rhythmical pattern
that is particularly common in Jazz, but is found through-
out popular music.

In the quantisation process we use the length of a
quarter note as annotated in the MIDI file. This MIDI time
division specifies the number of MIDI ticks per quarter note
and controls the resolution of the MIDI data. Because the
MIDI time division is constant, strong tempo deviations in
the MIDI data might distort the quantisation process and
the following analyses. To estimate the quality of the
alignment of the MIDI data to the metrical grid, we collect
the quantisation deviation for every onset, and the average
quantisation deviation divided by the MIDI time division
gives a good estimate of the quantisation error. To make
sure that the analysed files can be quantised reasonably
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Figure 1. The construction of NSW profiles for a piece in
2
4 : (1) displays IMA, (2) displays the NSW profiles derived
from IMA for a 2

4 and a 3
4 meter, and (3) shows how two

bins are selected from each profile and used to estimate the
probability of that meter. The ellipse represents the Gaus-
sian distribution fitted to selected bins of the NSW profiles
in the training phase. Note that the 3

4 NSW profile does not
resemble a typical 3

4 and receives a low probability. Also,
the selected bins may differ per optimisation strategy.

well, we discard all MIDI files with an average quantisa-
tion error higher than 2 percent.

After quantising the MIDI data, we collect all onset
data from all voices and remove duplicate onsets. Next,
the MIDI data is segmented at all positions where a meter
change is annotated in the MIDI file. Segments that are
empty or shorter than 4 bars are excluded from further ana-
lysis. Also, MIDI files that do not contain meter annota-
tions at all are ignored in the training phase.

3.2 Normalised spectral weight profiles

We use the spectral weights of IMA to construct a fea-
ture for detecting the meter in a piece. More specific-
ally, this feature will model the conditional probability of
a certain meter given a sequence of onsets. As we will
explain in more detail in the next section, the distribu-
tion of these features will be modelled with a Gaussian
distribution. We call this feature a Normalised Spectral
Weight (NSW) profile, and discern three stages in construct-
ing them: (1) perform IMA, (2) folding the IMA in one-bar
profiles and normalising the weights profiles, and (3) se-
lecting the most relevant bins for modelling the Gaussian
distribution. These three stages are displayed schematic-
ally in Figure 1, and are detailed below.

IMA marks the metrical importance of every quantised
onset position in a piece. Because of the large numbers
of spectral weights and the large differences per piece,
IMA cannot be used to detect the meter directly. How-
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ever, we can fold the analysis into one-bar profiles to get
a more concise metrical representation for every candidate
meter. These one-bar profiles are created by summing the
spectral weights per quantised position within a bar. Con-
sequently, the shape of these profiles is determined by the
meter (beats per bar), the length of piece (longer pieces
yield higher spectral weights), and the number of quant-
isation bins.

We normalise spectral weights in the one-bar profiles
by applying Formula 3:

normalise(w) = log(
w

nβ
+ α) (3)

Here, w is the summed spectral weight of a particular
quantised beat position and n is the number of bars used to
create the profile. We use a parameter β to control the ef-
fect of the length of the piece in the normalisation. Further-
more, because many quantised beat positions might have
a summed metrical weight of 0, and this will cause prob-
lems when we fit Gaussian models to these profiles, we use
Laplace smoothing [15, p. 260] and add a constant factor α
to all weights. Finally, because statistical analysis of large
amounts of profiles showed that differences in weights are
distributed normally on a logarithmic scale, we apply the
natural logarithm in Eq. 3. For the results in this report
we have used β = 2 and α = 1. We call these profiles
Normalised Spectral Weight (NSW) Profiles.

The raw NSW profiles cannot yet be conveniently used
as a feature for meter detection: the dimensionality of the
NSW profiles is relatively high, and the dimensionality dif-
fers per meter. Also, not every metrical position within a
bar is equally important. For instance, the first beat of the
bar will have a high spectral weight, while the metrical po-
sition of the second eighth note will generally have a much
lower spectral weight. Hence, we select profile bins that
contain the information most relevant for meter detection.

The selection of the relevant profile bins is a special case
of feature dimensionality reduction where the feature bins
are highly dependent on each other. In this section we in-
troduce two selection methods that will be experimentally
verified in Section 4.3. A first intuition is to select the n
profile bins that have the highest weights on average for
a given dataset. A brief analysis showed that these bins
roughly correspond to the first n principal components.
However, a preliminary evaluation shows that NSW pro-
files containing only these bins perform relatively poorly.
Hence, in order to learn more about what are the distinct-
ive bins in the profiles, we use a Genetic Algorithm (GA)
to explore the space of possible bin selections. 3 When we
analyse these bin selections, we notice that the GA selects
bins for a meter that contain weights that are maximally
different to other meters.

3 Note that these n profile bins may differ between meters, and n does
not have to be the same for all meters, as long as the bin selection of
the examined profile is exactly the same as the selection used in the tem-
plate profile for that meter. For the implementation of the GA we use the
Haskell library https://github.com/boegel/GA, using a popu-
lation size of 100 candidates, a crossover rate of 0.7, a mutation rate of
0.2, and Eq. 5 as fitness function.

Training a GA on large amounts of data takes a lot of
time, even if the NSW profiles are pre-calculated. Since
we have a clear intuition about how the GA selects profile
bins, we might be able to mimic this behaviour without ex-
ploring the complete space of possible bin selections. Re-
call when we classify a single piece, we calculate multiple
NSW profiles for a single IMA: one for each meter. If we
select the same bins in each profile for matching, i.e. every
first beat of a bar, the chances are considerable that this
selection will match multiple meters well. Hence, we se-
lect the n bins of which the NSW profiles of the ground-
truth meter are maximally different from the NSW profiles
of other meters. In this calculation we define maximally
different as having a maximal absolute difference in spec-
tral weight, and n does not differ between meters. We call
this method the Maximally Different Bin (MDB) Selection.

3.3 A probabilistic meter classification model

To restate our initial goal: we want to determine the meter
and its rotation given a sequence of note onsets. Ignor-
ing rotation, a good starting point is to match NSW pro-
files with template profiles of specific meters. However,
although the spectral weights of IMA reflect human intu-
itions about the musical meter [27], it is rather difficult to
design such templates profiles by hand. Moreover, these
template profiles might be style specific. Hence, we pro-
pose a model that learns these templates from a dataset.

Another style dependent factor that influences meter de-
tection is the distribution of meters in a dataset. For in-
stance, in Ragtime 2

2 and 2
4 occur frequently, while pop

music is predominantly notated in a 4
4 meter. Just match-

ing NSW profiles with meter templates will not take this
into account. When we combine simple profile matching
with a weighting based on a meter distribution (prior), this
conceptually equals a Naive Bayes classifier [15]. There-
fore, probabilistically modelling meter detection is a nat-
ural choice.

If we ignore the rotations for sake of simplicity, we can
express the probability of a meter given a set of note onsets
with Equation 4:

P (meter|onsets) ∝ P (onsets|meter) · P (meter) (4)

Here, P (onset|meter) reflects the probability of an onset
sequence given a certain meter, and ∝ denotes “is propor-
tional to”. Naturally, certain meters occur more regularly
in a dataset than others which is modelled by P (meter).
The conditional probability P (onset|meter) can be estim-
ated using NSW profiles. Given a piece and a specific meter
we create an NSW profile that can be used as multidimen-
sional feature. Given a large dataset that provides us with
sequences of onsets and meters, we can model the distri-
bution of the NSW profiles as Gaussian distributions. For
every meter in the dataset we estimate the mean and co-
variance matrix of a single Gaussian distribution with the
expectation-maximization algorithm [7]. The prior prob-
ability of a certain meter, P (meter), can be estimated with
maximum likelihood estimation, which equals the number
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of times a certain meter occurs in a dataset divided by the
total number of meters in the dataset.

Adding the estimation of the rotation makes the prob-
lem slightly more complicated. A natural way of incorpor-
ating rotation is to add it as a single random variable that
is dependent on the meter. This makes sense because it
is likely that the kind of rotation depends on the kind of
meter: an anacrusis in a 4

4 meter is likely to differ from an
anacrusis in a 3

4 meter. Hence, we can transform Eq. 4 into
the following equation:

P (x, r|y) ∝ P (y|x, r) · P (r|x) · P (x) (5)

Similar to Eq. 4, we estimate the meter x given an onset
pattern y, but now we also add the rotation r. The term
P (y|x, r) can again be modelled with NSW profiles, but
now the profiles should also be rotated according to the ro-
tation r. The term P (x) reflects the probability of a meter
and can be estimated with maximum likelihood estimation.

We do not consider all possible rotations. For a 4
4 meter

there are 4 · 12 = 48 possible rotations, many of which are
not likely to occur in practise. The rotations are modelled
as a fraction of a bar, making the rotation meter independ-
ent. Furthermore, we rotate clock-wise, e.g. 1

4 represents
an anacrusis of one quarter note in a 4

4 meter. The space of
possible rotations can be further reduced by only consid-
ering two kinds of rotations: rotations for duple and triple
meters. After all, given the very similar metrical structure
of 2

4 and 4
4, we expect that the rotations will be similar as

well (but on another absolute metrical level, e.g. eighth in-
stead of quarter notes). For duple meters we explore eight,
and for triple meters we explore six different rotations.

Unfortunately, estimating the prior probability of the ro-
tation given a certain meter, i.e. P (r|x), is not trivial be-
cause we rely on MIDI data in which the rotation is not
annotated. Hence, we need another way of estimating this
prior probability of the rotation. We estimate the rotation
by calculating all rotations of the NSW profiles and pick
the rotation that maximises probability of the annotated
ground-truth meter. Having an estimation of the best fit-
ting rotation per piece, we can perform maximum likeli-
hood estimation by counting different rotations for each
meter in order to obtain the rotation probabilities.

3.4 Training

We train and evaluate PRIMA on two datasets (see Sec. 4.1
and 4.2). These datasets consist of MIDI files created by
music enthusiasts that might have all sorts of musical back-
grounds. Hence, it is safe to assume that the meter annota-
tions in these MIDI files might sometimes be incorrect. A
likely scenario is, for instance, that MIDI creation software
adds a 4

4 meter starting at the first note onset by default,
while the piece in question starts with an upbeat and is best
notated in 3

4. Nevertheless, we assume that the majority of
the meters is annotated correctly, and that incorrect meters
will only marginally effect the training of PRIMA.

In this paper we evaluate two different ways of training
PRIMA. We use Maximally Different Bin (MDB) selection
in the feature training phase, or alternatively, we use a GA

to select the most salient NSW profile bins. After the bin
selection, we use Maximum Likelihood estimation to learn
the priors and rotation, as described in the previous section,
and Expectation-Maximisation for fitting the Gaussian dis-
tributions.

4. EVALUATION

To assess the quality of the meter and rotations calculated
by PRIMA, we randomly separate our datasets into test-
ing and training sets. The test sets are manually corrected
and assured to have a correct meter and rotation. The next
two sections will detail the data used to train and evaluate
PRIMA. The manual inspection of the meters and rotations
confirms the intuition that most of the meters are correct,
but the data does contain meter and rotation errors.

4.1 RAG collection

The RAG collection that has been introduced in [30] cur-
rently consists of 11545 MIDI files of ragtime pieces that
are collected from the Internet by a community of Ragtime
enthusiasts. The collection is accompanied by an elaborate
compendium 4 that stores additional information about in-
dividual ragtime compositions, like year, title, composer,
publisher, etc. The MIDI files in the RAG collection de-
scribe many pieces from the ragtime era (approx. 1890 ∼
1920), but also modern ragtime compositions. The dataset
is separated randomly in a test set of 200 pieces and a train-
ing set of 11345 pieces. After the preprocessing detailed
in Sec. 3.1, 74 and 4600 pieces are considered suitable for
respectively testing and training. For one piece we had to
correct the meter and for another piece the rotation.

4.2 FMpop collection

The RAG corpus only contains pieces in the ragtime style.
In order to study how well PRIMA predicts the meter
and rotation of regular pop music, we collected 7585
MIDI files from the website Free-Midi.org. 5 This collec-
tion comprises MIDI files describing pop music from the
1950 onwards, including various recent hit songs, and we
call this collection the FMpop collection. For evaluation
we randomly select a test set of 200 pieces and we use the
remainder for training. In the training and test sets, 3122
and 89 pieces successfully pass the preprocessing stage,
respectively. Most of the pieces that drop out have a quant-
isation error greater than 2 percent. For three pieces we
had to correct the meter, and for four pieces the rotation.

4.3 Experiments

We perform experiments on both the RAG and the FMpop
collections in which we evaluate the detection performance
by comparing the proportion of correctly classified meters,
rotations, and the combinations of the two. In these experi-
ments we probe three different training variants of PRIMA:
(1) a variant where we use Maximally Different Bin (MDB)

4 see http://ragtimecompendium.tripod.com/ for more
information

5 http://www.free-midi.org/
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RAG Collection

(Training) model Meter Rotation Both

Duple / Triple meters

MIDItoolbox .76 − −
MDB selection (2 bins) .97 .88 .86
MDB selection (3 bins) .97 .97 .95
GA optimized .97 .99 .96
Meters: 2

2, 2
4, 34, 4

4, 68
MDB selection (2 bins) .85 .92 .80
MDB selection (3 bins) .80 .92 .76
GA optimised .84 .93 .82

Table 1. The proportion of correctly detected meter and
rotation in the RAG collection. The first section shows the
duple / triple meter classification, the second section shows
the proportions for the five most used time signatures.

FMpop Collection

(Training) model Meter Rotation Both

Duple / Triple meters

MIDItoolbox .74 − −
MDB selection (2 bins) .94 .90 .85
MDB selection (3 bins) .90 .93 .84
GA optimized .94 .88 .83
Meters: 3

4, 4
4, 68, 12

8

MDB selection (2 bins) .94 .81 .79
MDB selection (3 bins) .94 .81 .78
GA optimised .94 .91 .87

Table 2. The correctly detected proportion for on the
FMpop collection for duple / triple meter classification and
for the four most used time signatures.

selection in which we select the two most salient bins and
(2) a variant in which we select the three most salient bins.
Finally, (3) we also use a Genetic algorithm to select the
bins and estimate the rotation priors.

To place the performance of PRIMA into context, we
compare the results to the meter detection model imple-
mented in the MIDItoolbox [5]. This model only pre-
dicts whether a meter is duple or triple and does not pre-
dict the time signature. Therefore, we can compare the
MIDItoolbox meter finding to PRIMA only in the duple /
triple case. To ensure we use the exact same input data, we
have written our own NMAT export script that transforms
the MIDI as preprocessed by PRIMA into a matrix that can
be parsed by the MIDItoolbox. All source code and data
reported in this study is available on request.

4.4 Results

We evaluate the performance PRIMA and its different train-
ing strategies on duple / triple meter detection and the de-
tection of five different time signatures. In Table 1 the pro-
portions of correctly detected meters in the RAG collection
are displayed. In the duple / triple meter detection exper-

iments all variants of PRIMA outperform the MIDItoolbox
meter detection. We tested the statistical significance of all
individual differences between MIDItoolbox meter detec-
tion and PRIMA using McNemar’s χ2 test, and all differ-
ences are significant (p < 0.001). In the classification of
five different time signatures the performance drops con-
siderably. However, rags are mostly notated in 2

4, 4
4, and 2

2

meters, and even experienced musicians have difficulty de-
termining what is the correct meter. Still PRIMA achieves a
96 percent correct estimation for meter and rotation in the
duple / triple experiment and 82 percent correct estimation
on the full time signature detection.

In Table 2 the proportions of correctly classified meters
in the FMpop Collection are displayed. Also on onsets ex-
tracted from popular music, PRIMA outperforms the MIDI-
toolbox meter finding. Again, we tested the statistical sig-
nificance of the differences between all PRIMA variants
using McNemar’s χ2 test, and all differences are statist-
ically significant (p < 0.002 for GA and MDB selection (2
bins), and p < 0.017 for MDB selection (3 bins)). Overall,
PRIMA’s performance on the FMpop Collection is lower
than on the RAG Collection for the duple / triple detection,
but higher for time signature detection. Respectively, 85
and 87 percent correct classification is achieved for both
meter and rotation. Generally, the GA seems to yield the
best results.

5. DISCUSSION AND CONCLUSION

We presented a new model for detecting the meter and first
downbeat position of a piece of music. We showed that
IMA is valuable in the context of meter and first down-
beat detection. PRIMA is flexible, can be easily trained
on new data, and is conceptually simple. We have shown
that PRIMA performs well on the FMpop and RAG Col-
lections and outperforms the MIDItoolbox meter finding
model. However, while PRIMA can be trained on data of
specific styles, the parameters of the MIDItoolbox meter
detection model are fixed. Hence, the performance of
the MIDItoolbox should be seen as a baseline system that
places PRIMA’s results into context.

In this study we applied PRIMA to MIDI data only be-
cause we believe that corpus based analyses on collections
like the RAG collection can really benefit from meter find-
ing. Nevertheless, PRIMA’s IMA based feature and probab-
ilistic model are generic and can be easily applied to onset
sequences extracted from audio data. Hence, it would be
interesting to investigate how PRIMA model performs on
audio data, and compare it to the state-of-the-art in audio
meter detection. We strongly believe that also in the au-
dio domain meter detection can benefit from IMA. We are
confident that IMA has the potential to aid in solving many
MIR tasks in both the audio and the symbolic domain.
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ABSTRACT

Previous works on automatic fingering decision for string
instruments have been mainly based on path optimization
by minimizing the difficulty of a whole phrase that is typ-
ically defined as the sum of the difficulties of moves re-
quired for playing the phrase. However, from a practical
viewpoint of beginner players, it is more important to min-
imize the maximum difficulty of a move required for play-
ing the phrase, that is, to make the most difficult move
easier. To this end, we introduce a variant of the Viterbi
algorithm (termed the “minimax Viterbi algorithm”) that
finds the path of the hidden states that maximizes the min-
imum transition probability (not the product of the transi-
tion probabilities) and apply it to HMM-based guitar fin-
gering decision. We compare the resulting fingerings by
the conventional Viterbi algorithm and our proposed min-
imax Viterbi algorithm to show the appropriateness of our
new method.

1. INTRODUCTION

Most string instruments have overlaps in pitch ranges of
their strings. As a consequence, such string instruments
have more than one way to play even a single note (ex-
cept the highest and the lowest notes that are covered only
by a single string) and thus numerous ways to play a whole
song. That is why the fingering decision for a given song is
not always an easy task for string players and therefore au-
tomatic fingering decision has been attempted by many re-
searchers. Previous works on automatic fingering decision
have been mainly based on path optimization by minimiz-
ing the difficulty level of a whole phrase that is typically
defined as the sum or the product of the difficulty levels
defined for each move. (The product of difficulty levels
easily reduces to the sum of the logarithm of the difficulty
levels and therefore the sum and the product do not make
any essential difference.) However, whether a string player
can play a passage using a specific fingering depends al-
most only on whether the most difficult move included in
the fingering is playable. Especially, from a practical view-
point of beginner players, it is most important to minimize

c© Gen Hori, Shigeki Sagayama. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Gen Hori, Shigeki Sagayama. “Minimax Viterbi algorithm for
HMM-based Guitar fingering decision”, 17th International Society for
Music Information Retrieval Conference, 2016.

the maximum difficulty level of a move included in a fin-
gering, that is, to make the most difficult move easier.

The purpose of this paper is to introduce a variant of
the Viterbi algorithm [12] termed the “minimax Viterbi al-
gorithm” that finds the sequence of the hidden states that
maximizes the minimum transition probability on the se-
quence (not the product of all the transition probabilities
on the sequence) and apply it to HMM-based guitar finger-
ing decision. We employ a hidden Markov model (HMM)
whose hidden states are left hand forms of guitarists and
output symbols are musical notes, and perform fingering
decision by solving a decoding problem of HMM using
our proposed minimax Viterbi algorithm for finding the se-
quence of hidden states with the maximum minimum tran-
sition probability. Because the transition probabilities are
set to large for easy moves and small for difficult ones,
resulting fingerings “make the most difficult move easier”
as previously discussed in this section. To distinguish the
original Viterbi algorithm and our variant, we refer to the
former as the “conventional Viterbi algorithm” and to the
latter as the “minimax Viterbi algorithm” throughout the
paper.

As for automatic fingering decision, several attempts
have been made in the last two decades. Sayegh [10]
first formulated fingering decision of string instruments as
a problem of path optimization. Radicioni et al. [8] ex-
tended Sayegh [10]’s approach by introducing segmenta-
tion of musical phrase. Radisavljevic and Driessen [9] in-
troduced a gradient descent search for the coefficients of
the cost function for path optimization. Tuohy and Pot-
ter [11] first applied the genetic algorithm (GA) to guitar
fingering decision and arrangements. As for applications
of HMM to fingering decision, Hori et al. [4] applied input-
output HMM [2] to guitar fingering decision and arrange-
ment, Nagata et al. [5] applied HMM to violin fingering
decision, and Nakamura et al. [6] applied merged-output
HMM to piano fingering decision. Comparing to those pre-
vious works, the present work is new in that it introduces
“minimax paradigm” to automatic fingering decision.

The rest of the paper is organized as follows. Sec-
tion 2 recalls the conventional Viterbi algorithm and in-
troduces our proposed minimax Viterbi algorithm. Section
3 introduces a framework of HMM-based fingering deci-
sion for monophonic guitar phrases. Section 4 applies the
minimax Viterbi algorithm to fingering decision for mono-
phonic guitar phrases and evaluates the results. Section 5
concludes the paper and discusses related future works.
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2. MINIMAX VITERBI ALGORITHM

We start by introducing our newly proposed “minimax
Viterbi algorithm” on which we build our fingering deci-
sion method in the following section. First of all, we recall
the definition of HMM 1 and the procedure of the conven-
tional Viterbi algorithm for finding the sequence of hidden
states that gives the maximum likelihood. Next, we mod-
ify the algorithm to our new one for finding the sequence of
hidden states that gives the maximum minimum transition
probability.

2.1 Hidden Markov model (HMM)

Suppose that we have two finite sets of hidden statesQ and
output symbols O,

Q = {q1, q2, . . . , qN},
O = {o1, o2, . . . , oK},

and two sequences of random variablesX of hidden states
and Y of output symbols,

X = (X1, X2, . . . , XT ),

Y = (Y1, Y2, . . . , YT ),

then a hidden Markov model M is defined by a triplet

M = (A,B, π)

whereA is anN×N matrix of the transition probabilities,

A = (aij), aij ≡ a(qi, qj) ≡ P (Xt = qj |Xt−1 = qi),

B an N ×K matrix of the output probabilities,

B = (bik), bik ≡ b(qi, ok) ≡ P (Yt = ok|Xt = qi),

and Π an N -dimensional vector of the initial distribution
of hidden states,

Π = (πi), πi ≡ π(qi) ≡ P (X1 = qi).

2.2 Conventional Viterbi algorithm

When we observe a sequence of output symbols 2

y = (y1, y2, . . . , yT )

from a hidden Markov model M , we are interested in the
sequence of hidden states

x = (x1, x2, . . . , xT )

that generates the observed sequence of output symbols y
with the maximum likelihood,

x̂ML = arg max
x

P (y,x|M)

= arg max
x

P (x|M)P (y|x,M)

= arg max
x

T∏

t=1

(a(xt−1, xt)b(xt, yt)) (1)

1 See [7] for more tutorial on HMM and its applications.
2 According to the conventional notation of the probability theory, we

denote random variables by uppercase letters and corresponding realiza-
tions by lowercase letters.

where we write a(x0, x1) = π(x1) for convenience. The
problem of finding the maximum likelihood sequence x̂ML

is called “decoding problem.” Although an exhaustive
search requires iterations over the NT possible sequences,
we can solve the problem efficiently using the Viterbi al-
gorithm [12] based on dynamic programming (DP), which
uses two N × T tables ∆ = (δit) of maximum likelihood
and Ψ = (ψit) of back pointers and the following four
steps.

Initialization initializes the first columns of the two tables
∆ and Ψ using the following formulae for i = 1, 2, . . . , N ,

δi1 = πi b(qi, y1),

ψi1 = 0.

Recursion fills out the rest columns of ∆ and Ψ using the
following recursive formulae for j = 1, 2, . . . , N and t =
1, 2, . . . , T−1,

δj,t+1 = max
i

(δitaij) b(qj , yt+1),

ψj,t+1 = arg max
i

(δitaij).

Termination finds the index of the last hidden state of the
maximum likelihood sequence x̂ML using the last column
of the table ∆,

iT = arg max
i

δiT .

Backtracking tracks the indices of the hidden states of the
maximum likelihood sequence x̂ML from the last to the
first using the back pointers of Ψ for t = T, T−1, . . . , 2,

it−1 = ψit,t

from which x̂ML is obtained as

xt = qit (t = 1, 2, . . . , T ).

2.3 Modification for minimax Viterbi algorithm

Next, we consider the problem of finding the sequence of
hidden states x with the maximum minimum transition
probability 3 ,

x̂MM = arg max
x

min
1≤t≤T

(a(xt−1, xt)b(xt, yt)), (2)

which we call “minimax decoding problem 4 .” A naive
approach to the problem is an exhaustive search, that is,
to enumerate all the sequences of the N hidden states and
the length T , calculate the minimum transition probability
for all the sequences, and find the one with the maximum
value, which involves iterations over NT sequences and is
not for an actual implementation. Instead, we introduce a

3 Because the output probabilities are 0 or 1 in our application of HMM
to guitar fingering decision, the sequence x̂MM eventually becomes the
one with the maximum minimum transition probability, although its def-
inition (2) depends on the output probabilities as well.

4 Although the antonym “maximin” is appropriate for probability
(which is the reciprocal of difficulty), we still use “minimax” for our pro-
posed algorithm because it is appropriate for difficulty and conveys our
concept of “make the most difficult move easier.”
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variant of the conventional Viterbi algorithm that can solve
the problem efficiently. We modify the second step of the
conventional Viterbi algorithm by replacing the term δitaij
with min(δit, aij) where

min(δit, aij) =

{
δit (δit ≤ aij)
aij (aij < δit)

.

The modified second step is as follows.

Recursion for minimax Viterbi algorithm fills out the
two tables ∆ and Ψ using the following recursive formulae
for j = 1, 2, . . . , N and t = 1, 2, . . . , T−1,

δj,t+1 = max
i

(min(δit, aij)) bj(yt+1),

ψj,t+1 = arg max
i

(min(δit, aij)).

We modify only the second step and leave other steps un-
changed. The modified second step works as the original
one but now the element δit keeps the value of the maxi-
mum minimum transition probability of the subsequence
of hidden states for the first t observations. The term
min(δit, aij) updates the value of the minimum transition
probability as the term δitaij in the conventional Viterbi
algorithm does the likelihood 5 .

3. FINGERING DECISION BASED ON HMM

We implement automatic fingering decision based on an
HMM whose hidden states are left hand forms and output
symbols are musical notes played by the left hand forms.
In this formulation, fingering decision is cast as a decod-
ing problem of HMM where a fingering is obtained as a
sequence of hidden states. Because each hidden state has a
unique output symbol, the output probability for the unique
symbol is always 1. To compare the results of the conven-
tional Viterbi algorithm and the minimax Viterbi algorithm
clearly, we concentrate on fingering decisions for mono-
phonic guitar phrases in the present study although HMM-
based fingering decision is able to deal with polyphonic
songs as well.

3.1 HMM for monophonic fingering decision

To play a single note with a guitar, a guitarist depresses a
string on a fret with a finger of the left hand and picks the
same string with the right hand. Therefore a form qi for
playing a single note can be expressed in a triplet

qi = (si, fi, hi)

where si = 1, . . . , 6 is a string number (from the high-
est to the lowest), fi = 0, 1, . . . is a fret number, and
hi = 1, . . . , 4 is a finger number of the player’s left hand
(1,2,3 and 4 are the index, middle, ring and pinky fingers).
The fret number fi = 0 means an open string for which

5 Note that min(δit, aij) does not compare the probability of some
subsequence and some transition probability but it does two transition
probabilities here.

the finger number hi does not make sense. For a classi-
cal guitar with six strings and 19 frets, the total number of
forms is 6 × (19 × 4 + 1) = 462 6 . For the standard tun-
ing (E4-B3-G3-D3-A2-E2), the MIDI note numbers of the
open strings are

n1 = 64, n2 = 59, n3 = 55, n4 = 50, n5 = 45, n6 = 40

from which the MIDI note number of the note played by
the form qi is calculated as

note(qi) = nsi + fi.

3.2 Transition and output probabilities

In standard applications of HMM, model parameters such
as the transition probabilities and the output probabilities
are estimated from training data using the Baum-Welch al-
gorithm [1]. However, for our application of fingering de-
cision, it is difficult to prepare enough training data, that
is, machine-readable guitar scores attached with tablatures.
For this reason, we design those parameters as explained in
the following instead of estimation from training data.

The difficulty levels of moves are implemented in the
transition probabilities between hidden states; a small
value of the transition probability means the corresponding
move is difficult and a large value easy. As for the move-
ment of the left hand along the neck, the transition prob-
ability should be monotone decreasing with respect to the
movement distance with the transition. Furthermore, the
distribution of the movement distance is sparse and con-
centrates on the center because the left hand of a guitarist
usually stays at a fixed position for several notes and then
leaps a few frets to a new position. To approximate such a
sparse distribution concentrated on the center, we employ
the Laplace distribution (Figure 1),

f(x) =
1

2φ
exp

(
−|x− µ|

φ

)
. (3)

It is known that a one dimensional Markov process with
increments according to the Laplace distribution is approx-
imated by a piecewise constant function [3] that is similar
to the movement of the left hand along the neck. The mean
and the variance of the Laplace distribution (3) are µ and
2φ2 respectively. We set µ to zero and φ to the time in-
terval between the onsets of the two notes at both ends of
the transition so that a long interval makes the transition
probability larger, which reflects that a long interval makes
the move easier. For simplicity, we assume that the four
fingers of the left hand (the index, middle, ring and pinky
fingers) are always put on consecutive frets. This lets us
calculate the index finger position (the fret number the in-
dex finger is put on) of form qi as follows,

ifp(qi) = fi − hi + 1.

6 The actual number of forms is less than this because the 19th fret
is most often split by the sound hole and not usable for third and fourth
strings, the players hardly place their index fingers on the 19th fret or
pinky fingers on the first fret, and so on.
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Figure 1. The probability density function of the Laplace
distribution for µ = φ = 1, which is sparse and concen-
trates on the center.

Using the index finger position, we set the transition prob-
ability as

aij(dt) = P (Xt = qj |Xt−1 = qi, dt)

∼ 1

2dt
exp(−|ifp(qi)− ifp(qj)|

dt
)

× 1

1 + |si − sj |
× pH(hj) (4)

where dt in the first term is set to the time interval be-
tween the onsets of the (t−1)-th note and the t-th note.
The second term corresponds to the difficulty of changing
between strings where we employ a function 1/(1 + |x|)
which is less sparse than the Laplace distribution (3). The
third term pH(hj) corresponds to the difficulty level of the
destination form defined by the finger number hj . In the
simulation in the following section, we set pH(1) = 0.35,
pH(2) = 0.3, pH(3) = 0.25 and pH(4) = 0.1 which
means the form using the index finger is easiest and the
pinky finger the most difficult. The difficulty levels of the
forms are expressed in the transition probabilities (not in
the output probabilities) in such a way that the transition
probability is small when the destination form of the tran-
sition is difficult.

As for the output probability, because all the hidden
states have unique output symbols in our HMM for fin-
gering decision, it is 1 if the given output symbol ok is the
one that the hidden state qi outputs and 0 if ok is not,

bik = P (Yt = ok|Xt = qi)

∼
{

1 (if ok = note(qi))
0 (if ok 6= note(qi))

.

4. EVALUATION

To evaluate our proposed method, we compared the results
of fingering decision using the conventional Viterbi algo-
rithm and the minimax Viterbi algorithm. Figures2-4 show

Figure 2. The results of fingering decision for the C ma-
jor scale starting from C3. Comparing the two tablatures,
the one obtained by the minimax Viterbi algorithm is more
natural and one that actual guitarists would choose. As for
the minimum transition probability, the line chart shows
that the minimax Viterbi algorithm gives a larger one.

the results for three example monophonic phrases. In each
figure, the top and the middle tablatures show the two fin-
gerings obtained by the conventional Viterbi algorithm and
the minimax Viterbi algorithm. The numbers on the tabla-
tures show the fret numbers and the numbers in parenthesis
below the tablatures show the finger numbers where 1,2,3
and 4 are the index, middle, ring and pinky fingers. The
bottom line chart shows the time evolution of the transi-
tion probability of the conventional Viterbi algorithm (gray
line) and the minimax Viterbi algorithm (black line). The
two tablatures and the line chart share a common horizon-
tal time axis, that is, a point on the line chart between two
notes in the tablature indicates the transition probability
between the two notes.

Figure 2 shows the results for the C major scale start-
ing from C3. From the line chart of the transition prob-
ability, we see that the minimum value of the gray line
(the conventional Viterbi algorithm) at the sixth transition
is smaller than any value of the black line (the minimax
Viterbi algorithm), that is, the minimax Viterbi algorithm
gives a larger minimum transition probability. As for the
tablatures, the one obtained by the minimax Viterbi algo-
rithm is more natural and one that actual guitarists would
choose.

Figure 3 shows the results for the opening part of “Ro-
mance Anonimo.” From the line chart of the transition
probability, we see that the gray line (the conventional
Viterbi algorithm) keeps higher values at the cost of two
very small values while the black line (the minimax Viterbi
algorithm) avoids such very small values although it keeps
relatively lower values. From the line charts of Figures
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Figure 3. The results of fingering decision for the opening
part of “Romance Anonimo” (only top notes). Compar-
ing the two tablatures, the one obtained by the minimax
Viterbi algorithm avoids using the pinky finger and sup-
presses changing between strings. We see from the line
chart that the conventional Viterbi algorithm keeps higher
values at the cost of two very small values while the mini-
max Viterbi algorithm avoids very small values although it
keeps relatively lower values.

2 and 3, we see that the minimax Viterbi algorithm actu-
ally minimizes the maximum difficulty for playing a given
phrase and makes the most difficult move easier, which can
not be done by the conventional Viterbi algorithm. As for
the resulting tablatures, while the one obtained by the con-
ventional Viterbi algorithm uses the pinky finger twice and
changes between strings three times, the one obtained by
the minimax Viterbi algorithm does not use the pinky fin-
ger and changes between strings only once.

Figure 4 shows the results for the opening part of “Eine
Kleine Nachtmusik.” In both fingerings, the first eight
notes are played with a single finger that presses down mul-
tiple strings across a single fret. The top tablature obtained
by the conventional Viterbi algorithm uses the index fin-
ger for the first eight notes and the pinky finger for the
ninth note while the middle one obtained by the minimax
Viterbi algorithm prefers the ring finger for the first eight
notes to avoid using the pinky finger for the ninth note.
The slight difference in the transition probability for the
first eight notes comes from the difference in the difficulty
of the form pH(hj) in (4) defined by the finger number hj .

5. CONCLUSION

We have introduced a variant of the Viterbi algorithm
termed the minimax Viterbi algorithm that finds the se-
quence of the hidden states that maximizes the minimum
transition probability, and demonstrated the performance

Figure 4. The results of fingering decision for the opening
part of “Eine Kleine Nachtmusik” (only top notes). Com-
paring the two tablatures, the one obtained by the minimax
Viterbi algorithm uses the ring finger (instead of the in-
dex finger) for the first eight notes to avoid using the pinky
finger for the ninth note. The slight difference in the tran-
sition probability for the first eight notes comes from the
difference in the difficulty of using the index finger and the
pinky finger.

of the algorithm with guitar fingering decision based on
a synthetic HMM. Fingering decision using our proposed
variant has turned out to be able to minimize the maximum
difficulty of the move required for playing a given phrase.
We have compared the resulting fingerings by the conven-
tional Viterbi algorithm and the minimax Viterbi algorithm
to see that our proposed variant is capable of making the
most difficult move easier that can not be done by the con-
ventional one. Those observations give rise to interests
in the interpolation between the conventional Viterbi al-
gorithm and the minimax Viterbi algorithm. We consider
that such an interpolation can be implemented using the
Lp-norm of a real vector, which is the absolute sum of the
vector elements for p=1 and the maximum absolute value
for p=∞, and is one of our future study plans. We hope
that the present work draws the researcher’s attention to the
new “minimax paradigm” in automatic fingering decision.
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ABSTRACT

In this work we explore the increasing demand for novel
user interfaces to navigate large media collections. We im-
plement a scalable data structure to store and retrieve sim-
ilarity information and propose a novel navigation frame-
work that uses geometric vector operations and real-time
user feedback to direct the outcome. In particular, we im-
plement this framework in the domain of music. To eval-
uate the effectiveness of the navigation process, we pro-
pose an automatic evaluation framework, based on syn-
thetic user profiles, which allows to quickly simulate and
compare navigation paths using different algorithms and
datasets. Moreover, we perform a real user study. To do
that, we developed and launched Mixtape 1 , a simple web
application that allows users to create playlists by provid-
ing real-time feedback through liking and skipping pat-
terns.

1. INTRODUCTION

Internet cloud and streaming services have become the
state-of-the-art in terms of storage and access to media col-
lections. Even though the storage problem of media col-
lections seems to have been practically solved with cloud-
based applications, a challenge still remains in conceptu-
alizing and developing novel interfaces to explore them.
User interfaces are expected to be intuitive and easy, yet
flexible and powerful in understanding and delivering what
users expect to see.

In this work we propose a framework that uses real-
time user feedback to provide direction-based navigation
in large media collections. The navigation framework is
comprised of a data structure to store and retrieve similar-
ity information and a novel navigation interface that allows

1 www.projectmixtape.org

c© João Paulo V. Cardoso, Luciana Fujii Pontello, Pedro H.
F. Holanda, Bruno Guilherme, Olga Goussevskaia, Ana Paula Couto da
Silva. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: João Paulo V. Cardoso, Luciana Fu-
jii Pontello, Pedro H. F. Holanda, Bruno Guilherme, Olga Goussevskaia,
Ana Paula Couto da Silva. “Mixtape: Direction-based navigation in large
media collections”, 17th International Society for Music Information Re-
trieval Conference, 2016.

users to explore the content of the collection in a person-
alized way. We begin by focusing on the music domain,
because the intrinsic usage pattern behind listening to mu-
sic is favorable to the design and verification of a dynamic
real-time feedback based system.

We define media item-to-item similarity based on user-
generated data, assuming that two items are similar if they
frequently co-occur in a user’s profile history. Media co-
occurrence information is increasingly available through
many online social networks. For example, in the do-
main of music, such usage information can be collected
from Last.fm, a social music site. Collected co-occurrence
data is usually sparse (not all pairs of items will have co-
occurred at least once in the collected dataset) and never-
theless might occupy a lot of memory space (Ω(n2), where
n is the size of the collection). To guarantee O(n) space
complexity and O(1) query complexity of all-pairs sim-
ilarity information, we transform the collected pairwise
co-occurrence values into a multi-dimensional Euclidean
space, by using nonlinear dimensionality reduction [21].

Our main contribution is a novel randomized naviga-
tion algorithm, based on the geometry of the constructed
similarity space. Each navigation session is modeled as a
Monte Carlo simulation: given a starting item and a set of
close neighbors in the similarity space, each neighbor is
assigned a probability of being the next current item. If
the returned next item is not quite what the user wants to
see, they can skip it, so the previous item is used as the
seed again. To define these probabilities, we propose a
geometric vector-based approach, which explores the no-
tion of direction, using user feedback and the Euclidean
distances between items to establish a concept of “direc-
tion inertia”, which creates a tendency for users to “keep
going” in the direction of the items they enjoy and “turn
away” from items, or regions, they don’t like.

The evaluation of the resulting system is twofold. First,
we propose an automatic evaluation framework, based on
synthetic user profiles, which allows to quickly simulate
and compare navigation paths using different algorithms
and datasets. We also propose two basic metrics: num-
ber of skips per like ratio and smoothness of consecutively
accepted items in a navigation session. Second, we eval-
uate real-user interaction with the system. To do that, we
developed and launched Mixtape, a simple web applica-
tion that allows users to create playlists by providing real-
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time feedback through liking and skipping patterns. Over-
all, we analyzed over 2, 000 simulated and 2, 000 real-
user navigation sessions in a map comprised of more than
62, 000 songs. Besides analyzing quantitative parameters,
such as the proportion of skipped to accepted songs and
the smoothness of the generated trajectories, we gathered
feedback left by users and analyzed what they expect and
appreciate in a media navigation system.

2. RELATED WORK

A closely related line of research to this work is automatic
playlist generation. There are techniques that use statis-
tical analysis of radio streams [4, 5, 15, 22], are based on
multidimensional metric spaces [2,4,9,13,16,17], explore
audio content [3,8,14,23], and user skipping behavior [18].
In particular, Chen et al [4] model playlists as Markov
chains, which are generated through the Latent Markov
Embedding (LME) machine learning algorithm, using on-
line radio streams as a training set. We use this algorithm
as a baseline in our experiments. The idea to embed co-
occurrence information into a multi-dimensional space has
been explored before, e.g., in [1,2,9,13], where the authors
focus mostly on visual exploration of a collection. The idea
to use skipping behavior to generate playlists has been ex-
plored in [18], however, the presented algorithms do not
scale to large collections. Our work goes beyond playlist
generation, providing a real-time flexible navigation inter-
face that receives immediate user feedback through skip-
ping behavior to guide the user within the music collection
towards directions chosen on-the-fly.

3. NAVIGATION FRAMEWORK

Our goal is to design a media navigation framework com-
prised of two main components: (1) A scalable data struc-
ture to store and retrieve item-to-item similarity informa-
tion; (2) Directed-based navigation functions, that take the
current item and user feedback in real time and return the
next item; moreover, we want the navigation output to be
computationally efficient and nondeterministic, so the user
can be surprised with new items in each navigation se-
quence.

3.1 Item-to-item similarity representation

In this work, we use the assumption that similarity between
two items can be deduced by analyzing usage habits of a
large number of media users. More specifically, we assume
that the more often two items co-occur in the same user’s
profile, the more similar they are. So we define pairwise
similarity between two items by using cosine similarity:
cos(i, j) = coocc(i, j)/

√
occ(i)occ(j), where coocc(i, j)

is the number of co-occurrences between two items and
occ(i) the individual occurrences in the users’ profiles.

Since co-occurrence data is typically sparse, i.e., only a
few pairwise similarities are known, we applied the Isomap
method [21], which extends classical multidimensional
scaling (MDS) [6] by incorporating the geodesic distances
imposed by an (intermediate) weighted graph. We defined

the weight of an edge as the complement of the cosine sim-
ilarity, (w(i, j) = 1 − cos(i, j)) and built a graph G with
these weights.

To generate the map we calculated the complete nXn
distance matrix fromG and then applied the classical MDS
algorithm in this matrix. Building a new d-dimensional
Euclidean space such that d << n. The final space is a
nXd matrix. Note that, for larger datasets one can use
approximate algorithms, such as LMDS or LINE [7, 20].

3.2 Navigation functions

In order to guide the navigation process, a navigation ses-
sion is treated as a run of a Monte Carlo simulation, in
which the choice of the next item depends on the current
item and a probability function that assigns different prob-
abilities to each of its neighboring nodes. Given a starting
item, the navigation system retrieves the set K of its near-
est neighbors in the Euclidean space, and uses them as can-
didates to be the next item. Once an item ki ∈ K is chosen
to be next, users can provide immediate feedback to the
system by accepting or skipping it explicitly, through user
interface feedback, or implicitly by skipping it. In case the
new item is accepted, it becomes the current item, and the
process starts again. The probability function should have
a strong influence on the overall outcome of the navigation.

Parameter |K| is used to vary the size of each “step” of
the navigation process. It can be configured as a constant,
or to be variable. In our experiments, good results were
achieved using exponentially growing step size:

|K| =
{

2|K|, if the previous item was skipped
|K0|, otherwise,

where |K0| is configurable minimum neighborhood size.
In our experiments we used |K0| = 10 and |K| ≤ 640.
Map navigation: We start with the following basic ap-
proach, to which we refer as Map, that explores the idea
that users prefer to navigate through items that are close to
each other in the Euclidean space. We define the probabil-
ity of node ki ∈ K to be next as:

PnextMap
i =

{
1/|K|, if ki ∈ K;
0, otherwise,

Vector navigation: Vector navigation explores the notion
of direction of navigation, assuming users would like to
travel through different regions in the space. To do so, it
treats the possible steps in the space as vectors. The hop
vector ~ab of any given hop from item A to item B can
be derived from the straight line between them (see Fig-
ure 1.1).

As the navigation progresses, the system keeps a direc-
tion vector ~V , which is recalculated after every hop. This
vector represents the directions in which the system has
recently moved. As a simplified example, consider the fol-
lowing sequence from item A to item D (see Figure 1.2).
~V0 was derived from the first hop, ~ab. ~V1 is half the sum of
~V0 and ~bc, which was the second hop. ~V2 is half the sum
of ~V1 and ~cd, and the process goes on.
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Figure 1. Direction-based navigation (Vector algorithm)

In each step, the system calculates the probabilities of
suggesting each neighbor by comparing the current direc-
tion vector ~V to each of the vectors towards the |K| consid-
ered candidates (i.e., to vectors from the current to neigh-
bor nodes). For example, consider the decision to move
from item A with current direction vector ~V0 to two neigh-
bors, B and C (see Figure 1.3).

The more aligned the direction and the candidate vec-
tors are, the smaller the angle θ will be, and the higher
the probability of suggesting that neighbor. In Figure 1.3,
since θc < θb, node C will have a higher probability to be
the next item.

It is also possible to set a target destination T , which is
an arbitrary point on the map, where the navigation should
try to go to. This adds a third element to the direction
vector update procedure, by creating vector ~bt in each up-
date and also adding it to ~V . Let’s consider the situation
in which a hop was accepted from item A to item B, and
the target destination T was configured (see Figure 1.4).
Note that ~V1 is made by adding vectors ~V0, ~ab and ~bt and
dividing the module of the resulting vector by three.

Last but not least, feedback is incorporated by consid-
ering that, when a user skips a suggestion, it would be in-
teresting to increase the probability of suggesting some-
thing different from the skipped item. So, when an item is
skipped, the system does not change the current node, and
the opposite vector is added to ~V . Consider the example
in Figure 1.5, where item B was skipped, and so ~V1 was
calculated by adding ~V0 to − ~ab to reflect the user’s prefer-
ence.

Defining the method formally: Consider a setK of clos-
est neighbors of current node A and the current direction
vector ~V with the respective angles θi between ~V and each
hop vector ~aki, ki ∈ K. Also, consider the optional pa-
rameter with the location of a target destination T . We de-
fine the direction-based navigation function using the fol-
lowing weight variables:

wi = 1 + cos(θi) = 1 +
~aki • ~V
| ~aki||~V |

.

Note that the weight is proportional to the cosine of the
angle between the current direction vector ~V and the di-
rection of each neighbor ki relative to the current node A.
We add 1 to avoid negative values. Finally, we define the
probability of node ki ∈ K to be next as:

PnextV ec
i =

wi∑|K|
j=1 wj

.

Note that we have a proper probability distribution,
since the sum over probabilities PnextV ec

i , i ∈ K is 1.
After the next item has been returned, say ki, and the

user has provided feedback by accepting or skipping it, we
update the direction vector ~V of node A as follows:

~V =

{
( ~aki + ~V )/2, if ki was accepted
(− ~aki + ~V )/2, if ki was skipped.

If target destination T has been defined, then the calcu-
lation also includes the new target vector ~at between the
chosen item and the target destination:

~V =

{
( ~aki + ~V + ~at)/3, if ki was accepted
(− ~aki + ~V + ~at)/3, if ki was skipped.

If the item was accepted, node ki becomes the next cur-
rent node. Otherwise, the current node does not change,
and only the direction vector is updated. Note that this
approach is domain-independent and uses nothing but the
coordinates of the embedding itself. It also carries an ex-
plicit dependency on user feedback, since ~V is determined
by the user’s skipping behavior.

4. MUSIC DOMAIN

The navigation framework described in Section 3 can be
applied to different media domains. In this work, we focus
on the domain of music.

4.1 Last.fm Dataset

In order to define music similarity, we assume that the
more frequently two songs co-occur in a user’s listen-
ing history, the more similar they are. We collected co-
occurrence data from Last.fm, a social music site that
tracks user musical tastes, from November, 2014 to March,
2015. More specifically, we collected the top-25 most lis-
tened songs of each user, reaching a total of 372,899 users,
2,060,173 tracks, and 374,402 artists. Moreover, we also
collected a total of 1,006,236 user-generated tags, asso-
ciated with songs. In particular, 75% of songs have had
at least one associated tag in our dataset. We considered
a subset of 983,010 tracks in our dataset with a known
MBID 2 , from which we selected another subset of 83,180
tracks that co-occurred 5 or more times, forming a con-
nected component of 62,352 songs. A detailed characteri-
zation of the dataset can be found in [19].

2 MusicBrainz Identifier (MBID) is a reliable and unambiguous form
of music identification (musicbrainz.org).
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The connected graph with 62,352 vertices enabled us to
run IsoMap [21] and Multidimensional Scaling (MDS) [6]
without any approximations. By parallelizing parts of the
algorithm, we computed the all-pairs shortest path matrix
of size 62, 352 × 62, 352, in 7 minutes on a server with
50 GB of RAM and 16 CPU cores, and computed the em-
bedding into 100 dimensions in approximately 2 hours on
the same server. Note that a larger collection could have
been embedded using a less computationally intensive ap-
proximate algorithm, such as LMDS or LINE [7, 20]. An
evaluation of the embedding process can be found in [12].

4.2 Mixtape

We wanted to collect real user feedback in order to evalu-
ate the navigation framework in the music domain. For this
purpose, we developed Mixtape, a web-based application
with a simple user interface (see Figure 2). On the server
side, a k-d tree was loaded with a 100-dimensional space
of 62, 352 tracks. On the client side, the design goal was
to provide a minimalist user interface that fully explored
the navigation functions defined in Section 3.2. Each user
would choose the starting song and then be presented with
one suggestion at a time, with explicit feedback-generating
actions. The user interface is comprised of a playlist, on
the left, which shows the songs the user has accepted or
skipped, and a Youtube video window, which finds and
plays the current suggested item. Users can then decide
whether they like the song or not, using the like and dis-
like buttons, one of which the user must press in order to
receive the next suggestion. In case the user does not press
anything and listens to the entire song, we assume they
liked it, and consider the song as accepted. There is also
a settings button, which allows the user to switch between
different navigation functions.

5. EXPERIMENTS

The evaluation of the proposed navigation framework in
the domain of music is twofold: Firstly, we propose an
automatic evaluation framework and perform an extensive
analysis based on simulated user profiles. Furthermore,
since real users might behave differently, and the percep-
tion of a song is subjective, we observed how real users
interacted with our Mixtape application. As a result, we
were able to evaluate not only how effective and engaging
the proposed navigation system is, but also how well the
simulated user profiles approximated real user behavior.

5.1 Simulated user profiles

To test the navigation framework, we simulated synthetic
user profiles, in which hypothetical users intend to listen
to 20 songs (about one hour of music), and count the num-
ber of skips (songs that are skipped by the simulated user
profile following the algorithm described below) until 20
songs are accepted. A similar evaluation approach was
used in [18]. We simulated two types of users:
Tag-based user profile: This user profile is based on tag
information and the notion of transition between two re-

gions on the map. Recall from Section 4.1 that we col-
lected over 1,006,236 user-generated tags, associated with
songs. We assume this user wishes to listen to a sequence
of songs that transitions from initial tag Ti to final tag Tf .

To do that, the simulated user accepts all songs asso-
ciated with tag Ti in the first 1/3 of the navigation path
(skips otherwise), accepts songs with tags Ti or Tf in the
second 1/3, and accepts only songs with tag Tf in the last
1/3 of the path, comprised of a total of 20 items. Note that
real users do not necessarily know what tags are associated
to particular tracks. Since these users are hypothetical, we
can use the collected tag information for simulation pur-
poses.

We manually selected tag transitions among the top 200
most popular tags in our dataset. We noticed these tags
could be divided in three categories: Mood tags, such as
Chill, Upbeat, Relaxing, Genre tags, such as such as Rock,
Hip Hop, Folk, and Age tags, such as 60’s, 90’s, 2000’s.
We then paired them up manually, selecting 14 transitions
to experiment with. For each tag transition (Ti ⇒ Tf ), we
considered a navigation path starting at the most popular
song associated to tag Ti, and applying the skipping rule
until a path of 20 accepted songs was achieved.
Artist-based user profile: This user profile is based on
artist information and the notion that certain users wish to
listen to songs by artists they already know. Since this user
wishes to listen to preferred artists, whenever the suggested
song is by an artist contained in the user’s history, it is ac-
cepted. Otherwise, it is skipped. We collected the com-
plete listening histories of 20 users to simulate this user
profile, and started the playlist at a random song within
each user’s profile. Moreover, for this experiment only
users whose profiles were not used to construct the em-
bedding were simulated.

5.2 Baselines

As baselines, we tested the following approaches:
LME: Logistic Markov Embedding [4,16], a probabilistic
approach that models sequences in a Euclidean space using
radio streams as a training set. We used the implementation
available at the authors’ homepage, with all parameters set
to default values, except for α = 5 (this value resulted in
superior overall performance), as our dataset did not have
music sequences, only music occurrences in a user profile,
we used the “yes-complete” dataset (also made available
by the authors) in a combination with our dataset, since
LME needs a sequence of items as input, which resulted
in an intersection set of 31,544 items with our dataset. We
made one modification to the LME algorithm by incorpo-
rating user feedback when computing the next item. More
specifically, whenever an item nj has been skipped after a
previously accepted item ni, we recompute the probabili-
ties at ni setting Pr(nj |ni) = 0, and maintaining ni as the
current item.
Random: A random song is returned, considering all
songs in the dataset.
Random Tag: A random song with tag T is returned. This
baseline was used for the tag-based navigation evaluation.
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Figure 2. Mixtape screenshot
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5.3 Mixtape user study setup

We collected all user actions on Mixtape over a course of
2 weeks, resulting in the participation of over 800 users,
generating a total of over 2000 navigation sessions. In or-
der to compare the performance of different navigation al-
gorithms, each navigation session was randomly assigned
either Map, Vector or LME algorithms (with undefined tag
parameters), but the user could explicitly change the algo-
rithm in the settings menu as well. Users could also choose
the Random approach, however, since the engagement in
this setting was very low, we did not include it in the plots.

5.4 Results

In our experiments, we measure the effectiveness of the
two navigation approaches proposed in this work (Map and
Vector) and the two baselines (Random and LME) in three
navigation setups: simulated tag-based user profiles, simu-
lated artist-based user profiles, and real users on Mixtape.
We use two main metrics: skipping behavior and playlist
smoothness, defined below. Each scenario was executed
20 times, and all figures show the 95% confidence interval.
Skipping behavior: Figure 3 shows the CDF of playlist
length generated on Mixtape. It can be seen that almost
30% of the playlists 3 contain 10 tracks or more, and al-
most 15% have size 20 or longer, which shows that many
people really engaged with the application.

In Figure 4 we compare the ratio of the total number
of skips (dislikes) and the total number of accepted songs
(likes) in playlists generated by all navigation algorithms
for simulated and real user profiles. Analyzing the sim-
ulated user profiles, we can see that the baseline algo-
rithms present several times more skips per like (LME:
skips/like > 7.5, Random: skips/like > 8) than Map
and Vector (skips/like < 2). Map and Vector have sim-
ilar results and perform especially well in the artist-based
simulated setup (skips/like < 0.5), which shows they are
more effective not only in directing the user between dif-
ferent regions in the space, but also in presenting the user
with music by preferred artists.

Looking at Mixtape results on Figure 4, we can
see that all three approaches perform well on average

3 We refer to the sequence of tracks accepted, or liked, by a user in one
navigation session as a playlist.

(skips/like < 2). LME has still more skips than likes
(skips/like > 1), whereas Map and Vector have signifi-
cantly more likes than skips (Map: skips/like < 0.8, Vec-
tor: skips/like < 0.4), indicating that users enjoyed the
vast majority of the suggested songs, especially by the Vec-
tor algorithm. Note that Vector outperforms Map for real
users, indicating that the direction in the map, provided by
the real-time feedback, does matter for real users.

Comparing real and synthetic user profiles, we note that
LME performed much better with real rather than simu-
lated users. That might be because real users are more
open-minded and accept more diversity in their playlists.
Nevertheless, the number of skips per like for Vector and
Map on Mixtape was similar to the simulated artist-based
user profiles, indicating that in some aspects the simulation
was accurate in portraying a real user.

In Figures 5 through 7 we analyze the number of skips
along each step of the navigation process. In Figure 5
the number of skips per step decreases in the second third
and then reaches a maximum in the beginning of the third
part of the playlist for all algorithms. This illustrates how
the algorithms react to the simulated tag-based navigation
setup. Afterwards, however, we can see that Map and Vec-
tor quickly decrease the number of skips, as opposed to
LME and Random, showing that the former algorithms
succeed in adjusting the direction of the navigation towards
the destination tag.
Playlist smoothness: In Figures 8 through 10 we analyze
how similar consecutive songs are on a navigation path, by
measuring the cosine similarity of the artists of consecu-
tive (accepted) songs. 4 Note that in Figure 8 we plot the
RandomTag baseline instead of Random, to shed light on
the following question: if the objective of tag-based sim-
ulations is to recommend songs with a given tag, why not
simply choose songs from the database that have that tag?
That method might work when we ignore the relationship
between songs in a playlist. However, we argue that a
playlist should be more than a group of songs with a given
tag–it should present a relationship between the songs. We
can see that RandomTag and LME baselines provide al-
most zero similarity along the navigation path, even though
RandomTag only returns songs with accepted tags, i.e.,

4 We define artist similarity as the cosine similarity computed from
artist co-occurrence in our dataset.
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lated tag-based navigation
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lated artist-based navigation
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makes zero skips in the tag-based simulation setup. Map
and Vector, on the other hand, trace highly smooth nav-
igation paths, offering the user songs with high similar-
ity to the previously chosen songs, especially in the artist-
based simulation setup (Figure 9, artist cosine > 0.4). Fig-
ure 10 5 shows that Map and, especially, Vector playlists
on Mixtape also present high similarity between consecu-
tive items, indicating that people prefer smooth, rather than
abrupt, transitions in their navigation paths.
User feedback: To enhance our perception about how
users perceive our Mixtape application, we created a short
online survey, linked from the Mixtape application, which
was answered by 44 unidentified subjects. The users were
not provided with any information about the navigation al-
gorithms. They were asked to provide feedback on the ex-
perience of using Mixtape, leading to the following num-
bers: 95% enjoyed the songs suggested by Mixtape, and
only 11% of the users were not able to find most of the
songs they were searching for (recall from Section 4.1 that
we used a reduced sample of the map in our experiments:
62,352 songs with co-occurrence at least 5.).

Interestingly, 70% of the participants said they discov-
ered new artists or songs. Most people said they didn’t
change the navigation policy and they didn’t know which
policy they used during their navigation. From those who
did experiment with different policies, they equally en-
joyed Map and Vector approaches (even though, on aver-
age, users skipped less songs when using direction-based
navigation).

5 The CIs in Figures 7 and 10 are high, due to insufficient data for
certain song numbers.

To sum up this first user study, we can conclude that
users enjoyed navigating music collections by giving their
real-time feedback and that the navigation allowed them to
discover previously unknown songs they enjoyed.

6. CONCLUSION

In this work we proposed a navigation framework for large
media collections and evaluated an implementation of the
framework in the domain of music. Potentially, the same
ideas could be applied to other kinds of media, e.g. movies
or TV shows [10, 11]. Rather than creating fixed playlists,
our approach allows users to provide feedback through
skipping behavior and direct the navigation process in real-
time. We evaluated the framework through simulation of
more that 2,000 synthetic navigation paths and performed
a real user study by launching Mixtape, a web application
with a minimalist user interface that allows people to navi-
gate a collection of over 60,000 music tracks. We analyzed
over 2,000 playlists generated by over 800 real users and
received positive feedback about the application. When
comparing playlists generated by Mixtape and simulated
hypothetical users, we could observe several similarities,
indicating that in some aspects the simulation was accu-
rate in portraying a real user. Moreover, not only did this
user study serve as validation of the proposed framework,
but it also provided insights into what users look for and
appreciate in a media navigation system. 6

6 Acknowledgments: This work is supported in part by CNPq,
FAPEMIG and LG Electronics in cooperation with Brazilian Federal
Government through Brazilian Informatics Law (n. 8.2.48/1991).
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ABSTRACT

This paper presents a statistical method that estimates a se-
quence of discrete musical notes from a temporal trajectory
of vocal F0s. Since considerable effort has been devoted to
estimate the frame-level F0s of singing voices from music
audio signals, we tackle musical note estimation for those
F0s to obtain a symbolic musical score. A naı̈ve approach
to musical note estimation is to quantize the vocal F0s at
a semitone level in every time unit (e.g., half beat). This
approach, however, fails when the vocal F0s are signifi-
cantly deviated from those specified by a musical score.
The onsets of musical notes are often delayed or advanced
from beat times and the vocal F0s fluctuate according to
singing expressions. To deal with these deviations, we pro-
pose a Bayesian hidden Markov model that allows musical
notes to change in semi-synchronization with beat times.
Both the semitone-level F0s and onset deviations of musi-
cal notes are regarded as latent variables and the frequency
deviations are modeled by an emission distribution. The
musical notes and their onset and frequency deviations are
jointly estimated by using Gibbs sampling. Experimen-
tal results showed that the proposed method improved the
accuracy of musical note estimation against baseline meth-
ods.

1. INTRODUCTION

Singing voice analysis is one of the most important topics
in the field of music information retrieval because singing
voice usually forms the melody line of popular music and
it has a strong impact on the mood and impression of a
musical piece. The widely studied tasks in singing voice
analysis are fundamental frequency (F0) estimation [1, 4,
5,8,10,15,22] and singing voice separation [9,13] for mu-
sic audio signals. These techniques can be used for singer
identification [11, 23], Karaoke systems based on singing
voice suppression [2,20], and a music listening system that
helps a user focus on a particular musical element (e.g., vo-
cal part) for deeper music understanding [7].

c⃝ Ryo Nishikimi, Eita Nakamura, Katsutoshi Itoyama,
Kazuyoshi Yoshii. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Ryo Nishikimi, Eita
Nakamura, Katsutoshi Itoyama, Kazuyoshi Yoshii. “Musical Note Esti-
mation for F0 Trajectories of Singing Voices based on a Bayesian Semi-
beat-synchronous HMM”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.
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Figure 1: The process generating F0 trajectories of singing
voices.

In this study we tackle a problem called musical note es-
timation that aims to recover a sequence of musical notes
from an F0 trajectory of singing voices. While a lot of
effort has been devoted to F0 estimation of singing voices,
musical note estimation should be investigated additionally
to complete automatic music transcription, i.e., convert the
estimated F0 trajectory to a musical score containing only
discrete symbols. If beat information is available, a naı̈ve
approach to this problem is to quantize the vocal F0s con-
tained in every time unit (e.g., half beat) into a semitone-
level F0 with a majority vote [7]. This approach, however,
often fails to work when the vocal F0s are significantly
deviated from exact semitone-level F0s specified by a mu-
sical score or the melody is sung in a tight or lazy singing
style such that the onsets of musical notes are significantly
advanced or delayed from exact beat times.

To solve this problem, we propose a statistical method
based on a hidden Markov model (HMM) that represents
how a vocal F0 trajectory is generated from a sequence of
latent musical notes (Fig. 1). The F0s of musical notes in
a musical score can take only discrete values with the in-
terval of semitones and tend to vary at a beat, half-beat,
or quarter-beat level. The vocal F0 trajectory in an actual
performance, on the other hand, is a continuous signal that
can dynamically and smoothly vary over time. To deal with
both types of F0s from a generative viewpoint, we formu-
late a semi-beat-synchronous HMM (SBS-HMM) allow-
ing the continuous F0s of a sung melody to deviate from
the discrete F0s of written musical notes along the time and
frequency directions. In the proposed HMM, the semitone-
level F0s and onset deviations of musical notes are encoded
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as latent variables and the F0 deviations of musical notes
are modeled by emission probability distributions. Given
an F0 trajectory and beat times, all the variables and distri-
butions are estimated jointly using Gibbs sampling.

2. RELATED WORK

This section introduces related work on singing voices.

2.1 Pitch Estimation of Singing Voice

Many studies on estimating a vocal F0 trajectory in a music
audio signal have been conducted [1,4,5,8,10,15,22]. Sub-
harmonic summation (SHS) [8] is a method in which the
fundamental frequency for each time is determined by cal-
culating the sum of the powers of the harmonic componen-
ts of each candidate fundamental frequency {f0, . . . , fM}.
PreFEst [5] is a method that estimates the F0 trajectories of
a melody and a bass line by extracting the most predom-
inant harmonic structure from a polyphonic music audio
signal. Ikemiya et al. [10] proposed a method in which sin-
ging voice separation and F0 estimation are performed mu-
tually. First a singing voice is separated, from the spectro-
gram obtained by the short-time Fourier transform (STFT)
for a music audio signal, by using a robust principal com-
ponent analysis (RPCA) [9], and then a vocal F0 trajectory
is obtained with the Viterbi algorithm by using SHS for
a separated singing voice. Salamon et al. [22] used the
characteristics of vocal F0 contours for melody extraction.
Durrieu et al. [4] proposed a method for melody extrac-
tion in which the main melody is represented as a source-
filter model and the accompaniment of the music mixture is
represented as a non-negative matrix factorization (NMF)-
based model. De Cheveigné et al. [1] proposed a auto-
correlation based method for fundamental frequency esti-
mation which is expanded to decrease an error rate. This
method is called YIN. Mauch et al. [15] extended YIN in a
probabilistic way to output multiple pitch candidates. This
method is called pYIN.

2.2 Note Estimation of Singing Voice

A method for estimating the sequence of musical notes by
quantizing pitches of a vocal F0 trajectory has been pro-
posed. A majority-vote method described in Sec. 1 was
implemented in Songle [7]. The method has a limit be-
cause it doesn’t consider the singing expression nor the
typical occurrence of pitches in succession. Paiva et al.
[17] proposed a method that has five stages and detects
melody notes in polyphonic musical signals, and Raphael
[19] proposed an HMM-based method that simultaneously
estimates rhythms, tempos, and notes from a solo singing
voice acoustic signal. Poliner et al. [18] proposed a method
based on a support vector machines (SVM) classifier which
doesn’t need the assumption that a musical pitch is realized
as a set of harmonics of a particular fundamental. Laakso-
nen [12] proposed a melody transcription method that uses
chord information, and Ryynänen et al. [21] proposed a
method for transcribing the melody, bass line, and chords
in polyphonic music. A software tool called Tony devel-

Music Audio Signal

Vocal F0 Estimation Beat Tracking

Note Estimation

Figure 2: Overview of the proposed musical note estima-
tion method based on a semi-beat-synchronous HMM.
oped by Mauch et al. [14] estimates musical notes from
the output of pYIN by Viterbi-decoding of an HMM.

2.3 Analysis of Vocal F0 Trajectories

Studies on extracting the personality and habit of singing
expression from vocal F0 trajectories have been conducted.
Ohishi et al. [16] proposed a model that represents the gen-
erating process of vocal F0 trajectories in consideration of
the time and frequency deviations. In that model the vocal
F0 trajectory consists of three components: note, expres-
sion, and fine deviation components. The note component
contains the note transition and overshoot, and the expres-
sion component contains vibrato and portamento. The note
and expression components are represented as the outputs
of second-order linear systems driven by the note and ex-
pression commands. The note and expression commands
represent the sequence of musical notes and the musical
expressive intentions, respectively. The note command and
the expression command are represented with HMMs. Al-
though the method can extract the personality of the singing
expression from vocal F0 trajectories, it assumes that the
music score is given in advance and cannot be directly ap-
plied for note estimation.

3. PROPOSED METHOD

This section explains the proposed method for estimating
a sequence of latent musical notes from the observed vocal
F0 trajectories by formulating an SBS-HMM which repre-
sents the generating process of the observations. An ob-
served F0 trajectory is stochastically generated by impart-
ing frequency and onset deviations to a step-function-like
F0 trajectory that varies exactly on a 16th-note-level grid
according to a music score. The semitone-level F0s (called
pitches for simplicity in this paper) between adjacent grid
lines and the onset deviations are represented as latent vari-
ables (states) of the HMM. Since the frequency deviations
are represented by emission probability distributions of the
HMM, a semi-beat-synchronous step-function-like F0 tra-
jectory is generated in the latent space and its finely-fluctu-
ated version is then generated in the observed space.

3.1 Problem Specification

The problem of musical note estimation is formally defined
(Fig. 2) as follows:
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Input: a vocal F0 trajectory X = {xt}T
t=1 and 16th-note-

level beat times ψ = {ψn}N
n=1 automatically estimated

from a music audio signal.
Output: a sequence of pitches Z = {zn}N

n=1.

Here, t is the time frame index, T is the number of time
frames in the target signal, xt indicates a log-frequency in
cents at frame t, N is the number of beat times, ψn is the
n-th beat time, and zn indicates a pitch between ψn−1 and
ψn taking one of {µ1, . . . , µK}, where K is the number
of kinds of pitches that can appear in a music score. The
beginning and end of music are represented as ψ0 = 1 and
ψN = T+1 respectively. In this paper we assume that
each zn corresponds to a 16th note for simplicity. A longer
musical note is represented by a subsequence of {zn}N

n=1

having the same pitch in succession.

3.2 Model Formulation

We explain how to formulate the SBS-HMM that simulta-
neously represents the pitch transitions and onset and fre-
quency deviations of musical notes.

3.2.1 Modeling Pitch Transitions

A sequence of latent pitches Z forms a first-order Markov
chain given by

zn|zn−1,A ∼ Categorical(zn|azn−1), (1)

where A = [aT
1 , · · · ,aT

K ] is a K-by-K transition proba-
bility matrix such that

∑K
k=1 ajk = 1 for any j. The initial

latent state z1 is determined as follows:

z1|π ∼ Categorical(z1|π), (2)

where π = [π1, · · · , πK ]T is aK-dimensional vector such
that

∑K
k=1 πk = 1.

3.2.2 Modeling Onset Deviations

The onset deviations of musical notes τ = {τn}N
n=1 are

represented as discrete latent variables taking integer val-
ues between −G and G. Let ϕn = ψn + τn be the actual
onset time of the n-th musical note. Note that τ0 = 0 and
τN = 0 at the beginning and end of a vocal F0 trajectory.
We assume that τn is stochastically generated as follows:

τn|ρ ∼ Categorical(τn|ρ), (3)

where ρ = [ρ−G, . . . , ρG]T is a (2G+1)-dimensional vec-
tor such that

∑G
g=−G ρg = 1.

3.2.3 Modeling Frequency Deviations

The observed F0 xt (ϕn−1 ≤ t < ϕn) is stochastically
generated by imparting a probabilistic frequency deviation
to the semitone-level pitch µzk

assigned to each beat inter-
val. Assuming that xt is independently generated at each
frame, the emission probability of the n-th beat interval in
the case of zn = k, τn−1 = f, τn = g is given by

bnkfg ≡





ϕn−1∏

t=ϕn−1

p(xt|zn = k)





1
ϕn−ϕn−1

, (4)

where p(xt|zn = k) is the emission probability of each
frame. To balance the effects of transition probabilities
and emission probabilities, we exponentiate the product of
emission probabilities of frames in a beat interval by the
number of frames in a beat interval. We use as p(xt|zn)
the Cauchy distribution, which is robust against outliers
and is defined by

Cauchy(x;µ, λ) =
λ

π {(x− µ)2 + λ2} , (5)

where µ is a location parameter that defines the mode of
the distribution and λ is a scale parameter. When the pitch
of the n-th beat interval is zn = k, µ takes the value µk.
The scale parameter takes a value that does not depend on
the pitch zn.

Since actual vocal F0s are significantly deviated from
those specified by a musical score, the scale parameter of a
Cauchy distribution is allowed to change according to the
difference of adjacent F0s; i.e., ∆xt ≡ xt − xt−1. The
scale parameter is set to be proportional to the absolute
value of ∆xt and defined for each frame t as follows:

λt = c · |∆xt| + d, (6)

where c is an coefficient and d is a constant term. If d = 0,
p(xt|zn) cannot be calculated when λt = 0 and ∆xt = 0.
To avoid this problem, we introduce the constant term d.

3.2.4 Incorporating Prior Distributions

We put conjugate Dirichlet priors on model parametersA,
π, and ρ as follows:

aj ∼ Dirichlet(aj |ξj), (7)

π ∼ Dirichlet(π|ζ), (8)

ρ ∼ Dirichlet(ρ|η), (9)

where ξj = [ξ1, . . . , ξK ]T and ζ = [ζ1, . . . , ζK ]T are K-
dimensional vectors and η = [η−G, . . . , ηG]T is a (2G +
1)-dimensional vector.

We then put on gamma priors on nonnegative Cauchy
parameters c and d as follows:

c ∼ Gamma(c|c0, c1), (10)

d ∼ Gamma(d|d0, d1), (11)

where c0 and d0 are shape parameters and c1 and d1 are
rate parameters.

3.3 Bayesian Inference

The goal of Bayesian inference is to calculate the posterior
distribution p(Z, τ ,A,π,ρ, c, d|X). Since this computa-
tion is analytically intractable, we use Markov chain Monte
Carlo (MCMC) methods for sampling the values of those
variables. Let Θ = {A,π,ρ} be a set of model parame-
ters. To get samples of Θ, the Gibbs sampling algorithm is
used. To get samples of sequential latent variables Z and
τ , on the other hand, a kind of blocked Gibbs sampling al-
gorithms called a forward filtering-backward sampling al-
gorithm is used. These steps are iterated in a similar way

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 463



to an expectation maximization (EM) algorithm called the
Baum-Welch algorithm used for unsupervised learning of
an HMM. Since the conjugacy is not satisfied for the distri-
butions regarding c and d, we use the Metropolis-Hastings
(MH) algorithm.

3.3.1 Inferring Latent Variables Z and τ

We explain how to sample a sequence of latent variablesZ
and τ . For each beat interval, we calculate the probability
given by

βnjf = p(zn = j, τn = f |zn+1:N , τn+1:N , x1:T ), (12)

where zn+1:N , τn+1:N , and x1:T represent zn+1, . . . , zN ,
τn+1, . . . , τN , and x1, . . . , xT , respectively. The latent vari-
ables of the n-th beat interval (zn, τn) are sampled in ac-
cordance with βnjf . The calculation of Eq. (12) and the
sampling of the latent variables are performed by using for-
ward filtering-backward sampling.

In forward filtering, we recursively calculate the proba-
bility given by

αnkg = p(X10τ1 , . . . , X(n−1)τn−2f , Xnfg, zn=k, τn=g),

where Xnfg represents the observations xt in the beat in-
terval from ϕn−1 to ϕn when τn−1 = f and τn = g. αnkg

is calculated as follows:

α1kg = p(X10g, z1 = k, τ1 = g)

= p(X10g|z1 = k, τ1 = g)p(z1 = k)p(τ1 = g)

= b1k0gπkρg, (13)

αnkg = p(X10τ1 , . . . , Xnfg, zn = k, τn = g)

=

G∑

f=−G

p(Xnfg|zn = k, τn−1 = f, τn = g)

·
K∑

j=1

p(X10τ1 , . . . , X(n−1)τn−2f , zn−1=j, τn−1=f)

· p(zn=k|zn−1=j)p(τn=g)

=
G∑

f=−G

bnkfg

K∑

j=1

α(n−1)jfajkρg. (14)

In backward sampling, Eq. (12) is calculated in the n-
th beat interval by using the value of αnkg , and the states
(zn, τn) are sampled recursively. When the (n+1)-th sam-
pled states are (zn+1, τn+1) = (k, g), βnjf is calculated as
follows:

βnjf ∝ p(X(n+1)fg|zn+1 = k, τn = f, τn+1 = g)

· p(zn+1 = k|zn = j)p(τn+1 = g)

· p(X10τ1 , . . . , Xnτnf , zn = j, τn = f)

= b(n+1)kfgajkρgαnjf . (15)

Specifically, the latent variables (zN , τN ) are sampled in
accordance with the probability given by

βNjf ∝ αNjf . (16)

3.3.2 Learning Model ParametersA, π, and ρ

We explain how to learn the values of Θ. In a sequence of
latent variables {zn, τn}N

n=1 which are sampled in back-
ward sampling, the number of transitions such that zn = j
and zn+1 = k is represented as sjk and the number of on-
set deviations such that τn = g is represented as ug. The
value of vk is 1 at z1 = k, and else where is 0. The pa-
rameters ajk, ρg and πk are updated by sampling from the
posterior distributions given by

p(aj |ξj + sj) = Dirichlet(aj |ξj + sj), (17)

p(ρ|η + u) = Dirichlet(ρ|η + u), (18)

p(π|ζ + v) = Dirichlet(π|ζ + v), (19)

where sj = [sj1, . . . , sjK ]T , u = [u−G, . . . , uG]T , and
v = [v1, . . . , vK ]T .

3.3.3 Learning Cauchy Parameters c and d

To estimate the parameters c and d, we use the MH algo-
rithm. It is hard to analytically calculate the posterior dis-
tributions of c and d because a Cauchy distribution doesn’t
have conjugate prior distributions. When the values of c
and d are respectively ci and di, we define proposal distri-
butions of c and d as follows:

qc(c|ci) = Gamma(c|γci, γ), (20)

qd(d|di) = Gamma(d|δdi, δ), (21)

where γ and δ are hyperparameters of the proposal distri-
butions. Using the value of c∗ sampled from qc(c|ci), we
calculate the acceptance ratio given by

gc(c
∗, ci) = min

{
1,
fc(c

∗)qc(ci|c∗)
fc(ci)qc(c∗|ci)

}
, (22)

where fc(c) is a likelihood function given by

fc(c) ≡ p(c|x1:T , z1:N , τ1:N ,Θ, di)

∝
N∏

n=1

ρnbnznτn−1τn

N∏

n=2

azn−1znπz1q(c)

=

N∏

n=1

ρn





ϕn−1∏

t=ϕn−1

Cauchy(xt|µzn , λ
c
t)





1
ϕn−ϕn−1

·
N∏

n=2

azn−1znπz1Gamma(c|c0, c1), (23)

λc
t = ci · ∆xt + di, (24)

Finally, if the value of gc(c
∗, ci) is larger than the random

number r sampled from a uniform distribution on the inter-
val [0, 1], then ci+1 = c∗, and otherwise ci+1 = ci, where
c0 is sampled from the prior distribution q(c).

The value of d is updated in the same way as that of c.
Using the value of d∗ sampled from qd(d|di), we calculate
the acceptance criteria given by

gd(d
∗, di) = min

{
1,
fd(d

∗)qd(di|d∗)
fd(di)qd(d∗|di)

}
, (25)
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where fd(d) is a likelihood function given by

fd(d) ≡ p(d|x1:T , z1:N , τ1:N ,Θ, ci+1)

∝
N∏

n=1

ρnbnznτn−1τn

N∏

n=2

azn−1znπz1q(c)

=
N∏

n=1

ρn





ϕn−1∏

t=ϕn−1

Cauchy(xt|µzn , λ
d
t )





1
ϕn−ϕn−1

·
N∏

n=2

azn−1znπz1Gamma(d|d0, d1), (26)

λd
t = ci+1 · ∆xt + di, (27)

Finally, if the value of gd(d
∗, di) is larger than the random

number r sampled from a uniform distribution on the inter-
val [0, 1], then di+1 = d∗, and otherwise di+1 = di, where
d0 is sampled from the prior distribution q(d).

3.4 Viterbi Decoding

A latent sequence of musical notes is estimated by using
the Viterbi algorithm that uses the parameters at the time
when the likelihood given by

p(x1:T ) =

K∑

k=1

G∑

g=−G

αnkg (28)

is the maximum in the learning process. The musical notes
that we want to estimate are the latent variables that max-
imize the value given by p(Z, τ |X). In the Viterbi algo-
rithm, we define ωnkg as follows:

ωnkg=

max
z1:n−1
τ1:n−1

lnp(X10τ1 , . . . , Xnτn−1g, z1:n−1, zn=k, τ1:n−1, τn=g),

(29)

and ωnkg is calculated recursively with the equations

ω1kg= ln ρg+ ln b1k0g+ lnπk, (30)

ωnkg= ln ρg+max
f

[
ln bnkfg+max

j

{
ln ajk+ω(n−1)jf

}]
.

(31)

In the recursive calculation of ωnkg , when the states that
maximize the value of ωnkg are zn−1 = j, τn−1 = f ,
those states are memorized as h(z)

nk = j, h
(τ)
ng = f . Af-

ter calculating {ωNkg}K,G
k=1,g=−G with Eqs. (30) and (31),

the sequence of latent variables {zn, τn}N
n=1 is recursively

estimated with the equations given by

(zN , τN ) = arg max
k,g

{ωnkg}, (32)

zn = h
(z)
(n+1)zn+1

, (33)

τn = h
(τ)
(n+1)τn+1

. (34)

The note sequence is retrieved by revising the onset devia-
tions represented by the estimated latent variables {τn}N

n=1.

Model Concordance rate

SBS-HMM 66.3 ± 1.0
Majority vote 56.9 ± 1.1
Frame-based HMM 56.1 ± 1.1
BS-HMM 67.0 ± 1.0

Table 1: Average concordance rates and their standard er-
rors.
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Figure 3: Concordance rates [%]. In the box plots, the red
line indicates the median, the blue box indicates the range
from the first to third quantile, the black cross indicates the
mean, and the outliers are plotted with red crosses.

4. EVALUATION

We conducted an experiment to evaluate the proposed and
previous methods in the accuracy of estimating musical
notes from vocal F0 trajectories.

4.1 Experimental Conditions

The 100 pieces of popular music in RWC database [6] were
used for the experiments. For each song, we trained model
parameters, estimated the sequence of musical notes, and
measured the accuracy of estimated musical notes. The
input F0 trajectories were obtained from monaural music
acoustic signals by the method of Ikemiya et al. [10]. We
used the beat times obtained by a beat tracking system by
Durand et al. [3]. This system estimates the beat times in
units of a whole note, and the interval between adjacent
beat times were divided into 16 equal intervals to obtain
the beat times for 16th-note units were calculated.

For the proposed method, the sequence of musical notes
was estimated with the Viterbi algorithm. The hyperpa-
rameters were ξ = 1, ζ = 1,η = 1, c0 = d1 = d0 =
d1 = 1, where 1 and 1 respectively represent the matrix
and vector whose elements are all ones. The parameters of
the proposal distributions were γ = δ = 1. The maximum
value G that τn could take was G = 5 (i.e., 50 cents).

A majority-vote method was tested as a baseline. It
estimates a musical note in each time unit corresponding
to a 16th note by taking a majority vote for vocal F0s in
the time unit. For comparison, a frame-based HMM and
a beat-synchronous HMM (BS-HMM) were also tested.
The frame-based HMM assumes that all beat intervals have
only on frame. The BS-HMM is the same as SBS-HMM
except that the onset deviation is not considered.

The estimated sequence of musical notes was compared
with the ground-truth MIDI data synchronized to the vocal
melody, and the concordance rate, i.e., the rate of frames
in which pitches are correctly estimated, was used as the
evaluation measure.
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Figure 4: Example of a learned distribution of the model
parameter ρ.
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Figure 5: A example of pitch estimation error. The case
that an estimated pitch is equal to a correct pitch is omitted.

4.2 Experimental Results

The results of note estimation are listed in Table 1 and
Figure 3. The proposed model clearly outperformed the
majority-vote method and the frame-based HMM in the
average concordance rate. On the other hand, the average
concordance rates for the proposed model and BS-HMM
were similar and the difference was not statistically signif-
icant.

The results indicate that the model of music scores by
transition probabilities and that of frequency deviations by
output probabilities are both effective for improving the
accuracy of musical note estimation. The cause of the re-
sult that the model of onset deviations did not improve the
accuracy is probably that the model parameter ρ was not
properly learned (Fig. 4). Capturing onset deviations by a
single categorical distribution would be difficult, since on-
set depends on the duration of the pitches on either side of
the onset, and on the over all tempo of the song. It would
be necessary to model onset deviations in detail, for exam-
ple by using a separate hidden state to represent the F0s
during pitch transition.

4.2.1 Pitch Estimation Error

Two types of errors were mainly observed (Fig. 5). The
first type was caused by singing styles of singers, and ap-
pears as errors that span one semitone and two semitones.
This means that the frequency deviations affect the accu-
racy of note estimation. The second type was caused by the
error of F0 estimation, and appears as the errors that span
seven semitones and twelve semitones. The intervals of
seven semitones and 12 semitones correspond to a perfect
fifth and an octave, respectively.

4.2.2 Singing Style Extraction and Robustness

Example results of note estimation in Figure 6 show the
potential of the proposed model to capture the singers’
singing style. In the upper figure, the onset at the first beat
is significantly delayed from the beat time. Whereas the
proposed model correctly detected the delayed onset, the
majority-vote method mis-identified the beat position of
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Figure 6: Examples of note estimation results. The pink,
blue, green, red, and black vertical lines respectively in-
dicate a MIDI note which is the ground-truth, the F0 tra-
jectory of a singing voice including onset deviations, the
pitches estimated by the majority-vote method, the pitches
estimated by the proposed method, and the beat times esti-
mated in advance.

the pitch onset. The lower figure is an example of vibrato.
With the majority-vote method, the estimation result was
affected by the large frequency deviation. With the pro-
posed method, on the other hand, the robustness due to the
Cauchy distribution enabled the correct estimation of the
pitch without being affected by the vibrato.

5. CONCLUSION

This paper presented a method for estimating the musical
notes of music from the vocal F0 trajectory. When mod-
eling the process generating the vocal F0 trajectory, we
considered not only the musical score component but also
onset deviation and frequency deviation. The SBS-HMM
estimated pitches more accurately than the majority-vote
method and the frame-based method.

The onset deviation and frequency deviation that were
obtained using the proposed method are important for grasp-
ing the characteristics of singing expression. Future work
includes precise modeling of vocal F0 trajectories based
on second-order filters and extraction of individual singing
expression styles. In the proposed method, F0 estimation,
beat tracking, and musical note estimation are conducted
separately. It is necessary to integrate these methods. The
proposed method cannot deal with the non-vocal regions
in actual music, so we plan to also appropriately deal with
non-vocal regions.
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ABSTRACT

In exploratory studies of large music collections where of-
ten no ground truth is available, it is essential to evaluate
the suitability of the underlying methods prior to drawing
any conclusions. In this study we focus on the evaluation
of audio features that can be used for rhythmic and melodic
content description and similarity estimation. We select
a set of state-of-the-art rhythmic and melodic descriptors
and assess their invariance with respect to transformations
of timbre, recording quality, tempo and pitch. We create
a dataset of synthesised audio and investigate which fea-
tures are invariant to the aforementioned transformations
and whether invariance is affected by characteristics of the
music style and the monophonic or polyphonic character of
the audio recording. From the descriptors tested, the scale
transform performed best for rhythm classification and re-
trieval and pitch bihistogram performed best for melody.
The proposed evaluation strategy can inform decisions in
the feature design process leading to significant improve-
ment in the reliability of the features.

1. INTRODUCTION

With the significant number of music information retrieval
techniques and large audio collections now available it is
possible to explore general trends in musical style evo-
lution [11, 16]. Such exploratory studies often have no
ground truth to compare to and therefore any conclusions
are subject to the validity of the underlying tools. In music
content-based systems this often translates to the ability of
the audio descriptors to correctly and sufficiently represent
the music-specific characteristics.

In this study we focus on the evaluation of audio fea-
tures that can be used for rhythmic and melodic content
description and similarity estimation. We are particularly
interested in audio features that can be used to describe
world music recordings. We propose an evaluation frame-
work which aims to simulate the challenges faced in the
analysis of recorded world music collections, such as pro-
cessing noisy recordings or audio samples exhibiting a va-
riety of music style characteristics. In particular, we define

c© Maria Panteli, Simon Dixon. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Maria Panteli, Simon Dixon. “On the evaluation of rhythmic and
melodic descriptors for music similarity”, 17th International Society for
Music Information Retrieval Conference, 2016.

transformations with respect to timbre, recording quality,
tempo and key and assess the invariance of a set of state-
of-the-art rhythmic and melodic descriptors.

A number of studies have dealt with the evaluation of
audio features and specifically of rhythmic and melodic
descriptors. Robustness is usually addressed in the design
process where certain decisions ensure tempo or key in-
variance of the features. For example, rhythmic descriptors
have been designed to achieve partial [5,6] or complete [7]
tempo invariance, and melodic descriptors exist which are
tempo and/or key invariant [1,22,24]. Robustness to audio
quality has been also addressed for MFCC and chroma fea-
tures (describing timbre and harmony respectively) [21].
The relevance of the features is not guaranteed even if a
classification task seems successful. For example, unbal-
anced datasets can lead to high accuracies in genre classi-
fication tasks [18], or high rhythm classification accuracies
can be achieved with (only) tempo information [4, 6] indi-
cating that other audio features used had limited relevant
contribution to the task.

To be perceptually valid, and useful in real-world col-
lections, the representations need to be invariant to subtle
changes in tempo, key (or reference pitch), recording qual-
ity and timbre. Additionally, to be usable in cross-cultural
studies, the features need to be agnostic to properties of
particular music cultures. For instance, pitch representa-
tions should not depend on the 12-tone equal temperament
tuning, and rhythm representations should not depend on
specific Western metric structures such as 4

4 metre.
We examine a selection of audio features for rhythm

and melody to assess their suitability for scientific studies
of world music corpora subject to the above constraints.
To achieve this we test classification and retrieval perfor-
mance of multiple rhythm and melody features on a con-
trolled dataset, which allows us to systematically vary tim-
bre, tempo, pitch and audio quality. The main contribu-
tions of the paper are the controlled dataset, which we
make freely available, and the proposed evaluation strat-
egy to assess robustness and facilitate the feature design
and selection process.

2. FEATURES

We present details of three descriptors from each category
(rhythm and melody), chosen from the literature based
on their performance on related classification and retrieval
tasks. In the paragraphs below we provide a short sum-
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mary of these features and discuss further considerations
of their design. Our implementations of the features follow
the specifications published in the corresponding research
papers but are not necessarily exact replicas.

2.1 Rhythm

We start our investigation with state-of-the-art rhythmic
descriptors that have been used in similarity tasks includ-
ing genre and rhythm classification [5, 7, 12]. The rhyth-
mic descriptors we use here share the general process-
ing pipeline of two consecutive frequency analyses [15].
First, a spectrogram representation is calculated, usually
with frequencies on the mel scale. The fluctuations in its
“rows”, i.e. the frequency bands, are then analysed for their
rhythmic frequency content over larger windows. This ba-
sic process has multiple variations, which we explain be-
low.

For comparison purposes we fix the sampling rate at
44100 Hz for all features. Likewise, the spectrogram frame
size is 40 ms with a hop size of 5 ms. All frequency bins
are mapped to the mel scale. The rhythmic periodicities
are calculated on 8-second windows with a hop size of 0.5
seconds. In the second step we compute the periodicities
within each mel band then average across all bands, and fi-
nally summarise a recording by taking the mean across all
frames.

Onset Patterns (OP). The defining characteristic of Onset
Patterns is that the mel frequency magnitude spectrogram
is post-processed by computing the first-order difference
in each frequency band and then subtracting the mean and
half-wave rectifying the result. The resulting onset func-
tion is then frequency-analysed using the discrete Fourier
transform [5, 6, 14]. We omit the post-processing step of
transforming the resulting linear fluctuation frequencies to
log2-spaced frequencies. The second frame decomposition
results in an F × PO matrix with F = 40 mel bands and
PO = 200 periodicities linearly spaced up to 20 Hz.

Fluctuation Patterns (FP). Fluctuation patterns differ
from onset patterns by using a log-magnitude mel spectro-
gram, and by the additional application of psychoacous-
tic models (e.g. loudness and fluctuation resonance mod-
els) to weight perceptually relevant periodicities [12]. We
use the MIRToolbox [8] implementation of fluctuation pat-
terns with the parameters specified at the beginning of Sec-
tion 2.1. Here, we obtain an F × PF matrix with F = 40
mel bands and PF = 1025 periodicities of up to 10 Hz.

Scale Transform (ST). The scale transform [7], is a spe-
cial case of the Mellin transform, a scale-invariant transfor-
mation of the signal. Here, the scale invariance property is
exploited to provide tempo invariance. When first intro-
duced, the scale transform was applied to the autocorrela-
tion of onset strength envelopes spanning the mel scale [7].
Onset strength envelopes here differ from the onset func-
tion implemented in OP by the steps of post-processing
the spectrogram. In our implementation we apply the scale
transform to the onset patterns defined above.

2.2 Melody

Melodic descriptors selected for this study are based on
intervals of adjacent pitches or 2-dimensional periodicities
of the chromagram. We use a chromagram representation
derived from an NMF-based approximate transcription.

For comparison purposes we fix the following parame-
ters in the design of the features: sampling rate at 44100
Hz, variable-Q transform with 3 ms hop size and pitch res-
olution at 60 bins per octave (to account for microtonality),
secondary frame decomposition (where appropriate) using
an 8-second window and 0.5-second hop size, and finally
averaging the outcome across all frames in time.

Pitch Bihistogram (PB). The pitch bihistogram [22] de-
scribes how often pairs of pitch classes occur within a win-
dow d of time. It can be represented as an n-by-n matrix
P where n is the number of pitch classes and element pij
denotes the count of co-occurrences of pitch classes i and
j. In our implementation, the pitch content is wrapped to a
single octave to form a chromagram with 60 discrete bins
and the window length is set to d = 0.5 seconds. The fea-
ture values are normalised to the range [0, 1]. To approx-
imate key invariance the bihistogram is circularly shifted
to pi−î,j−î where pîĵ denotes the bin of maximum mag-
nitude. This does not strictly represent tonal structure but
rather relative prominence of the pitch bigrams.

2D Fourier Transform Magnitudes (FTM). The magni-
tudes of the 2-dimensional Fourier transform of the chro-
magram describe periodicities in both frequency and time
axes. This feature renders the chromagram key-invariant,
but still carries pitch content information, and has accord-
ingly been used in cover song recognition [1,9]. In our im-
plementation, chromagrams are computed with 60 bins per
octave and no beat-synchronisation. The FTM is applied
with the frame decomposition parameters stated above. We
select only the first 50 frequency bins which correspond to
periodicities up to 16 Hz.

Intervalgram (IG). The intervalgram [24] is a represen-
tation of chroma vectors averaged over different windows
in time and cross-correlated with a local reference chroma
vector. In the implementation we use,we reduce this to one
window size d = 0.5, and cross-correlation is computed
on every pair of chroma vectors from successive windows.

In this study we place the emphasis on the evaluation
framework and provide a baseline performance of (only) a
small set of features. The study could be extended to in-
clude more audio descriptors and performance accuracies
could be compared in order to choose the best descriptor
for a given application.

3. DATA

For our experiments we compiled a dataset of synthesised
audio, which allowed us to control transformations under
which ideal rhythmic and melodic descriptors should be
invariant. In the sections below we present the dataset of
selected rhythms and melodies and detailed description of
their transformations.
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Melody Rhythm

Description No. Description No.

Dutch Folk (M) 5 Afro-American (M) 5
Classical (M) 5 North-Indian (M) 5
Byzantine (M) 5 African (M) 5
Pop (M) 5 Classical (M) 5
Classical (P) 5 EDM (P) 5
Pop (P) 5 Latin-Brazilian (P) 5

Table 1: The dataset of rhythms and melodies transformed
for feature robustness evaluation. (M) is monophonic and
(P) polyphonic as described in Section 3.1.

3.1 Material

We compiled 30 melodies and 30 rhythms extracted from
a variety of musical styles with both monophonic and
polyphonic structure (Table 1). In particular, we collect
MIDI monophonic melodies of classical music used in
the MIREX 2013: Discovery of Repeated Themes and
Sections task 1 , MIDI monophonic melodies of Dutch
folk music from the Meertens Tune Collections [23], fun-
damental frequency (F0) estimates of monophonic pop
melodies from the MedleyDB dataset [2], fundamental
frequency (F0) estimates of monophonic Byzantine reli-
gious music [13], MIDI polyphonic melodies of classical
music from the MIREX 2013 dataset, and fundamental
frequency (F0) estimates of polyphonic pop music from
the MedleyDB dataset. These styles exhibit differences
in the melodic pitch range, for example, classical pieces
span multiple octaves whereas Dutch folk and Byzantine
melodies are usually limited to a single octave range. Pitch
from fundamental frequency estimates allows us to also
take into account vibrato and microtonal intervals. This
is essential for microtonal tuning systems such as Byzan-
tine religious music, and for melodies with ornamentation
such as recordings of the singing voice in the Dutch folk
and pop music collections.

For rhythm we collect rhythmic sequences common
in Western classical music traditions [17], African mu-
sic traditions [20], North-Indian and Afro-American tradi-
tions [19], Electronic Dance Music (EDM) [3], and Latin-
Brazilian traditions. 2 These rhythms span different me-
tres such as 11

8 in North-Indian, 12
8 in African, 4

4 in EDM,
and 6

8 in Latin-Brazilian styles. The rhythms for Western,
African, North-Indian, Afro-American traditions are con-
structed from single rhythmic patterns whereas EDM and
Latin-Brazilian rhythms are constructed with multiple pat-
terns overlapping in time. We refer to the use of a single
pattern as ‘monophonic’ and of multiple patterns as ‘poly-
phonic’ for consistency with the melodic dataset.

1 http://www.tomcollinsresearch.net/
mirex-pattern-discovery-task.html

2 http://www.formedia.ca/rhythms/5drumset.html

3.2 Transformations

Intuitively, melodies and rhythms retain their character
even if the music is transposed to a different tonality,
played at a (slightly) different tempo or under different
recording conditions. These are variations that we expect
to find in real-world corpora, and to which audio features
should be reasonably invariant. Indeed, the cover song
identification literature suggests that invariance of features
in terms of key transpositions and tempo shifts is desir-
able [1, 22, 24]; for rhythm description, the existing liter-
ature mainly focuses on tempo invariance and robustness
against recording quality [5, 6]. We add to this list the re-
quirement of invariance to slight changes in timbre for both
melody and rhythm description 3 . Overall, we test our fea-
tures for robustness in tempo, pitch, timbre and recording
quality by systematically varying these parameters to pro-
duce multiple versions of each melody and rhythm (Ta-
ble 2). We apply only one transformation at a time while
keeping the other factors constant. The ‘default’ version
of a rhythm or melody is computed using one of the 25
timbres available, fixing the tempo at 120 bpm, and, for
melody, keeping the original key as expressed in the MIDI
or F0 values. The dataset is made available online 4 .

Timbre (Timb): For a given sequence of MIDI notes or
fundamental frequency estimates we synthesise audio us-
ing sine waves with time-varying parameters. The synthe-
sised timbres vary from harmonic to inharmonic sounds
and from low to high frequency range. For a given set of
rhythm sequences we synthesise audio using samples of
different (mainly percussive) instruments 5 . Beyond the
typical drum set sounds (kick, snare, hi-hat), we include
percussive instruments of different music traditions such
as the Indian mridangam, the Arabic daf, the Turkish dar-
buka, and the Brazilian pandeiro. Overall, we use 25 dif-
ferent timbres for each melody and rhythm in the dataset.

Recording Quality (RecQ): Large music archives usually
contain material recorded under a variety of recording con-
ditions, and are preserved to different degrees of fidelity.
We use the Audio Degradation Toolbox [10] to create 25
audio degradations that we expect to be representative of
what is found in such archives. Amongst the degradations
we consider are effects of prominent reverb (live record-
ings), overlaid random noise (old equipment), added ran-
dom sounds including speech, birds, cars (field recording),
strong compression (MP3), wow sampling, high or low
pass filtering (vinyl or low quality microphone).

Global tempo shifts (GTemp): We define ‘small’ vari-
ations the tempo changes of up to 20% of the original
tempo (in this case centred at 120 bpm), which we assume
will leave the character of melodies and rhythms intact. In
particular, we use 25 tempo shifts distributed in the range
[−20, 20] (excluding 0) percent slower or faster than the
original speed.

3 The timbre transformations we consider are not expected to vastly
alter the perception of a rhythm or melody.

4 https://code.soundsoftware.ac.uk/projects/rhythm-melody-feature-
evaluation

5 http://www.freesound.org
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Transformations Values

Timbre 25 distinct timbres (similar frequency
range and instrument)

Rec. Quality 25 degradations including reverb, com-
pression, wow, speech, noise

Global Tempo 25 values in [−20, 20] percent deviation
from original tempo

Key Transp. 25 values in [−10, 10] semitones devia-
tion from original key

Local Tempo 25 values in [−20, 20] percent deviation
from original tempo

Table 2: Transformations for assessing feature invariance.

Key transpositions/Local tempo shifts (KeyT/LTemp):
For melodic descriptor robustness we consider transposing
the audio with respect to 25 key transpositions in the range
[−10, 10] (excluding 0) semitones from the original key.
These shifts include microtonal intervals e.g. a transposi-
tion of 1.5 semitones up as one expects to find in world
music singing examples. For rhythmic descriptor robust-
ness we consider instead small step changes of the tempo.
We introduce a local tempo change for a duration of 2 (out
of 8) seconds centred around the middle of the recording.
This is common in, for example, performances of amateur
musicians where they might unintentionally speed up or
slow down the music. Similar to global tempo transforma-
tion we use 25 shifts in the range [−20, 20] percent slower
or faster than the original speed.

While the above transformations do not define an ex-
haustive list of effects and variations found in world music
corpora they provide a starting point for assessing feature
robustness. The dataset can be expanded in future work to
include more transformations and parameter values. For
this study we restrict to the abovementioned 4 transforma-
tions with 25 values each (Table 2). For our dataset of
30 rhythms and 30 melodies this results in a total of 3000
transformed rhythms and 3000 transformed melodies.

4. EVALUATION STRATEGY

With the proposed evaluation strategy we would like to
assess feature robustness with respect to the transforma-
tions and transformation values presented above in Sec-
tion 3.2. Additionally we would like to check whether
the performance of the features relates to particularities
of the music style for the styles presented in Section 3.1.
Lastly, since our dataset consists of monophonic and poly-
phonic melodies and rhythms, we would also like to check
whether the features are influenced by the monophonic or
polyphonic character of the audio signal.

Robustness evaluation is performed on the dataset of
3000 transformed rhythms and 3000 transformed melodies
(Section 3.1). Considering the variety of MIR tasks and
corresponding MIR models, we choose to assess feature
performance accuracy in both classification and retrieval
experiments as explained below. In our experiments we in-
clude a variety of classifiers and distance metrics to cover
a wide range of audio feature similarity methods.

We first verify the power of the features to classify dif-
ferent melodies and rhythms. To do so we employ four
classifiers: K-Nearest Neighbors (KNN) with 1 neighbor
and Euclidean distance metric, Support Vector Machine
(SVM) with a linear kernel, Linear Discriminant Analysis
(LDA) with 20 components, and Gaussian Naive Bayes.
We use 5-fold cross-validation for all classification exper-
iments. In each case the prediction target is one of the 30
rhythm or melody ‘families’. For each of the 3000 trans-
formed rhythms or melodies we output the classification
accuracy as a binary value, 1 if the rhythm or melody was
classified correctly and 0 otherwise.

As reassuring as good classification performance is, it
does not imply that a melody or rhythm and its transfor-
mations cluster closely in the original feature space. Ac-
cordingly, we choose to use a similarity-based retrieval
paradigm that more directly reflects the feature represen-
tations. For each of the 30 rhythms or melodies we choose
one of the 25 timbres as the default version of the rhythm
or melody, which we use as the query. We rank the 2999
candidates based on their distance to the query and assess
the recall rate of its 99 transformations. Each transformed
rhythm or melody is assigned a score of 1 if it was retrieved
in the top K = 99 results of its corresponding query and
0 otherwise. We compare four distance metrics, namely
Euclidean, cosine, correlation and Mahalanobis.

For an overview of the performance of the features we
compute the mean accuracy across all recordings for each
classification or retrieval experiment and each feature. To
better understand why a descriptor is successfull or not in
the corresponding classification or retrieval task we further
analyse the performance accuracies with respect to the dif-
ferent transformations, transformation values, music style
and monophonic versus polyphonic character. To achieve
this we group recordings by, for example, transformation,
and compute the mean accuracy for each transformation.
We discuss results in the section below.

5. RESULTS

The mean performance accuracy of each feature and each
classification or retrieval experiment is shown in Table 3.
Overall, the features with the highest mean classification
and retrieval accuracies are the scale transform (ST) for
rhythm and the pitch bihistogram (PB) for melody.

5.1 Transformation

We consider four transformations for rhythm and four for
melody. We compute the mean accuracy per transforma-
tion by averaging accuracies of recordings from the same
transformation. Results for rhythm are shown in Table 4
and for melody in Table 5. Due to space limitations we
present results for only the best, on average, classifier
(KNN) and similarity metric (Mahalanobis) as obtained in
Table 3. We observe that onset patterns and fluctuation pat-
terns show, on average, lower accuracies for transforma-
tions based on global tempo deviations. This is expected
as the aforementioned descriptors are not tempo invariant.
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Rhythm Melody

Metric ST OP FP PB IG FTM

Classification

KNN 0.86 0.71 0.68 0.88 0.83 0.86
LDA 0.82 0.66 0.59 0.83 0.82 0.82
NB 0.80 0.62 0.58 0.84 0.76 0.81
SVM 0.87 0.66 0.59 0.86 0.86 0.87

Retrieval

Euclidean 0.65 0.47 0.42 0.80 0.56 0.67
Cosine 0.66 0.47 0.42 0.80 0.55 0.68
Correlation 0.66 0.47 0.42 0.80 0.54 0.67
Mahalanobis 0.61 0.48 0.40 0.81 0.60 0.72

Table 3: Mean accuracy of the rhythmic and melodic de-
scriptors for the classification and retrieval experiments.

Metric Feature Timb GTemp RecQ LTemp

Classification

KNN ST 0.98 0.90 0.93 0.62
KNN OP 0.97 0.20 0.92 0.75
KNN FP 0.91 0.18 0.92 0.71

Retrieval

Mahalan. ST 0.95 0.36 0.91 0.25
Mahalan. OP 0.94 0.00 0.88 0.13
Mahalan. FP 0.62 0.01 0.87 0.09

Table 4: Mean accuracies of the rhythmic descriptors un-
der four transformations (Section 3.1).

In the rhythm classification task, the performance of the
scale transform is highest for global tempo deviations but
it is lowest for local tempo deviations. We believe this is
due to the scale transform assumption of a constant peri-
odicity over the 8-second frame, an assumption that is vio-
lated when local tempo deviations are introduced. We also
note that fluctuation patterns show lower performance ac-
curacies for transformations of the timbre compared to the
onset patterns and scale transform descriptors.

5.2 Transformation Value

We also investigate whether specific transformation values
affect the performance of the rhythmic and melodic de-
scriptors. To analyse this we compute mean classification
accuracies averaged across recordings of the same trans-
formation value (there are 25 values for each of 4 trans-
formations so 100 mean accuracies in total). Due to space
limitations we omit the table of results and report only a
summary of our observations.

Onset patterns and fluctuation patterns exhibit low clas-
sification accuracies for almost all global tempo devia-
tions whereas scale transform only shows a slight perfor-
mance degradation on global tempo deviations of around
±20%. For local tempo deviations, scale transform
performs poorly at large local deviations (magnitude >
15%) whereas onset patterns and fluctuation patterns show
higher accuracies for these particular parameters. All de-
scriptors seem to be robust to degradations of the recording

Metric Feature Timb GTemp RecQ KeyT

Classification

KNN PB 0.97 0.99 0.78 0.76
KNN IG 0.95 0.99 0.62 0.77
KNN FTM 0.98 0.96 0.71 0.79

Retrieval

Mahalan. PB 0.94 0.98 0.78 0.53
Mahalan. IG 0.70 0.91 0.33 0.46
Mahalan. FTM 0.87 0.88 0.57 0.57

Table 5: Mean accuracies of the melodic descriptors under
four transformations (Section 3.1).

quality with the exception of a wow effect that causes all
rhythmic descriptors to perform poorly. Onset patterns and
fluctuation patterns perform poorly also in the degradation
of a radio-broadcast compression.

For melody classification, all features perform poorly
on key transpositions of more than 6 semitones up amd a
wow effect degradation. Pitch bihistogram also performs
poorly in transpositions between 2.5− 5 semitones down.
Intervalgram and Fourier transform magnitudes perform
badly also for reverb effect degradations and noisy record-
ings with overlaid wind, applause, or speech sound effects.

5.3 Music Style

Our dataset consists of rhythms and melodies from differ-
ent music styles and we would like to test whether the ro-
bustness of the features is affected by the style. To achieve
this we average classification accuracies across recordings
of the same style. We have 6 styles for rhythm with 500
recordings in each style and likewise for melody. This
gives us 6 mean accuracies for each feature and each clas-
sification experiment. We summarise results in a boxplot
as shown in Figure 1. We also perform two sets of multiple
paired t-tests with Bonferroni correction, one for rhythmic
and one for melodic descriptors, to test whether mean clas-
sification accuracies per style are significantly different.

Using the paired t-tests with multiple comparison cor-
rection we observe that the majority of pairs of styles are
significantly different at the Bonferroni significance level
alpha = 0.003 for both the rhythmic and melodic de-
scriptors. In particular the accuracies for classification
and retrieval of African rhythms are significantly different
from all other styles. Western classical rhythms are sig-
nificantly different from all other styles except the EDM
rhythms, and North-Indian rhythms are significantly dif-
ferent from all other styles except the EDM and Latin-
Brazilian rhythms. For melody, the accuracies for the
Byzantine and polyphonic pop styles are significantly dif-
ferent from all other styles. The descriptors that perform
particularly badly with respect to these styles are the fluctu-
ation patterns for rhythm and the intervalgram for melody.
We use our current results as an indication of which styles
might possibly affect the performance of the features but
leave the analysis of the intra-style similarity for future
work.
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Figure 1: Box plot of classification accuracies of the rhyth-
mic (top) and melodic (bottom) descriptors for each style.

5.4 Monophonic versus Polyphonic

Our dataset consists of monophonic and polyphonic
melodies and rhythms and we would like to test whether
the performance of the features is affected by the mono-
phonic or polyphonic character. Similar to the preced-
ing analysis, we average performance accuracies across all
monophonic recordings and across all polyphonic record-
ings. We perform two paired t-tests, one for rhythmic and
one for melodic descriptors, to test whether mean classi-
fication accuracies of monophonic recordings are drawn
from a distribution with the same mean as the polyphonic
recordings distribution. At the α = 0.05 significance level
the null hypothesis is not rejected for rhythm, p = 0.25, but
is rejected for melody, p < 0.001. The melodic descrip-
tors achieve on average higher classification accuracies for
polyphonic (M = 0.88, SD = 0.02) than monophonic
recordings (M = 0.82, SD = 0.04).

6. DISCUSSION

We have analysed the performance accuracy of the fea-
tures under different transformations, transformation val-
ues, music styles, and monophonic versus polyphonic
structure. Scale transform achieved the highest accuracy

for rhythm classification and retrieval, and pitch bihis-
togram for melody. The scale transform is less invariant
to transformations of the local tempo, and the pitch bihis-
togram to transformations of the key. We observed that the
descriptors are not invariant to music style characteristics
and that the performance of melodic descriptors depends
on the pitch content being monophonic or polyphonic.

We have performed this evaluation on a dataset of syn-
thesised audio. While this is ideal for adjusting degra-
dation parameters and performing controlled experiments
like the ones presented in this study, it may not be represen-
tative of the analysis of real-world music recordings. The
latter involve many challenges, one of which is the mix
of different instruments which results in a more complex
audio signal. In this case rhythmic or melodic elements
may get lost in the polyphonic mixture and further pre-
processing of the spectrum is needed to be able to detect
and isolate the relevant information.

Our results are based on the analysis of success rates
on classification or retrieval tasks. This enabled us to have
an overview of the performances of different audio fea-
tures across several factors: transformation, transformation
value, style, monophonic or polyphonic structure. A more
detailed analysis could involve a fixed effects model where
the contribution of each factor to the performance accuracy
of each feature is tested individually.

In this evaluation we used a wide range of standard clas-
sifiers and distance metrics with default settings. We have
not tried to optimise parameters nor use more advanced
models since we wanted the evaluation to be as indepen-
dent of the application as possible. However, depending
on the application different models could be trained to
be more robust to certain transformations than others and
higher performance accuracies could be achieved.

7. CONCLUSION

We have investigated the invariance of audio features for
rhythmic and melodic content description of diverse music
styles. A dataset of synthesised audio was designed to test
invariance against a broad range of transformations in tim-
bre, recording quality, tempo and pitch. Considering the
criteria and analyses in this study the most robust rhythmic
descriptor is the scale transform and melodic descriptor the
pitch bihistogram. Results indicated that the descriptors
are not completely invariant to characteristics of the music
style and lower accuracies were particularly obtained for
African and EDM rhythms and Byzantine melodies. The
performance of the melodic features was slightly better for
polyphonic than monophonic content. The proposed evalu-
ation framework can inform decisions in the feature design
process leading to significant improvement in the reliabil-
ity of the features.

8. ACKNOWLEDGEMENTS

MP is supported by a Queen Mary Principal’s research stu-
dentship and the EPSRC-funded Platform Grant: Digital
Music (EP/K009559/1).

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 473



9. REFERENCES

[1] T. Bertin-Mahieux and D. P. W. Ellis. Large-scale cover
song recognition using the 2D Fourier transform mag-
nitude. In Proceedings of the International Society for
Music Information Retrieval Conference, pages 241–
246, 2012.

[2] R. Bittner, J. Salamon, M. Tierney, M. Mauch, C. Can-
nam, and J. P. Bello. MedleyDB: A Multitrack Dataset
for Annotation-Intensive MIR Research. In Proceed-
ings of the International Society for Music Information
Retrieval Conference, pages 155–160, 2014.

[3] M. J. Butler. Unlocking the Groove. Indiana University
Press, Bloomington and Indianapolis, 2006.

[4] S. Dixon, F. Gouyon, and G. Widmer. Towards Char-
acterisation of Music via Rhythmic Patterns. In Pro-
ceedings of the International Symposium on Music In-
formation Retrieval, pages 509–516, 2004.

[5] T. M. Esparza, J. P. Bello, and E. J. Humphrey. From
Genre Classification to Rhythm Similarity: Computa-
tional and Musicological Insights. Journal of New Mu-
sic Research, 44(1):39–57, 2014.

[6] A. Holzapfel, A. Flexer, and G. Widmer. Improv-
ing tempo-sensitive and tempo-robust descriptors for
rhythmic similarity. In Proceedings of the 8th Sound
and Music Computing Conference, pages 247–252,
2011.

[7] A. Holzapfel and Y. Stylianou. Scale Transform in
Rhythmic Similarity of Music. IEEE Transactions on
Audio, Speech, and Language Processing, 19(1):176–
185, 2011.

[8] O. Lartillot and P. Toiviainen. A Matlab Toolbox for
Musical Feature Extraction From Audio. In Interna-
tional Conference on Digital Audio Effects, pages 237–
244, 2007.

[9] M. Marolt. A mid-level representation for melody-
based retrieval in audio collections. IEEE Transactions
on Multimedia, 10(8):1617–1625, 2008.

[10] M. Mauch and S. Ewert. The Audio Degradation Tool-
box and Its Application to Robustness Evaluation. In
Proceedings of the International Society for Music In-
formation Retrieval Conference, pages 83–88, 2013.

[11] M. Mauch, R. M. MacCallum, M. Levy, and
A. M. Leroi. The evolution of popular music: USA
19602010. Royal Society Open Science, 2(5):150081,
2015.

[12] E. Pampalk, A. Flexer, and G. Widmer. Improvements
of Audio-Based Music Similarity and Genre Classifi-
cation. In Proceedings of the International Society for
Music Information Retrieval Conference, pages 634–
637, 2005.

[13] M. Panteli and H. Purwins. A Quantitative Comparison
of Chrysanthine Theory and Performance Practice of
Scale Tuning, Steps, and Prominence of the Octoechos
in Byzantine Chant. Journal of New Music Research,
42(3):205–221, 2013.

[14] T. Pohle, D. Schnitzer, M. Schedl, P. Knees, and
G. Widmer. On rhythm and general music similarity. In
Proceedings of the International Society for Music In-
formation Retrieval Conference, pages 525–530, 2009.

[15] E. D. Scheirer. Tempo and beat analysis of acoustic
musical signals. The Journal of the Acoustical Society
of America, 103(1):588–601, 1998.
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ABSTRACT

In an attempt at exploring the limitations of simple ap-
proaches to the task of piano transcription (as usually de-
fined in MIR), we conduct an in-depth analysis of neural
network-based framewise transcription. We systematically
compare different popular input representations for tran-
scription systems to determine the ones most suitable for
use with neural networks. Exploiting recent advances in
training techniques and new regularizers, and taking into
account hyper-parameter tuning, we show that it is possi-
ble, by simple bottom-up frame-wise processing, to obtain
a piano transcriber that outperforms the current published
state of the art on the publicly available MAPS dataset
– without any complex post-processing steps. Thus, we
propose this simple approach as a new baseline for this
dataset, for future transcription research to build on and
improve.

1. INTRODUCTION

Since their tremendous success in computer vision in re-
cent years, neural networks have been used for a large
variety of tasks in the audio, speech and music domain.
They often achieve higher performance than hand-crafted
feature extraction and classification pipelines [20]. Un-
fortunately, using this model class brings along con-
siderable computational baggage in the form of hyper-
parameter tuning. These hyper-parameters include archi-
tectural choices such as the number and width of layers and
their type (e.g. dense, convolutional, recurrent), learning
rate schedule, other parameters of the optimization scheme
and regularizing mechanisms. Whereas for computer vi-
sion these successes were possible using raw pixels as the
input representation, in the audio domain there seems to
be an additional complication. Here the choices for how to
best represent the input range from spectrograms, logarith-
mically filtered spectrograms over constant-Q transforms
to even the raw audio itself [10].

c© Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Se-
bastian Böck, Andreas Arzt, Gerhard Widmer. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Sebastian Böck,
Andreas Arzt, Gerhard Widmer. “On the Potential of Simple Framewise
Approaches to Piano Transcription”, 17th International Society for Music
Information Retrieval Conference, 2016.

This is a tedious problem, and there seem to be only two
solutions to it: manual hyper-parameter selection, where a
human expert tries to make decisions based on her past
experience, or automatic hyper-parameter optimization as
discussed in [4, 11, 28]. In this work we pursue a mixed
strategy. As a first step, we systematically find the most
suitable input representation, and progress from there with
human expert knowledge to find best performing architec-
tures for the task of framewise piano transcription.

A variety of neural network architectures has been
used specifically for framewise transcription of piano notes
from monaural sources. Some transcription systems are
separated into an acoustic model and a musical language
model, such as [7, 26, 27], whereas in others there is no
such distinction [2, 6, 23]. As shown in [26], models that
utilize musical language models perform better than those
without, albeit the differences seem to be small. We focus
on the acoustic model here, neglecting the complementary
language model for now.

2. INPUT, METHODS AND PARAMETERS

In what follows, we will describe the input representations
we compared, and give a brief overview of techniques for
training and regularizing neural networks.

2.1 Input Representation

Time-frequency representations in the form of spectro-
grams still seem to have a distinct advantage over the raw
audio input, as mentioned in [10]. The exact parame-
terization of spectrograms is not entirely clear however,
so we try to address this question in a systematic way.
We investigate the suitability of different types of spec-
trograms and constant-Q transforms as input representa-
tions for neural networks and compare four types of input
representations: spectrograms with linearly spaced bins S,
spectrograms with logarithmically spaced bins LS, spec-
trograms with logarithmically spaced bins and logarithmi-
cally scaled magnitude LM, as well as the constant-Q trans-
form CQT [8]. The filterbank for LS and LM has a linear
response (and lower resolution) for the lower frequencies,
and a logarithmic response for the higher frequencies. We
vary the sample rate sr ∈ {22050, 44100} [Hz], number
of bands per octave nb ∈ {12, 24, 36, 48}, whether or not
frames undergo circular shift cs ∈ {on, off}, the amount
of zero padding zp ∈ {×0,×1,×2}, and whether or not
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sr zp cs nb norm
CQT × ×

S × × ×
LS × × × × ×
LM × × × × ×

Table 1: For each spectrogram type, these are the parame-
ters that were varied. See text for a description of the value
ranges.

to use area normalized filters when filter banks are used
norm ∈ {yes,no}. Furthermore, we re-scale the mag-
nitudes of the spectrogram bins to be in the range [0, 1].
Table 1 specifies which parameters are varied for which
input type. For the computation of spectrograms we used
Madmom [5] and for the constant-Q transform we used the
Yaafe library [21].

2.2 Model Class and Suitability

Formally, neural networks are functions with the structure

netk(x) = Wkfk−1(x) + bk

fk(x) = σk(netk(x))

f0(x) = x

where x ∈ Rwin , fk : Rwk−1 → Rwk , σ is any element-
wise nonlinear function, Wk is a matrix in Rwk×wk−1

called the weight matrix, and bk ∈ Rwk is a vector called
bias. The subscript k ∈ {0, . . . , L} is the index of the
layer, with k = 0 denoting the input layer.

Choosing a very narrow definition on purpose, what we
mean by a model class F is a fixed number of layers L, a
fixed number of layer widths {w0, . . . wL} and fixed types
of nonlinearities {σ0, . . . σL}. A model means an instance
f from this class, defined by its weights alone. References
to the whole collection of weights will be made with Θ.

For the task of framewise piano transcription we define
the suitability of an input representation in terms of the
performance of a simple classifier on this task, when given
exactly this input representation.

Assuming we can reliably mitigate the risk of overfit-
ting, we would like to argue that this method of determin-
ing suitable input representations, and using them for mod-
els with higher capacity, is the best we can do, given a lim-
ited computational budget.

Using a low-variance, high-bias model class, the per-
ceptron, also called logistic regression or single-layer neu-
ral network, we learn a spectral template per note. To test
whether the results stemming from this analysis are really
relevant for higher-variance, lower-bias model classes, we
run the same set of experiments again, employing a multi
layer perceptron with exactly one hidden layer, colloqui-
ally called a shallow net. This small extension already
gives the network the possibility to learn a shared, dis-
tributed representation of the input. As we will see, this
has a considerable effect on how suitability is judged.

2.3 Nonlinearities and Initialization

Common choices for nonlinearities include the logistic
function σ(a) = 1

1+e−a , hyperbolic tangent σ(a) =
tanh a, and rectified linear units (ReLU) σ(a) =
max(0, a) . Nonlinearities are necessary to make neural
networks universal function approximators [16]. Accord-
ing to [13,15], using ReLUs as the nonlinearities in neural
networks leads to better behaved gradients and faster con-
vergence because they do not saturate.

Before training, the weight matrices are initialized ran-
domly. The scale of this initialization is crucial and de-
pends on the used nonlinearity as well as the number of
weights contributing to the activation [13, 15]. Proper ini-
tialization plays an even bigger role when networks with
more than one hidden layer are trained [31]. This is also
important for the transcription setting we use, as the out-
put layer of our networks uses the logistic function, which
is prone to saturation effects. Thus we decided on using
ReLUs throughout, initialized with a uniform distribution
having a scale of±

√
2 ·
√

2
wk−1+wk

. For the last layer with

the logistic nonlinearity, we omit the gain factor of
√

2, as
advised in [13].

2.4 Weight Decay

To reduce overfitting and regularizing the network, differ-
ent priors can be imposed on the network weights. Usually
a Gaussian or Laplacian prior is chosen, corresponding to
an L2 or L1 penalty term on connection weights, added to
the cost functionLreg = L+λ

∑
k ‖vec(Wk)‖1|2 [25,32],

where L is an arbitrary, unregularized cost function and λ
governs the extent of regularization. Adding both of these
penalty terms corresponds to a technique called Elastic
Net [33]. It is pointed out in [1] that using L2 regulariza-
tion plays a similar role as early stopping and thus might be
omitted. An L1 penalty on the other hand leads to sparser
weights, as it has a tendency to drive weights with irrele-
vant contributions to zero.

2.5 Dropout

Applying dropout to a layer zeroes out a fraction of the ac-
tivations of a hidden layer of the network. For each train-
ing case, a different random fraction is dropped. This pre-
vents units from co-adapting, and relying too much on each
other’s presence, as reasoned in [30]. Dropout increases
robustness to noise, improves the generalization ability of
networks and mitigates the risk of overfitting. Additionally
dropout can be interpreted as model-averaging of exponen-
tially many models [30].

2.6 Batch Normalization

Batch normalization [18] seeks to produce networks whose
individual activations per layer are zero-mean and unit-
variance. This is ensured by normalizing the activations
for each mini-batch at each training step. This effectively
limits how far the activation distribution can drift away
from zero-mean, unit-variance during training. Not only
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does this alleviate the need of the weights of the subse-
quent layer to adapt to a changing input distribution dur-
ing training, it also keeps the nonlinearities from saturating
and in turn speeds up training. It has additional regulariz-
ing effects, which become more apparent the more layers
a network has. After training is stopped, the normalization
is performed for each layer and for the whole training set.

2.7 Layer Types

We employ three different types of layer. Their respec-
tive functions can all be viewed as matrix expressions in
the end, and thus can be made to fit into the framework
described in Section 2.2. For the sake of readability, we
simply describe their function in a procedural way.

A dense layer consists of a dense matrix - vector pair
(W,b) together with a nonlinearity. The input is trans-
formed via this affine map, and then passed through a non-
linearity.

A convolutional layer consists of a number Ck of con-
volution kernels of a certain size {(Wc,bc)}Ck

c=0 together
with a non-linearity. The input is convolved with each con-
volution kernel, leading to Ck different feature maps to
which the same nonlinearity is applied.

Max pooling layers are used in convolutional networks
to provide a small amount of translational invariance. They
select the units with maximal activation in a local neigh-
borhood (wt, wf ) in time and frequency in a feature map.
This has beneficial effects, as it makes the transcriber in-
variant to small changes in tuning.

Global average pooling layers are used in all-
convolutional networks to compute the mean value of fea-
ture maps.

2.8 Architectures

There is a fundamental choice between a network with all
dense layers, a network with all convolutional layers, and
a mixed approach, where usually the convolutional layers
are the first ones after the input layer followed by dense
layers. Pooling layers, batch normalization and dropout
application are interleaved. For all networks we have to
choose the number of layers, how many hidden units per
layer to use and when to interleave a regularization layer.
For convolutional networks we have to choose the num-
ber of filter kernels and their extent in time and frequency
direction.

2.9 Networks for Framewise Polyphonic Piano
Transcription

The output layer of all considered model classes has 88
units, in line with the playable notes on most modern pi-
anos, and the output nonlinearity is the logistic function,
whose output ranges lie in the interval [0, 1].

The loss function being minimized is the frame- and
element-wise applied binary crossentropy

L(t)
bce(yt, ŷt) = −(yt · log(ŷt) + (1− yt) · log(1− ŷt))

where ŷt = fL(xt) is the output vector of the network,
and yt the ground truth at time t. As the overall loss over
the whole training set we take the mean

L =
1

T

T∑

t=1

L(t)
bce

For the purpose of computing the performance mea-
sures, the prediction of the network is thresholded to obtain
a binary prediction ȳt = ŷt > 0.5.

2.10 Optimization

The simplest way to adapt the weights Θ of the network to
minimize the loss is to take a small step with length α in
the direction of steepest descent:

Θi+1 = Θi − α ·
∂L
∂Θ

Computing the true gradient ∂L
∂Θ = 1

T

∑T
t=1

∂L(t)
bce

∂Θ re-
quires a sum over the length of the whole training set, and
is computationally too costly. For this reason, the gradi-
ent is usually only approximated from an i.i.d. random
sample of size M � T . This is called mini-batch stochas-
tic gradient descent. There are several extensions to this
general framework, such as momentum [24], Nesterov mo-
mentum [22] or Adam [19], which try to smooth the gradi-
ent estimate, correct small missteps or adapt the learning
rate dynamically, respectively. Additionally we can set a
learning rate schedule that controls the temporal evolution
of the learning rate.

3. DATASET AND MEASURES

The computational experiments have been performed with
the MAPS dataset [12]. It provides MIDI-aligned record-
ings of a variety of classical music pieces. They were ren-
dered using different hi-quality piano sample patches, as
well as real recordings from an upright Disklavier. This en-
sures clean annotation and therefore almost no label-noise.
For all performance comparisons the following framewise
measures on the validation set are used:

P =
T−1∑

t=0

TP [t]

TP [t] + FP [t]

R =
T−1∑

t=0

TP [t]

TP [t] + FN [t]

F1 =
2 · P ·R
P +R

The train-test folds are those used in [26] which were
published online 1 . For each fold, the validation set con-
sists of 43 tracks randomly removed from the train set,

1 http://www.eecs.qmul.ac.uk/˜sss31/TASLP/info.
html
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deviating from the 26 used in [26], and leading to a di-
vision of 173-43-54 between the three sets. Note that the
test sets are the same, and are referred to as configuration I
in [26]. The exact splits for configuration II were not pub-
lished. We had to choose them ourselves, using the same
methodology, which has the additional constraint that only
recordings of the real piano are used for testing, resulting
in a division of 180-30-60. This constitutes a more realistic
setting for piano transcription.

4. ANALYSIS OF RELATIVE
HYPER-PARAMETER IMPORTANCE

To identify and select an appropriate input representation
and determine the most important hyper-parameters re-
sponsible for high transcription performance, a multi-stage
study with subsequent fANOVA analysis was conducted,
as described in [17]. This is similar in spirit to [14], albeit
on a smaller scale.

4.1 Types of Representation

To isolate the effects of different input representations on
the performance of different model classes, only param-
eters for the spectrogram were varied according to Table
1. This leads to 204 distinct input representations. The
hyper-parameters for the model class as well as the opti-
mization scheme were held fixed. To make our estimates
more robust, we conducted multiple runs for the same type
of input.

The results for each model class are summarized in
Table 2, containing the three most influential hyper-
parameters and the percentage of variability in perfor-
mance they are responsible for. The most important hyper-
parameter for both model classes is the type of spectro-
gram used, followed by pairwise interactions. Please note
that the numbers in the percentage column are mainly use-
ful to judge the relative importance of the parameters. We
will see these relative importances put into a larger context
later on.

In Figure 1, we can see the mean performance attain-
able with different types of spectrograms for both model
classes. The error bars indicate the standard deviation for
the spread in performance, caused by the rest of the varied
parameters. Surprisingly, the spectrogram with logarith-
mically spaced bins and logarithmically scaled magnitude,
LM , enables the shallow net to perform best, even though
it is a clear mismatch for logistic regression. The lower
performance of the constant-Q transform was quite unex-
pected in both cases and warrants further investigation.

4.2 Greater context

Attempting a full grid search on all possible input rep-
resentation and model class hyper-parameters described
in Section 2 to compute their true marginalized perfor-
mance is computationally too costly. It is possible however
to compute the predicted marginalized performance of a
hyper-parameter efficiently from a smaller subsample of
the space, as shown in [17]. All parameters are randomly

Model Class Pct Parameters
Logistic Regression 48.6% Spectrogram Type

16.9% Spectrogram Type
× Normed Area Filters

10.4% Spectrogram Type
× Sample Rate

Shallow Net 68.4% Spectrogram Type
20.8% Spectrogram Type

× Sample Rate
5.7% Sample Rate

Table 2: The three most important parameters determining
input representation for different model classes
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Figure 1: (a) Mean logistic regression performance de-
pendent on spectrogram (b) Mean shallow net performance
dependent on type of spectrogram

varied to sample the space as evenly as possible, and a ran-
dom forest of 100 regression trees is fitted to the measured
performance. This allows to predict the marginalized per-
formance of individual hyper-parameters. Table 3 contains
the list of hyper-parameters varied.

0 10 20 30 40 50
Relative Importance

Learning Rate × Optimizer

Learning Rate × Dropout

Optimizer × Spectrogram Type

Learning Rate × Spectrogram Type

Dropout × Spectrogram Type

Batch Normalization

Optimizer

Dropout

Spectrogram Type

Learning Rate

Figure 2: Relative importance of the first 10 hyper-
parameters for the shallow net model class.

The percentage of variance in performance these hyper-
parameters are responsible for, can be seen in Figure 2 for
the 10 most important ones. A total of 3000 runs with
random parameterizations were made.

Analyzing the results of all the runs tells us that the most
important hyper-parameters are Learning Rate (47.11%),
and Spectrogram Type (5.28%). The importance of the
learning rate is in line with the findings in [14]. Figure
2 shows the relative importances of the first 10 hyper-
parameters, and Figure 3 shows the predicted marginal per-
formance of the learning rate dependent on its value (on a
logarithmic scale) in greater detail.
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Optimizer (Plain SGD, Momentum, Nesterov Momentum, Adam)
Learning Rate (0.001, 0.01, 0.1, 0.5, 1.0, 2.0, 10.0, 50.0, 100.0)
Momentum (Off, 0.7, 0.8, 0.9)
Learning rate Scheduler (On, Off)
Batch Normalization (On, Off)
Dropout (Off, 0.1, 0.3, 0.5)
L1 Penalty (Off, 1e-07, 1e-08, 1e-09)
L2 Penalty (Off, 1e-07, 1e-08, 1e-09)

Table 3: The list of additional hyper-parameters varied,
and their ranges.
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Figure 3: Mean predicted performance for the shallow net
model class, dependent on learning rate (on a logarithmic
scale). The dark line shows the mean performance, and the
gray area shows the standard deviation.

5. STATE OF THE ART MODELS

Having completed the analysis of input representation,
more powerful model classes were tried: a deep neu-
ral network consisting entirely of dense layers (DNN),
a mixed network with convolutional layers directly after
the input followed by dense layers (ConvNet), and an all-
convolutional network (AllConv [29]). Their architectures
are described in detail in Table 4. To the best of our knowl-
edge, this is the first time an all-convolutional net has been
proposed for the task of framewise piano transcription.

We computed a logarithmically filtered spectrogram
with logarithmic magnitude from audio with a sample rate
of 44.1 kHz, a filterbank with 48 bins per octave, normed
area filters, no circular shift and no zero padding. The
choices for circular shift and zero padding ranged very low
on the importance scale, so we simply left them switched
off. This resulted in only 229 bins, which are logarithmi-
cally spaced in the higher frequency regions, and almost
linearly spaced in the lower frequency regions as men-
tioned in Section 2.1. The dense network was presented
one frame at a time, whereas the convolutional network
was given a context in time of two frames to either side of
the current frame, summing to 5 frames in total.

All further hyper-parameter tuning and architectural
choices have been left to a human expert. Models within
a model class were selected based on average F-measure
across the four validation sets. An automatic search via
a hyper-parameter search algorithm for these larger model

DNN ConvNet AllConv
Input 229 Input 5x229 Input 5x229
Dropout 0.1 Conv 32x3x3 Conv 32x3x3
Dense 512 Conv 32x3x3 Conv 32x3x3
BatchNorm BatchNorm BatchNorm
Dropout 0.25 MaxPool 1x2 MaxPool 1x2
Dense 512 Dropout 0.25 Dropout 0.25
BatchNorm Conv 64x3x3 Conv 32x1x3
Dropout 0.25 MaxPool 1x2 BatchNorm
Dense 512 Dropout 0.25 Conv 32x1x3
BatchNorm Dense 512 BatchNorm
Dropout 0.25 Dropout 0.5 MaxPool 1x2
Dense 88 Dense 88 Dropout 0.25

Conv 64x1x25
BatchNorm
Conv 128x1x25
BatchNorm
Dropout 0.5
Conv 88x1x1
BatchNorm
AvgPool 1x6
Sigmoid

# Params 691288 1877880 284544

Table 4: Model Architectures

classes, as described in [4, 11, 28] is left for future work
(the training time for a convolutional model is roughly 8−9
hours on a Tesla K40 GPU, which leaves us with 204·3·4·8
hours (variants × #models × #folds × hours per model),
or on the order of 800 − 900 days of compute time to de-
termine the best input representation exactly).

For these powerful models, we followed practical rec-
ommendations for training neural networks via gradient
descent found in [1]. Particularly relevant is the way of
setting the initial learning rate. Strategies that dynamically
adapt the learning rate, such as Adam or Nesterov Momen-
tum [19, 22] help to a certain extent, but still do not spare
us from tuning the initial learning rate and its schedule.

We observed that using a combination of batch normal-
ization and dropout together with very simple optimiza-
tion strategies leads to low validation error fairly quickly,
in terms of the number of epochs trained. The strategy
that worked best for determining the learning rate and its
schedule was trying learning rates on a logarithmic scale,
starting at 10.0, until the optimization did not diverge any-
more [1], then training until the validation error flattened
out for a few epochs, then multiplying the learning rate
with a factor from the set {0.1, 0.25, 0.5, 0.75}. The rates
and schedules we finally settled on were:

• DNN: SGD with Momentum, α = 0.1, µ = 0.9 and
halving of α every 10 epochs

• ConvNet: SGD with Momentum, α = 0.1, µ = 0.9
and a halving of α every 5 epochs

• AllConv: SGD with Momentum, α = 1.0, µ = 0.9
and a halving of α every 10 epochs

The results for framewise prediction on the MAPS
dataset can be found in Table 6. It should be noted that we
compare straightforward, simple, and largely un-smoothed
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systems (ours) with hybrid systems [26]. There is a small
degree of temporal smoothing happening when processing
spectrograms with convolutional nets. The term simple is
supposed to mean that the resulting models have a small
amount of parameters and the models are composed of a
few low-complexity building blocks. All systems are eval-
uated on the same train-test splits, referred to as configu-
ration I in [26] as well as on realistic train-test splits, that
were constructed in the same fashion as configuration II
in [26].

Model Class P R F1

Hybrid DNN [26] 65.66 70.34 67.92
Hybrid RNN [26] 67.89 70.66 69.25
Hybrid ConvNet [26] 72.45 76.56 74.45
DNN 76.63 70.12 73.11
ConvNet 80.19 78.66 79.33
AllConv 80.75 75.77 78.07

Table 5: Results on the MAPS dataset. Test set perfor-
mance was averaged across 4 folds as defined in configu-
ration I in [26].

Model Class P R F1

DNN [26] - - 59.91
RNN [26] - - 57.67
ConvNet [26] - - 64.14
DNN 75.51 57.30 65.15
ConvNet 74.50 67.10 70.60
AllConv 76.53 63.46 69.38

Table 6: Results on the MAPS dataset. Test set perfor-
mance was averaged across 4 folds as defined in configu-
ration II in [26].

6. CONCLUSION

We argue that the results demonstrate: the importance of
proper choice of input representation, and the importance
of hyper-parameter tuning, especially the tuning of learn-
ing rate and its schedule; that convolutional networks have
a distinct advantage over their deep and dense siblings, be-
cause of their context window and that all-convolutional
networks perform nearly as well as mixed networks, al-
though they have far fewer parameters. We propose these
straightforward, framewise transcription networks as a new
state-of-the art baseline for framewise piano transcription
for the MAPS dataset.
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ABSTRACT

Computational music structure analysis encompasses any
model attempting to organize music into qualitatively
salient structural units, which can include anything in the
heirarchy of large scale form, down to individual phrases
and notes. While much existing audio-based segmenta-
tion work attempts to capture repetition and homogeneity
cues useful at the form and thematic level, the time scales
involved in phrase-level segmenation and the avoidance
of repetition in improvised music necessitate alternate ap-
proaches in approaching jazz structure analysis. Recently,
the Weimar Jazz Database has provided transcriptions of
solos by a variety of eminent jazz performers. Utilizing
a subset of these transcriptions aligned to their associated
audio sources, we propose a model based on supervised
training of a Hidden Markov Model with ground-truth state
sequences designed to encode melodic contours appearing
frequently in jazz improvisations. Results indicate that rep-
resenting likely melodic contours in this way allows a low-
level audio feature set containing primarily timbral and
harmonic information to more accurately predict phrase
boundaries.

1. INTRODUCTION

Music structure analysis is an active area of research within
the Music Information Retrieval (MIR) community with
utility extending to a wide range of MIR applications in-
cluding song similarity, genre recognition, audio thumb-
nailing, music indexing systems, among others. Musical
structure can be defined in terms of any qualitatively salient
unit, from large scale form (e.g. intro, verse, chorus, etc.),
to melodic themes and motifs, down to individual phrases
and notes.

Paulus [8] categorizes existing approaches to audio-
based structural analysis according to perceptual cues as-
sumed to have central importance in determination of
structure, namely into those based on repetition, novelty,
and homogeneity. A music structure analysis task typi-
cally involves a boundary detection step, where individual
sections are assumed to be homogeneous, and transitions

c© Jeff Gregorio and Youngmoo E. Kim. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jeff Gregorio and Youngmoo E. Kim. “Phrase-level Audio
Segmentation of Jazz Improvisations Informed by Symbolic Data”, 17th
International Society for Music Information Retrieval Conference, 2016.

between sections associated with a high degree of novelty.
Novelty is assumed to be indicated by large changes in one
or more time-series feature representations that may corre-
spond to perceptually-salient shifts in timbre, rhythm, har-
mony, or instrumentation. Predicted boundaries can then
be used to obtain segments which can be grouped accord-
ing to similarity in the employed feature space(s). Alter-
natively, repetition-based methods may be used to identify
repeated segments and boundaries directly.

Due to the difficulty in reliabily estimating individual
note onsets and pitches, much existing work on music seg-
mentation at the phrase level has been limited to single in-
struments in the symbolic domain. In a meta-analysis of
symbolic phrase segmentation work, Rodrı́guez López [7]
showed that two of the best performing rule-based mod-
els in comparative studies include Cambouropoulos’s Lo-
cal Boundary Detection Model (LBDM) [2] and Temper-
ley’s Grouper [11]. Both relate to Gestalt discontinuity
principles, placing phrase boundaries using heuristics de-
rived in part from features of consecutive note onset times,
including inter-onset intervals (IOI) and offset-onset in-
tervals (OOI). The LBDM model additionally uses pitch
contour information, assuming discontinuity strength is in-
creased by large inter-pitch intervals (IPI). Grouper also
incorporates knowledge of metrical context and assumes a
prior distribution of phrase lengths.

The proposed work focuses on musical structure at the
phrase level, specifically identification of phrase bound-
aries from audio signals. Though we do not directly pre-
dict note onsets, durations, or pitches available in sym-
bolic representations, we take advantage of audio-aligned
MIDI transcriptions in the supervised training of a Hid-
den Markov Model (HMM). Using a primarily timbral and
harmonic audio feature represenation, we hope to aid in
the prediction of phrase boundaries by exploiting correla-
tions between timbral/harmonic cues and common melodic
phrase contours represented in the dataset.

2. MOTIVATION

In the audio domain, most existing structural segmenta-
tion work attempts to model to large scale form. The self
distance matrix (SDM) is a useful representation in this
modality, where entries SDM(i, j) = d(xi,xj) represent
the distance between all combinations of feature vectors
xi and xj by some distance metric d. This representation
lends itself well to identifiable patterns associated with ho-
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Figure 1. Self-distance matrix with form-level annotations
plotted as white lines. Section boundaries often coincide
with large blocks of relatively small distance, and some
repetitions can be seen as stripes parallel to the main diag-
onal.

mogeneity, novelty, and repetition principles. Homogene-
ity within a section is generally associated with low-valued
blocks representing small distance, novelty can be seen in
the form of transitions between low and high value, and
repetition manifests as stripes of low value parallel to the
main diagonal. Figure 1 shows an example SDM computed
using the timbral and harmonic feature space described in
Section 4. Note this matrix is smoothed by averaging dis-
tance values from multiple frames around each index, as
described in [8], but hasn’t been filtered or beat-aligned to
enhance repetition patterns, though some are visible.

When attempting audio segmentation at the phrase
level, overall feature space homogeneity within single seg-
ments may be an unsafe assumption given the shorter
time scales involved, in which a performer might em-
ploy expressive modulation of timbre. Furthermore, while
melodic ideas in a jazz improvisation may be loosely in-
spired by a theme, extended repetition is usually avoided
in favor of maximally unique melodies within a single
performance. This context suggests that repetition-based
approaches useful for identifying large-scale forms and
themes may be inappropriate. Figure 2 shows an exam-
ple SDM computed at the same resolution as Figure 1 over
60 seconds of a jazz improvisation. Note that while this
SDM contains block patterns associated with homogene-
ity, they don’t necessarily align well with entire phrases.
This SDM is also almost completely missing any identifi-
able repetition patterns.

There does exist, however, some degree of predictabil-
ity in jazz phrase structure that an ideal model should ex-
ploit, albeit across a corpus rather than within a single
track. We propose a system based on supervised training
of a Hidden Markov Model with a low-level audio feature
set designed to capture novelty in the form of large timbral

Figure 2. Self-distance matrix with annotated phrase
boundaries plotted as white lines. Note the absence of off-
diagonal striping patterns indicative of repetition, and the
infrequent occurrence of large homogeneous blocks over
the duration of entire phrases.

and harmonic shifts indicative of phrase boundaries. Ex-
isting HMM approaches have included unsupervised train-
ing, with a fixed-number of hidden states assumed to cor-
respond to form-level sections [9, 10], instrument mix-
tures [5], or simply a mid-level feature representation [6].
Our model differs from existing HMM-based approaches
in that it attempts to represent common elements of jazz
phrase structure directly in the topology of the network,
where the ground-truth state sequences are derived from
inter-pitch intervals in audio-aligned transcriptions. Likely
sequences of predicted states should therefore correspond
to melodic contours well-represented in the training data,
aiding in the detection of phrase boundaries.

3. DATASET AND PREPROCESSING

In 2014, the first version of the Weimar Jazz Database
(WJazzD) was released as part of the larger Jazzomat Re-
search Project [1]. The database contains transcriptions of
monophonic solos by eminent jazz performers, well rep-
resenting the evolution of the genre over the 20th century.
The database was later expanded to include 299 solo tran-
scriptions from 225 tracks, 70 performers, 11 instruments
(soprano/alto/tenor/tenor-c/baritone sax, clarinet, trumpet,
cornet, trombone, vibraphone, and guitar) and 7 styles
(Traditional, Swing, Bebop, Hardbop, Cool, Postbop, and
Free Jazz). The transcriptions were initially generated us-
ing state-of-the-art automatic transcription tools and man-
ually corrected by musicology students. In addition to the
transcriptions, the database contains a rich collection of
metadata and human labels including phrase boundaries,
underlying chord changes, form-level sections, and beat
locations.
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3.1 MIDI to Audio Alignment

The lack of availability of the original audio tracks used as
source material for the database’s transcriptions presents
some difficulty in taking full advantage of the possibili-
ties for supervised machine learning methods using acous-
tic features. Toward this end, we were able to obtain 217
of 225 tracks containing the solo(s) as transcribed. Meta-
data available in WJazzD indicate the starting and end-
ing timestamps of the solo sections at a 1-second reso-
lution, which is insufficient for determining ground truth
for phrase boundaries associated with note onset times.
Additionally, pulling audio files from various sources in-
troduces further uncertainty, as many tracks appear on
both original releases and compilations which may differ
slightly in duration or other edits.

To obtain ground truth, we trim the original tracks ac-
cording to provided solo timestamps and employ a tool
created by Dan Ellis [4] which uses Viterbi alignment on
beat-tracked versions of original audio and resynthesized
MIDI to modify and output an aligned MIDI file. Upon in-
spection, 90 extracted solos produced a suitable alignment
that required minimal manual corrections. We parse the
database and handle conversion to and from MIDI format
in Matlab using the MIDI Toolbox [3], making extensive
use of the convenient note matrix format and pianoroll vi-
sualizations.

4. AUDIO FEATURES

To represent large timbral shifts, we use spectral flux and
centroid features derived from the short-time Fourier trans-
form (STFT), and spectral entropy derived from the power
spectral density (PSD) of the audio tracks, sampled at
22050Hz with a FFT size of 1024 samples, Hamming win-
dowed, with 25% overlap. Due to our interest in the lead
instrument only, features are computed on a normalized
portion of the spectrum between 500− 5000Hz to remove
the influence of prominent bass lines while preserving har-
monic content of the lead instrument.

We also compute two features based on Spectral Con-
trast, a multi-dimensional feature computed as the decibel
difference between the largest and smallest values in seven

Figure 3. Mean positive difference between spectral con-
trast frames, plotted against annotated phrase boundaries.

octave bands of the STFT. Since the resolution of this fea-
ture is dependent on the number of frequency bins in each
octave, we use a larger FFT of size 4096, which gives
meaningful values in four octaves above 800Hz without
sacrificing much time resolution. The first feature reduces
spectral contrast to one dimension by taking the mean dif-
ference of all bands between frames. Observing that large
positive changes in spectral contrast correlate well with an-
notated phrase boundaries, we half-wave rectify this fea-
ture. The second feature takes the seven-dimensional Eu-
clidian distance between spectral contrast frames.

Finally, we include a standard Chromagram feature,
which is a 12-dimensional feature representing the contri-
bution in the audio signal to frequencies associated with
the twelve semitones in an octave. While the chromagram
includes contributions from fundamental frequencies of in-
terest, it also inevitably captures harmonics and un-pitched
components. Noting that even precise knowledge of abso-
lute pitch of the lead instrument would be uninformative
in determining whether any note were the begining of a
phrase, we collapse this feature to a single dimension by
taking the Euclidian distance between frames, with the in-
tention of capturing harmonic shifts that may be correlated
with phrase boundaries and melodic contours.

All features are temporally smoothed by convolving
with a gaussian kernel of 21 samples. All elements in the
feature vectors are squared to emphasize peaks. We then
double the size of the feature set by taking the first time dif-
ference of each feature, which amounts to a second differ-
ence for the spectral contrast and chroma features. Later,
when evaluating, each feature in the training and testing
sets is standardized to zero mean and unit variance using
statistics of the training set features.

5. MELODIC CONTOUR VIA HMM

Hidden Markov Models represent the joint distribution
of some hidden state sequence y = {y1, y2, ..., yN}
and a corresponding sequence of observations X =
{x1,x2, ...,xN}, or equivalently the state transition prob-
abilities P (yi|yi−1) and emission probabilities P (xi|yi).

HMMs have been used in various forms for music struc-
ture analysis, lending well to the sequential nature of the
data, with hidden states often assumed to correspond to
some perceptually meaningful structural unit. Unsuper-
vised approaches use feature observations and an assumed
number of states as inputs to the Baum-Welch algorithm
to estimate the model parameters, which can then be used
with the Viterbi algorithm to estimate the most likely se-
quence of states to have produced the observations.

Paulus notes that unsupervised HMM-based segmenta-
tion tends to produce unsatisfactory results on form-level
segmentation tasks due to observations relating to individ-
ual sound events [8], a shortcoming which has led to ob-
served state sequences being treated as a mid-level rep-
resentations in subsequent work. We revisit HMMs as a
segmentation method specifically for phrase-level analy-
sis due to the particular importance of parameters of in-
dividual sound events rather than longer sections. Specifi-
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cally, we postulate that phrases drawn from the jazz vocab-
ulary follow predictable melodic contours, and incorporat-
ing ground-truth knowledge of the distribution and tem-
poral evolution of these contours as observed in a large
dataset of phrases through supervised training may help in
identification of phrase boundaries.

6. EXPERIMENTS

We first evaluate a 2-state HMM, with states yi ∈ {0, 1}
corresponding to the absence or presence (respectively) of
the lead instrument during the ith audio frame. Though
a 2-state graphical model is trivial and offers no advan-
tages over any other supervised classification method, we
include it here simply as a basis for comparison with the
multi-state models to evaluate the efficacy of adding states
based on ground-truth pitch contour.

To estimate an upper bound on expected performance
of our audio-based models, we evaluate two symbolic seg-
mentation models using features of precisely known note
pitches and onset times. First, we evaluate the Local
Boundary Detection Model (LBDM) implementation of-
fered by the MIDI Toolbox [3]. The LBDM outputs a con-
tinuous boundary strength, which we use to tune a bound-
ary prediction threshold for maximum f-score via cross
validation. Second, we train a 2-state HMM, where the
model state yi then corresponds to the ith note rather than
the ith audio frame, and takes the value 1 if the note is the
first in a phrase, and 0 otherwise. Observations xi similarly
correspond to features of individual note events including
the IOI, OOI, and IPI. Results of the symbolic segmenta-
tion models are shown in Table 1(a).

To directly encode melodic contour in the network
topology for the multi-state, audio-based HMMs, we ex-
tract ground-truth state sequences based on quantization
levels of the observed inter-pitch interval (IPI) in the tran-
scription. The following indicate the state of the network
following each IPI, where the state remains for the duration
of the note, rounded to the nearest audio frame:

5-State yi =





0 lead instrument absent
1 first phrase note
2 IPI < 0

3 IPI = 0

4 IPI > 0

7-State yi =





0 lead instrument absent
1 first phrase note
2 IPI < −5
3 −5 ≤ IPI < 0

4 IPI = 0

5 0 < IPI ≤ 5

6 IPI > 5

The 5-state model simply encodes increas-
ing/decreasing/unison pitch in the state sequence. The
7-state model further quantizes increasing and decreasing
pitch into intervals greater than and less than a perfect
fourth. Each HMM requires a discrete observation se-
quence, so the 10-dimensional audio feature set described
in Section 4 is discretized via clustering using a Gaussian
Mixture Model (GMM) with parameters estimated via
Expectation-Maximization (EM).

We note that in the solo transcriptions, there are many
examples of phrase boundaries that occur between two
notes played legato (i.e. the offset-onset interval is zero or
less than the time duration of a single audio frame). When
parsing the MIDI data and associated boundary note an-
notations to determine the state sequence for each audio
frame, in any such instance where state 1 is not preceded
by state 0, we force a 0-1 transition to allow the model to
account for phrase boundaries that aren’t based primarily
on temporal discontinuity cues.

7. RESULTS

Evaluation of each network is performed via six fold cross-
validation, where each fold trains the model on five styles
as provided by the WJazzD metadata, and predicts on the
remaining style. We note that WJazzD encompasses seven
styles, but the 90 examples successfully aligned to corre-
sponding audio tracks did not include any traditional jazz.
Though the sequence of states predicted by the model in-
clude the contour-based states, our reported results only
consider accuracy in predicting a transition to state 1 in all
cases.

Precision, recall, and f-score metrics reported in form-
level segmentation experiments typically consider a true
positive to be a boundary identified within 0.5 and 3 sec-
onds of the ground truth. Considering the short time scales
involved with phrase-level segmentation, we report metrics
considering a true positive to be within one beat and one
half beat, as determined using each solo’s average tempo

Model Pn Rn Fn

LBDM 0.7622 0.7720 0.7670
HMM, 2-State 0.8225 0.8252 0.8239

(a) Symbolic models

Model P1B R1B F1B

HMM, 2-State 0.6114 0.5584 0.5837
HMM, 5-State 0.5949 0.6586 0.6251
HMM, 7-State 0.6116 0.6565 0.6333

(b) Audio models, true positive within one beat of annotation

Model P0.5B R0.5B F0.5B

HMM, 2-State 0.4244 0.3876 0.4052
HMM, 5-State 0.4039 0.4472 0.4245
HMM, 7-State 0.4212 0.4521 0.4361

(c) Audio models, true positive within half beat of annotation

Table 1. Segmentation results
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annotation provided by WJazzD. For reference, the mean
time per beat in the 90 aligned examples is 0.394 seconds,
with a standard deviation of 0.178 seconds. All beat dura-
tions were less than 1 second.

We report precision, recall, and f-score computed over
all examples, all folds, and 5 trials. Reported results use
30 Gaussian components as discrete observations in the
audio-based models, and 5 components for the symbolic
model, and are summarized in Table 1. For greater insight
into the model’s performance in different stylistic contexts,
we also present the cross-validation results across the six
styles in Figure 4.

8. DISCUSSION

ANOVA and post-hoc analysis reveals both multi-state
models yielding increased recall over the 2-state model
(F2,1332 = 30.62, p < 10−13), and increased f-score
(F2,1332 = 11.28, p < 10−4) with no significant differ-
ence in precision. Interestingly, the most significant re-
call increases from addition of the melodic contour states
within styles include hardbop (F2,297 = 15.68, p < 10−6),
postbop (F2,432 = 12.22, p < 10−5), and swing styles
(F2,177 = 6.73, p < 10−3).

These increases in recall within a style also corre-
late well with a high proportion of occurrences of phrase
boundaries with no temporal discontinuity. These account
for 22% of all phrase boundaries in hardbop, 18% in post-
bop, and 29% in swing, while accounting for 17%, 7%,
and 4% in bebop, cool, and free jazz, respectively. We be-
lieve this suggests that incorporating ground-truth melodic
contour allows the model to account for the relationship

(a) 2-State

(b) 5-State

(c) 7-State

Figure 4. Audio-based HMM segmentation results by
style. Significant (p < 0.005) increases in recall and f-
score observed in Hardbop, Postbop, and Swing.

between contours indicative of phrase boundaries and their
associated timbral and harmonic shifts.

Manual inspection of segmentation results tend to re-
inforce this idea, as shown in Figure 5. The 2-state
model fails to identify four phrase boundaries preceded by
very small inter-onset intervals (6th, 15th, 18th, and 21st
phrases), while the 7-state model correctly identifies three
(6th, 18th, and 21st), at the cost of some tendency toward
over-segmentation (in this case).

9. CONCLUSIONS

Evaluation of a 2-state HMM established a baseline phrase
segmentation accuracy by detecting the presence or ab-
sence of the lead instrument, which presents some diffi-
culty in predicting phrase boundaries based on harmonic
and melodic cues with little to no temporal discontinuity.
Incorporating a ground-truth state sequence in the multi-
state HMMs using melodic contour information derived
from the transcription yielded statistically significant in-
creases in recall in styles containing a high proportion of
these phrase boundaries.

Although our feature set does not attempt to predict
pitches of individual notes, we believe the increased recall
associated with the multi-state models indicates the model
is exploiting a relationship between timbral and harmonic
observations and melodic contours associated with phrase
boundaries. These precise relationships are undoubtedly
dependent on the timbre of the instrument, yet demonstrate
some general utility when trained on a range of lead instru-
ments.

While the attempted representation of melodic contour

(a) 2-State: P1B = 0.762, R1B = 0.696, F1B = 0.727

(b) 7-State: P1B = 0.758, R1B = 0.956, F1B = 0.846

(c) MIDI Transcription

Figure 5. Segmentation of Freddie Hubbard’s solo in the
Eric Dolphy track “245”. Black lines indicate ground-truth
annotations, and red lines show predicted boundaries.
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in the model topology indicates some promise, we believe
there are likely better alternatives to modeling contour than
arbitrary quanitzation of ground truth inter-pitch intervals.
Future work should examine the potential of assembling
observed contours from a smaller set of contour primitives
over longer time scales than note pair transitions. Fur-
thermore, though our approach avoided relying high-level
pitch estimates derived from the audio because of strong
potential for propagation of errors, we will investigate the
use of mid-level pitch salience functions in future feature
sets.

More generally, we believe that the availability of well-
aligned audio and symbolic data can allow the use of super-
vised methods as a precursor to more scalable audio-based
methods, and aid in the creation of mid-level features use-
ful for a wide range of MIR problems.
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REVISITING PRIORITIES: IMPROVING MIR EVALUATION PRACTICES

Bob L. Sturm
Centre for Digital Music, Queen Mary University of London

ABSTRACT

While there is a consensus that evaluation practices in mu-
sic informatics (MIR) must be improved, there is no con-
sensus about what should be prioritised in order to do so.
Priorities include: 1) improving data; 2) improving figures
of merit; 3) employing formal statistical testing; 4) em-
ploying cross-validation; and/or 5) implementing transpar-
ent, central and immediate evaluation. In this position pa-
per, I argue how these priorities treat only the symptoms of
the problem and not its cause: MIR lacks a formal eval-
uation framework relevant to its aims. I argue that the
principal priority is to adapt and integrate the formal de-
sign of experiments (DOE) into the MIR research pipeline.
Since the aim of DOE is to help one produce the most re-
liable evidence at the least cost, it stands to reason that
DOE will make a significant contribution to MIR. Accom-
plishing this, however, will not be easy, and will require far
more effort than is currently being devoted to it.

1. CONSENSUS: WE NEED BETTER PRACTICES

I recall the aims of MIR research in Sec. 1.1, and the
importance of evaluation to this pursuit. With respect to
these, I describe the aims and shortcomings of MIREX in
Sec. 1.2. These motivate the seven evaluation challenges
of the MIR “Roadmap” [23], summarised in Sec. 1.3. In
Sec. 1.4, I review a specific kind of task that is represen-
tative of a major portion of MIR research, and in Sec. 1.5
I look at one implementation of it. This leads to testing a
causal model in Sec. 1.6, and the risk of committing the
sharpshooter fallacy, which I describe in Sec. 1.7.

1.1 The aims of MIR research

MIR research aims to connect real-world users with music
and information about music, and to help users make mu-
sic and information about music [3]. One cannot overstate
the importance of relevant and reliable evaluation to this
pursuit: 1 we depend upon it to measure the effectiveness
of our algorithms and systems, compare them against the

1 An “evaluation” is a protocol for testing a hypothesis or estimating a
quantity. An evaluation is “relevant” if it logically addresses the investi-
gated hypothesis or quantity. An evaluation is “reliable” if it results in a
repeatable and statistically sound conclusion.

c© Bob L. Sturm. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Bob
L. Sturm. “Revisiting Priorities: Improving MIR Evaluation Practices”,
17th International Society for Music Information Retrieval Conference,
2016.

state of the art, chart the progress of our discipline, and
discriminate promising directions from dead ends. The de-
sign of any machine listening system 2 involves a series
of complex decisions, and so we seek the best evidence
to guide this process. This motivates the largest contribu-
tion so far to evaluation methodology in MIR research: the
Music Information Retrieval Exchange (MIREX) [9].

1.2 MIREX

MIREX represents a significant advance beyond the incon-
sistency of evaluation practices in the early years of MIR.
Its guiding precepts include [8]: test collections should be
of considerable size and private, if possible; evaluations
should be performed by a private centralised system; for-
mal statistical testing should be used to detect significant
differences between submissions; results should be pub-
licly archived; and MIREX is not a competition but an
opportunity to exchange knowledge. MIREX is now a
decade old (evaluating nearly 3000 submissions so far) and
is linked to a significant amount of research [5]. However,
MIREX suffers serious problems [11, 17, 20, 22, 23, 28, 34,
35]: its tasks can lack consideration of the user; its tasks
can be poorly defined and contrived; its metrics can lack
relevance; and its evaluations can lack validity.

1.3 The “Roadmap” for MIR [23]

MIREX has certainly helped MIR advance, but its evalu-
ation practices must be improved. This fact is officially
acknowledged in the 2013 “Roadmap for Music Informa-
tion Research” [23], authored by 17 recognised MIR re-
searchers at seven major institutions. Section 2.6 of the
Roadmap identifies seven specific challenges related to
evaluation that the discipline should address to ensure its
continued development. We need to:

RI “Define meaningful evaluation tasks”
RII “Define meaningful evaluation methodologies”
RIII “Evaluate whole MIR systems”
RIV “Promote evaluation tasks using multimodal data”
RV “Promote best practice evaluation methodology”
RVI “Implement sustainable MIR evaluation initiatives”
RVII “[Promote reproducible] MIR.”

I identify RI and RII as the “linchpins.” It is thus essen-
tial to define, “define” and “meaningful” for both “tasks”
and “methodologies”. For RI, the Roadmap suggests a
task is “meaningful” when it is “relevant” to a well-defined

2 A machine listening system is a fixed map from a recording universe
to a semantic universe [30]. See Sec. 3.1.
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user community, and defined (or addressed) 3 “according
to some agreed criteria.” For RII, the Roadmap suggests
an evaluation methodology is “meaningful” if it creates
knowledge leading to the improvement of MIR systems,
and the discipline as a whole.

1.4 The “Audio Classification (Train/Test)” task

MIREX shows MIR is replete with tasks, but I will fo-
cus on one kind: “Audio Classification (Train/Test).” This
task involves building systems using feature extraction al-
gorithms, supervised machine learning algorithms, and a
training dataset, and then testing with a testing dataset. 4

At its most base, the goal is to build a system that re-
produces the most ground truth of a testing dataset. This
task appears in over 400 publications addressing “music
genre recognition” [26, 27] (not to mention work address-
ing “music similarity,” “music mood recognition” and “au-
totagging” [24]), and so typifies a major portion of MIR
research. Referring to the aims of MIR and the Roadmap,
I ask: how does reproducing dataset ground truth provide
relevant and reliable knowledge about a system, and how
to improve it, for a well-defined user-community?

1.5 Three systems designed for a specific problem

Consider three systems expressly designed to address the
problem intended by the BALLROOM dataset [7]: to ex-
tract and learn “repetitive rhythmic patterns” (RRPs) from
recorded audio. BALLROOM has 698, 30-second mono-
phonic music excerpts downloaded in 2004 from a com-
mercial web resource devoted to ballroom dancing. A sys-
tem solving this problem maps 30-s music recordings to
several classes, e.g., Cha cha, according to RRPs.

Three systems trained and tested with the same BALL-
ROOM partitioning produce the following figures of merit:
system A (SA) reproduces 93.6% of the ground truth; SB ,
91.4%; and SC , only 28.5%. Given that a random selec-
tion of each class will reproduce about 14.3% of the ground
truth, two possible hypotheses are:

H1 SA, SB are identifying RRPs in BALLROOM, and
SC is not identifying RRPs in BALLROOM

H2 The features used by SA, SB are powerful for iden-
tifying RRPs in BALLROOM, but not those of SC .

Let us look under the hood of each system, so to speak.
Each is composed of a feature extraction algorithm (map-
ping the audio sample domain to a feature space), and a
classification algorithm (mapping the feature domain to the
semantic (label) space) [30]. For SA, the feature is global
tempo (possibly with an octave error), and the classifier is
single nearest neighbour in the training dataset [29]. For
SB , the feature is the 800-dimensional lagged autocorre-
lation of an energy envelope, and the classifier is a deep
neural network [18]. For SC , the feature is umpapa pres-
ence, 5 and the classifier is a decision tree.

3 This is ambiguous in the Roadmap.
4 A dataset is a sequence of observation, label pairs, ((ri, si)), where

ri is the ith observation and si is its ground truth.
5 A fictional quantitative measure of the RRP, “OOM-pah-pah.”

There are a few startling things. First, while SA re-
produces the most ground truth, it does so by using only
tempo. Since tempo is not rhythm, SA does not address
the problem for which it was designed. 6 Second, SC re-
produces the least ground truth of the three, but is using a
feature that is relevant to the problem intended by BALL-
ROOM [7]. Its accuracy is so low because only the Waltz-
labeled recordings have high umpapa presence, while all
the others are in common or duple meter and have low
umpapa presence. It seems then that we must doubt H1
and H2 when it comes to SA and SC . What about SB?

SB is using a feature that should contain information
closely related to RRPs: periodicities of acoustic stresses
observed over 10 second periods [18]. In fact, it is easy
to visually interpret these features in terms of tempo and
meter. The deep neural network in SB is not so easy to
interpret. However, given the impressiveness of recent re-
sults from the deep learning revolution [15], it might seem
reasonable to believe SB reproduces so much ground truth
because it has learned to identify the high-level RRPs that
characterise the rhythms of BALLROOM labels.

1.6 An intervention into a causal model

Let us claim that SB reproduces BALLROOM ground
truth by detecting RRP in the music recordings. We thus
propose the causal model shown in Fig. 1(a). Consider an
experiment in which we perform an intervention at the ex-
ogenous factor. We take each BALLROOM testing record-
ing and find the minimum amount of pitch-preserving
time-stretching 7 (thereby producing a tempo change only)
for which SB produces an incorrect class.

(a) (b)

Figure 1. Two causal models relating factors: BALL-
ROOM label (L), RRP (R), audio observation (A), com-
petition rules (C), tempo (T), and exogenous (U).

We find [29,31] that a mean tempo increase of 3.7 beats
per minute (BPM) makes SB classify all Cha-cha-labeled
testing recordings as “tango.” While SB initially shows
a very good “rumba” F-score (0.81), it no longer identi-
fies the Rumba-labeled recordings when time-stretched by
at most ±3%. By submitting all testing recordings to a
tempo change of at most ±6%, SB goes from reproduc-
ing 91.4% of the ground truth to reproducing as little as
random guessing (14.3%). (By the same transformation,
we can also make SB reproduce all ground truth.) What is
more, SB assigns different labels to the same music when
we change only its tempo: it classifies the same Cha cha-
labeled music as “cha cha” when its tempo is 124 BPM,
then “quickstep” when its tempo is 108 BPM, and so on.

6 In fact, Dixon et al. [7] design their systems to be tempo-invariant.
7 We use http://breakfastquay.com/rubberband
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These results thus cast serious doubt on H1 and H2 for
SB . It seems that a belief in H1 and H2 is not so reason-
able after all: SA and SB reproduce BALLROOM ground
truth using a characteristic that is not rhythm. It is only SC

that is addressing the problem intended by BALLROOM,
but it does not reproduce a large amount of ground truth
simply because it is sensitive to only one kind of RRP.

1.7 On the sharpshooter fallacy

A typical response to the above is that if a system can re-
produce ground truth by looking at tempo, then it should.
In fact, the 2014 World Sport Dance Federation rules 8

provide strict tempo ranges for competitions featuring the
dances represented by BALLROOM; and the tempi of the
music in BALLROOM adhere to these ranges (with the
exception of Rumba and Jive) [29, 31]. This response,
however, commits the sharpshooter fallacy: it moves the
bullseye post hoc, e.g., from “extract and learn RRPs from
recorded audio” to “reproduce the ground truth.” 9

That there exists strict tempo regulations for dance com-
petitions, and that the origin of BALLROOM comes from
a commercial website selling music CDs for dance compe-
titions, motivate the alternative causal model in Fig. 1(b).
This model now shows a path from the music heard in a
BALLROOM recording to its ground truth label via com-
petition rules, which explains how SA and SB reproduce
BALLROOM ground truth without even addressing the in-
tended problem.

1.8 Intermediate conclusion

There are of course limitations to the above. BALLROOM
is one dataset of many, and in fact could be used for a dif-
ferent problem than RRP. MIR tasks are broader than “Au-
dio Classification (Train/Test),” and involve many other
kinds of information than rhythm. Classification accu-
racy is just one measure; a confusion table could provide
a more fair comparison of the three systems. I use BALL-
ROOM and the three systems above simply because they
clearly demonstrate problems that can arise even when a
task and problem appear to be well-defined, and a dataset
is cleanly labeled and has reputable origins. Though sev-
eral systems are trained and tested in the same dataset with
the express purpose of solving the same problem (as is
the case for all MIREX tasks of this kind), they in fact
may be solving different problems. Seeking the cause of
a system’s performance, e.g., through intervention exper-
iments [25, 26, 29, 31], can then reveal a confounding of
“reproduce ground truth” with, e.g., “learn to recognise
rhythm.” It is tempting to then move the bullseye, but do-
ing so weakens one’s contribution to the aims of MIR re-
search. Emphasising ground truth reproduction over solv-
ing intended problems can lead to promoting non-solutions
over solutions with respect to the aims of MIR research.
Clearly then, MIR evaluation practices must be improved,
but what should be prioritised to do so?

8 https://www.worlddancesport.org/Rule/
Competition/General

9 Recall these three systems were expressly designed to address the
problem intended by BALLROOM (Sec. 1.5, and described in [7]).

2. NON-CONSENSUS: OUR PRIORITIES

While problems with MIR evaluation have been known for
some time, there is no consensus on what should be priori-
tised to solve them. I now discuss several of these.

2.1 We need to collect more data

Perhaps the most immediate answer to evaluation prob-
lems is to increase the sizes of datasets. The underlying be-
lief is that experimental power increases with the number
of observations. Along with the pursuit of model generali-
sation, this has motivated the creation of the Million Song
Dataset [2] and AcousticBrainz [19]. The advent of crowd-
sourcing makes data collection seem cheap, but the actual
costs can be very high. First, music recordings have many
layers of intellectual property, which limit their use and
distribution. This directly opposes research that is open
and reproducible, and so imposes a high cost to progress.
Second, and most importantly, making data bigger does
not necessarily improve an experiment’s power, but it cer-
tainly increases its cost. Even if BALLROOM had 1 billion
music recordings meeting competition tempo regulations,
the conclusions of Secs. 1.5-1.6 would not change. The
most important question to ask then is not how to collect
the most data, but how to collect and use data such that it
results in the most relevant and reliable evidence possible
while minimising the cost incurred.

2.2 We need to find better figures of merit

A highly discussed topic of evaluation is that of metric or
measure (figure of merit, FoM). Which FoM (accuracy, F-
score, AUC, etc.) gives the best indication of how well a
system is addressing the intended problem? MIREX typi-
cally reports several FoM in each of its tasks since a diver-
sity of viewpoints can inform interpretation. Still, one par-
ticular FoM can dominate a research problem, e.g., classi-
fication accuracy is the most-used FoM reported in “mu-
sic genre recognition” research (appearing in over 80% of
such publications [27]). This is troubling since Secs. 1.5-
1.6 show that the amount of ground truth reproduced by a
system could say nothing relevant or reliable about its suc-
cess for some problem thought well-posed. The choice of
FoM is certainly important, but the most important ques-
tion to ask before selecting an FoM is how to measure its
relevance and reliability, and how to compare it in mean-
ingful ways, with respect to the intended problem. Recent
work is addressing this important question, e.g., [6,11,16].

2.3 We need to perform more formal statistical testing

Some have argued that MIR research should adopt rigorous
statistical procedures [10,34]. Null hypothesis significance
testing provides a remarkable set of useful tools, despite
the problems that come with their interpretation [4,14]. For
instance, the probability that SB in Sec. 1.5 reproduces its
91.4% of BALLROOM ground truth given it is actually
selecting randomly is p < 10−138 (by a binomial test).
Though one may safely reject this hypothesis, it still gives
no reason to claim SB is identifying RRP. Sec. 1.6 shows
SB to be exploiting a third way to reproduce BALLROOM
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ground truth. No statistical test will improve the relevance
and reliability of the measurements of the three systems in
Sec. 1.5 with respect to the hypotheses posed. A differ-
ent kind of evaluation must be employed. While statistical
testing is useful, the most important questions to ask first
are: 1) whether the evidence produced by an evaluation
will be relevant and reliable at all; and 2) what statistical
test is relevant to and permitted by an experiment [1, 12].

2.4 We need to use more cross-validation

In the directions of using data in smarter ways and sta-
tistical hypothesis testing, cross-validation (CV) is a test-
ing protocol that is standard in machine learning [13].
CV holds constant a learning algorithm but changes train-
ing and testing datasets multiple times, both of which are
culled from a larger dataset. Many variants exist, but the
main motivations are the same: to simulate having more
data than one actually has, and to avoid overfitting mod-
els. CV produces point estimates of the expected general-
isation of a learning algorithm [13], but its relevance and
reliability for gauging the success of a given system for
solving an intended problem can be unclear. Returning to
the three systems in Sec. 1.5, CV in BALLROOM will
produce more estimates of the expected generalisation of
the learning algorithms, but that does not then make the re-
sults relevant to the hypotheses posed. The most important
question to ask then is how to design a testing protocol that
can produce relevant and reliable evidence for the hypothe-
ses under investigation.

2.5 We need to develop central, transparent
and immediate evaluation

The nature of a computerised research discipline is such
that one can train and test thousands of system variants on
millions of observations and produce quantitative results
within a short time scale. MIREX provides one vehicle,
but it occurs only once a year, and has problems of its own
(Sec. 1.2). This motivates commendable efforts, such as
the Networked Environment for Music Analysis [36], and
mir eval [20]. Their aim is to increase transparency,
standardise evaluation, reduce delay, mitigate legal jeop-
ardy, and facilitate progress in MIR. Concerns of the trans-
parency and immediacy of an evaluation, however, are pre-
mature before designing it to be as relevant and reliable as
possible at the least cost.

2.6 Intermediate conclusion

The overriding priority is not to collect more data, but to
develop ways to collect and use data in provably better
ways. The overriding priority is not to find better FoM,
but to develop ways to judge the relevance of any FoM,
and to make meaningful comparisons with it. The overrid-
ing priority is not to perform more formal statistical test-
ing, to use CV, or facilitate transparency and immediacy in
evaluation, but to develop ways of producing relevant evi-
dence while satisfying requirements of reliability and cost.
This leads me to propose a principal priority for improving
evaluation practices in MIR.

3. THE PRINCIPAL PRIORITY IN EVALUATION

The principal priority is to develop a formal framework of
evaluation that facilitates a meaningful evaluation method-
ology for any problem that will result in relevant and
reliable evidence of the effectiveness of our algorithms
and systems, facilitate comparisons with the state of the
art, chart the progress of the discipline, and discriminate
promising directions from dead ends, all with respect to the
aims of MIR research. I propose that this can be accom-
plished by leveraging the established design and analysis
of experiments (DOE) in tandem with an effort to reign in
the ambiguity of MIR problems and tasks. This will then
address the shortcomings of MIREX (Sec. 1.2), position
MIR to meet the Roadmap challenges (Sec. 1.3), and en-
able a new and progressive research pipeline.

Figure 2. This new research pipeline involves a use case, a
DOE framework, and feedback to improve system design.

Figure 2 illustrates a new way to engineer MIR systems
and their component technologies. Three central compo-
nents are the use case, a formal design of experiments
(DOE) framework, and feedback from the evaluation to
system design. A use case is a formal expression of the
problem a system is to address. The DOE framework pro-
vides the theoretical underpinning for designing, imple-
menting and analysing the most relevant and reliable eval-
uation of a system with respect to a use case at the least
possible cost. These two components feed into realising
an evaluation of a specific MIR system, itself built with
reference to the use case. The evidence produced by the
evaluation thus leads to improving the design of the MIR
system. The use case together with the DOE framework
temper linchpins RI and RII. With these firmly established,
the rest of the Roadmap evaluation challenges can be ac-
complished.

3.1 On the use case

I define a use case in [30] as a means for mitigating ambi-
guity in research, and thus tempering linchpin RI. For in-
stance, nearly all published work on the problem of “music
genre recognition” does not explicitly define the problem,
instead posing it as reproducing the ground truth of a given
dataset. As a result, many hundreds of publications have
unknown relevance to the aims of MIR (Sec. 1.1), even
when they use the same dataset [26].

A use case is defined as a tuple of four formal elements:
the music universe (Ω), the music recording universe (RΩ),
the description universe (SV,A), and a set of success crite-
ria. This retains a distinction between the intangible Ω and
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Observational Treatment Plot
ID Treatments (T ) Experimental unit unit (ω ∈ Ω) structure structure Response Response model
a Amounts of

compost & water
tomato plant in a
greenhouse pot

tomato plant in a
greenhouse pot

all combinations
of two factors

blocks tomato yield
(grams)

simple textbook

b New feed, old
feed

pen calf new treatment
and control

unstructured weight (kg) simple textbook

c Local or remote
learning

students in DOE 101
classroom-year

student unstructured blocks test score (%) fixed effects

d Four wines judge judge-tasting unstructured unstructured score {1, ..., 5} simple textbook

Table 1. Examples of the various components of experiments. (a): estimating the relationship between tomato yield, and
the amount of water and compost applied to a tomato plant in a greenhouse pot. (b): testing for a significant difference
between new and old feed in the weight gain of a calf (several calves to a pen, feed applied to whole pen). (c): testing
for a significant difference between students learning DOE locally or remotely (students are or are not math majors, thus
defining two blocks, motivating a fixed effects response model). (d): testing for a significant difference in wine quality.

the tangibleRΩ — elements of which are fed to a recorded
music description system (a map, S : RΩ → SV,A). SV,A
is a set of elements assembled in a meaningful way for a
user. The success criteria embody the requirements of a
user for mapping from Ω and/orRΩ to SV,A.

To provide illustration, let us define two use cases. De-
fine Ω as all music meeting specific tempo and stylistic reg-
ulations with respect to the labels in BALLROOM. Define
RΩ as the set of all possible 30-s, monophonic recording
excerpts of the music in Ω sampled at 22050 Hz. Define
SV,A as the set of tokens, {“Cha cha”, “Jive”, “Quickstep”,
“Rumba”, “Tango”, “Waltz”}. Define the success criteria
as: “the amount of ground truth reproduced is inconsis-
tent with random selection.” Provided BALLROOM is a
sample of RΩ × SV,A, it is relevant to this use case; and
depending on its size relative to the variability of the pop-
ulation (which is predicted, e.g., using expert elicitation),
a measurement of the ground truth reproduced by a sys-
tem tested in BALLROOM could then provide reliable ev-
idence of its success.

A different use case is possible. Define Ω,RΩ and SV,A
as above, but define the success criteria as: “the amount of
ground truth reproduced is inconsistent with random selec-
tion, and independent of tempo.” Again, provided BALL-
ROOM is a sample ofRΩ ×SV,A, it is relevant to this use
case. However, a measurement of the amount of ground
truth reproduced by a system tested in BALLROOM is not
relevant to the use case because it does not control for the
restriction imposed in the success criteria. A different eval-
uation must be designed.

The use case proposed in [30] is not the only way or
the best way to mitigate ambiguity in MIR research, but I
claim that it is one way by which a research problem and
task can be defined with clarity, and which thereby can aid
with the design and evaluation of MIR systems.

3.2 On the formal design of experiments

The aim of DOE is to help one produce the most reliable
evidence at the least cost. DOE is an area of statistics that
has become essential to progressive science and profitable
industry, from biology and genetics to medicine and agri-
culture [1]. (In fact, it arose from agriculture in the early
20th century.) Hence, I claim that it is reasonable to argue
that DOE can help build a formal framework of evalua-

tion that can reliably guide the engineering of systems to
address the aims of MIR (Sec. 1.1).

The design of an experiment entails performing sev-
eral essential and non-trivial steps. In the terminology of
DOE [1], this includes identifying treatments, experimen-
tal and observational units, identifying structures in the
treatments and plots, creating the design, and specifying
the response model, all with respect to the hypothesis or
quantity under investigation. Below are some definitions
of these components. Table 1 provides examples.

Treatments Descriptions of what is applied to an experi-
mental unit, indexed by T = {1, . . . , t}.

Experimental unit The smallest unit to which a treat-
ment is applied.

Observational unit (plot) The smallest unit on which a
response is measured. The set of N plots is indexed
by Ω := {ω : ω ∈ {1, . . . , N}}.

Experimental design A map T : Ω→ T .
Plot/Treatment structure Meaningful ways of dividing

up the plots/treatments.
Response model An assumed mathematical relation be-

tween the response and the treatment parameter.
Treatment Parameter The (latent) contribution of the

treatment to the measured response.

Fundamental questions that DOE answers are: for my
t treatments, how large should N be to reach my required
experimental power and not exceed my resources? How
should I collect the plots? How should I map the plots to
the treatments? An essential part of answering these is “ex-
pert elicitation,” whereby knowledge about the plots and
treatments is collected from someone familiar with them.
This informs the design, response model, and subsequent
analysis. For example, it is important to know in experi-
ments (a) and (c) in Table 1 if the plots have structure, e.g.,
positions of pots in greenhouse get variable sunlight; and
students in the course are math majors or non-math ma-
jors. Otherwise, if the amount of sunlight correlates with
the amount of water and compost applied to a plant, or if
most students that take the course remotely are math ma-
jors, then one might conclude that compost and water have
a negative effect on yield (confounding of sunlight and
treatment), or remote learning is better than local learning
(confounding of student background and learning method).
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At first it seems standard MIR tasks and evaluation need
only be “translated” into the language of DOE, and then
existing statistical machinery be deployed [32]. This trans-
lation is not so immediate, however. Consider the evalu-
ation performed in [33]: 100 repetitions of stratified 10-
fold CV (10fCV) in a specific dataset sampled from some
RΩ×SV,A. In each repetition, several systems are trained
and tested, the mean amount of ground truth reproduced
by the resulting systems is measured, the mean and stan-
dard deviation of the 100 repetitions are reported, and con-
clusions are made. This appears to be a factorial design,
crossing F (feature extraction method) and M (supervised
learning method). The treatments then appear to be all lev-
els of F∧M . The experimental and observational unit then
is a complete 10fCV, of which there are N = 100|F ||M |,
i.e., each level in F ∧M treats 100 10fCV plots. Finally,
the response is the proportion of ground truth reproduced.

This scenario appears similar to testing for a significant
difference between local and remote learning in Table 1(c),
except there are some important differences. First, any pair
of systems in each level of F ∧ M in any repetition of
10fCV share 80% of the same training data. Hence, the
10 systems produced in each level of F ∧M in any rep-
etition of 10fCV are not independent. Second, all repeti-
tions of 10fCV at a level of F ∧M produce measurements
that come from the same data. Hence, the 100 plots are
not independent. Third, the systems themselves are gener-
ated from training data used to test other systems produced
at the same level. Considering the scenario in Table 1(c),
this would be like tailoring the implementations of local
and remote classes to some of the students in them. This
means the realisations of the treatments come from mate-
rial that they in turn treat, which introduces a non-trivial
dependency between treatments and plots. Finally, there
is unacknowledged structure in the particular dataset used
in [33], which can bias the response significantly [26].

All of the above and more 10 means that the responses
measured in this experiment should be modelled in a more
complex way than the simple textbook model [1] — which
assumes a normal distribution having a variance that de-
creases with the number of measurements, and a mean that
is the treatment parameter (in this case, the expected gen-
eralisation of a level in F ∧M inRΩ×SV,A). What can be
concluded from the kind of experiments in [33] remains to
be seen, but it is clear that not much weight should be given
to conclusions drawn from the simple textbook model [32].

3.3 On the feedback

The initial evaluation of the three systems in Sec. 1.5 is
of little use for improving them with respect to the prob-
lem they are designed to address. It even provides mis-
leading information about which is best or worst at ad-
dressing that problem. The knowledge produced by the
evaluation is thus suspicious. Instead, my system analysis,
along with the intervention experiment in Sec. 1.6, provide
useful knowledge for improving the systems, as well as

10 There are other major issues that contribute complications, e.g., the
meaning of RΩ × SV,A, whether “ground truth” is a rational concept,
and the problem of “curation” in assembling of a music dataset.

evaluation using BALLROOM. Our work in [21] provides
another example of this. According to the linchpin chal-
lenge RII in Sec. 1.3, and its discussion in the Roadmap, I
claim that system analysis along with the intervention ex-
periment — designed to explain why a system reproduces
an amount of ground truth inconsistent with random selec-
tion — can lead to real and useful knowledge for improv-
ing MIR systems and evaluation practices.

4. CONCLUSION

The MIR discipline has reached a level of maturity such
that its impact is undeniable [3,5], and its leaders recognise
contemporary needs for targeted development in specific
directions [23]. In this position paper, I address the direc-
tion of improving MIR evaluation — specifically the linch-
pin challenges RI and RII (Sec. 1.3) — and revisit several
priorities for improving evaluation. I argue that these only
treat the symptoms of the problem and not its cause: MIR
lacks a formal evaluation framework relevant to its aims.
I argue that addressing this cause is the principal priority.
I propose that this can be addressed by leveraging estab-
lished DOE along with an effort to mitigate ambiguity in
research. However, this is not as straight-forward as I ini-
tially envisioned [26, 32]. To develop and integrate such a
framework into the MIR research pipeline will require far
more effort than is currently being devoted to it. It will
require the focus of a multidisciplinary team of specialists
for many years. Toward this end, I hope this position paper
persuades some to participate in solving the core problem.
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ABSTRACT

In many pieces of music, the composer signals how in-
dividual sonic elements (samples, loops, the trumpet sec-
tion) should be grouped by introducing sources or groups
in a layered manner. We propose to discover and lever-
age the layering structure and use it for both structural
segmentation and source separation. We use reconstruc-
tion error from non-negative matrix factorization (NMF)
to guide structure discovery. Reconstruction error spikes at
moments of significant sonic change. This guides segmen-
tation and also lets us group basis sets for NMF. The num-
ber of sources, the types of sources, and when the sources
are active are not known in advance. The only informa-
tion is a specific type of layering structure. There is no
separate training phase to learn a good basis set. No prior
seeding of the NMF matrices is required. Unlike standard
approaches to NMF there is no need for a post-processor
to partition the learned basis functions by group. Source
groups are learned automatically from the data. We eval-
uate our method on mixtures consisting of looping source
groups. This separation approach outperforms a standard
clustering NMF source separation approach on such mix-
tures. We find our segmentation approach is competitive
with state-of-the-art segmentation methods on this dataset.

1. INTRODUCTION

Audio source separation, an open problem in signal pro-
cessing, is the act of isolating sound producing sources (or
groups of sources) in an audio scene. Examples include
isolating a single person’s voice from a crowd of speakers,
the saxophone section from a recording of a jazz big band,
or the drums from a musical recording [13].

A system that can understand and separate musical sig-
nals into meaningful constituent parts (e.g. melody, back-
ing chords, percussion) would have many useful applica-
tions in music information retrieval and signal process-
ing. These include melody transcription [18], audio remix-
ing [28], karaoke [21], and instrument identification [8].

Many approaches have been taken to audio source sep-
aration, some of which take into account salient aspects

c© Prem Seetharaman, Bryan Pardo. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Prem Seetharaman, Bryan Pardo. “Simultaneous separation
and segmentation in layered music”, 17th International Society for Music
Information Retrieval Conference, 2016.

Figure 1. An exemplar layering structure in classical mu-
sic - String Quartet No. 1, Op. 27, Mvt IV, Measures 1-5.
by Edvard Grieg. The instruments enter one at a time in a
layering structure, guiding the ear to both the content and
the different sources.

of musical structure, such as musical scores, or pitch (see
Section 2). Few algorithms have explicitly learned musical
structure from the audio recording (using no prior learning
and no musical score) and used it to guide source discov-
ery and separation. Our approach is designed to leverage
compositional structures that introduce important musical
elements one by one in layers. In our approach, separa-
tion alternates with segmentation, simultaneously discov-
ering the layering structure and the functional groupings of
sounds.

In a layered composition, the composer signals how in-
dividual sound sources (clarinet, cello) or sonic elements
(samples, loops, sets of instruments) should be grouped.
For example, often a song will start by introducing sources
individually (e.g. drums, then guitar, then vocals, etc) or
in groups (the trumpet section). Similarly, in many songs,
there will be a “breakdown”, where most of the mixture
is stripped away, and built back up one element at a time.
In this way, the composer communicates to the listener the
functional musical groups (where each group may consist
of more than one source) in the mixture. This layering
structure is widely found in modern music, especially in
the pop and electronic genres (Figure 2), as well as classi-
cal works (Figure 1).

We propose a separation approach that engages with the
composer’s intent, as expressed in a layered musical struc-
ture, and separates the audio scene using discovered func-
tional elements. This approach links the learning of the
segmentation of music to source separation.

We identify the layering structure in an unsupervised
manner. We use reconstruction error from non-negative
matrix factorization (NMF) to guide structure discovery.
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Reconstruction error spikes at moments of significant sonic
change. This guides segmentation and also lets us know
where to learn a new basis set.

Our approach assumes nothing beyond a layering struc-
ture. The number of sources, the types of sources, and
when the sources are active are not known a priori. In
parallel with discovering the musical elements, the algo-
rithm temporally segments the original music mixture at
moments of significant change. There is no separate train-
ing phase to learn a good basis set. No prior seeding of
the NMF matrices is required. Unlike standard NMF there
is no need for a post-processor that groups the learned ba-
sis functions by source or element [9] [25]. Groupings are
learned automatically from the data by leveraging informa-
tion the composer put there for a listener to find.

Our system produces two kinds of output: a tempo-
ral segmentation of the original audio at points of signif-
icant change, and a separation of the audio into the con-
stituent sonic elements that were introduced at these points
of change. These elements may be individual sources, or
may be groups (eg. stems, orchestra sections).

We test our method on a dataset of music built from
commercial musical loops, which are placed in a layering
structure. We evaluate the algorithm based on separation
quality, as well as segmentation accuracy. We compare our
source separation method to standard NMF, paired with a
post processer that clusters the learned basis set into groups
in a standard way. We compare our segmentation method
to the algorithms included in the Musical Structure Analy-
sis Framework (MSAF) [16].

The structure of this paper is as follows. First, we de-
scribe related work in audio source separation and mu-
sic segmentation. Then, we give an overview of our pro-
posed separation/segmentation method, illustrated with a
real-world example. We then evaluate our method on our
dataset. Finally, we consider future work and conclude.

2. RELATED WORK

2.1 Music segmentation

A good music segmentation reports perceptually relevant
structural temporal boundaries in a piece of music (e.g.
verse, chorus, bridge, an instrument change, a new source
entering the mixture).

A standard approach for music segmentation is to lever-
age the self-similarity matrix [7]. A novelty curve is ex-
tracted along the diagonal of the matrix using a checker-
board kernel. Peak picking on this novelty curve results in
a music segmentation. The relevance of this segmentation
is tied to the relevance of the similarity measure.

[12] describes a method of segmenting music where
frames of audio are labeled as belonging to different states
in a hidden Markov model, according to a hierarchical la-
beling of spectral features. [10] takes the self-similarity
matrix and uses NMF to find repeating patterns/clusters
within it. These patterns are then used to segment the au-
dio. [17] expands on this work by adding a convex con-
straint to NMF.

[22] infers the structural properties of music based on
structure features that capture both local and global prop-
erties of a time series, with similarity features.

The most similar work to ours is [27], which uses shift
invariant probabilistic latent component analysis to extract
musical riffs and repeated patterns from a piece of music.
The activation of these recurring temporal patterns is used
to then segment the audio. Our approach takes into account
temporal groupings when finding these patterns, whereas
their approach does not.

Our proposed method uses the reconstruction error of a
source model over time in a musical signal in order to find
structural boundaries. We explicitly connect the problem
of music segmentation with the problem of audio source
separation and provide an alternative to existing approaches
to finding points of significant change from the audio.

2.2 Source separation

There are several source separation methods that leverage
high-level musical information in order to perform audio
source separation.

Separation from repeating patterns: REPET [21] sep-
arates the repeating background structure (e.g. bass, back-
ing chords, rhythm from the guitar, and drums in a band)
from a non-repeating foreground (e.g. lead singer with a
melody) by detecting a periodic pattern (e.g. a sequence of
chords that repeats every four bars). While REPET models
the repeating background structure as a whole, our pro-
posed method models the individual musical elements im-
plicit in the composer’s presentation of the material and
does not require a fixed periodic pattern.

In [20], source models are built using a similarity ma-
trix. This work looks for similar time frames anywhere in
the signal, using a similarity measure (cosine similarity)
that does not take musical grouping or temporal structure
into account. Our method leverages the temporal group-
ings created by the composer’s layering of sonic elements.

Informed separation: [4] incorporates outside infor-
mation about the musical signal. A musical score gives
information about the pitch and timing of events in the au-
dio and is commonly used for informed musical separation.
First, [4] finds an alignment between the low-level audio
signal and the high-level musical score (in MIDI form).
The pitch and timing of the event are then used to per-
form audio separation. These score-informed approaches
are elaborated on in [6]. Our approach, does not require
a score. Musical elements are discovered, modelled, and
separated from the mixture using only the mixture, itself.

Non-negative matrix factorization (NMF). Our work
uses NMF which was first proposed for audio source sep-
aration in [24]. Probabilistic latent component analysis
(PLCA) can be seen as a probabilistic formulation of NMF,
and is also used for source separation [23].

NMF finds a factorization of an input matrix X (the
spectrogram) into two matrices, often referred to as spec-
tral templates W and activations H. Straightforward NMF
has two weaknesses when used for source separation that
will be elaborated on in Section 3: (1) there is no guar-
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Figure 2. The top graph shows the spectrogram of 0:00 to 1:01 of One More Time, by Daft Punk. Ground truth segmentation
is shown by the solid vertical black lines, where each line signals a new source starting. The middle graph shows the
behavior of the reconstruction error of a sampled source layer over time (e). When new layers begin, reconstruction error
noticeably spikes and changes behavior. The bottom graph shows the reconstruction error over time for a full model of the
first layer. Beats are shown by the vertical dashed black lines.

antee that an individual template (a column of W) corre-
sponds to only one source and (2) spectral templates are
not grouped by source. Until one knows which templates
correspond to a particular source or element of interest, one
cannot separate out that element from the audio.

One may solve these problems by using prior training
data to learn templates, or meta-data, such as musical scores
[6], to seed matrices with approximately-correct templates
and activations. User guidance to select the portions of the
audio to learn from has also been used [2].

To group spectral templates by source without user guid-
ance, researchers typically apply timbre-based clustering
[9] [25]. This does not consider temporal grouping of sources.
There are many cases where sound sources with dissimilar
spectra (e.g. a high squeak and a tom drum, as in Work-
ing in a Coal Mine by DEVO) are temporally grouped as a
single functional element by the composer. Such elements
will not be grouped together with timbre-based clustering.

A non-negative Hidden Markov model (NHMM) [15]
has been used to separate individual spoken voices from
mixtures. Here, multiple sets of spectral templates are
learned from prior training data and the system dynam-
ically switches between template sets based on the esti-
mated current state in the NHMM Markov model. A sim-
ilar idea is exploited in [3], where a classification system
is employed to determine whether a spectral frame is de-
scribed by a learned dictionary for speech.

Our approach leverages temporal grouping created by
composers in layered music. This lets us appropriately
learn and group spectral templates without the need for
prior training, user input or extra information from a musi-
cal score, or post-processing.

3. NON-NEGATIVE MATRIX FACTORIZATION

We now provide a brief overview of non-negative matrix
factorization (NMF). NMF is a method to factorize a non-

negative matrix X as the product of two matrices W and
H. In audio source separation, X is the power spectrogram
of the audio signal, which is given as input. W is inter-
preted as a set of spectral templates (e.g. individual notes,
the spectrum of a snare hit, etc.). H is interpreted as an
activation matrix indicating when the spectral templates of
W are active in the mixture. The goal is to learn this dic-
tionary of spectral templates and activation functions. To
find W and H, some initial pair of W and H are created
with (possibly random) initial values. Then, a gradient de-
scent algorithm is employed [11] to update W and H at
each step, using an objective function such as:

argminW,H||X−WH||2F (1)

where || · ||2F refers to the Frobenius norm. Once the differ-
ence between WH and X falls below an error tolerance,
the factorization is complete.

There are typically many approximate solutions that fall
below any given error bound. If one varies the initial W
and H and restarts, a different decomposition is likely to
occur. Many of these will not have the property that each
spectral template (each column of W) represents exactly
one element of interest. For example, it is common for a
single spectral template to contain audio from two or more
elements of interest (e.g. a mixture of piano and voice in
one template). Since these templates are the atomic units
of separation with NMF, mixed templates preclude suc-
cessful source separation. Therefore, something must be
done to ensure that, after gradient descent is complete,
each spectral template belongs to precisely one group or
source of interest. An additional issue is that, to perform
meaningful source separation, one must partition these spec-
tral templates into groups of interest for separation. For
example, if the goal is to separate piano from drums in a
mixture of piano and drums, all the templates modeling the
drums should be grouped together.
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One can solve these problems by using prior training
data, running the algorithm on audio containing an iso-
lated element of interest to learn a restricted set of W. One
can repeat this for multiple elements of interest to separate
audio from a mixture using these prior learned templates.
This avoids the issues caused from learning the spectral
templates directly from the mixture: one template having
portions of two sources, and not knowing which templates
belong to the same musical element. One may also use
prior knowledge (e.g. a musical score) to seed the W and
H matrices with values close to the desired final goal. We
propose an alternative way of grouping spectral templates
that does not require prior seeding of matrices [6] or user
segmentation of audio to learn the basis set for each desired
group [2], nor post-processing to cluster templates.

4. PROPOSED APPROACH

Our approach has four stages: estimation, segmentation,
modeling, and separation. We cycle through these four
stages in that order until all elements and structure have
been found.

Estimation: We assume the composer is applying the
compositional technique of layering. This means that es-
timating the source model from the first few audio frames
will give us an initial model of the first layer present in the
recording. Note that in our implementation, we beat track
the audio [14] [5]. Beat tracking reduces the search space
for a plausible segmentation, but is not integral to our ap-
proach.

We use the frames from the first four beats to learn the
initial spectral dictionary. Consider two time segments in
the audio, with i, j and k as temporal boundaries: X =
[Xi:j−1,Xj:k]. To build this model, we use NMF on a
segment of Xi:j−1 to find spectral templates West.

Segmentation: Once an estimated dictionary West is
found, we measure how well it models the mixture over
time. Keeping West fixed, learn the activation matrix H
for the second portion. The reconstruction error for this is:

error(WestH,Xj:k) = ||Xj:k −WestH||2F (2)

Equation 2 measures how well the templates in West

model the input X. For example, assume West was con-
structed a spectrogram of snare drum hits in segment Xi:j−1.
If a guitar and bass are added to the mixture somewhere in
the range j : k,then the reconstruction error on Xj:k will
be greater than the reconstruction error on Xi:j−1. We use
reconstruction error as a signal for segmentation. We slide
the boundaries j, k over the the mixture, and calculate er-
ror for each of these time segments, as shown in Figure 2.
This gives us e, a vector of reconstruction errors for each
time segment.

In the middle graph in Figure 2, we show reconstruction
error over time, quantized at the beat level. Reconstruc-
tion error spikes on beats where the audio contains new
sounds not modeled in West. As layers are introduced
by the artist, reconstruction error of the initial model rises

Algorithm 1 Method for finding level changes in recon-
struction error over time, where � is the element-wise
product. e is a vector where e(t) is the reconstruction er-
ror for West at time step t. lag is the size of a smoothing
window for e. p and q affect how sensitive the algorithm is
when finding boundary points. We use lag = 16, p = 5.5
and q = .25 in our implementation. These values were
found when training on a different dataset, containing 5
mixtures, than the one in Section 5.
lag, p, q ← initialize, tunable parameters
e← reconstruction error over time for West

e← (e� e) . Element-wise product
d← max(∆e/∆t)
for i from lag to length(e) do . Indexing e

window← ei−lag:i−1

m← median(abs(window - median(window))
if abs(ei− median(window)) ≥ p ∗m then

if abs(ei − ei−1) ≥ q ∗ d then
return i . Boundary frame in X

end if
end if

end for
return length(e) . Last frame in X

considerably. Identifying sections of significant change in
reconstruction error gives a segmentation on the music. In
Figure 2, the segmentation is shown by solid vertical lines.
At each solid line, a new layer is introduced into the mix-
ture. Our method for identifying these sections uses a mov-
ing median absolute deviation, and is detailed in Algorithm
1.

Modeling: once the segmentation is found, we learn a
model using NMF on the entire first segment. This gives us
Wfull, which is different from West, which was learned
from just first four beats of the signal. In Figure 2, the first
segment is the first half of the audio. Wfull is the final
model used for separating the first layer from the mixture.
As can be seen in the bottom graph of Figure 2, once the
full model is learned, the reconstruction error of the first
layer drops.

Separation: once the full model Wfull is learned, we
use it for separation. To perform separation, we construct
a binary mask using NMF. Wfull is kept fixed, and H is
initialized randomly for the entire mixture. The objective
function described in Section 3 is minimized only over H.
Once H is found, WfullH tells us when the elements of
Wfull are active. We use a binary mask for separation,
obtained via:

M = round(WfullH�max(WfullH, abs(X)))

where� indicates element-wise division and� is element-
wise multiplication. We reconstruct the layer using:

Xlayer = M�X (3)

Xresidual = (1−M)�X (4)
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Figure 3. Construction of a single mixture using a layering
structure in our dataset, from 3 randomly selected loops
each from 3 sets A, B, and C.

where � indicates element-wise product. Xresidual is the
mixture without the layer. We restart at the estimation
stage above, this time using Xresidual as the input, and set-
ting the start point to the segmentation boundary found in
the segmentation stage above. Taking the inverse Fourier
transform of Xlayer gives us the audio signal of the sepa-
rated layer.

Termination: if Xresidual is empty (no source groups
remain in the mixture), we terminate.

5. EVALUATION

5.1 Dataset

We evaluate our approach in two ways: separation qual-
ity, and segmentation accuracy. To do this, we construct
a dataset where ground truth is known for separation and
segmentation. As our approach looks for a layering struc-
ture, we devise mixtures where this layering occurs. We
obtain source audio from Looperman [1], an online re-
source for musicians and composers looking for loops and
samples to use in their creative work. Each loop from
Looperman is intended by its contributor to represent a sin-
gle source. Each loop can consist of a single sound produc-
ing source (e.g. solo piano) or a complex group of sources
working together (e.g. a highly varied drumkit).

From Looperman, we downloaded 15 of these loops,
each 8 seconds long at 120 beats per minute. These loops
are divided into three sets of 5 loops each. Set A contained
5 loops of rhythmic material (drum-kit based loops mixed
with electronics), set B contained 5 loops of harmonic and
rhythmic material performed on guitars, and set C con-
tained 5 loops of piano. We arranged these loops to create
mixtures that had layering structure, as seen in Figure 3.

We start with a random loop from set A, then add a ran-
dom loop from B, then add a random loop from C, for a
total length of 24 seconds. We produce 125 of these mix-
tures.

Ground truth segmentation boundaries are at 8 seconds
(when the second loop comes in), and at 16 seconds (when
the third loop comes in). In Figure 3, each row is ground
truth for separation.
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algorithms, and an ideal binary mask. Higher numbers are
better. The ideal binary mask is an upper bound on sepa-
ration performance. The error bars indicate standard devi-
ations above and below the mean.
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5.2 Methods for comparison

For separation, we compare our approach to a separation
method in [25]. In this method, they use NMF on the en-
tire mixture spectrogram, and then cluster the components
into sources using MFCCs. Each cluster of components is
then used to reconstruct a single source in the mixture. In
our approach, the number of components (K) was fixed at
K = 8, giving a total ofK = 24 components for the entire
mixture. For direct comparison, we give the method in [25]
K = 24 components. We also look at the case where [25]
is given K = 100 components.

For segmentation, we compare our approach with [22],
[17], and [7].
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Approach Median deviation (s) Avg # of segments
CNMF [17] .53 6.152

SF [22] .97 4.024

Foote [7] 3.3 3.048

Proposed .53 3.216

Table 1. Segmentation results for various approaches. In
the dataset, an accurate segmentation reports 3 segments.
While CNMF reports similar average median deviation
from estimated to reference boundaries to the proposed
method, it finds almost twice the number of boundaries.
Foote finds a number of segments closer to ground truth,
but the boundaries are in the wrong place.

5.3 Results

5.3.1 Separation

To measure separation quality, we use the BSS Eval tool-
box [26] as implemented in [19], which reports Source-to-
Distortion (SDR), Source-to-Interference (SIR), and Source-
to-Artifact (SAR) ratios. For all of these, we compare our
proposed approach to an NMF clustering approach based
on MFCCs in [25]. This clustering approach was given
the number of sources to find in the mixture. This is in
contrast to our algorithm, where the number of sources is
unknown, and instead is discovered. We also compare to
an ideal binary mask. Results are in Figure 4, which shows
mean SDR, SIR, and SAR for different source separation
methods.

As seen in Figure 4, our approach found sources that
correlated with the target sources, giving SDR and SIR
more comparable to the ideal binary mask. This is in con-
trast to the clustering approach, which found sources that
poorly correlated with the actual target sources, resulting in
low values for SDR and SIR, even when using more com-
ponents than our approach (K = 100 vs. K = 24). The
clustering mechanism in [25] leverages MFCCs, and finds
sources that are related in terms of resonant characteristics
(e.g. instrument types) but fails to model sources that have
multiple distinct timbres working together.

Our results indicate that separation based on NMF re-
construction error is a useful signal to guide the grouping
of spectral templates for NMF, and boost separation qual-
ity on layered mixtures.

5.3.2 Segmentation

To measure segmentation accuracy, we use the median ab-
solute time difference from a reference boundary to its near-
est estimated boundary, and vice versa. For both of these
measures, we compare our proposed approach with [22],
[17], and [7], implemented in MSAF [16], as shown in Fig-
ure 5.

We find that our approach is as accurate as existing
state-of-the-art, as can be seen in Figure 5 and Table 1.
Our results indicate that, when finding a segmentation of
a mixture, in which segment boundaries are dictated by
sources entering the mixture, current approaches are not
sufficient. Our approach, because it uses reconstruction er-

ror of source models to drive the segmentation, finds more
accurate segment boundaries.

6. CONCLUSIONS

We have presented a method for source separation and mu-
sic segmentation which uses reconstruction error in non-
negative matrix factorization to find and model groups of
sources according to discovered layered structure. Our
method does not require pre-processing of the mixture or
post-processing of the basis sets. It requires no user input,
or pre-trained external data. It bootstraps an understand-
ing of both the segmentation and the separation from the
mixture alone. It is a step towards a framework in which
separation and segmentation algorithms can inform one an-
other, for mutual benefit. It makes no assumptions on what
a source actually is, but rather finds functional sources im-
plied by a specific type of musical structure.

We showed that tracking reconstruction error of a source
model over time in a mixture is a helpful approach to find-
ing structural boundary points in the mixture. These struc-
tural boundary points can be used to guide NMF. This sep-
aration approach outperforms NMF that clusters spectral
templates via heuristics. This work demonstrates a clear,
novel, and useful relationship between the problems of sep-
aration and segmentation.

The principles behind this approach can be expanded to
other source separation approaches. Since source separa-
tion algorithms rely on specific cues (e.g. repetition like
in REPET, or a spectral model like in NMF), the temporal
failure points of source separation algorithms (e.g. the re-
peating period has failed, or the model found by NMF has
failed to reconstruct the mixture) may be a useful cue for
music segmentation.

The approach presented here exploits the compositional
technique of layering employed in many musical works.
For future approaches, we would like to build separation
techniques which leverage other compositional techniques
and musical structures, perhaps integrating our work with
existing work in segmentation.
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ABSTRACT

Electronic Music (EM) is a popular family of genres which
has increasingly received attention as a research subject
in the field of MIR. A fundamental structural unit in EM
are loops—audio fragments whose length can span several
seconds. The devices commonly used to produce EM, such
as sequencers and digital audio workstations, impose a mu-
sical structure in which loops are repeatedly triggered and
overlaid. This particular structure allows new perspectives
on well-known MIR tasks. In this paper we first review a
prototypical production technique for EM from which we
derive a simplified model. We then use our model to illus-
trate approaches for the following task: given a set of loops
that were used to produce a track, decompose the track by
finding the points in time at which each loop was activated.
To this end, we repurpose established MIR techniques such
as fingerprinting and non-negative matrix factor deconvo-
lution.

1. INTRODUCTION

With the advent of affordable electronic music production
technology, various loop-based genres emerged: techno,
house, drum’n’bass and some forms of hip hop; this family
of genres is subsumed under the umbrella term Electronic
Music (EM). EM has garnered mainstream attention within
the past two decades and has recently become a popular
subject in MIR: standard tasks have been applied to EM
(structure analysis [17]); new tasks have been developed
(breakbeat analysis and resequencing [7, 8]); and special-
ized datasets have been compiled [9].

A central characteristic of EM that has not been exten-
sively considered is its sequencer-centric composition. As
noted by Collins [4], loops are an essential element of EM:
loops are short audio fragments that are “generally associ-
ated with a single instrumental sound” [3]. Figure 1 illus-
trates a simplified EM track structure similar to that en-
couraged by digital audio workstations (DAWs) such as
Ableton Live [1]. The track starts with the activation of

© Patricio López-Serrano, Christian Dittmar, Jonathan
Driedger, Meinard Müller. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Patricio
López-Serrano, Christian Dittmar, Jonathan Driedger, Meinard Müller.
“Towards Modeling and Decomposing Loop-Based Electronic Music”,
17th International Society for Music Information Retrieval Conference,
2016.

Figure 1. A condensed EM track built with three loop
layers: drums (D), melody (M) and bass (B). Each block
denotes the activation of the corresponding pattern during
the time it spans.

a drum loop (blue, bottom row). After one cycle, a melody
loop (yellow, middle row) is added, while the drum loop
continues to play. A third layer—the bass (red, top row)—
is activated in the third cycle. Over the course of the track,
these loops are activated and deactivated. An important
observation is that all appearances of a loop are identical;
a property that can be modeled and exploited in MIR tasks.
In particular, we consider the task of decomposing an EM
track: given the set of loops that were used to produce a
track and the final, downmixed version of the track itself,
we wish to retrieve the set of timepoints at which each loop
was activated.

This work offers three main contributions. First, we re-
view the production process of EM and how it leads to the
prototypical structure outlined previously (Section 2). Sec-
ond, we propose a simplified formal model that captures
these structural characteristics (Section 3). Third, we use
our model to approach the EM decomposition task from
two angles: first, we interpret it within a standard retrieval
scenario by using fingerprinting and diagonal matching
(Section 4). Our second approach is based on non-negative
matrix factor deconvolution (NMFD), a technique com-
monly used for audio source separation (Section 5). We
summarize our findings and discuss open issues in Sec-
tion 6.

2. STRUCTURE AND PRODUCTION PROCESS

Unlike other genres, EM is often produced by starting with
a single distinct musical pattern [19] (also called loop)
and then adding and subtracting further musical material
to shape the tension and listener’s expectation. An EM
track is built by combining layers (with potentially differ-
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ent lengths) in looping cyclical time—where the overall
form corresponds to the multitrack layout of sequencers
and digital audio workstations (DAWs) [4]. Figure 1 pro-
vides a simple example of such a track (total duration 56 s),
consisting of three layers or loops: drums (D), bass (B) and
melody (M), each with a duration of 8 s. We will be using
this track as a running example to clarify the points made
throughout this paper.

A common characteristic of EM tracks is their relative
sparseness or low timbral complexity during the intro and
outro—in other words, a single loop is active. This prac-
tice is rooted in two facts: Firstly, EM tracks are conceived
not as isolated units, but rather as part of a seamless mix
(performed by a DJ), where two or more tracks are over-
laid together. Thus, in what could be termed DJ-friendly
tracks [4], a single, clearly percussive element at the be-
ginning and end facilitates the task of beat matching [3]
and helps avoid unpleasantly dense transitions. We have
constructed our running example following this principle:
in Figure 1, the only active layer during the intro and outro
is the drum loop (bottom row, blue).

The second reason for having a single-layer intro is that
this section presents the track’s main elements, making the
listener aware of the sounds [3]. Once the listener has be-
come familiar with the main musical idea expressed in the
intro, more layers are progressively brought in to increase
the tension (also known as a buildup), culminating in what
Butler [3] designates as the track’s core: the “thicker mid-
dle sections” where all loop layers are simultaneously ac-
tive. This is reflected in Figure 1, where the melody is
brought in at 8 s and the bass at 16 s, overlapping with un-
interrupted drums. After the core has been reached, the
majority of layers are muted or removed—once again, to
create musical anticipation—in a section usually known
as break or breakdown (see the region between 24–32 s in
Figure 1, where only the melody is active). To release the
musical tension, previous loops are reintroduced after the
breakdown, (seconds 32–40, Figure 1) only to be gradually
removed again, arriving at the outro. In the following sec-
tions we will develop a model that captures these structural
characteristics and provides a foundation for analyzing EM
tracks.

3. SIMPLIFIED MODEL FOR EM

In Section 2 we illustrated the typical form of loop-based
electronic music. With this in mind, our goal is to analyze
an EM track’s structure. More specifically, our method
takes as input the set of loops or patterns that were used
to produce a track, as well as the final, downmixed version
of the track itself. From these, we wish to retrieve the set
of timepoints at which each loop was activated within the
track. We begin by formalizing the necessary input ele-
ments.

Let V ∈ RK×M be the feature representation of an
EM track, where K ∈ N is the feature dimensional-
ity and M ∈ N represents the number of elements or
frames along the time axis. We assume that the track
was constructed from a set of R patterns P r ∈ RK×T r

,

Figure 2. (Left): Tensor P with three patterns (drums,
bass, melody). (Right): Activation matrix H with three
rows; the colored cells denote an activation of the corre-
sponding pattern.

r ∈ [0 : R− 1] := {0, . . . , R−1}. The parameter T r ∈ N
is the number of feature frames or observations for pattern
P r. In practice, the patterns can have different lengths—
however, without loss of generality, we define their lengths
to be the same T := T 0 = . . . = TR−1, which could
be achieved by adequately zero-padding shorter patterns
until they reach the length of the longest. Based on this as-
sumption, the patterns can be grouped into a pattern tensor
P ∈ RK×R×T . In the case of our running example, seen
in Figure 1, T =̂ 8 s and the number of patterns is R = 3.
Consequently, the subdimension of the tensor which refers
to a specific pattern with index r is P r := P (·, r, ·) (i. e.,
the feature matrix for either (D), (M), or (B) in our ex-
ample); whereas Pt := P (·, ·, t) refers to frame index t
simultaneously in all patterns.

In order to construct the feature representation V from
the pattern tensor P , we require an activation matrix H ∈
BR×M with B := {0, 1}, such that

V =̂

T−1∑

t=0

Pt ·
t→
H , (1)

where
t→
(·) denotes a frame shift operator [18]. Figure 2 de-

picts P andH as constructed for our running example. The
model assumes that the sum of pattern signals and their
respective transformations to a feature representation are
linear, which may not always be the case. The additive
assumption of Eq. 1 implies that no time-varying and/or
non-linear effects were added to the mixture (such as com-
pression, distiortion, or filtering), which are often present
in real-world EM. Aside from this, we specify a number of
further constraints below.

The devices used to produce early EM imposed a se-
ries of technical constraints which we formalize here. Al-
though many of these constraints were subsequently elim-
inated in more modern equipment and DAWs, they have
been ingrained into the music’s aesthetic and remain in use
up to the present day.

Non-overlap constraint: A pattern is never superim-
posed with itself, i. e., the distance between two activations
of any given pattern is always equal to or greater than the
pattern’s length. Patterns are loaded into a device’s mem-
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Figure 3. (a): Log-frequency spectrogram for entire track.
(b): Matching curves computed using cosine similarity for
drums, melody, and bass (bottom to top). The dashed line
represents the curve’s global mean; the dash-dotted line
is the GT mean (see Section 4.4 for definition of gain).
Colored triangles indicate GT loop activation positions.

ory and triggered by a sequencer—usually without further
activation signals before it has played through to the end.
If a pattern P r is activated at time m ∈ [0 : M − 1], then
Hr(m) 6= 0⇒ Hr(m+ 1) = . . . = Hr(m+T − 1) = 0.
Length constraint: As noted by [4], multiple layers in EM
are complementary, creating aggregate effects and capable
of being independently inserted and removed. For this rea-
son, we make the simplifying assumption that T := T 0 =
T 1 = . . . = TR−1, i. e., that all patterns have the same
length.
T-grid constraint: Motivated by the use of centralized
MIDI clocks and the fixed amount of musical time avail-
able on prevalent devices such as drum machines (which
typically allow programming one musical measure at a
time, in 16 steps), we enforce a timing grid which restricts
the possible activation points in H . In Figure 1, patterns
are always introduced and removed at multiples of 8 s.
Amplitude constraint: We assume that a pattern is always
activated with the same intensity throughout a track, and
therefore each row r in the activation matrix H fulfills
Hr := H(r, ·) ∈ B1×M .

4. FINGERPRINT-BASED EM DECOMPOSITION

In the running example, multiple patterns are overlaid in
different configurations to form the track. If we know a
priori which patterns are included and wish to find their
respective activation positions, we need a technique capa-
ble of identifying an audio query within a database where
further musical material is superimposed. We first exam-
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Figure 4. (a): Log-frequency spectral peak map for the
entire track (black dots) and for each query (red dots en-
closed in red, from left to right: drums, melody, and bass).
(b): Matching curves computed with the Jaccard index and
each pattern as a query for drums, melody, and bass (bot-
tom to top).

ine log-frequency spectrograms and diagonal matching as
a baseline approach, and continue with audio fingerprint-
ing techniques based on spectral peaks in combination with
various similarity measures. In Section 5 we discuss an al-
ternative approach based on NMFD. The running example
is constructed with one audio file for each pattern and a
generic EM track arrangement seen in Figure 1. The com-
plete track is generated in the time domain by summing
the individual patterns that are active at a given point in
time. All audio files have been downmixed to mono with a
sampling rate Fs = 22050 Hz.

4.1 Diagonal Matching

We implement the diagonal matching procedure outlined
in [13, pp. 376–378] to measure the similarity between
each query pattern P r and the track feature matrix V .
In simple terms, to test if and where the query P r =
(P r

0 , . . . , P
r
T−1) is contained in V = (V0, . . . , VM−1), we

shift the sequence P r over the sequence V and locally
compare P r with suitable subsequences of V . In general,
let F be the feature space (for example, F = RK in the
case of log-frequency spectrograms). A similarity mea-
sure s : F × F → R ∩ [0, 1] between two feature frames
will yield a value of 1 if the query is identical to a certain
region of the database, and 0 if there is no resemblance at
all.
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4.2 Baseline Procedure

For each individual pattern, as well as the entire track, we
compute an STFT X with the following parameters: block
size N = 4096, hop size H = N/2 and a Hann win-
dow. From these, magnitude spectrograms (abbreviated as
MS) are computed and mapped to a logarithmically spaced
frequency axis with a lower cutoff frequency of 32 Hz, an
upper cutoff frequency of 8000 Hz and spectral selectiv-
ity of 36 bins per octave (abbreviated LS). Under these
STFT settings, the 36-bin spectral selectivity does not hold
in the two lowest octaves; however, their spectral peak
contribution is negligible. Preliminary experiments have
shown that this musically meaningful feature representa-
tion is beneficial for the matching procedure both in terms
of efficiency and accuracy. We begin with a baseline ex-
periment (Figure 3), using LS and cosine similarity:

Cosine : scos(u, v) := 1− 〈u|v〉
||u|| · ||v|| , u, v ∈ RK \ {0}.

(2)
Notice that the clearest peak is produced by the melody ac-
tivation at 24 s (Figure 3b, middle row), which occurs with-
out any other patterns being overlaid. The three remain-
ing activation points for the melody have a very low gain
relative to their neighboring values. The matching curve
for the drums (Figure 3b, bottom row) displays a coarse
downwards trend starting at 0 s and reaching a global min-
imum at 24 s (the point at which the drum pattern is not ac-
tivated in our example); this trend is reversed as the drums
are added again at 32 s. The internal repetitivity (or self-
similarity) of the drum pattern causes the periodic peaks
seen throughout the matching curve. Overall, it is evi-
dent from all three curves that the combination of LS with
cosine similarity is insufficient to capture the activations
when multiple patterns are superimposed—motivating our
next experimental configuration which uses spectral peak
maps.

4.3 Fingerprinting with Peak Maps

Although our scenario is slightly different to that of audio
fingerprinting and identification, both require a feature rep-
resentation which captures an individual pattern’s charac-
teristics despite the superposition of further sound sources.
To this end, we use spectral peak maps as described in [13].
Conceptually, we are following an early approach for loop
retrieval inside hip hop recordings which was presented
in [20] and later refined in [2]. Their method is based on a
modification of the fingerprinting procedure originally de-
scribed in [21].

For each time-frequency bin in the respective LS, a rect-
angular analysis window is constructed. The maximum
value within each window is kept (with the value 1 on the
output) and all neighbors are set to 0 on the output. In
Figure 4a we show the spectral peak map for the entire
track (black dots) and the query peak map for each query
pattern (red dots in red rectangles). These log-frequency
peak maps populate a pattern tensor P ∈ BK×R×T , where
K = 286. Thus P r corresponds to the peak map for the

Gain Pearson
µ σ µ σ

MS/cos 1.72 0.31 0.13 0.05
LS/cos 1.57 0.29 0.11 0.05

PLS/cos 19.46 10.45 0.52 0.18
PLS/inc 21.69 11.90 0.51 0.19
PLS/Jac 19.54 9.76 0.53 0.18

Table 1. Results for diagonal matching experiments
with magnitude spectrograms (MS), log-frequency spec-
trograms (LS), and log-frequency peak maps (PLS) us-
ing the cosine, inclusion and Jaccard similarity measures.
Each column shows the mean and variance for peak gain
and Pearson correlation.

rth pattern, while V corresponds to the entire track.
In addition to the cosine measure defined in Eq. 2, we

test different similarity measures s:

Jaccard : sJac(u, v) := 1− ||u ∧ v||
||u ∨ v|| , u, v ∈ BK , (3)

Inclusion : sinc(u, v) := 1− ||u ∧ v||
||u|| , u, v ∈ BK , (4)

where we set 0
0 := 1. The inclusion metric aims to quantify

the extent to which the query is contained or included in the
database and has a similar definition to the Jaccard index.

4.4 Evaluation

We use two measures to quantify how well the matching
curves capture the pattern activations. For the first mea-
sure, termed gain, we compute the average of the activa-
tion values at the ground truth (GT) activation points: in
Figures 3b and 4b, these locations are marked by colored
triangles, corresponding to each loop in the running exam-
ple; their mean value is shown as a dash-dotted line. We
also compute the mean value for the entire curve (dashed
line) and use the ratio between these two means in order to
assess the quality of the matching curve. Ideally, the curve
assumes large values at the GT activation points and small
values elsewhere, resulting in a larger gain. As a second
measure we take the Pearson correlation between a com-
puted matching curve and its corresponding row Hr in the
GT activation matrix, where the activation points have a
value of 1, and 0 elsewhere. Again, a high Pearson corre-
lation reflects high matching curve quality.

We generated a set of patterns used to build proto-
typical EM tracks. To foster reproducible research, we
produced them ourselves, avoiding potential copyright
issues—they are available under a Creative Commons
Attribution-ShareAlike 4.0 International license and can
be obtained at the companion website 1 . We chose seven
prominent EM subgenres such as big beat, garage and
drum’n’bass (in a tempo range between 120–160 BPM).
For each subgenre, we generated four patterns in the cate-
gories of drums, bass, melody and additional effects.

1 https://www.audiolabs-erlangen.de/resources/
MIR/2016-ISMIR-EMLoop

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 505



Time (s) 

N
M

FD
 a

ct
iv

at
io

n 
ga

in
 

Figure 5. Activation curves learned by NMFD applied to
the magnitude spectrogram of the running example. The
dashed lines represent the mean value for the complete
curve, but are very close to the x-axis.

As stated by Wang [21], spectral peak maps are robust
to superposition of multiple sources; a fact which becomes
clear when comparing Figures 3b and 4b. In Figure 4b,
the peak gain has greatly increased compared to the base-
line approach with LS. In Table 1 we list the mean peak
gain and Pearson correlation for all seven tracks, along
with standard deviations for each value. The first two rows,
MS/cos and LS/cos, correspond to the baseline approach—
the last three rows summarize the experiments with spec-
tral peak maps. Note that spectral peak maps have approx-
imately ten times the peak gain of MS/LS, whereas the
Pearson correlation increases by a factor of four. Figures 3
and 4 illustrate the results in Table 1 at an intuitive level.
With MS, the spectral content shared among different types
of patterns impedes distinct peaks from emerging. By dis-
carding this irrelevant information, LS better represent the
characteristics of each pattern. From the perspective of
peak quality, only the self-similarity of the drum pattern
continues to pose a challenge.

5. NMFD-BASED EM DECOMPOSITION

By design, our model for EM is very close to the formula-
tion of NMFD; in this section we explore the performance
of NMFD and compare it with our fingerprinting methods.

5.1 Related Work

In this section, we briefly review the NMFD method that
we employ for decomposing the feature representation V .
Weiss and Bello [22] used non-negative matrix factoriza-
tion (NMF) to identify repeating patterns in music. By
adding sparsity constraints and shift-invariant probabilis-
tic latent component analysis (SI-PLCA), they automati-
cally identify the number of patterns and their lengths—
applied to beat-synchronous chromagrams in popular mu-
sic. Masuda et al. [12] propose a query-by-audio system
based on NMF to identify the locations where a query mu-

sical phrase is present in a musical piece. Among more
general techniques for investigating alleged music plagia-
rism, Dittmar et al. [5] proposed a method for retrieval of
sampling. Their approach, based on NMF, was not sup-
plemented with systematic evaluation, but was further in-
vestigated in [23]. Previous works [6, 11, 16, 18] success-
fully applied NMFD—a convolutive version of NMF—for
drum transcription and separation. Hockman et al. [7, 8]
specifically focused on analyzing breakbeats, i. e., drum-
only loops as used in hip hop and drum’n’bass . Detecting
sample occurrences throughout a track is a secondary as-
pect, as they address the more challenging scenario of esti-
mating the loop resequencing [8]. All these previous works
have in common that they attempt to retrieve one loop in-
side a song, whereas we pursue a more holistic approach
that allows to deconstruct the whole track into loops.

5.2 NMFD Model

Our objective is to decompose V into component mag-
nitude spectrograms that correspond to the distinct musi-
cal elements. Conventional NMF can be used to com-
pute a factorization V ≈ W · H, where the columns of
W ∈ RK×R

≥0 represent spectral basis functions (also called
templates) and the rows of H ∈ RR×M

≥0 contain time-
varying gains (also called activations). The rank R ∈ N of
the approximation (i. e., number of components) is an im-
portant but generally unknown parameter. NMFD extends
NMF to the convolutive case by using two-dimensional
templates so that each of the R spectral bases can be in-
terpreted as a magnitude spectrogram snippet consisting of
T � M spectral frames. The convolutive spectrogram
approximation V ≈ Λ is modeled as

Λ :=
T−1∑

t=0

Wt ·
t→
H , (5)

where
t→
(·) denotes a frame shift operator (see also Eq. 1).

As before, each column in Wt ∈ RK×R
≥0 represents the

spectral basis of a particular component, but this time
we have T different versions Wt, with t ∈ [0 : T − 1]
available. If we take lateral slices along the columns of
Wt, we can obtain R prototype magnitude spectrograms
Ur ∈ RK×T

≥0 . NMFD typically starts with a suitable ini-
tialization (with random values or constant values) of ma-
trices W

(0)
t and H(0). These matrices are iteratively up-

dated to minimize a suitable distance measure between the
convolutive approximation Λ and V. In this work, we use
the update rules detailed in [18], which extend the well-
known update rules for minimizing the Kullback-Leibler
Divergence (KLD) [10] to the convolutive case.

5.3 Evaluation

For our experiments with NMFD we used MS and LS to
conduct the procedure in two variants. For the first variant
(referred to as R in Table 2), the only a priori informa-
tion used is the number of patterns (or templates) R and
their length T . The templates are initialized randomly and
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Gain Pearson
µ σ µ σ

NMFD@MS, R 55.20 29.80 0.65 0.25
NMFD@MS, RP 89.62 39.67 0.88 0.11
NMFD@LS, R 52.39 35.95 0.64 0.22
NMFD@LS, RP 79.59 34.99 0.87 0.12

Table 2. Results for NMFD with magnitude spectrograms
(MS) and log-frequency spectrograms (LS), initializing the
number of templates (R) and also the loop templates (RP).
Each column shows the mean and variance for peak gain
and Pearson correlation.

fifty iterative updates are used to minimize the KLD. To
account for the effects of random initialization, we carry
out ten initialization passes per track. The results in Ta-
ble 2 reflect the mean and standard deviation across all
passes. For the second variant (RP), we supply the pat-
tern templates themselves at initialization (i. e., R, T and
P are known). We also disallow template updates and only
allow activation updates. Since the templates in variant
R are initialized randomly, there is no direct relationship
between the learned activation curves and the correspond-
ing ground truth curves. We deal with this permutation in-
determinacy by comparing all computed activation curves
with all ground truth curves and taking the results which
maximize the overall score. For all configurations in Ta-
ble 2, we observe a peak gain at least twice as high as
that obtained through diagonal matching; the Pearson cor-
relation increases by a factor of 1.2–1.7, depending on the
NMFD configuration taken for comparison. Focusing on
the differences among NMFD configurations, RP brings
peak gain improvements by a factor slightly greater than
1.5; the Pearson correlation increases by about 1.35. The
feature choice (MS or LS) does not play a significant role
in result quality. Due to the amount of prior knowledge
used to initialize the RP configuration, we consider it as an
upper bound for less informed approaches.

6. CONCLUSIONS AND FUTURE WORK

In the preceding sections we developed a better under-
standing of the feature representations and matching tech-
niques that are commonly used for pattern activation dis-
covery. In this section, we reflect on some of the limita-
tions of our work, further research topics, and computa-
tional performance issues.

Clearly, our work only provides a baseline for further
work towards more realistic scenarios. As to our model’s
inherent shortcomings, real-world EM tracks usually con-
tain more than four individual patterns, which are rarely
available. Moreover, activations of a given pattern are of-
ten (spectrally) different from one another due to the use
of effects such as delay and reverb, filter sweeps or re-
sequencing. Thus, we consider this study as a stepping
stone towards a fully-developed pipeline for EM structure
analysis and decomposition. One potential research direc-
tion would be the automatic identification of suitable pat-
tern candidates. A repetition-based analysis technique as

Method Time (s)

PLS 0.2
NMFD@LS,(R/RP) 2.5
NMFD@MS,(R/RP) 36.0

Table 3. Computation times for diagonal matching with
log-spectral peak maps (PLS), NMFD with magnitude
spectrograms (MS), and NMFD with log-frequency spec-
trograms (LS). The choice of initialization R or RP for
NMFD does not impact execution time.

described in [14] could be used in conjunction with spec-
tral peak maps to compute self-similarity matrices (SSMs)
that saliently encode inclusion relationships. Furthermore,
semi-informed variants of NMFD might be helpful in dis-
covering additional patterns that are not explicitly given,
where the use of rhythmic structure can serve as prior
knowledge to initialize the activations. Although diago-
nal matching curves can be computed efficiently with a
straightforward implementation, we have seen they have
certain shortcomings; we wish to investigate the feasi-
bility of using them as rough initial guesses and leaving
the refinement up to NMFD. Beyond each method’s ca-
pabilities, as seen in Tables 1 and 2, there is also the is-
sue of their running time and memory requirements. For
the running example, we tested our MATLAB implementa-
tion on a 3.2 GHz Intel Core i5 CPU with 16 GB RAM,
yielding the mean execution times in Table 3. From Ta-
bles 3 and 2 we can conclude that NMFD@LS offers
the best balance between quality and resource intensity.
NMFD@MS takes approximately 14 times longer to com-
pute than NMFD@LS and only produces marginally bet-
ter results. Indeed, recall that the feature dimensionality
K = 286 for LS and K = 2049 for MS, which explains
the large difference in execution times.

As a final remark, musical structure analysis is an ill-
defined problem, primarily because of ambiguity; a seg-
mentation may be based on different principles (homo-
geneity, repetition, novelty) that can conflict with each
other [15]. The main advantage of our method is that we
avoid the philosophical issue of how a track’s structure is
perceived, and rather attempt to determine how it was pro-
duced—a univocal problem. It can then be argued that the
listeners’ perception is influenced by the cues inherent to
EM’s compositional style.
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ABSTRACT

Digitizing early music sources requires new ways of deal-
ing with musical documents. Assuming that current tech-
nologies cannot guarantee a perfect automatic transcrip-
tion, our intention is to develop an interactive system in
which user and software collaborate to complete the task.
Since conventional score post-editing might be tedious, the
user is allowed to interact using an electronic pen. Al-
though this provides a more ergonomic interface, this in-
teraction must be decoded as well. In our framework, the
user traces the symbols using the electronic pen over a
digital surface, which provides both the underlying image
(offline data) and the drawing made by the e-pen (online
data) to improve classification. Applying this methodol-
ogy over 70 scores of the target musical archive, a dataset
of 10 230 bimodal samples of 30 different symbols was
obtained and made available for research purposes. This
paper presents experimental results on classification over
this dataset, in which symbols are recognized by combin-
ing the two modalities. This combination of modes has
demonstrated its good performance, decreasing the error
rate of using each modality separately and achieving an al-
most error-free performance.

1. INTRODUCTION

Music constitutes one of the main tools for cultural trans-
mission. That is why musical documents have been pre-
served over the centuries, scattered through cathedrals,
museums, or historical archives. In an effort to prevent
their deterioration, access to these sources is not always
possible. This implies that an important part of this histor-
ical heritage remains inaccessible for musicological study.
Occasionally, these documents are transcribed to a digi-
tal format for easier access, distribution and study, without
compromising their integrity.

On the other hand, it is important to point out that the
massive digitization of music documents also opens seve-

c© Jorge Calvo-Zaragoza, David Rizo, Jose M. Iñesta. Li-
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(CC BY 4.0). Attribution: Jorge Calvo-Zaragoza, David Rizo, Jose
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interaction with music scores”, 17th International Society for Music In-
formation Retrieval Conference, 2016.

ral opportunities to apply Music Information Retrieval al-
gorithms, which may be of great interest. Since the manual
transcription of these sources is a long, tedious task, the de-
velopment of automatic transcription systems for early mu-
sic documents is gaining importance in the last few years.

Optical Music Recognition (OMR) is a field devoted to
providing computers the ability to extract the musical con-
tent of a score from the optical scanning of its source. The
output of an OMR system is the music score encoded in
some structured digital format such as MusicXML, MIDI
or MEI. Typically, the transcription of early music docu-
ments is treated differently with respect to conventional
OMR methods due to specific features (for instance, the
different notation or the quality of the document). Al-
though there exist several works focused on early music
documents transcription [9,10], the specificity of each type
of notation or writing makes it difficult to generalize these
developments. This is especially detrimental to the evo-
lution of the field because it is necessary to implement
new processing techniques for each type of archive. Even
worse, new labelled data are also needed to develop tech-
niques for automatic recognition, which might imply a sig-
nificant cost.

Notwithstanding the efforts devoted to improving these
systems, their performance is far from being optimal [12].
In fact, assuming that a totally accurate automatic tran-
scription is not possible, and might never be, user-centred
recognition is becoming an emergent framework. Instead
of a fully-automatized process, computer-aided systems
are being considered, with which the user collaborates ac-
tively to complete the recognition task [16].

The goal of this kind of systems is to facilitate the task
for the user, since it is considered the most valuable re-
source [2]. In the case of the transcription of early mu-
sic documents, the potential user is the expert musicologist
who understands the meaning of any nuance that appears
in the score. However, very often these users find the use
of a pen more natural and comfortable than keyboard entry
or drag-and-drop actions with the mouse. Using a tablet
device and e-pen, it is possible to develop an ergonomic
interface to receive feedback from users’ drawings. This
is specially true for score post-edition where the user, in-
stead of sequentially inputting symbols has to correct some
of them, and for that, direct manipulation is the preferred
interaction style.
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Such an interface could be used to amend errors made
by the system in a simpler way for the user, as has been
proposed for automatic text recognition [1]. However,
there are studies showing that, when the task is too com-
plex, users prefer to complete the task by themselves
because the human-machine interaction is not friendly
enough [14]. Therefore, this interface could also be used
to develop a manual transcription system that would be
more convenient and intuitive than conventional score ed-
itors. Moreover, this transcription system might be useful
in early stages of an OMR development, as it could be used
to acquire training data more efficiently and ergonomically,
which is specially interesting for old music notations.

Unfortunately, although the user is provided with a
more friendly interface to interact with the system, the
feedback input is not deterministic this way. Unlike the
keyboard or mouse entry, for which it is clear what the
user is inputting, the pen-based interaction has to be de-
coded and this process might have errors.

For all the reasons above, this article presents our re-
search on the capabilities of musical notation recognition
with a system whose input is a pen-based interface. To
this end, we shall assume a framework in which the user
traces symbols on the score, regardless of the purpose of
this interaction (OMR error correction, digitizing the con-
tent, acquire labelled data, etc.). As a result, the system
receives a multimodal signal: on one hand, the sequence
of points that indicates the path followed by the e-pen on
the digital surface —usually referred to as online modal-
ity; on the other hand, the piece of image below the drawn,
which contains the original traced symbol —offline mode.
One of the main hypothesis of this study is that the combi-
nation of both modalities leads to better results than using
just either the pen data or the symbol image.

The rest of the paper is structured as follows: Section 2
introduces the corpora collected and utilized, which com-
prises data of Spanish early music written in White Men-
sural notation; Section 3 describes a multimodal classi-
fier that exploits both offline and online data; Section 4
presents the results obtained with such classifier; and Sec-
tion 5 concludes the present work.

2. MULTIMODAL DATA COLLECTION

This work is a first seed of a case study to digitize a his-
torical musical archive of early Spanish music. The final
objective of the whole project is to encode the musical con-
tent of a huge archive of manuscripts dated between 16th
and 18th centuries, handwritten in mensural notation, in
the variant of the Spanish notation at that time [5]. A short
sample of a piece from this kind of document is illustrated
in Figure 1.

This section describes the process developed to collect
multimodal data of isolated musical symbol from images
of scores. A massive collection of data will allow us to
develop a more effective classification system and to go
deeper into the analysis of this kind of interaction. Let
us note that the important point in our interactive system
is to better understand user actions. While a machine is

Figure 1. Example of page of a music book writ-
ten in handwritten white mensural notation from Spanish
manuscripts of centuries 16th to 18th.

assumed to make some mistakes, it is unacceptable to force
the user to draw the same symbol of score many times. To
this end, our intention is to exploit both offline data (image)
and online data (e-pen user tracing) received.

Our idea is to simulate the same scenario of a real appli-
cation. Therefore, we loaded the images of the scores on
a digital surface to make users trace the symbols using the
electronic pen. The natural symbol isolation of this kind
of input is the set of strokes —data collected between pen-
down and pen-up actions. To allow tracing symbols with
several strokes, a fixed elapsed time is used to detect when
a symbol has been completed. If a new stroke starts be-
fore this time lapse, it is considered to belong to the same
symbol than the previous one.

Once online data is collected and manually grouped into
symbol classes, the offline data is also extracted from this
information. A bounding box is obtained from each group
of strokes belonging to the same symbol, storing the maxi-
mum and minimum values of each coordinate (plus a small
margin) among all the trace points collected. This bound-
ing box indicates where the traced symbol can be found in
the image. Therefore, with the sole effort of the tracing
process, both online and offline data are collected. Note
that the extraction of the offline data is driven by the tracing
process, instead of deciding at every moment the bounds of
each symbol.

Figure 2 illustrates the process explained above for a
single symbol. Although the online data is drawn in this
example, the actual information stored is the sequence of
2D points in the same order they were collected, indicating
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(a) Tracing process

(b) Offline data (c) Online data

Figure 2. Example of extraction of a minima. Above, the
sequence of points collected by the e-pen. The box repre-
sents the bounding box of the sequence. Below, the multi-
modal data extracted from the same sample.

the path followed by the e-pen.
Following this approach, several advantages are found:

the final effort of collecting multimodal data is halved,
since the online data collection simultaneously provides
the offline data collection; the collected data mimics the
scenario that might be found in the final application, when
the user interacts with the machine; and the process be-
comes more user-friendly, which usually leads to a lower
number of errors.

The collection was extracted by five different users from
70 different musical scores of different styles from the
Spanish white mensural notation of 16th-18th centuries.
The Samsung Galaxy Note Pro 12.2 device (247 ppi res-
olution) was used and symbols were written by means of
the stylus S-Pen. All the score images used are in the same
scale, in which staff lines spacing is about 24 DP. 1 Due to
the irregular conditions of the documents, this value is ap-
proximate but it can be used for normalizing with respect
to other scores.

The obtained dataset consists of 10230 samples, each
of which contains both a piece of image and the strokes
followed during its tracing. These samples are spread over
30 classes. Table 1 lists the set of labels, including a ty-
pographic example and the number of samples per each.
The number of symbols of each class is not balanced but it
depicts the same distribution found in the documents.

Every symbol that must be differentiated for preser-
vation purposes was considered as a different class. For

1 DP stands for device independent pixels in (Android) mobile appli-
cation development

Label Image Count

barline 46

brevis 210

coloured brevis 28

brevis rest 171

c-clef 169

common time 29

cut time 56

dot 817

double barline 73

custos 285

f-clef 1 52

f-clef 2 43

fermata 75

flat 274

g-clef 174

beam 85

longa 30

longa rest 211

minima 2695

coloured minima 1578

minima rest 427

proportio minor 28

semibrevis 1109

coloured semibrevis 262

semibrevis rest 246

semiminima 328

coloured semiminima 403

semiminima rest 131

sharp 170

proportio maior 25

Table 1. Details of the dataset obtained through the tracing
process over 70 scores (images from ‘Capitán’ font).
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instance, there are two f-clef types because the graphical
symbol is quite different despite having the same musical
meaning. However, the orientation of the symbols does not
make a different class since the same graphical representa-
tion with a vertical inversion can be found. In the case it
was needed, the orientation could be obtained through an
easy post-processing step.

We are making the dataset freely available at
http://grfia.dlsi.ua.es/, where more informa-
tion about the acquisition and representation of the data is
detailed.

3. MULTIMODAL CLASSIFICATION

This section provides a classification experiment over the
data described previously. Two independent classifiers are
proposed that exploit each of the modalities presented by
the data. Eventually, a late-fusion classifier that combines
the two previous ones will be considered.

Taking into account the features of our case of study,
an instance-based classifier was considered. Specifically,
the Nearest Neighbour (NN) rule was used, as it is one of
the most common and effective algorithms of this kind [3].
The choice is justified by the fact that it is specially suitable
for interactive scenarios like the one found in our task: it
is naturally adaptive, as the simple addition of new pro-
totypes to the training set is sufficient (no retraining is
needed) for incremental learning from user feedback. The
size of the dataset can be controlled by distance-based data
reduction algorithms [7] and its computation time can be
improved by using fast similarity search techniques [17].

Decisions given by NN classifiers can be mapped onto
probabilities, which are needed for the late fusion classi-
fiers. Let X be the input space, in which a pairwise dis-
tance d : X × X → R is defined. Let Y be the set of
labels considered in the classification task. Finally, let T
denote the training set of labelled samples {(xi, yi) : xi ∈
X , yi ∈ Y}|T |

i=1.
Let us now assume that we want to know the posterior

probability of each class y ∈ Y for the input point x ∈ X
(P (y|x)) following the NN rule. A common estimation
makes use of the following equations [4]:

p(y|x) = 1

min(x′,y′)∈T :y′=y d(x, x′) + ε
(1)

P (y|x) = p(y|x)∑
y′∈Y p(y

′|x) , (2)

where ε is a negligible value used to avoid infinity calcula-
tions. That is, the probability of each class is defined as the
inverse of the distance to the nearest sample of that class in
the training set. Note that the second term is used to ensure
that the sum over the probability of each class is 1. Finally,
the decision ŷ of the classifier for an input x is given by a
maximum a posteriori criterion:

ŷ = argmax
y

P (y|x) (3)

Figure 3. Offline modality of a cut time symbol for clas-
sification: feature vector containing the greyscale value of
each position of the rescaled image.

Figure 4. Online modality of a cut time symbol for clas-
sification: sequence of coordinates indicating the path fol-
lowed by the e-pen during the tracing process.

3.1 Offline classifier

The offline classifier takes the image of a symbol as input.
To simplify the data, the images are converted to greyscale.
Then, since they can be of different sizes, a fixed resizing
process is performed, in the same way that can be found in
other works, like that of Rebelo et al. [11]. At the end, each
image is represented by an integer-valued feature vector of
equal length that stores the greyscale value of each pixel
(see Figure 3). Over this data, Euclidean distance can be
used for the NN classifier. A preliminary experimentation
fixed the size of the images to 30 × 30 (900 features), al-
though the values within the configurations considered did
not vary considerably.

3.2 Online classifier

In the online modality, the input is a series of 2D points
that indicates the path followed by the pen (see Figure 4).
It takes advantage of the local information, expecting that
a particular symbol follows similar paths. The information
contained in this modality provides a new perspective on
the recognition and it does not overlap with the nature of
the offline recognition.

The digital surface collects the strokes at a fixed sam-
pling rate so that each one may contain a variable number
of points. However, several distance functions can be ap-
plied to this kind of data. Those considered in this work
are the following:

• Dynamic Time Warping (DTW) [15]: a technique
for measuring the dissimilarity between two time
signals which may be of different duration.

• Edit Distance with Freeman Chain Code (FCC): the
sequence of points representing a stroke is converted
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Figure 5. Average results with respect to the weight (α)
given to each modality for the configurations considered,
from offline (α = 0) to online (α = 1).

into a string using a codification based on Freeman
Chain Code [6]. Then, a Edit Distance [8] can be
applied to measure distance.

• Edit Distance for Ordered Set of Points (OSP) [13]:
an extension of the Edit Distance for its use over or-
dered sequences of points, such those collected by
the e-pen.

3.3 Late-fusion classifier

A straightforward late fusion has been used here. The idea
is to combine linearly the decisions taken by the two base
classifiers. That is, probabilities of individual classifiers
are combined by a weighted average:

Pfusion(y|x) = α · Pon(y|x) + (1− α) · Poff(y|x) (4)

where Poff and Pon denote the probabilities obtained by
offline and online classifiers, respectively. A parameter
α ∈ [0, 1] is established to tune the relevance given to each
modality. We will consider several values of α ranging
from 0 to 1 during experimentation.

4. EXPERIMENTATION

Experimentation followed a 10-fold cross-validation
scheme. The independent folds were randomly created
with the sole constraint of having the same number of sam-
ples per class (where possible) in each of them. All the dis-
similarities described in Section 3 for the online classifier
will be tested.

Table 2 illustrates the error rate (%) achieved with re-
spect to α for this experiment. Note that α = 0 column
yields the results of the offline classifier as well as α = 1
is equal to the online classifier. A summary of the average
results is also illustrated in Figure 5.

An initial remark to begin with is that the worst re-
sults of the late-fusion classifiers are achieved when each is
modality is used separately, with an average error of 11.77
for the offline modality and of 11.35, 9.38 and 5.26 for
DTW, FCC and OSP, respectively. Not surprisingly, best
results are those that combine both natures of the data, sat-
isfying the hypothesis that two signals are better than one.

α DTW FCC OSP

0.0 11.8 ± 1.5 11.8 ± 1.5 11.8 ± 1.5

0.1 5.3 ± 0.4 5.5 ± 1.1 4.9 ± 0.7

0.2 4.7 ± 0.4 4.1 ± 1.0 3.0 ± 0.2

0.3 5.4 ± 0.4 3.9 ± 0.8 2.2 ± 0.4

0.4 6.4 ± 0.3 4.1 ± 0.7 2.0 ± 0.4
0.5 7.4 ± 0.5 4.6 ± 0.7 2.2 ± 0.5

0.6 8.2 ± 0.6 5.2 ± 0.9 2.5 ± 0.5

0.7 9.1 ± 0.5 5.9 ± 1.0 3.0 ± 0.6

0.8 9.8 ± 0.5 6.6 ± 0.9 3.4 ± 0.6

0.9 10.5 ± 0.8 7.3 ± 0.9 4.2 ± 0.5

1.0 11.3 ± 0.8 9.3 ± 0.7 5.2 ± 0.5

Table 2. Error rate (average ± std. deviation) obtained for
a 10-fold cross validation experiment with respect to the
value used for tuning the weight given to each modality
(α) and the distances for the online modality (DTW, FCC
and OSP). Bold values represent the best average result for
each configuration considered.

Results also report that the tuning of α is indeed relevant
since it makes the error vary noticeably. An interesting
point to mention is that, although the online modality is
more accurate than the offline one by itself, the best tuning
in each configuration always gives more importance to the
latter. This might be caused by the lower variability in the
writing style of the original scribes.

The best results, on average, are reported by the late-
fusion classifier considering OSP distance for the online
modality, with an α = 0.4. In such case, just 2 % of error
rate is obtained, which means that the interaction is well
understood by the system in most of the cases. Note that a
more comprehensive search of the best αmay lead to a bet-
ter performance —for instance, in the range (0.3, 0.5)—
but the improvement is not expected to be significant.

Although the results report a fair accuracy, the use of
semantic music models is expected to avoid some of these
mistakes by using contextual information. Therefore, a
nearly optimal performance could be obtained during the
interaction with the user.

5. CONCLUSIONS

This paper presents a new approach to interact with musi-
cal documents, based on the use of an electronic pen. Our
framework assumes that the user traces each musical sym-
bol of the score, and the system receives a multimodal in-
put accordingly: the sequence of coordinates indicating the
trajectory of the e-pen (online mode) and the underlying
image of the score itself (offline mode).

An interface based on this idea could be used in a num-
ber of contexts related to interact with music scores in a
more intuitive way for the user. For instance, to amend
OMR errors, to acquire training data in the early stages of
the development, or even as a part of a complete manual

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 513



transcription system.
This framework has been applied to a music archive of

Spanish music from the 16th to 18th centuries, handwrit-
ten in white mensural, with the objective of obtaining data
for our experiments. The result of processing this collec-
tion has been described and made available for research
purposes.

Experimentation with this dataset is presented, conside-
ring several classifiers. The overall analysis of this experi-
ments is that it is worth to consider both modalities in the
classification process, as accuracy is noticeably improved
with a combination of them than that achieved by each se-
parately.

As a future line of work, the reported analysis will be
used to build a whole computer-aided system, in which the
user interacts with the system by means of an electronic
pen to digitize music content. Since the late-fusion classi-
fier is close to its optimal performance, it seems to be more
interesting to consider the development of semantic mod-
els that can amend misclassifications by using contextual
information (e.g., a score starts with a clef). In addition,
further effort is to be devoted to visualization and user in-
terfaces.
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for ordered vector sets: A case of study. In Struc-
tural, Syntactic, and Statistical Pattern Recognition,
volume 4109 of Lecture Notes in Computer Science,
pages 200–207. Springer Berlin Heidelberg, 2006.

[14] V. Romero and J. Andreu Sanchez. Human Evalua-
tion of the Transcription Process of a Marriage License
Book. In 12th International Conference on Document
Analysis and Recognition (ICDAR), pages 1255–1259,
Aug 2013.

[15] Hiroaki Sakoe and Seibi Chiba. Readings in Speech
Recognition. In Alex Waibel and Kai-Fu Lee, edi-
tors, Readings in Speech Recognition, chapter Dy-
namic Programming Algorithm Optimization for Spo-
ken Word Recognition, pages 159–165. Morgan Kauf-
mann Publishers Inc., San Francisco, CA, USA, 1990.

[16] Alejandro Hector Toselli, Verónica Romero, Moisés
Pastor, and Enrique Vidal. Multimodal interactive
transcription of text images. Pattern Recognition,
43(5):1814–1825, 2010.

[17] Pavel Zezula, Giuseppe Amato, Vlastislav Dohnal, and
Michal Batko. Similarity Search - The Metric Space
Approach, volume 32 of Advances in Database Sys-
tems. Kluwer, 2006.

514 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



 

 

 

 

Oral Session 4
 

Musicologies 

   





ANALYZING MEASURE ANNOTATIONS FOR WESTERN CLASSICAL
MUSIC RECORDINGS

Christof Weiß1 Vlora Arifi-Müller1 Thomas Prätzlich1

Rainer Kleinertz2 Meinard Müller1
1 International Audio Laboratories Erlangen, Germany

2 Institut für Musikwissenschaft, Saarland University, Germany
{christof.weiss, meinard.mueller}@audiolabs-erlangen.de

ABSTRACT

This paper approaches the problem of annotating measure
positions in Western classical music recordings. Such an-
notations can be useful for navigation, segmentation, and
cross-version analysis of music in different types of rep-
resentations. In a case study based on Wagner’s opera
“Die Walküre”, we analyze two types of annotations. First,
we report on an experiment where several human listeners
generated annotations in a manual fashion. Second, we
examine computer-generated annotations which were ob-
tained by using score-to-audio alignment techniques. As
one main contribution of this paper, we discuss the incon-
sistencies of the different annotations and study possible
musical reasons for deviations. As another contribution,
we propose a kernel-based method for automatically es-
timating confidences of the computed annotations which
may serve as a first step towards improving the quality of
this automatic method.

1. INTRODUCTION

Archives of Western classical music often comprise doc-
uments of various types and formats including text, sym-
bolic data, audio, image, and video. Dealing with an opera,
for example, one may have different versions of musical
scores, libretti, and audio recordings. When exploring and
analyzing the various kinds of information sources, the es-
tablishment of semantic relationships across the different
music representations becomes an important issue. For
a recorded performance, time positions are typically in-
dicated in terms of physical units such as seconds. On
the other hand, the musical score typically specifies time
positions using musical units such as measures. Know-
ing the measure positions in a given music recording not
only simplifies access and navigation [15, 19] but also al-
lows for transferring annotations from the sheet music to
the audio domain (and vice versa) [16]. Furthermore, a

c© Christof Weiß, Vlora Arifi-Müller, Thomas Prätzlich,
Rainer Kleinertz, Meinard Müller. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Christof Weiß, Vlora Arifi-Müller, Thomas Prätzlich, Rainer Kleinertz,
Meinard Müller. “Analyzing Measure Annotations for Western Classi-
cal Music Recordings”, 17th International Society for Music Information
Retrieval Conference, 2016.

Figure 1. Two measure annotations for a Karajan perfor-
mance of Wagner’s opera “Die Walküre”, first act, mea-
sures 1–3. (a) Piano reduction of the score. (b) Annotation
A1. (c) Annotation A2. (d) Deviation of A1 from A2.

measure-based alignment of several performances enables
cross-performance analysis tasks [12, 13].

In this paper, we report on a case study based on the
opera cycle “Der Ring des Nibelungen” WWV 86 by
Richard Wagner where we consider the first act of the sec-
ond opera “Die Walküre” (The Valkyrie). For this chal-
lenging scenario, we examine different types of measure
annotations—either supplied by human annotators (man-
ual annotations) or generated automatically using synchro-
nization techniques (computed annotations). Figure 1 il-
lustrates this scenario. Surprisingly, even the manual an-
notations (not to speak of the annotations obtained by au-
tomated methods) often deviate significantly from each
other. As one contribution, we analyze such inconsisten-
cies and discuss their implications for subsequent music
analysis tasks. After describing the dataset and the anno-
tation process (Section 2), we first analyze the properties
of manual annotations stemming from different human an-
notators (Section 3). Subsequently, we evaluate computer-
generated annotations that are derived from score-to-audio
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synchronization results (Section 4). Hereby, we examine
correlations between inter-human inconsistencies and er-
rors of the automated approach and identify musical rea-
sons for the deviations. Finally, we propose a method
to derive confidence values for the computed annotations
from the synchronization procedure (Section 5).

2. DATA AND ANNOTATIONS

2.1 Music Scenario

Wagner’s four-opera cycle “Der Ring des Nibelungen”
WWV 86 is an exceptionally long work of about 14–
15 hours duration. Because of its large scale and com-
plex structure, it constitutes a challenging scenario for
computer-assisted analysis methods [16]. In this paper,
we consider the first act of “Die Walküre” WWV 86 B for
a first case study. For analyzing such music, several is-
sues are relevant. Work-related aspects such as motifs, in-
strumentation, chords, or coarse-scale harmonic structures
as well as performance-related phenomena such as tempo,
timbre, or loudness play a role. Furthermore, the relation
between such aspects and the libretto may be of interest.

For their analyses, musicologists traditionally use the mu-
sical score which corresponds to the musical idea of the
composer. Scores or piano reductions provide a compact
overview of the musical content and are particularly suit-
able for harmony analysis. For performance-related as-
pects of the music, we need to analyze audio recordings.
For this paper, we consider both types of data. Regarding
symbolic data, we use a piano-reduced version of the score
by Kleinmichel. 1 The sheet music is processed with OMR
software (AvidTM PhotoScore) followed by manual correc-
tion using notation software. This piano-reduced score
constitutes a kind of “harmonic excerpt” of the music.
From the notation software, we export symbolic data types
such as MIDI or MusicXML. For the audio domain, we
consider an interpretation by Karajan with the Berlin Phil-
harmonic (1966 Deutsche Grammophon, Berlin). 2 The
duration of the first act in this recording is 67 minutes.

The types of music representations differ in the way how
time and tempo are encoded. Audio recordings have a
physical time axis usually given in seconds. In contrast,
scores exhibit a musical time axis given in measures or
beats. The physical length of a musical unit—such as a
measure—depends on the tempo and the time signature. In
operas, both tempo and time signature change frequently.
To establish relations between the representations, we need
to interconnect their time axes. One way to do this is to
specify the measure positions in the audio recordings.

Such measure annotations may fulfill several purposes.
First, they facilitate navigation and segmentation using
musically meaningful units such as motifs, passages, or

1 This piano reduction is publicly avaible on http://www.imslp.org.
2 In our experiments, we also consider further performances yielding

similar results as the ones reported for the Karajan performance.

scenes [19]. Second, they enable the transfer of seman-
tic annotations or analysis results from one domain to the
other [16]. Third, cross-version analysis specifically uses
the relation between different performances in order to sta-
bilize analysis results [12].

2.2 Manual Annotations

To obtain measure annotations for our opera, we first con-
sider a manual approach where five students with a strong
practical experience in Western classical music annotated
the measure positions for the full Karajan recording. We
refer to these annotators as A1, . . . ,A5. While following a
vocal score [20] used as reference, the annotators listened
to the recording and marked the measure positions using
the public software Sonic Visualizer [2]. After finishing a
certain passage, the annotators corrected erroneous or in-
accurate measure positions. The length of these passages,
the tolerance of errors, and the overall duration of the an-
notation process differed between the annotators. Roughly
three hours were necessary to annotate one hour of music.

Beyond that, the annotators added comments to specify
ambiguous measure positions. As musical reasons for such
ambiguities, they mentioned tempo changes, fermatas, tied
notes over barlines, or very fast passages. Furthermore,
they reported performance-specific problems such as asyn-
chronicities between orchestra and singers or masking of
onsets through prominent other sounds. For some of these
critical passages, the annotators reported problems arising
from the use of a piano reduction instead of the full score.

Due to these (and other) difficulties, one can find sig-
nificant deviations between the different annotations (see
Figure 1 for an illustration). One goal of this paper is to
analyze the annotation consistency and to uncover possi-
ble problems in the annotation process (Section 3).

2.3 Computed Annotations

The manual generation of measure annotations for music
recordings is a time-consuming and tedious procedure. To
automate this process, different strategies are possible. For
example, one could start with a beat tracking algorithm and
try to find the downbeats which yields the measure posi-
tions [17]. Moreover, beat information may help to obtain
musically meaningful features [6]. For classical music,
however, beat tracking is often not reliable [9, 10]. In [4],
Degara et al. have automatically estimated the reliablity of
a beat tracker.

In this paper, we follow another strategy based on synchro-
nization techniques. The general goal of music synchro-
nization (or audio-to-score alignment) is to establish an
alignment between musically corresponding time positions
in different representations of the same piece [1, 3, 5, 11].
Based on a symbolic score representation where measure
positions are given explicitly, we use the computed align-
ment to transfer these positions to the audio recording.
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Figure 2. Measure annotations for a Karajan performance of R. Wagner’s opera “Die Walküre”, Act 1, Measures 1429–
1453. (a) Piano reduction of the score (Kleinmichel). (b) Measure positions from manual (blue) and computed annotations
(red). (c) Standard deviations among the manual annotations (blue dashed line) and between the mean manual annotation
versus the algorithm’s annotation (red solid line). (d) Measure position confidences derived from the similarity matrix.

In the following experiments, we use an alignment method
based on Dynamic Time Warping (DTW) [15]. First, the
audio recording and the symbolic score are transformed
into a common feature representation. For this, we use
CENS [15] features—a variant of chroma features which
are well-suited for capturing the coarse harmonic pro-
gression of the music—combined with features captur-
ing note onset information (see [7] for details). Using
a suitable cost measure, DTW is applied to compute a
cost-minimizing alignment between the two different ver-
sions [7]. As our opera recording is long (67 minutes),
memory requirements and run time become an issue. To
this end, we use a memory-efficient multiscale variant of
DTW that allows for explicitly controlling the memory re-
quirements [18]. The main idea of this DTW variant is
to use rectangular constraint regions on which local align-
ments are computed independently using DTW. Macrae
and Dixon [14] have used a similiar approach.

3. ANALYSIS OF MANUAL ANNOTATIONS

In our analysis, we first consider the manual annotations
(see Section 2.2). As an example, Figure 2 shows a pas-
sage of “Die Walküre”, Act 1. In Figure 2b, we plot the
physical time position of the measures’ beginning (hor-
izontal axis) for the different annotators (vertical axis).
At the beginning of this example, the annotators more or
less agree. Sometimes, a single annotator slightly devi-
ates from the others. As an example, annotator A1 sets an
early position for measure 1436 compared to A2, . . . ,A5.
To quantify the overall disagreement for a specific mea-
sure, we calculate the standard deviation over the physical
time position by all annotators. The blue dashed curve in
Figure 2c shows this quantity for our exemplary passage.
For example, one can see a small increase in measure 1436.

From measure 1440 on, the standard deviation consider-
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ably increases over several measures. Looking at the anno-
tations, we see that this disagreement does not stem from
a single annotator but results from a substantial disagree-
ment between all annotators. Annotator A2 exhibits the
largest deviations by specifying the positions for the mea-
sures 1441–1443 much earlier than the other annotators.
The confusion ends at measure 1445 for which the annota-
tors seem to agree almost perfectly.

Looking at the score, we find possible hints for these devi-
ations. For both measures 1436 and 1438–1443, the chord,
voicing and instrumentation do not change with respect to
the previous measure. In the measures 1437–1441, how-
ever, a prominent trumpet melody is present which prob-
ably served as an orientation for the annotators. In accor-
dance with this assumption, we find the highest disagree-
ment for the measures 1442 and 1443 where this melody
has ended and only a constant and dense instrumentation
of the C major chord is played. 3 Nevertheless, this ob-
servation does not explain the high deviations in measures
1440–1441. Listening to the recording, we noticed that the
bass trumpet melody (left hand in m. 1439–1441) is cov-
ered by the orchestra and thus, practically not audible in
this recording. Three of the annotators marked this prob-
lem as “masking”. In measure 1444, a remarkable chord
change (C major to E major) and a new melody in the tenor
yield an orientation point where all annotators agree again.

By means of this examplary passage, we have already
shown two important cues that may help humans to find
measure boundaries: (1) Distinct harmonic changes and
(2) salient melodic lines that can be followed easily. As for
the second class, singing melodies seem to be more helpful
than instrumental lines in the orchestra which are often su-
perimposed by other instruments. For measures 1441 and
1445, we similarly find the present chord and instrumenta-
tion continued together with a melodic line. In the case of
the trumpet line (m. 1441), the agreement is low. In con-
trast, the tenor melody (m. 1445) leads to high agreement.
On the one hand, percussive speech components such as
consonants and fricatives yield good temporal cues. On
the other hand, solo voices play an important role in op-
eras and often stand out musically as well as acoustically.

We have seen that humans may disagree substantially in
their measure annotations. We now want to quantify such
deviations on the basis of the full opera act. Since we do
not have a “correct” ground truth annotation, we calculate
for each measure the mean position across all manual an-
notations. Then, we calculate the offset of each annotation
with respect to this mean position and plot a histogram over
these offset values for all measures of the act. Figure 3
shows the resulting distributions for all five human annota-
tors. In these plots, we observe typical offsets of about 0.1
seconds in both directions (measures annotated too early
and too late). Deviations larger than 0.2 seconds are rare.
Beyond this, we notice some systematic offsets towards
one direction. For example, the distribution of A1 has its

3 The full score shows 8th triplets (winds) and 16th arpeggios (strings).
Our reduction focuses on the triplets that are hard to perceive in the audio.
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Figure 3. Histograms of annotation offsets for the individ-
ual annotations (full act). The deviations refer to the mean
position of all annotations for the respective measure (la-
belled as zero). Positive offset values indicate “too late”,
negative values indicate “too early” positions compared to
the mean position. The lowest plot refers to the computed
annotation generated by our synchronization algorithm.

maximal bin at -0.04 seconds. For annotators A2, A3, and
A5, the maximal bin is centered at zero but positive de-
viations are more frequent than negative ones. Overall,
systematic offsets seem to be rather small. For single mea-
sures, deviations up to 0.2 seconds occur in both directions.
In the following, we use the mean positions of all annota-
tors as reference for evaluating our automatic approach.

4. ANALYSIS OF COMPUTED ANNOTATIONS

In this section, we analyze the computed annotations with
respect to the manual annotations. Let us consider Figure 2
again. In the lowest row of Figure 2b (red), we show
the measure positions as generated by the algorithm. The
red curve in Figure 2c quantifies the deviation between
the algorithm’s and the average manual measure position.
For the first measures 1429–1435, the computed positions
seem to coincide with the manual annotations. Similarly,
the annotations for the final measures 1445–1454 more or
less agree. For the middle section, we find a different situa-
tion. In measures 1436–1441, the algorithm strongly devi-
ates from the human annotators. For example, the position
of measure 1441 is close to the human’s position of mea-
sure 1440—a deviation of more than two seconds. Inter-
estingly, the algorithm then produces a very long measure
1441 leading to a good coincidence with the manual anno-
tations in measure 1442 again.

Looking at the score, we may find an explanation for this
behaviour. The measures 1437–1443 (where the algorithm
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strongly deviates) are harmonically restricted to a single
C major triad. The listeners may have used the trumpet
melody as cue to follow the rhythm. However, the trumpet
only plays pitches from the C major chord which is present
in the accompaniment. For chroma features which are the
basis of the synchronization approach, these pitches con-
tribute to the same chroma entries. For this reason, the
chroma-based feature representation does not yield suit-
able cues for the matching process. For measures with
clear harmonic change such as 1446 or 1448, we mostly
see high agreement. Interestingly, one finds a small devia-
tion for measure 1442 which is the most ambiguous mea-
sure among the human annotators. Here, we have to care-
fully interpret the figure since we use the mean manual an-
notations as reference. For measures with strong human
disagreement, this mean position is not a reliable reference
and, thus, the small deviation may be rather accidental.

In contrast, the relatively large deviation for measure 1444
seems surprising since we have a prominent harmonic
change here (C major to E major chord). The situation be-
comes clearer when we listen to the audio recording. Ac-
tually, the onset of the singing voice (note B4) in measure
1444 is too early in this interpretation (by almost a quar-
ter note) with respect to the chord change of the orches-
tra. The human annotators consistently followed the voice
whereas the chroma-based synchronization method relies
on the harmonic content dominated by the orchestra.

Let us consider Figure 3 again. The lowest plot (red) shows
a histogram over the annotation offsets of the synchroniza-
tion algorithm with respect to the mean manual annota-
tion. This distribution is much flatter than the human ones.
Large deviations such as the one in measure 1439 are more
frequent for the automated approach. Furthermore, there
is a remarkable systematic offset towards late measure po-
sitions. The majority of the annotations lies within a win-
dow of ± 0.3 seconds around the humans’ mean position.
For passages with strong disagreement, the algorithm finds
back after a few measures—as for our example in Figure 2.
Overall, we conclude that the automated approach does not
reach the reliablity of the manual annotations but yields
reasonable results for most measure positions.

5. CONFIDENCES FOR COMPUTED
ANNOTATIONS

As we have seen from our previous analysis, there is a
need for improving automated procedures. As a first step
towards an improvement, we now introduce an approach
for generating confidence values for the computed measure
positions. Recall that the core of our method is a synchro-
nization algorithm (see Section 2.3). Our idea is to use the
local reliablity of the synchronization for estimating the
confidence of the computed measure positions. Since the
synchronization is based on chroma features, the change in
harmony influences the quality of the alignment. Having
similar chords in neighbouring measures usually results
in similar chroma vectors. This often leads to situations

Figure 4. Estimation of measure position confidences
(schematically). In the similarity matrix, we shift a check-
erboard kernel along the warping path and calculate a con-
fidence value for each measure position.

where the measure position is ambiguous. In contrast,
measure boundaries that coincide with harmonic changes
often lead to reliable measure annotations.

On the basis of this observation, we propose a novelty-
based confidence measure. To compute the novelty score,
we transfer our music recording to a sequence of chroma
features X = (x1, . . . , xN ) with a resolution of 10 Hz.
Similarly, we compute a feature representation Y =
(y1, . . . , yM ) of the symbolic data (score). Then, we de-
rive a similarity matrix S ∈ RN×M from the two fea-
ture sequences using a cosine measure to compare feature
vectors. The automated synchronization procedure (see
Section 2.3) yields an alignment in terms of a warping path
which we project on the given feature resolution. To es-
timate local confidence values for this warping path, we
adapt an idea by Foote [8] who computes a novelty func-
tion by shifting a checkerboard kernel K ∈ RK×K along
the diagonal of a self-similarity matrix (SSM) and locally
measures the similarity between K and the underlying re-
gion of the SSM. Here, we compute a novelty function by
shifting the kernel along the warping path and locally mea-
suring the similarity between K and the region of our sim-
ilarity matrix S. In our experiments, we use a kernel K of
size K=10 features (one second of the recording).

With this procedure and a subsequent normalization step,
we obtain a curve Γ : {1, 2, . . . , N} → [−1, 1] which
measures the novelty of the local chroma vectors along
the warping path. For a feature index n ∈ {1, . . . , N},
a value of Γ(n) ≈ 1 indicates high similarity between the
local region of S and the structure of K. Intuitively, we
then expect a structural change in the features’ properties.
Musically spoken, Γ(n) ≈ 1 implies clear change in local
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Figure 5. Confidence-dependent accuracy values for the
entire act (1523 measures). For fixed tolerance values τ ,
the upper plot shows the partial accuracies Aτ (γ) of the
computed measure annotations over the confidence thresh-
old γ. The lower plot shows the fraction of measures under
consideration.

harmony. At such positions, we expect the synchronization
algorithm to work accurately. For Γ(n) ≈ 0, there is little
change in the features, which points to a harmonically ho-
mogenous situation in a neighbourhood of n. Finally, we
evaluate Γ on those time instances that correspond to the
measure positions. Figure 4 outlines this principle.

For quantitatively evaluating the computed annotations, we
consider the mean of all five manual annotations as a ref-
erence. Using a tolerance parameter τ ∈ R, we regard
a computed position to be correct if it lies within an in-
terval of length 2τ centered at the reference position. Let
M := {1, 2, . . . , L} be the set of all measures and Aτ the
fraction of correctly annotated measures with respect to τ .
For τ = 0.2 s, for example, a fraction Aτ = 62.5 % of
the measures inM lies within this interval. We further de-
fine a subsetMγ := {m ∈ M|Γ(m) ≥ γ} which only
includes measures with a confidence above the threshold
γ ∈ R. Additionally, we define a partial accuracy Aτ (γ)
which only refers to the measures inMγ .

Figure 5 shows the results for the full first act of “Die
Walküre”. In the upper part, we show the curve γ →
Aτ (γ) for fixed τ . The lower plot displays the curve
γ → |Mγ |/|M|. In general, the accuracy increases for
larger confidence thresholds γ. For τ = 0.3 s (cyan curve),
for example, Aτ (γ) improves from 78.2 % (for γ = 0)
to 87.8 % (for γ = 0.2). At the same time, the fraction
of considered measures decreases. To obtain accuracies
Aτ (γ) > 90 %, we end up evaluating less than 10 % of
the measures (for τ = 0.3 s). A good tradeoff seems to
be at γ = 0.1 where we get up to 10 % increase of Aτ (γ)
while still having half of the measure annotations included.
These more “confident” measure positions may serve as
a kind of anchor points for improving the quality of the
automated approach. For example, one could replace the
measure position with low consistency using linear inter-
polation or a smoothed tempo curve.

Finally, let us consider our running example again.
Figure 2d shows the confidence values for this passage.
We see that for the measures 1437–1443, the confidences
are low due to the harmonic homongeneity (C major chord
over seven measures). In contrast, we find high con-
fidences for distinct chord changes as in measure 1444
(C major→E major), measure 1446 (E major→A minor),
or measure 1448 (A minor→B major). Let us compare
these values to the corresponding annotation consistency
(red line in Figure 2c). For some of the high-confident
measures (1446, 1448–1450, 1452–1454), the measure po-
sition is consistent with manual annotations. The situation
is different for measure 1444. Here, our confidence value is
high but the position deviates from the manual annotations.
Remembering the audio properties discussed in Section 4,
we can understand this behaviour. Here, the human an-
notators consistently follow the entry of the voice which
is too early compared to the orchestra’s onset. Thus, the
high confidence indicates a good measure position which
is correct with respect to harmony. The deviation from the
manual annotations arises from the asynchronicity.

In general, we can only draw conclusions for measures
with high confidence Γ(m). A low confidence does not
necessarily indicate a bad estimate of the measure posi-
tion. In Figure 2, measures 1431 and 1445 are examples
for such a behaviour, where we find low Γ-values but high
consistency of measure positions with manual annotations.

6. CONCLUSIONS AND FUTURE WORK

In this paper, we analyzed different types of measure an-
notations for an opera recording. For manual annota-
tions generated by different human annotators, we iden-
tified musical challenges which can lead to inconsisten-
cies among the annotators. In contrast, harmonic changes
and melodic lines seem to be important cues for the listen-
ers to accurately locate measure boundaries. Furthermore,
we analyzed measure annotations generated by a computer
using score-to-audio alignment. This approach provides
useful results but is less accurate than manual annotations.
In particular, harmonic homogeneity can be problematic
for chroma-based approaches. Based on this observation,
we automatically estimate the confidence of the computed
annotations. To this end, we shift a checkerboard kernel
along the warping path. The resulting confidence values
seem to be useful for identifying reliable measure posi-
tion. Thus, they may serve as a first step towards improving
synchronization-based annotation strategies.
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ABSTRACT 

Much surviving 16th-century instrumental music consists 
of arrangements (‘intabulations’) of vocal music, in tabla-
ture for solo lute. Intabulating involved deciding what to 
omit from a score to fit the instrument, and making it fit 
under the hand. Notes were usually added as embellish-
ments to the original plain score, using idiomatic patterns, 
typically at cadences, but often filling simple intervals in 
the vocal parts with faster notes.  

Here we test whether such patterns are both character-
istic of lute intabulations as a class (vs original lute mu-
sic) and of different genres within that class. We use pat-
terns identified in the musicological literature to search 
two annotated corpora of encoded lute music using the 
SIA(M)ESE algorithm. Diatonic patterns occur in many 
chromatic forms, accidentals being added depending how 
the arranger applied the conventions of musica ficta. 
Rhythms must be applied at three different scales as nota-
tion is inconsistent across the repertory. This produced 
over 88,000 short melodic queries to search in two corpo-
ra totalling just over 6,000 encodings of lute pieces. 

We show that our method clearly discriminates be-
tween intabulations and original music for the lute (p < 
.001); it also can distinguish sacred and secular genres 
within the vocal models (p < .001). 

1. INTRODUCTION 

A large proportion of surviving solo instrumental music 
from before the 17th century is made up of arrangements, 
or intabulations, of pre-existing vocal music, much of it 
printed in the 16th century. [1] Most of these are for solo 
lute and are notated in tablature; several collections of 
intabulations for keyboard instruments also exist, though 
they are not considered in this paper. These arrangements 
are rarely strict reproductions of the scores of their vocal 
models. Even those which aim at faithful representation 
of the vocal parts almost invariably contain pitch and 
rhythmic alterations, as well as omitted and added notes. 

These changes come in different forms and might arise 
from various motivations: 
• They may reflect unnotated aspects of performance 

practice for the vocal model; 
• They may reflect attempts to make the music better 

match the idioms of instrumental style; 
• They may result from the practical limitations of 

playing multiple voices on a single instrument; 
• They may arise from the individual style of the in-

tabulator, the musical genre or current fashion. 
Studying the process of intabulation, then, has the po-

tential to reveal much about several aspects of vocal and 
instrumental music of the time, along with the nature of 
individual style, by allowing us to draw attention to ex-
plicit and conscious changes to a text and to attempt to 
infer the motivation for those changes. 

In this paper, we describe an experiment tracing the 
use, in two collections of encoded lute music, of typical 
melodic embellishment patterns identified in the musico-
logical literature. The collections, which are broadly rep-
resentative of the 16th-century lute repertory, contain a 
mixture of original idiomatic music composed for the lute 
and intabulations of vocal music, and we wanted to de-
termine the extent to which embellishment patterns might 
be viewed as diagnostic features – can we use them to 
distinguish intabulations from music originally composed 
for the lute? We also carried out a further investigation 
into whether the occurrence of the patterns can be associ-
ated with the style of the music being arranged – were 
they applied differently to sacred and secular vocal music 
by the arrangers? These may be considered as simple 
proxies for more complex questions about the distinct 
identity of lute intabulation as a genre and are intended as 
a first step towards richer and larger-scale musicological 
studies which, for example, might compare intabulations 
with encoded scores of the original vocal music, or in-
duce patterns of embellishment automatically. 

2. BACKGROUND 

About half of the surviving repertory of sixteenth-century 
lute music consists of intabulations. The Early Music 
Online (EMO) resource hosted by the British Library and 
RHUL comprises digital images of 300 books of printed 
music from before 1700.1 About 10% are books of lute 
music, written in tablature. A number of these have been 

                                                             
1 http://www.earlymusiconline.org 
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incorporated in the Electronic Corpus of Lute Music 
(ECOLM).2 In the Transforming Musicology project3 one 
of the three main work-packages is a programme of re-
search on workflows and methods for musicological in-
vestigation of these resources. The tablature encodings 
used in this paper, together with detailed metadata, will 
soon be released as Linked Open Data.4 

There is a considerable degree of repertorial overlap 
between the vocal and instrumental music in EMO; much 
of the vocal music also appears in intabulations for lute or 
keyboard, sometimes in multiple arrangements. This 
overlap provides the basis for ongoing musicological in-
vestigations within Transforming Musicology. 

There is some specialist literature on the methods of 
intabulation adopted by various lutenist-composers of the 
16th century [9][10][11], but systematic (computational) 
study has not hitherto been possible owing to a general 
lack of suitable annotated corpora of encodings. Here we 
describe an experiment to test the notion that, while some 
of the melodic patterns found in the corpus may be part of 
the common stylistic currency of a period, others may be 
diagnostic of an idiom of arrangement, or of a musical 
genre (in the musicological, rather than MIR, sense). That 
is, we ask whether some patterns are found across all lute 
music of a certain time or place, while others are encoun-
tered more in intabulations than in more exclusively idi-
omatic music composed for the instrument such as danc-
es, preludes or fantasias. 

Since we know that there were generally stylistic dif-
ferences between vocal music composed for religious 
contexts and those for secular use, we further ask whether 
the use of embellishment patterns suggest that intabula-
tors treated sacred music differently than secular in their 
arrangements. In this period, and with this repertory, a 
distinction based on language is generally safe – that is, 
Latin masses and motets are classified as sacred, whilst 
vernacular chansons and madrigals in French and Italian 
(or occasionally English or German), are considered 
secular even if the events they describe are biblical.5 

The chromatic inflection of pitches in 16th-century 
staff-based music notation is not fully explicit. When 
such music is intabulated, however, the precise chromatic 
pitch of each note is given in the tablature. The resulting 
chromatic changes to the plain diatonic vocal model 
could be assigned to two contrasting motivations on the 
part of an intabulator: either as a record of a contempo-
rary interpretation of standard musica ficta practice, or as 
the result of idiosyncracies of instrumental music which 
may in turn have had an effect on the emergence of the 
                                                             
2 http://www.ecolm.org 
3 http://www.transforming-musicology.org 
4 Much of the metadata is already published at 
http://slickmem.data.t-mus.org/ . 
5 An example of the latter case is the enormously popular 
chanson by Orlande de Lassus, ‘Susanne un jour’, which 
concerns the story of Susanna and the Elders from the 
Book of Daniel. 

modern tonal system. Considered as the former, they 
have been used to attempt to reconstruct elements of vo-
cal performance practice [2].  

As an example of the practice, in Figure 1 we show the 
opening of a popular madrigal, first published in 1541. 
The original vocal version is shown (a) in short score, to-
gether with (b) one of its many intabulations, from a late 
16th-century source. The interpolated notes in the bass 
(bar 1) and alto (bar 3) parts represent typical embellish-
ment patterns of the type we discuss in this paper. Note 
also that the lute version supplies musica ficta accidentals 
not present in the vocal original; these are likely to differ 
from those supplied in other intabulations. 

 
Figure 1. The opening of Berchem’s ‘O s’io potessi 
donna’: (a) the original for voices, and (b) as intabulated 
by Emanuel Adriansen (Pratum Musicum, 1584) 

For this paper, we study melodic embellishment pat-
terns as possible stylistic markers of instrumental idiom. 
A few scholars have published ‘vocabularies’ of such pat-
terns, inspired by the significant number of treatises from 
between 1535 and 1620 which give copious examples by 
way of instruction for players of string and wind instru-
ments. [7][8]  

In this preliminary study, we focus on a seminal ex-
ample by a leading musicologist of the last century. 
In [3], Brown considers the embellishment patterns ap-
plied by three different early 16th-century intabulators to a 
single popular (secular) madrigal, Giachet Berchem’s ‘O 
si’o potessi donna’, and provides a table of the patterns he 
identifies (78 distinct patterns). This table is effectively a 
set of embellishment templates that might be used by in-
tabulators to expand simple intervals in the vocal parts of 
the model. An extract from Brown’s table, showing some 
of the embellishment patterns used by Dominico 
Bianchini i n his intabulation in [4] is shown as Figure 2. 
The patterns are given without clefs or accidentals, as the 
precise pitches and intervals used can be expected to vary 
depending on context (including diatonic transposition 
and musica ficta). 

In [5] Robison studied a single source of lute intabula-
tions from 1558, listing a set of 95 such patterns found in 
the 76 arrangements therein. Neither he nor Brown at-
tempted to generalize this work or to assess empirically 
the extent to which the patterns identified are themselves 
indicative of something more general, although in [7] 
Brown had discussed the tradition of instrumental and 
vocal embellishment through the numerous treatises pub-
lished in the 16th and early 17th centuries. 
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Figure 2. An extract from Brown’s table of embellish-
ment patterns found in lute intabulations of Berchem’s 
‘O s’io potessi donna’ (from [3]) 

3. METHOD 

For this experiment, we use two test corpora:6  
• a snapshot of the works currently in ECOLM, con-

taining some 1,351 lute pieces. Works in ECOLM 
are transcribed as they appear in the original sources 
(including printing or scribal errors) and have been 
added and selected based on a series of academic re-
search projects funded by the UK Arts and Humani-
ties Research Council since 1999; 

• a private collection, created by Sarge Gerbode, of 
4,723 performing editions of lute pieces. These have 
been edited by the compiler, who is not an academic 
musicologist. The test corpus used is a subset of a 
larger collection, including only pieces from the 
16th or very early 17th century. The corpus is 
known to contain some duplicates, for example to 
support performance on different instruments, but 
these represent a very small proportion of the works. 

 Intabulations Other Total 
ECOLM 147 1,204 1,351 
Gerbode 1,048 3,675 4,723 
Total 1,195 4,879 6,074 

Table 1. Summary of our two test corpora 

Metadata for the corpora includes genre and subgenre 
labels. The distribution of pieces is shown in Table 1. 
Dates, places and attributions are also available for some 
of the pieces, but there is likely to be some approximation 
involved. For the purpose of this experiment, pieces in 
these collections are represented as a sequence of <on-
set, pitch> tuples and interrogated using a Javas-
cript implementation of SIA(M)ESE. [6] All versions of 
the subject of Brown’s study [3], Berchem’s madrigal, ‘O 
s’io potessi donna’, were deliberately excluded from both 
corpora to avoid bias. 
                                                             
6 Both corpora, in the format we used for our experiment, 
and related metadata will be made available in due course 
to researchers via the Transforming Musicology web-site 
(see note 3). 

Lute tablature has no voicing, pitch spelling or indi-
vidual note-duration built explicitly into the notation. In-
stead, it indicates the fret/string positions of the left-hand 
fingers and the duration between successive chords or 
single notes struck with the right hand. We have encoded 
Brown’s set of 78 (monophonic) embellishment tem-
plates using diatonic note-names. To search for passages 
matching one of the templates in the onset/pitch matrix, 
we need to realize all the possible chromatic inflections 
of all notes in each template. These are represented using 
chromatic pitch. 

Each pattern was taken to start on (diatonic) C and all 
its notes realized in such a way that they could be spelled 
using 16th-century staff notation. This allowed pitches to 
be spelled as any of [C, C#, D, Eb, E, F, F#, G, G#, Ab, 
A, Bb, B]. All possible spellings of the pattern’s note se-
quence starting on C and corresponding queries were 
generated, and then the process was repeated starting on 
D, and so on.  

Figure 3a shows one of the simplest patterns from the 
Brown set, a plain passing-note motion. This is listed by 
Brown as one of those used to fill a rise of a third in a vo-
cal line of the model (cf Figure 2, (iii)). In practice, the 
third might (in modern terms) be major or minor and 
filled by a combination of tones and semitones dependent 
on the local tonal context. Figure 3b-d are all what, in 
modern terms, would be called diatonic, in either major 
or minor modes. Figure 3e-g are less ‘tonal’ in that sense, 
and they are unlikely to occur in this context in 16th-
century music. This does not mean that the note patterns 
within them will not occur in our corpora. Figure 3e, for 
example, is a simple chromatic scale and, while it is un-
likely to happen in the context of ‘filling a third’, since 
the diminished third it connects probably never happens, 
in other contexts, it may be fairly common. 

 
Figure 3. An embellishment pattern from Brown’s list 
(the first at (iii) in Fig. 2) and some of its realisations. 

For the 78 unique patterns in [3], this produced a total 
of 29,476 queries, which we have classified, based on the 
scale degrees chosen, according to whether or not they 
make tonal sense within the modern major/minor mode 
system, the idea being that we might be able to eliminate 
a priori those transformations with vanishingly small 
probability of occurrence. Of the realizations, we found 
58 that could be interpreted in either a major or minor 
context, 88 just in major and 4,936 in minor (permitting 
the sixth and seventh degrees to be flattened or natural). 
This may be a fairly naïve approach from a music-
theoretic standpoint, but it is reasonably complete and 
inclusive. The instrumental music of the period was 
changing rapidly in terms of scales, tonality and chro-
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matic inflection, and we have not attempted to generate 
rules from the musical data itself. On the other hand, the 
only cost of generating too many patterns is computation-
al time – if our searches include unlikely patterns, their 
effect on the final analysis will be negligible, since they 
will produce very few or no results. In the event we car-
ried out all our searches using the full set of 29,476 pat-
terns. If the major or minor forms had proved as diagnos-
tically useful as the full set of patterns, then searches in 
future experiments could be limited to these, dramatically 
reducing the time required for searching, however this 
was not the case. 

Turning to the time dimension, the relationship be-
tween metrical level and rhythmic notation is especially 
varied during this period, particularly so for lute music, 
the notation of which favors short durations. For this rea-
son, each pattern is tested using not only the rhythms giv-
en by Brown, but also with the durations doubled and 
halved, trebling the final number of search patterns to 
88,428. 

As we have indicated, some of the shorter patterns de-
scribed are trivial, and can be expected to occur univer-
sally, not only as elaboration patterns in other genres, but 
also as melodic elements in their own right. (The example 
given in Figure 3 is such a case; the other, more elaborate 
patterns in Figure 2 (iii) are less likely to appear ubiqui-
tously.)  

As an alternative method of a priori selection, those of 
Brown’s list of patterns judged by an expert musicologist 
to be most characteristic of intabulations were labelled in 
advance. Although this was not used for pruning the 
search as originally intended, it gives an informal set of 
‘ground truth’ judgements which offer us the opportunity 
to carry out a further test of our method.7 In general, the 
patterns preselected by our expert were longer than those 
rejected, so we also did a similar evaluation based on pat-
tern length.  

Analyses were carried out on a complete set of results 
obtained from the exhaustive search of our two test-sets 
using all 88,428 transformations of the patterns as que-
ries; the resulting ‘hits’ were stored in an SQL database 
together with metadata from the annotated corpus as the 
search was done. Since SIA(M)ESE is a partial-matching 
algorithm (as opposed to approximate-matching) we had 
the possibility of recording incomplete matches, which 
we limited to a threshold of 80% of the notes in the que-
ry; a simple SQL operation enables us to filter out the 
partial matches if necessary. 

4. RESULTS 

58.3% of all queries from our list of patterns found 
matches in intabulations, while only 48.3% of all queries 
on other lute pieces produced matches. This association 
                                                             
7 The full set of patterns we used, with those preselected 
as ‘likely’ highlighted, is available in music notation 
from: http://intabulations.data.t-mus.org/ . 

of patterns with the intabulation repertoire was confirmed 
by a c2-test, comparing observed and expected frequen-
cies of hits and non-hits between intabulations and other 
lute pieces (c2 = 6041, df = 1, p < .001).  

63.7% of the queries on intabulations from the sacred 
repertoire found patterns, while only 57.1% of queries on 
non-sacred intabulations contained patterns. A subse-
quent c2-test using data only from intabulations con-
firmed the strong association of pattern occurrences with 
the sacred repertoire (c2 = 508, df = 1, p < .001).  

However, simple c2-tests do not offer the possibility of 
investigating for the influence of other variables that 
might affect the likelihood of a pattern occurring in a giv-
en piece beyond the fact that it is an intabulation or not. 
Therefore we analysed the results with binomial mixed 
effects models where the variables of primary interest 
(isIntabulation and isSacred) can be entered 
alongside other variables we wish to control for. The de-
pendent variable was a binary indicator recording wheth-
er or not a particular query returned a ‘hit’ (i.e. the query 
pattern was found in the queried piece). The main inde-
pendent variable in the first model was isIntabula-
tion. But we also controlled for the influence of three 
additional variables in the model (all described above): 
isLong (long patterns were defined to have between 7 
and 13 notes, short patterns ranged from 3 to 6 notes), 
IsMajor, and HasExpertLabel. We used the identi-
fier of the 78 patterns as a random effects variable.  

Modelling was done using the glmer function in the R 
package lme4 [13] and started from a fully saturated 
model specifying all main effects as well as all 2-way, 3-
way and the 4-way interaction effect. We then used a 
step-wise backward model selection procedure based on 
improvements in the Bayesian Information Criterion 
(BIC) to arrive at a more parsimonious final model which 
only contained highly significant effect terms (all p-
values < .001). The parameter estimates, their standard 
errors, z-values of the Wald-statistic, associated signifi-
cance level and the odds ratios derived from the parame-
ter estimates of the final model are given in Table 2.  

The model confirms the result from the first c2-test. 
The significant main effect for IsIntabulation indi-
cates that patterns are more likely to be found in intabula-
tions compared to the other pieces (odds ratio = 2.14). 
Thus, the collection of patterns can therefore be regarded 
as strongly characteristic of the intabulation repertoire. 
Further insights from the other three variables in the 
model suggest that overall: shorter patterns occur more 
frequently; major variants are less likely; and patterns 
preselected by the expert musicologist are less frequent. 
Insight from the significant 2-way interaction effects sug-
gests that versions of patterns that are longer or are major 
are more likely in intabulations and also that longer ver-
sions with expert labels are more likely in intabulations.  
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Table 2. Intabulations vs. non-intabulations: coefficient 
estimates, standard errors, z-values of Wald statistic 
with associated significance levels, and odds ratios for 
the independent variables in the binomial mixed effects 
model of all database queries. Coefficients represent the 
difference between the binary feature being present in 
the query compared with the feature being absent (the 
reference level). Significance levels are coded as fol-
lows: 
* < .05, ** < .01, *** < .001.  

To answer the question whether the patterns are more 
common in secular music, a second binomial mixed ef-
fects model was fitted to the data from the intabulations 
only. This model included the same variables as fixed ef-
fects. However, the main variable of interest was isSa-
cred, a binary variable indicating whether the queried 
piece was from a sacred or secular repertoire. The same 
modelling selection strategy was employed, starting from 
a fully saturated model including all higher-order interac-
tion effects and then applying a step-wise backward se-
lection procedure based on the improvement in BIC. The 
parameter estimates, their standard errors, z-values of the 
Wald-statistic, associated significance level and the odds 
ratios derived from the parameter estimates of the final 
model are given in Table 3. 

In this model isSacred on its own was not a signifi-
cant predictor (p = .259; OR = 1.05). However, two 2nd 
order effects involving isSacred were highly signifi-
cant (p-values < .001): queries that were either major var-
iants or were longer queries on pieces from the sacred 
repertoire had a higher chance of returning a hit. Thus, 
the second order effects suggest that once pattern variants 
possess certain characteristics, they are more likely to be 
found in the sacred repertoire.  

In summary, the results of the statistical analysis show 
that a) the embellishment patterns we used are more 
common in intabulations and b) the variants of these pat-
terns with certain features (relatively long or major) are 
more common in the sacred repertoire. In sum, the results 
indicate the usefulness and relevance of embellishment 
patterns as descriptors of the idiom of intabulations but 
also highlight the importance of structural features 
(length, mode) of the patterns which should be taken into 

consideration in future studies to select specific subsets of 
patterns for musicological queries. 

Factors Coeff. SE z OR 
(Intercept) 2.85 0.13 22.51*** 17.29 
IsSacred 0.05 0.05 1.13 1.05 
isLong -3.93 0.20 -20.06*** 0.02 
Major -1.42 0.02 -60.87*** 0.24 
isSacred x isLong 0.60 0.05 11.03*** 1.82 
isSacred x Major 0.59 0.06 10.46*** 1.80 
isLong x Major -0.08 0.03 -2.29* 0.92 
isSacred x isLong x     
Major  -0.55 0.07 -7.38*** 0.58 

Table 3. Sacred vs. secular: coefficient estimates, stand-
ard errors, z-values of Wald statistic with associated 
significance levels and odds ratios for the independent 
variables in the binomial mixed effects model of data-
base queries including intabulations only. Coefficients 
represent the difference between the binary feature be-
ing present in the query compared with the feature be-
ing absent (the reference level). Significance levels are 
coded as follows: 
* < .05, ** < .01, *** < .001. 

5. CONCLUSIONS 

This experiment shows that there is a clear stylistic dif-
ference between lute intabulations of vocal music and 
music composed directly for the lute in our corpus of 
6,000 pieces, and that this can be revealed by comparing 
the frequency of occurrence of embellishment patterns 
identified in the musicological literature. To our 
knowledge, this is the first time a corpus of early instru-
mental music has been analysed in this way, and this re-
sult suggests that these patterns have promise for further 
use in stylistic analysis. 

There are some biases in the corpora that affect this 
finding. Possibly the most important consideration from 
the statistical point of view is that not only do the corpora 
contain different arrangements of the same vocal piece, 
but they also may have multiple instances of the same 
intabulation from different sources. These versions 
should be note-identical in principle, but will often differ 
either in a few details (due to printing or transmission er-
rors) or more substantially. The extent of these concord-
ances is hard to estimate from the metadata we have, nor 
is it clear how they should be treated once identified, but 
it is certain that they will affect the assumption of inde-
pendence of samples. We consider that identifying these 
and assessing their significance is an important musico-
logical task, which will also help to make our methodolo-
gy more sound. 

Most of the intabulations present are from a narrower 
date range than the corpus as a whole. For the ECOLM 
collection especially, this bias is not particularly grave, 
due to the data gathering policy used so far, but evaluat-
ing its extent is not straightforward. Dating works is not 
easy and, although most printed collections have a known 
year of publication during this period, this may be later 
than the date of composition of the works in the book.  

Factors Coeff. SE z OR 
(Intercept) 2.15 0.08 27.32*** 8.58 
isIntabulation 0.76 0.02 48.79*** 2.14 
isLong -3.23 0.11 -28.88*** 0.04 
Major -1.45 0.01 -178.40*** 0.23 
HasExpertLabel -0.77 0.11 -6.76*** 0.46 
isIntabulation	x isLong  0.13 0.02 5.20*** 1.14 
isIntabulation x Major 0.10 0.02 6.13*** 1.11 
isLong x Major -0.11 0.01 -8.15*** 0.90 
isIntabulation x  
HasExpertLabel -0.33 0.04 -7.42*** 0.72 

isLong x HasExpertLabel -0.12 0.12 -0.96 0.89 
isIntabulation x  
isLong x 
HasExpertLabel 

0.30 0.05 6.00** 1.35 
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Another bias that is hard to evaluate is due to the rela-
tive length of pieces. The intabulations in both collections 
are longer, on average, than other genres and contain 
more notes. This could increase the likelihood of any giv-
en pattern occurring in any given piece; however, the re-
lationship is unlikely to be straightforwardly linear and, 
since French chansons of the time (the favourite vocal 
models for intabulation) are characterized by a significant 
degree of repetition, even the increased note count cannot 
be taken to indicate a larger amount of distinct musical 
material. Further analysis is needed to determine the ex-
tent to which the same embellishment patterns were re-
used upon repetitions in the model. 

6. FURTHER WORK 

In the present study, we used melodic indicators drawn 
by a musicologist from three exemplary arrangements of 
a single vocal work published at around the same time. 
The madrigal in question in fact survives in over a dozen 
16th-century intabulations (in both printed and manuscript 
sources for lute and keyboard), so an obvious next step 
would be to broaden our list of embellishment patterns to 
include at least some of these. The list could be further 
augmented by including patterns given in treatises for 
other instruments. 

In general, our assertions here would be strengthened 
by a more fine-grained analysis. In particular, if a date 
and place of composition can be established for a suffi-
ciently large number of works, then we should be able to 
evaluate the extent of any biases in our corpora. Similar-
ly, where the intabulator is known and also composed 
original lute music, the two can be compared. 

Intabulations are also distinguished by other parame-
ters, most obviously texture. Even when one or more 
original voice-parts are omitted in an intabulation, one 
might expect the latter to maintain the texture of the re-
maining voices fairly consistently throughout the piece, 
whereas in freely-composed lute music there is in general 
no such obligation on the part of the composer. Though 
some fantasias and recercars (the main contrapuntal gen-
res of ‘pure’ lute music) maintain a strict three, four or 
even five-voice texture, this is much less likely in dance 
music, for example. 

In future studies, it will be helpful to make use of 
voice-leading where it can be derived from the tablature. 
In the case of much 16th-century keyboard music, espe-
cially that notated in so-called ‘German organ tablature’ 
the notes are separated into voices and given durations; 
with lute tablature the voices and durations (sometimes 
ambiguous, even for experienced players) have to be de-
duced, so in future work on lute music we shall apply re-
cently-developed techniques such as that described 
in [12]. 

From a musicological standpoint, this experiment rep-
resents a first step towards a more detailed, corpus-level 
understanding of how intabulation worked as an artistic 
activity. Separating out the different influences and inten-

tions of a composer or arranger is difficult, but it is our 
belief that some steps towards that separation can be 
made using approaches like this one. 

The methods presented here can easily be replicated 
with a larger set of examples and on an enlarged corpus. 
Given encodings of the vocal models for the intabulations 
in the collections and a means of aligning the two, we 
hope to perform more nuanced studies, looking at ar-
rangement as a process as well as simply studying the end 
product. In particular, we intend to investigate the notion 
of ‘playability’ as an aspect of this process and of the 
choice of repertory for intabulation, in the belief that the 
prescriptive nature of tablature itself captures much use-
ful evidence which has not yet been exploited by schol-
ars. 
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ABSTRACT

In this paper, we present a new corpus for research in
computational ethnomusicology and automatic music tran-
scription, consisting of traditional dance tunes from Crete.
This rich dataset includes audio recordings, scores tran-
scribed by ethnomusicologists and aligned to the audio
performances, and meter annotations. A second contri-
bution of this paper is the creation of an automatic music
transcription system able to support the detection of multi-
ple pitches produced by lyra (a bowed string instrument).
Furthermore, the transcription system is able to cope with
deviations from standard tuning, and provides temporally
quantized notes by combining the output of the multi-pitch
detection stage with a state-of-the-art meter tracking al-
gorithm. Experiments carried out for note tracking using
25ms onset tolerance reach 41.1% using information from
the multi-pitch detection stage only, 54.6% when integrat-
ing beat information, and 57.9% when also supporting tun-
ing estimation. The produced meter aligned transcriptions
can be used to generate staff notation, a fact that increases
the value of the system for studies in ethnomusicology.

1. INTRODUCTION

Automatic music transcription (AMT), the process of con-
verting a music recording into notation, has largely focused
on genres of eurogenetic [17] popular and classical mu-
sic and especially on piano repertoire; see [3] for a re-
cent overview. This is reflected in various AMT datasets,
which consist of audio recordings along with a machine
readable reference notation that specifies the time values
of note onsets and offsets. Such datasets include the RWC
database [14], the MAPS dataset [12], and the Bach10
dataset [9]. The reasons for the focus on certain styles
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seem manifold: Some aspects that might play a role are
the cultural background of the AMT engineers, the rela-
tive ease of compiling reference notations for a piano using
MIDI, and the predominant goal of transcription, i.e. the
piano-roll, being closely related to the piano. As a point
of fundamental importance, eurogenetic music lends itself
nicely to the task of transcription, because in most cases
a composition is first notated, and then performed using
this notation. Hence, the notation can be interpreted as the
ground-truth for an AMT system. The attempt to recon-
struct this ground-truth, which is seen as a hidden gener-
ative concept for the performance [6], appears, at least at
first glance, to be a well-defined task.

However, in the field of ethnomusicology, the process
of transcribing a music performance mainly serves the
means to analyse the structure of previously not notated
music [11]. As a first contribution of this paper, we align a
set of such recordings to transcriptions by ethnomusicolo-
gists, this way compiling an evaluation corpus for AMT
that can enable us to monitor the performance of AMT
systems on the music of a specific oral tradition. The mu-
sic consists of Cretan dance tunes that were performed by
Cretan musicians and recorded and transcribed by ethno-
musicologists in the Crinnos project [2] that targeted the
documentation of that specific music idiom. Only a small
subset of the pieces recorded in the Crinnos project were
transcribed, due to the large amount of effort that man-
ual transcription takes. While it is clear that the building
blocks of the tunes are small melodic phrases (see Sec-
tion 2 for more detail), the way these phrases are strung
together is largely improvised in the performance. These
choices are not verbalized by the musicians, and an accu-
rate transcription method will constitute an important tool
to infer the grammar that underlies folk dance tunes in the
area of the Eastern Mediterranean and beyond.

Therefore, as the second contribution of this paper, we
extend an existing transcription algorithm [5] to be able to
cope with tuning deviations and to take into account the
metrical structure of the dance tunes. In Cretan music, as
well as in many other music styles in the world, musicians
tune their instruments according to personal preference. To
the authors’ knowledge, whilst several AMT systems sup-
port the extraction of multiple pitches in a high frequency
resolution (e.g. [9, 13]), no AMT system has yet exploited
that information for estimating the overall tuning level and
to compensate for tuning deviations during the pitch quan-
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tisation step. In addition, for many music styles, especially
when related to dance, a clear metrical organization and
a predictable tempo development enable for synchronisa-
tion between dancers and musicians in performances. For
that reason, we apply a state-of-the-art meter tracking algo-
rithm [15] for tracking beats and measures, and apply this
information in order to achieve a temporal quantisation of
note positions obtained from our AMT system. This way,
we can obtain a transcription with temporal precision that
is clearly increased to that of previously presented systems.
In addition, this step enables us to obtain a visualisation
of the transcription in a staff notation including bar posi-
tions, a perspective that marks an important step beyond
the piano-roll as AMT output.

Our paper is structured as follows; Section 2 provides
some detail about the musical idiom and corpus, and de-
scribes the process that was followed to align transcriptions
with performances on the note level. Section 3 summarizes
the chosen AMT system, and describes the extensions pro-
posed in this paper. We then evaluate the performance of
our systems, and provide illustrative examples in Section 4.
Section 5 concludes the paper.

2. THE SOUSTA CORPUS

2.1 Background and motivation

The recordings that constitute the Sousta corpus presented
in this paper were conducted in 2004 within the Crinnos
project [2] in Rethymnon, Crete, Greece. Within the Crin-
nos project 444 pieces of Cretan music were recorded, and
40 of these performances were transcribed by ethnomusi-
cologists. The transcriptions contain the melody played by
the main melody instrument, as well as the vocal melody if
vocals are present in a piece, and ignore the rhythmic ac-
companiment. Half of the 40 transcriptions regard a spe-
cific dance calledSousta. These transcriptions were cho-
sen for a note-to-note alignment for several reasons.

First, this way we obtain a music corpus that is highly
consistent in terms of musical style, which made a uni-
fied alignment strategy applicable to the recordings. The
Sousta dance is usually notated in2/4 meter, and is charac-
terized by a relatively stable tempo that lies between 110-
130 beats per minute (bpm). The instrumental timbres are
highly consistent, with usually two Cretan lutes playing the
accompaniment, and one Cretan lyra (a pear-shaped fiddle)
playing the main melody. All recordings were performed
in the same studio, but with differing musicians. Apart
from supporting our alignment procedure, the consistency
of the recordings will enable a style comparison between
individual musicians as part of our future work.

The second reason to choose the Sousta tunes lies
with their value for music segmentation approaches. Like
many tunes in the Eastern Mediterranean, the Sousta dance
follows an underlying syntax that has been termed as
parataxis [18]. In parataxis tunes, the building elements
are short melodic phrases that are strung together in appar-
ently arbitrary order without clear conjunctive elements.
These phrases have a length of typically two measures

for the Sousta dance. The 20 transcriptions were anal-
ysed within the Crinnos project and its elementary melodic
phrases were identified by the experts. This way, a cat-
alogue of 337 phrases was compiled that describes the
melodic content of the tunes. Each measure of the corpus
is assigned to a particular phrase. The note-to-note align-
ment that is made available in this paper enables to identify
the phrase boundaries within the recordings, and this way
the corpus can serve for music segmentation experiments.
Such a corpus can form a basis for the development of an
accurate system for syntactic analysis of music styles in
the Eastern Mediterranean and elsewhere.

Such an analysis system, however, needs to be built on
an AMT system that works as accurately as possible, in or-
der to be able to analyse performances for which no man-
ual transcription is available. We take this as a motivation
to use for the first time, to the best of our knowledge, a
set of performance transcriptions as the source for what is
usually called ground-truth in MIR. This way, as ourthird
motivation for choosing this specific style, we contribute to
a larger diversity in available AMT datasets, by providing
access to the aligned data for research purposes. The chal-
lenging aspects for AMT systems are the high density of
notes, the tuning deviations, and the necessary focus on a
bowed string instrument (lyra) within a pitched percussive
accompaniment (lutes).

2.2 Alignment procedure

The first step to obtain a note-to-note alignment is to cor-
rect for transpositions between transcription and perfor-
mance. Four out of the 20 pieces were played either one or
two semitones higher than the transcription implied. Ap-
parently, transcribers preferred to notate the upper empty
string of the lyra as the note A, even if the player tuned the
instrument one or several semitones higher.

As a second step, we conduct a meter tracking to ob-
tain estimations for beat and measure positions, using the
algorithm presented in [15]. The meter tracker was trained
on the meter-annotated Cretan music used in [15], and
then applied to track the meter in the 20 Sousta perfor-
mances (for more details on the tracking algorithm see Sec-
tion 3.4).

After that, the MIDI file obtained from the transcrip-
tion is synthesized, and the algorithm from [16] is used to
obtain an initial alignment of the MIDI file to the recorded
performance. The timing of the measures is extracted from
the aligned MIDI using the Matlab MIDI Toolbox [10].
Each of the estimated measures in the MIDI is then cor-
rected to take the time value of the closest beat as obtained
from the meter tracker from the recording. This step was
included to compensate for timing inaccuracies of the auto-
matic alignment. The obtained downbeats were manually
corrected using Sonic Visualizer1 . The output of this pro-
cess is the exact timing of all measures that are notated in
the transcription.

These manually corrected measure positions are then
used as a source for the exact timing of the pre-aligned

1 http://sonicvisualiser.org/
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MIDI, by determining an alignment curve that corrects all
note onsets accordingly. After that, also the note dura-
tions are edited to fit the notated length in seconds (e.g.
a quarter note at 120 bpm should last 0.5 s). The result
was again manually checked for inaccuracies. In addition,
vocal sections were manually annotated. During vocal sec-
tions, the main instrument usually stops, and the transcrip-
tion of musical phrases is of interest only for the instru-
mental sections in a recording. To the authors’ knowledge,
this measure-informed process is a novel and promising
way to generate note-level transcriptions, as opposed to
performing manual note corrections on an automatically
aligned MIDI file, or by relying on an expert musician to
follow and perform the recorded music in real-time [20].

The obtained corpus contains 35357 aligned notes in
4455 measures, distributed along the 20 recordings with
a total length of 71m16s2 , 84% being instrumental. The
average polyphony (on voiced frames only) is 1.08, and the
average note duration is 108ms.

3. BEAT-INFORMED TRANSCRIPTION

This section describes the AMT system developed to tran-
scribe the traditional dance corpus of Section 2. The main
contributions of the proposed system are: (i) Supporting
the transcription of lyra, a bowed string instrument that is
present in all recordings of the corpus, by supplying the
system with lyra templates; (ii) Estimating the overall tun-
ing level and compensating for deviations from 440Hz tun-
ing (cf. Section 1 for a discussion on related work for tun-
ing estimation in AMT systems); (iii) Incorporating me-
ter and beat information (from either manual meter anno-
tations or estimations from a state-of-the-art meter track-
ing system [15]), resulting in a temporally quantised music
transcription.

As a basis for the proposed work, the AMT system
of [4] is adapted, which was originally aimed for tran-
scribing 12-tone equal tempered music and supported Eu-
rogenetic orchestral instruments. The system is based on
probabilistic latent component analysis (PLCA), aspectro-
gram factorization method that decomposes an input time-
frequency representation into a series of note templates and
note activations. The system of [4] also supports the ex-
traction of tuning information per transcribed note, which
is used in this paper to estimate the overall tuning level.
A diagram for the proposed system can be seen in Fig. 1,
with all system components being presented in the follow-
ing subsections.

3.1 Time-Frequency Representation

As input time-frequency representation for the transcrip-
tion system, the variable-Q transform (VQT) spectrogram
is used [19], denotedVω,t (ω is the log-frequency index
andt is the time index). Here, the interpolated VQT spec-
trogram has a frequency resolution of 60 bins/octave (i.e.
20 cent resolution), using a variable-Q parameterγ = 30,
with a minimum frequency of 36.7 Hz (i.e. at D1). As

2 For a list of recordings see www.rhythmos.org/ISMIR2016Sousta.html

with the constant-Q transform (CQT), this VQT represen-
tation allows for pitch changes to be represented by shifts
across the log-frequency axis, whilst offering an increased
temporal resolution in lower frequencies compared to the
CQT.

3.2 Multi-pitch Detection

The multi-pitch detection model takes as input the VQT
spectrogram of an audio recording and returns an initial
estimate of note events. Here, we adapt the PLCA-based
spectrogram factorization model of [4] for transcribing
music produced by lyra. The model approximatesVω,t as a
bivariate probability distributionP (ω, t), which is in turn
decomposed into a series of probability distributions, de-
noting note templates, pitch activations, tuning deviations,
and instrument/source contributions.

The model is formulated as:

P (ω, t) =

P (t)
∑

q,p,f,s

P (ω|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)

(1)

whereq denotes the sound state (e.g. attack, sustain parts
of a note),p denotes pitch,s denotes instrument source,
andf denotes log-frequency shifting with respect to 12-
tone equal temperament (12-TET) at a tuning of 440 Hz
for note A4. In (1),P (t) is the energy of the VQT spectro-
gram, which is known.P (ω|q, p, f, s) is a 5-dimensional
tensor that represents the pre-extracted spectral templates
of lyra notes, per sound stateq, pitch p and instrument
models, which are also pre-shifted across log-frequency
f (cf. Section 4.1 on the extraction of lyra templates).
Pt(f |p) is the time-varying log-frequency shifting distri-
bution per pitch (used to estimate tuning deviations per
produced note),Pt(s|p) is the source contribution per pitch
over time, Pt(q|p) is the time-varying sound state acti-
vation per pitch, and finallyPt(p) is the pitch activation,
i.e. the resulting multi-pitch detection output. In the
proposed model,p ∈ {1 . . . , 88}, with p = 1 denot-
ing A0 andf ∈ {1, . . . , 5}, which respectively denote
{−40, −20, 0, 20, 40} cent deviation from ideal tuning us-
ing 12-TET.

The unknown model parameters (Pt(f |p), Pt(s|p),
Pt(p), Pt(q|p)) are iteratively estimated using the
expectation-maximization (EM) algorithm [8], with the
update rules described in [4]. With 30 iterations set in the
system, the runtime for multi-pitch detection is approxi-
mately 3×real-time using a Sony VAIO S15 laptop. The
output of the model isP (p, t) = P (t)Pt(p), which repre-
sents pitch activation probability in semitone scale.

3.3 Tuning Estimation - Postprocessing

The output of the multi-pitch detection model,P (p, t), is
non-binary and needs to be converted into a list of note
events or a MIDI file. Firstly, in order to compensate for
any tuning deviations from A4=440 Hz, a tuning estima-
tion step is proposed, utilising information from the pitch
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Figure 1: Diagram for the proposed system.

shifting parameterPt(f |p). The tuning probability vector
is computed as:

P (f) =
∑

p,t

Pt(f |p)Pt(p)P (t). (2)

P (f) provides an estimate on tuning deviations from
440 Hz tuning, with the variousf values corresponding
to {−40, −20, 0, 20, 40} cent deviation. The final tuning
estimate is given byargmaxf P (f). Then, a 20 cent reso-
lution time-pitch representation is computed:

P (f ′, t) = [P (f, 1, t) · · · P (f, 88, t)] (3)

where P (f, p, t) = Pt(f |p)Pt(p)P (t), and f ′ =
{1, . . . , 88∗5} denotes pitch values between 1 and 88 with
20 cent resolution. The time-pitch representation is subse-
quently shifted towards 440 Hz tuning by reassigning the
indexf ′ = f ′ + argmaxf P (f) − 3 (sincef = 3 repre-
sents 0 cent tuning deviation). Then, a tuning-compensated
pitch activationP (p, t) is re-computed fromP (f ′, t):

P (p, t) =

5p∑

f ′=5p−4

P (f ′, t), ∀p ∈ {1, . . . , 88}. (4)

Following tuning compensation, thresholding is performed
onP (p, t), followed by a process for removing note events
with a duration less than 40 ms. This results in a list of
note events, denoted by onset, offset, and pitch, denoted
nmatm(on, off , p), with m ∈ {1, . . . , M} denoting the
note index, withon and off being the onset and offset
times, respectively.

3.4 Meter Tracking & Quantisation

Since most dance tunes have an underlying stable meter
and a relatively predictable tempo that enables dancers to
synchronize, a quantisation of the estimated notes onto a
tight metrical grid is likely to improve transcription perfor-
mance. In addition, the notes in the obtained transcription
are assigned positions within the meter, and obtain quan-
tised note durations, which enables for an immediate visu-
alisation as staff notation including a time signature.

In this paper, beat and measure positions for a recording
are computed using the Bayesian meter tracker presented
in [15]. Given a series of observations/featuresyk, with
k ∈ {1, ..., K}, computed from a music signal, a set of
hidden variablesxk is estimated. The hidden variables de-
scribe at each analysis framek the positionΦk within a
measure, and the tempo in positions per frame (Φ̇k). The

goal is to estimate the hidden state sequence that maxi-
mizes the posterior (MAP) probabilityP (x1:K |y1:K). If
we express the temporal dynamics as a Hidden Markov
Model (HMM), the posterior is proportional to

P (x1:K |y1:K) ∝ P (x1)

K∏

k=2

P (xk|xk−1)P (yk|xk) (5)

In (5), P (x1) is the initial state distribution,
P (xk|xk−1) is thetransition model, andP (yk|xk) is the
observation model. When discretising the hidden variable
xk = [Φk, Φ̇k], the inference in this model can be per-
formed using the Viterbi algorithm. As in [15], a uniform
initial state distributionP (x1) was chosen. The transition
model factorizes into two components according to

P (xk|xk−1) = P (Φk|Φk−1, Φ̇k−1)P (Φ̇k|Φ̇k−1) (6)

with the two components describing the transitions of posi-
tion and tempo states, respectively. The position transition
model increments fromΦk−1 toΦk deterministically using
the tempoΦ̇k−1, starting from a value of 1 (at the begin-
ning of a metrical cycle) to a value of 800. The tempo tran-
sition model allows for tempo transitions to the adjacent
tempo states, allowing for gradual tempo changes. The ob-
servation modelP (yk|xk) divides the2/4-bars of meter-
annotated Sousta tunes used in [15] into 32 discrete bins.
Spectral-flux features are assigned to one of these metrical
bins, and parameters of a Gaussian Mixture Model (GMM)
are determined. The computation follows exactly the pro-
cedure described in [15], which lead to an almost perfect
beat tracking for the Cretan tunes.

In order to quantise the detected note eventsnmatm

with respect to the estimated beat positions, firstly a met-
rical grid is created from the beat positions (beatn, n ∈
{1, . . . , N}). The metrical grid times are:

gridD(n−2)+d+1 = beatn−1 + (d/D)(beatn − beatn−1)
(7)

which are computed forn = 2, . . . , N . In (7), D is the
beat subdivision factor (D = 4, 8 corresponds to 16th and
32nd note subdivisions, respectively) andd = {0, . . . , D−
1}. Then, the beat-quantised transcription is produced by
changing the onset time for each detected notenmatm to
the closest time instant computed from (7).

4. EXPERIMENTS

4.1 Training

Spectral templates for lyra are extracted from 20 short
segments of solo lyra recordings, taken from the Crinnos
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project [2] (disjoint from the recordings in the corpus de-
scribed in Section 2). These are used asP (ω|q, p, f, s)
in the model of (1). The recordings are partially anno-
tated, identifying non-overlapping pitches. Then, for each
recording the VQT spectrogram is computed as in Section
3.1 and spectral templates for each note are extracted using
standard PLCA, whilst keeping the pitch activation matrix
fixed to the reference pitch annotations. The templates are
pre-shifted across log-frequency to account for tuning de-
viations, and templates for missing notes are created by
shifting the extracted templates across the log-frequency
axis. The resulting note range for the training templates is
B3-F5.

4.2 Metrics

For assessing the performance of the proposed system in
terms of multi-pitch detection, we utilise the onset-based
metric used in the MIREX note tracking evaluations [1].
Here, a note event is assumed to be correct if its pitch cor-
responds to the ground truth pitch and its onset is within a
±25 ms range of the ground truth onset. This is in contrast
with the±50 ms onset tolerance setting used in MIREX,
since the current corpus has fast tempo with short note du-
rations. Using the above rule, the precision (P), recall (R),
and F-measure (F) metrics are defined:

P =
Ntp

Nsys
, R =

Ntp

Nref
, F =

2 · R · P
R + P (8)

where Ntp is the number of correctly detected pitches,
Nsys is the number of detected pitches, andNref is the
number of ground truth pitches. The above metrics are
computed only for the recording regions that do not con-
tain any vocal parts (a comparative experiment is done in
Section 4.3).

4.3 Results

Using the evaluation metrics of Section 4.2, average results
on the corpus described in Section 2 are presented in Table
1. Various configurations for the proposed system are used
to evaluate the performance of each system component.
Configuration 1 refers to simply using the output of the
multi-pitch detection method from Section 3.2. Configura-
tion 2 involves multi-pitch detection plus the proposed tun-
ing estimation method from Section 3.3. Configuration 3
refers to multi-pitch detection combined with meter track-
ing from Section 3.4, thus producing a beat-aligned note
output. Configuration 4 combines multi-pitch detection,
tuning estimation, and meter tracking. Finally, Configura-
tion 5 is an oracle version of Configuration 4, with the au-
tomatically estimated beats being replaced by the manually
annotated measure positions, obtained as described in Sec-
tion 2.2. In all configurations that utilise beat information
the beat subdivision factor used isD = 4 (corresponding
to 16th notes).

As can be seen from Table 1, when integrating tun-
ing estimation the system performance improves by +2.2%
in terms of F-measure. Likewise, by incorporating me-
ter tracking, system performance improves by +13.5%,

System F P R
Configuration 1 41.12% 45.33% 37.79%
Configuration 2 43.37% 48.12% 39.64%
Configuration 3 54.61% 66.38% 46.53%
Configuration 4 57.92% 70.71% 49.21%
Configuration 5 58.25% 71.14% 49.47%

Table 1: Average multi-pitch detection results using the
corpus of Section 2, using various system configurations
explained in Section 4.3.

whereas when integrating both tuning and meter informa-
tion the overall improvement is at +16.8%. Finally, us-
ing the reference measure annotations (Configuration 5)
leads to an improvement of only +0.3% over the automatic
beat extraction, indicating the reliability of meter tracking.
Indeed, comparing the manually corrected measure anno-
tations with those obtained from the automatic tracking,
we obtain an F-measure [7] of 94.5%. This is an even
higher meter tracking performance than observed on the
Cretan recordings in [15], possibly caused by the fact that
the recordings used in this paper were all conducted in the
studio, and all tunes relate to the same dance. A discrep-
ancy is also observed between average precision and aver-
age recall; the lower recall is mostly attributed to repeated
notes in the ground truth, which are merged into single note
events in the output transcription. The aforementioned re-
sults are approximately at the level of the state-of-the-art
for AMT, when using other datasets [1]; results for indi-
vidual recordings range fromF = 70.9% to 34.2% (the
latter for a particularly idiosyncratic recording).

In Figure 2, an example of transferring a beat-quantised
transcription obtained with Configuration 4 (F = 56.17%
for this piece) to staff notation is depicted, along with the
manually transcribed reference notation. Spurious differ-
ences occur (e.g. added note G in the first measure) and
the style of notation seems artificial. However, the re-
semblance between melodic contour in reference and auto-
matic transcription is apparent. According to the analysis
in the Crinnos project, the phrase depicted in Figure 3 is
repeated with slight variations four times in the eight bars
of this example, and comparing the phrase with each two
consecutive bars in the transcriptions, this structure canbe
recognized. Figure 4 depicts the VQT and the pitch activa-
tions for the same eight bars. Further examples, all tran-
scriptions obtained with Configuration 4 (MIDI and au-
dio), and the reference annotations will be available on the
paper’s website3 .

A comparison with a state-of-the-art AMT method is
also made, employing the system of [21], which is based
on non-negative matrix factorization. The aforementioned
system decomposes a pitched sound as the sum of nar-
rowband spectra. Results using multi-pitch detection only
reach F = 26.08% (in contrast with41.12% for the
proposed system). By integrating multi-pitch detection
with beat information, the performance of [21] reaches

3 www.rhythmos.org/ISMIR2016Sousta.html
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(a) Automatic transcription

(b) Manual transcription, source [2]

Figure 2: Four repetitions of a two-bar phrase.

Figure 3: Sousta phrase that is repeated (in slight varia-
tions) in Figure 2 four times, source [2].

F = 35.94% (as compared with54.61% for the proposed
method). It should be noted that tuning estimation cannot
be achieved using the aforementioned system, as the output
is quantised on the MIDI scale.

Experiments are also carried out using a larger onset
tolerance for the metrics of Section 4.2, set to 50 ms (as
in the MIREX evaluations [1]). When evaluating Config-
uration 4,F = 60.74%, while using the method of [21]
F = 38.17%. The relatively small difference between
using 25 ms or 50 ms tolerance is attributed to the fact
that the employed corpus contains several short repeated
notes; since the utilised evaluation metrics consider du-
plicate notes in the same temporal region as false alarms,
a larger tolerance window penalises the systems’ perfor-
mance.

As mentioned in Section 4.2, the results presented in
Table 1 are computed only for instrumental regions of the
corpus, thus excluding any vocal parts. When also tran-
scribing vocal parts, performance using Configuration 4
drops by 1.9% (F = 55.84%), due to the fact that the
training data do not contain vocal templates; however, the
transcription of vocal music is not in the scope of this work.
Finally, experiments were carried out using a beat subdivi-
sion factorD = 8, which corresponds to 32nd notes. This
results inF = 48.2%, which indicates that the onsets for
some of the detected notes were placed in incorrect tempo-
ral positions on the metrical grid.
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(b)

ω
(a)

40 41 42 43 44 45 46 47

40 41 42 43 44 45 46 47
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Figure 4: (a) The VQT spectrogram for the section tran-
scribed in Figure 2. (b) The corresponding pitch activation
P (p, t).

5. DISCUSSION

In this paper, we presented a corpus for evaluation of AMT
systems that is based on performance transcriptions man-
ually compiled by experts in ethnomusicology. We then
proposed an AMT system that can cope with tuning devia-
tions, and we improve the performance of the AMT system
by quantising its output on a metrical grid that was esti-
mated using a state of the art meter tracker. Apart from the
performance improvement, this quantisation enables for
a straightforward generation of staff notation. For future
work, we intend to improve the transcription by includ-
ing instrument templates for the accompaniment instru-
ments, which will enable for a better estimation of the main
melody. Furthermore, we plan to conduct a user study with
ethnomusicologists, who will evaluate the performance of
our AMT system.
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ABSTRACT

In this study we investigate computational methods for as-
sessing music similarity in world music. We use state-of-
the-art audio features to describe musical content in world
music recordings. Our music collection is a subset of the
Smithsonian Folkways Recordings with audio examples
from 31 countries from around the world. Using super-
vised and unsupervised dimensionality reduction techniques
we learn feature representations for music similarity. We
evaluate how well music styles separate in this learned space
with a classification experiment. We obtained moderate
performance classifying the recordings by country. Analy-
sis of misclassifications revealed cases of geographical or
cultural proximity. We further evaluate the learned space
by detecting outliers, i.e. identifying recordings that stand
out in the collection. We use a data mining technique based
on Mahalanobis distances to detect outliers and perform a
listening experiment in the ‘odd one out’ style to evaluate
our findings. We are able to detect, amongst others, record-
ings of non-musical content as outliers as well as music
with distinct timbral and harmonic content. The listening
experiment reveals moderate agreement between subjects’
ratings and our outlier estimation.

1. INTRODUCTION

The analysis, systematic annotation and comparison of
world music styles has been of interest to many research
studies in the fields of ethnomusicology [5, 14, 20] and
Music Information Retrieval (MIR) [7, 12, 28]. The for-
mer studies rely on manually annotating musical attributes
of world music recordings and investigating similarity via
several clustering techniques. The latter studies rely on au-
tomatically extracting features to describe musical content
of recordings and investigating music style similarity via
classification methods. We focus on research studies that
provide a systematic way of annotating music; a method
that often disregards specific characteristics of a music cul-
ture but makes an across-culture comparison feasible. We
are interested in the latter and follow a computational ap-
proach to describe musical content of world music record-
ings and investigate similarity across music cultures.

c© Maria Panteli, Emmanouil Benetos, Simon Dixon. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Maria Panteli, Emmanouil Benetos, Simon
Dixon. “Learning a feature space for similarity in world music”, 17th
International Society for Music Information Retrieval Conference, 2016.

This study falls under the general scope of music cor-
pus analysis. While several studies have focused on pop-
ular (mainly Eurogenetic) music corpus analysis, for ex-
ample, the use of modes in American popular music [21],
pitch, loudness and timbre in contemporary Western popu-
lar music [23], harmonic and timbral aspects in USA popu-
lar music [16], only a few studies have considered world or
folk music genres, for example, the use of scales in African
music [17]. Research projects have focused on the devel-
opment of MIR tools for world music analysis 1 , but no
study, to the best of our knowledge, has applied such com-
putational methods to investigate similarity in a world mu-
sic corpus.

While the notion of world music is ambiguous, often
mixing folk, popular, and classical musics from around the
world and from different eras [4], it has been used to study
stylistic similarity between various music cultures. We fo-
cus on a collection of folk recordings from countries from
around the world, and use these to investigate music style
similarity. Here we adopt the notion of music style by [19],
‘style can be recognized by characteristic uses of form,
texture, harmony, melody, and rhythm’. Similarly, we de-
scribe music recordings by features that capture aspects of
timbral, rhythmic, melodic, and harmonic content 2 .

The goal of this work is to infer similarity in collections
of world music recordings. From low-level audio descrip-
tors we are interested to learn high-level representations
that project data to a music similarity space. We compare
three feature learning methods and assess music similarity
with a classification experiment and outlier detection. The
former evaluates recordings that are expected to cluster to-
gether according to some ground truth label and helps us
understand better the notion of ‘similarity’. The latter eval-
uates examples that are different from the rest of the corpus
and is useful to understand ‘dissimilarity’. Outlier detec-
tion in large music collections can also be applied to filter
out irrelevant audio or discover music with unique char-
acteristics. We use an outlier detection method based on
Mahalanobis distances, a common technique for detecting
outliers in multivariate data [1]. To evaluate our findings
we perform a listening test in the ‘odd one out’ framework
where subjects are asked to listen to three audio excerpts
and select the one that is most different [27].

Amongst the main contributions of this paper is a set

1 Digital Music Lab (http://dml.city.ac.uk), CompMusic
(http://compmusic.upf.edu/node/1), Telemata (https://
parisson.github.io/Telemeta/)

2 The use of form is ignored in this study as our music collection is
restricted to 30-second audio excerpts.
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of low-level features to represent musical content in world
music recordings and a method to assess music style sim-
ilarity. Our results reveal similarity in music cultures with
geographical or cultural proximity and identify recordings
with possibly unique musical content. These findings can
be used in subsequent musicological analyses to track in-
fluence and cultural exchange in world music. We per-
formed a listening test with the purpose of collecting simi-
larity ratings to evaluate our outlier detection method. In a
similar way, ratings can be collected for larger collections
and used as a reference for ground truth similarity. The
data and code for extracting audio features, detecting out-
liers and running classification experiments as described in
this study are made publicly available 3 .

The paper is structured as follows. First a detailed de-
scription of the low-level features used in this study is pre-
sented in Section 2. Details of the size, type, and spatio-
temporal spread of our world music collection are pre-
sented in Section 3. Section 4 presents the feature learning
methods with specifications of the models and Section 5
describes the two evaluation methods, namely, classifica-
tion and outlier detection. In Section 5.2 we provide details
of the listening test designed to assess the outlier detection
accuracy. Results are presented in Section 6 and finally a
discussion and concluding remarks are summarised in Sec-
tion 7 and 8 respectively.

2. FEATURES

Over the years several toolboxes have been developed for
music content description and have been applied for tasks
of automatic classification and retrieval [13, 18, 25]. For
content description of world music styles, mainly tim-
bral, rhythmic and tonal features have been used such
as roughness, spectral centroid, pitch histograms, equal-
tempered deviation, tempo and inter-onset interval distri-
butions [7,12,28]. We are interested in world music analy-
sis and add to this list the requirement of melodic descrip-
tors.

We focus on state-of-the-art descriptors (and adapta-
tions of them) that aim at capturing relevant rhythmic,
melodic, harmonic, and timbral content. In particular, we
extract onset patterns with the scale transform [10] for
rhythm, pitch bihistograms [26] for melody, average chro-
magrams [3] for harmony, and Mel frequency cepstrum co-
efficients [2] for timbre content description. We choose
these descriptors because they define low-level representa-
tions of the musical content, i.e. less abstract representa-
tions but ones that are more likely to be robust with respect
to the diversity of the music styles we consider. In addition,
these features have achieved state-of-the-art performances
in relevant classification or retrieval tasks, for example, on-
set patterns with scale transform perform best in classify-
ing Western and non-Western rhythms [9, 15] and pitch
bihistograms have been used successfully in cover song
(pitch content-based) recognition [26]. The low-level de-

3 https://code.soundsoftware.ac.uk/projects/feature-space-world-
music

scriptors are later used to learn high-level representations
using various feature learning methods (Section 4).

The audio features used in this study are computed with
the following specifications. For all features we fix the
sampling rate at 44100 Hz and compute the (first) frame
decomposition using a window size of 40 ms and hop
size of 5 ms. We use a second frame decomposition to
summarise descriptors over 8-second windows with 0.5-
second hop size. This is particularly useful for rhythmic
and melodic descriptors since rhythm and melody are per-
ceived over longer time frames. For consistency, the tim-
bral and harmonic descriptors considered in this study are
summarised by their mean and standard deviation over this
second frame decomposition.

Rhythm and Timbre. For rhythm and timbre features
we compute a Mel spectrogram with 40 Mel bands up
to 8000 Hz using Librosa 4 . To describe rhythmic con-
tent we extract onset strength envelopes for each Mel band
and compute rhythmic periodicities using a second Fourier
transform with window size of 8 seconds and hop size of
0.5 seconds. We then apply the Mellin transform to achieve
tempo invariance [9] and output rhythmic periodicities up
to 960 bpm. The output is averaged across low and high
frequency Mel bands with cutoff at 1758 Hz. Timbral as-
pects are characterised by 20 Mel Frequency Cepstrum Co-
efficients (MFCCs) and 20 first-order delta coefficients [2].
We take the mean and standard deviation of these coeffi-
cients over 8-second windows with 0.5-second hop size.

Harmony and Melody. To describe melodic and har-
monic content we compute chromagrams using variable-
Q transforms [22] with 5 ms hop size and 20-cent pitch
resolution to allow for microtonality. Chromagrams are
aligned to the pitch class of maximum magnitude for key
invariance. Harmonic content is described by the mean and
standard deviation of chroma vectors using 8-second win-
dows with 0.5-second hop size. Melodic aspects are cap-
tured via pitch bihistograms which denote counts of transi-
tions of pitch classes [26]. We use a window d = 0.5 sec-
onds to look for pitch class transitions in the chromagram.
The resulting pitch bihistogram matrix is decomposed us-
ing non-negative matrix factorization [24] and we keep 2
basis vectors with their corresponding activations to rep-
resent melodic content. Pitch bihistograms are computed
again over 8-second windows with 0.5-second hop size.

3. DATASET

Our dataset is a subset of the Smithsonian Folkways
Recordings, a collection of documents of “people’s mu-
sic”, spoken word, instruction, and sounds from around
the world 5 . We use the publicly available 30-second audio
previews and from available metadata we choose the coun-
try of the recording as a proxy for music style. We choose a
minimum number of N = 50 recordings for each country
to capture adequate variability of its style-specific charac-
teristics. For evaluation purposes we further require the

4 https://bmcfee.github.io/librosa/
5 http://www.folkways.si.edu
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dataset to have the same number of recordings per coun-
try. By manually sub-setting the data we observe that an
optimal number of recordings is obtained for N = 70, re-
sulting in a total of 2170 recordings, 70 recordings chosen
at random from each of 31 countries from North Amer-
ica, Europe, Asia, Africa and Australia. According to the
metadata these recordings belong to the genre ‘world’ and
have been recorded between 1949 and 2009.

4. FEATURE LEARNING

For the low-level descriptors presented in Section 2 and
the music dataset in Section 3, we aim to learn feature
representations that best characterise music style similar-
ity. Feature learning is also appropriate for reducing di-
mensionality, an essential step for the amount of data we
currently analyse. In our analysis we approximate style
by the country label of a recording and use this for super-
vised training and cross-validating our methods. We learn
feature representations from the 8-second frame-based de-
scriptors.

The audio features described in Section 2 are standard-
ised using z-scores and aggregated to a single feature vec-
tor for each 8-second frame of a recording. A recording
consists of multiple 8-second frame feature vectors, each
annotated with the country label of the recording. Fea-
ture representations are learned using Principal Compo-
nent Analysis (PCA), Non-Negative Matrix Factorisation
(NMF) and Linear Discriminant Analysis (LDA) meth-
ods [24]. PCA and NMF are unsupervised methods and
try to extract components that account for the most vari-
ance in the data. LDA is a supervised method and tries to
identify attributes that account for the most variance be-
tween classes (in this case country labels).

We split the 2170 recordings of our collection into train-
ing (60%), validation (20%), and testing (20%) sets. We
train and test our models on the frame-based descriptors;
this results in a dataset of 57282, 19104, and 19104 frames
for training, validation, and testing, respectively. Frames
used for training do not belong to the same recordings as
frames used for testing or validation and vice versa as this
would bias results. We use the training set to train the PCA,
NMF, and LDA models and the validation set to optimise
the number of components. We investigate performance
accuracy of the models when the number of components
ranges between 5 and the maximum number of classes. We
use the testing set to evaluate the learned space by classifi-
cation and outlier detection tasks as explained below.

5. EVALUATION

5.1 Objective Evaluation

To evaluate whether we have learned a meaningful feature
space we perform two experiments. One experiment aims
at assessing similarity between recordings from the same
country (which we expect to have related styles) via a clas-
sification task, i.e. validating recordings that lie close to
each other in the learned feature space. The second experi-
ment aims at assessing dissimilarity between recordings by

detecting ‘outliers’, i.e. recordings that lie far apart in the
learned feature space.

Classification. For the classification experiment we use
three classifiers: K-Nearest Neighbors (KNN) with K = 3
and Euclidean distance metric, Linear Discriminant Anal-
ysis (LDA), and Support Vector Machines (SVM) with a
Radial Basis Function kernel. We report results on the
accuracy of the predicted frame labels and the predicted
recording labels. To predict the label of the recording we
consider the vote of its frame labels and select the most
popular label.

Outlier Detection. The second experiment uses a
method based on squared Mahalanobis distances to detect
outliers in multivariate data [1,8]. We use the best perform-
ing feature learning method, as indicated by the classifica-
tion experiment, to transform all frame-based features of
our dataset. For each recording we calculare the average of
its transformed feature vectors and use this to compute its
Mahalanobis distance from the set of all recordings. Using
Mahalanobis, an n-dimensional feature vector is expressed
as the distance to the mean of the distribution in standard
deviation units. Data points that lie beyond a threshold,
here set to the 99.5% quantile of the chi-square distribution
with n degrees of freedom [6], are considered outliers.

5.2 Subjective Evaluation

To evaluate the detected outliers we perform a listening
experiment in the ‘odd one out’ fashion [27]. A listener is
asked to evaluate triads of audio excerpts by selecting the
one that is most different from the other two, in terms of its
musical characteristics. For the purpose of evaluating out-
liers, a triad consists of one outlier excerpt and two inliers
as estimated by their Mahalanobis distance from the set of
all recordings.

To distinguish outliers from inliers (the most typical ex-
amples) and other excerpts which are neither outliers nor
inliers, we set two thresholds for the Mahalanobis distance.
Distances above the upper threshold identify outliers, and
distances below the lower threshold identify inliers. The
thresholds are selected such that the majority of excerpts
are neither outliers nor inliers. We randomly select 60 out-
liers and for each of these outliers we randomly select 10
inliers, in order to construct 300 triads (5 triads for each of
60 outliers), which we split into 10 sets of 30 triads. Each
participant rates one randomly selected set of 30 triads.

The triads of outlier-inlier examples are presented in
random order to the participant and we additionally in-
clude 2 control triads to assess the reliability of the partici-
pant. A control triad consists of two audio excerpts (the in-
liers) extracted from the first and second half, respectively,
of the same recording and exhibiting very similar musi-
cal attributes, and one excerpt (the outlier) from a different
recording exhibiting very different musical attributes. At
the end of the experiment we include a questionnaire for
demographic purposes.

We report results on the level of agreement between the
computational outliers and the audio excerpts selected as
the odd ones by the participants of the experiment. We
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Figure 1. Classification accuracy for different numbers of
components for PCA, NMF, and LDA methods (random
baseline is 0.03 for 31 classes).

focus on two metrics; first, we measure the average ac-
curacy between detected and rated outlier across all 300
triads used in the experiment, and second, we measure the
average accuracy for each outlier, i.e. for each of 60 out-
liers we compute the average accuracy of its corresponding
rated triads. Further analysis such as how the music culture
and music education of the participant influences the simi-
larity ratings is left for future work.

6. RESULTS

In this section we present results from the feature learning
methods, their evaluation and the listening test as described
in Sections 4 and 5.

6.1 Number of Components

First we present a comparison of classification perfor-
mance when the number of components for PCA, NMF
and LDA methods ranges between 5 and 30. For each
number of components we train a PCA, NMF and LDA
transformer and report classification accuracies on the val-
idation set. The accuracies correspond to predictions of the
label as estimated by a vote count of its predicted frame la-
bels. We use the KNN classifier with K = 3 neighbors
and Euclidean distance metric. Results are shown in Fig-
ure 1. We observe that the best feature learning method is
LDA and achieves its best performance when the number
of components is 26. PCA and NMF achieve optimal re-
sults when the number of components is 30 and 29 respec-
tively. We fix the number of components to 30 as this gave
good average classification accuracies for all methods.

6.2 Classification

Using 30 components we compute classification accura-
cies for the PCA, NMF and LDA transformed testing set.
We also compute classification accuracies for the non-
transformed testing set. In Table 1 we report accuracies

Classifier Transform. Frame Recording
Method Accuracy Accuracy

KNN – 0.175 0.281
PCA 0.177 0.279
NMF 0.139 0.214
LDA 0.258 0.406

LDA – 0.300 0.401
PCA 0.230 0.283
NMF 0.032 0.032
LDA 0.300 0.401

SVM – 0.038 0.035
PCA 0.046 0.044
NMF 0.152 0.177
LDA 0.277 0.350

Table 1. Classification accuracies for the predicted frame
labels and the predicted recording labels based on a vote
count (– denotes no transformation).
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Figure 2. Confusion matrix for the best performing classi-
fier, KNN with LDA transform (Table 1).

for the predicted frame labels and the predicted record-
ing labels as estimated from a vote count (Section 4). The
KNN classifier with the LDA transform method achieved
the highest accuracy, 0.406, for the predicted recording la-
bels. For the predicted frame labels the LDA classifier and
transform was best with an accuracy of 0.300. In subse-
quent analysis we use the LDA transform as it was shown
to achieve optimal results for our data.

For the highest classification accuracy achieved with the
KNN classifier and the LDA transformation method (Ta-
ble 1), we compute the confusion matrix shown in Fig-
ure 2. From this we note that China is the most accurate
class and Russia and Philippines the least accurate classes.
Analysing the misclassifications we observe the following:
Vietnam is often confused with China and Japan, United
States of America is often confused with Austria, France
and Germany, Russia is confused with Hungary, and South
Africa is confused with Botswana. These cases are char-
acterised by a certain degree of geographical or cultural
proximity which could explain the observed confusion.
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6.3 Outlier Detection

The second experiment to evaluate the learned space aims
at detecting outliers in the dataset. In this experiment we
are not interested in how close music recordings of the
same country are to each other, but we are rather interested
in recordings that are very different from the rest. We use
the LDA method as found optimal in the classification ex-
periment (Section 6.2) to transform all frame-based feature
vectors in our collection. Each recording is characterised
by the average of its transformed frame-based descriptors.

From our collection of 2170 recordings (70 recordings
for each of 31 countries), 557 recordings (around 26%)
are detected as outliers at the chi-square 99.5% quantile
threshold. In Figure 3 we plot the Mahalanobis distances
for all samples in our dataset and indicate the ones that
have been identified as outliers. The three recordings with
maximum distances, i.e. standing out the most from the
corpus, are identified as follows (in order of high to low
Mahalanobis distance): 1) A recording of the dav dav in-
strument from the culture group ‘Khmu’ from Vietnam 6 ,
2) a rather non-musical example of bells from Greece 7 , 3)
an example of the angklung instrument from Indonesia 8 .
These recordings can be characterised by distinct timbral
and harmonic aspects or, in the case of the second example,
by a distinct combination of all style attributes considered.

We plot the number of detected outliers per country on a
world map (Figure 4) to get an overview of the spatial dis-
tribution of outliers in our music collection. We observe
that Germany was the only country without any outliers (0
outliers out of 70 recordings) and Uganda was the country
with the most outliers (39 outliers out of 70 recordings).
Other countries with high number of outliers were Nigeria
(34 outliers out of 70 recordings), Indonesia and Botswana
(each with 31 outliers out of 70 recordings). We note that
Botswana and Spain had achieved a relatively high classi-
fication accuracy in the previous evaluation (Section 6.2)
and were also detected with a relatively high number of

6 http://s.si.edu/1RuJfuu
7 http://s.si.edu/21DgzP7
8 http://s.si.edu/22yz0qP

outliers (31 and 26 outliers, respectively). This could indi-
cate that recordings from these two countries are consistent
in their music characteristics but also stand out in compar-
ison with other recordings of our world music collection.

6.4 Listening Test

The listening test described in Section 5.2 aimed at evalu-
ating the outlier detection method. A total of 23 subjects
participated in the experiment. There were 15 male and 8
female participants and the majority (83%) aged between
26 and 35 years old. A small number of participants (5) re-
ported they are very familiar with world music genres and
a similar number (6) reported they are quite familiar. The
remaining participants reported they are not so familiar (10
of 23) and not at all familiar (2) with world music genres.

Following the specifications described in Section 5.2,
participant’s reliability was assessed with two control tri-
ads and results showed that all participants rated both these
triads correctly. From the data collected, each of the 300
triads (5 triads for each of 60 detected outliers) was rated
a minimum of 1 and maximum of 5 times. Each of the
60 outliers was rated a minimum of 9 and maximum of 14
times with an average of 11.5.

We received a total of 690 ratings (23 participants rat-
ing 30 triads each). For each rating we assign an accuracy
value of 1 if the odd sample selected by the participant
matches the ‘outlier’ detected by our algorithm versus the
two ‘inliers’ of the triad, and an accuracy of 0 otherwise.
The average accuracy from 690 ratings was 0.53. A sec-
ond measure aimed to evaluate the accuracy per outlier.
For this, the 690 ratings were grouped per outlier, and an
average accuracy was estimated for each outlier. Results
showed that each outlier achieved an average accuracy of
0.54 with standard deviation of 0.25. One particular outlier
was never rated as the odd one by the participants (average
accuracy of 0 from a total of 14 ratings). Conversely, four
outliers were always in agreement with the subjects’ rat-
ings (average accuracy of 1 for about 10 ratings for each
outlier). Overall, there was agreement well above the ran-
dom baseline of 33% between the automatic outlier detec-
tion and the odd one selections made by the participants.

7. DISCUSSION

Several steps in the overall methodology could be imple-
mented differently and audio excerpts and features could
be expanded and improved. Here we discuss a few critical
remarks and point directions for future improvement.

Numerous audio features exist in the literature suitable
to describe musical content in sound recordings depend-
ing on the application. Instead of starting with a large set
of features and narrowing it down to the ones that give
best performance, we chose to start with a small set of
features selected upon their state-of-the-art performance
and relevance and expand the set gradually in future work.
This way we can have more control of what the contri-
bution is from each feature and each music dimension,
timbre, rhythm, melody or harmony, as considered in this
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Figure 4. Number of outliers for each of the 31 countries in our world music collection (grey areas denote missing data).

study. The choice of features and implementation parame-
ters could be improved, for example, in this study we have
assumed descriptor summaries over 8-second windows but
the optimal window size could be investigated further.

We used feature learning methods to learn higher-level
representations from our low-level descriptors. We have
only tested three methods, namely PCA, NMF, LDA, and
did not exhaustively optimise parameters. Depending on
the data and application, more advanced methods could be
employed to learn meaningful feature representations [11].
Similarly, the classification and outlier detection methods
could be tuned to give better accuracies.

The bigger aim of this work is to investigate similar-
ity in a large collection of world music recordings. Here
we have used a small dataset to assess similarity as esti-
mated by classification and outlier detection tasks. It is
difficult to gather representative samples of ‘all’ music of
the world but at least a larger and better geographically
(and temporally) spread dataset than the one used in this
study could be considered. In addition, more metadata can
be incorporated to define ground truth similarity of music
recordings; in this study we have used country labels but
other attributes more suitable to describe the music style
or cultural proximity can be considered. An unweighted
combination of features was used to assess music similar-
ity. Performance accuracies can be improved by exploring
feature weights. What is more, analysing each feature sep-
arately can reveal which music attributes characterise most
each country or which countries share aspects of rhythm,
timbre, melody or harmony.

Whether a music example is selected as the odd one out
depends vastly on what it is compared with. Our outlier de-
tection algorithm compares a single recording to all other
recordings in the collection (1 versus 2169 samples) but
a human listener could not do this with similar efficiency.
Likewise, we could only evaluate a limited set of 60 out-
liers from the total of 557 outliers detected due to time lim-
itations of our subjects. We evaluated comparisons from
sets of three recordings and we used computational meth-
ods to create ‘easy’ triads, i.e. select three recordings from

which one is as different as possible compared to the other
two. However in some cases, as also reported by some
of the participants, the three recordings were very differ-
ent from each other which made it difficult to select the
odd one out. In future work this could be improved by
restricting the genre of the triad, i.e. selecting three audio
examples from the same music style or culture. In addition
the selection criteria could be made more specific; in our
experiment we let participants decide on ‘general’ music
similarity but in some cases it is beneficial to focus on, for
example, only rhythm or only melody.

8. CONCLUSION

In this study we analysed a world music corpus by ex-
tracting audio descriptors and assessing music similarity.
We used feature learning techniques to transform low-level
feature representations. We evaluated the learned space in
a classification manner to check how well recordings of
the same country cluster together. In addition, we used
the learned space to detect outliers and identify recordings
that are different from the rest of the corpus. A listening
test was conducted to evaluate our findings and moderate
agreement was found between computational and human
judgement of odd samples in the collection.

We believe there is a lot for MIR research to learn from
and to contribute to the analysis of world music recordings,
dealing with challenges of the signal processing tools, data
mining techniques, and ground truth annotation procedures
for large data collections. This line of research makes a
large scale comparison of recorded music possible, a sig-
nificant contribution for ethnomusicology, and one we be-
lieve will help us understand better the music cultures of
the world.
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ABSTRACT

In this work we present a framework containing open
source implementations of multiple music structural seg-
mentation algorithms and employ it to explore the hy-
per parameters of features, algorithms, evaluation metrics,
datasets, and annotations of this MIR task. Besides testing
and discussing the relative importance of the moving parts
of the computational music structure eco-system, we also
shed light on its current major challenges. Additionally, a
new dataset containing multiple structural annotations for
tracks that are particularly ambiguous to analyze is intro-
duced, and used to quantify the impact of specific anno-
tators when assessing automatic approaches to this task.
Results suggest that more than one annotation per track is
necessary to fully address the problem of ambiguity in mu-
sic structure research.

1. INTRODUCTION

In recent years, numerous open source packages have been
published to facilitate research in the field of music infor-
mation retrieval. These publications tend to focus on a
specific part of the standard methodology of MIR: audio
feature extraction (e.g., Essentia [2], librosa [14]), datasets
(e.g., SALAMI [22], MSD [1]), evaluation metrics (e.g.,
mir eval [20]), and task-specific algorithm implementations
(e.g., segment boundary detection [13], pattern discovery
[16], beat tracking [4]). What is often missing are inte-
grated frameworks where the choice of different moving
blocks of the whole process (i.e., feature design, algorithm
implementations, annotated datasets and evaluation met-
rics) can be interchanged in a seamless fashion, allowing
the type of in-depth comparative studies on state of the
art techniques that are virtually impossible in the context
of MIREX 1 : e.g., what combination of features or pre-
processing stages maximize results? What mixture of ap-

1 One exception would be MARSYAS [25], where feature extraction,
algorithm implementations for a limited number of tasks, dataset annota-
tions, and evaluations coexist in a single environment.

c© Oriol Nieto, Juan Pablo Bello.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Oriol Nieto, Juan Pablo Bello. “Sys-
tematic Exploration of Computational Music Structure Research”, 17th
International Society for Music Information Retrieval Conference, 2016.

proaches should be used if highly accurate boundary lo-
calization is important? What implementations are more
resilient to changes in data, features or prior information?

In this work we introduce an open source framework to
facilitate reproducibility and encourage research in music
structural segmentation. Building on top of existing open
projects [9, 14, 20, 22], this framework combines feature
computation, algorithm implementations, evaluation met-
rics, and annotated datasets in a standalone software fo-
cused on this area of MIR. Besides describing the architec-
ture of this framework, we show its potential by compiling
a new dataset composed of poly-annotated tracks carefully
selected by the presented software, and conducting a se-
ries of experiments to systematically explore the impact of
each moving part of this task. These new data and explo-
rations reinforce the notion that this task is highly ambigu-
ous [3], since we show that the ranking of computational
approaches in terms of performance depends not only on
what feature or dataset is employed, but on which annota-
tion is used as reference.

The rest of this article is organized as follows: In Sec-
tion 2 the framework is introduced. Section 3 discusses the
creation of the new dataset. In Section 4 the explorations
of the different moving parts of the structural segmenta-
tion eco-system are presented. Finally, in Section 5, the
conclusions are drawn.

2. MUSIC STRUCTURE ANALYSIS
FRAMEWORK

MSAF 2 is an open source framework written in Python
that allows to thoroughly analyze the entire music structure
segmentation eco-system. In this section we provide an
overview of this MIR task and a description of the most
relevant characteristics of this framework.

2.1 Structural Segmentation

This task, whose main goal is to automatically identify
the large-scale, non-overlapping segments of a given au-
dio signal (e.g., verse, chorus), has been investigated in
MIR for over a decade [19], and nowadays it is still one
of the most active in MIREX [23]. Potential applications
to motivate its research are numerous, e.g., improve intra-
track navigation, yield enhanced segment-level music rec-

2 https://github.com/urinieto/msaf
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ommendation systems, produce educational visualisation
tools to better understand musical pieces. This task is of-
ten divided in two subproblems: boundary detection and
structural grouping. The former identifies the beginning
and end times of each music segment within a piece, and
the latter labels these segments based on their acoustic sim-
ilarity.

Several open source implementations to approach this
problem have been published [10, 12, 13, 26], but given
the differences in feature extraction, datasets, and evalu-
ation metrics, it can be challenging to easily compare their
results (e.g., Weiss’ implementation [26] expects features
computed with Ellis’ code [5]; Levy’s implementation [10]
is only available in the form of a Vamp Plugin; McFee’s
publication [12] reports non-standard evaluation metrics
with the first and last boundary removed). Our proposed,
open-source MSAF seeks to address these issues by inte-
grating these various components.

In the following subsections, the main parts of this
framework are described. MSAF is written such that any
of these parts could be easily extended.

2.2 Features

Most music structure algorithms accept different types of
features in order to discover structural relations in har-
mony, timbre, loudness or a combination of them. Here we
list the set of features that MSAF can compute by making
use of librosa [14]: Pith Class Profiles (PCPs, representing
harmony), Mel-Frequency Cepstral Coefficients (MFCCs,
representing timbre), Tonal Centroids (or Tonnetz [7], rep-
resenting harmony), and Constant-Q Transform (CQT, rep-
resenting harmony, timbre and loudness).

Each of these features depend on additional analysis pa-
rameters such as sampling rate, FFT size, and hop size.
Furthermore, a beat-tracker [4] (contained in librosa) is
employed to aggregate all the features at a beat level, thus
obtaining the so-called beat-synchronous representations.
This process, which is common in structural segmentation,
reduces the number of feature vectors while introducing
tempo invariance. In this work we rely on this type of fea-
tures exclusively, even though MSAF can operate both on
beat- or frame-synchronous descriptors.

2.3 Algorithms

Algorithms of this task are commonly classified based
on the subtask that they aim to solve. MSAF includes:
seven algorithms that detect boundaries, and five that group
structure (see Table 1).

The implementations in MSAF are either forked from
the public repositories of their original publications [10,
12, 13, 26] or implemented from scratch when no access
to the source code is available. Some differences in the
results might arise given the difficulty of exactly recreating
all implementation details, even though these differences
appear to be minor.

Algorithm Boundary Grouping
2D-Fourier Magnitude Coeffs [15] No Yes

Checkerboard Kernel [6] Yes No
Constrained Cluster [10] Yes Yes

Convex NMF [18] Yes Yes
Laplacian Segmentation [12] Yes Yes

Ordinal LDA [13] Yes No
Shift Invariant PLCA [26] Yes Yes
Structural Features [21] Yes No

Table 1: Approaches included in MSAF and used in the experi-
ments.

2.4 Evaluation Metrics

Structural segmentation employs multiple metrics to eval-
uate each of its two subproblems. For boundary detection,
the Hit Rate is the most standard one, where the estimated
boundaries are considered “hits” if they fall within a cer-
tain time window from the reference ones. This yields Pre-
cision (how many estimated boundaries are correct) and
Recall (how many reference boundaries were estimated)
scores, which are weighted with the standard F -measure.
The time windows are typically 3 or 0.5 seconds. More-
over, sometimes the first and last boundaries are “trimmed”
(i.e., not considered) given the fact that they should corre-
spond to the beginning and end of the track, which should
be trivial to detect. It has been shown that having a stronger
weight on Precision than Recall tends to better align with
perception [17], therefore this weight parameter is also part
of MSAF. The other standard metric to report the quality
of the boundaries is the Median Deviation [24], where the
median deviation from each estimated boundary to its clos-
est reference, and vice versa, are reported.

The most standard metric to assess the quality of the
structural grouping subproblem is the Pairwise Frame
Clustering [10]. This metric compares each pair of frames
by checking whether they belong to the same label (or clus-
ter), both for the estimation and reference. The ratio be-
tween the two sets of pairs over the number of similar pairs
in the estimation yields the Precision metric, while Recall
is the ratio between the two sets over the number of sim-
ilar pairs in the reference. Again, the F -measure weights
these two scores. Finally, an alternative metric named Nor-
malized Conditional Entropy [11], based on the entropy of
each frame between the estimation and reference, is also
reported. This metric is formed by the under- and over-
segmentation scores, which, again, can be compacted in a
single score with the F -measure.

These metrics are reported in MIREX, and are trans-
parently implemented in mir eval [20], which MSAF em-
ploys.

2.5 Datasets

The following annotated datasets are the most common
for assessing structural segmentation: Isophonics – 298
annotated tracks mostly of popular music 3 ; SALAMI –
two human references plus three levels of annotation per

3 http://isophonics.net/datasets
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track [22]. It contains 769 musical pieces ranging from
western popular music to world music 4 ; The Beatles TUT
– refined version of 174 annotations of The Beatles cor-
rected and published by members of the Tampere Univer-
sity of Technology 5 .

Additionally, we make use of these uncommon and
novel datasets: Cerulean – 104 songs collected by a com-
pany, subjectively deemed to be challenging tracks within
a large collection. The genre of the songs varies from clas-
sical to heavy metal; Epiphyte – another industrial set of
1002 tracks composed mainly of pop music songs; Sargon
– small set of 30 minutes of heavy metal tracks released
under a Creative Commons license; SPAM – new dataset
discussed in the next section.

All of these datasets are converted to the JAMS for-
mat [9], which is the default format that MSAF employs,
and are publicly available in the MSAF repository (except
Cerulean and Epiphyte, which are privately owned). This
format is JSON-compatible and allows for multiple anno-
tations in a single file for numerous tasks operating on a
given audio track, making it ideal for the purposes of this
work.

3. STRUCTURAL POLY-ANNOTATIONS OF
MUSIC

SPAM is a new dataset composed of 50 tracks sampled
from a large collection containing all the previously dis-
cussed sets (a total of 2,173 tracks). Following an approach
inspired by [8], all MSAF algorithms were run on these
2,173 tracks. The tracks were then ranked based on the
average Hit Rate F -Measure with 3 seconds window (i.e.,
the most standard metric for boundary detection) across all
algorithms. Formally, the rank is computed using the mean
ground-truth precision (MGP) score, defined as follows:

MGPi(B, g) =
1

M

M∑

j=1

g(bij) (1)

whereB ∈ RN,M is the matrix containing all the boundary
estimations bij ∈ B for track i ∈ [1, N ] using algorithm
j ∈ [1,M ], and g is the evaluation function (i.e., Hit Rate
at 3 seconds). Ranking the tracks using this metric yields
a list sorted by how challenging these tracks are for auto-
matic segmentation.

The SPAM dataset is composed by the 45 most chal-
lenging tracks (i.e., the 45 at the bottom of the ranked list)
plus the 5 least challenging (i.e., the top 5 tracks in the list).
The number of tracks was kept small to facilitate the col-
lection of five additional annotations using the same guide-
lines as in SALAMI. These five annotations were collected
by music students (four graduates and one undergraduate)
from the Steinhardt School at New York University, with
an average number of years in musical training of 15.3 ±
4.9, and with at least 10 years of experience as players

4 Only the first half of the full SALAMI annotations were used, since
the authors did not have access to the rest of audio files.

5 http://www.cs.tut.fi/sgn/arg/paulus/
beatles sections TUT.zip

of a musical instrument. The goal was to create a set in
which to explore the variability of structural annotations
across subjects, focusing on the most challenging tracks
(45) while still having a reduced control group (5). This
split could foster further investigation on the differences
between easy and challenging tracks.

The type of music ranges between jazz and blues, clas-
sical, world music, rock, western pop, and live recordings.
Due to legal copyright issues, the audio of these tracks
is not available, however, the features described in Sec-
tion 2.2 are included along with the five annotations for
each of the 50 tracks of SPAM.

4. EXPERIMENTS

In this section we report a series of experiments to fur-
ther explore the task of structural segmentation carried out
using MSAF, classified by the moving parts described pre-
viously. Each experiment can be subdivided based on the
subproblems of boundary detection and structural group-
ing. For each experiment the default parameters are the
following, unless otherwise specified: sampling rate is
11025Hz; FFT and hop sizes are 2048 and 512 samples,
respectively; default feature type is beat-synchronous PCP;
number of octaves and starting frequency for the PCPs are
7 and 27.5Hz, respectively; number of MFCCs is fixed to
14; number of CQT bins, starting at 27.5Hz, is 87; eval-
uation metrics are the F -measures of the Hit Rate with
3 seconds window and the Pairwise Frame Clustering for
boundary detection and structural grouping, respectively;
the boundaries used as input to the structural grouping al-
gorithms are annotated; and the default dataset is The Bea-
tles TUT. Code to reproduce the plots and results is avail-
able online 6 .

4.1 Features

We start by running all MSAF algorithms 7 using differ-
ent types of features. In Figure 1 we can see, as expected,
that the average scores of the boundary algorithms vary
based on the feature types. This aligns with the results of a
two-way ANOVA on the F -measure of the Hit Rate using
the algorithms and features as factors, where the effect on
the type of features is significant (F (3, 3460) = 4.20, p <
0.01). Also as expected, there is significant interaction be-
tween factors (F (12, 3460) = 15.15, p < 0.01), which can
be seen in the plot when observing the poor performance
of the Constrained Clustering algorithm for the Constant-Q
features in comparison with the rest of the features.

A similar behavior occurs when analyzing the perfor-
mance of the structural grouping algorithms, as can be
seen in Figure 2. The two-way ANOVA confirms de-
pendency of the type of features for these algorithms
(F (3, 2768) = 18.07, p < 0.01), with significant inter-
action (F (9, 2768) = 14.5, p < 0.01) mostly due to the
behavior, again, of the Constrained Clustering algorithm

6 https://github.com/urinieto/msaf-experiments
7 Except Ordinal LDA and Laplacian Segmentation, since they only

accept a specific combination of features as input.
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Figure 1: Boundary algorithms’ performance depending
on the type of features.
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Figure 2: Structural algorithms’ performance depending
on the type of features.

when using Constant-Q features. Convex NMF still per-
forms slightly better with this type of features, while the
rest of the algorithms seem to be optimized to operate on
the features suggested in their original publications.

This experiment yields two major points: (i) features
describing timbre information (CQT, MFCCs) seem to
be slightly better than those describing pitch information
(PCPs, Tonnetz) for boundary detection, but the reverse
seems to be true for clustering, and (ii) the Structural Fea-
tures and Convex NMF methods obtain better results when
using CQT, while in their original publications they rec-
ommend using harmonic features such as PCPs.

4.2 Algorithms

The quality of the segment boundaries can impact the re-
sults of the structural grouping subproblem [21]. MSAF
lets us explore this by using the output of several bound-
ary algorithms as input to the structural algorithms. Fig-
ure 3 shows average scores of the structural algorithms in
MSAF. Additionally, the results with annotated boundaries
are used and plotted in the first column. The boundary
methods are sorted from left to right based on their perfor-
mance on The Beatles TUT dataset. As expected, the qual-
ity of the boundary detection process affects the structural
subproblem. A two-way ANOVA on the F -measure of the
Pairwise Frame Cluster, with boundary and structural algo-
rithms as factors, confirms this (F (7, 6920) = 183.10, p <
0.01). A significant interaction between the two factors is
also present (F (28, 6920) = 16.44, p < 0.01), suggest-
ing that the ranking of the algorithms will vary depend-
ing on the boundaries employed. This is confirmed by the
Friedman test, which ranks the structural algorithms us-
ing Structural Features boundaries (F (4) = 242.31, p <
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Figure 3: Performance of the structural algorithms con-
tained in MSAF when using different types of previously
estimated boundaries as input.

0.01) differently than when using Convex NMF bound-
aries (F (4) = 225.05, p < 0.01). For example, the
2D Fourier Magnitude Coefficients method becomes lower
ranked than Convex NMF in the latter case, as can be seen
in the plot.

Interesting conclusions can be drawn: first, some struc-
tural algorithms are more robust to the quality of the
boundaries than others (e.g., 2D-FMC sees a strong impact
on its performance when not using annotated boundaries,
especially when compared with the Laplacian method).
Second, the best performing boundary algorithm will not
necessarily make the results of a structural algorithm bet-
ter, as can be seen in the structural results of C-NMF and
SI-PLCA. To exemplify this, note how SF (which tends
to outperform all other methods in terms of the standard
metric, see Figure 1) produce, in fact, one of the lowest re-
sults in structural grouping for the C-NMF method. On the
other hand, the Laplacian method (which outputs bound-
aries that are comparable to the ones by the Checkerboard
kernel), obtains results on the structural part that are much
better than those by SF. Finally, depending on the bound-
aries used, structural algorithms will be ranked differently
in terms of performance (especially when using annotated
boundaries as input). This is something that is not cur-
rently taken into account in the MIREX competition, and
might be an interesting asset to add in the future for a
deeper evaluation of the subtask of structural grouping.

4.3 Evaluation Metrics

In this section we explore the different results obtained
by MSAF algorithms when assessed using the available
metrics. For boundary detection, the metrics described
in Section 2.4 are explored, which are depicted in Fig-
ure 4a as “Dev E2R” for the median deviations from Esti-
mations to References (R2E for the swapped version), and
“HR n” for the Hit Rate with a time window of n sec-
onds (the w and t indicate the weighted and trimmed ver-
sions, respectively). The median deviations are divided
by 4 in order to normalize the scores within the range
of 0 to 1, and then inversed in order to indicate a bet-
ter performance with a higher score. As expected, scores
are significantly different depending on the metric used,
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Figure 4: Scores of MSAF algorithms depending on eval-
uation metrics.

which is confirmed by the two-way ANOVA of the scores
with metrics and algorithms as factors (the metric effect
is F (7, 9688) = 458, p < 0.01). But perhaps more in-
teresting is the fact that some algorithms perform better
with some metrics than others (as suggested by the in-
teraction effect of the two-way ANOVA: F (42, 9688) =
11.24, p < 0.01). For example, SF is the best algorithm
in terms of the Hit Rate with a 3 seconds window, but it
is surpassed by the Laplacian and OLDA algorithms when
using a shorter window of 0.5, as the Friedman test con-
firms (F (6) = 200.13, p < 0.01) for the ranking of the
Hit Rate with 3 seconds, which is different than the one
for 0.5 seconds (F (6) = 210.67, p < 0.01). Therefore,
we can state that, amongst these algorithms, SF is ideal
if precise boundary localization is not necessary (HR 3),
whereas Laplacian outperforms other methods when this
localization has to be accurate (HR 0.5).

In terms of structural algorithms, two metrics (Pairwise
Frame Clustering and Normalized Conditional Entropies)
are depicted in Figure 4b. A similar behavior occurs
here, where algorithms will be ranked differently depend-
ing on the metric of choice (Friedman test for the struc-
tural algorithms evaluated using the PWF yields F (4) =
230.11, p < 0.01 and different ranking than the one for
NCE, which results in F (4) = 215.12, p < 0.01). Interest-
ingly, all algorithms except Laplacian tend to yield better
results when using the NCE scores. Given these results, it
would be hard to firmly conclude what the best structural
algorithm is for this dataset, since 2D-FMC outperforms
Laplacian when evaluated using the NCE scores, which is
the opposite behavior when using the PWF.

4.4 Datasets

In Figure 5, the average scores for all boundary algorithms
in MSAF on different datasets are depicted. If a dataset
contains more than one annotation per track, the first an-
notator in their JAMS files is used. As expected, differ-
ent results are obtained depending on the dataset, as con-
firmed by the two-way ANOVA on the evaluation met-
ric with dataset and algorithm as factors (dataset effect:
F (5, 16604) = 512.18, p < 0.01). From the plot it can
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Figure 5: Boundary algorithms’ performance depending
on dataset.
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Figure 6: Structural algorithms’ performance depending
on dataset.

also be seen that some algorithms perform better than oth-
ers depending on the dataset, which might indicate that
they are tuned to solve this problem for a specific type of
music. Overall, some datasets seem generally more chal-
lenging than others, the SPAM dataset being the one that
obtains the worst results, which aligns with the method
used to collect their data explained in Section 3.

In terms of the structural algorithms (Figure 6), the two-
way ANOVA identifies significant variation, with a rele-
vant effect on the dataset of F (6, 11875) = 133.16, p <
0.01. Contrasting with the boundary results, the scores for
the SPAM dataset are, on average, one of the highest in
terms of structural grouping. This, by itself, warrants dis-
cussion, since this dataset was chosen to be particularly
challenging from a machine point of view, but only when
taking the boundary detection subproblem into account.
What these results suggest is that, (i) given the human ref-
erence boundaries (which are supposed to be difficult to
detect), the structural algorithms perform well at cluster-
ing the predefined segments, and/or (ii) we might need a
better evaluation metric for the structural subproblem.
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Figure 7: Scores of the boundary algorithms for each hu-
man reference in the SPAM dataset.

4.5 Human References

The last experiment focuses on analyzing the amount of
variation of the MSAF algorithms depending on the an-
notator used. For this purpose, the five annotations per
track of the SPAM dataset become particularly helpful.
Starting with the boundaries, we can see in Figure 7 how
variable the scores become when using different annota-
tors for the same exact set of audio files. The two-way
ANOVA of HR 3 with annotators and algorithms as fac-
tors validates this by reporting a significant annotator ef-
fect (F (4, 1705) = 4.05, p < 0.01). This suggests that
subjectivity plays an important role for this subtask, and
more than one set of boundaries would be actually valid
from a human perspective. Therefore, the idea of a sin-
gle “ground-truth” for boundary detection can potentially
be misleading. Given this amount of variation depending
on the annotator, it is interesting to see that the ranking
also changes, making it difficult to compare algorithm be-
haviors. Even though the Laplacian algorithm performs
the best for the majority of annotators, it is ranked as sec-
ond when using annotator 0 by the Friedman test (F (5) =
21.24, p < 0.01), while it is ranked as first for the rest
of annotators. These results suggest that, given the sub-
jectivity effect in this task, it is indeed important to col-
lect as many references as possible in order to better assess
boundary algorithms.

Lastly, the results of the structural algorithms contrast
with the previously discussed ones. In this case, there is
little dependency on the human reference chosen, as there
is no significant effect for the annotator factor in the two-
way ANOVA (F (4, 1225) = 1.08, p = 0.37), without sig-
nificant interaction (F (16, 1225) = 0.93, p = 0.53). This
advocates that the structural grouping subproblem, when
applied to a dataset where the grouping is not particularly
challenging (as depicted in Figure 6), is not as affected
by subjectivity as the boundary detection one, even though
further analysis with larger and more challenging datasets
—and perhaps with automatically estimated boundaries—
should be performed in order to confirm this.
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Figure 8: Scores of the structural algorithms for each hu-
man reference in the SPAM dataset.

5. CONCLUSIONS

We have presented an open-source framework that facili-
tates the task of analyzing, assessing, and comparing multi-
ple implementations of structural segmentation algorithms
and have employed it to compile a new poly-annotated
dataset and to systematically explore the different moving
parts of this MIR task. These experiments show that the
relative rankings between algorithms tend to change de-
pending on these parts, making it difficult to choose the
“best” computational approach. Results also illustrate the
problem of ambiguity in this task, and it is our hope that the
new SPAM dataset will help researchers to further address
this problem. In the future, we wish not only to include
more algorithms in this open framework, but to have ac-
cess to similar frameworks to encourage research on other
areas of MIR.

6. REFERENCES

[1] Thierry Bertin-Mahieux, Daniel P. W. Ellis, Brian Whitman,
and Paul Lamere. The Million Song Dataset. In Proc of the
12th International Society of Music Information Retrieval,
pages 591–596, Miami, FL, USA, 2011.

[2] Dmitry Bogdanov, Nicolas Wack, Emilia Gómez, Sankalp
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ABSTRACT

Existing collections of annotations of musical structure
possess many strong regularities: for example, the lengths
of segments are approximately log-normally distributed, as
is the number of segments per annotation; and the lengths
of two adjacent segments are highly likely to have an inte-
ger ratio. Since many aspects of structural annotations are
highly regular, but few of these regularities are taken into
account by current algorithms, we propose several meth-
ods of improving predictions of musical structure by using
their likelihood according to prior distributions. We test the
use of priors to improve a committee of basic segmentation
algorithms, and to improve a committee of cutting-edge
approaches submitted to MIREX. In both cases, we are
unable to improve on the best committee member, mean-
ing that our proposed approach is outperformed by sim-
ple parameter tuning. The same negative result was found
despite incorporating the priors in multiple ways. To ex-
plain the result, we show that although there is a correla-
tion overall between output accuracy and prior likelihood,
the weakness of the correlation in the high-likelihood re-
gion makes the proposed method infeasible. We suggest
that to improve on the state of the art using prior likeli-
hoods, these ought to be incorporated at a deeper level of
the algorithm.

1. INTRODUCTION

One reason that the perception of structure in music is such
a complex and compelling phenomenon is that it is a com-
bination of ‘bottom-up’ and ‘top-down’ processes. It is
bottom-up in the sense that a listener first performs group-
ing on short timescales before understanding the grouping
at large timescales, but it is top-down in the sense that one
has global expectations that can affect the way one per-
ceives the music. For example, when hearing a new pop
song for the first time, we expect there to be a chorus; even
on our first hearing, we may identify the chorus partway
through a song and already expect it to repeat later. After
hearing a verse and a chorus, each 32 beats long, we may
expect the bridge to be the same length when it starts.

c© Jordan B. L. Smith, Masataka Goto. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jordan B. L. Smith, Masataka Goto. “Using Priors To
Improve Estimates of Music Structure”, 17th International Society for
Music Information Retrieval Conference, 2016.

Figure 1. Proposed system overview.

This is important to recognize, since structure is am-
biguous: for any piece, there are often multiple ways of
interpreting it. As a result, we might never expect a purely
bottom-up approach to be 100% correct; we need to also
model the top-down influence, or what the listener ‘brings’
to the analysis.

For instance, consider the following analysis of a piece
of music, with the A sections each 10 seconds long, and B
200 seconds long:

[-A-|-A-|-A-|------------B------------]

Even without knowing the piece of music, we can tell this
is an unlikely analysis; it seems wrong to have the seg-
ments of the piece sized so asymmetrically. This example
hints that the space of plausible analyses is limited (even
if it is huge), and that listeners’ intuitions about these lim-
its inform the annotation process. Is there a way to embed
such intuitions into music structure analysis algorithms?
Can we employ a kind of ‘top-down’ critic to assess the
likelihood of a given analysis?

We propose a system to accomplish this, illustrated in
Figure 1. The inputs to the system are: (a) a song to ana-
lyze, and (b) a set of probability density functions (PDFs)
estimated from a corpus of annotations. The input song
is analyzed by a set of algorithms (step 1); the prior likeli-
hood of each output is computed (step 2); and the estimated
description with the highest prior likelihood is chosen (step
3). In contrast to the usual parameter tuning approach, in
which a single parameter setting is fixed after evaluating
performance over a corpus of songs, in our approach pa-
rameters can be tuned for each song, on the basis of prior
likelihood.
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1.1 Related work

Most algorithms do at least some domain knowledge-based
tuning, by putting a lower and/or upper bound on the length
of segments, or by filtering features to reduce variations at
certain timescales. These are important steps because, al-
though musical structure is hierarchical, algorithms rarely
attempt to predict this hierarchy and are evaluated only at a
single level. (This status quo has been challenged by [5].)

However, a few algorithms have made greater use of
domain knowledge, and their success has been notewor-
thy. Among the first optimization-based approaches to
structure analyis was [7], who explicitly sought to define
(in a top-down way) what constitutes a “good” analysis
(i.e., one more likely to be in the space of plausible so-
lutions). Later, [10] estimated the median segment length
of a piece and used this as the preferred segment length in
its search for an optimal segmentation; at the time, their
algorithm outperformed the leader at MIREX. The Auto-
MashUpper system also uses a cost-based approach, re-
warding solutions with “good” segment durations of 2, 4,
or 8 downbeats, and penalizing ones deemed less likely,
like 7 or 9 [2]. In the symbolic domain, [9] also used a
cost-minimization approach, with costs increased for seg-
ments of unlikely duration or unlikely melodic contour; on
one dataset, the approach outperformed a pack of leading
melodic-segmentation algorithms.

The most direct way to use domain knowledge is to
use supervised learning. Two examples include [14, 15],
who each used machine learning to classify short excerpts
as boundaries or not based on their resemblance to other
short excerpts known to be boundaries. The performance
of [15] exceeded the best MIREX result by nearly 10%
f -measure for both 0.5- and 3-second thresholds, an enor-
mous achievement.

Our intuition about what constrains the space of plausi-
ble analyses, as well as the success of previous algorithms
in using domain knowledge and priors learned from cor-
pora, suggest that taking full advantage of this prior knowl-
edge is essential to designing effective algorithms.

In the next section, we survey some of these regularities,
and explore the extent to which prior algorithms adhere to
them. We detail our proposed algorithms and report our
experimental results in Section 3. Alas, despite the solid
foundations, no approach will be found to work. The sig-
nificance of this negative result, and possible explanations
for it, are discussed in Section 4.

2. REGULARITIES

In this section we briefly survey some regularities found in
the SALAMI corpus of annotations [12], and describe the
relationship between these regularities and algorithms that
have participated in MIREX campaigns from 2012–14.

Although the time scale of the SALAMI annotations
was not explicitly constrained in the Annotator’s Guide 1 ,
the length of annotated segments in the SALAMI corpus

1 Available at http://ddmal.music.mcgill.ca/
research/salami/annotations.

(a) log segment length

(b) log number of segments

(c) log ratio to median segment length

Figure 2. Estimated PDFs of three properties for anno-
tations in SALAMI corpus; x-axis gives the value of the
property, y-axis gives its relative probability. PDFs from
large-scale segments shown in black, from small-scale seg-
ments in gray. In (c), the vertical axis is clipped to show
detail; the gray line extends upwards to just over 0.1.

is roughly log-normally distributed, for both hierarchical
levels. Figure 2a shows the PDF of the log segment length
(P (logLi)) for the large and small hierarchical levels in
SALAMI; this and all other PDFs in this paper were found
using kernel density estimation (KDE). The number of seg-
ments within a piece (N ) is also log-normally distributed
(Figure 2b). If we take the log ratio of each segment’s
length to the median length of segments within that piece
(log(Li/Lmed)), we obtain a PDF strongly concentrated at
log (1) = 0 (see Figure 2c), with additional spikes near
±0.693, or log (2) and log (1/2), for segments of twice
or half the median length. There is even more detail if
we look at the log length ratio between adjacent segments
(log(Li/Li+1)), a histogram of which is shown in Fig-
ure 3. Note that all the prominent peaks occur at ratios
of small numbers. This makes sense if we consider that
segments are usually a whole number of measures long.
These properties are not specific to SALAMI annotations;
similar distributions were reported by [1] for a completely
different corpus of annotations.

How closely do algorithms model these properties of
the annotations? We looked at three years of participants
in the MIREX Structural Segmentation task, 2012–14, and
estimated PDFs for the same properties. Some examples
are shown in Figure 4. Figure 4a shows PDFs for segment
length estimated from each algorithm individually: some
hew closely to the ground truth, but the majority underes-
timate the mean segment length. (Since precision is harder
to achieve than recall, oversegmentation usually leads to
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Figure 3. Histogram of log(Li/Li+1) estimated from
SALAMI annotations (y-axis truncated at 1/3 maximum).
As shown, nearly every spike represents an integer ratio of
segment lengths.

better evaluation scores. [13])
If segment length seems like a weak prior, consider

instead Figure 4b, which compares PDFs for the log ra-
tio of adjacent segment length. The characteristic side-
lobes representing the high frequency of half- and double-
length segments are prominent in only two of the algo-
rithms, RBH1 and RBH3 (2013). This is likely because
the algorithm [8] expects boundaries to occur on an 8-
measure metrical grid, and snaps estimated boundaries to
this grid. Performance (evaluated with f -measure and
3-second threshold) was mixed: RBH1 was close to the
state of the art in 2013, while RBH3 was below-average. 2

On the other hand, the next-strongest side-lobes belong to
SUG1, the second-best algorithm overall. SUG1 uses a
convolutional neural network to classify short excerpts as
containing boundaries or not; the method ends by pick-
ing peaks from a boundary-likelihood curve, without post-
processing [15]. Although SUG1 obviously learns from
annotated data, it learns from low-level features (a mel
spectrogram) rather than high-level attributes like segment
length ratios.

Does the fitness of the algorithms to the SALAMI-
derived priors actually have an impact on their perfor-
mance? We found this to be true by looking at the correla-
tion between algorithm performance and prior likelihood.
We took the output of the 18 unique segmentation algo-
rithms that participated in MIREX from 2012–14 3 , and
for each algorithm, computed the average log-likelihood
of its estimated segments based on the KDE-derived PDFs
from SALAMI. We also took the average performance of
the algorithms on the three boundary retrieval metrics (f -
measure, precision, and recall) with a threshold of 3 sec-
onds. Figure 5 shows the correlation between the mean
log-likelihoods (of various segment properties) and the
evaluation metrics. There is a weak to moderate correla-

2 Evaluation results in this paper differ from those reported at MIREX,
since we re-evaluated the algorithm output with a 5-second ‘warm-up’
applied: boundaries within the first and final 5 seconds of pieces were
ignored. This leads to lower results overall but better differentiation be-
tween algorithms.

3 Of the 24 participants in these years, 5 used the same segmentation
algorithm as another, and the data for one (FK2) were posted later than
the others, and were excluded.

(a) PDFs of segment duration (in seconds)

(b) PDFs of log ratio of length of adjacent segments

Figure 4. PDFs of properties estimated from SALAMI
annotations (black dotted line) and from the output of
MIREX algorithms (each algorithm in a different colour).

tion between likelihood and f -measure for each of these
properties, usually attributable to a strong correlation be-
tween likelihood and either precision or recall.

We have seen that most algorithms deviate substantially
from the corpus; the algorithms’ descriptions simply don’t
‘look’ like the ground truth. Also, there is some evidence
that an algorithm’s accuracy is related to the prior likeli-
hood of its output. Hence, it seems reasonable to ask: can
we improve on these algorithms, or any set of algorithms,
by maximizing their fitness to the priors?

3. USING PRIORS TO IMPROVE A COMMITTEE

Our proposed system is simple: for a single audio file,
(1) run several existing structural analysis algorithms, (2)
compute the log-likelihood of each prediction with respect
to a corpus, and (3) choose the output that maximizes this.
(See Figure 1.) For each of these steps, there are many
ways to proceed.

3.1 Assembling a committee

We assembled two committees of algorithms: a commit-
tee of multiple parameterizations of two basic approaches
(Foote [3] and Serra et al. [11]), and a committee of ap-
proaches drawn from MIREX. In the first case, we test
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Figure 5. Scatter plots of mean log likelihood of algo-
rithm output (x-axis) and f -measure, precision and recall
(y-axis), for 18 MIREX segmentation algorithms, 2012–
14. Correlations (Pearson’s R) and lines of best fit are
shown.

whether a set of more strictly bottom-up segmentation ap-
proaches can be improved with the top-down likelihood-
maximizing process; in the second case, we test whether a
set of already-optimized algorithms can also be improved.

Foote uses a checkerboard kernel to identify discontinu-
ities between homogeneous regions in a self-similarity ma-
trix (SSM), and his remains a classic approach to segmen-
tation. Although surpassed in evaluations such as MIREX,
the simplicity and effectiveness of the algorithm means it
is still commonly used as a model to improve upon (e.g.,
see [4]). In contrast to Foote, Serra et al. [11] aim to use
both repetition and novelty to locate boundaries. In prac-
tice, both algorithms require several design choices: which
audio features to use, what amount of smoothing to apply,
etc. We ran each algorithm with a small factorial range
of settings, including three features (HPCP, MFCCs, and
tempograms), for a total of 40 unique settings—hence, 40
committee members. We ran the algorithms on 773 songs
within the public SALAMI corpus (version 1.9). Fea-
ture extraction and algorithm computation were both easily
handled using MSAF [6].

The output of the algorithms that participated in
MIREX is publically available, so we simply assembled

it, along with the reported algorithm performance, for a
MIREX committee of 23 members. We restricted our-
selves to the SALAMI portion of the MIREX evalua-
tion, which overlaps significantly with the public half of
SALAMI but is not identical.

3.2 Computing likelihoods

We looked at the distribution of several attributes of the
SALAMI corpus, listed below. Of these, A1−4 are es-
timated on a per-segment basis and A5−9 are global at-
tributes of a description.

• A1 Segment length (Li)
• A2 Fractional segment length (Li / song length)
• A3 Ratio of Li to median segment length
• A4 Ratio of adjacent segment lengths (Li/Li+1)
• A5 Median segment length (median of Li)
• A6 Number of segments
• A7 Minimum segment length
• A8 Maximum segment length
• A9 Standard deviation of segment length

For attributes A1−4, we took the average across seg-
ments. Although log likelihoods are designed to be
summed, taking the sum of logP (Li) would punish de-
scriptions with more boundaries, regardless of how proba-
ble the segments are. (In fact, we did test taking the sum
instead of the mean across segments, and the results were
generally much poorer.)

3.3 Electing a winner

Once we have computed all of the log likelihoods, how
should they be combined, and how should we use these
values to elect an answer? Without any a priori reason to
prefer one over another, we tested multiple approaches:

• choose the description that maximizes the likelihood
of attribute Ai;

• choose the description that maximizes a summary
statistic over all attributes;

• use a linear model to predict f -measure based on the
likelihoods;

• use a linear model with interactions;
• use a quadratic model.

As two summary statistics, we used the sum and the
minimum of the log likelihoods of Ai. Using the sum op-
timizes the general fitness; using the minimum penalizes
descriptions with any unlikely attributes.

3.4 Experiment and results

With 5-fold cross-validation, we tested all versions of the
algorithm, using both the Foote/Serra and MIREX com-
mittees. For each fold, the prior PDFs were estimated only
using annotations from the training set.

As a baseline, we used simple parameter tuning: i.e.,
simply pick the committee member with the greatest aver-
age success on the training set. For reference, we also com-
puted the mean f -measure of all committee members, and
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Attribute f (3 sec) f (0.5 sec)
A1 (mean) 0.4230 0.1051
A2 (mean) 0.4156 0.0958
A3 (mean) 0.4176 0.1140
A4 (mean) 0.4194 0.1072

A5 0.3597 0.0863
A6 0.3781 0.0991
A7 0.0603 0.0124
A8 0.3907 0.0961
A9 0.3956 0.0950∑
Ai 0.4260 0.1093

Min Ai 0.4206 0.1046
Linear model 0.4399 0.0845

Interactions model 0.4451 0.0688
Quadratic model 0.4494 0.0739

Baseline 0.4439 0.1151
Committee mean 0.2826 0.0691
Theoretical max 0.6015 0.2572

Table 1. Average f -measure (at two thresholds) achieved
by different decision criteria for Foote-and-Serra commit-
tee.

the theoretical maximum—i.e., the average of the highest-
scoring estimates for each song.

The results are shown in Tables 1 and 2. Among all
the variations of the proposed method, there were only two
instances that surpassed the baseline: the quadratic and in-
teractions models for the Foote-Serra committee, with a
3-second tolerance level. They surpassed the baseline f -
measure by 0.0055 and 0.0012, respectively. Given the
number of trials conducted, this small amount of success
could easily have come by chance.

4. DISCUSSION

Negative results are not normally conclusive: in this case,
the reader may suspect that with a small twist, our pro-
posed method may yet succeed. For example, what if
we examined subsets by genre, or considered conditional
probabilities? In fact, this process of tweaking is how our
experiments came about. Our first effort to solve the prob-
lem used a small committee of solely Foote-based algo-
rithms, and a set of four log likelihoods. When tests with
this initial system gave us a negative result, we tried vary-
ing each of the parts of the system—adding more mem-
bers to the committee, including more PDFs, using in-
creasingly sophisticated regression approaches—until we
had assembled the large-scale experiment reported here.
And we conducted several more informal tests—looking
at subsets of the data, varying the method of characterizing
the PDFs (instead of with KDE, they can be modelled with
plain histograms, or normal curves can be fitted to some
distributions), looking at subcommittees (e.g., removing
top-performing and low-performing outlier members) and
computing two-dimensional priors (to model, for example,
the fact that segment length is not independent of when a
segment begins)—all to no avail.

Attribute f (3 sec) f (0.5 sec)
A1 (mean) 0.6273 0.2733
A2 (mean) 0.3487 0.0996
A3 (mean) 0.3487 0.0996
A4 (mean) 0.3487 0.0996

A5 0.3916 0.1385
A6 0.3768 0.1594
A7 0.3487 0.0996
A8 0.4662 0.1356
A9 0.4233 0.1514∑
Ai 0.6273 0.2733

Min Ai 0.6273 0.2733
Linear model 0.5591 0.4005

Interactions model 0.6273 0.4005
Quadratic model 0.6273 0.4005

Baseline 0.6273 0.4005
Committee mean 0.2826 0.0691
Theoretical max 0.7345 0.5157

Table 2. Average f -measure (at two thresholds) achieved
by different decision criteria for MIREX committee.

The consistency of the negative result—only two trials
out of 56 exceeded the baseline, and only by the slimmest
of margins—suggests a dead end. But in order to draw
conclusions from this negative result, we must try to un-
derstand why the approach failed.

Earlier, in Figure 5, we saw that algorithm performance
could, over many trials, correlate with the prior likelihood
of their output. But what happens when we dig deeper
and look at the relationship between each individual out-
put’s correctness and its likelihood, as in Figure 6? On the
one hand, there is a clear positive trend overall, since there
are no examples in the upper-left corner—that is, there are
no predictions that have low likelihood but that are close
to correct. And the examples with the highest f -measure
are also among those with the highest likelihoods. Thanks
to this relationship, the committees can, despite the noise,
generally choose an output that is at least, or slightly bet-
ter than, the committee’s average; that’s why, in Tables 1
and 2, nearly all of the algorithms exceeded the average
result of the committee.

On the other hand, trying to find the high-f -measure
predictions based on their prior likelihood is clearly futile
when we consider only the rightmost region of the plot, a
zoomed-in portion of which is shown in the lower part of
Figure 6. Even these predictions, with the greatest fit to the
priors, range widely in accuracy: there are plenty above the
baseline (0.44), but also plenty below it, including a large
number of predictions that contain zero correct boundaries.
Figure 6 shows that having a high log-likelihood is a nec-
essary but not sufficient condition to be correct, and it is a
condition that most algorithms already achieve.

The uppermost points in Figure 6 represent a few lucky,
perfect estimates of the true structure. Their distribution
reveals another important point: that although the prior
PDFs derive from the ground truth, the prior likelihood of
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Figure 6. Above: scatter plot of
∑

logP (Ai) (x-axis)
vs. f -measure (y-axis, 3-second threshold) of algorithm
outputs for Foote/Serra committee on all data. (The heavy
horizontal lines are caused by the fact that f -measure is
often the product of common fractions.) Below: inset of
plot indicated by rectangle.

many annotations is moderate. The fat tails of the PDFs in
Figure 2 represent a large set of descriptions that are un-
likely to ever be predicted by a prior likelihood-based ap-
proach. For example, consider the analyses shown in Fig-
ure 7. 4 One algorithm achieved a perfect f -measure (with
3-second threshold), and the likelihood of the description
(measured with respect to attribute A4) was close to that
of the annotated description. But a second estimate had a
slightly higher prior likelihood thanks to its more consis-
tent segment lengths, and a very poor f -measure.

To sum up the factors that appear to limit the effective-
ness of our approach:

1. Although a high f -measure tends to come with
a higher prior likelihood, the reverse is not true:
plenty of highly probable descriptions are very poor.

2. The moderate correlation between algorithm suc-
cess and prior likelihood is irrelevant, since we
are interested only in the high-likelihood region of
estimated descriptions.

4 Although the MIREX data are anonymized, many songs can be iden-
tified by comparing the ground truth to known datasets. [13]

Figure 7. Two algorithmic estimates, compared to the
ground truth (middle). The estimates differ somewhat in
the likelihood of A4 (adjacent segment length), but dras-
tically in f -measure. The song is “Rock With You” by
Michael Jackson, SALAMI ID 1616.

3. Among high-likelihood descriptions, the correlation
between success and likelihood is much weaker:
many likely descriptions are poor, and many anno-
tations have low likelihood.

5. CONCLUSION AND FUTURE WORK

We proposed and tested a novel committee-based approach
to structural analysis. We motivated the approach by dis-
cussing the strong regularities displayed by annotations of
music structure. But after a long stretch of negative results,
we have concluded that the approach seems unviable: the
relationship between a description’s prior likelihood and
its evaluated score seems to be too weak, especially in the
high-likelihood region we are interested in.

We began the article by pointing out some mismatches
between the properties of algorithmic estimates of struc-
ture and the ground truth, and we suggested that this
may be because algorithms do not model top-down fac-
tors in perception. For a listener, top-down factors interact
with bottom-up factors; in contrast, our algorithm applies
bottom-up considerations first (by collecting the commit-
tee of estimates), and then applies the top-down considera-
tions post hoc. This may be the central weakness of our al-
gorithm. Perhaps, if the top-down influence were modelled
earlier on, an estimate like the top one in Figure 7 could be
fine-tuned, the boundaries shifted slightly to give a more
probable output, rather than rejected early on because of
its low likelihood. One algorithm that is ready to test this
as future work is the optimization approach of [10]. Al-
though the authors model only a few basic priors, it could
be improved by including more.
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ABSTRACT

Music structural segmentation (MSS) studies to date
mainly employ audio features describing the timbral, har-
monic or rhythmic aspects of the music and are evaluated
using datasets consisting primarily of Western music. A
new dataset of Chinese traditional Jingju music with struc-
tural annotations is introduced in this paper to complement
the existing evaluation framework. We discuss some statis-
tics of the annotations analysing the inter-annotator agree-
ments. We present two auditory features derived from the
Gammatone filters based respectively on the cepstral anal-
ysis and the spectral contrast description. The Gammatone
features and two commonly used features, Mel-frequency
cepstral coefficients (MFCCs) and chromagram, are eval-
uated on the Jingju dataset as well as two existing used
ones using several state-of-the-art algorithms. The investi-
gated Gammatone features outperform MFCCs and chro-
magram when evaluated on the Jingju dataset and show
similar performance with the Western datasets. We iden-
tify the presented Gammatone features as effective struc-
ture descriptors, especially for music lacking notable tim-
bral or harmonic sectional variations. Results also indicate
that the design of audio features and segmentation algo-
rithms should be adapted to specific music genres to inter-
pret individual structural patterns.

1. INTRODUCTION

Music is primarily an event-based phenomenon compris-
ing a series of musical elements such as melody and har-
mony that unfold in time. Both human listening and anal-
ysis activities can identify the musical structure of a piece
that divides its contents into sections each featuring their
own characteristics. Music information retrieval (MIR)
is a research field concerning the extraction of meaning-
ful information from the music content for real world pur-
poses. As a popular MIR task, Music structural segmen-
tation (MSS) concerns dividing music into structural parts
by giving it boundaries, hence generating high-level music
descriptions.

c⃝ Mi Tian, Mark B. Sandler. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Mi Tian, Mark B. Sandler. “Music Structural Segmentation Across
Genres with Gammatone Features”, 17th International Society for Music
Information Retrieval Conference, 2016.

Datasets used to evaluate MIR systems consist mainly
of Western popular or contemporary music. The acqui-
sition of non-Western datasets can be highly valuable to
combat the Western bias within current MIR paradigm [4,
18]. Understandings of the music structure can be genre-
dependent and a segmentation algorithm designed for one
corpus may have vague assumptions for another. Smith
studied several segmentation algorithms and suggests that
algorithms designed for the structural analysis of Western
pop music are widely applicable beyond the Western con-
text [21]. Nonetheless, the evaluation corpora used in [21]
are still Western centric and collected on a basis of general
structural coherence. One primary motivation of this work
is to include more challenging genres to analyse the music
structure beyond the Western scenario. One of these gen-
res is Jingju, also known as Beijing Opera or Peking Opera,
which is one of the most representative genres of Chinese
traditional music. An analytical discovery of its song struc-
ture will greatly assist its popularisation and subsequent
applications such as browsing and indexing. Although it
offers intriguing research topics to challenge the existing
MIR tools, little work has been done to understand its con-
tent using computational methods until very recent years
with its structural analysis largely absent from the litera-
ture [1]. It should be noted that the song structure has to be
differentiated from the structure of a full Jingju play, where
the former relates to only the arias part of the latter [27].
In this paper, we include Jingju as a new genre in the MSS
study and address the analysis of its song structure.

Various audio features have been used for the structural
description of music capturing mainly its harmonic, tim-
bral or rhythmic aspects [16]. A chromagram [7], also de-
noted Harmonic pitch class profiles (HPCP), along with its
many variants are the most popular features for the struc-
tural analysis of Western pop music. The chromagram is a
B-dimensional vector representation denoting the energy
of each semitone distributed in a chromatic scale, where
B is the number of semitones in an octave. The Mel fre-
quency cepstral coefficients (MFCCs) feature is among the
most used timbre descriptors for MSS studies. It mod-
els the shape of the spectral envelope by describing the
frequency spectrum aligned on a Mel scale [10]. Rhyth-
micity may identify music structure beyond the timbral or
harmonic variations. It is however much less employed
compared to MFCCs and the chroma features [16]. The
classical time-frequency (TF) representations used for tim-
bre research are based on the short-time Fourier transform
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(STFT) of the audio signal. Although MSS is considered a
high-level task involving human perception, auditory cues
are barely incorporated in the commonly used audio fea-
tures. As the second main motivation of this work, we will
explore novel timbre features modelling the frequency res-
olution of the human auditory system to describe the music
structure.

This paper is organised as follows. Section 2 introduces
the background of Jingju music and the related work on
auditory features. We present the new Jingju dataset in
Section 3. The investigated Gammatone features are pre-
sented in Section 4 and are evaluated in a MSS experiment
introduced in Section 5. Section 6 is devoted to analyse the
results. Finally we conclude this work in Section 7.

2. BACKGROUND

Compared to the spectrogram which displays the TF com-
ponents of an audio signal mapped to their physical inten-
sity levels, auditory representations attempt to emphasise
its perceptually salient aspects. The Gammatone func-
tion has been widely used to derive the TF representa-
tion modelling human auditory responses of sound and
has various applications in research areas such as audi-
tory scene analysis, speech recognition and audio classi-
fication [19, 20, 25]. In [19], features derived from the
cepstral analysis of Gammatone filterbank outputs outper-
form the conventional MFCC and perceptual linear predic-
tion (PLP) features in a speech recognition experiment. In
a music and audio genre classification study, features ex-
tracted from the temporal envelope of a Gammatone filter-
bank surpass standard features such as MFCCs [12]. In this
paper, we present new features derived from Gammatone
filters to describe the music timbre and investigate their ap-
plications in music structural segmentation.

Distinct from Western pop music commonly used to
evaluate MSS algorithms, Jingju may hold very charac-
teristic music form. Repetitive harmonic structures such
as the chorus and verse sections typically found in West-
ern music are hardly present in Jingju. Here we provide
some essential background of this genre. The song lyrics
are organised in a couplet structure which lays the basis of
the music structural framework. A couplet contains two
melodic lines performed by the singer with background
accompaniments. Although following certain melodic,
rhythmic and instrumentation regularities, each couplet un-
folds in a temporal order and is hardly repeated with an-
other. A passage of melodic lines expressing specific mu-
sic ideas or motifs can be grouped into a melodic section
which can play a rather integrate role in the overall musical
form. Jingju consists mainly of three identifiable musical
elements: mode and modal systems, metrical patterns, and
melodic-phrases. When composing a Jingju play, modal
systems and modes are firstly chosen to set the overall at-
mosphere. The metrical patterns are then accordingly ar-
ranged to portray specific content in each passage of lyrics
and signal the sectional. Here a melodic-phrase differs
from the Western understanding for a melodic phrase in
the sense that it refers to the melodic progression and the

tone for singing a single character from the lyrics [23]. It
is considered the smallest meaningful unit in Jingju aes-
thetics. Jingju songs also have instrumental connectives to
bridge the sung parts in the arias. Such connectives can
serve as preludes to introduce melodic passages and as in-
terludes to tie together successive couplets. Collectively,
these musical elements are hierarchically united into com-
posite organisations and shape the overall temporal music
structure. In the next section, we will present the collection
of the Jingju dataset.

3. DATASETS

3.1 Existing Corpora

A few MSS datasets are available in the literature. Two
are used in this work. The first consists of 174 songs
from The Beatles. The annotation was first made at Mu-
sic Technology Group (MTG), Universisitat Pompeu Fabra
(UPF) and corrected at Tampere University of Technology
(TUT) [15]. We note this dataset BeatlesTUT. The second,
SALAMI Internet Archive (S-IA), contains 272 pieces as a
publicly available subset of the full SALAMI dataset [22].
The main design consideration of the SALAMI dataset is
to cover a wide variety of music genres. S-IA also contains
a large set of live recordings hence providing a diversity of
audio qualities.

These datasets employ different annotation principles.
BeatlesTUT is annotated on a functional level, i.e., the mu-
sic is segmented into structural parts expressing specific
musical functions. In contrast, S-IA is annotated incorpo-
rating different principles on multiple hierarchies includ-
ing the music similarity level, the function level and the
highest lead instrument level. In this paper, we use the mu-
sic similarity level annotations for S-IA. The inclusion of
these two datasets will provide respectively a standard ex-
ample of Western pop music and a diversity of styles hence
gain us meaningful reference for the structural analysis of
Jingju. Additionally, they cover two different annotation
principles and can serve as a comprehensive testbed for the
investigated segmentation algorithms and audio features.

3.2 Composition of Jingju Dataset

The Jingju corpus presented in this paper consists of 30
excerpts from commercial CDs [2], sampled at 44.1 KHz
and 16 bits per sample with a total length of 3.6 hours. The
CDs were released in the recent decade with recordings
of classical repertoires performed by the most renowned
musicians. A full Jingju play can last up to a few hours
comprising multiple arias or acts. To fulfil the computa-
tional purpose of this study, the 30 excerpts in this dataset
are taken from 20 different Jingju plays, with an average
length of 432 seconds. The audio samples were chosen on
the criteria of repertoire coverage, structural diversity and
audio quality. One prerequisite an excerpt can be selected
is that various structural parts should be present character-
ising temporal progressions or changes of sectional units.
The selected samples cover the two available modes and
various metrical patterns. Half of them are performed by
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female singers and half by male singers with different role
types. We denote this dataset CJ in this paper.

In this work, annotations are made to describe the musi-
cal similarity setting aside the musical functions of seg-
ments, similarly to the lowest level of S-IA. There are
mainly two reasons why the similarity level is chosen.
First, low-level music similarity is a phenomenon that can
be perceived for different genres [3]. Analysing the mu-
sic structure on the similarity level would therefore grant
us fair comparison across genres. However, the instrumen-
tations and the music functions of the sectional units can
be highly genre-dependent. Second, the melodic sections
are never repeated with each other at a segment-level as
the chorus-verse based music forms would do. This could
lead to dubious decisions in defining the structural sections
based on specific musical functions. Meanwhile, there ex-
ists much expressiveness in the performance, which may
raise the demand of analysing the ornamentations in paral-
lel to the functional structure units hence introducing un-
certainties in locating sectional boundaries.

Three listeners (noted ”A1”, ”A2” and ”A3”) partici-
pated in annotating the music. Another two engaged in
verifying their annotations, one is the first author of this pa-
per (”V1”), familiar with this music style as an amateur, the
other is a Jingju musician and musicologist (”V2”). All an-
notators are Chinese and were provided with music scores
and lyrics [26]. They were instructed to pay attention to
prominent changes in music phenomena such as rhythm,
melody, harmony or timbre, and mark the boundaries in
places where the similarities break. Within a section, high
similarity should present expressing a unified musical idea.
When multiple annotators from A1, A2 and A3 have noted
a boundary, it is accepted with its final location being the
average of those indicated by individual annotators. When
a boundary is noted by only one of A1, A2 and A3, its
acceptance rests on a conscious discussion of V1 and V2,
over whether a boundary should be noted and if yes, its
exact position.

The software used for annotation is Sonic Visualiser 1

which displays the annotators the waveform and the spec-
trogram of the track and allows them to navigate it through,
as well as to add time instants and notes to mark a segment
boundary. Figure 1 shows respectively the annotations by
V1 and V2 and the final accepted annotation for a 60-
second excerpt of the recording ”Ba wang bie ji” (meaning
”Farewell my concubine”), with the lyrics shown on the
top. The phrase shown constitutes half a couplet. We can
notice that this phrase is sung at a relatively slow tempo
with one sung character may last several seconds. This
gives the performer lots of freedom for ornamentations in
the singing such as vibratos and even intermittence. The
final decision is made when agreements have been reached
by V1 and V2. Additional annotation information and
metadata for this dataset can be found in [24] and online 2 .

Here we discuss some properties of the annotations fo-
cussing on the inter-annotator agreement (IAA) between

1 http://www.sonicvisualiser.org/
2 http://www.isophonics.net/content/

jingju-structural-segmentation-dataset
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Figure 1: Boundary annotations for a 60-second excerpt of the
recording ”Ba wang bie ji” from Dataset CJ. Panes from top to
bottom show respectively the lyrics of the singing (in Chinese),
annotations by annotator V1 and V2 and the final annotation.

P 0.5s R 0.5s F 0.5s P 3s R 3s F 3s Dad Dda

0.891
(0.075)

0.675
(0.188)

0.693
(0.141)

0.911
(0.075)

0.689
(0.182)

0.743
(0.144)

0.27
(0.25)

11.88
(48.12)

Table 1: Average agreement between annotator V1 and V2
for recordings in dataset CJ (standard deviations into parenthe-
sis). Statistics include: pairwise precision (P), recall (R) and F-
measure (F) measured at 0.5s and 3s, and the median of distances
between each annotated segment boundary to its closest detected
segment boundary (Dad) and that between each detected segment
boundary to its closest annotated segment boundary (Dda).

Dataset No. tracks Len. track No. segments Len. segment
BeatlesTUT 174 159.30 (50.08) 10.21 (2.32) 17.73 (5.45)

S-IA 258 333.09 (130.78) 56.26 (32.07) 7.69 (5.28)
CJ 30 421.38 (219.02) 44.37 (19.18) 9.56 (4.57)

Table 2: Statistics of datasets (standard deviations into parenthe-
sis): number of samples in the dataset, average length of each
sample (in second), average number of segments per sample, av-
erage length of each segment (in second).

V1 and V2. In the assessment of each of the two annota-
tions, one is treated as the ”ground truth” and the other as
the ”detection” and then their roles are rotated. We report
the average of these two measures. With a variety of exist-
ing measures commonly used to compare multiple anno-
tations for music structure [21], the following metrics are
used: precision (P), recall (F) and F-measure (F) retrieved
at the tolerance of 0.5s (±0.25s) and 3s (±1.5s), median
of the distance between each annotated segment boundary
to its closest detected segment boundary (Dad) and that
between each detected segment boundary to its closest an-
notated segment boundary (Dda). Statistics of the inves-
tigated metrics are given in Table 1. The IAA measured
at 0.5s is relatively comparable to that measured at 3.0s
in the corresponding cases. However, choosing different
annotation as the ground truth each time yields lower re-
call than precision and lower precision than recall, hence
substantial false negative (FN) and false positive (FP) re-
spectively. This is mainly because the two annotators noted
different numbers of boundaries. This observation shows
that the boundary decisions do depend on the annotators’
individual understanding of the music. Some statistics of
the datasets used in this paper are given in Table 2. We can
notice that the average segment lengths of S-IA and CJ are
shorter than that of BeatlesTUT mainly due to individual
annotation principles.
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Figure 2: Gammatone feature extraction workflow.

4. GAMMATONE FEATURES

4.1 Gammatone Filters

In the Patterson Gammatone model, the cochlea processing
is simulated by a Gammatone auditory filterbank with the
bandwidth of each filter described by an Equivalent rect-
angular bandwidth (ERB) [14]. The Gammatone function
is defined by the impulse response of the signal:

GF (t, fc) = at(m−1)e(−2πbt)cos(2πfct + ϕ), (1)

where a is the amplitude factor, m is the order of the
filter, b is the bandwidth of the filter in Hz which largely
determines the duration of the impulse response, fc in Hz
is the centre frequency of the filter and t is the time in s.
An efficient implementation is provided by Slaney [20]. It
should be noted that GF (t, fc) keeps the original sample
frequency fs. To derive a spectrogram-like TF representa-
tion, noted Gammatonegram in this paper, it is necessary
to sum up the energy over fixed time windows.

However, to process a signal with a bank of M Gamma-
tone filters can still be computationally expensive. Ellis in-
troduced an alternative method using a fast Fourier trans-
form (FFT)-based approximation [5]. In this approach, a
conventional fixed-bandwidth spectrogram is first calcu-
lated whose frequency bins are then aggregated into Gam-
matone responses with coarser resolutions via a weighting
function. This approximates matches the accurate method
by Slaney very closely despite neglecting phase informa-
tion of each frequency bin when summing them up [5].
Another difference the approximation can introduce is a
loss of temporal resolution due to the Fourier transform
applied beforehand. However, this is not considered un-
favourable in the structural analysis scenario as a relatively
coarse temporal resolution is commonly employed aiming
at a more musically meaningful scale for the analysis [16].
Many methods propose to use a window size of 0.1 - 1 sec-
ond, or equal to the beat length [9,16]. In this paper, we use
the FFT-based implementation following Ellis [5]. We use
M = 64 channels with centre frequencies spaced between
50 Hz to fs/2 (fs = 44.1 KHz) on an ERB scale following
the default setting of Slaney’s and Ellis’ toolboxes [5, 20].
The energy of the gammatone filterbank output is aggre-
gated over a 46ms window and shifted by 23ms into the
Gammatonegram G(n, fc).

4.2 Feature Extraction

Two features are extracted from the Gammatonegram cap-
turing different properties of the signal as summarised
in Figure 2. Here we describe the feature extraction pro-
cess. The Discrete cosine transform (DCT) is a commonly

used dimensionality reduction technique in feature extrac-
tion. It is adopted as the last step in the calculation of the
MFCCs which proved highly successful in describing the
sound timbre [10]. One motivation of this paper is to find
alternative timbral features to describe the music structure
incorporating auditory cues. To this end, we introduce
a feature called Gammatone cepstral coefficients (GCCs)
following [19] to describe the average energy distribution
of each subband. Specifically, we apply a DCT to G(n, fc)
to de-correlate its components.

GCCs(n) =
M∑

i=1

G(n)cos

(
π

M
(i +

1

2
)n

)
(2)

Shao and his colleagues report that the lowest 30 or-
ders of GCCs contain the majority information of a GF
with 128 filterbanks to recover the speech signal [19]. In a
sound classification work, the number of filters and GCCs
coefficients are set to 48 and 13 with the later identical
to MFCCs used in the study [25]. Here we use a 13-
coefficient GCCs same as MFCCs to derive a fair compar-
ison of the two. We will discuss the setting of number of
coefficients in Section 6. However, a log operation is ex-
cluded as applied in common cepstral analyses since initial
investigation shows degraded segmentation due to an over-
emphasis of the lower frequency components when using
the logarithmic scale.

Similar to MFCCs, GCCs describe the average energy
distribution of each subband in a compact form. Here we
are also interested in the extents of flux within the spectra
indicating the level of harmonicities associated with dif-
ferent frequency components. To this end, we present a
novel feature, Gammatone contrast (GC). The extraction
of this feature is inspired by the spectral contrast (SC) fea-
ture which is based on the octave-scale filters and is very
popular in music genre classification studies [8].

The calculation of the GC feature is as follows. As
the first step, the Gammatone filterbank indices [1, ...,M ]
are grouped into C subbands with linearly equal subdi-
visions. Since the spectrum is originally laid out on a
non-linear ERB scale, the frequency non-linearity is still
reserved in the subbands. We use C=6 similar to [8]
in this study yielding a subband frequency division of
[50, 363.198, 1028.195, 2440.148, 5438.074, 11803.409,
22050]. We note V the Gammatonegram vector of the zth
subband [Gz,0(n), Gz,1(n), . . . , Gz,K−1(n)]

T where z ∈
[0, C−1], V′ =

[
G′

z,0, G
′
z,1, . . . , G

′
z,K−1

]T is V sorted in
an ascending order such that G′

z,0(n) < G′
z,1(n) < . . . <

G′
z,K−1(n). We calculate the difference of the strength

of peaks and valleys for each subband to derive the C-
dimensional GC feature:

GCz(n) = log
(
G′

z,K−1(n) − G′
z,0(n)

)
, (3)

GCCs and the vector-wise concatenation of GCCs and
GC will be evaluated in comparison with two commonly
used features MFCCs and chromagram in the MSS sce-
nario as introduced shortly. The reason why GC is not
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evaluated individually is that it measures only the relative
contrasts within subband energies hence may lack comple-
mentary spectral information. We use the LibROSA music
and audio analysis library which provides feature extrac-
tion modules for MFCCs and chromagram [11]. We im-
plement the Gammatone module into this library to obtain
a uniform feature extraction environment. The extracted
GCCs, GC, MFCCs and chromagram are respectively 13-,
6-, 13- and 12-dimensional features. The window and step
size for feature extraction are respectively 46ms and 23ms.

5. SEGMENTATION EXPERIMENT

The investigated Gammatone features are evaluated on the
presented datasets in a segmentation context using Music
Structure Analysis Framework (MSAF) which relies on Li-
bROSA [11] for feature extraction and includes a list of re-
cently published segmentation algorithms [13]. Three are
used in this paper covering the novelty-, homogeneity- and
repetition-based segmentation principles [16]. The first
one is included into MSAF by the author of this paper and
the rest two are provided by MSAF.

The first method is a novelty-based one presented in a
recent work [24] following Foote [6]. A Self-similarity
matrix (SSM) is constructed by calculating the pairwise
Euclidean distance between vectors of the feature ma-
trix. A Gaussian-tapered ”checkerboard” kernel is corre-
lated along the main diagonal of the SSM yielding a nov-
elty curve. Given a list of local maxima detected by the
adaptive thresholding from the smoothed novelty curve,
a second-degree polynomial y = ax2 + bx + c is fitted
on the novelty curve centred around each local maximum
with a window of five samples. In this quadratic model a
and c control respectively the sharpness and amplitude of
each peak. Assessing these two parameters hence allows
us to assess the sharpness and the magnitude of a peak in-
dependently where it will only be selected as a segment
boundary when both meet set conditions. This method is
denoted Quadratic novelty (QN) in this paper. The sec-
ond is a homogeneity-based approach which attempts to
segment the music by clustering the frames into different
section types [9]. First, audio frames are labelled into hid-
den Markov model (HMM) states derived from trained fea-
tures. Then histograms of neighbouring frames are clus-
tered into segment types where the temporal continuity
on cluster assignments is obtained from the HMMs. Seg-
ment boundaries are retrieved by locating changing of seg-
ment types. We note this algorithm Constrained cluster-
ing (CC). The third method, SF, uses features called struc-
ture features which incorporate both local and global prop-
erties accounting for structural information in the recent
past [17]. To construct the structure features, a multi-
dimensional time series is firstly obtained by accumulating
vectors of a standard audio feature ranging across a time
span. A recurrence plot (RP) is then computed containing
the pairwise resemblance Pi,j between time series centred
at different time locations i and j. Here, an RP differs from
an SSM typically used to describe music structure in the
sense that Pi,j is calculated between feature vectors em-

bedded with time-shifts, i.e., between multi-dimensional
time series instead of static vectors. This recurrence na-
ture enables encapsulating both homogeneity and repeti-
tion properties in the feature space. The structure features
are obtained by estimating Gaussian probability density of
the time lag matrix of the RP. Finally, a novelty curve is
computed where segment boundaries are detected follow-
ing the standard novelty approach [6]. In this way, all three
basic principles – novelty, homogeneity, and repetition, are
combined in the segmentation process.

While QN is newly included into MSAF along with the
research presented in this paper, CC and SF are provided
by the original MSAF system, with CC forked from its
open source software by Levy [9] and SF reimplemented
from [17] by Nieto [13].

6. RESULTS AND DISCUSSION

The segmentation boundary retrieval results are evaluated
with the precision (P), recall (R) and F-measure (F) mea-
sured at 3s [9] using the MSAF framework [13]. Results
are shown in Table 3 obtained with system configurations
parameterised both globally and on each dataset individu-
ally. By doing this, we are aiming to investigate how de-
pendent each algorithm is on parameter configurations in
the context of a specific dataset. To avoid a potential over-
fitting, the discussions made in the remainder of this paper
are based on the results obtained with the globally uniform
configurations, unless noted otherwise.

Here we analyse presented Gammatone features as
structural descriptors. We first compare GCCs to MFCCs,
both are based on cepstral analysis of the spectra and re-
lated to the music timbre. When assessed on individual
datasets, GCCs outperform MFCCs on CJ using all investi-
gated segmentation algorithms, with statistical significance
observed when using CC (p = 0.035) and QN (p = 0.019),
while the two strike a tie on BeatlesTUT and S-IA.

Figure 3 shows the SSMs derived from the MFCCs and
GCCs on an excerpt of the Jingju song ”Ba wang bie ji”
from CJ (only the first 60 seconds are shown for visuali-
sation purposes). It can be noticed that GCCs yield more
distinguished sectional variations than MFCCs. Singing-
based musical works such as Jingju or Western opera may
present less notable repetitive harmonic or rhythmic pat-
terns than the popular music. However, the vocal-driven
nature makes the singing voice an important discrimina-
tor of the music structure with its salient presence in the
overall instrumentation. In the case of Jingju, new struc-
tural units can emerge in the same melodic passage with
subtle timbral variations, as shown in Figure 3(a). The dy-
namics introduced by the singing voice are mainly present
in the lower frequency part of the spectrum, which can be
better captured by using the ERB scale than Mel. Mean-
while, emphasising the lower sound levels, the ERB warp-
ing can be robust against high-frequency transients which
may interfere with the analysis. When the music presents
more distinguishable timbral variations, GCCs summarise
the structure equally effectively as MFCCs, as indicated
by their comparable performances on BeatlesTUT and S-
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GCC GCC+GC MFCC Chromagram
Individual config Global config Individual config Global config Individual config Global config Individual config Global config

P R F P R F P R F P R F P R F P R F P R F P R F

BeatlesTUT 0.601 0.647 0.614 0.557 0.706 0.612 0.600 0.650 0.615 0.568 0.706 0.618 0.599 0.634 0.606 0.568 0.706 0.618 0.588 0.636 0.600 0.527 0.668 0.579
CJ 0.684 0.486 0.550 0.732 0.448 0.538 0.701 0.465 0.552 0.688 0.436 0.522 0.701 0.483 0.555 0.689 0.441 0.525 0.651 0.509 0.540 0.645 0.447 0.514
S-IA 0.550 0.525 0.524 0.500 0.562 0.515 0.555 0.536 0.535 0.514 0.586 0.533 0.572 0.559 0.551 0.517 0.565 0.526 0.558 0.544 0.535 0.514 0.596 0.535

(a) CC

BeatlesTUT 0.564 0.643 0.588 0.523 0.687 0.580 0.565 0.667 0.598 0.523 0.710 0.587 0.638 0.589 0.596 0.584 0.635 0.580 0.468 0.691 0.544 0.435 0..726 0.530
CJ 0.619 0.715 0.639 0.685 0.475 0.543 0.599 0.761 0.654 0.673 0.521 0.574 0.588 0.715 0.625 0.706 0.439 0.521 0.520 0.798 0.616 0.557 0.593 0.562
S-IA 0.463 0.599 0.500 0.430 0.639 0.492 0.471 0.623 0.516 0.438 0.666 0.508 0.526 0.572 0.525 0.478 0.610 0.513 0.413 0.663 0.486 0.394 0.704 0.480

(b) QN

BeatlesTUT 0.625 0.739 0.667 0.594 0.755 0.654 0.630 0.743 0.673 0.603 0.761 0.663 0.644 0.743 0.678 0.621 0.772 0.671 0.644 0.751 0.683 0.612 0.777 0.679
CJ 0.559 0.799 0.631 0.688 0.461 0.534 0.536 0.807 0.628 0.664 0.471 0.540 0.554 0.792 0.627 0.677 0.482 0.530 0.542 0.759 0.617 0.668 0.439 0.514
S-IA 0.497 0.577 0.515 0.442 0.649 0.545 0.502 0.586 0.520 0.433 0.635 0.493 0.504 0.588 0.523 0.443 0.635 0.497 0.494 0.588 0.524 0.438 0.630 0.500

(c) SF

Table 3: Segmentation results using investigated features on the BeatlesTUT, CJ and S-IA datasets with algorithm CC, QN and SF.
Highest F-measure obtained for each dataset is shown in bold.
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Figure 3: SSMs computed using MFCCs and GCCs on the first
60 seconds excerpt of ”Ba wang bie ji” from CJ. Vertical lines
indicate segment boundaries.

IA shown in Table 3. This hence suggests the GCCs as a
competitive alternative to the commonly used features for
music structural description.

Combining GC with GCCs by matrices concatenation
has introduced improvements over using GCCs alone for
most cases on the investigated datasets with each algo-
rithm tested. However, a statistical significance is not al-
ways present as suggested by Student’s t-test with related
samples when comparing GCCs + GC to GCCs. The
main effect of using the additional GC feature is a more
pronounced within-SSM variance. This has led to the re-
trieval of more boundaries as indicated by a higher recall
in the general case yet an occasional degrading precision.

Investigated features and algorithms perform differ-
ently on Western and Jingju music. Chromagram feature
and MFCCs work reliably on BeatlesTUT and S-IA. For
Jingju, timbre features capture its structural characteris-
tics better than the chroma feature, with auditory inspired
Gammatone features outperforming MFCCs. When us-
ing the same features and algorithms, similar segmenta-
tion results in terms of F-measures tend to emerge from
CJ and S-IA, both use the annotation at the music similar-
ity level. However, it can be noticed that algorithms are
more dependent on parameter configurations when evalu-
ated on CJ than on S-IA and BeatlesTUT, reflected by the
substantial degradation of the F-measures observed when
changing the parameter configuration tuned for the indi-
vidual dataset to the global setting. This suggests the need
of designing new segmentation methods to bridge the gaps
between genres. It also implies that contextual knowledge,

such as the genre and the level of music structure to anal-
yse, can assist a segmentation system to obtain better per-
formance.

It is also noted that SF appears less effective than QN
on the CJ dataset when using the chromagram feature, as
shown in Table 3. This is in contrast with the many obser-
vations for Western pop music, where repetition-based seg-
mentation algorithms are identified as useful interpreters of
structural characteristics reflected by chroma features. We
find that for Jingju, the chromagram feature forms mainly
block structures as do the MFCCs instead of stripes in
the sub-diagonals of the SSMs. This somehow contra-
dicts with many established observations for Western pop
music. As introduced in Section 2, the repetitive chord
structure is lacking in Jingju in the sense of chorus and
verse. The chroma feature in the Jingju scenario functions
mainly to capture its low-level homogeneity in the vicin-
ity. Therefore, the same audio feature may exhibit differ-
ent structural characteristics for specific music genres and
the selection of segmentation algorithms should be adapted
accordingly to interpret such patterns.

7. CONCLUSION

This paper investigated novel features derived from Gam-
matone filters for music structural segmentation beyond
the commonly studied music corpora. A new dataset with
Chinese traditional Jingju music is presented to comple-
ment the existing evaluation corpora. In the music struc-
tural segmentation experiment, GCCs surpass MFCCs no-
tably on the Jingju dataset comprising vocal-driven music.
The fact that the Gammatone features also obtain compa-
rable segmentation results to MFCCs and chromagram on
the Beatles and S-IA datasets indicate them to be com-
petitive alternatives to existing audio features for music
structural analysis. Different patterns emerge for different
music genres from existing algorithms and audio features,
shedding new perspectives on music structural segmenta-
tion research.
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[17] J. Serrà, M. Müller, P. Grosche, and J. L. Arcos. Un-
supervised detection of music boundaries by time se-
ries structure features. In Proceedings of the 26th AAAI
Conference on Artificial Intelligence, 2012.

[18] X. Serra. Creating research corpora creating research
corpora for the computational study of music: the case
of the compmusic project. In Proceedings of Interna-
tional Audio Engineering Society (AES) Conference,
2014.

[19] Y. Shao, Z. Jin, D. Wang, and S. Srinivasan. An
auditory-based feature for robust speech recognition.
In Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
2009.

[20] M. Slaney. An efficient implementation of the
patterson-holdsworth auditory filter bank. Technical
report, Apple Technical Report, 1993.

[21] J. B. L. Smith. A comparison and evaluation of ap-
proaches to the automatic formal analysis of musical
audio. Master’s thesis, McGill University, 2010.

[22] J. B. L. Smith, J. A. Burgoyne, I. Fujinaga,
D. De Roure, and J. S. Downie. Design and creation
of a large-scale database of structural annotations. In
Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference (ISMIR), 2011.

[23] J. P. J Stock. A reassessment of the relationship be-
tween text, speech tone, melody, and aria structure
in beijing opera. Journal of Musicological Research,
18(3):183–206, 1999.

[24] M. Tian and M. B. Sandler. Towards music structural
segmentation across genres: features, structural hy-
potheses and annotation principles. Special Issue on
Intelligent Music Systems and Applications, Intelligent
Systems and Technology, ACM Transactions on (ACM
TIST), In press.

[25] X. Valero and F. Alı́as. Gammatone cepstral coeffi-
cients: biologically inspired features for non-speech
audio classification. Multimedia, IEEE Transactions
on, 14(6):1684–1689, 2012.

[26] Shanghai wenyi chubanshe. Collection of jingju scores
(”Jingju qupu jicheng”). 1992.

[27] E. Wichmann. Listening to theatre: the aural dimen-
sion of Beijing opera. University of Hawaii Press,
1991.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 567





 

 

 

 

 

Poster Session 3
 

   





A COMPARISON OF MELODY EXTRACTION METHODS BASED ON
SOURCE-FILTER MODELLING

Juan J. Bosch1 Rachel M. Bittner2 Justin Salamon2 Emilia Gómez1
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ABSTRACT

This work explores the use of source-filter models for pitch
salience estimation and their combination with different
pitch tracking and voicing estimation methods for auto-
matic melody extraction. Source-filter models are used
to create a mid-level representation of pitch that implic-
itly incorporates timbre information. The spectrogram of
a musical audio signal is modelled as the sum of the lead-
ing voice (produced by human voice or pitched musical in-
struments) and accompaniment. The leading voice is then
modelled with a Smoothed Instantaneous Mixture Model
(SIMM) based on a source-filter model. The main advan-
tage of such a pitch salience function is that it enhances
the leading voice even without explicitly separating it from
the rest of the signal. We show that this is beneficial
for melody extraction, increasing pitch estimation accu-
racy and reducing octave errors in comparison with simpler
pitch salience functions. The adequate combination with
voicing detection techniques based on pitch contour char-
acterisation leads to significant improvements over state-
of-the-art methods, for both vocal and instrumental music.

1. INTRODUCTION

Melody is regarded as one of the most relevant aspects of
music, and melody extraction is an important task in Mu-
sic Information Retrieval (MIR). Salamon et al. [21] define
melody extraction as the estimation of the sequence of fun-
damental frequency (f0) values representing the pitch of
the lead voice or instrument, and this definition is the one
employed by the Music Information Retrieval Evaluation
eXchange (MIREX) [7]. While this definition provides an
objective and clear task for researches and engineers, it is
also very specific to certain types of music data. Recently
proposed datasets consider broader definitions of melody,
which are not restricted to a single instrument [2, 4, 6].

Composers and performers use several cues to make
melodies perceptually salient, including loudness, timbre,

c© First author, Second author, Third author, Fourth author,
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tion 4.0 International License (CC BY 4.0). Attribution: First author,
Second author, Third author, Fourth author, Fifth author, Sixth author. “A
comparison of melody extraction methods based on source-filter mod-
elling”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

frequency variation or note onset rate. Melody extraction
methods commonly use cues such as pitch continuity and
pitch salience, and some of them group pitches into higher
level objects (such as tones or contours), using principles
from Auditory Scene Analysis [8, 13, 16, 18, 20]. Some
approaches have also considered timbre, either within a
source separation framework [10, 17], with a machine
learning approach [11], or in a salience based approach
[14, 16].

One of the best performing methods so far in MIREX in
terms of overall accuracy [20] (evaluated in 2011) is based
on the creation and characterisation of pitch contours. This
method uses a fairly simple salience function based on har-
monic summation [15] and then creates and characterises
pitch contours for melody tracking. Voicing detection (de-
termining if a frame contains a melody pitch or not) is
one of the strong aspects of this method, even though it
might be improved further by incorporating timbre infor-
mation. In contrast, alternative approaches employ more
sophisticated salience functions, but the pitch tracking and
voicing estimation components are less complex [10, 12].
Voicing detection has in fact been identified in the litera-
ture as a crucial task for improving melody extraction sys-
tems [10, 20].

While these approaches work especially well for vo-
cal music, their performance decreases for instrumental
pieces, as shown in [6] and [2], where a drop of 19 per-
centage points in overall accuracy was observed for instru-
mental pieces compared to vocal pieces. A main challenge
for melody extraction methods is thus to cope with more
complex and varied music material, with melodies played
by different instruments, or with harmonised melodic lines
[21]. A key step towards the development of more ad-
vanced algorithms and a more realistic evaluation is the
availability of large and open annotated datasets. In [4, 6]
the authors presented a dataset for melody extraction in or-
chestral music with such characteristics, and MedleyDB
[2] also includes a variety of instrumentation and genres.
Results on both datasets generally drop significantly in
comparison to results on datasets used in MIREX [7].

Based on results obtained in previous work [5, 6], we
hypothesise that a key ingredient for improving salience-
based melody extraction in relatively complex music data
is the salience function itself. In particular, we propose
combining strong components of recently proposed algo-
rithms: (1) a semantically rich salience function based on a
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source-filter model, which proved to work especially well
in pitch estimation [6, 9, 10], and (2) pitch-contour-based
tracking [2, 20], which presents numerous benefits includ-
ing high-performance voicing detection.

2. RELATED METHODS

This section describes the pitch salience functions and
melody tracking methods used as building blocks for the
proposed combinations.

2.1 Salience functions

Most melody extraction methods are based on the estima-
tion of pitch salience - we focus here on the ones proposed
by Salamon and Gómez [20], and Durrieu et al. [9].

Durrieu et al. [9] propose a salience function within
a separation-based approach using a Smoothed Instanta-
neous Mixture Model (SIMM). They model the spectrum
X of the signal as the lead instrument plus accompani-
ment X̂ = X̂v + X̂m. The lead instrument is mod-
elled as: X̂v = XΦ ◦ Xf0 , where Xf0 corresponds to
the source, XΦ to the filter, and the symbol ◦ denotes
the Hadamard product. Both source and filter are decom-
posed into basis and gains matrices asXf0 =Wf0Hf0 and
XΦ = WΓHΓHΦ respectively. Hf0 corresponds to the
pitch activations of the source, and can also be understood
as a representation of pitch salience [9]. The accompani-
ment is modelled as a standard non negative matrix factor-
ization (NMF): X̂m = ŴmĤm. Parameter estimation is
based on Maximum-Likelihood, with a multiplicative gra-
dient method [10], updating parameters in the following
order for each iteration: Hf0 ,HΦ,Hm,WΦ andWm. Even
though this model was designed for singing voice, it can
be successfully used for music instruments, since the filter
part is related to the timbre of the sound, and the source
part represents a harmonic signal driven by the fundamen-
tal frequency.

Salamon and Gómez [20] proposed a salience func-
tion based on harmonic summation: a time-domain Equal-
Loudness Filter (ELF) is applied to the signal, followed
by the Short-Time Fourier Transform (STFT). Next, si-
nusoidal peaks are detected and their frequency/amplitude
values are refined using an estimate of the peaks’ instan-
taneous frequency. The salience function is obtained by
mapping each peak’s energy to all harmonically related f0

candidates with exponentially decaying weights.

2.2 Tracking

The estimated pitch salience is then used to perform
pitch tracking, commonly relying on the predominance of
melody pitches in terms of loudness, and on the melody
contour smoothness [1, 10, 12, 20].

Some methods have used pitch contour characteristics
for melody tracking [1, 20, 22]. Salamon and Gómez [20]
create pitch contours from the salience function by group-
ing sequences of salience peaks which are continuous in
time and pitch. Several parameters need to be set in this

process, which determine the amount of extracted con-
tours. Created contours are then characterised by a set of
features: pitch (mean and deviation), salience (mean, stan-
dard deviation), total salience, length and vibrato related
features.

The last step deals with the selection of melody con-
tours. Salamon [20] first proposed a pitch contour selection
(PCS) stage using a set of heuristic rules based on the con-
tour features. Salamon [22] and Bittner [1] later proposed
a pitch contour classification (PCC) method based on con-
tour features. The former uses a generative model based on
multi-variate Gaussians to distinguish melody from non-
melody contours, and the latter uses a discriminative clas-
sifier (a binary random forest) to perform melody con-
tour selection. The latter also adds Viterbi decoding over
the predicted melodic-contour probabilities for the final
melody selection. However, these classification-based ap-
proaches did not outperform the rule-based approach on
MedleyDB. One of the important conclusions of both pa-
pers was that the sub-optimal performance of the contour
creation stage (which was the same in both approaches)
was a significant limiting factor in their performance.

Durrieu et al. [10] similarly use an HMM in which each
state corresponds to one of the bins of the salience func-
tion, and the probability of each state corresponds to the
estimated salience of the source (Hf0 ).

2.3 Voicing estimation

Melody extraction algorithms have to classify frames as
voiced or unvoiced (containing a melody pitch or not, re-
spectively). Most approaches use static or dynamic thresh-
olds [8, 10, 12], while Salamon and Gómez exploit pitch
contour salience distributions [20]. Bittner et al. [1] deter-
mine voicing by setting a threshold on the contour proba-
bilities produced by the discriminative model. The thresh-
old is selected by maximizing the F-measure of the pre-
dicted contour labels over a training set.

Durrieu et al. [10] estimate the energy of the melody
signal frame by frame. Frames whose energy falls be-
low the threshold are set as unvoiced and vice versa. The
threshold is empirically chosen, such that voiced frames
represent more than 99.95% of the leading instrument en-
ergy.

3. PROPOSED METHODS

We propose and compare three melody extraction methods
which combine different pitch tracking and voicing estima-
tion techniques with pitch salience computation based on
source-filter modelling and harmonic summation. These
approaches have been implemented in python and are
available online 1 . We reuse parts of code from Durrieu’s
method 2 , Bittner et al. 3 , and Essentia 4 [3], an open
source library for audio analysis, which includes an im-
plementation of [20] which has relatively small deviations

1 https://github.com/juanjobosch/SourceFilterContoursMelody
2 https://github.com/wslihgt/separateLeadStereo
3 https://github.com/rabitt/contour classification
4 https://github.com/MTG/essentia
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in performance from the authors’ original implementation
MELODIA 5 . We refer to the original implementation of
MELODIA as SAL, and to the implementation in the Es-
sentia library as ESS.

3.1 Pitch Salience Adaptation

There are important differences between the characteris-
tics of salience functions obtained with SIMM (Hf0 ) and
harmonic summation (HS). For instance, Hf0 is consider-
ably more sparse, and the range of salience values is much
larger than in HS since the NMF-based method does not
prevent values (weights) from being very high or very low.
This is illustrated in Figure 1: (a) shows the pitch salience
function obtained with the source filter model, Hf0 . Given
the large dynamic range of Hf0 we display its energy on a
logarithmic scale, whereas plots (b)–(d) use a linear scale.
(b) corresponds to HS which is denser and results in com-
plex patterns even for monophonic signals. Some bene-
fits of this salience function with respect to Hf0 (SIMM)
is that it is smoother, and the range of possible values is
much smaller.

Given the characteristics of Hf0 , it is necessary to re-
duce the dynamic range of its salience values in order to
use it as input to the pitch contour tracking framework,
which is tuned for the characteristics of HS. To do so,
we propose the combination of both salience functions
HS(k, i) and Hf0(k, i), where k indicates the frequency
bin k = 1 . . .K and i the frame index i = 1 . . . I . The
combination process is illustrated in Figure 1: (1) Global
normalization (Gn) of HS, dividing all elements by their
maximum value maxk,i(HS(k, i)). (2) Frame-wise nor-
malization (Fn) ofHf0 . For each frame i, divideHf0(k, i)
by maxk(Hf0(k, i)). (3) Convolution in the frequency
axis k of Hf0 with a Gaussian filter to smooth estimated
activations. The filter has a standard deviation of .2 semi-
tones. (4) Global normalization (Gn), whose output is
H̃f0 (see Figure 1 (c)). (5) Combination by means of an
element-wise product: Sc = H̃f0 ◦HS (see Figure 1 (d)).

3.2 Combinations

We propose three different combination methods. The first
(C1) combines the output of two algorithms: estimated
pitches from DUR and voicing estimation from SAL. The
second (C2) is based on Sc, which combines harmonic
summation HS computed with ESS with H̃f0 , and em-
ploys pitch contour creation and selection as the tracking
method. The last method (C3) combines Sc with pitch con-
tour creation from [20] and the contour classification strat-
egy from [1]. C2 and C3 correspond to Figure 1, where the
contour filtering stage is based on pitch contour selection
or pitch contour classification, respectively.

4. EVALUATION

Evaluation was carried out using the MedleyDB and Or-
chset datasets, following the standard MIREX evaluation

5 http://mtg.upf.edu/technologies/melodia
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Figure 1. Left: Schema for C2 and C3. H.Sum: Harmonic
Summation (outputs HS); SIMM: Smoothed Instanta-
neous Mixture Model (outputs Hf0 ); Fn: Frame-wise nor-
malisation; Gn: Global normalisation; o: Hadamard prod-
uct; Gaussian symbol: Gaussian filtering. Right: Time-
frequency pitch salience representation of an excerpt from
“MusicDelta FunkJazz.wav” (MedleyDB) with (a) SIMM:
log10(Hf0) is represented for visualisation purposes) (b)
Harmonic Summation: HS (c) Hf0 normalised per frame,
Gaussian filtered and globally normalized (H̃f0 ) (d) Com-
bination (Sc).

methodology. We evaluate the proposed methods (C1–
C3) and the original algorithms by Durrieu (DUR), Bittner
(BIT) and Salamon. Table 1 provides and overview of their
main building blocks. In the case of Salamon’s approach,
we include the original implementation MELODIA (SAL),
and the implementation in the Essentia library (ESS). The
latter can be viewed as a baseline for the proposed com-
bination methods (C2, C3), since all three share the same
contour creation implementation.

For the evaluation of classification-based methods, we
followed [1], and created train/test splits using an “artist-
conditional” random partition on MedleyDB. For Orchset
we created a “movement-conditional” random partition,
meaning all excerpts from the same movement must be
used in the same subset: either for training or for test-
ing. Datasets are split randomly into a training, valida-
tion and test sets with roughly 63%, 12%, and 25% of the
songs/excerpts in the dataset, respectively. This partition-
ing was chosen so as to have a training set that is as large as
possible while retaining enough data in the validation and
test sets for results to be meaningful. In order to account
for the variance of the results, we repeat each experiment
with four different randomized splits.

We set the same frequency limit for all algorithms:
fmin = 55 Hz and fmax = 1760 Hz. The number of
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(Pre Proc.)+Transform Salience/Multif0 Estim. Tracking Voicing
DUR [10] STFT SIMM Vit(S) Energy thd.
SAL [20] (ELF)+STFT+IF H.Sum. PCS Salience-based
BIT [1] (ELF)+STFT+IF H.Sum. PCC+Vit(C) Probability-based

C1 (ELF)+STFT+IF H.Sum + SIMM PCS+Vit(S) Salience-based
C2 (ELF)+STFT+IF H.Sum + SIMM PCS Salience-based
C3 (ELF)+STFT+IF H.Sum + SIMM PCC+Vit(C) Probability-based

Table 1. Overview of the methods. STFT: Short Time Fourier Transform, IF: Instantaneous Frequency estimation, ELF:
Equal-Loudness Filters, SIMM: Smoothed Instantaneous Mixture Model, using a Source-Filter model, H.Sum: Harmonic
Summation, HMM: Hidden Markov Model, Vit(S): Viterbi on salience function, Vit(C): Viterbi on contours, PCS: Pitch
Contour Selection, PCC: Pitch Contour Classification.

bins per semitone was set to 10, and the hop size was 256
samples (5.8 ms), except for SAL which is fixed to 128
samples (2.9 ms) given a sampling rate of 44100 Hz.

4.1 Datasets

The evaluation is conducted on two different datasets:
MedleyDB and Orchset, converted to mono using
(left+right)/2. MedleyDB contains 108 melody annotated
files (most between 3 and 5 minutes long), with a variety
of instrumentation and genres. We consider two different
definitions of melody, MEL1: the f0 curve of the predom-
inant melodic line drawn from a single source (MIREX
definition), and MEL2: the f0 curve of the predominant
melodic line drawn from multiple sources. We did not
use the third type of melody annotation included in the
dataset, since it requires algorithms to estimate more than
one melody line (i.e. multiple concurrent lines). Orchset
contains 64 excerpts from symphonies, ballet suites and
other musical forms interpreted by symphonic orchestras.
The definition of melody in this dataset is not restricted
to a single instrument, with all (four) annotators agreeing
on the melody notes [4, 6]. The focus is pitch estimation,
while voicing detection is less important: the proportion of
voiced and unvoiced frames is 93.7/6.3%.

Following MIREX methodology 6 , the output of each
algorithm is compared against a ground truth sequence of
melody pitches. Five standard melody extraction metrics
are computed using mir eval [19]: Voicing Recall Rate
(VR), Voicing False Alarm Rate (VFA), Raw Pitch Ac-
curacy (RPA), Raw Chroma Accuracy (RCA) and Overall
Accuracy (OA). See [21] for a definition of each metric.

4.2 Contour creation results

Before evaluating complete melody extraction systems, we
examine the initial step, by computing the recall of the
pitch contour extraction stage as performed in [1]. We
measure the amount of the reference melody that is cov-
ered by the extracted contours, by selecting the best possi-
ble f0 curve from them. For the MEL1 definition in Med-
leyDB the oracle output yielded an average RPA of .66
(σ = .22) for HS and .64 (σ = .20) for Sc. In the case
of MEL2: .64 (σ = .20) for HS and .62 (σ = .18) for

6 http://www.music-ir.org/mirex/wiki/2014:Audio Melody Extraction

Sc. For Orchset we obtain .45 (σ = .21) for HS and .58
(σ = .18) for Sc. These results represent the highest raw
pitch accuracy that could be obtained by any of the melody
extraction methods using contours created from HS and
Sc. Note however that these values are dependent on the
parametrization of the contour creation stage, as described
in [20].

4.3 Melody extraction results

Results for all evaluated algorithms and proposed combi-
nations are presented in Table 2 for MedleyDB (MEL1 and
MEL2) and in Table 3 for Orchset. The first remark is
that the three proposed combination methods yield a sta-
tistically significantly (t-test, significance level α = .01)
higher overall accuracy (OA) than the baseline (ESS) for
both datasets and both melody definitions. The OA of C2
and C3 is also significantly higher than the OA of all other
evaluated approaches on MedleyDB (MEL1), with the ex-
ception of SAL* (SAL with a voicing threshold optimized
for MedleyDB/MEL1): C2-SAL* (p = .10), C3-SAL* (p =
.27). For the MEL2 definition C2 and C3 yield an OA that
is significantly higher than all compared approaches. In the
case of Orchset, C3 is significantly better than C1 and C2
except when increasing the voicing threshold on C2* (p =
.78), and outperforms all compared approaches but DUR.
As expected, pitch related metrics (RPA, RCA) are the
same for C1 and DUR (they output the same pitches), and
voicing detection metrics (VR, VFA) are the same for C1
and SAL. This simple combination is already able to sig-
nificantly improve overall accuracy results on MedleyDB
in comparison to all evaluated state-of-the-art approaches
except SAL, thanks to the highest pitch estimation accu-
racy obtained by DUR, and the lowest VFA yielded by
SAL. However, OA results are not as high as with DUR
on Orchset, due to the lower recall of SAL. An important
remark is that DUR always obtains almost perfect recall,
since this method outputs almost all frames as voiced. This
has a huge influence on the overall accuracy on Orchset,
since this dataset contains 93.7% of voiced frames. How-
ever, the false alarm rate is also very high, which lowers
OA results on MedleyDB, since it contains full songs with
large unvoiced portions.

SAL and BIT perform similarly on MedleyDB, but the
usefulness of Bittner’s method becomes evident on Orch-

574 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



MedleyDB-MEL1 MedleyDB-MEL2
Method ν VR VFA RPA RCA OA VR VFA RPA RCA OA
DUR - 1.0 (.01) .96 (.05) .66 (.21) .73 (.16) .36 (.16) 1.0 (.01) .95 (.06) .65 (.18) .73 (.14) .42 (.14)
SAL .2 .78 (.13) .38 (.14) .54 (.27) .68 (.19) .54 (.17) .76 (.12) .33 (.12) .52 (.24) .66 (.17) .53 (.17)
SAL* -1 .57 (.21) .20 (.12) .52 (.26) .68 (.19) .57 (.18) .54 (.19) .17 (.09) .49 (.23) .66 (.17) .53 (.18)
BIT - .80 (.13) .48 (.13) .51 (.23) .61 (.19) .50( .15) .79 (.10) .44 (.13) .50 (.20) .60 (.16) .50 (.14)
ESS .2 .79 (.13) .44 (.15) .55 (.26) .68 (.19) .50 (.17) .77 (.12) .39 (.14) .53 (.23) .66 (.17) .50 (.17)
C1 .2 .78 (.13) .38 (.14) .66 (.21) .73 (.16) .56 (.14) .76 (.12) .33 (.12) .65 (.18) .73 (.14) .57 (.13)
C2 .2 .65 (.15) .26 (.11) .63 (.21) .70 (.16) .61 (.15) .62 (.14) .21 (.08) .61 (.19) .69 (.14) .60 (.15)
C3 - .75 (.15) .38 (.16) .58 (.23) .64 (.19) .59 (.16) .74 (.13) .34 (.13) .58 (.19) .64 (.17) .60 (.14)

Table 2. Mean results (and standard deviation) over all excerpts for the five considered metrics, on MedleyDB with MEL1
and MEL2 definition. Parameter ν refers to the voicing threshold used in the methods based on pitch-contour selection [20].
In the case of classification-based methods (BIT and C3), this parameter is learnt from data. SAL* refers to the results
obtained with the best ν for MedleyDB/MEL1.

set: with the same candidate contours, the RPA increases
with respect to SAL. This classification-based method is
thus partially able to learn the characteristics of melody
contours in orchestral music. Orchset is characterized by a
higher melodic pitch range compared to most melody ex-
traction datasets which often focus on sung melodies [4].

5. DISCUSSION

5.1 Salience function and contour creation

By comparing the results obtained by SAL and C2 we can
assess the influence of the salience function on methods
based on pitch contour selection [20]. SAL obtains lower
pitch related accuracies (RPA, RCA) than C2, especially
for orchestral music. The difference between RPA and
RCA is also greater in SAL than compared to C2, indicat-
ing SAL makes a larger amount of octave errors, especially
for Orchset. This indicates that the signal representation
yielded by the proposed pitch salience function Sc is ef-
fective at reducing octave errors, in concurrence with the
observations made in [9]. C3 also provides a significantly
higher accuracy in comparison to BIT, showing that the
proposed salience function helps to improve melody ex-
traction results also when combined with a pitch contour
classification based method. Once again, this is particu-
larly evident in orchestral music.

Note that even if the performance ceiling when creating
the pitch contours from HS on MedleyDB is 2 percentage
points higher than with Sc (see section 4.2), melody ex-
traction results are better with Sc. This is due to the fact
that the precision of the contour creation process with the
proposed salience function is higher than with HS.

5.2 Pitch tracking method

By comparing the results of C2 and C3 we can assess the
influence of the pitch tracking strategy, as both methods
use the same contours as input. In MedleyDB, there is
no significant difference between both methods in terms
of overall accuracy, but the contour classification based
method (C3) has a higher voicing recall for both melody
definitions, while the contour selection method (C2) has a
better RPA, RCA and VFA. This agrees with the findings

from Bittner et al. [1] who also compared between both
pitch tracking strategies using HS as the salience func-
tion. In the case of Orchset, the difference in OA is evident
between C2-C3 (p = .004), since the classification based
approach tends to classify most frames as voiced, which is
beneficial when evaluating on this dataset. However, in-
creasing the tolerance in C2 (C2*, ν = 1.4) provides simi-
lar OA results: C2*-C3 (p = .78).

An analysis of feature importance for pitch contour
classification (using Sc) revealed that salience features are
the most discriminative in both datasets, especially mean
salience. This suggests that the proposed salience func-
tion Sc is successful at assigning melody contours a higher
salience compared to non-melody contours.

The most important difference between C2 and C3 is
that C3 allows the model to be trained to fit the characteris-
tics of a dataset, avoiding the parameter tuning necessary in
rule-based approaches like [20]. The set of rules from [20]
used in C2 are not tuned to orchestral music, which also
explains why C2 obtains a lower OA on Orchset with the
default parameters. Careful tuning could considerably im-
prove the results.

5.3 Influence of parameters

We ran some additional experiments with C2 in order to
investigate the influence of the parameters used to com-
pute the pitch salience function and contour creation step.
Several parameters affect the creation of the salience func-
tion [9], here we focus on the number of iterations used for
the source-filter decomposition and how it affects the re-
sults obtained with the proposed salience function Sc. We
found that on Orchset the drop in OA when reducing the
number of iterations from 50 to 10 is less than 4%. On
MedleyDB the change in OA is less than 1% when varying
from 50 to 10 iterations. We also found that DUR is gener-
ally more sensitive to the decrease in number of iterations,
which is a positive aspect of our proposed approach, given
the high computational cost of the pitch salience estima-
tion algorithm. For instance, DUR experiments a relative
decrease in OA of around 7% when going from 50 to 10
iterations (on MedleyDB with MEL1 definition). The rela-
tive decrease in the case of C2 is less than 3%. The results
reported in this study are based on 30 iterations.
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Method ν VR VFA RPA RCA OA
DUR - 1.0 (.00) .99 (.09) .68 (.20) .80 (.12) .63 (.20)
SAL .2 .60 (.09) .40 (.23) .28 (.25) .57 (.21) .23 (.19)

SAL* 1.4 .81 (.07) .57 (.25) .30 (.26) .57 (.21) .29 (.23)
BIT - .69 (.14) .45 (.25) .35 (.17) .53 (.15) .37 (.16)
ESS .2 .59 (.10) .38 (.22) .29 (.24) .55 (.20) .22 (.19)
C1 .2 .60 (.09) .40 (.22) .68 (.20) .80 (.12) .42 (.14)
C2 .2 .49 (.11) .28 (.16) .57 (.20) .69 (.14) .39 (.16)

C2* 1.4 .70 (.11) .44 (.21) .57 (.20) .70 (.14) .52 (.19)
C3 - .73 (.12) .46 (.23) .53 (.19) .65 (.14) .53 (.18)

Table 3. Mean results (and standard deviation) over all excerpts for the five considered metrics, on Orchset. Parameter ν
refers to the voicing threshold used in the methods based on pitch-contour selection. In the case of the classification-based
methods (BIT and C3), this parameter is learnt from data. The sign * refers to the results obtained with the best v.

We also analysed the influence of Gaussian filtering (see
Figure 1), by suppressing it from the salience function cre-
ation process. The effect is quite small on MedleyDB, but
is more noticeable on Orchset where it results in a 4% point
drop in OA. A possible explanation is that in symphonic
music many instruments contribute to the melody but are
not perfectly in tune. By smoothing the salience function
we are able to increase the pitch salience of notes played
by orchestral sections in unison. Pitch contour extraction
and voicing detection parameters are more relevant, how-
ever. Overall accuracy generally increases on MedleyDB
when the maximum allowed gap between pitches in a con-
tour is decreased from 100 ms to 50 ms (50 ms is used in
the reported experiments). Since SIMM can add noise to
unvoiced frames, using the stricter threshold of 50 ms in
the contour creation step can help filter some of this noise
by preventing it from being tracked as part of a contour.

We also conducted a study of the effect of the voicing
parameter (ν) on both C2 and SAL. A higher value results
in less contours being filtered as unvoiced, which is bene-
ficial on Orchset. A lower value (heavier filtering) is ben-
eficial when evaluating against the MEL1 definition, since
the melody is restricted to a single instrument. Varying
ν from -1.4 to 1.0, the OA results with SAL range from
.46 to .57 on MedleyDB MEL1, while with C2 they only
range from .56 to .61. In the case of MEL2, the OA of SAL
ranges from .46 to .54, while in the case of C2 the range is
also smaller, from .57 to .60. This shows that the proposed
method is more robust to the selection of the voicing pa-
rameter. While default contour creation parameters in ESS
already provided satisfying results for C2 on MedleyDB,
further tests on Orchset showed that they could be tuned
to go up to 0.60 overall accuracy. In fact, just modifying
the voicing parameter to ν = 1.4 already increases the OA
of C2 to 0.52. The highest overall accuracy obtained by
SAL with the best parameter configuration on Orchset is
0.29 (see Table 3). This again shows that the same pitch
contour selection based method can be improved with the
proposed salience function, especially on orchestral music.

5.4 Pitch salience integration in contour creation

The benefits of combining a source-filter model and a pitch
contour based tracking method have become evident by

now, and each of the proposed combination approaches has
its advantages and disadvantages. The main advantage of
C1 is its simplicity, and that it always yields the same RPA
as DUR, which is always the best in all datasets. The main
disadvantage is that the contour creation process from SAL
does not take advantage of the benefits of the pitch salience
from DUR. This is the reason why it becomes important to
integrate the source-filter model into the pitch contour cre-
ation process, as performed in C2 and C3. One difficulty
of the integration is that the salience function from DUR
needs to be adapted to the pitch contour creation frame-
work. However, this improves overall accuracy in both
MedleyDB and Orchset.

6. CONCLUSIONS AND FUTURE WORK

This paper presents a comparison of melody extraction
methods based on source-filter models within a pitch con-
tour based melody extraction framework. We propose
three different combination methods, based on a melody
oriented pitch salience function which adapts a source-
filter model to the characteristics of the tracking algo-
rithm. The adaptation is based on the combination with a
salience function based on harmonic summation. We have
shown that the proposed salience function helps improve
pitch estimation accuracy and reduce octave errors in com-
parison to harmonic summation. This salience function
consistently improves the mean overall accuracy results
when it substitutes harmonic summation in pitch contour
based tracking methods. This is true for both heuristic and
machine-learning-based approaches, when evaluated on a
large and varied set of data. Future work deals with im-
proving the proposed salience function, in order to further
reduce the amount of noise in unvoiced parts.
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ABSTRACT

We present a study, carried out on 241 participants, which
investigates on classical music material the agreement of
listeners on perceptual music aspects (related to emotion,
tempo, complexity, and instrumentation) and the relation-
ship between listener characteristics and these aspects. For
the currently popular task of music emotion recognition,
the former question is particularly important when defin-
ing a ground truth of emotions perceived in a given music
collection. We characterize listeners via a range of factors,
including demographics, musical inclination, experience,
and education, and personality traits. Participants rate the
music material under investigation, i.e., 15 expert-defined
segments of Beethoven’s 3rd symphony, “Eroica”, in terms
of 10 emotions, perceived tempo, complexity, and num-
ber of instrument groups. Our study indicates only slight
agreement on most perceptual aspects, but significant cor-
relations between several listener characteristics and per-
ceptual qualities.

1. INTRODUCTION

Music has always been closely related to human emotion.
It can express emotions and humans can perceive and expe-
rience emotions when listening to music, e.g., [10, 22, 29].
In a uses and gratification analysis of why people listen
to music [20], Lonsdale and North even identify emotion
regulation as the main reason why people actively listen to
music.

However, little is known about the influence of individ-
ual listener characteristics on music perception (emotion
and other aspects) and whether listeners agree on such as-
pects at all. The aim of this paper is therefore to gain a
better understanding of the agreement on perceptual music
aspects and the relationship between perceptual music as-
pects and personal characteristics. To approach these two
questions, we present and analyze results of a web-based
user study involving 241 participants. We characterize lis-

c© Markus Schedl, Hamid Eghbal-Zadeh, Emilia Gómez,
Marko Tkalčič. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Markus Schedl, Hamid
Eghbal-Zadeh, Emilia Gómez, Marko Tkalčič. “An Analysis of Agree-
ment in Classical Music Perception and Its Relationship to Listener Char-
acteristics”, 17th International Society for Music Information Retrieval
Conference, 2016.

teners by demographics, music knowledge and experience,
and personality. For our study, we focus on classical music,
the repertoire under investigation being Beethoven’s 3rd

symphony, “Eroica”. Responses of the listeners to the mu-
sic are recorded via ratings of perceived emotions, tempo,
complexity, and instrumentation.

In Section 2, we position our contribution within ex-
isting literature. Details on data acquisition and setup of
the user study are provided in Section 3. Subsequently,
we present and discuss the findings of our analysis on the
agreement on perceptual aspects (Section 4) and on the re-
lationship between these aspects and listener characteris-
tics (Section 5). We round off by concluding remarks and
a brief outlook to future research directions in Section 6.

2. RELATED WORK

This work connects to other investigations of music per-
ception, to studies on personality in music, and to music
emotion recognition.

Previous analyses on music perception have suggested
that certain musical parameters especially influence the
content of emotional responses, notably timbre, orches-
tration, acoustics, rhythm, melody, harmony, and struc-
ture [14]. For instance, Laurier created mappings be-
tween musical descriptors and emotion categories [19],
but these emotion categories are limited to the five emo-
tions happiness, sadness, anger, fear, and tenderness [3].
Rentfrow et al. identified five genre-free latent factors that
reflect the affective response of listeners to music [25].
They named them “mellow”, “urban”, “sophisticated”, “in-
tense”, and “campestral” music preference factors, yield-
ing the acronym MUSIC. Not much research has been de-
voted to how listeners of different demographic, personal-
ity, and musical background experience different percep-
tual aspects of the same music. While there do exist sev-
eral cross-cultural studies on music and perceived emo-
tion [1, 8, 12, 15, 28], these studies tend to focus on greatly
different cultures, rather than on more subtle differences
such as age, gender, and musical experience or exposure.

Personality has been related to music preferences in a
number of studies. Rentfrow and Gosling showed that per-
sonality traits are related to four preference dimensions:
reflective and complex, intense and rebellious, upbeat and
conventional, and energetic and rhythmic [26]. Further-
more, they found that personality-based stereotypes are
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strongly correlated with music genre preferences [24]. Per-
haps the most commonly used model of personality is the
five factor model (FFM), which is composed of the fac-
tors openness, conscientiousness, extraversion, agreeable-
ness, and neuroticism [21]. Employing this model in their
study, Chamorro-Premuzic and Furnham found that peo-
ple who score high on openness tend to consume music
in a more rational way, while people who score high on
neuroticism and those who score low on extraversion and
conscientiousness tend to consume music to regulate their
emotions [2]. Similarly, Ferwerda et al. showed that per-
sonality accounts for individual differences in mood regu-
lation [6]. Personality has also been linked to how users
tend to perceive and organize music [7].

Our work also connects to music emotion recognition
(MER) at large, which has lately become a hot research
topic [4, 11, 13, 18, 27, 30, 32]. It aims at automatically
learning relationships between music audio or web features
and emotion terms. However, common MER approaches
assume that such a relationship exists, irrespective of a par-
ticular listener. In the study at hand, we take one step back
and approach the question of whether listeners at all agree
on certain emotions and other perceptive aspects when lis-
tening to classical music.

3. MATERIALS AND USER STUDY

3.1 Music Material

In our study, we focused on classical music and se-
lected one particular piece, namely Beethoven’s 3rd sym-
phony, “Eroica”, from which we extracted 15 coherent ex-
cerpts [31]. This symphony is a well-known piece, also to
many who are not much into classical music. We had to
make this restriction to one piece to compare results be-
tween participants and keep them engaged throughout the
questionnaire. Furthermore, this symphony was selected
because of its focus in the PHENICX project, 1 the work
at hand emerged from. Beethoven’s “Eroica” is generally
agreed on as a key composition of the symphonic reper-
toire, constituting a paradigm of formal complexity, as
evidenced by the vast literature analyzing the symphony.
We considered a performance by the Royal Concertge-
bouw Orchestra, Amsterdam. The 15 excerpts we used in
the study were carefully selected by the authors, some of
which are trained in music theory and performance, then
reviewed by a musicologist. To this end, every section was
first labeled with one of the nine emotions according to
the Geneva Emotional Music Scale (GEMS) [33], judged
based on musical elements. Then, the six emotions that ap-
peared most frequently among the labels were identified.
Three excerpts each for peacefulness, power, and tension,
and two excerpts each for transcendence, joyful activation,
and sadness, were finally selected. In this final selection
step, we ensured that the segments covered a variety of
musical characteristics, lasted the duration of a complete
musical phrase, and strongly represented one of the above
six emotions.

1 http://phenicx.upf.edu

For the sake of reproducibility, interested readers can
download the excerpts from http://mtg.upf.edu/
download/datasets/phenicx-emotion.

3.2 Study Design

The study was conducted as online survey, accessible via
a web interface. Participants were recruited by mass mail
to all students of the Johannes Kepler University Linz and
by posting to several research mailing lists. Announce-
ments were also made on various social media platforms
the authors are active on. In the survey, we first asked
participants a range of questions, related to demograph-
ics, music education and experience, inclination to music
and to classical music in particular, and familiarity with
Beethoven’s “Eroica”. Subsequently, participants had to
fill in a personality questionnaire, i.e., the standardized Ten
Item Personality Instrument (TIPI) [9]. After having pro-
vided this personal information, we asked participants to
listen to each of the 15 excerpts and provide ratings of
perceptual qualities (emotions, tempo, complexity, and in-
strumentation). We ensured that participants actually lis-
tened to the excerpts by measuring the time they played
each piece in the web browser. To describe emotions, we
used the six emotions of the GEMS model most dominant
in the music material (see above) and added five basic hu-
man emotions identified in psychological literature [5,23]:
transcendence, peacefulness, power, joyful activation, ten-
sion, sadness; anger, disgust, fear, surprise, tenderness. We
added these additional emotions to complement the GEMS
model with basic emotions not specifically targeted at mu-
sic perception. The options available to participants for
each answer, as well as their numeric coding for the fol-
lowing analysis, are provided in Table 1. Note that we
are interested in perceived music qualities. Therefore, the
questions were formulated according to the scheme “I per-
ceive the music as ...”.

3.3 Statistics of Participants

The survey was completed by 241 participants, taking
them around 40 minutes on average. We had 123 male
and 118 female participants. The vast majority of 217 par-
ticipants were Austrians; other participants were Germans,
Italians, Russians, Englishmen, and Spaniards. A limita-
tion of the study is that participation was biased towards
younger people, the median age of participants being 25
years. This can be explained by the large number of stu-
dents among participants. However, the youngest partici-
pants were only 16, while the eldest one was 67. As for
participants’ music taste and listening frequency, on aver-
age subjects listen to classical music 2.6 hours per week,
and to other genres 11 hours per week. Interestingly, the
median for listening to classical music (1 hour per week)
is much lower than the median of listening to other gen-
res (8 hours per week). It thus seems that participants
either love classical music and devote a lot of time to it,
or do not listen to it at all. Less than half of the partici-
pants play an instrument (median of 0 hours per week), but
most had some form of musical education, on average 6.8
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Aspect Options Numeric encoding
Age free form years
Gender male or female —
Country list selection from 193 countries —
Listening classical free form hours per week
Listening non-classical free form hours per week
Playing instrument free form hours per week
Musical education free form years
Concerts classical free form attendances per year
Concerts non-classical free form attendances per year
Familiar with “Eroica” unfamiliar, somewhat familiar, very

familiar
0–2

All personality traits strongly disagree–strongly agree 1–7
All emotions strongly disagree, disagree, neither

agree nor disagree, agree, strongly
agree, don’t know

0–4, -1

Perceived tempo slow, fast, don’t know 0, 1, -1
Perceived complexity very low–very high, don’t know 0–4, -1
Kinds of instruments 1, 2, 3, 4, more, don’t know 1, 2, 3, 4, 5, -1
Description of the excerpt free form —

Table 1. Options available to participants and numerical encoding of the answers using for analysis.

Aspect µ σ med min max
Age 27.35 8.47 25 16 67
Listening classical (hrs/week) 2.56 5.20 1 0 40
Listening non-classical 11.16 11.86 8 0 70
Playing instrument 1.93 4.23 0 0 40
Musical education 6.77 6.39 5 0 33
Concerts classical 2.43 5.28 1 0 40
Concerts non-classical 3.93 6.70 2 0 70
Familiar with “Eroica” 0.83 0.64 1 0 2

Table 2. Basic statistics of the participants. µ = mean,
σ = standard deviation, med = median

years. Participants attend on average 2 classical and 4 non-
classical concerts per year, but the median values are again
smaller (1 and 2 concerts, respectively). Many participants
do not attend concerts at all: 39% do not attend a single
classical concert, 22% do not attend a single concert of
another genre per year. Most participants were not (72 or
30%) or somewhat (137 or 57%) familiar with Beethoven’s
“Eroica”. Only 32 (14%) indicated to be very familiar with
the piece. Analyzing the personality traits, shown in Ta-
ble 3, we observe that subjects tend to regard themselves
as open to new experiences, sympathetic, calm, but also de-
pendable (average and median ratings are at least “agree a
little”). On the other hand, they negate being disorganized,
conventional, and anxious (average and median ratings are
at most “disagree a little”).

4. LISTENER AGREEMENT

We compute the agreement on all perceptive aspects un-
der investigation. To this end, we use Krippendorff’s α
score for inter-rater agreement [16], computed on the rat-
ings given by participants for each segment separately and

Personality trait µ σ med min max
Extraverted 4.27 1.88 5 1 7
Critical 4.54 1.68 5 1 7
Dependable 5.27 1.43 6 1 7
Anxious 3.17 1.64 3 1 7
Open to new experiences 5.59 1.27 6 2 7
Reserved 4.41 1.81 5 1 7
Sympathetic 5.39 1.32 6 1 7
Disorganized 2.83 1.69 2 1 7
Calm 5.01 1.56 6 1 7
Conventional 2.84 1.63 2 1 7

Table 3. Personality statistics of participants. µ = mean,
σ = standard deviation, med = median

subsequently averaged. We excluded from the calculations
“don’t know” answers, i.e., treated them as missing values.

Table 4 shows the overall mean ratings, standard devi-
ations, and agreement scores among participants for each
investigated aspect, macro-averaged over all segments. We
observe that participants give highest average ratings (col-
umn µ in Table 4) to the aspects of power and tension,
followed by transcendence and joyful activation. Lowest
ratings are given to fear, sadness, anger, and — much be-
low — disgust. Overall, it seems that the aspects ranging
in the lower arousal range (sadness, peacefulness, etc.) are
perceived to a smaller degree in the music material under
consideration. Tempo is, on average, neither perceived as
particularly low nor high. So is complexity. As for instru-
mentation, overall, most participants could distinguish 4
kinds of instruments.

As for agreement, the study evidences a low to mod-
erate agreement for most aspects, according to Krippen-
dorff’s α. Participants do not (0.00–0.20) or at most
slightly (0.21–0.40) agree on most perceptual aspects.
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Aspect Scale µ σ α

Transcendence 0–4 2.215 1.095 0.010
Peacefulness 0–4 1.812 0.986 0.450
Power 0–4 2.477 0.937 0.450
Joyful activation 0–4 2.048 1.059 0.320
Tension 0–4 2.318 1.121 0.222
Sadness 0–4 1.233 0.979 0.298
Anger 0–4 1.204 1.008 0.300
Disgust 0–4 0.808 0.941 0.128
Fear 0–4 1.292 1.084 0.276
Surprise 0–4 1.790 1.162 0.054
Tenderness 0–4 1.687 1.046 0.366
Tempo 0–1 0.460 0.337 0.513
Complexity 0–4 2.240 0.864 0.116
Instrument kinds 1–5 3.899 0.980 0.077

Table 4. Mean µ, standard deviation σ, and agreement
score (Krippendorff’s α) for investigated aspects of music
perception. Italic font is used to indicate slight agreement.
Bold face is used to denote moderate agreement.

The values indicating moderate agreement (0.41–0.60) ac-
cording to [17] are printed in bold in Table 4, whereas
slight agreement is indicated by italics. Highest agreement
among the emotion aspects is found for peacefulness and
power, while tempo shows the highest agreement among
all investigated aspects. Slight agreement can be observed
for joyful activation, tension, sadness, anger, fear, and ten-
derness. No relevant agreement is observed for transcen-
dence, disgust, surprise, as well as perceived complexity
and number of instrument groups. Perceived complexity
is presumably a highly subjective aspect. Furthermore, it
seems that there is a discrepancy between listeners with
regard to their ability to distinguish different instrumenta-
tions, which is presumably due to different music knowl-
edge and expertise levels.

5. LISTENER CHARACTERISTICS AND
PERCEPTUAL ASPECTS

We investigate whether there exists a significant relation-
ship between listener characteristics and the perceptual as-
pects under investigation. To this end, we calculate Pear-
son’s correlation coefficient between the respective numer-
ically encoded factors, according to Table 1, treating each
user–segment pair as one observation. Table 5 shows the
correlation values for all listener characteristics (rows) and
perceptual aspects (columns). While most correlations are
not very pronounced, several are significant (at p < 0.05),
where p values are the probability of observing by chance
a correlation as large as the observed one, when the true
correlation is 0.

Reviewing the results, a remarkable observation is the
significant correlations between factors of musical back-
ground and knowledge (listening to classical music, play-
ing an instrument, musical education, concert attendances,
familiarity with the piece) and perceived number of instru-
ment groups. Participants with a stronger musical back-

ground therefore seem to be able to distinguish more in-
struments. While participants scoring high on convention-
alism show negative correlation with the perceived num-
ber of instrument groups, the opposite it true for people
who are open to new experiences. As for participants’ age,
older people tend to perceive the music as more joyful and
less fearsome. Frequent listeners of classical music tend
to perceive the piece as more powerful, transcendent, and
tender, but less fearsome. On the other hand, listeners of
other genres perceive more anger and surprise. Playing an
instrument, extensive musical education, and frequent clas-
sical concert attendances show a positive correlation with
perceived power and tension, while attending non-classical
concerts seem to have no influence on emotion perception.
Participants who are familiar with the “Eroica” overall tend
to perceive it as more transcendent, powerful, joyful, and
tender.

Among the personality traits, most show little correla-
tion with the perceptual aspects. However, openness to
new experiences is significantly correlated with the emo-
tion categories transcendence, peacefulness, joyful activa-
tion, and tenderness, as well as tempo and instrumenta-
tion. Disorganized people tend to rate the piece higher on
sadness, anger, disgust, but also on tenderness. Sympa-
thetic subjects on average give higher ratings to aspects
of peacefulness, tenderness, tempo, and number of instru-
ment groups. Calm participants perceive the music as more
peaceful, joyful, and tender than others, while convention-
alists perceive it as less transcendent and tense.

6. CONCLUSIONS AND FUTURE DIRECTIONS

In the presented study, we addressed two research ques-
tions. First, we investigated whether listeners agree on
a range of perceptual aspects (emotions, tempo, com-
plexity, and instrumentation) in classical music material,
represented by excerpts from Beethoven’s 3rd symphony,
“Eroica”. Only for the perceived emotions peacefulness
and power as well as for the perceived tempo, moder-
ate agreement was found. On other aspects, participants
agreed only slightly or not at all. The second question we
approached in the study is the relationship between listener
characteristics (demographics, musical background, and
personality traits) and ratings given to the perceptual as-
pects. Among others, we found significant correlations be-
tween musical knowledge and perceived number of instru-
ment groups, which might not be too surprising. We fur-
ther identified slight, but significant positive correlations
between aspects of musical inclination or knowledge and
perceived power and tension. Several correlations were
also found for the personality traits open to new experi-
ences, sympathetic, disorganized, calm, and conventional.

As part of future work, we plan to assess to which extent
the investigated perceptual aspects can be related to music
audio descriptors. We would further like to analyze the im-
pact of listener characteristics on the agreement scores of
perceptual aspects. Furthermore, a cross-correlation anal-
ysis between ratings of the perceived qualities could re-
veal which emotions (or other investigated aspects) are
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Trans. Peace. Power Joyful. Tension Sadness Anger Disgust Fear Surprise Tender Tempo Compl. Instr.
Age 0.155 0.040 0.102 0.261 0.075 -0.081 -0.110 -0.002 -0.186 -0.015 0.104 -0.031 -0.019 -0.026
Listening classical 0.203 0.112 0.212 0.078 0.019 -0.082 -0.090 -0.105 -0.190 -0.029 0.148 0.028 0.123 0.192
Listening non-classical 0.085 0.092 0.121 0.007 0.033 0.028 0.139 0.042 0.078 0.149 0.054 0.122 0.064 -0.036
Playing instrument 0.085 -0.016 0.133 0.010 0.190 0.077 0.113 0.073 0.050 0.042 0.014 0.061 0.012 0.259
Musical education 0.140 -0.073 0.143 0.007 0.170 0.029 0.101 0.085 0.008 -0.064 0.007 0.077 0.076 0.418
Concerts classical 0.170 0.065 0.175 0.108 0.192 -0.015 -0.033 -0.028 -0.065 -0.046 0.076 0.017 0.086 0.243
Concerts non-classical 0.114 -0.004 0.048 -0.008 0.099 0.080 0.079 0.061 0.091 0.069 -0.003 0.106 0.045 0.153
Familiar with “Eroica” 0.141 0.118 0.211 0.184 0.116 -0.045 0.057 0.026 -0.018 0.004 0.149 0.056 0.096 0.242
Extraverted 0.045 0.024 0.120 0.065 0.022 0.031 -0.014 -0.027 0.007 0.041 0.166 0.112 0.059 0.066
Critical 0.010 0.031 0.094 0.081 0.049 0.037 -0.035 -0.041 -0.011 -0.141 0.043 0.066 0.075 0.049
Dependable 0.054 -0.098 -0.074 -0.098 0.009 -0.049 -0.065 -0.035 0.011 -0.018 0.007 -0.023 -0.075 0.033
Anxious -0.084 -0.054 -0.108 -0.114 -0.108 -0.003 0.017 0.064 0.055 0.023 -0.089 -0.072 -0.054 -0.087
Open to new exp. 0.159 0.139 0.108 0.181 0.054 0.053 0.010 0.005 -0.003 0.009 0.222 0.173 0.006 0.201
Reserved -0.049 0.033 -0.112 -0.057 -0.095 -0.038 -0.033 -0.014 -0.045 -0.042 -0.084 -0.026 -0.054 -0.061
Sympathetic 0.077 0.147 0.098 0.107 0.059 -0.031 -0.012 0.020 0.026 0.078 0.166 0.148 0.015 0.134
Disorganized 0.076 0.120 0.032 0.083 0.114 0.167 0.157 0.146 0.116 0.111 0.129 0.130 -0.014 -0.069
Calm 0.076 0.142 -0.002 0.153 -0.032 -0.023 -0.044 -0.060 0.031 -0.063 0.132 0.069 0.153 0.135
Conventional -0.145 0.099 -0.048 0.012 -0.135 0.050 0.087 0.070 0.102 0.008 -0.058 -0.040 -0.002 -0.129

Table 5. Correlation between demographics, music expertise, and personality traits on the one hand, and aspects of music
perception on the other. Significant results (p < 0.05) are depicted in bold face.

frequently perceived together. Finally, we would like to
perform a larger study, involving on the one hand a larger
genre repertoire and on the other an audience more diverse
in terms of cultural background.
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ABSTRACT

We demonstrate that piano transcription performance
for a known piano can be improved by explicitly modelling
piano acoustical features. The proposed method is based
on non-negative matrix factorisation, with the following
three refinements: (1) introduction of attack and harmonic
decay components; (2) use of a spike-shaped note activa-
tion that is shared by these components; (3) modelling the
harmonic decay with an exponential function. Transcrip-
tion is performed in a supervised way, with the training and
test datasets produced by the same piano. First we train pa-
rameters for the attack and decay components on isolated
notes, then update only the note activations for transcrip-
tion. Experiments show that the proposed model achieves
82% on note-wise and 79% on frame-wise F-measures on
the ‘ENSTDkCl’ subset of the MAPS database, outper-
forming the current published state of the art.

1. INTRODUCTION

Automatic music transcription (AMT) converts a musi-
cal recording into a symbolic representation, i.e. a set of
note events, each consisting of pitch, onset time and du-
ration. Non-negative matrix factorisation (NMF) is com-
monly used in the AMT area for over a decade since [1].
It factorises a spectrogram (or other time-frequency rep-
resentation, e.g. Constant-Q transform) of a music signal
into non-negative spectral bases and corresponding acti-
vations. With constraints such as sparsity [2], temporal
continuity [3] and harmonicity [4], NMF provides a mean-
ingful mid-level representation (the activation matrix) for
transcription. A basic NMF is performed column by col-
umn, so NMF-based transcription systems usually pro-
vide frame-wise representations with note transcription as
a post-processing step [5].

One direction of AMT is to focus on instrument-specific
music, in order to make use of more information from in-
strumental physics and acoustics [5]. For piano sounds,
several acoustics-associated features, such as inharmonic-
ity, time-varying timbre and decaying energy, are exam-
ined for their utilities in transcription. Rigaud et al. show

c© Tian Cheng, Matthias Mauch, Emmanouil Benetos and
Simon Dixon. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Tian Cheng, Matthias
Mauch, Emmanouil Benetos and Simon Dixon. “An Attack/Decay Model
for Piano Transcription”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.
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Figure 1: An example of output from the proposed model.

that an explicit inharmonicity model leads to improvement
in piano transcription [6], while a note-dependent inhar-
monicity parameter is needed for initialisation. Modelling
time-varying timbre not only provides a better reconstruc-
tion of the spectrogram, but also improves note tracking re-
sults by imposing constraints between note stages (attack,
sustain and decay) [7, 8]. For decaying energy, Chen et
al.’s preliminary work uses an exponential model for en-
ergy evolution of notes [9]. Berg-Kirkpatrick et al. rep-
resent the energy evolution of a piano note by a trained
envelope [10]. Cogliati and Duan use a sum of two de-
caying exponentials to approximate decays of piano par-
tials [11]. Ewert et al. represent both time-varying timbre
and temporal evolution of piano notes by time-frequency
patches [12]. Temporal evolution modelling allows a note
event to be represented by a single amplitude parameter for
its whole duration, enabling the development of note-level
systems with promising transcription results [9, 10, 12].

The proposed method is also motivated by piano acous-
tics. Based on our previous studies on piano decay, we
know that exponential decay explains the major energy
evolution for each partial in spite of various decay pat-
terns [13]. Here, we further simplify the decay stage us-
ing an exponential decay function and a harmonic template
per pitch. We separately represent the attack stage for the
percussive onset of piano sounds. These two stages are
coupled by shared note activations. A supervised NMF
framework is used to estimate note activations, and hence
activations of the attack and decay stages (see Figure 1).
We detect note onsets by peak-picking on attack activa-
tions, then offsets for each pitch individually. Experiments
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show that the proposed method significantly improves su-
pervised piano transcription, and compares favourably to
other state-of-the-art techniques.

The proposed method is explained in Section 2. The
transcription and comparison experiments are described in
Section 3. Conclusions and discussions are drawn in Sec-
tion 4.

2. METHOD

In this section we first introduce the attack and decay
model for piano sounds. Parameters are estimated using
a sparse NMF. Then we explain onset and offset detection
methods, respectively.

2.1 A model of attack and decay

A piano sound is produced by a hammer hitting the
string(s) of a key. It starts with a large energy, then decays
till the end of the note. At the attack stage, the strike of the
hammer produces a percussive sound. It evolves quickly to
an almost harmonic pitched sound, and then immediately
enters the decay stage. Considering the different spectral
and temporal features, we reconstruct these two phases in-
dividually. The attack sound is generated by:

V aft =

K∑

k=1

W a
fkH

a
kt, (1)

where Va is the reconstructed spectrogram of the attack
phase, as shown in Figure 2(d), and Wa is the percussive
template (Figure 2(e)). f ∈ [1, F ] is the frequency bin, t ∈
[1, T ] indicates the time frame, and k ∈ [1,K] is the pitch
index. Attack activations Ha (Figure 2(c)) are formulated
by the convolution as follows:

Ha
kt =

t+Tt∑

τ=t−Tt

HkτP (t− τ), (2)

where H are spike-shaped note activations, shown in Fig-
ure 2(b). P is the transient pattern, and its typical shape is
shown in Figure 5. The range of the transient pattern is de-
termined by the overlap in the spectrogram, with Tt equal
to the ratio of the window size and frame hop size.

For the decay part we assume that piano notes decay
approximately exponentially [13,14]. The harmonic decay
is generated by

V dft =

K∑

k=1

W d
fkH

d
kt, (3)

where Vd is the reconstructed spectrogram of the decay
phase (Figure 2(g)), and Wd is the harmonic template
(Figure 2(h)). Decay activations Hd in Figure 2(f) are gen-
erated by convolving activations with an exponentially de-
caying function:

Hd
kt =

t∑

τ=1

Hkτe
−(t−τ)αk , (4)

where αk are decay factors, and eαk indicates the decay
rate per frame for pitch k. Offsets are not modelled; instead
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Figure 2: An illustration of the proposed model (note D3
with the MIDI index of 50).

it is assumed that the energy of a note decays forever. Then
the complete model is formulated as follows:

Vft = V aft + V dft

=

K∑

k=1

W a
fk

t+Tt∑

τ=t−Tt

HkτP (t− τ)

+

K∑

k=1

W d
fk

t∑

τ=1

Hkτe
−(t−τ)αk ,

(5)

where V is the reconstruction of the whole note, as shown
in Figure 2(i).

Parameters θ ∈ {Wa,Wd,H,P, α} are estimated by
minimising the difference between the spectrogram X and
the reconstruction V by multiplicative update rules [15].
The derivative of the cost function D with respect to θ is
written as a difference of two non-negative functions:

∇θD(θ) = ∇+
θ D(θ)−∇−θ D(θ). (6)

The multiplicative algorithm is given by

θ ← θ.∇−θ D(θ)./∇+
θ D(θ). (7)

We employ the β-divergence as the cost function. The full
update equations are provided online. 1

1 https://code.soundsoftware.ac.uk/projects/
decay-model-for-piano-transcription.
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Figure 3: Example of onset detection showing how activa-
tions are processed.

2.2 Sparsity

To ensure spike-shaped note activations, we simply impose
sparsity on activations H using element-wise exponentia-
tion after each iteration:

H = Hγ , (8)

where γ is the sparsity factor, usually larger than 1. The
larger the factor is, the sparser the activations are.

A preliminary test confirmed that the number of peaks
in activations decreases as the degree of sparsity increases.
We also apply an annealing sparsity factor [16], which
means a continuously changing factor. In this paper, we set
γ to increase from 1 to γa ∈ [1.01, 1.05] gradually within
the iterations.

2.3 Onset detection

Different playing styles and overlapping between notes
may cause a mismatch between the observed attack energy
and the trained transient pattern. This results in multiple
peaks around onsets in the activations. Figures 3(a) and
(b) show note activations and attack activations of pitch
G2 in a music excerpt, respectively. Attack activations in-
dicate the actual transient patterns of notes obtained by the
proposed model. Therefore, we detect onsets from attack
activations by peak-picking. First, we compute smoothed
attack activations for each pitch, using a moving average
filter with a window of 20 bins. Only peaks which exceed
smoothed attack activations by a threshold will be detected
as onset candidates, as shown in Figure 3(b). The threshold
is adapted to each piece with the parameter δ:

Thre = δmax
k,t

Ha
k,t. (9)

We test various δ ∈ {−21dB,−22dB, . . . ,−40dB} in this
paper.

We find that there are still double peaks around onsets
after thresholding. In order to deal with this problem, we
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Figure 4: Costs and segments for pitch F3 (MIDI index
53).

simply merge pairs of peaks which are too close to each
other. We set the minimal interval between two successive
notes of the same pitch to be 0.1 second. If the interval
between two peaks is smaller than the minimal interval,
we generate a new peak. The index of the new peak is a
weighted average of the indices of the two peaks, while its
amplitude is the sum of that of the two peaks. Figure 3(c)
shows detected onsets after merging double peaks. We ap-
ply the above process again to get rid of triple peaks.

2.4 Offset detection

We adapt the method of [12] to detect the offsets by dy-
namic programming. For each pitch, there are two states
s ∈ {0, 1}, denoting state ‘off’ and ‘on’ respectively. The
costs are defined below:

Ck(s, t) =

{∑F
f=1DKL(Xft, Vft − V kft), s = 0∑F
f=1DKL(Xft, Vft), s = 1

(10)

where V k is the reconstruction of pitch k, and V − V k is
the reconstruction excluding pitch k. DKL(a, b) denotes
the KL-divergence between a and b. Then we normalise
the costs per pitch to sum to 1 in all frames: C̃k(s, t) =
Ck(s, t)/

∑
s̃ Ck(s̃, t). Figures 4 (a) and (b) show the costs

and normalised costs for pitch F3 in a music piece, respec-
tively.

We can find the optimal state sequence by applying dy-
namic programming on the normalised costs. To do this,
we need an accumulated cost matrix and a step matrix to
store the smallest accumulated costs and previous states.
The accumulated cost matrix Dk is recursively defined as

Dk(s, t) ={
mins̃∈{0,1}(Dk(s̃, t− 1) + C̃k(s, t)w(s̃, s)), t > 1

C̃k(s, t), t = 1

(11)

where w is the weight matrix, which favours self-
transitions, in order to obtain a smoother sequence. In this
paper, the weights are [0.5, 0.55; 0.55, 0.5]. The step ma-
trix E is defined as follows:

Ek(s, t) = arg min
s̃∈{0,1}

(Dk(s̃, t− 1) + C̃k(s, t)w(s̃, s)), t > 1

(12)
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The states are given by

Sk(t) =

{
argmins̃∈{0,1}Dk(s̃, t), t = T

Ek(Sk(t+ 1), t+ 1), t ∈ [1, T − 1]
(13)

We find that when the activation of the pitch is 0 or very
small, the costs of two states are the same or very close,
and no state transition occurs. In these parts, the pitch
state is off, while dynamic programming can not jump out
from the previous state. In order to deal with this problem
we need to exclude these parts before applying dynamic
programming. Figure 4(c) shows the segmentation by de-
tected onsets and the costs. Each segment starts at a de-
tected onset and ends when the difference of the smoothed
normalised costs is less than a set threshold. We track the
states of the pitch for each segment individually.

3. EXPERIMENTS

In the experiments we first analyse the proposed model’s
performance on music pieces produced by a real piano
from the MAPS database [17]. Then we compare to three
state-of-the-art transcription methods on this dataset and
two other synthetic datasets.

To compute the spectrogram, frames are segmented
by a 4096-sample Hamming window with a hop-size of
882. 2 A discrete Fourier Transform is performed on each
frame with 2-fold zero-padding. Sample frequency fs is
44100Hz. To lessen the influence of beats in the decay
stage [13], we smooth the spectrogram with a median filter
covering 100ms. During parameter estimation, we use the
KL-divergence (β = 1) as the cost function. The proposed
model is iterated for 50 times in all experiments to achieve
convergence.

Systems are evaluated by precision (P ), recall (R) and
F-measure (F ), defined as:

P =
Ntp

Ntp+Nfp
, R =

Ntp

Ntp+Nfn
, F = 2× P×R

P+R
,

where Ntp , Nfp , Nfn are the numbers of true positives,
false positives and false negatives, respectively. In addi-
tion, we use the accuracy in [18] to indicate the overall
accuracy: A =

Ntp

Ntp+Nfp+Nfn
. We employ both frame-wise

and note-wise evaluation [19], denoted by subscript ‘f ’ and
‘on’, respectively.

3.1 Transcription experiment

The main transcription experiment is performed on the
‘ENSTDkCL’ subset of the MAPS database [17]. The pi-
ano sounds of this subset are recorded on a Disklavier pi-
ano. We train percussive and harmonic templates, decay
rates and the transient pattern on the isolated notes pro-
duced by the same piano. The transcription experiment is
run on the music pieces using the first 30s of each piece. 3

2 A 20ms hop size is used to reduce computation time. For frame-wise
evaluation, transcription results are represented with a hop size of 10ms
by duplicating every frame.

3 The proposed model runs at about 3 × real-time using MATLAB on
a MacBook Pro laptop (I7, 2.2GHz, 16GB).
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Figure 5: Transient patterns.

Table 1: Note tracking results with different fixed sparsity
factors (above) and annealing sparsity factors (below).

γ Pon Ron Fon Aon δ(dB)

1.00 88.52 77.70 82.24 70.54 -29
1.01 87.70 78.18 82.23 70.53 -30
1.02 87.67 77.36 81.80 69.87 -30
1.03 87.22 77.31 81.62 69.66 -31
1.04 86.95 76.84 81.26 69.17 -32
1.05 86.38 75.99 80.51 68.14 -33

1→ 1.01 87.77 78.08 82.18 70.49 -30
1→ 1.02 88.49 77.79 82.36 70.73 -30
1→ 1.03 88.22 77.78 82.27 70.60 -31
1→ 1.04 87.86 77.66 82.09 70.35 -32
1→ 1.05 86.83 77.83 81.76 69.84 -34

3.1.1 The training stage

The training stage includes two rounds. In the first round,
we first fix note activations (H) for each isolated note ac-
cording to the ground truth, then update all other param-
eters (Wa,Wd,P and α). The transient patterns are nor-
malised to maximum of 1 after each iteration. In theory,
the transient patterns follow a certain shape and could be
shared by all pitches. So we use the average of the trained
transient patterns to reduce the number of parameters and
to avoid potential overfitting. The trained transient patterns
and the average transient pattern are shown in Figure 5.
In the second round, we fix the note activations (H) and
the transient pattern (P), then update all other parameters
(Wa,Wd and α).

3.1.2 Transcription results

For transcription, we update note activations H, keeping
parameters (Wa,Wd,P and α) fixed from the training
stage. Table 1 shows note tracking results (presented as
percentage) using different sparsity factors. The optimal
thresholds are shown in the last column. The top part
of Table 1 are results using fixed sparsity factors. The
best results are achieved without the sparsity constraint
(γ = 1.00), with an F-measure of 82.24%. The perfor-
mance decreases with increasing sparsity factor. The sec-
ond part of the experiment gives results for using anneal-
ing sparsity. The best F-measure is 82.36% with the set-
ting (1.00 → 1.02). The difference between the best and
the worst F-measure is only 0.6 percentage points. In gen-
eral, all results with different sparsity constraints are con-
siderably good with optimal thresholds, and the optimal
threshold decreases when sparsity gets higher. However,
F-measures considering both onsets and offsets are quite
low, around 40%.
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In the proposed model, the activation of each note de-
cays after its onset, as shown in the decay activations of
Figure 1. Given a note is played, we consider two situa-
tions. In the first case, there is another note of the same
pitch being played later. We know that in this case the first
note should be ended then. If the activation of the first note
has already decreased to a low level, there is little influ-
ence on detecting the second note. However, if these two
notes are very close, detection of the second note might
be missed because of the remaining activation of the first
note. In the second case, there is another note of a different
pitch being played. The activation of the first note won’t
be changed by the attack of the second note in our model,
while for standard NMF, there is always some interference
with the first note’s activation.

We compute the performance using thresholds ranging
from −40 to −21dB to study performance variations as a
function of the threshold. Figure 6(a) shows the results for
different fixed sparsity factors. It is clear that precision de-
creases with the increase of the threshold, while recall in-
creases. The higher the sparsity factor is, the more robust
the results are on threshold changes. This is because small
peaks in activations are already discounted when impos-
ing sparsity, as shown in Figure 7. Lowering the threshold
does not bring many false positives. Results with higher
sparsity are less sensitive to the decrease of the threshold.
However, when the threshold becomes larger, the results
with low sparsity still outperform those with high sparsity.
With a larger threshold, the number of true positives de-
creases. There are more peaks in activations when using
lower sparsity, so more true positives remain. This favours
the assumption that the true positives have larger ampli-
tudes. Figure 6(b) shows the robustness of using annealing
sparsity factors. The transcription results are close to each
other. With annealing sparsity, the results are better and
more tolerant to threshold changes.

3.2 Comparison with state-of-the-art methods

We apply a comparison experiment on three datasets,
pieces from a real piano (‘ENSTDkCl’) and a synthetic
piano (‘AkPnCGdD’) in the MAPS database [17], and an-
other 10 synthetic piano pieces (denoted as ‘PianoE’) used
in [12]. All experiments are performed on the first 30s
of each piece. We compare to two top transcription meth-
ods. Vincent et al.’s method applies adaptive spectral bases
generated by linear combinations of narrow-band spec-
tra, so the spectral bases have a harmonic structure and
the flexibility to adapt to different sounds [20]. Benetos
and Weyde’s method employs 3 templates per pitch, and
the sequence of templates is constrained by a probabilis-
tic model [21]. In the PianoE dataset, we also compare to
another state-of-the art method of Ewert et al. [12]. This
method identifies frames in NMD patterns with states in a
dynamical system. Note events are detected with constant
amplitudes but various durations. In the comparison exper-
iment, the proposed system is also trained on isolated notes
from the AkPnCGdD and PianoE pianos. Vincent et al.’s
method is performed in an unsupervised way, to indicate
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Figure 6: Performance (presented percentage) using dif-
ferent sparsity factors and thresholds. The sparsity factors
are indicated by different shapes, as shown in the top-right
box. Lines connecting different shapes are results achieved
via the same threshold. The threshold of the top set is
−40dB, and the bottom set is −21dB. The dashed lines
show F-measure contours, with the values dropping from
top-right to bottom-left.

what can be achieved without training datasets. We use the
version of Benetos and Weyde’s method from the MIREX
competition [22]. We have access to the code and train this
model on isolated notes of the corresponding pianos. For
Ewert’s method we only have access to the published data
in [12]. These two methods are performed in a supervised
way.

Based on previous analysis, we employ the following
parameters for the proposed model in comparison exper-
iments. The sparsity factor is γ = 1 → 1.04 by bal-
ancing among note tracking results and the robustness to
different thresholds. Onsets are detected with threshold
δ = −30dB. In the first dataset (‘ENSTDkCl’), results
of other methods are also reported with optimal thresholds
with best note-wise F-measures. Then the same thresholds
are used for two synthetic piano datasets.

Results on piano pieces from the ‘ENSTDkCl’ sub-
set are shown in Table 2(a). The proposed model has a
note tracking F-measure of 81.80% and a frame-wise F-
measure of 79.01%, outperforming Vincent et al.’s unsu-
pervised method by around 10 and 20 percentage points,
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Figure 7: Detected onsets with different sparsity for pitch
G4 (MIDI index 67).

respectively. Results of Benetos and Weyde’s method are
in between.

Results on the synthetic piano ‘AkPnCGdD’ are shown
in Table 2(b). In general, all methods perform better on
this dataset than on the ‘ENSTDkCl’ dataset, especially on
note tracking results. The proposed model has the best re-
sults (84.63% on note tracking F-measure and 80.81% on
frame-wise F-measure), outperforming all other methods
by at least 5 percentage points.

Results on the other synthetic dataset ‘PianoE’ are
shown in Table 2(c). Note tracking results of all meth-
ods are good but frame-wise results are poor. Ewert et
al.’s method performs the best on note tracking (88% on F-
measure), and Benetos and Weyde’s method is the second
(83.80% on F-measure). The proposed model only outper-
forms Vincent et al.’s method, with F-measures of 81.28%
and 79.41% for these two methods respectively. However,
the proposed model remains the best on the frame-wise F-
measure (66.77%). Pieces in this dataset are from a piano
competition. Many notes have very short durations. The
remaining energies of a short note in the proposed model
may interfere with later notes, causing false negatives.

A supervised neural network model also works on the
MAPS database for piano transcription [23]. Besides an
acoustic model, the method employs a music language
model to capture the temporal structure of music. Al-
though the method is not directly comparable, it is no-
ticeable that our method exceeds its results by at least 5
percentage points on F-measures. When tested on the real
recordings using templates trained in the synthetic piano
notes, the proposed method has both F-measures of around
65%, outperforming the method of [23] by 10 percentage
points on note-wise F-measure in a similar experiment.

4. DISCUSSION AND CONCLUSION

In this paper we propose a piano-specific transcription sys-
tem. We model a piano note as a percussive attack stage
and a harmonic decay stage, and the decay stage is ex-
plicitly modelled as an exponential decay. Parameters are
learned in a sparse NMF, and transcription is performed in

Table 2: The comparison experiment

(a) Transcription results on ‘ENSTDkCl’

Method Fon Aon Ff Af

Decay 81.80 69.94 79.01 65.89
Vincent [20] 72.15 57.45 58.84 42.71
Benetos [21] 73.61 59.73 67.79 52.15

(b) Transcription results on ‘AkPnCGdD’

Method Fon Aon Ff Af

Decay 84.63 74.03 80.81 68.39
Vincent [20] 79.86 67.32 69.76 55.17
Benetos [21] 74.05 59.57 53.94 38.65

(c) Transcription results on ‘PianoE’

Method Fon Aon Ff Af

Decay 81.28 69.12 66.77 51.63
Vincent [20] 79.41 66.39 58.59 42.45
Benetos [21] 83.80 72.82 60.69 44.24
Ewert [12] 88 - - -

a supervised way. The proposed model provides promising
transcription results, with around 82% and 79% for note
tracking and frame-wise F-measures in music pieces from
a real piano in the ‘ENSTDkCl’ dataset. The annealing
sparsity factor improves both performance and the robust-
ness of the proposed model. The comparison experiment
shows that the proposed model outperforms two state-of-
the-art methods by a large margin on real and synthetic
pianos in the MAPS database. On a different synthetic
dataset, the other methods performs relatively better, espe-
cially on note tracking, while the proposed method remains
best on frame-wise metrics.

The proposed model can also be understood as a decon-
volution method in which a patch is parameterised by two
sets of templates and activations. One advantage of the
proposed model is that we can build a note-level system by
deconvolution, which has provided good transcription re-
sults [9, 10, 12]. The other is that using parametric patches
reduces the number of parameters. The model also pro-
vides us with a way to analyse piano decay rates.

In the future, we would like to represent a note’s de-
cay stage by a decay filter instead of a decay rate, which
is more in line with studies on piano decay [13]. Sec-
ondly, the good performance on piano music transcription
is partly due to the availability of the training datasets. We
would like to build an adaptive model, which could work
in a more general scenario, hence more automatically. Fi-
nally, we are keen to find a way to estimate note offsets
more accurately in the proposed model.
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ABSTRACT

Automatic drum transcription (ADT) systems attempt
to generate a symbolic music notation for percussive in-
struments in audio recordings. Neural networks have al-
ready been shown to perform well in fields related to ADT
such as source separation and onset detection due to their
utilisation of time-series data in classification. We pro-
pose the use of neural networks for ADT in order to ex-
ploit their ability to capture a complex configuration of fea-
tures associated with individual or combined drum classes.
In this paper we present a bi-directional recurrent neu-
ral network for offline detection of percussive onsets from
specified drum classes and a recurrent neural network suit-
able for online operation. In both systems, a separate net-
work is trained to identify onsets for each drum class under
observation—that is, kick drum, snare drum, hi-hats, and
combinations thereof. We perform four evaluations utilis-
ing the IDMT-SMT-Drums and ENST minus one datasets,
which cover solo percussion and polyphonic audio respec-
tively. The results demonstrate the effectiveness of the pre-
sented methods for solo percussion and a capacity for iden-
tifying snare drums, which are historically the most diffi-
cult drum class to detect.

1. INTRODUCTION

Within the field of music information retrieval, automatic
music transcription systems seek to produce a symbolic
notation for the instruments in an audio recording. There
are a variety of areas in the educational, analytical and cre-
ative industries that would benefit from high quality mu-
sic transcription. To date, the majority of such systems
focus on transcription of pitched instruments, with rela-
tively few systems intended for the extraction of drum no-
tation. Automatic drum transcription (ADT) is useful in
determining the rhythm and groove inherent in recordings
consisting of either drum solos or polyphonic instrument
mixtures. While high classification accuracies have been

c© Carl Southall, Ryan Stables, Jason Hockman. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Carl Southall, Ryan Stables, Jason Hockman. “Au-
tomatic Drum Transcription using Bi-directional Recurrent Neural Net-
works”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

demonstrated for isolated drum hits [9], the task of clas-
sification becomes more difficult when multiple different
drum instrument hits occur at the same time [10], and is
further complicated when other instrumentation is intro-
duced creating a polyphonic mixture.

1.1 Background

Using the categorisation presented in [7], the majority of
previous ADT systems can be understood as either seg-
ment and classify, match and adapt, or separate and detect.
Segment and classify methods [2,6,17] first divide record-
ings into regions using either onset detection or a metrical
grid derived from beat tracking; second, extract features
from the segments; and third perform classification to de-
termine the drum instruments in the segments. Match and
adapt methods [21, 22] first associate instruments to pre-
determined templates then iteratively update the templates
to reflect the spectral character of the recording. Sepa-
rate and detect methods [5, 13, 14, 16] attempt to sepa-
rate the music signal into the drum sources that make up
the mixture prior to identifying the onsets of each source.
To date, the most effective separate and detect method for
ADT has been non-negative matrix factorisation (NMF),
an algorithm that divides a recording into a number of ba-
sis functions and corresponding time variant gains. Sys-
tems have been proposed for both offline and online ap-
plications. Dittmar and Gärtner [3] proposed three types
of NMF—fixed, adaptive and semi-adaptive—which can
be used in online situations taking each frame as its own
NMF instance. For polyphonic audio, Wu and Lerch [20]
used harmonic basis functions to separate the drums under
observation from the mixtures and improved on standard
NMF by introducing new iterative update methods.

In addition to the above methods, ADT systems have
been proposed that do not fit in the above categorisation.
Paulus incorporated hidden Markov models to identify the
probability of drum events based on previous information
[15]. Thompson used support vector machines (SVM) with
a large dictionary of possible rhythmic configurations to
classify automatically detected bars [18].

1.2 Motivation

With the exception of [15, 18] the majority of recent ADT
systems rely on single basis functions for each instrument.
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Figure 1: Overview of proposed method. Features are in-
put to individual neural networks for each instrument, re-
sulting in activation functions. Drum onsets are found by
peak-picking the activation functions.

This has the potential to overfit to a specific playing tech-
nique associated with an individual instrument and fails
to recognise more subtle usage. The instrument with the
most varied playing techniques in the standard drum kit is
the snare drum (e.g., flam, rolls, ghost notes), which not
surprisingly is the most difficult to reliably detect. In ad-
dition, spectral overlap between basis functions may pro-
duce crosstalk between instruments such as snare drums
and hi-hats, which can result in noisy time-variant gains,
ultimately making peak picking more difficult.

Neural networks are capable of associating complex
configurations of features with both individual or com-
bined classes. They have also demonstrated excellent per-
formance in fields related to ADT, such as source separa-
tion [8, 11,12] and onset detection [1, 4]. Other supervised
learning techniques such as SVMs have been incorporated
in ADT systems [14, 18, 19], however neural networks are
capable of capturing the association of class labels with
time-series data and producing clean activation functions
for the subsequent peak-picking stage. We therefore pro-
pose to extend the use of neural networks to ADT in or-
der to exploit their well-known prowess for class separabil-
ity and their ability to capture the variety of playing tech-
niques associated with each instrument class under obser-
vation.

The remainder of this paper is structured as follows:
Section 2 outlines our proposed methods for ADT. The
evaluation and results are outlined in Section 3 and Sec-
tion 4 presents a discussion of these results. Conclusions
and possible future work are provided in Section 5.

2. METHOD

An overview of our proposed method for ADT is presented
in Figure 1. For each percussive instrument under ob-
servation, features obtained from the audio recording are
input into the pre-trained neural networks iteratively by
frame. We then select the peaks from the resulting acti-
vation functions to determine the location of onsets for the
corresponding instruments.

2.1 Neural Networks

Recurrent neural networks (RNN) incorporate information
from previous time steps that allow for temporal infor-
mation to be understood. Bi-directional neural networks
(BDRNN) include information from future time steps by
combining two RNNs: the first is a standard backwards di-
rectional RNN that incorporates present and previous time
information; the second RNN is instead positioned to incor-
porate information from present and future time positions,
achieved by reversing the order of the input time steps. As
BDRNNs are unsuitable for online applications, we propose
two separate models: an RNN for online usage and a BDRNN
for applications that can operate offline. An overview of
both neural networks is given in Figure 2.

2.1.1 Recurrent Neural Network

The RNN architecture is represented in Figure 2 by the solid
lines. For an RNN with L layers, the equation for each layer
l is:

al0(t) = fl(a
l−1
0 (t)W l

0 + β(al0(t− 1)U l
0) + bl0), (1)

where β = 0 for l = L, and 1 otherwise. With layer l out-
put a, the weight matrices W and U and the bias matrices
b. The transfer function is determined by the layer, and is
defined as:

fl(x) =

{
2/(1 + e−2x)− 1, l 6= L
y = ex/(

∑
ex), l = L.

(2)

2.1.2 Bi-directional Recurrent Neural Network

The additional BDRNN connections are represented by
dashed lines in Figure 2. For a BDRNN with L layers, the
equation for each hidden layer l is:

a
l
n(t) = fl(a

l−1
n (t)W

l
n + a

l
n(t − 1)U

l
n + a

l−1
(1−n)Z

l−1
(1−n) + b

l
n) (3)

where the layer is defined as forward directional when
n = 0 and backwards directional when n = 1. Z is an
additional weight matrix. The output layer for time t can
then be defined as:

aL0 (t) = fL(aL−1
0 (t)WL

0 + aL−1
1 (t)WL

1 + bL) (4)

2.2 Input Features

Following the approach in [20], input audio (mono .wav
files sampled at 44.1 kHz with 16-bit resolution) is trans-
formed into a 1024 x n spectrogram representation using
the short-time Fourier transform (STFT), in which n is the
numbers of frames. The STFT is calculated using a Han-
ning window with a window length of 2048 samples and a
hop size of 512 samples.

592 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Input Features (t)

a0
1(t-1) a0

2(t-1)

a0
2(t)

a1
2(t)

a1
2(t-1)

a0
1(t)

a1
1(t)

a1
1(t-1)

a0
3(t)

a1
3(t)

a0
4(t)

a0
3(t-1)

a1
3(t-1)

Output (t)

b1
1 b1

3b1
2

b0
4

b0
3b0

2b0
1

W0
2

W0
1

W0
4

W0
3

W1
2W1

1 W1
4

W1
3

U1
1 U1

2 U1
3

U1 U0
2 U0

3

Z1
1 Z1

2

Z0
1 Z0

2

Figure 2: Overview of the proposed bi-directional recurrent neural network (BDRNN) and recurrent neural network (RNN).
Solid lines represent the RNN connections and dashed lines are additional BDRNN connections. Tan sigmoid layers are shown
as curved rectangles and soft max layers are represented by circles. The weight matrices are denoted as W , U and Z and
the biases as b. The output of layer two of the backwards directional recurrent neural network is denoted by a21.

2.3 Architecture

The neural network architectures in each instrument are
identical, consisting of three dense hidden layers of 50
neurons. This configuration was chosen as it achieved the
highest results in preliminary testing. The neural networks
are trained using target activation function representations
created from training data annotations. The first row of the
activation function frames in which onsets occur are set to
one and all other frames are set to zero. The networks are
trained with a learning rate of 0.05 using truncated back
propagation through time, which updates the weights and
biases iteratively using the output errors. A maximum it-
eration limit is set to 1000, and the weights and biases are
initialised to random non-zero values between±1 ensuring
that training commences correctly. To prevent overfitting,
a validation set is created from 10% of the training data. If
no improvement is demonstrated on the validation set over
100 iterations, then training is stopped. The performance
measure used is cross entropy combined with a softmax
output layer, as this proved to be the most effective config-
uration.

2.4 Onset Detection

Once a drum activation function θ has been generated for
each drum class under observation, the onsets must be
temporally located from within θ. We adopt the method
from [4] for onset detection in the BDRNN. To calculate on-
set positions, a threshold is first determined using the mean
of all frames and a constant λ:

T = mean(θ) ∗ λ. (5)

If the current frame n is determined to be both a peak and
above the threshold T then it is accepted as an onset Γ:

Γ(n) =

{
1, θ(n− 1) < θ(n) ≥ θ(n+ 1) & T < θ(n)
0, otherwise.

(6)
For online applications using the RNN, where future infor-
mation can not be used within the peak picking process,
the threshold is determined by taking the mean of the cur-
rent frame and the previous ρ frames with an onset being
accepted if the current frame is greater than the threshold
and the previous frame. We selected ρ = 9 after initial in-
formal testing. Due to the iterative classification of each
frame, onsets may be detected in adjacent frames. We
therefore disregard onsets detected within 50 ms of each
other to ensure false positives are not obtained for a drum
event that has already been detected.

3. EVALUATION

We conduct four evaluations intended to test the presented
systems in a variety of different contexts in which an ADT
system could be used. The first evaluation, termed auto-
matic, aims to demonstrate system performance on drum
solo recordings in a general purpose way where no prior in-
formation about the test track is known. Following [3], the
second evaluation allows information from the test tracks
to be used to aid in transcription of drum solo recordings
in a semi-automatic manner. This scenario could be used
for compositional or educational purposes either for iden-
tifying an arrangement of a specified drum solo that has
been resequenced in another recording, or in a studio situ-
ation in which a single drum kit is being used. The third
and fourth evaluations aim to evaluate the systems in poly-
phonic mixtures, where instruments other than the drums
under observation are found. Mixtures containing other
drums (e.g., floor toms, ride cymbal) are used in the third
evaluation and additional harmonic accompaniment (e.g.,
guitars, keyboards) is found in the fourth. These evalua-
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Precision Recall F-measure
kick snare hi-hat mean kick snare hi-hat mean kick snare hi-hat mean

BDRNN 0.912 0.834 0.795 0.847 0.929 0.901 0.729 0.853 0.909 0.852 0.738 0.833
RNN 0.890 0.856 0.741 0.829 0.909 0.851 0.788 0.849 0.884 0.833 0.729 0.816

PFNMF 0.934 0.633 0.939 0.835 0.931 0.889 0.743 0.854 0.926 0.699 0.811 0.812
AM1 0.934 0.633 0.939 0.835 0.931 0.889 0.743 0.854 0.926 0.699 0.811 0.812
AM2 0.937 0.651 0.893 0.827 0.934 0.886 0.786 0.868 0.929 0.713 0.805 0.816

Table 1: Precision, recall and F-measure results for the automatic evaluation using the IDMT-SMT-Drums dataset, includ-
ing the PFNMF, AM1 and AM2 systems and the proposed BDRNN and RNN systems. The highest accuracy achieved in each of
the categories is highlighted bold.

tions are termed percussive mixtures and multi-instrument
mixtures respectively.

3.1 Evaluation Methodology

Standard precision, recall, and F-measure scores are used
to measure system performance. Precision and recall are
determined from detected drum instrument onsets, with
candidate onsets determined as correct if found within 50
ms of annotations. Only kick drum, snare drum and hi-hat
onsets are taken into consideration. The mean F-measure
is calculated by taking the average of the individual instru-
ment F-measures. We set the λ parameter used in neural
network peak picking using grid-search across the dataset.

3.1.1 Automatic Evaluation

To test the generalisation of the proposed system, we un-
dertake the automatic evaluation, using the IDMT-SMT-
Drums dataset [3]. This dataset consists of 95 tracks (14
real drum tracks, 11 techno drum tracks, and 70 wave drum
tracks) with individual kick drum, snare drum and hi-hat
recordings. The average track length is 15 seconds, and
in total there are 3471 onsets. Using three-fold cross val-
idation the dataset is split into training and testing data,
resulting in approximately 89,000 and 37,000 frames, re-
spectively. Mean precision, recall and F-measure scores
are taken across tested folds for each system under eval-
uation. The proposed neural network systems are evalu-
ated alongside the three methods proposed in [20]: PFNMF,
which uses fixed percussive basis functions in conjunction
with harmonic basis functions within a NMF framework;
AM1, which iteratively updates the percussive basis func-
tions of PFNMF; and AM2, which updates the PFNMF basis
functions and activation functions in an alternating fash-
ion. Each of the NMF systems are initialised by taking
the mean of each of the basis functions derived from the
individual tracks.

3.1.2 Semi-automatic Evaluation

In order to test the systems ability to adapt to a specific sit-
uation, we undertake the semi-automatic evaluation. We
again utilise the IDMT-SMT-Drums dataset, however in
this context we provide the systems exclusively with in-
dividual drum hits that are used in the overall track un-
der analysis. For a performance comparison in this evalua-
tion, we also test the worth of training the neural networks
using mixed drum hits (e.g., kick drum and hi-hat played

together). The proposed methods are evaluated alongside
the semi-adaptive online NMF technique CD as presented
in [3]. As the evaluation procedures herein are identical to
those in [3] the results from this work have been incorpo-
rated for comparison.

3.1.3 Percussion and Multi-instrument Evaluations

To test how well the proposed system can identify drums
within various types of mixtures, we perform the percus-
sion and multi-instrument evaluations, using the same pro-
cedure as in the automatic evaluation. For these evalua-
tions, we use the ENST minus one dataset as it contains
drum tracks with additional drum instruments (e.g., floor
tom, ride cymbal) and techniques (e.g., ghost notes, flams,
rolls) as well as accompaniment tracks. The ENST mi-
nus one dataset contains 64 recordings performed by three
drummers; two drummers performed 21 tracks each and
the third drummer performed 22 tracks. The BDRNN and
RNN are provided recordings of two of the drummers as
training, while testing on the third. The average track
length is 55 seconds with a total of 22,410 kick drum, snare
drum and hi-hat onsets, resulting in 210,000 and 105,000
frames for training and testing respectively in each fold.
We mix the accompaniment and drum recordings in the
dataset using the same ratios ( 13 and 2

3 , respectively) as
in [7, 15, 20]. The evaluation procedures in these two eval-
uations are identical to those in [7, 15, 20], and as such the
results from these studies have been used for comparison
herein.

Method Mean F-measure
RNN (individual drums) 0.634

BDRNN (individual drums) 0.700
RNN (mixed drums) 0.955

BDRNN (mixed drums) 0.961
CD 0.950

Table 2: Mean F-measure results for the semi-automatic
evaluation. BDRNN and RNN systems are trained on indi-
vidual drum hits (individual drums) or mixtures of drum
hits (mixed drums) and are compared with that of the CD

method in [3].
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Figure 3: Kick drum, snare drum, hi-hat and mean instrument F-measure results for the BDRNN and RNN. Results for
percussion mixture (left) and multi-instrument mixture (right) evaluation scenarios are compared to those obtained in [7,15,
20].

3.2 Results

3.2.1 Automatic Results

The proposed BDRNN achieved a higher mean instrument F-
measure than existing ADT methods in the first evaluation,
which focuses on drum solos. Table 1 demonstrates that
the neural network approaches achieved the highest scores
in six of the twelve categories, with the largest relative im-
provement being the snare F-measure and precision. As
expected, the RNN achieved lower F-measure scores than
the BDRNN for all instruments, however the results matched
those of the other evaluated systems. The three methods
proposed in [20] achieved similar results as previously ob-
tained on the IDMT-SMT-Drums dataset. Initial tests re-
vealed that the best performance for all three algorithms
was achieved with the rank parameter set to 1 and an offset
coefficient of 0.2. AM1 showed no improvement on PFNMF

in this instance, however AM2 did slightly improve.

3.2.2 Semi-Automatic Results

Table 2 shows the results of the semi-automatic evaluation
scenario with both systems compared to the results of the
CD system obtained in [3]. Training the neural networks
using individual drum hits alone resulted in low accura-
cies, however when training includes mixed drum instru-
ment signals (e.g., kick drums and hi-hats playing at the
same time) both the BDRNN and RNN achieve the highest
results of the tested systems.

3.2.3 Percussion and Multi-Instrument Mixture Results

Figure 3 shows the results of the BDRNN and RNN meth-
ods as compared to those achieved by the Gillet [7] and
Paulus [15] systems, as well as the results of the PFNMF,
AM1, and AM2 systems in [20]. The results are shown for
both scenarios: percussive mixtures (left figure) and multi-
instrument mixtures (right figure). In both evaluations, the
neural network approaches achieve high snare F-measures
relative to the other systems, and the BDRNN achieves the
highest snare F-measure for the multi-instrument mixture

evaluation. Figure 4 shows the mean precision and re-
call scores of the neural network systems in comparison
to the other evaluated systems. The highest recall scores
are achieved by the BDRNN and RNN for both percussion
and multi-instrument mixtures. While the neural networks
achieved lower mean F-measure scores, this high recall
demonstrates the potential worth of the clean activation
functions.

4. DISCUSSION

The results show that the proposed neural network systems
achieve higher results for a solo drum dataset in offline and
online situations in both automatic and and semi-automatic
evaluations. The offline bi-directional recurrent neural net-
work architecture outperformed the online recurrent neural
network architecture in all evaluations, demonstrating the
worth of additional future information for applications that
allow it. The high results for the snare drum class achieved
throughout the evaluation indicate the ability of the neural
networks to associate multiple different frequency bases to
the same class making them well suited to detect a variety

BDRNN     RNN      PFNMF       AM1         AM2       Gillet        Paulus                                
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Figure 4: Mean Precision and Recall results from the per-
cussion and multi-instrument mixture evaluations.
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Figure 5: Comparison between neural network activa-
tion function and PFNMF time-variant gain: (top) Mixed
spectrogram containing kick drum, snare drum and hi-hat;
(middle) BDRNN snare drum activation function and found
onsets; (bottom) PFNMF snare drum time-variant gain and
found onsets.

of playing techniques for a given instrument (e.g., flams,
rolls, ghost notes). An example of the instrument-specific
focus achievable by neural networks is shown in Figure 5,
where spectral overlap exists between the snare drum and
hi-hats. While the PFNMF output for this particular example
shows the effect of crosstalk, the BDRNN is able to achieve
a less noisy activation function.

Although high F-measures for the kick drum and hi-
hat were achieved by both the RNN and BDRNN methods,
they had lower scores than other techniques for all situa-
tions other than the semi-automatic drum transcription test.
The precision scores for the kick drum and hi-hat were the
main factor in the lower F-measure score. As shown in Ta-
ble 1 and Figure 4, the BDRNN and the RNN achieved the
highest mean recall scores for all tests using the ENST mi-
nus one dataset, which indicates that the methods benefit
from a simplified peak picking process due to clean ac-
tivation functions. However, F-measures scores for these
tests indicate that the BDRNN and RNN were not as success-
ful as other systems—a somewhat expected result as this
dataset contains polyphonic mixtures. The addition of a
pre-processing stage similar to [20] could remove these
sources prior to ADT and potentially improve results for
the BDRNN and RNN methods. Another area for possible
improvement would be to evaluate the worth of different
input features such as MFCCs, which have already been
demonstrated to be successful in conjunction with neural
networks in the related task of onset detection [1].

5. CONCLUSIONS AND FUTURE WORK

We have presented two neural network based approaches
for ADT: the BDRNN for off-line usage and the RNN on-
line applications. Results from the conducted evaluations

demonstrate that the proposed methods are capable of out-
performing existing ADT systems on drum solo recordings
in both automatic and semi-automatic situations. The abil-
ity to learn a rich representation of drum classes enables
the neural networks to detect multiple playing techniques
within the same class. Evaluations were also carried out on
polyphonic mixtures in which the neural network achieved
high snare F-measures relative to existing approaches. To
improve performance of the proposed methods for poly-
phonic audio, an additional pre-processing source separa-
tion stage could be introduced into the system to separate
the desired drums from additional instrumentation prior to
ADT. Furthermore, additional time step connections to ad-
ditional previous and future time steps may potentially in-
crease the accuracy of the system. One method for doing
this is by using long short-term memory cells within the
neural network architecture which have already proven to
be effective for onset detection [4]. Further evaluation will
be carried out to determine performance when additional
drum classes are present, as well as testing other input fea-
tures.
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[4] F. Eyben, S. Böck, B. Schuller, and A. Graves. Univer-
sal onset detection with bidirectional long short-term
memory neural networks. In Proc. of the 11th Interna-
tional Conference on Music Information Retrieval (IS-
MIR), pages 589–594, 2010.

[5] D. Fitzgerald. Automatic drum transcription and
source separation. PhD thesis, Dublin Institute of
Technology, 2004.

[6] O. Gillet and G. Richard. Automatic transcription of
drum loops. In Proc. of the 2004 IEEE International
Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP), pages 269–272, 2004.

596 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



[7] O. Gillet and G. Richard. Transcription and separation
of drum signals from polyphonic music. IEEE Trans-
actions on Audio, Speech and Language Processing,
16(3):529–540, 2008.

[8] E. M. Grais, M. U. Sen, and H. Erdogan. Deep neural
networks for single channel source separation. In Proc.
of the 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pages
3734–3738, 2014.

[9] P. Herrera, A. Yeterian, and F. Gouyon. Automatic
classification of drum sounds: A comparison of fea-
ture selection methods and classification techniques. In
Proc. of the International Conference on Music and Ar-
tificial Intelligence, pages 69–80, 2002.

[10] P. Herrera-Boyer, G. Peeters, and S. Dubnov. Au-
tomatic classification of musical instrument sounds.
Journal of New Music Research, 32(1):3–21, 2003.

[11] P.-S. Huang, M. Kim, M. Hasegawa-Johnson, and
P. Smaragdis. Deep learning for monaural speech sep-
aration. In Proc. of the 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1562–1566, 2014.

[12] J. Le Roux, J. R. Hershey, and F. Weninger. Deep NMF
for speech separation. In Proc. of the 2015 IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 66–70, 2015.

[13] H. Lindsay-Smith, S. McDonald, and M. Sandler.
Drumkit transcription via convolutive NMF. In Proc.
of the 15th International Conference on Digital Audio
Effects (DAFx), 2012.

[14] A. Moreau and A. Flexer. Drum transcription in poly-
phonic music using non-negative matrix factorization.
pages 353–354, 2007.

[15] J. Paulus and A. Klapuri. Drum sound detection
in polyphonic music with hidden Markov models.
EURASIP Journal on Audio, Speech, and Music Pro-
cessing, 2009(1):1–9, 2009.

[16] J. Paulus and T. Virtanen. Drum transcription with non-
negative spectrogram factorization. In Proc. of the 13th
European Signal Processing Conference (EUSIPCO),
pages 1–4, 2005.

[17] K. Tanghe, S. Degroeve, and B. De Baets. An algo-
rithm for detecting and labeling drum events in poly-
phonic music. pages 11–15, 2005.

[18] L. Thompson, M. Mauch, and S. Dixon. Drum tran-
scription via classification of bar-level rhythmic pat-
terns. In Proc. of the International Conference on
Music Information Retrieval (ISMIR), pages 187–192,
2014.

[19] D. van Steelant and K. Tanghe. Classification of per-
cussive sounds using support vector machines. In Proc.
of the 2004 Machine Learning Conference of Belgium
and The Netherlands, pages 146–152, 2004.

[20] C.-W. Wu and A. Lerch. Drum transcription using par-
tially fixed non-negative matrix factorization with tem-
plate adaptation. In Proc. of the 16th International So-
ciety for Music Information Retrieval Conference (IS-
MIR), pages 257–263, 2015.

[21] K. Yoshii, M. Goto, and H. G. Okuno. Automatic drum
sound description for eeal-world music using template
adaptation and matching methods. In Proc. of the 5th
International Conference on Music Information Re-
trieval, pages 184–191, 2004.

[22] K. Yoshii, M. Goto, and H. G. Okuno. Drum sound
recognition for polyphonic audio signals by adapta-
tion and matching of spectrogram templates with har-
monic structure suppression. IEEE Transactions on
Audio, Speech and Language Processing, 15(1):333–
345, 2007.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 597



AUTOMATIC PRACTICE LOGGING: INTRODUCTION, DATASET &
PRELIMINARY STUDY

R. Michael Winters, Siddharth Gururani, Alexander Lerch
Georgia Tech Center for Music Technology (GTCMT)

{mikewinters, siddgururani, alexander.lerch}@gatech.edu

ABSTRACT

Musicians spend countless hours practicing their instru-
ments. To document and organize this time, musicians com-
monly use practice charts to log their practice. However,
manual techniques require time, dedication, and experience
to master, are prone to fallacy and omission, and ultimately
can not describe the subtle variations in each repetition.
This paper presents an alternative: by analyzing and clas-
sifying the audio recorded while practicing, logging could
occur automatically, with levels of detail, accuracy, and ease
that would not be possible otherwise. Towards this goal,
we introduce the problem of Automatic Practice Logging
(APL), including a discussion of the benefits and unique
challenges it raises. We then describe a new dataset of over
600 annotated recordings of solo piano practice, which can
be used to design and evaluate APL systems. After fram-
ing our approach to the problem, we present an algorithm
designed to align short segments of practice audio with
reference recordings using pitch chroma and dynamic time
warping.

1. INTRODUCTION

Practice is a widespread and indispensable activity that is
required of all musicians who wish to improve [5]. While a
musical performance progresses through a score in linear-
time and with few note-errors, practice is characterized by
repetitions, pauses, mistakes, various tempi, and fragmenta-
tion. It can also take a variety of forms, including technique,
improvisation, repertoire work, and sight-reading. It can
occur with any musical instrument (often with many si-
multaneously), and can take place in a range of acoustic
environments.

Within this context, we present the problem of Auto-
matic Practice Logging (APL), which attempts to iden-
tify and characterize the content of musical practice from
recorded audio during practice. For a given practice session,
an APL system would output exactly what was practiced
at all points in time, and describe how practice occurred. 1

1 E.g., ”Chopin’s Raindrop Prelude, Op. 28, No. 15, mm. 1–26 was

c© R. Michael Winters, Siddharth Gururani, Alexander
Lerch. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: R. Michael Winters, Siddharth
Gururani, Alexander Lerch. “Automatic Practice Logging: Introduction,
Dataset & Preliminary Study”, 17th International Society for Music Infor-
mation Retrieval Conference, 2016.

By its nature, an APL system must be robust to wrong
notes, pauses, repetitions, fragmentation, dynamic tempi,
and other typical “errors” of practice. It should be able to
operate in challenging acoustic environments, work with
any instrument, and even with ensembles. Most importantly,
it needs to identify what is being practiced and character-
ize how practice is occurring, so that it can describe and
transcribe its content for a user.

In the following paper we elaborate on the subject of
automatic practice logging (APL), including its benefits
and challenges. We present precursors and relevant meth-
ods that have been developed in the MIR community, and
which frame APL as a viable area of application. We then
introduce a publicly available dataset of 34 hours of anno-
tated piano practice including a typology for practice that
informed our annotation. We conclude with a description of
a preliminary algorithm capable of identifying the piece that
is being practiced from short segments using pitch chroma
and dynamic time warping.

2. MOTIVATION

At all skill levels, practice is key to learning music, advanc-
ing technique, and increasing expression [13]. Keeping
track of the time spent practicing, or “practice logging” is
an important component of practice, with many uses and
benefits. Logging practice is a complex endeavor. For ex-
ample, a description of practice might include amount of
time spent practicing, specific pieces or repertoire that were
practiced, specific sections or measure numbers, approaches
to practicing, and types of practicing (e.g. technique exer-
cises, sight-reading, improvisation, other instruments, or
ensemble work). An even greater level of detail would de-
scribe how a particular section was practiced, and even the
many nuances involved in each repetition. For performers,
an APL system can offer unprecedented levels of detail,
ease, and accuracy, not to mention additional advantages of
digitization. The output of an APL system could help mu-
sicians to structure and organize the time spent practicing,
to provide insight into personal improvement, and to en-
gage in good practice habits (e.g., deliberate, goal-oriented
practice [13]). For teachers and supporters, practice logs
provide a window into a musician’s private practice, which
may foster a better understanding of improvements (or lack

practiced 11 times with a metronome gradually increasing tempo from
40–55 BPM. Mm. 19–26 were played slower on average and were charac-
terized by fragmentation and pauses.”
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thereof), leading to more informed and thoughtful feedback.
Researchers can benefit from detailed accounts of practice,
gaining insights into performance and rehearsal strategies.
For the field of Music Information Retrieval (MIR), APL
offers a new and challenging area of application, which
may culminate in valuable tools for researchers studying
practice as well.

2.1 The Benefits of APL

Primary benefits of Automatic Practice Logging (APL) are
increased levels of detail and ease of use. In repertoire prac-
tice, it is common for musicians to repeat sections of pieces
many times, with the progression of these repetitions re-
sulting in the musical development from error-ridden sight-
reading to expressive performance. Marking and tallying
these many repetitions manually would be impractical, and
describing each repetition in terms of nuances (e.g., tempo
changes, wrong/correct notes, expressive timing and into-
nation) would be even more so. However by using APL,
repetitions could be identified and tallied automatically.
Simply remembering to turn on the system and occasion-
ally tagging audio could be the extent of user input. Once a
section has been identified, a host of other MIR tools could
be used to characterize and describe small variations in each
repetition.

Another benefit of APL is accuracy. In addition to the
relative dearth of detail that was mentioned previously, man-
ual practice logging is plagued by the fallibility of human
memory, resulting in omission and fallacy in logged prac-
tice [13]. Especially for students that are uncommitted to
their instrument, manual logging may be prone to exaggera-
tion and even deceit. By using the audio recorded directly
from practice, an APL system could more accurately reflect
the content of practice.

A host of other benefits of would arise due to the digiti-
zation of the information. Using a digital format could lead
to faster sharing of practice with teachers, who might be
able to comment on practice remotely and provide support
in a more continuous manner. Practice descriptions could
be combined with ancillary information such as the day of
the week, location of the practice, local weather, mood, and
time of day, and lend itself to visualization through graphs
and other data displays, assisting in review and decision
making. Over time, this information might be combined
and used by an intelligent “practice companion” that can
encourage effective practice behaviors.

2.2 APL Challenges

Automatic practice logging, however, is not easy and a suc-
cessful system must overcome a variety of challenges that
are unique to audio recorded during practice. While live
performances and studio recordings are almost flawless—
including few (if any) wrong notes and unfolding linearly
with respect to the score—the same can not be said about
practice. Instead, practice is error-laden, characterized
by fragmentation, wrong notes, pauses, short repetitions,
erratic jumps (even to completely different pieces), and

slower, variable, and unsteady tempi. In polyphonic prac-
tice (e.g., a piano or ensemble), it is not uncommon to
practice individual parts or hands separately.

Additional problems for APL arise from the fact that
recordings made in a natural practice session will occur
in an environment that is far from ideal. For example,
metronomes, counting out-loud, humming, tapping, page-
turning, and singing are common sound sources that do not
arise directly from the instrument. Speech is also common
in practice, and needs to be identified and removed from a
search, but can also occur while the instrument is playing.
Unlike recording studios and performance halls, practice
environments are also subject to extraneous sound sources.
These sources might include the sounds of other instruments
and people, but also HVAC systems and a host of other
environmental sounds. The microphone used to record
practice might also be subject to bad practices such as poor
placement, clipping, and sympathetic vibrations with the
surface on which it was placed.

Last but not least, using APL for repertoire practice
needs to address issues of audio-to-score alignment. Scores
commonly include structural repetitions such as those
marked explicit (e.g., repeat signs), and those occurring
on a phrase level. At an even smaller time frame, it is not
uncommon to have sequences of notes repeated in a row
(e.g., ostinato), or short segments repeated at different parts
of the piece (e.g., cadences). For a window that has many
near-identical candidates in a given score, an APL system
will have difficulties determining to which repeat the win-
dow belongs. This difficulty is compounded by the fact
that practice is highly fragmented in time, so using longer
time-frames for location cues may not be feasible.

3. RELATED WORK

Given the importance and prevalence of practice in the lives
of musicians, the subject of practice has received consid-
erable attention in the music research community [2, 13].
Important questions include the role of practice in attaining
expertise [19], the effects of different types of practice [1,6],
and the best strategies for effective practice [8, 11]. How-
ever, to the best knowledge of the authors, automatically
recognizing and characterizing musical practice has not
specifically been addressed in MIR. It draws important par-
allels with many application spaces, but also offers its own
unique challenges (see Sect. 2.2).

Perhaps its closest neighbor is the task of cover song
detection [17], which in turn might derive methods from
audio-to-audio or audio-to-score alignment and audio simi-
larity [10]. Another possible area of interest is automatic
transcription [12], and piano transcription [15] in particu-
lar for the presented dataset. In this section, techniques of
cover song detection are described and compared with the
unique requirements for an APL system. The cover song de-
tection problem may be formulated as the following: Given
a set of reference tracks and test tracks, identify tracks in
the test set that are cover songs of a reference track. Ellis
and Poliner derive a chroma-per-beat matrix representation
and cross-correlate the reference and query track’s matrices
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to search for sharp peaks in the correlation function that
translate to a strong local alignment [7]. The chroma-per-
beat helps with tempo-invariance and chroma-vectors can
be circular shifted to handle transpositions. Ravuri and
Ellis make use of similar features to train a Support Vector
Machine (SVM) classifier that classifies a reference/test
song pair as a reference/cover song pair [16]. Serra et al.
propose to extract harmonic pitch-class profile (HPCP) fea-
tures from the reference and query track [18]. Dynamic
Time Warping (DTW) is then used to compute the cost of
alignment between the reference HPCP and query HPCP
features. The DTW cost is representative of the degree to
which a track is a cover of another. A system for large-scale
cover-song detection is presented by Bertin-Mahieux and El-
lis [4] as a modification of a landmark-based fingerprinting
system [20]. The landmarks in this cover-song detection al-
gorithm are pitch chroma-based instead of frequency-based
as in the original fingerprinting algorithm. This makes the
hashing key-invariant because it is possible to circular-shift
the query chroma while searching for a match.

By analogy to cover song detection, repertoire practice
consists of fragments of the practiced piece that should
be independently identified as belonging to a particular
track. Identifying the start and end times of a particular
segment computationally is non-trivial, but must be the
basis of a subsequence search algorithm (e.g., [9]). The
subsequence search algorithm must furthermore be robust
against practice artifacts such as pauses, various tempi,
missed notes, short repetitions, and sporadic jumps. The
cover-song detection methods described above take care of
tempo invariance and algorithms for APL may leverage this
for robustness against varying tempi.

Commercial products exist that focus on music practice
and education, such as: SmartMusic, 2 Rocksmith 3 and
Yousician. 4 SmartMusic is a music education software
that enables teachers to enter lessons, track their students’
progress and give feedback. Students also have access to
pieces in the SmartMusic library. Rocksmith is an educa-
tional video game for guitar and bass that interfaces with a
real instrument and helps users learn to play by choosing
songs and exercises of a skill level that increases as a user
progresses through the game. Yousician is a mobile applica-
tion that teaches users how to play guitar, bass, ukulele and
piano. It also employs tutorials to help users progress. In
APL, the exercises are not predefined and an APL system
should be able to detect and log a user’s practice session
without knowing what exercise or repertoire was practiced
beforehand, making it less intrusive and more flexible.

4. THE APL DATASET

4.1 Considerations

Apart from the issues related to the recorded audio dis-
cussed in Sect. 2.2, APL needs to accommodate the many
forms that practice might take. Although repertoire practice

2 http://www.smartmusic.com, Date accessed: May 24, 2016.
3 http://rocksmith.ubi.com/rocksmith/, Date accessed: May 23, 2016.
4 https://get.yousician.com/, Date accessed: May 23, 2016.

using scores is common in the western art-music tradition,
practice might also incorporate technique exercises, sight-
reading, improvisation, and ensemble practice.

Bearing this framework in mind, the annotations for the
dataset were informed by a typology of musical practice that
frames the problem of APL in terms of two fundamental
questions:

1. What type of practice occurred?

2. What was practiced?

The first question refers to the many types of practice
that can occur, while the second question pertains to the
actual content of practice. For a given type of practice (e.g.,
repertoire practice), question two can be addressed using
two descriptors: what piece was practiced and where in the
piece practice occurred.

To answer the first question, we organize the types of
practice based upon the following basic categories: tech-
nique, repertoire practice, sight-reading, improvisation, and
ensemble work.

‘Technique’ refers to the numerous fundamental repeti-
tive patterns (e.g., scales and arpeggios) a performer would
undertake. These have a pedagogical purpose, and typically
involve involve basic musical elements, but would also
include advanced technical and mental exercises like trans-
position and polymeters. ‘Repertoire practice’ refers to the
repetitive practice of specific pieces of music for long-term
musical goals such as public concerts and recordings. These
repertoire pieces should be distinguishable from musical
pieces that were practiced for a comparatively short amount
of time (e.g., once or twice before moving on), which were
labeled as ‘sight-reading.’ Although improvisation might be
used as a type of technique or mental exercise, we choose
to list it as a separate category given its importance in entire
genres of music that is based only loosely upon a score
if at all. The last category, ‘ensemble work,’ is meant to
reflect the fact that the experience of practicing music is
often shared by other performers, with their own unique
instruments. However, it should be mentioned that the other
items in this typology could be repeated in the ensemble
work category.

4.2 Description

To begin working towards an APL system, we created a
dataset of 34 hours of recorded piano practice including
detailed annotations of the type of practice that was occur-
ring, and the piece that was being played. These 34 hours
of practice were chosen from a larger set of 250 hours of
recordings made by one performer over the course of a year.
They were targeted because they included repertoire prac-
tice that occurred in preparation for a studio-recording of a
particular multi-movement piano piece: Prokofiev’s Piano
Sonata No. 4 in C-minor, Op. 29.

Recordings were made using a H4N Zoom recorder on
a variety of Baby-Grand pianos in partially sound-isolated
practice rooms. On each day of the recording, the micro-
phone was placed upon the music rack of the piano, facing
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the harp of the piano. The microphone input gain was ad-
justed to a level that was maximized to prevent clipping and
adjusted only marginally if and only if clipping was discov-
ered. To automatically remove silence from the recordings,
an automatic recording process was used that triggered the
start of a recording with signal level above a threshold SPL
value. Similarly, recordings were automatically stopped
when the SPL fell below a threshold, and stayed below
the threshold for four seconds. This process created some
tracks which were “empty” due to a false trigger. These
were removed from the dataset. All recordings were made
using the built-in stereo microphones. Recordings were
made at 44.1kHz sampling rate and used the H4Ns built-in
96kbps MP3 encoder.

4.3 Annotation

Using this method of automatic recording, between 10 and
60 sound-files were recorded each day depending upon
the length of practice, which ranged from approximately
30 minutes to 3 hours. The pieces were annotated by the
performer, who by nature was the most familiar with the
work and could identify and annotate their practice with the
greatest speed and accuracy. The performer annotated them
using Sennheiser CX 300 II earbuds at a comfortable listen-
ing volume in one to two hour-long chunks. Using VLC’s
“short forward/back jump hot-key”, the performer made an-
notation of the piece being practiced in 10-second intervals.
For each segment, the performer listened to enough audio
to identify the piece being played and then skipped to the
next section. In this way, if there were any changes in piece
during a track, they could be identified efficiently.

Annotations were made on an online spreadsheet and
exported to CSV and TSV format. The columns of the
spreadsheet were titled as follows:

1. Track Name

2. Type of Practice

3. Descriptor #1 (e.g., Composer)

4. Descriptor #2 (e.g., Piece)

5. Start & End Time (if applicable)

6. Other (e.g., metronome, humming, distortion)

The track names were the auto-generated track names
generated by the recorder, which include the date of the
recording and the recording number. The type of practice
was labeled as either repertoire, sight-reading, technique,
or improvisation. The third category was used to list the
composer for repertoire and sight-reading, or, for technique,
was used to provide a general type (e.g., arpeggios, scales).
For improvisation, this category and the next were not used.
For repertoire and sight-reading, the next category was
used to label the piece being played (e.g., Op. 29, Mvt. 1).
For sight-reading, labeling this column was challenging as
some pieces that had been played only once could not be
identified by ear anymore.

Table 1. Number of files and length for major items in the
APL dataset.

# of Tracks # of Minutes
Op. 29, Mvt. 1 74 115
Op. 29, Mvt. 2 50 61
Op. 29, Mvt. 3 215 250

Other Repertoire 94 80
Sight-Reading 45 73

Technique 106 177
Improvisation 14 17

The start and end times were used for cases when the
track needed to be broken up due to the presence of other
practice. In repertoire practice, this might occur when the
performer suddenly switched pieces or movements without
the necessary amount of silence to trigger a new recording.
For these cases, a new annotation was created using the
same track name as the original, but with different labels
for composer and piece, and different start and end times.
If the piece was kept constant throughout the track, the start
and end times were not used. Last, the ‘Other’ category was
used to provide annotations of atypical sounds that occurred
such as humming, tapping, metronome use and practice of
individual parts in an otherwise polyphonic texture. It was
also used to denote tracks of special interest, such as when
a score was played through without fragmentation as in a
performance.

Table 1 presents the number of files and amount of time
for major components of the dataset. The dataset, including
the annotations and recordings have been made publicly
available on Archiv.org. 5 In the future, efforts will be di-
rected towards extending the annotation scheme to accom-
modate more exact score-locations (e.g., measure numbers),
adding a third question to the previous two: How did prac-
tice occur? Updated annotations will be kept with a version
controlled repository. The database will also be expanded
to include more instruments, and types of practice. Lim-
iting factors to the growth are the creation of annotations,
which require time and attention to annotate in detail. Those
wishing to contribute to the database may contact the first
author.

5. PRELIMINARY STUDY

5.1 Problem Formulation

As discussed in Sect. 4, we separate the APL task for reper-
toire practice into two primary components: 1) recognition
of which repertoire piece is being practiced, and 2) recog-
nition of where in the piece the practice is occurring. The
former gives a general insight into the content of practice
while the latter provides a more detailed view on the evolu-
tion of practice within the piece itself. Currently, we focus
on the first component and present an algorithm that de-
termines a matching reference track for each frame of the
query track.

5 https://archive.org/details/Automatic Practice Logging, Date ac-
cessed, May 23, 2016.
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Figure 1. Block diagram of the presented system.

5.2 Overview

Although the task of automatically identifying practice au-
dio is difficult, we present a simple approach that handles
some of the major challenges of APL: pauses, fragmenta-
tion, and variable, unsteady tempi in the recorded audio.

A block diagram of the algorithm is provided in Fig. 1.
We begin with a library of “reference tracks” that are full-
length recordings of the repertoire being practiced. These
reference tracks can, for example, be a commercial CD
recording or a full recording of the student or teacher’s
performance. After blocking these tracks, we compute a
12-dimensional pitch chroma vector per block. The pitch
chroma captures the octave-independent pitch content of
the block mapped across the 12 pitch classes [3]. We aggre-
gate multiple pitch chromas by averaging them over larger
texture windows with pre-defined lengths. Windows con-
taining silence are dropped. The results of this computation
are then one chroma vector per window, resulting in mul-
tiple chroma matrices for each of the reference tracks and
window lengths.

Incoming query tracks are processed similarly. For each
query texture window, a distance to all reference windows
is calculated in order to select the candidates with the least
distance. Subsequently, we compute the DTW cost between
the selected reference texture window and the query texture
window using the original (not aggregated) pitch chroma
blocks. The DTW cost is the overall cost of warping the
subsequence pitch chroma matrix from the query texture
window to the reference pitch chroma matrix [14]. The
reference track with the least DTW cost is chosen as the
match for the query window.

5.3 Feature Extraction

The pitch chroma is extracted in blocks of length 4096 sam-
ples (app. 93 ms) with 50% overlap. The pitch chromas are
then averaged into texture windows of 16 times the block
length, with 7/8 overlap between neighboring windows for
the query audio. As a preprocessing step, silences are ig-
nored. Windows containing more than 50% samples with
magnitude less than a threshold are dropped and labeled
as zero windows. The remaining windows are labeled non-
zero windows and are used for search. The feature extrac-
tion for the reference tracks is identical, however, multiple

texture window lengths are used in order to account for
different possible tempi. More specifically, lengths rang-
ing from N = 8, 10, 12, 14, 16, 18 times the block size are
used. Note that the length distribution is biased towards
shorter windows as the query audio is more likely to be
played slower than the reference. At the end of this step,
we have an aggregated pitch chroma vector for the query
audio and a set of aggregated pitch-chroma matrices for the
reference tracks.

5.4 Candidate Track Selection

A match between query and reference is likely if the aggre-
gated query pitch chroma matches one of the aggregated
reference pitch chromas. We select a group of 15 likely
track candidates for each reference track by computing the
Euclidean distance between the query vector and all refer-
ence track vectors. At the end of this step, we have a pool
of 15 candidates across all window lengths across for each
of the reference tracks, making 45 matches total.

5.5 Track Identification

For the last step, we step back to the original short-time
pitch chroma sequence. This means that our query track
and reference tracks are now represented as a matrix of
dimension 12×(2N−1), whereN = 16 for the query track
and N = {8, 10, 12, 14, 16, 18} for the reference tracks.
The DTW cost is then computed for all 45 pairs of query
matrix and reference matrices. For all pairs, the reference
track with the texture window that has the lowest DTW
cost relative to its path length and reference window size
is chosen as the repertoire piece being practiced in that
particular texture window of the query audio. Additional
information such as the matching texture window length and
matching frame are available, but not analyzed presently.

Using this sequence of steps, texture windows in the
reference library will be chosen for each query texture win-
dow. These windows correspond to particular locations in
the reference tracks, while the window sizes correspond
to the best matching tempo. Figure 2 presents the results
of running this algorithm on all of the non-zero windows
one track of practiced audio, plotting the detected windows
over the practiced windows. The correct track is plotted as
asterisks.

6. RESULTS

To test our approach on a large body of practice audio, we
ran our algorithm on 50,000 windows of practice from the
APL dataset. As our approach is targeted towards repertoire
practice, we chose recordings from a piece the performer
was working towards at that time, namely Prokofiev’s Piano
Soanta No. 4 in C-Minor, Op. 29. The piece is a three-
movement work including sections of various tempi, note-
densities, tonal strengths and key centers, and at various
levels of completion and familiarity.

To create a roughly even distribution of query windows
across the three reference tracks, particular days in the APL
dataset were chosen for analysis. The APL dataset includes
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Figure 2. Detected piece across three reference tracks (see
legend) and detected time in piece for all non-zero windows
of a 60s query track of repertoire practice.

Table 2. Confusion matrix for the 50,000 windows belong-
ing to either Mvt. 1, 2, or 3.

Mvt. 1 Mvt. 2 Mvt. 3
Mvt. 1 0.55 0.29 0.15
Mvt. 2 0.17 0.66 0.17
Mvt. 3 0.13 0.21 0.66

a disproportionate amount of work on the third movement,
so days were selected that included relatively more work on
the first and second movements. These were May 5th, 7th,
11th, 14th, 15th, 21st and 22nd, 2014. Tracks annotated
as ‘technique,’ ‘sight-reading,’ or ‘improvisation’ were not
included. Furthermore, tracks that included annotations
in the ‘Other’ category were not included as this category
was used to indicate tracks with audio sources not from the
instrument (e.g., metronome, humming, singing, counting,
but also distortion). Last, tracks that included more than
one piece being practiced, or more than one kind of prac-
tice were not included. A confusion matrix displaying the
results of this test are displayed in Table 2.

7. DISCUSSION

The results demonstrate that an APL system based upon
the pitch chroma of short windows of practice audio can be
used to identify the piece being practiced. The results have
targeted a broad level of description, specifically the correct
identification of the piece being practiced. However, further
levels of detail are provided by this approach: namely a
specific location in the reference track, the window size
corresponding to the match, and the amount of dissimilarity
(cost) for that combination.

Although the present results are far from perfect, it is
important to remember that APL by nature identifies audio
that is error-laden. Pauses, short-repetitions, wrong-notes
and general fragmentation make correct identification of

every window a hard challenge. Instead, it is more practical
for APL to use some form of monotonicity constraint. In
the example of the present algorithm, a single window that
is identified as Op. 29, Mvt. 2 that is surrounded by win-
dows that are classified as belonging to a particular section
in Op. 29, Mvt. 1, likely belongs to Mvt. 1. One could also
favor windows that are in a sequence in the reference tracks,
or have the same window length (same relative tempo). It
is interesting to note that for the present results, a simple
majority vote for non-zero windows across each query track
could be used to remove chosen candidates from minor-
ity identifications and replace them with candidates from
the majority identification. Even this course interpolation
would lead to dramatic improvements in the confusion ma-
trix of Table 2.

It is also necessary to acknowledge the importance of
reference tracks in APL. In the present case, we make use
of “full versions” of the repertoire pieces played by the
same performer in a similar recording environment as the
practiced audio. However, in general, complete versions of
repertoire pieces are not available until the performer has
already practiced them significantly. Although one could
choose to use studio recordings as reference, recording and
production artifacts like microphone placement, SNR, spec-
tral and temporal effects and reverberation may leave traces
in the feature vector that can make correct identification
more difficult. Furthermore, each performer and perfor-
mance is subject to subtle timing deviations, which may
create a systematic deviation when trying to match with
those of the user. An alternative might be to use audio from
a reference MIDI score, which would provide the high-
est amount of control and the additional benefit of measure
numbers for matches. Generating “reference” material from
the performer themselves however remains an interesting
prospect for APL, which might have the most use when a
score is not available (e.g., improvisation, new music).

8. CONCLUSION

This paper has presented current efforts towards Automatic
Practice Logging (APL) including an annotated dataset,
and a preliminary approach to identification. Practice is
a ubiquitous component of music, and despite challenges,
there are many benefits to logging its content automatically.
Practice occurs in many forms, and for the purpose of anno-
tating it, we presented a typology and annotation framework
that can be generalized to many instruments, musicians and
types of practice. We presented a preliminary approach that
searches a reference library using pitch-chroma computed
on very short segments, and uses dynamic-time warping as
an additional step to find the best match from a collection
of candidates. Incorporating additional local assumptions
such as score-continuity and constant tempo might lead
to increased performance in the future, but one should be
mindful that practice is globally fragmented and variable
in tempo. We hope that this work will encourage others to
explore APL as an interesting and valuable topic for MIR.
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ABSTRACT

Indian art music is quintessentially an improvisatory mu-
sic form in which the line between ‘fixed’ and ‘free’ is
extremely subtle. In a rāga performance, the melody is
loosely constrained by the chosen composition but oth-
erwise improvised in accordance with the rāga grammar.
One of the melodic aspects that is governed by this gram-
mar is the manner in which a melody evolves in time in
the course of a performance. In this work, we aim to dis-
cover such implicit patterns or regularities present in the
temporal evolution of vocal melodies of Hindustani music.
We start by applying existing tools and techniques used
in music information retrieval to a collection of concerts
recordings of ālāp performances by renowned khayal vo-
cal artists. We use svara-based and svara duration-based
melodic features to study and quantify the manifestation
of concepts such as vādi, samvādi, nyās and graha svara in
the vocal performances. We show that the discovered pat-
terns corroborate the musicological findings that describe
the “unfolding” of a rāga in vocal performances of Hin-
dustani music. The patterns discovered from the vocal
melodies might help music students to learn improvisation
and can complement the oral music pedagogy followed in
this music tradition.

1. INTRODUCTION

Hindustani music is one of the two art music traditions of
Indian art music [6], the other being Carnatic music [28].
Melodies in both these performance oriented music tradi-
tions are based on the framework of rāga [3]. Performance
of a rāga in Indian art music (IAM) is primarily impro-
visatory in nature [26]. While some of these improvisa-
tions are based on a composed musical piece, Bandish, oth-
ers are completely impromptu expositions of a rāga, Ālāp.
Rāga acts as a grammar both in composition and in impro-
visation of melodies.

The rules of the rāga grammar are manifested at differ-
ent time scales, at different levels of abstraction and de-

c© Kaustuv Kanti Ganguli, Sankalp Gulati, Xavier Serra,
Preeti Rao. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Kaustuv Kanti Ganguli,
Sankalp Gulati, Xavier Serra, Preeti Rao. “Data-driven exploration of
melodic structures in Hindustani music”, 17th International Society for
Music Information Retrieval Conference, 2016.

mand a different degree of conformity. While some of the
elements of the rāga grammar are explicit, others are im-
plicit and may require years of musical training to grasp.
A number of textbooks and musicological studies exist
that describe different improvisatory aspects of melodies
in IAM [1, 3, 4, 6, 10, 18, 26]. These works also attempt to
uncover some of the implicit aspects of rāga grammar.

A majority of the studies mentioned above are musi-
cological in nature. These typically involve either a thor-
ough qualitative analysis of a handful of chosen musical
excerpts or a compilation of expert domain knowledge.
Though these studies often present interesting musical in-
sights, there are several potential caveats in such works.
Some of these caveats are summarized below:

• Small repertoire used in the studies challenge the
generalizability of the proposed musical models

• Bias introduced due to the subjectivity in the analy-
sis of musical excerpts

• Absence of concrete quantitative evidences support-
ing the arguments

• The kind of analysis that can be done (manually) is
limited by human capabilities, limited memory (both
short- and long-term)

• Difficulty in reproducibility of the results

In addition to the musicological works mentioned
above, there are several studies that perform computa-
tional modeling of different melodic aspects in IAM. These
studies address computational research tasks such as rāga
recognition [5, 15], melodic similarity [11, 17, 20], discov-
ery and search of melodic patterns [12, 16], segmentation
of a musical piece [27] and identification of specific land-
marks in melodies [14]. These approaches typically em-
ploy signal processing and machine learning methodolo-
gies to computationally model the relevant melodic aspect.
These studies can provide a ground for developing tools
and technologies needed to navigate and organize sizable
audio collections of music, perform rāga-based search and
retrieval from large audio archives and in several other ped-
agogical applications.

Several qualitative musicological works bring out new
musical insights but are prone to criticism of not having
supported their findings using a sizable corpus. Contrary to
that, quantitative computational studies manage to scale to
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sizable data sets, but fall short of discovering novel musi-
cal insights. In the majority of cases, computational studies
attempt to automate a task that is well known and is fairly
easy for a musician to perform. There have been some
studies that try to combine these two types of methodolo-
gies of working and corroborate several concepts in mu-
sical theories using computational approaches. In Chi-
nese opera music, [22] has performed a comparison of the
singing styles of two Jingju schools where the author ex-
ploit the potential of MIR techniques for supporting and
enhancing musicological descriptions. Autrim 1 (Auto-
mated Transcription for Indian Music) has used MIR tools
for visualization of Hindustani vocal concerts that created a
great impact on music appreciation and pedagogy in IAM.
We find that such literation pertaining to melodic structures
in Indian art music is scarce.

In this paper, we perform a data-driven exploration of
several melodic aspects of Hindustani music. The main
objective of this paper is to use existing tools, techniques
and methodologies in the domain of music information re-
trieval to support and enhance qualitative and descriptive
musicological analysis of Hindustani music. For this we
select five melodic aspects which are well described in mu-
sicological texts and are implicitly understood by musi-
cians. Using computational approaches on a music col-
lection that comprises representative recordings of Hin-
dustani music we aim to study these implicit structures
and quantify different melodic aspects related with them.
In addition to corroborating existing musicological works,
our findings are useful in several pedagogical applications.
Furthermore, the proposed methodology can be used for
analyzing artist or gharana-specific 2 melodic characteris-
tics.

2. HINDUSTANI MUSIC CONCEPTS

Bor [3] remarks that rāga, although referred to as a con-
cept, really escapes such categories as concept, type,
model, pattern etc. Meer [26] comments that technically
a rāga is a musical entity in which the intonation of svaras,
as well as their relative duration and order, is defined. A
rāga is characterized by a set of melodic features that in-
clude a set of notes (‘svara’), the ascending and descend-
ing melodic progression (‘ārōhana-avrōhana’), and a set of
characteristic phrases (‘pakad’). There are three broad cat-
egories of segments in the melody: stable svara regions,
transitory regions and pauses. While svaras comprise cer-
tain hierarchical sub-categories like nyās, graha, amsa,
vādi and samvādi, the transitions can also be grouped into
a set of melodic ornamentation (‘alankar’) like meend, an-
dolan, kan, khatka etc. [26]. The third important melodic
event is the pause. Pauses carry much information about
the phrases; in fact, a musician’s skill lies in the judicious
use of the pause [10]. We shall next go over these three
broad aspects.

Many authors [3, 26] refer to the importance of certain
svaras in a rāga. From the phrase outline we may filter cer-

1 https://autrimncpa.wordpress.com/
2 Refers to a lineage or school of thought.

tain svaras which can be used as rest, sonant or predom-
inant; yet the individual function and importance of the
svaras should not be stressed [26]. Nyās svara is defined
as the resting svara, also referred to as ‘pleasant pause’ [7]
or ‘landmark’ [14] in a melody. Vādi and samvādi are best
understood in relation with melodic elaboration or vistār
(‘barhat’). Over the course of a barhat, artists make a par-
ticular svara ‘shine’ or ‘sound’. There is often a corre-
sponding svara which sustains the main svara and has a
perfect fifth relation with it. The subtle inner quality of a
rāga certainly lies in the duration of each svara in the con-
text of the phraseology of the rāga. A vādi, therefore, is
a tone that comes to shine, i.e., it becomes attractive, con-
spicuous and bright [26]. Another tone in the same rāga
may become outstanding that provides an answer to the
former tone. This second tone is the samvādi and should
have a fifth relationship with the first tone. This relation-
ship is of great importance.

A rāga is brought out through certain phrases that are
linked to each other and in which the svaras have their
proper relative duration. This does not mean that the du-
ration, the recurrence and the order of svaras are fixed in
a rāga; they are fixed only within a context [26]. The
svaras form a scale, which may be different in ascending
(ārōhana) and descending (avrōhana) phrases, while every
svara has a limited possibility of duration depending on
the phrase in which it occurs. Furthermore, the local order
in which the svaras are used is rather fixed. The totality
of these musical characteristics can best be laid down in a
set of phrases (‘calana’) which is a gestalt that is immedi-
ately recognizable to the expert. In a rāga some phrases
are obligatory while others are optional [26]. The former
constitute the core of the rāga whereas the latter are elabo-
rations or improvised versions. Specific ornamentation can
add to the distinctive quality of the rāga [10].

There is a prescribed way in which a ‘khayal’ perfor-
mance develops. The least mixed variety of khayal is that
where an ālāp is sung, followed by a full sthāyi (first stanza
of the composition) in madhya (medium) or drut (fast) laya
(tempo), then layakari (rhythmic improvisation) and finally
tān (fast vocal improvisation). When the barhat reaches the
higher (octave) Sa (root svara of Hindustani music), the an-
tara (second stanza of the composition) is sung. If the com-
position is not preceded by an ālāp, the full development of
the rāga is done through barhat. The composition is based
on the general lines of the rāga, the development of the
rāga is again based on the model of the composition [26].

There are four main sources of a pause in a melody,
these include: (i) gaps due to unvoiced consonants in the
lyric, (ii) short breath pauses taken by the musician when
out of breath, (iii) medium pauses where the musician
shifts to a different phrase, and (iv) long pauses where the
accompanying instruments improvise. Musically mean-
ingful or musician-intended melodic chunks are delimited
only by (iii) and (iv) [9].

Though Hindustani music is often regarded as impro-
visatory, the improvisation is structured. On a broader
level there is a well defined structure within the space of
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Figure 1. Block diagram for data processing

which an artist improvises following the rāga grammar.
The overall skeleton of the melodies in Hindustani mu-
sic can have defined structure at different levels. Some of
these can be for the entire music tradition (for all rāgas
and artists), some for specific rāgas, some of these can be
gharana-specific, while some other artist specific. In this
study, we aim to obtain overall structure in a melody and
some rāga-specific patterns by the processing of audio con-
cert recordings.

3. DATA PROCESSING

The block diagram for data processing is shown in
Figure 1. It contains four main processing modules: pre-
processing, segmentation, histogram generation and fea-
ture extraction. We describe these modules in detail in the
subsequent sections.

3.1 Pre-processing

3.1.1 Predominant melody estimation

We start by estimating the pitch of the predominant
melodic source in the audio signal and regard that as the
representation of the melody. For predominant pitch es-
timation, we use the method proposed by Salamon and
Gómez [23]. This method is reported to performed fa-
vorably in MIREX 2011 3 on a variety of music genres,
including IAM, and has been used in several other stud-
ies [8, 16]. We use the implementation of this algorithm as
available in Essentia [2]. Essentia 4 is an open-source C++
library for audio analysis and content-based MIR. We use
the default values of the parameters, except for the frame
and hop sizes, which are set to 46 and 4.44 ms, respec-
tively.

3.1.2 Tonic normalization

The base frequency chosen for a melody in a performance
of IAM is the tonic pitch of the lead artist [13]. All other

3 http://www.music-ir.org/mirex/wiki/2011
4 https://github.com/MTG/essentia

accompanying instruments are tuned with respect to this
tonic pitch. Therefore, for analyzing features that are de-
rived from the predominant melody across artists, the pre-
dominant melody should be normalized with respect to the
tonic pitch. For this normalization we consider the tonic
pitch ω as the reference frequency during the Hertz-to-
cent-scale conversion, which is automatically identified us-
ing the multi-pitch approach proposed by Gulati et al. [13].
This approach is reported to obtain state-of-the-art results
and has been successfully used elsewhere [12, 15].

3.2 Melodic segmentation

3.2.1 Breath-phrase segmentation

As described in Section 2 there are different types of un-
voiced segments in the predominant melody. While some
of these segments are musically a part of a melodic phrase
(short-pauses), some others delineate consecutive melodic
phrases. A distribution of the duration of all the un-
voiced segments for the entire music collection revealed
that their type can be identified based on the duration of
the pause. For identifying intended breath pauses that
separate melodic phrases we empirically set the duration
threshold to be 500 ms. The duration of the intra-phrase
pauses is considerably smaller than this threshold. All the
intra-phrase breath pauses (i.e., with duration smaller than
500 ms) are interpolated using a cubic spline curve. We
shall refer to a breath-phrase as BP hereafter.

3.2.2 Stable svara transcription

In Indian art music, written notation has a purely prescrip-
tive role. Transcribing the melody of a musical perfor-
mance into a written notation is a challenging task and re-
quires an in-depth knowledge of the rāga [21, 29]. In this
study we consider a simple melodic transcription that re-
tains only the stable svara regions of a pitch contour and
discards the transitory pitch regions. We first detect all the
valid svaras and their precise frequencies used in a melody
by computing a pitch histogram. Subsequently, we seg-
ment the stable svara regions by identifying the fragments
of pitch contour that are within 35 cents [20] of the svara
frequencies. Next, we filter out the svara fragments that
are smaller than 250 ms in duration, as they are too short to
be considered as perceptually meaningful held svaras [19].
This leaves a string of fragments each labeled by a svara.
Fragments with the same svara value that are separated by
gaps less than 100 ms are merged [12]. The resulting sym-
bol sequence thus comprises a tuple of svara name and du-
ration.

3.3 Histogram generation

3.3.1 Pitch histogram of breath-phrases

We compute the histogram of the transcribed svaras corre-
sponding to each BP. Figure 2 shows the pitch histogram
for each BP of the concert of rāga Todi sung by Ajoy
Chakrabarty. . The 12th bin along the y-axis corresponds
to the tonic svara Sa (0 cents), 24th for its octave (1200
cents).
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Figure 2. Pitch histogram of svaras for each breath-phrase.

Figure 3. Bar graph of svara duration stacked in sorted
manner for each breath-phrase. We observe that breath-
phrases often comprise one long nyas svara and several
other svaras of less duration.

3.3.2 Svara duration distribution

We consider the distribution of the svara duration for each
BP. Figure 3 shows a stacked bar graph of the sorted du-
rations of the svaras for each BP for the same concert.
We observe that the cumulative duration of the transcribed
svaras range from approximately 1 to 8 seconds. An im-
portant point to note here is that there is a difference be-
tween the absolute duration of a BP and the height of
the stacked bar (in Figure 3). This is caused by the tran-
sient pitch segments that we ignored in our representation.
Readers must note that the stable svara transcription, there-
fore, has an implication for the further analyses.

3.4 Post-processing

To capture the changes in the svara pattern at a broader
time-scale, we time-average the pitch histogram across ten
BPs with a hop of one BP. This is followed by tracking
of the most salient bin across the smoothened histogram
. Finally, the obtained contour is further median filtered
with one preceding and succeeding BP. We refer to this
contour as the evolution contour (hereafter EC). Figure 4
shows the time-averaged histogram superimposed with the
EC for the same concert.

3.5 MEC feature extraction

We would like to compare the ECs of different concerts
to explore whether there is any temporal trend that holds
across the collection. To normalize the time-scale and
pitch range of the EC, we normalize each EC within a unit

Figure 4. Time-averaged pitch histogram superimposed
with the evolution contour.

range in both temporal and pitch dimensions. Thus a mod-
ified evolution contour (hereafter MEC) is obtained as:

MEC =
EC −min(EC)

max(EC)−min(EC)
(1)

with 100 samples between [0,1] .
We extract a collection of heuristic features (slope-

based, duration-based, jump-based and level-based) from
the MEC. A few important features are: slope between
the MEC value of 0th frame and the first frame where
MEC = 1 (referred to as Slp) , proportion of duration
spent on each svara (referred to as Pro), centroid (con-
sidering salience of the bins as the weights in the centroid
computation) of each svara (referred to as Cen) , starting
and ending svaras, (second) longest svara and proportion
of its duration, magnitude of lowest/highest jumps between
consecutive levels etc.

4. MUSIC COLLECTION AND ANNOTATIONS

The music collection used in this study is taken from the
Hindustani music dataset (HMD) compiled as a part of
the CompMusic project [24, 25] (130 hours of commer-
cially available audio recordings stored as 160 kbps mp3
stereo audio files). All the editorial metadata for each
audio recording is publicly available on an open-source
metadata repository called MusicBrainz 5 . The selected
music material in our collection is diverse in terms of the
number of artists (40), recordings (mostly live concerts of
both male and female renowned musicians from the last 6
decades) and the number of unique compositions (67). In
these terms, it can therefore be regarded as a representative
subset of real-world collections. Our collection includes a
total of 75 concerts from 10 widely used rāgas (8 pieces
per rāga on an average) that are diverse both in terms of
the number of svaras and their pitch-classes (svarasthānās).
All the concerts belong to either madhya or drut laya (and
non-metered ālāp). The pitch range of the recordings spans
approximately two octaves (middle octave and half of the
lower/upper octave). All of the concerts comprise elabora-
tions based on a bandish.

The scope of the study is limited to only the ālāp and
vistār (barhat) [3, 4, 6, 18, 26] sections of the concert. Al-
most all of the concerts continue to subsequent fast im-
provisatory section (tān) after rendering the vistār. The

5 https://musicbrainz.org/
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melodic cue where the antara ends and the rhythmic cue
where there is a slight increase in tempo just after, is
quite universal and musically unambiguous. For reference,
please observe Section 3.1 in [30]. We employ a perform-
ing Hindustani musician (trained over 20 years) to annotate
the time-stamps where the vistār ends. As the said anno-
tation can be considered an obvious one (there is a less
chance of getting subjective biases), we limit the manual
annotation to one subject only. After cutting the concerts
to the musician-annotated time-stamp, the average dura-
tion per concert is 16 minutes making a total of 20 hours
of data.

5. ANALYSIS AND DISCUSSION

We choose certain music concepts which are widely dis-
cussed among musicians and musicologists, for which
there has not yet been an objective way of interpreting
them from the audio. We cite the concepts (or knowledge-
hypotheses, referred to as ’K’) and discuss how a data-
driven approach can help us validate them.

5.1 K1: Evolution of melody in time

As discussed in Section 2, the barhat of a rāga performance
refers to the gradual “unfolding” of a rāga by building on
the svaras with a progression in a broad time-scale. But
it is not very clearly illustrated in the musicology litera-
ture what the precise duration is spent on each svara in
course of this progression. Figure 5 shows the MECs of
37 (50% randomly chosen from our collection) concerts.
We observe that the MECs, in general, start from a lower
svara and gradually reach the highest svara in a step-like
manner. The slope Slp of MEC, is quite consistent (mean
= 1.3, standard deviation = 0.34) over the whole corpus.
This gives an important insight that irrespective of the rāga
and concert-duration, artists take the same time to explore
the melody and hit the highest svara. This also reinforces
the nature of the time-scaling of a performance: for ei-
ther a short 20 minute- or a long 50 minute-concert, the
melodic organization bases more on relative and not ab-
solute time. We also observe a sharp fall of the MEC at
the end of the many concerts, this reflects how artists come
down to a lower svara to mark an end to the vistār (this co-
incides with the musician’s annotation). This phenomenon
has a high resemblance with the time evolution of melody
in course of the vistār, as shown in Figure 11 in [30].

5.2 K2: Transitional characteristics of nyās svaras

Rāga guidelines mention about allowed svara sequences
within a melodic phrase but it would be interesting to see
if artists maintain any specific order in choosing the nyās
svara across BPs or take liberty to emphasize any other
svara. This is to be captured from the granularity of BPs
and not in the time-averaged MEC. We generate a svara-
transition matrix and populate it with a uniform weight
for all transitions of the salient bins across BPs. Figure 6
shows the salient svara-transition matrix where the diago-
nal elements refer to self transitions. As indicative from

Figure 5. Modified evolution contours for 37 concerts in
our music collection.

Figure 6. Svara-transition matrix of salient svaras of each
breath-phrase. Intensity of each bin is proportional to the
number of transitions taken from the svara of bin index on
x-axis to the svara of bin index on y-axis.

wide steps of the MECs, there are quite a few self transi-
tions but to our interest the salient transitions across BPs
also follow a pattern alike the allowed svara-transitions
within a melodic phrase. This is not a trivial event. We
compute a feature to measure the steadiness quotient Stq
of the transition matrix, defined as the ratio of the trace of
the svara-transition matrix to the sum of all bins. We ob-
serve a very low standard deviation (0.23) across our music
collection which conforms to the fact that artists ‘focus’ on
a nyās svara for consecutive BPs to establish that svara.

5.3 K3: Relationship between functional roles of
svaras and their duration in melody

We discussed about functional roles of vādi/samvādi
svaras, but it is not explicitly known how their ‘promi-
nence’ is defined. Earlier work [5] use histogram and show
that they are one of the most used tonal pitches. But it is not
evident from a pitch histogram whether the peak heights
are contributed by a large number of ‘short’ svara segments
or a fewer ‘long’ svara segments. Figure 7 shows the mean
(left) and standard deviation (right) of all svaras (octave
folded) for each svara along x-axis being the salient svara
in a BP. We observe that the role of each svara is defined
in terms of their duration in context of a nyās svara. This
conforms with the concepts discussed in Section 2. This
also reconfirms the well-defined structure of the melodic
improvisation that any svara cannot be stretched arbitrarily
long, the nyās svara of the BP and the phrase itself decides
how much variance all other svaras can incorporate. This
also brings out a question whether there is any special func-
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Figure 7. Mean (left) and standard deviation (right) of all
svaras (octave folded) for each svara along x-axis being the
salient svara in a breath-phrase.

tional role of vādi/samvādi svara in terms of their duration
in a specific BP. One observation is that the vādi/samvādi
svara, while a salient svara in the respective BPs, constrain
the duration of all other svaras, making its relative promi-
nence higher.

5.4 K4: Duration and position of svaras in melody

In music theory, vādi and samvādi svaras are among the
concepts which are often discussed. But we do not have an
objective measure to observe how these svaras are different
from other svaras in a rāga. It is also interesting to know
whether the vādi or samvādi svara always takes a focal role
irrespective of their location in a BP and the overall posi-
tion in a performance.
Position in melody: An important feature of the MEC is
the Cen. We observe that the Cen is a rāga dependent
feature. E.g., an uttaranga vādi rāga would have its vādi
centroid in the latter half of a concert. This is support-
ive of the fact that the vādi is explored in due course of
melodic improvisation adhering to the trend observed as in
Section 5.1. The musicological hypothesis that these are
the focal svaras of a rāga does not necessarily imply that
these svaras are explored from the very beginning of the
concert. Rather the performance starts from a lower svara
(graha svara) and reaches the vādi in course of the gradual
development of the melody.
Duration in melody: We compute the average duration of
all salient svaras per BP in two groups of svaras: (i) group
1: vādi/samvādi, and (ii) group 2: rest. It is observed
on the whole corpus that Pro of group 1 is higher than
the group 2 for all rāgas. This reinforces the fact the
term ‘focus’ or ‘shine’ (that qualifies vādi) is manifested
in the temporal dimension. This also brings out a question
whether we can predict the vādi/samvādi of a rāga from
the melody by data-driven features. From the overall pitch
histogram it is difficult to infer, but from our designed fea-
tures, we observe an accuracy of 83% while predicting the
vādi/samvādi of a given raga.

5.5 K5: Presence of possible pulsation in melody

There has been a discussion among musicians and musi-
cologists whether there exists a pulsation in the melody of
an ālāp in Hindustani music. Musicians agree there is an
implicit pulsation present, but quantification is left to sub-
jects. At the same time, the subjective bias only results

Figure 8. Ratio of inter-onset-interval of salient svaras
across breath-phrases. We see a tatum pulse (peak) at 0.8
seconds and its harmonics.

in an octave difference, i.e., there is a harmonic relation
among the pace in which the subjects tap to the melody.
We propose a measure, through our data-driven approach,
to estimate a possible metric for the pulsation. We as-
sume that the pulse obtained from the melody would cor-
relate to the percussive pulsation. We compute the ratio of
inter-onset-interval of the most salient svaras across BPs.
Figure 8 shows a pulsation at 0.8 seconds and its harmon-
ics which correspond to 75 beats per minute (bpm) and the
percussive tempo of the concert is approximately 40 bpm.
The noise in the estimate may also follow from a few short
BPs (e.g., BP index 3, 7 etc.) as observed in Figure 3. This
measure, therefore, needs further investigation before we
generalize over the corpus.

6. CONCLUSION AND FUTURE WORK

In this paper we performed a data driven exploration of
implicit structures in melodies of Hindustani music. We
outlined the motivation and relevance of computational ap-
proaches for quantitatively studying the underlying musi-
cal concepts. We computed musically relevant and easy-
to-interpret acoustic features such as svara frequency and
svara duration histogram. For computing these features we
primarily used existing tools and techniques often used in
information retrieval of Indian art music. We performed a
quantitative analysis of 75 music concerts in Hindustani
music in 10 different rāgas. With that we showed how
the musical concepts are manifested in real-world perfor-
mances and experimented with several ways to quantify
them. With this we also corroborate some of the inter-
esting music concepts and discover implicit relationships
between svaras and duration in the temporal evolution of a
rāga performance. In the future, one possible research di-
rection would be to use these findings for characterizing
artist-specific aspects and highlighting different nuances
across gharanas in Hindustani music.
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DEEP CONVOLUTIONAL NETWORKS ON THE PITCH SPIRAL FOR
MUSIC INSTRUMENT RECOGNITION
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ABSTRACT

Musical performance combines a wide range of pitches,
nuances, and expressive techniques. Audio-based classifi-
cation of musical instruments thus requires to build signal
representations that are invariant to such transformations.
This article investigates the construction of learned con-
volutional architectures for instrument recognition, given
a limited amount of annotated training data. In this con-
text, we benchmark three different weight sharing strate-
gies for deep convolutional networks in the time-frequency
domain: temporal kernels; time-frequency kernels; and a
linear combination of time-frequency kernels which are
one octave apart, akin to a Shepard pitch spiral. We pro-
vide an acoustical interpretation of these strategies within
the source-filter framework of quasi-harmonic sounds with
a fixed spectral envelope, which are archetypal of musical
notes. The best classification accuracy is obtained by hy-
bridizing all three convolutional layers into a single deep
learning architecture.

1. INTRODUCTION

Among the cognitive attributes of musical tones, pitch is
distinguished by a combination of three properties. First,
it is relative: ordering pitches from low to high gives rise
to intervals and melodic patterns. Secondly, it is intensive:
multiple pitches heard simultaneously produce a chord, not
a single unified tone – contrary to loudness, which adds up
with the number of sources. Thirdly, it does not depend
on instrumentation: this makes possible the transcription
of polyphonic music under a single symbolic system [5].

Tuning auditory filters to a perceptual scale of pitches
provides a time-frequency representation of music signals
that satisfies the first two of these properties. It is thus a
starting point for a wide range of MIR applications, which
can be separated in two categories: pitch-relative (e.g.
chord estimation [13]) and pitch-invariant (e.g. instrument
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recognition [9]). Both aim at disentangling pitch from tim-
bral content as independent factors of variability, a goal
that is made possible by the third aforementioned property.
This is pursued by extracting mid-level features on top of
the spectrogram, be them engineered or learned from train-
ing data. Both approaches have their limitations: a ”bag-
of-features” lacks flexibility to represent fine-grain class
boundaries, whereas a purely learned pipeline often leads
to uninterpretable overfitting, especially in MIR where the
quantity of thoroughly annotated data is relatively small.

In this article, we strive to integrate domain-specific
knowledge about musical pitch into a deep learning frame-
work, in an effort towards bridging the gap between feature
engineering and feature learning.

Section 2 reviews the related work on feature learning
for signal-based music classification. Section 3 demon-
strates that pitch is the major factor of variability among
musical notes of a given instrument, if described by
their mel-frequency cepstra. Section 4 presents a typical
deep learning architecture for spectrogram-based classifi-
cation, consisting of two convolutional layers in the time-
frequency domain and one densely connected layer. Sec-
tion 5 introduces alternative convolutional architectures for
learning mid-level features, along time and along a Shep-
ard pitch spiral, as well as aggregation of multiple models
in the deepest layers. Sections 6 discusses the effective-
ness of the presented systems on a challenging dataset for
music instrument recognition.

2. RELATED WORK

Spurred by the growth of annotated datasets and the democ-
ratization of high-performance computing, feature learning
has enjoyed a renewed interest in recent years within the
MIR community, both in supervised and unsupervised set-
tings. Whereas unsupervised learning (e.g. k-means [25],
Gaussian mixtures [14]) is employed to fit the distribution
of the data with few parameters of relatively low abstrac-
tion and high dimensionality, state-of-the-art supervised
learning consists of a deep composition of multiple non-
linear transformations, jointly optimized to predict class
labels, and whose behaviour tend to gain in abstraction as
depth increases [27].

As compared to other deep learning techniques for au-
dio processing, convolutional networks happen to strike
the balance between learning capacity and robustness. The
convolutional structure of learned transformations is de-
rived from the assumption that the input signal, be it a one-
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dimensional waveform or a two-dimensional spectrogram,
is stationary — which means that content is independent
from location. Moreover, the most informative dependen-
cies between signal coefficients are assumed to be concen-
trated to temporal or spectrotemporal neighborhoods. Un-
der such hypotheses, linear transformations can be learned
efficiently by limiting their support to a small kernel which
is convolved over the whole input. This method, known
as weight sharing, decreases the number of parameters of
each feature map while increasing the amount of data on
which kernels are trained.

By design, convolutional networks seem well adapted
to instrument recognition, as this task does not require a
precise timing of the activation function, and is thus essen-
tially a challenge of temporal integration [9, 14]. Further-
more, it benefits from an unequivocal ground truth, and
may be simplified to a single-label classification problem
by extracting individual stems from a multitrack dataset [2].
As such, it is often used a test bed for the development of
new algorithms [17, 18], as well as in computational stud-
ies in music cognition [20, 21].

Some other applications of deep convolutional networks
include onset detection [23], transcription [24], chord
recognition [13], genre classification [3], downbeat track-
ing [8], boundary detection [26], and recommendation
[27].

Interestingly, many research teams in MIR have con-
verged to employ the same architecture, consisting of two
convolutional layers and two densely connected layers
[7,13,15,17,18,23,26], and this article makes no exception.
However, there is no clear consensus regarding the weight
sharing strategies that should be applied to musical audio
streams: convolutions in time or in time-frequency coex-
ist in the recent literature. A promising paradigm [6, 8],
at the interaction between feature engineering and feature
learning, is to extract temporal or spectrotemporal descrip-
tors of various low-level modalities, train specific convolu-
tional layers on each modality to learn mid-level features,
and hybridize information at the top level. Recognizing
that this idea has been successfully applied to large-scale
artist recognition [6] as well as downbeat tracking [8], we
aim to proceed in a comparable way for instrument recog-
nition.

3. HOW INVARIANT IS THE MEL-FREQUENCY
CEPSTRUM ?

The mel scale is a quasi-logarithmic function of acoustic
frequency designed such that perceptually similar pitch in-
tervals appear equal in width over the full hearing range.
This section shows that engineering transposition-invariant
features from the mel scale does not suffice to build pitch
invariants for complex sounds, thus motivating further in-
quiry.

The time-frequency domain produced by a constant-Q
filter bank tuned to the mel scale is covariant with respect
to pitch transposition of pure tones. As a result, a chro-
matic scale played at constant speed would draw parallel,
diagonal lines, each of them corresponding to a different

Figure 1: Constant-Q spectrogram of a chromatic scale
played by a tuba. Although the harmonic partials shift pro-
gressively, the spectral envelope remains unchanged, as re-
vealed by the presence of a fixed cutoff frequency. See text
for details.

partial wave. However, the physics of musical instruments
constrain these partial waves to bear a negligible energy
if their frequencies are beyond the range of acoustic reso-
nance.

As shown on Figure 1, the constant-Q spectrogram of
a tuba chromatic scale exhibits a fixed, cutoff frequency
at about 2.5 kHz, which delineates the support of its spec-
tral envelope. This elementary observation implies that re-
alistic pitch changes cannot be modeled by translating a
rigid spectral template along the log-frequency axis. The
same property is verified for a wide class of instruments,
especially brass and woodwinds. As a consequence, the
construction of powerful invariants to musical pitch is not
amenable to delocalized operations on the mel-frequency
spectrum, such as a discrete cosine transform (DCT) which
leads to the mel-frequency cepstral coefficients (MFCC),
often used in audio classification [9, 14].

To validate the above claim, we have extracted the
MFCC of 1116 individual notes from the RWC dataset
[10], as played by 6 instruments, with 32 pitches, 3 nu-
ances, and 2 interprets and manufacturers. When more
than 32 pitches were available (e.g. piano), we selected
a contiguous subset of 32 pitches in the middle register.
Following a well-established rule [9, 14], the MFCC were
defined the 12 lowest nonzero ”quefrencies” among the
DCT coefficients extracted from a filter bank of 40 mel-
frequency bands. We then have computed the distribution
of squared Euclidean distances between musical notes in
the 12-dimensional space of MFCC features.

Figure 2 summarizes our results. We found that restrict-
ing the cluster to one nuance, one interpret, or one manu-
facturer hardly reduces intra-class distances. This suggests
that MFCC are fairly successful in building invariant rep-
resentations to such factors of variability. In contrast, the
cluster corresponding to each instrument is shrinked if de-
composed into a mixture of same-pitch clusters, sometimes
by an order of magnitude. In other words, most of the vari-
ance in an instrument cluster of mel-frequency cepstra is
due to pitch transposition.

Keeping less than 12 coefficients certainly improves
invariance, yet at the cost of inter-class discriminability,
and vice versa. This experiment shows that the mel-
frequency cepstrum is perfectible in terms of invariance-
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Figure 2: Distributions of squared Euclidean distances
among various MFCC clusters in the RWC dataset.
Whisker ends denote lower and upper deciles. See text for
details.

discriminability tradeoff, and that there remains a lot to be
gained by feature learning in this area.

4. DEEP CONVOLUTIONAL NETWORKS

A deep learning system for classification is built by stack-
ing multiple layers of weakly nonlinear transformations,
whose parameters are optimized such that the top-level
layer fits a training set of labeled examples. This section
introduces a typical deep learning architecture for audio
classification and describes the functioning of each layer.

Each layer in a convolutional network typically consists
in the composition of three operations: two-dimensional
convolutions, application of a pointwise nonlinearity, and
local pooling. The deep feed-forward network made of
two convolutional layers and two densely connected lay-
ers, on which our experiment are conducted, has become
a de facto standard in the MIR community [7, 13, 15,
17, 18, 23, 26]. This ubiquity in the literature suggests
that a four-layer network with two convolutional layers is
well adapted to supervised audio classification problems of
moderate size.

The input of our system is a constant-Q spectrogram,
which is very comparable to a mel-frequency spectrogram.
We used the implementation from the librosa package [19]
with Q = 12 filters per octave, center frequencies ranging
from A1 (55Hz) to A9 (14 kHz), and a hop size of 23ms.
Furthermore, we applied nonlinear perceptual weighting of
loudness in order to reduce the dynamic range between the
fundamental partial and its upper harmonics. A 3-second
sound excerpt x[t] is represented by a time-frequency ma-

trix x1[t, k1] of width T = 128 samples and height K1 =
96 frequency bands.

A convolutional operator is defined as a family
W2[τ, κ1, k2] of K2 two-dimensional filters, whose im-
pulse repsonses are all constrained to have width ∆t and
height ∆k1. Element-wise biases b2[k2] are added to the
convolutions, resulting in the three-way tensor

y2[t, k1, k2]

= b2[k2] + W2[t, k1, k2]
t,k1∗ x1[t, k1]

= b2[k2] +
∑

0≤τ<∆t
0≤κ1<∆k1

W2[τ, κ1, k2]x1[t − τ, k1 − κ1]. (1)

The pointwise nonlinearity we have chosen is the rectified
linear unit (ReLU), with a rectifying slope of α = 0.3 for
negative inputs.

y+
2 [t, k1, k2] =

{
αy2[t, k1, k2] if y2[t, k1, k2] < 0
y2[t, k1, k2] if y2[t, k1, k2] ≥ 0

(2)

The pooling step consists in retaining the maximal acti-
vation among neighboring units in the time-frequency do-
main (t, k1) over non-overlapping rectangles of width ∆t
and height ∆k1.

x2[t, k1, k2] = max
0≤τ<∆t

0≤κ1<∆k1

{
y+
2 [t − τ, k1 − κ1, k2]

}
(3)

The hidden units in x2 are in turn fed to a second layer of
convolutions, ReLU, and pooling. Observe that the cor-
responding convolutional operator W3[τ, κ1, k2, k3] per-
forms a linear combination of time-frequency feature maps
in x2 along the variable k2.

y3[t, k1, k3]

=
∑

k2

b3[k2, k3] + W3[t, k1, k2, k3]
t,k1∗ x2[t, k1, k2]. (4)

Tensors y+
3 and x3 are derived from y3 by ReLU and pool-

ing, with formulae similar to Eqs. (2) and (3). The third
layer consists of the linear projection of x3, viewed as a
vector of the flattened index (t, k1, k3), over K4 units:

y4[k4] = b4[k4] +
∑

t,k1,k3

W4[t, k1, k3, k4]x3[t, k1, k3] (5)

We apply a ReLU to y4, yielding x4[k4] = y+
4 [k4]. Fi-

nally, we project x4, onto a layer of output units y5 that
should represent instrument activations:

y5[k5] =
∑

k4

W5[k4, k5]x4[k4]. (6)

The final transformation is a softmax nonlinearity, which
ensures that output coefficients are non-negative and sum
to one, hence can be fit to a probability distribution:

x5[k5] =
expy5[k5]∑
κ5

expy5[κ5]
. (7)

Given a training set of spectrogram-instrument pairs
(x1, k), all weigths in the network are iteratively updated
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Figure 3: A two-dimensional deep convolutional network trained on constant-Q spectrograms. See text for details.

to minimize the stochastic cross-entropy loss L (x5, k) =
− log x5[k] over shuffled mini-batches of size 32 with uni-
form class distribution. The pairs (x1, k) are extracted on
the fly by selecting non-silent regions at random within
a dataset of single-instrument audio recordings. Each 3-
second spectrogram x1[t, k1] within a batch is globally nor-
malized such that the whole batch had zero mean and unit
variance. At training time, a random dropout of 50% is
applied to the activations of x3 and x4. The learning rate
policy for each scalar weight in the network is Adam [16],
a state-of-the-art online optimizer for gradient-based learn-
ing. Mini-batch training is stopped after the average train-
ing loss stopped decreasing over one full epoch of size
8192. The architecture is built using the Keras library [4]
and trained on a graphics processing unit within minutes.

5. IMPROVED WEIGHT SHARING STRATEGIES

Although a dataset of music signals is unquestionably sta-
tionary over the time dimension – at least at the scale of
a few seconds – it cannot be taken for granted that all fre-
quency bands of a constant-Q spectrogram would have the
same local statistics [12]. In this section, we introduce two
alternative architectures to address the nonstationarity of
music on the log-frequency axis, while still leveraging the
efficiency of convolutional representations.

Many are the objections to the stationarity assumption
among local neighborhoods in mel frequency. Notably
enough, one of the most compelling is derived from the
classical source-filter model of sound production. The fil-
ter, which carries the overall spectral envelope, is affected
by intensity and playing style, but not by pitch. Conversely,
the source, which consists of a pseudo-periodic wave, is
transposed in frequency under the action of pitch. In order
to extract the discriminative information present in both
terms, it is first necessary to disentangle the contributions
of source and filter in the constant-Q spectrogram. Yet,
this can only be achieved by exploiting long-range correla-
tions in frequency, such as harmonic and formantic struc-
tures. Besides, the harmonic comb created by the Fourier
series of the source makes an irregular pattern on the log-
frequency axis which is hard to characterize by local statis-
tics.

5.1 One-dimensional convolutions at high frequencies

Facing nonstationary constant-Q spectra, the most conser-
vative workaround is to increase the height ∆κ1 of each
convolutional kernel up to the total number of bins K1 in
the spectrogram. As a result, W1 and W2 are no longer
transposed over adjacent frequency bands, since convolu-
tions are merely performed over the time variable. The
definition of y2[t, k1, k2] rewrites as

y2[t, k1, k2]

= b2[k2] + W2[t, k1, k2]
t∗ x1[t, k1]

= b2[k2] +
∑

0≤τ<∆t

W2[τ, k1, k2]x1[t − τ, k1], (8)

and similarly for y3[t, k1, k3]. While this approach is the-
oretically capable of encoding pitch invariants, it is prone
to early specialization of low-level features, thus not fully
taking advantage of the network depth.

However, the situation is improved if the feature maps
are restricted to the highest frequencies in the constant-Q
spectrum. It should be observed that, around the nth partial
of a quasi-harmonic sound, the distance in log-frequency
between neighboring partials decays like 1/n, and the un-
evenness between those distances decays like 1/n2. Con-
sequently, at the topmost octaves of the constant-Q spec-
trum, where n is equal or greater than Q, the partials appear
close to each other and almost evenly spaced. Furthermore,
due to the logarithmic compression of loudness, the poly-
nomial decay of the spectral envelope is linearized: thus,
at high frequencies, transposed pitches have similar spec-
tra up to some additive bias. The combination of these two
phenomena implies that the correlation between constant-
Q spectra of different pitches is greater towards high fre-
quencies, and that the learning of polyvalent feature maps
becomes tractable.

In our experiments, the one-dimensional convolutions
over the time variable range from A6 (1.76 kHz) to A9

(14 kHz).

5.2 Convolutions on the pitch spiral at low frequencies

The weight sharing strategy presented above exploits the
facts that, at high frequencies, quasi-harmonic partials are
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numerous, and that the amount of energy within a fre-
quency band is independent of pitch. At low frequencies,
we make the exact opposite assumptions: we claim that
the harmonic comb is sparse and covariant with respect to
pitch shift. Observe that, for any two distinct partials taken
at random between 1 and n, the probability that they are in
octave relation is slightly above 1/n. Thus, for n relatively
low, the structure of harmonic sounds is well described by
merely measuring correlations between partials one octave
apart. This idea consists in rolling up the log-frequency
axis into a Shepard pitch spiral, such that octave intervals
correspond to full turns, hence aligning all coefficients of
the form x1[t, k1 + Q × j1] for j1 ∈ Z onto the same ra-
dius of the spiral. Therefore, correlations between power-
of-two harmonics are revealed by the octave variable j1.

To implement a convolutional network on the pitch spi-
ral, we crop the constant-Q spectrogram in log-frequency
into J1 = 3 half-overlapping bands whose height equals
2Q, that is two octaves. Each feature map in the first layer,
indexed by k2, results from the sum of convolutions be-
tween a time-frequency kernel and a band, thus emulating
a linear combination in the pitch spiral with a 3-d tensor
W2[τ, κ1, j1, k2] at fixed k2. The definition of y2[t, k1, k2]
rewrites as

y2[t, k1, k2] = b2[k2]

+
∑

τ,κ1,j1

W2[τ, κ1, j1, k2]

×x1[t − τ, k1 − κ1 − Qj1]. (9)

The above is different from training two-dimensional ker-
nel on a time-chroma-octave tensor, since it does not suffer
from artifacts at octave boundaries.

The linear combinations of frequency bands that are
one octave apart, as proposed here, bears a resemblance
with engineered features for music instrument recogni-
tion [22], such as tristimulus, empirical inharmonicity, har-
monic spectral deviation, odd-to-even harmonic energy ra-
tio, as well as octave band signal intensities (OBSI) [14].

Guaranteeing the partial index n to remain low is
achieved by restricting the pitch spiral to its lowest frequen-
cies. This operation also partially circumvents the problem
of fixed spectral envelope in musical sounds, thus improv-
ing the validness of the stationarity assumption. In our ex-
periments, the pitch spiral ranges from A2 (110Hz) to A6

(1.76 kHz).
In summary, the classical two-dimensional convolutions

make a stationarity assumption among frequency neigh-
borhoods. This approach gives a coarse approximation
of the spectral envelope. Resorting to one-dimensional
convolutions allows to disregard nonstationarity, but does
not yield a pitch-invariant representation per se: thus, we
only apply them at the topmost frequencies, i.e. where
the invariance-to-stationarity ratio in the data is already
favorable. Conversely, two-dimensional convolutions on
the pitch spiral addresses the invariant representation of
sparse, transposition-covariant spectra: as such, they are
best suited to the lowest frequencies, i.e. where partials are
further apart and pitch changes can be approximated by

minutes tracks minutes tracks
piano 58 28 44 15
violin 51 14 49 22

dist. guitar 15 14 17 11
female singer 10 11 19 12

clarinet 10 7 13 18
flute 7 5 53 29

trumpet 4 6 7 27
tenor sax. 3 3 6 5

total 158 88 208 139

Table 1: Quantity of data in the training set (left) and test
set (right). The training set is derived from MedleyDB. The
test set is derived from MedleyDB for distorted electric gui-
tar and female singer, and from [14] for other instruments.

log-frequency translations. The next section reports exper-
iments on instrument recognition that capitalize on these
considerations.

6. APPLICATIONS

The proposed algorithms are trained on a subset of Med-
leyDB v1.1. [2], a dataset of 122 multitracks annotated
with instrument activations. We extracted the monophonic
stems corresponding to a selection of eight pitched instru-
ments (see Table 1). Stems with leaking instruments in the
background were discarded.

The evaluation set consists of 126 recordings of solo
music collected by Joder et al. [14], supplemented with 23
stems of electric guitar and female voice from MedleyDB.
In doing so, guitarists and vocalists were thoroughly put
either in the training set or the test set, to prevent any
artist bias. We discarded recordings with extended instru-
mental techniques, since they are extremely rare in Med-
leyDB. Constant-Q spectrograms from the evaluation set
were split into half-overlapping, 3-second excerpts.

For the two-dimensional convolutional network, each of
the two layers consists of 32 kernels of width 5 and height
5, followed by a max-pooling of width 5 and height 3. Ex-
pressed in physical units, the supports of the kernels are
respectively equal to 116ms and 580 ms in time, 5 and 10
semitones in frequency. For the one-dimensional convolu-
tional network, each of two layers consists of 32 kernels
of width 3, followed by a max-pooling of width 5. Ob-
serve that the temporal supports match those of the two-
dimensional convolutional network. For the convolutional
network on the pitch spiral, the first layer consists of 32
kernels of width 5, height 3 semitones, and a radial length
of 3 octaves in the spiral. The max-pooling operator and
the second layer are the same as in the two-dimensional
convolutional network.

In addition to the three architectures above, we build hy-
brid networks implementing more than one of the weight
sharing strategy presented above. In all architectures, the
densely connected layers have K4 = 64 hidden units and
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piano violin dist. female clarinet flute trumpet tenor average
guitar singer sax.

bag-of-features 99.7 76.2 92.7 81.6 49.9 22.5 63.7 4.4 61.4
and random forest (± 0.1) (± 3.1) (± 0.4) (± 1.5) (± 0.8) (± 0.8) (± 2.1) (± 1.1) (± 0.5)

spiral 86.9 37.0 72.3 84.4 61.1 30.0 54.9 52.7 59.9
(36k parameters) (± 5.8) (± 5.6) (± 6.2) (± 6.1) (± 8.7) (± 4.0) (± 6.6) (± 16.4) (± 2.4)

1-d 73.3 43.9 91.8 82.9 28.8 51.3 63.3 59.0 61.8
(20k parameters) (± 11.0) (± 6.3) (± 1.1) (± 1.9) (± 5.0) (± 13.4) (± 5.0) (± 6.8) (± 0.9)
2-d, 32 kernels 96.8 68.5 86.0 80.6 81.3 44.4 68.0 48.4 69.1

(93k parameters) (± 1.4) (± 9.3) (± 2.7) (± 1.7) (± 4.1) (± 4.4) (± 6.2) (± 5.3) (± 2.0)
spiral & 1-d 96.5 47.6 90.2 84.5 79.6 41.8 59.8 53.0 69.1

(55k parameters) (± 2.3) (± 6.1) (± 2.3) (± 2.8) (± 2.1) (± 4.1) (± 1.9) (± 16.5) (± 2.0)
spiral & 2-d 97.6 73.3 86.5 86.9 82.3 45.8 66.9 51.2 71.7

(128k parameters) (± 0.8) (± 4.4) (± 4.5) (± 3.6) (± 3.2) (± 2.9) (± 5.8) (± 10.6) (± 2.0)
1-d & 2-d 96.5 72.4 86.3 91.0 73.3 49.5 67.7 55.0 73.8

(111k parameters) (± 0.9) (± 5.9) (± 5.2) (± 5.5) (± 6.4) (± 6.9) (± 2.5) (± 11.5) (± 2.3)
2-d & 1-d & spiral 97.8 70.9 88.0 85.9 75.0 48.3 67.3 59.0 74.0
(147k parameters) (± 0.6) (± 6.1) (± 3.7) (± 3.8) (± 4.3) (± 6.6) (± 4.4) (± 7.3) (± 0.6)

2-d, 48 kernels 96.5 69.3 84.5 84.2 77.4 45.5 68.8 52.6 71.7
(158k parameters) (± 1.4) (± 7.2) (± 2.5) (± 5.7) (± 6.0) (± 7.3) (± 1.8) (± 10.1) (± 2.0)

Table 2: Test set accuracies for all presented architectures. All convolutional layers have 32 kernels unless stated otherwise.

K5 = 8 output units.
In order to compare the results against shallow classi-

fiers, we also extracted a typical ”bag-of-features” over
half-overlapping, 3-second excerpts in the training set.
These features consist of the means and standard devia-
tions of spectral shape descriptors, i.e. centroid, bandwidth,
skewness, and rolloff; the mean and standard deviation of
the zero-crossing rate in the time domain; and the means
of MFCC as well as their first and second derivative. We
trained a random forest of 100 decision trees on the result-
ing feature vector of dimension 70, with balanced class
probability.

Results are summarized in Table 2. First of all, the bag-
of-features approach presents large accuracy variations be-
tween classes, due to the unbalance of available training
data. In contrast, most convolutional models, especially
hybrid ones, show less correlation between the amount of
training data in the class and the accuracy. This suggests
that convolutional networks are able to learn polyvalent
mid-level features that can be re-used a test time to dis-
criminate rarer classes.

Furthermore, 2-d convolutions outperform other non-
hybrid weight sharing strategies. However, a class with
broadband temporal modulations, namely the distorted
electric guitar, is best classified with 1-d convolutions.

Hybridizing 2-d with either 1-d or spiral convolutions
provide consistent, albeit small improvements with respect
to 2-d alone. The best overall accuracy is reached by the
full hybridization of all three weight sharing strategies, be-
cause of a performance boost for the rarest classes.

The accuracy gain by combining multiple models could
simply be the result of a greater number of parameters. To
refute this hypothesis, we train a 2-d convolutional network

with 48 kernels instead of 32, so as to match the budget
of the full hybrid model, i.e. about 150k parameters. The
performance is certainly increased, but not up to the hy-
brid models involving 2-d convolutions, which have less
parameters. Increasing the number of kernels even more
cause the accuracy to level out and the variance between
trials to increase.

Running the same experiments with broader frequency
ranges of 1-d and spiral convolutions often led to a de-
graded performance, and are thus not reported.

7. CONCLUSIONS

Understanding the influence of pitch in audio streams is
paramount to the design of an efficient system for auto-
mated classification, tagging, and similarity retrieval in mu-
sic. We have presented deep learning methods to address
pitch invariance while preserving good timbral discrim-
inability. It consists in training a feed-forward convolu-
tional network over the constant-Q spectrogram, with three
different weight sharing strategies according to the type of
input: along time at high frequencies (above 2 kHz), on a
Shepard pitch spiral at low frequencies (below 2 kHz), and
in time-frequency over both high and low frequencies.

A possible improvement of the presented architecture
would be to place a third convolutional layer in the time
domain before performing long-term max-pooling, hence
modelling the joint dynamics of the three mid-level feature
maps. Future work will investigate the association of the
presented weight sharing strategies with recent advances in
deep learning for music informatics, such as data augmen-
tation [18], multiscale representations [1,11], and adversar-
ial training [15].
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ABSTRACT

Melody analysis is an important processing step in several
areas of Music Information Retrieval (MIR). Processing
the pitch values extracted from raw input audio signal may
be computationally complex as it requires substantial effort
to reduce the uncertainty resulting i.a. from tempo vari-
ability and transpositions. A typical example is the melody
matching problem in Query-by-Humming (QbH) systems,
where Dynamic Time Warping (DTW) and note-based ap-
proaches are typically applied.

In this work we present a new, simple and efficient
method of investigating the melody content which may be
used for approximate, preliminary matching of melodies
irrespective of their tempo and length. The proposed so-
lution is based on Discrete Total Variation (DTV) of the
melody pitch vector, which may be computed in linear
time. We demonstrate its practical application for finding
the appropriate melody cutting points in the R∗-tree-based
DTW indexing framework. The experimental validation
is based on a dataset of 4431 queries and over 4000 tem-
plate melodies, constructed specially for testing Query-by-
Humming systems.

1. INTRODUCTION

Content-based search and retrieval is becoming a popular
and attractive way to locate relevant resources in the ever-
growing multimedia collections and databases. For Mu-
sic Information Retrieval (MIR) several important appli-
cation areas have been defined over the last decades, with
Audio Fingerprinting, and Query by Humming (QbH) be-
ing perhaps the most prominent examples. The latter one
is specific as it is exclusively based on the user-generated
sound signal and it depends mostly on a single parameter
of this signal – the pitch of the consecutive notes, forming
the melody sung by the user.

In a typical QbH system the query in the form of
raw audio data is subjected to a pitch-tracking procedure,
which yields a sequence of pitch values in consecutive time
frames, often referred to as a pitch vector. The music re-

c© Bartłomiej Stasiak. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Bartłomiej Stasiak. “DTV-based melody cutting for DTW-based melody
search and indexing in QbH systems”, 17th International Society for Mu-
sic Information Retrieval Conference, 2016.

sources in the database are represented by templates, hav-
ing the similar form, so that the search is essentially based
on simply comparing the pitch vectors in order to find the
template melody best matching the query melody.

An additional step of note segmentation may be used
to obtain symbolic representation, explicitly defining the
pitch and length of separate notes. In this case, several
efficient methods based on e.g. transportation distance or
string matching algorithms may be used. This approach
enables fast searching, although it is difficult to obtain high
precision due to unavoidable ambiguities of the note seg-
mentation step. Comparing the pitch vectors directly usu-
ally yields higher-quality results but on the cost of the in-
creased computational complexity, as the local tempo vari-
ations require to use tools for automatic alignment between
the compared melodies.

Dynamic Time Warping (DTW) is a standard method
applied for comparing data sequences, generated by pro-
cesses that may exhibit substantial, yet semantically ir-
relevant local decelerations and accelerations. The exam-
ples include e.g. handwritten signature recognition or gait
recognition for biometric applications, sign language anal-
ysis, spoken word recognition and many other problems
involving temporal patterns analysis. It is also a method of
choice for direct comparison of pitch vectors in the Query
by Humming task.

2. PREVIOUS WORK

Early works on the QbH systems date back to the 1990’s,
with some background concepts and techniques being in-
troduced much earlier [21, 24]. Initially, the symbolic,
note-based approach was used [6, 20, 30], often in the
simplified form comprising only melody direction change
(U/D/S - Up/Down/the Same) [6, 21]. In the following
decade the direct pitch sequence matching with Hidden
Markov Models (HMM) [26] and Dynamic Time Warp-
ing [11, 19] was proposed and extensively used, in paral-
lel to note-based approaches employing transportation dis-
tances, such as Earth Mover’s Distance (EMD) [28,29]. In
many practical QbH systems, such as those presented in
the annual MIREX competition [1, 27], a multi-stage ap-
proach is applied involving the application of the EMD
to filter out most of the non-matching candidate tem-
plates, leaving only the most promising ones for the ac-
curate, but more computationally expensive DTW-based
search [31, 32, 34].
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Another possibility of search time optimization is to
accelerate the computation of DTW itself. For this pur-
pose several methods have been proposed, including iter-
ative deepening [2], Windowed Time Warping [18], Fast-
DTW [25] and SparseDTW [3].

Yet another approach, which is of special interest to
us, is to apply efficient DTW indexing techniques, based
on lower bounding functions [13]. These methods re-
duce computational complexity by limiting the number of
times the DTW algorithm must be run, but – unlike the
aforementioned EMD-based multi-stage systems – they
are not domain specific. Introduced by Keogh [13, 16] as
a general-purpose method for time-series matching, they
have also been successfully applied for the Query by Hum-
ming task [17, 35].

2.1 Indexing the dynamic time warping

DTW indexing is based on a more general approach
to indexing time series, known as GEMINI framework
(GEneric Multimedia INdexIng) [5, 14]. In this approach
the sequences are indexed with R-trees, R*-trees or other
Spatial Access Methods (SAM) [7] after being subjected
to dimensionality reduction transformation. The typical
SAMs require that the data are represented in a not more
than 12-16–dimensional index space I [14, 15]. Searching
in the index space is guaranteed to yield a superset of all the
relevant templates (i.e. it will produce no false rejections),
provided that a proper distance measure ρI is defined in I .
Let N denote the length of the original time series and let
M � N be the number of dimensions of the index space.
It may be shown [5] that when the distance ρX between el-
ements TN , QN of the input space X is properly bounded
from below by the distance between their low-dimensional
representations TM , QM in the index space, i.e. when:

ρI(TM , QM ) ≤ ρX(TN , QN ) , (1)

then it is possible to construct an indexing mechanism
which guarantees no false dismissals. The efficient, SAM-
optimized query in the index space may only return some
false positives which are then eliminated by direct match-
ing of the time series in the original, input space X . De-
pending on the tightness of the lower bound (Eq. 1), the
number of times the matching must be done in X may be
reduced even by orders of magnitude. The detailed de-
scription of the appropriate algorithms for k-nearest neigh-
bor search and range queries may be found in [5, 14].

The generality of the GEMINI framework enables
its application with many dimensionality reducing trans-
forms, based on e.g. discrete Fourier transform (DFT) [5],
Haar Wavelet Transform [12] or piecewise aggregate ap-
proximation (PAA) [14, 33]. However, comparing se-
quences under dynamic time warping differs quite signif-
icantly from the case of Euclidean spaces, i.a. because
DTW is not – strictly speaking – a metric (it does not sat-
isfy the triangle inequality). It has been however shown
that it is possible to define a valid lower-bounding dis-
tance measure [13] when proper global constraints, such
as Sakoe and Chiba band [24] or Itakura parallelogram [9]

are used. The dimensionality reduction may be obtained
by the simple PAA algorithm, as demonstrated by Keogh
in [13]. A more general approach, based on properties of
container-invariant time series envelopes, was introduced
by Zhu and Shasha, who extended the lower-bounding cri-
terion to the whole class of linear transforms [35].

The aforementioned techniques of DTW indexing may
be successfully applied to accelerate the melody matching
in Query by Humming systems, as demonstrated in [35]
on an example of a small music database of 50 Beatles
songs. However, in real-life, large-scale systems some
practical problems are likely to occur, especially when het-
erogeneous audio material is used as input for querying the
database.

One of these problems is that the actual length and
tempo of the query, with respect to the potentially match-
ing template, are not known in advance. As we will
demonstrate in the following section, this uncertainty
makes the use of the global constraints of the DTW dif-
ficult, which in turn put in doubt the practical applicability
of the DTW indexing schemes in the Query by Humming
task.

As a remedy, we propose a novel solution, based on
computation of Discrete Total Variation (DTV) of the pitch
vector, which enables to assess the optimal cutting point of
the query with respect to the template (Sect. 4). In this
way, the DTW indexing becomes feasible even for diver-
sified input data, containing the queries of varied length
and tempo. Moreover, the analysis of the DTV may appear
beneficial also for fixed-length queries. This conclusion
will be supported by the experimental results presented in
Section 5.

3. PROBLEM SETTING

The implicit assumption underlying the efficient DTW in-
dexing methods introduced in [13] is that the beginning
and the end of both compared sequences coincide. Un-
fortunately, in the query-by-humming task, this condition
is rarely met, especially with respect to the ending point.
The beginning is less problematic because most users typi-
cally sing from the beginning of a phrase [8]. The length of
the query, on the other hand, is often unknown in advance,
both in terms of absolute time units and with relation to
the template. It is possible to control the absolute length of
the query in the acquisition module, e.g. by stopping the
recording session after x seconds. Even then, however, the
assessment of the exact number of notes or phrases sung
is impossible, mainly due to tempo differences between
users. The query may therefore end anywhere within the
course of the template, as illustrated in Fig. 1.

Fortunately, the DTW may deal with this case quite eas-
ily, as the endpoint of the warping path may effectively
be searched for along the last row of the DTW matrix (or
along the last column, if we also expect queries longer than
templates). The real problem is, however, that it is now
impossible to effectively use the global constraints, such
as Sakoe and Chiba band (Fig. 1b), which are the sine qua
non condition in the DTW indexing techniques [13, 35].

620 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Figure 1. Optimal warping path in the DTW matrix
(with Sakoe and Chiba band shown) for fixed-length query,
where the query is much shorter than the template: a) The
“fast singer” case – both the beginning and the ending
points coincide; b) The “normal singer” case – the query
ends in the middle of the template melody.

Relaxing the constraints (e.g. increasing the radius of
the band) may help to incorporate more queries deviat-
ing from the diagonal, but on the cost of making the in-
dexing less efficient. Hence, although in theory the lower
bounding techniques guarantee no false dismissals, we ar-
rive again at the trade-off between time-efficiency and re-
trieval rate. In fact, setting the proper constraints is always
a matter of a compromise, but here the problem is much
more severe, as even moderate tempo mismatch may lead
to significant accumulation of deviations at the end of a
query.

A real-life example – a template and the matching
queries from Jang’s dataset [10] – is presented in Fig. 2
where the ending point of each query, with respect to the
template, has been determined on the basis of the optimal
warping path in the DTW matrix. Fig. 2 reveals, that al-
though within the fixed time of 8s most users managed to
sing between two and three two-bar motifs (out of all four),
there were also some “lazy singers” that did not manage to
complete two motifs and some “fast singers” who com-
pleted the whole or almost the whole melody. With in-
dexing, these queries may be easily lost, unless some ex-
tremely loose constraints were applied.

Let us note that the problem occurs even for optimal
template length (e.g. from Fig. 2 we may conclude that
this particular template is actually too long). In fact, in
many datasets the templates tend to be much longer than
the queries. For example, in Jang’s [10] collection the
template length varies from ca. 12 seconds up to over 5
minutes. Hence, determining the reasonable cutting point
for the templates, prior to indexing, becomes a necessary
preliminary step of processing.

It is important to note that this step cannot be done reli-
ably without some form of melodic content analysis. Nat-
urally we might try – for fixed query length of x seconds –
to cut the templates to the same x seconds, assuming that
the tempo of the template roughly corresponds to the mean
tempo of the queries. However, we have no guarantee that
this assumption is correct, which may obviously lead to

suboptimal indexing results.
In the following section we present an automatic

method for determining the cutting point of the template
melody. The same method is also applied to each query to
cut it at the point corresponding to the cutting point of the
template.

Although it may seem not obvious, we should note that
we also touch the problem of query transposition here. A
user may sing the melody in any key, so it must be trans-
posed to a reference key before matching, which is typi-
cally done by mean subtraction. However, the mean pitch
of a melody obviously depends on the location of its end-
ing point, which gives an additional motivation for trying
to agree on a common cutting point among all the poten-
tially matching melodies. The proposed method is based
on a simple content-based filter, which enables the prelim-
inary match of the lengths of the compared melodies and –
in consequence – the practical use of the efficient indexing
algorithms.

4. THE DISCRETE TOTAL VARIATION

An intuitive solution to our problem might be formulated
as follows: given a perfect note segmentation of the audio
files we could cut every melody after a fixed number of
notes (the same for all melodies – templates and queries).
This would guarantee the endpoint match for efficient in-
dexing and the consecutive DTW would successfully deal
with potential rhythm and tempo discrepancies. Unfor-
tunately, while it is straightforward for MIDI-based tem-
plates, it is not so for the sung queries. The singer’s im-
precision on one hand and the specificity of a given pitch
tracking algorithm on the other hand may lead to note seg-
mentation errors that will make this approach unusable.

In our approach, instead of a crisp note segmentation we
prefer to construct a soft measure of pitch value variability
in time. In continuous case, for p(τ) representing the pitch
value at time τ , we would define the following functional:

TV (t) =

t∫

0

∣∣∣∣
d

dτ
p(τ)

∣∣∣∣ dτ . (2)

We may note that this definition, corresponding to the
L1 norm of the pitch signal derivative, may be seen as a
one-dimensional version of Total Variation (TV) as intro-
duced by Rudin [22, 23] in the image analysis and noise
removal context. The one-dimensional Discrete Total Vari-
ation DTV may be defined as:

DTV (n) =
n∑

k=1

|p(k)− p(k − 1)| , (3)

where p(k) denotes the k-th time frame of the pitch vector.
The fundamental property of DTV is that it accumu-

lates pitch changes in the course of the melody, irrespec-
tive of the actual direction of the changes (Fig. 3). We
may therefore set a threshold TDTV for the accumulated
pitch changes and cut all the compared melodies when they
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Figure 2. Example template from Jang’s [10] collection (top) and the ending points of all the 170 matching queries
(bottom).

Figure 3. Pitch vector representation of the melody from
Fig. 2 (top, light-grey) and the corresponding DTV se-
quence (bottom, dark-grey).

reach TDTV , as follows:

pc = [p(0), p(1), ..., p(nc)] , (4)

where pc denotes the pitch vector reduced to the first nc+1
values and where:

nc = min {n ∈ N ;DTV (n) ≥ TDTV } . (5)

The proposed DTV -based cutting scheme has some fur-
ther properties that are relevant to the considered problem:

1. TheDTV sequence is monotonically nondecreasing
and it stays constant only within segments of fixed
pitch. The latter fact means that the note lengths are
basically ignored – only the number of notes and the
span of the consecutive musical intervals (pitch dif-
ference) influence the increase of the value ofDTV .

2. Ignoring the direction of the pitch changes means
that the DTV is not unique. For example, ascend-
ing chromatic scale will yield the same DTV se-
quence as the descending one, assuming the same
tempo and the same number of notes (diatonic scale
would produce different results due to different or-
dering of whole steps and half steps).

3. DTV -based cutting leads to obtaining the melody
representation robust to glissandi, occurring fre-
quently in sung queries, where the pitch changes are
“spread” over several consecutive time frames.

4. DTV -based cutting leads to obtaining the melody
representation which is not robust to jitter and vi-
brato, which may be present within single notes, i.e.
in segments of – otherwise constant – pitch.

Property 1 implies a fundamental fact that two versions
of a melody, consisting of identical pitch sequences but
with different rhythm and tempo will yield the same DTV
sequence for corresponding notes. In particular, their rep-
resentations obtained with Eq. 4 may have different num-
ber of frames, but they will basically represent the same
melodic content.

Property 2 means that the DTV may be interpreted as
a hash function which may occasionally return equal val-
ues for dissimilar input data. In fact, what we need is the
opposite implication: the results for similar input must be
also similar and – fortunately – this condition is generally
fulfilled.

Property 3 is connected to an important advantage of the
proposed method to ignore the slope of the pitch changes.
When singing a musical interval, the second note is often
reached after several frames of intermediate pitch values,
as opposed to MIDI-based signals where the changes are
instantaneous. This difference is well visible in Fig. 4 (top
plots). It can be observed that despite the fuzzy note tran-
sitions in frames 30–33 and 51–59 of the query (plot a)),
the obtainedDTV sequences (Fig. 4, the bottom plots) are
indeed similar. Therefore setting a given threshold value
TDTV in Eq. 5 would allow to obtain the similar melody
sections both for the query and for the template, irrespec-
tive of the significant tempo discrepancy between the two.
For example, for TDTV = 5 both sequences would be cut
at the onset of the 4th note.

Property 4 indicates a potential weakness of the pro-
posed solution as jitter and vibrato are ubiquitous in pitch
vectors of sung melodies. However, a popular and simple
median filter, which is often used to pre-process the pitch
vectors prior to further melody analysis, may be effectively
applied here to suppress the minor pitch fluctuations. The
example in Fig. 4 had been already filtered with median fil-
ter of 9th order which had appropriately smoothed almost
the whole signal, except of the small artefact in frames
86–88. As a comparison, Fig. 5 a) presents the original
query. The dramatic distortion of the obtained DTV se-
quence may be assessed even better on the right plot (b)),
where we see over twofold increase of the accumulated
pitch changes for the unfiltered query with respect to the
filtered one.

5. EXPERIMENTAL VALIDATION

In order to evaluate the usefulness of the proposed method
in melody indexing, we performed tests on the well-
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Figure 4. The first motif of the melody from Fig. 2: a) query; b) template. Top plots present the original pitch vectors
(after transposition by 3 octaves down, for visualization purposes); the bottom plots show the DTV sequences.

Figure 5. a) the same melody as in Fig. 4, but without the median filter; b) comparison of the obtained DTV sequences:
query without median filter (light grey, top); template (black, middle); query after median filter (dark grey, bottom).

known, publicly available dataset, consisting of a collec-
tion of 48 popular songs (in the form of ground-truth MIDI
files) to be matched against 4431 queries sung by about
200 users [10]. In order to increase the difficulty of the
problem, the set of templates was artificially expanded, so
that it contained – apart from the 48 ground-truth files –
4225 additional noise midi files from Essen collection [4].

Piecewise aggregate approximation was applied as a di-
mensionality reduction technique. Each template melody
was represented as a point in 16-dimensional index space
where R∗-tree was used as the spatial index. For each
query melody the minimal bounding rectangle (MBR) was
computed and used for k-NN search, according to [15].
Two quantities were measured during the tests: the CPU
time of computation and the number of correctly recog-
nized queries. The baseline results obtained by a non-
indexing system, computing the DTW match between ev-
ery query and every template, were: 4211 out of 4431
queries recognized (95.03%) in 48h 55m 28s.

For the indexing tests several melody cutting strategies
were applied and the corresponding results have been pre-
sented in Fig. 6. All the queries in the test database are
of the same length of 8s. Our first attempt was therefore
to apply the straightforward approach based on cutting the
templates to the same 8s (250 frames with a step of 32 ms)
prior to indexing. This in fact yields the optimal template
length also in terms of the melody content because, as we
have found, there is no bias towards faster or slower queries
in the test database, i.e. the mean tempo of each query is
basically the same as the tempo of the corresponding tem-

plate.

However, it appears that even in this optimal setting,
our DTV-based cutting scheme may increase the recogni-
tion rate with respect to the fixed template cutting point
(for the same number of nearest neighbors). For example,
the recognition rate obtained for the fixed-length templates
with 1500 nearest neighbors could be obtained for the tem-
plates cut on the basis of their DTV with 1100 nearest
neighbors, which means ca. 25% gain in the computation
time (Fig. 6).

The key point in the effective application of the DTV is
setting the proper threshold TDTV . Too low value leads
(Fig. 6, TDTV = 20) to extracting and indexing very
short melody fragments, which means that they contain
few notes and hence many templates may even become
indistinguishable from each other. Moreover, for short
queries the lower bounding measure often happens to be
zero which prevents establishing the right order of the re-
sults.

On the other hand, too high TDTV threshold means that
many queries will not reach it before their “hard” cut point
(8s in our case). This problem will not occur in the case
of the templates, because they are usually much longer. As
a result, after the cutting procedure the templates will be
generally longer than the queries and they will also contain
much more melodic material, which will make the index-
ing ineffective.

As a partial remedy, we propose to use a simple con-
dition, limiting the absolute length of the templates to the
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Figure 6. Top-ten results for various cutting point setting

absolute length of the queries:

n̂c = min{nc, |q|} (6)

where nc is given by Eq. 5 and |q| is the fixed length of
the queries. In this way the template lengths are limited
similarly as the queries. We should note that the only prob-
lem which may occur here is when some monotonous, not-
much-varied melodies are sung by a “fast singer”, because
these queries will contain more melodic material than –
then prematurely cut – template. This problem generally
cannot be avoided without a priori knowledge on the cor-
rect classification of the query, but it appears not to have
much impact on the recognition rate. The results in Fig. 6
have been obtained with template length limiting (Eq. 6)
and as we may see they are stable in a quite broad range
of the threshold values (TDTV = 30, TDTV = 40). Going
beyond this optimal range (TDTV = 50) deteriorates the
recognition but still the obtained results are only slightly
worse that the fixed cutting point approach.

6. CONCLUSION

In this work we have introduced a new method of deter-
mining the optimal cutting point for melody comparisons,
based on Discrete Total Variation of the melody pitch vec-
tor. Our solution is fast to compute and it yields useful
information about the melody, which enables to effectively
apply DTW indexing strategies, introduced in [13]. We
demonstrated the usefulness of the proposed solution for
the indexing task on a known database, designed for testing
Query-by-Humming systems. It should be noted, however,
that the method has potentially much broader application
area. In particular, much more significant gain may be ex-
pected in less constrained, on-line QbH systems, especially
when more relaxed limits of the query length are used,

and/or when greater singing tempo discrepancies may be
expected. The ability to find the appropriate melody length
in a fast way, without detailed note-based analysis and
without computationally expensive DTW is an advantage
which may simplify and accelerate many content-based
music information retrieval tasks.
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ABSTRACT 

Prior user studies in the music information retrieval field 
have identified different personas representing the needs, 
goals, and characteristics of specific user groups for a user-
centered design of music services. However, these per-
sonas were derived from a qualitative study involving a 
small number of participants and their generalizability has 
not been tested. The objectives of this study are to explore 
the applicability of seven user personas, developed in prior 
research, with a larger group of users and to identify the 
correlation between personas and the use of different types 
of music services. In total, 962 individuals were surveyed 
in order to understand their behaviors and preferences 
when interacting with music streaming services. Using a 
stratified sampling framework, key characteristics of each 
persona were extracted to classify users into specific per-
sona groups. Responses were also analyzed in relation to 
gender, which yielded significant differences. Our findings 
support the development of more targeted approaches in 
music services rather than a universal service model. 

1. INTRODUCTION 

Commercial music streaming services represent the fastest 
growing sector of the music recording industry. User stud-
ies from the field of Music Information Retrieval (MIR) 
that can be used to guide the strategic development of these 
streaming services as well as new methods for the naviga-
tion of large music collections have been increasing. Sev-
eral studies have pointed out that the large majority of re-
search in MIR systems has been focused on the evaluation 
of system accuracy and performance, creating a gap in 
user-centric research [19, 27, 29]. Although MIR studies 
are increasing in number, many tend to employ a qualita-
tive approach and derive findings from the investigation of 
a limited number of users [29]. Understanding users’ ex-
periences with MIR systems, and particularly in relation to 
commercial music streaming services, can benefit from the 
adoption of more quantitative methods of analysis in addi-
tion to these qualitative assessment techniques. 

This study aims to triangulate findings from prior 
qualitative MIR user studies adopting a quantitative ap-
proach with a larger sample to verify the findings and pro-
vide complementary insights. In particular, we conducted 
a follow-up study to further explore the findings of Lee and 

Price [18]. They presented seven different personas sur-
rounding the use of commercial music services, derived 
from interviewing and observing 40 users who regularly 
use at least one commercial music service. Our study aims 
to test the applicability of the previously defined personas 
with a larger user population, as the results of the original 
study involved a relatively small sample. In this study, 962 
users were surveyed in order to capture characteristics of 
the individuals’ music listening habits based on their pre-
ferred commercial music services, and the data were ana-
lyzed in connection to the results derived from the princi-
pal study. In particular, this study seeks to elaborate on the 
previous findings and address the following questions:
  

RQ1: How similar or distinct are the seven personas when 
generalized to a larger stratified user sample? 
RQ2: How similar or different are the persona distributions 
for different commercial streaming services?  
RQ3: Is there a significant difference between genders 
with regard to their persona distribution? 

2. RELEVANT WORK 

2.1 Users of Music Streaming Services 

The emergence of innovative music streaming services has 
raised the awareness and desire, both in academia and in-
dustry, for a ubiquitous system that seamlessly allows for 
the search, retrieval, and recommendation of music. How-
ever, a deeper understanding of the user is crucial for the 
development of more personalized and context-aware sys-
tems that will meet the users’ needs in a wide variety of 
situations [27].  

There have been a few studies focusing on understand-
ing the reasons for the popularity of music steaming ser-
vices such as Spotify or YouTube (e.g., [13, 21]) based on 
survey data or specifically measuring the quality of the 
music recommendations provided by commercial services 
such as Apple iTunes Genius (e.g., [3]). From the studies 
that have focused on evaluating users’ experiences with 
music streaming services, a number of trends have 
emerged. Based on a large-scale survey, Lee and Water-
man [20] determined an increased consumption of music 
on mobile devices, an increased desire for the serendipi-
tous discovery of music and the option of customization in 
their listening experiences. Lee and Price [18] found that 
music streaming services are often perceived as “good 
enough” for users’ purposes, and many individuals use a 
variety of services to accommodate needs across various 
contexts, illustrating Bates’ “berrypicking” search behav-
ior. A qualitative study conducted by Laplante and Downie 
[16] exploring the information-seeking behavior of young 
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adults in the discovery of new music found a preference 
for informal channels (e.g. friends and family) as well as a 
distrust of experts. It was also revealed that the act of mu-
sic seeking is strongly motivated by curiosity as opposed 
to actual information needs, which helps illustrate why 
browsing is an often-employed technique. Ferwerda et al. 
[10] explore how individuals’ personality traits relate to 
their explicit choice of music taxonomies, and propose the 
creation of an interface that can adapt to users’ preferred 
methods of music browsing. Ethnographic and observa-
tional research into music collection by Cunningham et al. 
[9] found that users create an implicit organization to their 
own music collections (digital or physical) without being 
fully conscious of it, and are reluctant to remove or delete 
songs even if they have not listened to them in months or 
years. 

In addition, a growing number of researchers have come 
forward to suggest more comprehensive user models in 
MIR systems. Cunningham et al. [8] investigated how the 
factors of human movement, emotional status, and the 
physical environment relate to musical preferences, and 
based on the findings, present a model for playlist creation. 
In addition, assuming a mobile-based consumption of mu-
sic, systems seeking to match the pace of someone in 
movement have also been proposed (e.g., [22, 25]). These 
typically aim to correlate the music played to the user’s 
heartbeat, though most of the systems proposed would re-
quire additional context-logging hardware. A study by 
Baltrunas et al. [2] outlines a context-aware recommenda-
tion system for music consumption while driving by taking 
into account eight contextual facts including mood, road 
type, driving style, and traffic conditions. There have also 
been a few studies in which users were categorized into 
different types of users or personas: Celma [6] identified 
four different types of music listeners (i.e., savants, enthu-
siasts, casuals, and indifferents) representing different de-
grees of interest in music, and Lee and Price [18] derived 
seven personas, hypothetical archetypes of users repre-
senting specific goals and behavior [7], from empirical 
user data to help understand the different needs they have 
regarding the use of music services, which our study is 
building upon.  

There is notably less research dedicated to exploring 
how various users search for, interact with, and listen to 
music digitally since the widespread growth of commer-
cial music streaming services. This paper will elaborate on 
how users listen to music and interact with streaming ser-
vices through the application of user personas developed 
in the principal study [18] in order to identify behavioral 
differences, preferences, and varying MIR goals. 

2.2 Gender and Musical Interactions 

Several researchers have studied the impact of demo-
graphic characteristics such as age [5, 15] and nationality 
[11, 14] on musical interactions. These studies have found 
that both age and cultural background prove to be signifi-
cant factors in individuals’ music perceptions and prefer-
ences. To a lesser extent, the influence of gender in music 
studies has been explored, often in the field of ethnomusi-
cology [23, 24] and music education [1, 26]. O’Neill, a 
leading researcher in music and education, has found strik-
ing differences in boys’ and girls’ preferences for music 

and musical activities [26]. Her study of 153 children aged 
9 to 11, explored the extent to which boys’ and girls’ pref-
erences are a product of gender-stereotyped associations. 
She found that girls showed a significantly stronger pro-
clivity for the piano, violin, and flute, whereas boys ex-
pressed preference for the guitar, drums, and trumpet. Also 
each gender had similar ideas regarding which instruments 
should not be played by boys or girls. The study supports 
the notion that gendered perspectives regarding music are 
developed early and could have a lasting impact on the 
way different genders go about seeking musical infor-
mation. A few studies have focused on the general listen-
ing preferences and music processing of the two genders. 
Koelsch et al. [12] studied the differences between genders 
in the processing of music information. They discovered 
that early electric brain activity occurs bilaterally in fe-
males, and with right hemispheric predominance in males, 
supporting the claim that differences between genders in 
the processing of auditory information go beyond the lin-
guistic domain. LeBlanc et al. [17] found the variables of 
age, country, and gender to all be significant factors in in-
dividuals’ music listening preferences, but determined 
each of these variables to be involved in complex interac-
tions with other variables. Though the effectiveness of the 
age and gender variables was confirmed, they did not per-
form the same way in each country, and therefore should 
be explored in relation to cultural context. In the context 
of MIR, few studies explored gender as a variable while 
examining the needs and behavior of music listeners. In 
our study, we specifically wanted to investigate whether 
there is a significant difference between genders with re-
gard to their use of music streaming services, to comple-
ment what we already know about gender differences in 
other musical interactions. 

3. STUDY DESIGN AND METHOD 

3.1 Background 

The principal study [18] was conducted in 2015 in order 
to gain insights into how users’ personalities and charac-
teristics affect their interactions with and preferences for 
particular MIR systems. In the study, 40 subjects partici-
pated in semi-structured interviews regarding how they 
evaluate music services and think-aloud sessions during 
which subjects described and narrated their actions as they 
used their preferred music service. A card sorting activity 
recording subjects’ comments, actions, and behaviors 
throughout the process derived seven personas: Active 
Curator (AC), Addict (AD), Guided Listener (GL), Music 
Epicurean (ME), Music Recluse (MR), Non-Believer 
(NB), and Wanderer (WA). The typical behaviors and 
tendencies for each of these personas regarding their use 
of commercial music services are described in detail in 
[18].   

3.2 Method 

The online survey was developed using SurveyMonkey, an 
online survey tool, and responses were collected during 
April and May 2015, before the demise of streaming ser-
vices Grooveshark and Rdio and before the release of Ap-
ple Music. The survey contained a total of 26 questions 
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pertaining to individuals’ music listening habits and be-
haviors, their interactions with MIR systems, and preferred 
music streaming services. The questions were developed 
in connection to the results of the principal study [18] in 
order to test the applicability of the seven personas with a 
larger user population. A majority of the survey questions 
and response options targeted one or more of the previ-
ously defined personas with the intention to classify a 
user’s response to a particular persona (further discussed 
in Section 4.2). A limited amount of demographic infor-
mation was also collected, including age and gender.  

Distribution methods to recruit participants included an 
open call for individuals age 14 or older via University of 
Washington departmental listservs and posts to online 
message boards such as Reddit. A total of 1,028 responses 
were collected, of which 962 complete responses were 
used in the analysis. The survey responses were used to 
generate user profiles consisting of a list of behaviors and 
preferences exhibited when interacting with music stream-
ing services. The 26 survey questions were translated into 
32 variables. The data were then analyzed in RStudio and 
Excel environments. 

4. FINDINGS AND DISCUSSION 

4.1 Demographic Information  

The average age of respondents was 23.4 (SD = 7.8). 
Sixty-one respondents did not report an age, and four re-
spondents under the survey participation age of 14 were 
excluded in the analysis. The breakdown of gender distri-
bution were as follows: 57.3% were male, 36.4% were fe-
male, 1.7% selected “other,” and 4.7% did not specify their 
gender. 78.3% of respondents described themselves as 
White or Caucasian, 7.0% described themselves as Asian, 
3.7% described themselves as Multiracial, 2.4% described 
themselves as Hispanic, and 2.2% described themselves as 
Black, respectively. 5.5% of respondents did not indicate 
or specify an ethnic affiliation. Responses were collected 
from 54 countries. The five countries with the most re-
sponses were: the United States (63.52%), Canada (7.1%), 
the United Kingdom (3.8%), Australia (2.6%), and Ger-
many (2.1%). 5.7% of respondents did not indicate or 
specify a country of residence. 

4.2 Filtering Method 

Survey respondents were asked a series of questions re-
garding their music listening habits, behaviors, and ac-
tions. Questions pertaining to individuals’ behavior and 
actions when searching for and listening to music were 
pivotal in determining and classifying respondents to spe-
cific personas. To classify respondents into personas, a fil-
tering method using a combination of question-response(s) 
was applied to the entire sample. For each persona, if the 
participant selected the primary question and response pair 
and one of two secondary question and response pairs, he 
or she was classified as a respondent exhibiting that par-
ticular persona. These primary and secondary question-re-
sponse pairs are summarized in Table 1. 

 

 

A
ctive  

Curator 

Primary: Regularly curates and listens to playlists 
Secondary: Makes playlists more than once a month 
OR Cares about organizing collection and willing to 
spend time for it 

A
ddict 

Primary: Spends more time searching rather than 
browsing for music 
Secondary: Likes a few songs and listens to them over 
and over OR Most likely to listen to a song repeatedly 
when they hear a new song they enjoy 

G
uided 

Listener 

Primary: Most likely to use a new song they like to 
generate recommendations of similar songs 
Secondary: Finds recommendations generated by a 
streaming service most appealing OR Wants to en-
gage with a music streaming service minimally 

M
usic  

Epicurean 

Primary: Likely to seek out the whole album or search 
online to learn more about a song they like 
Secondary: Very or somewhat interested in an artist’s 
relationship to other artists, genres, or music scenes 
OR Purchases music approximately once a month or 
more 

M
usic  

Recluse 
Primary: Not at all or not very likely to recommend a 
song to a friend  
Secondary: Listens to music they consider a “guilty 
pleasure” often to all the time OR Not willing or re-
luctant to share personal information/listening history 
with a streaming service  

N
on-Believer 

Primary: Does not trust music recommendation gen-
erators and prefers finding music through other meth-
ods 
Secondary: Does not think an app or service can pick 
music they would like OR Does not use the social fea-
tures of streaming services 

W
anderer 

Primary: Finds and listens to music from many 
sources and is always looking for something new 
Secondary: Spends more time browsing rather than 
searching for music OR Takes satisfaction in discov-
ering new artists others have not heard of 

Table 1. Filtering mechanism for assigning personas. 

4.3 Similarity among Personas 

Through the filtering method used to create sample subsets 
for each persona, 155 respondents (15.4%) were classified 
as Active Curators, 184 (18.2%) as Addicts, 47 (4.7%) as 
Guided Listeners, 121 (12.0%) as Music Epicureans, 119 
(11.8%) as Music Recluses, 120 (11.9%) as Non-Believ-
ers, and 263 (26.1%) as Wanderers. The filtering method 
used to classify respondents did not return mutually exclu-
sive results in all cases, leading to a number of respondents 
to be classified with multiple music personas. This is con-
sistent with the observation of Lee and Price that “any user 
may exhibit a combination of these personas as they are 
not mutually exclusive (p. 478)” [18]. In total, 732 re-
spondents (71.2%) were identified as exhibiting one or 
more personas. Of the total number of responses, 493 re-
spondents (67.3%) were classified as exhibiting one per-
sona, 204 respondents (27.9%) as two personas, 32 re-
spondents (4.4%) as three personas, and only 3 respond-
ents (0.4%) were classified as having four personas. These 
results suggest that enough distinctness exists between at 
least some of these personas that they tend to not be exhib-
ited by the same person. At the same time, it indicates that 
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a closer relationship exists between particular user per-
sonas than with others, and how a respondent’s classifica-
tion as exhibiting more than one persona may represent a 
fluctuating or shifting of persona association, depending 
on the user’s momentary listening needs or context. It is 
noteworthy that 28.8% of respondents did not show a dis-
tinct persona; rather, they exhibited a range of different be-
haviors related to a number of different personas. 

We calculated the Jaccard similarity coefficient to 
measure the similarity among personas (Table 2). This sta-
tistic represents the degree of overlap between two sets of 
data ranging from 0 to 1 [28]. Guided Listener and Music 
Recluse have the largest overlap among classified survey 
respondents, while the Active Curator and Wanderer, and 
the Addict and Wanderer have the least.  

 AC AD GL ME MR NB WA 
AC        
AD 0.61       
GL 0.73 0.68      
ME 0.66 0.58 0.77     
MR 0.67 0.67 0.79 0.69    
NB 0.67 0.67 0.78 0.69 0.76   
WA 0.43 0.43 0.63 0.61 0.54 0.55  

Table 2. Similarity among personas measured by Jaccard 
similarity coefficient. 

We attempted to identify the reasons for these patterns 
by comparing these coefficient values, examining how the 
personas were originally defined, and reviewing the qual-
itative data reported in the principal study including direct 
user quotes. In regards to the personas with the largest 
overlap, the major similarity between the two is that they 
prefer not to engage or interact with the service very much. 
Guided Listener is passive and minimally invested when it 
comes to engagement with a music service. Music Recluse 
also tends to limit their engagement with the system by not 
actively sharing their information or using social features. 
The difference between these personas is that the Guided 
Listener trusts a music service enough to let the service 
select music on their behalf while the Music Recluse has 
little to no interest in sharing their music preferences or 
listening history with a music service because they are pri-
vate listeners. The fact that the coefficient values between 
the Non-Believer and Music Recluse (0.76) and between 
the Guided Listener and Non-Believer (0.78) also tend to 
be high is noteworthy. This may be stemming from the 
commonality among these personas that they do not like to 
share their personal information although their reasons 
may be different (e.g., lack of interests, distrust with rec-
ommendation algorithms, privacy concerns).  

When looking at personas with the least overlap and 
their characteristics, the level of willingness to explore and 
the level of engagement with their own collection seem to 
be the core reasons for this difference. According to the 
data reported in the principal study [18], the Wanderer is 
primarily concerned with finding new music across plat-
forms and genres and is generally exploratory in their mu-
sic listening while the Addict tends to repeatedly listen to 
a few songs they know and like. Also the Active Curator 
shows a high level of engagement with their own music 

collection which takes the form of playlist creation and 
collection organization/management whereas the Wan-
derer is focused on new music discovery which often oc-
curs outside of their own collection. 

4.4 Persona Classification and Preferred Services 

When examining the distribution of the seven user per-
sonas across the most popular streaming services, several 
notable trends emerge. Personas were assigned to respond-
ents using the filtering method described above in Section 
4.2, and respondents’ preferred service choice was deter-
mined using their responses to the survey question asking 
for the primary streaming service they use. Overall, the 
three most popular music streaming services selected by 
survey respondents were: Spotify (28.8%), YouTube 
(25.2%), and Pandora (17.2%). These were followed by 
iTunes (6.0%), SoundCloud (5.7%), and Google Play 
(4.2%), and several other services that were selected by 
less than 2% of respondents. We conducted a chi-square 
analysis to identify statistically significant differences be-
tween the persona distribution across the three most popu-
lar services (i.e., Spotify, YouTube, and Pandora) based on 
respondents’ stated preference of primary streaming ser-
vice. 

When looking at those respondents who selected 
Spotify as their primary service (Figure 1), the Active Cu-
rator persona had the greatest representation with 28.1%, 
much more than other two services (X2=28.37, df=2, 
p=0.000). Spotify includes a range of features making it 
easy for users to save songs for playlist creation as well as 
discover new music based on their listening history, which 
are design elements that the Active Curator would find val-
uable. Conversely, the Guided Listener persona was un-
der-represented in its indications of a preference for 
Spotify, as the service itself requires a certain amount of 
curation to take advantage of its features (e.g. making an 
account, importing one’s library, and understanding the ro-
bust interface) that the user is presented with upon first in-
teracting with the service. For the less engaged personas, 
the initial process of familiarizing oneself with Spotify 
may not be worth the effort. 

 
Figure 1. Persona distribution of Spotify users. 

For those respondents who selected YouTube as their 
primary service (Figure 2), the Addict persona had the 
greatest representation with 24.1%, significantly different 
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from other services (X2=13.40, df=2, p=0.001). Given that 
YouTube is an ideal platform for known-item searches, 
and allows for the easy replay of videos and songs, in the 
context of the Addict persona’s user needs, YouTube 
would appear to be a realistic primary service choice. Mu-
sic Epicureans were also most likely to choose YouTube 
as their primary service. The staggering amount of content, 
including concert footage, interviews, and rare tracks, of-
ten not available on any other services, allows for the end-
less discovery of new musical content. The ability to nav-
igate through an extensive range of content is an appealing 
quality of the service for even the Non-Believer, which, 
although a small sample of the survey, was most likely to 
choose YouTube as their primary service. Conversely, the 
heavily self-directed nature of YouTube is an unattractive 
option to the Guided Listener, who was the least likely of 
any persona to choose YouTube as their preferred service. 

 

Figure 2. Persona distribution of YouTube users. 

For those respondents who selected Pandora as their 
primary service (Figure 3), the Wanderer persona had the 
greatest representation with 29.7% (X2=1.01, df=2, 
p=0.601), although the difference with the other two ser-
vices was not significant. The most notable difference was 
the proportion of Guided Listeners (X2=25.17, df=2, 
p=0.000). Overall, Guided Listeners were an underrepre-
sented group in the sample, comprising only 4.7% of our 
population. While the respondents classified as Guided 
Listeners represented only 13.3% of those individuals that 
indicated Pandora as their preferred music service, Pan-
dora was the primary service selected by Guided Listeners 
at 46.8%. Compared with other music services, Pandora 
provides a limited number of user features and will recom-
mend and play content closely aligned to the user’s “seed” 
artists. The user may be less likely to discover new or un-
expected songs or artists but will also not have to interact 
with the service extensively during use. Because of these 
characteristics, Lee and Price [18] also expected that the 
Guided Listener persona would be the majority persona for 
Pandora which was indeed the case. 

 

 
Figure 3. Persona distribution of Pandora users.  

4.5 Gender Differences 

Chi-squared tests revealed statistically significant differ-
ences in the way that users of different genders categorize 
their interactions with music services. When asked to indi-
cate behaviors that described their music listening habits 
(X2=30.40, df=4, p=0.000), 31.4% of males said they liked 
to listen to an album from start to finish, as opposed to only 
16.4% of females. Females, on the other hand, were more 
likely to say that they enjoy listening to songs and artists 
from many different sources and are always looking for 
something new (32.6% for F, 30.7% for M). When asked 
what they typically do after hearing a new song that they 
enjoy (X2=14.48, df=4, p=0.006), males were most likely 
to answer that they seek out the album the song came from 
(23.7% for F, 32.4% for M), while females were most 
likely to respond that they listen to the song over and over 
(34.1% for F; 23.5% for M). 

Participants were also asked whether they find them-
selves more often searching or browsing for music 
(X2=12.35, df=2, p=0.002); 48.9% of females identified 
themselves as known-item searchers and an equal share of 
25.5% identified themselves as browsers and as spending 
equal amounts of time both searching and browsing. On 
the other hand, males’ responses were more evenly distrib-
uted; 37.6% identified themselves as searchers, 33% 
browsers, and 29.4% responded that they spend approxi-
mately equal amounts of time doing both.  

The tendency of females to identify as searchers is re-
flected in the classification of the Addict persona, which 
frequently relies on known-item searching in music seek-
ing, encompassing 22.1% of females versus 15.8% of 
males (X2=6.23, df=1, p=0.013). Females also more often 
identified as Music Recluse (X2=5.16, df=1, p=0.023). The 
higher percentage of male browsers as opposed to female 
browsers supports the gender distribution of the Music 
Epicurean (8.9% for F, 14.6% for M; X2=7.01, df=1, 
p=0.008) and Non-Believer (7.4% for F, 14.7% for M; 
X2=12.28, df=1, p=0.000) personas. Table 3 shows the 
overall distribution of personas by gender. This pattern of 
males as the more exploratory gender in their music-seek-
ing behavior is also exhibited in the breakdown of pre-
ferred music services. When asked to indicate their most 
preferred service, the top three services (Spotify, 
YouTube, and Pandora) accounted for 67.8% of males’ top 
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selection, whereas 77.6% of females named one of these 
top three services as their most preferred one. Overall, 
males selected 18 different options, while females chose 
14. 

Persona Female Male X2 df p  
Active  
Curator 

69 17.5% 82 14.2% 1.94 1 0.163 

Addict 87 22.1% 91 15.8% 6.23 1 0.013 
Guided 
Listener 

20 5.1% 24 4.2% 0.46 1 0.499 

Music  
Epicurean 

35 8.9% 84 14.6% 7.01 1 0.008 

Music  
Recluse 

57 14.5% 56 9.7% 5.16 1 0.023 

Non- 
Believer 

29 7.4% 85 14.7% 12.28 1 0.000 

Wanderer 97 24.6% 155 26.9% 0.61 1 0.433 
Total 394 100.0% 577 100.0% - - - 

Table 3. Persona distribution by gender. 

Overall, males seem to exhibit more exploratory nature 
in their music discovery endeavors. When participants 
were asked whether they take satisfaction in finding or dis-
covering new artists that few people are aware of, 78% of 
males answered affirmatively versus 67.9% of females 
(X2=12.16, df=1, p=0.000). Males also indicated that they 
more frequently curate playlists, with 33.9% of males say-
ing that they like to make playlists at least once a week, 
compared to 23.9% of females (X2=11.06, df=3, p=0.011). 
Males were also more likely to claim that listening to mu-
sic occupies their full attention (14.2% for F, 21.2% for M; 
X2=7.55, df=1, p=0.006). 

These findings suggest that it may be fruitful for devel-
opers of commercial music streaming services to consider 
gender-specific approaches in the design and function of 
system features. Services targeted at males should account 
for the desire of discovering novel musical content, includ-
ing robust features that consistently stimulate the encoun-
ter of unfamiliar artists and songs. Females are more likely 
to require features that allow for the easy replayability of 
content and support passive engagement. 

There are also some notable similarities across genders. 
Neither males nor females tend to care much about the or-
ganization of their music collections. Of the respondents, 
43.5% of males and 42.2% of females responded that they 
care only a little and are willing to spend minimal time or-
ganizing their collections (X2=33.58, df=3, p=0.000). Ad-
ditionally, both males (41.8%) and females (44.1%) re-
sponded that they prefer to get recommendations from 
those with similar tastes or listening habits rather than 
friends, family, music experts and curators, or streaming 
services (X2=21.80, df=5, p=0.000). Therefore, services 
should incorporate measures of user profile and listening 
history similarity as a prominent feature for music recom-
mendation. Interestingly, of all the respondents, 78.3% 
said that they were either somewhat likely or very likely to 
recommend a song or artist to a friend they thought would 
like it, but a mere 8.8% of all respondents said that they 
typically use the social features provided by a streaming 
service. The lack of use of social features was consistent 

across both genders (91.4% for F, 90.4% for M; X2=0.059, 
df=1, p=0.808). This indicates that while users want to 
share music discoveries or new artists, they prefer to do so 
through channels not associated with the streaming service 
itself. This represents a potential area of innovation for 
commercial streaming services in evaluating how they in-
corporate social features into their platforms. 

5. CONCLUSION AND FUTURE WORK 

By testing the applicability of personas with a larger strat-
ified user sample, we were able to determine the relative 
uniqueness of some personas and the closeness of others. 
In calculating the Jaccard coefficient, we found the Active 
Curator and Wanderer, and Addict and Wanderer personas 
to be the most dissimilar, while the Guided Listener and 
Music Recluse personas had the most overlap among the 
survey respondents. Going forward, we may consider 
reevaluating those less distinctive personas by further ex-
amining the overlapping characteristics of each, and rede-
fine them accordingly. 

When looking at the persona distributions for major 
commercial streaming services, patterns emerged between 
users’ classified personas and their preferred services. 
While Spotify tends to draw in a high representation of 
more engaged personas like the Active Curator, it seem-
ingly repels others, such as the Guided Listener persona. 
Similarly, YouTube, the service most preferred by Music 
Epicureans, was not popular among Guided Listeners, who 
instead prefer the more self-guided service, Pandora. 

A further breakdown revealed significant differences 
between genders with regard to their persona distribution 
and preferred services. While the classification of the Ad-
dict persona skewed female, the Music Epicurean persona 
was male skewed. The Music Recluse and Non-Believer 
personas were also significantly different, with males more 
often identifying with the Non-Believer persona, and fe-
males comprising a higher representation of the Music Re-
cluse persona. In regards to the preferred service distribu-
tion, a significant proportion of males and females re-
ported Spotify and YouTube as their most preferred ser-
vices. However, it was found that females are much more 
likely to favor Pandora, while males more often opt for pe-
ripheral services, such as Google Play and SoundCloud. 
The significant differences found between male and fe-
male users’ preferences, characteristics, and expectations 
of music services suggest a need for further research. Fu-
ture work will focus on obtaining a deeper understanding 
of the reasons for these gender differences and behaviors 
when engaging with music streaming services. 

A revised model may be developed for classifying re-
spondents to the defined user personas, incorporating the 
self-reported persona classification data from users. Ask-
ing users to identify themselves by the sets of traits repre-
sented by personas may help us further verify the validity 
of our filtering mechanism. In addition, further investiga-
tion through a qualitative study should be conducted to in-
vestigate those individuals that are classified into more 
than one persona to determine the factors at play, such as 
shifts across different contexts.  
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ABSTRACT

Music records are largely a byproduct of collaborative ef-
forts. Understanding how musicians collaborate to create
records provides a step to understand the social produc-
tion of music. This work leverages recent methods from
trajectory mining to investigate how musicians have col-
laborated over time to record albums. Our case study an-
alyzes data from the Discogs.com database from the Jazz
domain. Our analysis examines how to explore the latent
structure of collaboration between leading artists or bands
and instrumentists over time. Moreover, we leverage the
latent structure of our dataset to perform large-scale quan-
titative analyses of typical collaboration dynamics in dif-
ferent artist communities.

1. INTRODUCTION

Collaboration is a major component of musical creation.
Examining who has collaborated in a record is a common
method to understand their style, content, and process of
creation. Collaborators leave a mark in the music, and may
affect the style of the leading artists themselves. For ex-
ample, the fact that Miles Davis collaborated with Charlie
Parker in the beginning of his career can be seen as an im-
portant influence in the development of his style.

Looking at a larger picture, understanding the string of
collaborators of a musician over his or her career is also
prolific source of information to understand the career it-
self. Reusing the same example, it is possible to partly de-
scribe changes in Miles Davis’ style in the 70s by describ-
ing how he changed the musicians recording with him. At
the same time, similarities in the sequence of collaborators
for two artists may denote similarities in the artists them-
selves. Complementarily, identifying common sequences
of leading artists with which different instrumentists have
performed also helps understanding how styles and com-
munities of musical creation evolve.

From a quantative standpoint, collaboration patterns
have often been studied through the use of methods
from graph analysis to large-scale collaboration networks
(e.g. [1, 9, 16, 18, 21]). However, although these methods

c© Nazareno Andrade, Flavio Figueiredo. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Nazareno Andrade, Flavio Figueiredo. “Exploring The
Latent Structure of Collaborations in Music Recordings: A Case Study
in Jazz”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

provide valuable insights, they fail to focus on longitudi-
nal views of collaboration. This way, they do not allow for
examining patterns in collaboration trajectories.

This work leverages recent methods proposed for min-
ing trajectories in object consumption to study collabora-
tions trajectories among musicians. We use TribeFlow [7],
a method recently shown to accurately and expressively
discover latent spaces of consumption sequences in the
Web domain [7]. Our work explores how this model can
also be used to discover latent structures in the trajectories
of musicians as they collaborate with the leading artists or
bands in records. This exploration is done through a case
study with Jazz records. Collaborators and musicians as
extracted from the Discogs.com collaborative database of
discographic information.

The rest of this paper is organized as follows. In the
next section we discuss related work. An overview of the
TribeFlow model is described in Section 3. This is fol-
lowed by a description of our datasets in Section 4. Our
main results are discussed in Sections 5 to 7. Section 5
discusses the latent trajectories (collaboration spaces) ex-
tracted with TribeFlow. Here, we discuss how the method
extracts a semantically meaningful latent representation of
our datasets. In Section 6 we compare the collaboration
spaces of different artists. Section 7 discusses how artists
move between collaboration spaces over time. Finally, in
Section 8 we conclude the paper.

2. RELATED WORK

Our cultural products, music being no exception, are
strongly tied of our social interactions, and in particular
to the dynamics of such interactions. Realizing the im-
portance of understanding networks of interacting collab-
orators, various research efforts have looked into large-
scale creation, dissemination and curation of information
by groups of individuals [2,3,5,10–12,15,17,20,21]. Some
efforts have also specifically focused on understanding mu-
sical recordings as a collaborative effort [1,8,9,16,18,19].
Nevertheless, much less attention has been given to the dy-
namics of collaborations trajectories as we do.

With regards to musical production, very recently Bae
et. al. [1] looked into the network properties and commu-
nity structure of the ArkivMusic 1 database. This database,
contains meta-data on classical music records. The authors
looked into complex network properties such as power-
law distributions and the small world effect [5] that exist

1 http://www.arkivmusic.com
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in such networks. Similar studies based on complex net-
works has also been performed for Brazilian music [9,18],
as well as contemporary popular music [16].

Regarding the community structure of collaboration
networks, again the work of Bae et. al. [1] performed an
analysis of the ego-network of contributors. Their analysis
uncovered strength of social connections from performers
of classical musical. In a similar note, Gleiser and Danon
also looked into communities of jazz musicians [8].

Our approach in this paper complements the above by
viewing collaborations as dynamic trajectories, not static
networks as was done previously. This novel way of look-
ing into collaboration employs recent advances in trajec-
tory mining [7]. Viewing collaborations as trajectories can
aid practitioners in understanding latent structures that re-
flect on the evolving career of a musician.

Finally, we point out that various previous efforts
looked into the listening behavior of users as trajecto-
ries [7, 13, 14]. To perform our study, we employ the
TribeFlow method [7]. This method has been shown to be
more accurate and interpretable than state-of-the-art base-
lines in user trajectory mining [7]. We describe the method
in the next section.

3. MINING COLLABORATION TRAJECTORIES
WITH TRIBEFLOW

Music records (albums) represent a collaborative effort
from different individuals such as band members, produc-
ers, hired instrumentists, and even graphical artists respon-
sible for the artwork. Whenever individuals collaborate
they leave a trail in their career. For example, in 2005 Lu-
cas Dos Prazeres collaborated with Naná Vasconcelos to
create the album Chegada. Our goal in this study is to un-
derstand the collaboration trajectory of individuals. In this
context, a trajectory is an ordered sequence of collabora-
tions by a collaborator.

For the sake of clarity, we differentiate between the
artist or band leading a record and the collaborators who
participate in this album. These collaborators can them-
selves be the leading artists in other records. Paul, John,
Ringo and George are all viewed as collaborators in an al-
bum by the artist The Beatles.

More formally, each trajectory defines the sequence of
artists (ordered by time) that the collaborator contributed
with. Let us define an album as a timestamp, artist/band,
and a set of collaborators. That is, r = (tr, nr, ar,Lr),
where r is a record or album, tr is a timestamp, nr is the
name of the album, ar is the artist/band and Lr is the set
of collaborators which contributed to r. The subscript r
identifies the release for each element of the tuple. Let R
be the set of records. Also, let us define that records are
identified by integers [1, |R|], as well as that for any pair
of records ti ≤ ti+1. That is, records are ordered by the
release timestamp and their ids correspond to the position
of the record on the defined ordering.

With the definitions above, the trajectory of a collabora-
tor c is defined as Tc =< ..., ai, ai+j , ... >, where for any
pair ai, ai+j with j ≥ 1, ti ≤ ti+j (by definition, albums

ids are defined by their ordered timestamps). Also, c ∈ Li

as well as c ∈ Li+j . More importantly, we focus our study
on the changes in collaborations over time. That is, we en-
force ai 6= ai+j . With this choice, trajectories represent
the changes in artists chosen by a collaborator over time.

To exemplify a trajectory, let’s us look into John
Coltrane as a collaborator. In 1955 to 1956, Coltrane col-
laborated on various recordings by Miles Davis. Later,
in 1957 Coltrane collaborated with Thelonious Monk,
again, in various recordings. Afterwards, John Coltrane
returned to collaborate with Miles Davis in 1958. Tak-
ing this small slice of time as an example, the tra-
jectory of John Coltrane would be represented as: <
Miles Davis,Thelonious Monk,Miles Davis >. Notice
that, regardless of partaking in many records with Miles
Davis in 1955 and 1956, the trajectory only captures the
change in collaboration from Davis to Monk.

It is important to notice that there exists a variety of la-
tent factors that lead to a collaboration. That is, while some
collaborations will emerge due to geographical constraints,
others may exist because of musical genres, temporal influ-
ence, or social network factors. The trajectory, as defined
above, will essentially exist because of choices by the col-
laborator to collaborate with the artist motivated by these
factors. Thus, the end result, regardless the of the underly-
ing factors, is always the same a trajectory of trails/choices
(artists) that as collaborator has worked with.

3.1 The TribeFlow Model

To extract the latent structure of trajectories, we employ
TribeFlow [7], a recent method proposed to mine sequen-
tial data. TribeFlow has recently been shown to discover
a meaningful latent structure in a variety of different set-
tings. Here, we apply the method to understand musical
collaborations based on the trajectories Tc.

In our setting, TribeFlow models collaborations as ran-
dom choices over random environments by a collaborator.
One example of a random environment can be: Jazz Artists
from New Orleans in the 1960s. Due to various constrain-
ing factors, as explained above, a collaborator will choose
to play with an artist from this environment over a set of al-
bums. After recording these albums, the collaborator will
again choose an environment (in some cases, the same as
before) and move on to record more albums with different
artists. Thus, trajectories are captured as random choices
(or random walks) over random environments. Each envi-
ronment captures a latent factor that leads to collaborations
between collaborators and artists.

TribeFlow works using as input a set of trajectories.
Given the set of collaborators c ∈ C, the set of artists
a ∈ A, as well as the set of records r ∈ R, TribeFlow
will explore as input the total set of trajectories Tc ∈ T . r
was defined above. a and c can be defined as the names of
artists and collaborators, respectively. A single parameter
is required to execute the model. This parameter k = |Z|
captures the number of latent environments z ∈ Z .

TribeFlow defines a Bayesian graphical model (om-
mited due to space, see [7]) that learns by performing
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Gibbs sampling for each entry (ai+j) in every trajectory
T from the following posterior:

P [z|c, ai+j , ai] ∝
P [z|c]P [ai|z]P [ai+j |z]

1− P [ai|z]
(1)

P [a|z], P [z|c] and P [z] are all probability distributions
estimated with TribeFlow. After the model is trained,
the above probabilities can be exploited to answer various
queries, as we now describe.

3.2 Answering Questions with TribeFlow

First, we point out TribeFlow’s model is highly inter-
pretable, since it represent probabilities over C,A, and Z .

By employing the graphical model described in [7], we
can re-arrange the probability equations to answer various
questions using the TribeFlow model. More specifically:

What is the probability that a collaborator goes from
on to collaborate with artist a after choosing envi-
ronment z? This initial likelihood is captured by the
probability P [a|z], learned by the model. It captures the
importance of artists in a given environment, that is, artists
with high P [a|z] will likely attract more collaborators
within that environment.

What is the probability that a collaborator goes from
collaborating with artist a to artist a′? Given that a col-
laborator will collaborate with various artists over a trajec-
tory, this first question captures the importance of artists as
links to other artists. That is, how likely is a collaborator
to follow-up on his/her career with a′ after playing with a.
This question is assessed by:

P [a′|a] =
∑

z∈Z
P [a′|z]P [a|z]P [z] (2)

What is the probability of collaborating with environ-
ment z′ after collaborating with environment z? This
question is similar to the previous one. However, it
captures the notion of transitions between environments.
For instance, how likely is it that a collaborator will go
from playing with Dixieland artists to playing with Bebop
artists. P [z′|z] is thus defined as:

P [z′|z] =
∑

a∈A
P [a|z′]P [z′]P [a|z] (3)

What is the probability that an environment z caused
collaborator to go from playing with a to playing with
a′? This final question can be used to explain trajecto-
ries. It capture’s how likely is an environment z to cause a
change in collaboration from a to a′. This final question is
answered with the posterior equation above (Eq. 1).

3.3 Learning the Model

Finally, we point out that our results were achieved by ex-
ecuting the method with the same parameters as discussed

Table 1. Summary of the dataset used.
Releases # 54,466
Artists # 23,890

in
degree

median 5
mean 14.8
max 3,052

Collaborators # 70,320

out
degree

median 1
mean 5
max 830

Collaborations # 352,932

by the authors in [7]. More importantly, we made use of the
TribeFlow without employing the inter-event time heuris-
tics discussed in [7]. We found that employing such heuris-
tics had little to no effect on our results. This effect most
likely happens because timestamps t are usually expressed
in years (e.g., 2005) on the Discogs dataset. For this rea-
son, on the data we analyzed from 15% to 30% of col-
laborations happen within a single year, making the time
between collaborations useless in such cases (they are all
zero). Also, frequent collaborations can happen both over
short and large periods of times, such as individuals that
take hiatuses on their careers.

Given the exploratory nature of our work, for the sake
of interpretability, all analysis in this work use |Z| = 30.
This number of latent environments provides an expres-
sive range of latent factors for our purposes while keeping
sensemaking easily tractable. To understand how to fine
tune |Z| for other tasks (e.g., prediction) see [6, 7].

4. DATA USED

To investigate collaboration among musicians, we lever-
age the Discogs.com database. Discogs is a collaborative
site to register and annotate discographies which makes
its database freely available. At the time of writing, the
database registers approximately six million record re-
leases, including multiple releases of a same record (eg.
CD and LP or LPs releases in different countries). Part of
this data is annotated with genre and more specific style
tags, and with information about which collaborators par-
ticipated in a record and in which capability. For example,
it is registered in the database that Ron Carter played the
bass in Charles Mingus’s record Three of Four Shades of
Blues, initially released in 1977. As this data is collabora-
tively created, it is likely biased towards the interests of its
contributors, and it is naturally incomplete. Nevertheless,
due to its sheer volume and to the community verification
of its information, this database provides a promising data
source for investigating how collaboration patterns can be
understood through trajectory mining.

For this purpose, we use a dataset extracted from the
Discogs database as a case study in collaboration. The
dataset is comprised of all records tagged with the Jazz
genre and which possess metadata about instrumentists in
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Table 2. Six exemplary latent environments found learned through TribeFlow from the data. For each environment, we
present the first collaborators and artist most strongly associated with the environment. Collaborators are listed first; artists
are in italics. All labels were given by the authors based on the artists and collaborators listed.

(a) Bebop (b) Bebop 2 (c) Free Jazz

Dizzy Gillespie, Miles Davis,
J.J. Johnson, Charlie Rouse, Lucky
Thompson, Charlie Parker

John Coltrane, Freddie Hubbard,
Donald Byrd, Hank Mobley, Lee
Morgan

Steve Lacy, Don Cherry,
Archie Shepp, Roswell Rudd
Lester Bowie

Dizzy Gillespie, Charlie Parker,
Miles Davis, Thelonious Monk,
Dizzy Gillespie And His Orchestra

Art Blakey & The Jazz M., Miles
Davis, John Coltrane, Art Blakey,
Charles Mingus, Max Roach

Archie Shepp, The Sun Ra Arkestra,
Cecil Taylor, Steve Lacy
Anthony Braxton, Ornette Coleman

(d) Improvisation UK Big Bands (e) Italian (f) Fusion

Paul Rutherford, Evan Parker,
John Edwards, Johannes Bauer,
Paul Rogers, Malcolm Griffiths

Giovanni Maier, Gianni Basso,
Lauro Rossi, Dino Piana,
Giancarlo Schiaffini

Don Alias, David Liebman,
Dave Holland, Joe Lovano,
Bob Berg, Mino Cinelu

London Improvisers Orchestra,
Chris McGregor’s Brotherhood Of Breath,
Globe Unity Orchestra

Giorgio Gaslini, Italian Instabile
Orchestra, Enrico Rava, Nexus,
Chet Baker Nicola Conte

Miles Davis, Jaco Pastorius,
John Scofield, Chick Corea,
Mike Stern, Herbie Hancock

the Oct 2015 database dump. After removing duplicated
releases and releases with no collaboration metadata, the
release name, year, and collaboration data were extracted
from each release. Furthermore, we focus on instrumen-
tists in which the metadata associated with his/her role in
the record contained one of the following words: bass,
guitar, drum, vocal, voic, percuss, keyboard, trumpet, sax,
saxophon, trombon, flute, synthes.

The data resulting from this process is summarized in
Table 1. Considering a collaboration as a (collaborator,
time, leading artist, record) tuple, the in degree of an artist
a denotes the number of distinct tuples where a is present
in the data. Similarly, the out degree of a collaborators c
denotes the number of distinct tuples in which c is present.
Ron Carter and Miles Davis are the collaborators and artist
with the largest degree in the data. Inspecting the releases,
it is possible to note that the numbers of popular artists are
slightly inflated due to compilation releases.

5. LATENT TRAJECTORY SPACES

Each latent environment found by TribeFlow can be seen
as the result of a set of latent factors that influence the
movement of collaborators between artists. Inspecting the
collaborators and artists most associated with each envi-
ronment thus sheds light on what are the relevant factors
affecting collaboration sequences in our dataset.

The latent environments found in our case study reveal
clear loadings on the environments of stylistic, geographi-
cal and chronological latent constraints that shape collab-
oration trajectories. Table 2 shows six exemplary latent
environments as described by the collaborators and artists
(in italics) most associated with them 2 .

It is possible to clearly distinguish in the first four envi-

2 Access to the list environments and probabilities is available on-
line at: https://github.com/flaviovdf/tribeflow/ on the
folder scripts/ismir2016annotated.

ronments the styles of jazz most often associated with the
artists, and to note that in several cases collaborators have
notoriously recorded with multiple artists in that environ-
ment. It is worthwhile noting that we remove collabora-
tions where the collaborator and artist are equal. For exam-
ple, there are recordings in the data both of Dizzy Gillespie
collaborating in Miles Davis albums and vice-versa.

As for the chronology, it is possible to see in the exam-
ples that collaborations of a same period are loaded in dif-
ferent environments. For example, environments (a), b and
f are all associated with Miles Davis. However, his collab-
orators are divided in these three spaces according to the
period of the collaboration. Most markedly, it is possible to
distinguish his collaborators from the 70s in environment
(f) versus earlier collaborators in environment (b) and even
earlier on (a).

Similarly, the set of top collaborators listed in the (d) en-
vironment is a core part of the three bands listed as artists.
Moreover, in this case, as in the environment e, there is a
relation of collaborators, artists and geography: the three
artist groups listed in environment (d) are largely based in
the UK, while artists in environment (e) are mostly Ital-
ians. Along the same lines, there are latent environments
not listed in Table 2 that group Brazilian or Scandinavian
jazzists, among others.

Before continuing, we point out that various efforts
looked into the trajectories of users listening to music [7,
13, 14]. In our study, we make use of TribeFlow [7], a
recent trajectory mining technique that has been shown to
be both accurate and interpretable when compared to other
state-of-the-art methods. We describe the method in the
next section.

Besides looking at the intuitive similarities of collab-
orators or artists associated with an environment, a sec-
ond possibility for sensemaking is to look for less obvi-
ous associations. For example, the presence of Chet Baker,
an artist mostly known for his work in the USA, in envi-
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Figure 1. Normalized entropy of P [a|z]. The normalized
entropy was computed for every z

ronment (e) is an example of a relationship less obvious
for some. An investigation of Chet Baker’s collaborators
shows that during his work and late life in Europe, Chet
Baker recorded more than one album with a cast of mostly
Italian musicians. Several of these musicians (eg. Enrico
Rava) have trajectories of collaboration that touch on other
Italian artists in Table 2.

6. DIFFERENCES IN COLLABORATION SPACES

Because TribeFlow has a probabilistic interpretation, it al-
lows an analyst to investigate differences in probabilities
learned for transitioning to/from different artists and latent
environments. A relevant tool for doing so in our context
is to examine the entropy of the probability distributions
extracted with TribeFlow.

Along those lines, we first investigate which latent en-
vironments have a high/low entropy [4] in P [a|z]. Recall
that, entropy captures the expected uncertainty in a proba-
bility distribution. Higher values of entropy indicate that a
discrete distribution, our case, is closer to being uniform.
Lower values of entropy indicate that the distribution is
skewed to a subset of artist in our case.

In other words, the entropy of P [a|z] captures the no-
tion that after choosing to collaborate an artist from z, what
is the uncertainty of choosing an artist. Environments with
higher entropy indicate that most collaborations remain
within a small subset of the artists.

In the following, we use the normalized en-
tropy. Normalization is performed dividing the entropy∑

a−P [a|z]log(P [a|z]) for each space z in the model by
that of a Uniform distribution over the same artists. Fig-
ure 1 displays the distribution of the values of the normal-
ized entropies for each latent environment.

In our data, the latent environments associated with the
highest values of entropy display a normalized entropy of
approximately 0.7. These environments seem to be either
associated with free or experimental jazz, or to be mostly
formed by collaborators and artists from a specific region
outside the USA. For example, environments (d) and (e)
are among the highest entropy environments, together with
an environment associated with North-European jazz and
another one associated with experimental jazz fused with
World Music. As for the environments with least entropy,
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Figure 2. Normalized entropy of P [a′|a]. The normalized
entropy was computed for every a′ 6= a.
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Figure 3. The P [z′|z] highlighting transitions that are
above uniform chance (1/Z)

the apparent pattern for top-3 environments is the combi-
nation of artists from older periods with the presence of
a seminal figure. Namely, these three environments have
Duke Ellington, Count Basie and Louis Armstrong as their
top artists. This suggests that collaborators in our data as-
sociated with these latent environments had their trajecto-
ries gravitating around these artists with not much collab-
oration with the other artists in the same environments.

A similar approach can be used to identify who are
the artists which have the highest entropy considering the
probabilities of collaborating with other artists afterwards
(P [a′|a] - Eq. (2)). The five highest-entropy artists in
this view are all jazzists often associated with avant-garde
or free jazz: Anthony Braxton, Peter Brötzmann, Franz
Koglmann, Herb Robertson, and Gerry Hemingway. In a
sense, our model points that collaborators who record with
these artists are follow no clear pattern in the following
collaborations. This can be seen as a sign of the openess
in the choice of these artists in collaborating. On the other
end of the spectrum, musicians collaborating with artists in
the former Czech Republic (eg. Czechoslovak Radio Jazz

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 637



1950 1960 1970 1980 1990 2000 2010

Year

0
.0

0
.5

1
.0

L
ik

e
li

h
o

o
d

 (
A

v
g

 o
v

e
r 

5
 y

e
a

rs
)

Miles Davis

John Coltrane
Freddie Hubbard
Donald Byrd
Hank Modbley
Wayne Shorter Dizzy Gillespie

J.J. Johnson
Charlies Rouse
Lucky Thompson

Phil Woods, Al Cohn, Bernie Glow, Urbie Green

Baker, Konitz, Demon, Marsh

Don Alias
David Liebman
Dave Holland
 John Lovano

Figure 4. The career of Miles Davis as captured by the model.

Orchestra, Prague Big Band, Ji Vlek) are the ones display-
ing the least entropy. This last example is likely caused by
geographical constraints.

7. MOVEMENT ALONG LATENT SPACES

Considering the probabilities of a collaborator transition-
ing between distinct spaces P [z′|z] (Eq. (3)) gives us a
view of which latent environments are likely to be adja-
cent in collaborators’ trajectories. In Figure 3, we depict
this transition matrix. For the sake of clarity, we highlight
in this matrix only transitions that were above uniform ran-
dom chance ( 1

Z ). In this plot, latent spaces are numbered
from 0 to k − 1.

Observing the model fit to the data, we see that the
pairs of latent environments with the highest probabilities
of transition between them will be on the diagonals. That
is, artists will likely remain collaborating within the same
style after the previous records. Although this is expected,
there interesting examples in the non-diagonals as well.
For example, the highest probability in a non-diagonal hap-
pens between an environment where the most likely artist
to collaborate with is Stan Kenton and a second environ-
ment where the correspondent artist is Woody Herman.
These are two Big Band leaders who led popular bands
during the first half of the 20th century. The following five
highest probabilities follow a similar pattern, with the fifth
being between environments (b) and (a) in Table 2.

A final frame in which we explore how to use TribeFlow
in the context of collaboration trajectories is to inspect the
trajectories associated with a prominent artist. Figure 4
shows the likelihood of an environment (P [z|c, ai+j , a] -
Eq. (1)) of all collaborator transitions to reach Miles Davis
over a period to be associated with each latent environ-
ment. We averaged this likelihood over every five years.

For this case, there is a marked change in the likely
source of collaborators from the environments (a) to (b)

from Table 2. This change correlates with a major change
in the Miles Davis Quintet to the group that would com-
pose it during the first half of the 60s. Wayne Shorter is one
of the collaborators strongly associated with environment
(b) who also recorded with multiple other artists associated
with this environment, such as Freddie Hubbard.

8. DISCUSSION

Examining collaboration patterns is an important endeavor
in understanding artists’ influences and creations. Through
a case study of collaboration in Jazz records, we have ex-
plored how to use TribeFlow to unveil latent structures in
the trajectories of collaborators. The latent environments
found in this case study are expressive and were able to
help sense making in both popular and more niche collab-
oration groups in the data. Moreover, these environments
seem to express at least stylish, chronological and geo-
graphical factors shaping collaboration trajectories. Due
to the Bayesian approach of TribeFlow, it is possible to
employ a direct probabilistic approach to investigate ques-
tions of association at different levels of relationship, such
as artist to artist, and artist to environment.

Future work may extend the approach of this paper in
deepening the link of the analysis conducted here in its
musicological and historical aspects, employing a similar
approach to other datasets, and extending both our model-
ing approach and the tools used so far to compare collabo-
ration in different communities. Moreover, understanding
how collaboration trajectories related to musical features
(e.g., beat or tempo) can also help researchers better un-
derstand collaboration in recordings.
Acknowledgments: This research was supported by grant
460154/2014-1 from CNPq, by the EU-BR BigSea project
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work of contemporary popular musicians. Interna-
tional Journal of Bifurcation and Chaos, 17(07):2281–
2288, 2007.

[17] Maximilian Schich, Chaoming Song, Yong-Yeol Ahn,
Alexander Mirsky, Mauro Martino, Albert-László
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ABSTRACT

In recent years, advances in machine learning and in-
creases in data set sizes have produced a number of viable
algorithms for analyzing music in a hierarchical fashion
according to the guidelines of music theory. Many of these
algorithms, however, are based on techniques that rely on
a series of local decisions to construct a complete music
analysis, resulting in analyses that are not guaranteed to
resemble ground-truth analyses in their large-scale organi-
zational shapes or structures. In this paper, we examine
a number of hierarchical music analysis data sets — draw-
ing from Schenkerian analysis and other analytical systems
based on A Generative Theory of Tonal Music — to study
three global properties calculated from the shapes of the
analyses. The major finding presented in this work is that
it is possible for an algorithm that only makes local de-
cisions to produce analyses that resemble expert analyses
with regards to the three global properties in question. We
also illustrate specific similarities and differences in these
properties across both ground-truth and algorithmically-
produced analyses.

1. INTRODUCTION

Music analysis refers to a set of techniques that can illus-
trate the ways in which a piece of music is constructed,
composed, or organized. Many of these procedures focus
on illustrating relationships between certain types of mu-
sical objects, such as harmonic analysis, which can show
how chords and harmonies in a composition function in
relation to each other, or voice-leading analysis, whose
purpose is to illustrate the flow of a melodic line through
the music. Some types of analysis are explicitly hierarchi-
cal, in that their purpose is to construct a hierarchy of mu-
sical objects illustrating that some objects occupy places
of higher prominence in the music than others. Different
kinds of hierarchical analysis have different methods for
determining the relative importance of objects in the hier-
archy. The most well-known of these hierarchical proce-
dures is Schenkerian analysis, which organizes the notes
of a composition in a hierarchy according to how much

c© Phillip B. Kirlin. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Phillip
B. Kirlin. “Global Properties Of Expert and Algorithmic Hierarchical
Music Analyses”, 17th International Society for Music Information Re-
trieval Conference, 2016.

each note contributes to the overall musical structure. The
procedure also illustrates how notes at one level of the hi-
erarchy function in relation to surrounding notes at higher
and lower levels. While Schenkerian analysis is the most
common type of hierarchical analysis in the music theory
community, there are a number of similar procedures that
were developed in the music and linguistics community,
specifically the procedures put forth in the book A Genera-
tive Theory of Tonal Music by Lerdahl and Jackendoff [10],
abbreviated here as GTTM. GTTM applies an explicitly hi-
erarchical view to multiple aspects of a musical composi-
tion, leading to two types of analysis known as time-span
reductions and prolongational reductions, both of which
are similar to Schenkerian analysis in that all three analyt-
ical methods organize the pitches of the music in hierar-
chies of relative importance, allowing a person to view a
musical composition at multiple levels of abstraction.

None of these types of musical analysis were origi-
nally developed as computational algorithms, and so all
contain certain ambiguities in their definitions. Schenke-
rian analysis, in particular, is known for originally being
defined primarily through examples and not via a step-
by-step procedure. Similarly, the two GTTM reductional
analysis systems contain preference rules that can con-
flict with each other; the authors explicitly state that there
is not enough information in GTTM to provide a “fool-
proof algorithm” for analyzing a composition. Neverthe-
less, there are now a number of automated computational
systems that can construct analyses in a Schenkerian fash-
ion [7, 11] or by following the rules of time-span or pro-
longational reductions in the GTTM formalism [4]. The
most common computational technique underlying these
systems and others like them is the context-free grammar:
such a formalism is widely-adopted because such gram-
mars are easily applied to musical objects, are inherently
rule-based, can be adapted to work with probabilities, and
admit a computationally-feasibly O(n3) parsing algorithm
that can be used to find the best analysis for a piece of mu-
sic.

The largest downside to context-free grammars is pre-
cisely that they are context-free: there are restrictions on
how much musical context can be used when applying the
rules of a grammar to “parse” a piece of music into an
analysis. Most decisions made during the analysis process
under the context-free paradigm have to be made some-
what “locally,” and are unable to consider many important
“global” properties that are critical to producing a high-
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quality musical analysis. For instance, certain composi-
tional techniques, such as identical repetitions of an arbi-
trarily melodic sequence, are impossible to describe sat-
isfactorily with a context-free grammar [13]. Other com-
mon practices, such as the rules of musical form, manifest
themselves as certain shapes and structures in the hierar-
chy [9, 10, 15], and it is unclear whether a purely context-
free system could identify such structures. In this work,
we show (a) evidence that context-free grammars can re-
produce certain global structures in music analyses, and
(b) similarities and differences in those global structures
across various types of hierarchical music analysis.

2. REPRESENTATION OF HIERARCHICAL
ANALYSES

For simplicity, we assume we are analyzing a monophonic
sequence of notes. The two most common ways to do this
in a hierarchical manner are (a) to create a hierarchy di-
rectly over the notes, and (b) to create a hierarchy over
the melodic intervals between the notes. Each representa-
tion has distinct advantages and disadvantages [2, 12], but
Schenkerian analysis is more easily represented by a hi-
erarchy of melodic intervals. We explain this through the
following example. Imagine we wish to analyze the five-
note descending passage in Figure 1, which takes place
over G-major harmony. Schenkerian analysis is guided by
the concept of a prolongation: a situation where a note or
pair of notes controls a musical passage even though the
governing note or notes may not be sounding throughout
the entire passage. For instance, in Figure 1, the sequence
D–C–B contains the passing tone C, and we say the C pro-
longs the motion from the D to the B. The effect is simi-
lar for the notes B–A–G. However, there is another level
of prolongation at work: the entire five-note span is gov-
erned by the beginning and ending notes D and G. This
two-level structure can be represented by the binary tree
shown in Figure 2(a), which illustrates this hierarchy of
prolongations through the melodic intervals they encom-
pass. A more succinct representation is shown in Figure
2(b): this structure is known as a maximal outerplanar
graph or MOP, and illustrates the same hierarchy as the
binary tree [14].

!"# !! !!!
D C B A G

Figure 1. An arpeggiation of a G-major chord with passing
tones. The slurs are a Schenkerian notation used to indicate
the locations of prolongations.

A MOP is a graph representing a complete triangulation
of a polygon. Like their binary tree equivalents, MOPs are
rooted, but by an edge, rather than a vertex; this edge rep-
resents the most abstract level of the melodic hierarchy.
Every triangle within a MOP corresponds to a hierarchical
relationship among the three notes that form the triangle,
with the middle note taking on a subservient role in relation

(a) (b)D–G
D–B B–G

D–C C–B B–A A–G

D G
B

C A

Figure 2. The prolongational hierarchy of a G-major chord
with passing tones represented as (a) a tree of melodic in-
tervals, and (b) a MOP.

to the left and right notes. It is equivalent to say that every
triangle has a parent edge and two child edges, or has two
parent vertices and a child vertex. Triangles closer to the
root of the MOP express more abstract relationships than
those farther away. Though originally developed to repre-
sent Schenkerian prolongations, we will use MOPs later in
this paper to work with the GTTM reductional systems as
well.

2.1 Large-Scale Organization of MOPs

Like binary trees, MOPs can be described by a variety
of global attributes that are determined from their overall
shape. We explore three such attributes and how common
music composition and analysis practices affect these at-
tributes.

Height: The height of a MOP is defined to be the num-
ber of triangles in the longest possible sequence of trian-
gles from the root edge moving through subsequent child
edges to the bottom of the MOP. It is analogous to the
height of the equivalent binary tree. For a MOP with a
fixed number of triangles, there are a certain range of pos-
sible heights; for instance, Figure 3 shows two MOPs with
five triangles, one with a height of 5 and one with a height
of 3. Because a MOP with n vertices will always con-
tain n − 2 triangles, we can say the maximum height of
such a MOP is n − 2, whereas the minimum height is
dlog2(n− 1)e.

height = 3height = 5

Figure 3. Two MOPs, each with five triangles, but differ-
ent heights.

Investigating the heights of the MOPs that result from
hierarchical analysis gives us insight into the composi-
tional structure of the music from which the MOPs were
created. MOPs with large heights result from situations
where the notes of critical importance in a hierarchy are
positioned towards the beginning and end of a musical
passage, with importance decreasing monotonically as one
moves towards the middle of the passage in question (as in
the left MOP of Figure 3. In contrast, MOPs with small
heights result from hierarchies where the structural impor-
tance does not increase or decrease monotonically over
time during a passage, but rather rises and falls in a pat-
tern similar to how strong and weak beats fall rhythmically
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within a piece.
Average Path Length: While height provides a coarse

measure of the shape of a MOP, a different metric, average
path length, provides finer-grained detail about the bal-
ancedness or skewedness of the structure [5]. Measuring
the level of balancedness or unbalancedness in a tree gives
an overall sense of whether the leaves of the tree are all at
roughly the same level or not; when applied to a MOP, this
determines whether the leaf edges are all roughly the same
distance away from the root edge. Towards that end, the
average (external) path length in a MOP is calculated by
averaging the lengths of all the paths from the root edge to
all leaf child edges. For a MOP with n vertices, the mini-
mum average path length is very close to log2 n+1, while
the maximum average path length is (n−1)(n+2)

2n [1, 8].
GTTM and related literature posits that music is con-

structed around structures that are largely balanced, that is,
tending towards shorter average path lengths. One reason
for this, from a prolongational standpoint, is that a melodic
hierarchy expressed as a MOP illustrates patterns of ten-
sion and relaxation: each triangle represents tension rising
from the left parent vertex to the child, then relaxing from
the child to the right parent. Balanced MOP structures im-
ply waves of tension and relaxation roughly on the same
level, whereas unbalanced MOPs imply tension and relax-
ation patterns that may seem implausible to a listener: “it is
most unlikely that a phrase or piece begins in utmost ten-
sion and proceeds more or less uniformly towards relax-
ation, or that it begins in relaxation and proceeds toward a
conclusion of utmost tension.” [9, 10].

Left-Right Skew: An important consideration not ac-
counted for by the concepts of height or average path
length is determining whether the MOP has more left-
branching structures or more right-branching structures.
To this end, we define a variant of path length by choos-
ing to count a left-branch within a path as −1 and a right-
branch as +1. It is clear that this metric assigns negative
numbers to all MOP edges that lie on paths from the root
edge with more left branches than right branches, and pos-
itive numbers to edges in the opposite situation. Using
this measure of distance, we define the left-right skew of
a MOP to be the sum of these numbers for all paths in a
MOP from the root edge to a leaf edge, giving us an over-
all sense of whether the MOP is skewed to the left or to the
right. Due to the organization of leaf edges within a MOP,
a fully right-branching MOP with n vertices will achieve a
left-right skew of

n−4∑

i=−1

i+ (n− 2) =
n2

2
− 5n

2
+ 3

and a fully left-branching MOP will achieve a correspond-
ing negative value.

3. FIRST EXPERIMENT

Our first experiment is intended to answer the question,
“Can a fully-automated algorithm for music analysis based
on context-free parsing techniques produce MOPs with

global structural attributes matching those of ground-truth
MOPs?” Note that we are assuming that the three global at-
tributes — MOP height, average path length, and left-right
skew — are not randomly distributed; this assumption is
based on the previous work described earlier detailing that
the overall shape of a hierarchical music analysis is most
decidedly not random, but influenced by the way compo-
sitions are constructed and the manner in which listeners
hear and interpret them.

We used the PARSEMOP system in concert with
the SCHENKER41 data set to conduct this experiment.
SCHENKER41 is a data set of 41 common practice period
musical excerpts along with corresponding Schenkerian
analyses in MOP form for each excerpt [6]. The excerpts
are homogeneous: they are all in major keys, written or ar-
ranged for a keyboard instrument or voice with keyboard
accompaniment, and do not modulate. The correspond-
ing analyses of the excerpts are all derived from textbooks
or other expert sources, and can be regarded as ground
truth. SCHENKER41 serves as training data for the PARSE-
MOP machine-learning system, which learns the rules of
Schenkerian analysis by inferring a probabilistic context-
free grammar from patterns extracted from SCHENKER41
[7]. After training, PARSEMOP can produce MOP analy-
ses for new, previously-unseen pieces of music.

There are three variants of PARSEMOP, which vary only
in treatment of the Urlinie, a uniquely Schenkerian con-
cept. According to Schenker, all tonal music compositions
should have, at the most abstract level of the melodic hier-
archy, one of three possible background structures. These
three structures, representing Schenker’s fundamental con-
ception of melody, consist of a stepwise descent from the
third, fifth, or eighth scale degree to the tonic below, and
the entire melodic content of the piece serves as an elabo-
rate prolongation of this descending melodic line. PARSE-
MOP-A, when trained on the SCHENKER41 corpus, does
not have any a priori knowledge of the Urlinie: it does
not even know that such a concept exists in music. There-
fore, PARSEMOP-A produces output MOPs that usually
do not contain an Urlinie, except if by chance. PARSE-
MOP-B, on the other hand, is given information about the
Urlinie for the pieces of music it is analyzing. PARSE-
MOP-B produces output MOPs that always contain the cor-
rect Urlinie (the structure is copied from the input music).
Clearly, PARSEMOP-A and PARSEMOP-B represent two
opposite ends of the spectrum with regard to the Urlinie.
PARSEMOP-C is a compromise between the two: it uses
extra rules in the context-free grammar to guarantee that
an Urlinie will be produced in the output MOP analyses,
but it may not match the notes of the correct Urlinie ex-
actly.

We ran the three PARSEMOP variants using leave-one-
out cross-validation on each of the 41 excerpts in the
SCHENKER41 corpus, leaving us with four sets of MOPs:
one ground-truth, and three algorithmically produced. Be-
cause the minimum and maximum values for each of the
three global MOP attributes are dependent on the number
of vertices in a MOP (corresponding to the length of the
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musical excerpt in question), we normalized the values for
the attributes as follows. MOP height was scaled to always
occur between 0 and 1, with 0 corresponding to a MOP
of minimum height for a given piece, and 1 corresponding
to the maximum height. Average path length was simi-
larly scaled to be between 0 and 1. Left-right skew was
scaled to be between−1 and +1, with 0 corresponding to a
perfectly left-right balanced MOP, and−1/+1 correspond-
ing to maximally left- or right-branching MOPs. Finally,
we compared the distribution of the attributes obtained for
each PARSEMOP variant against corresponding attribute
distributions calculated from the ground-truth MOPs; his-
tograms can be seen in Figure 4.

The data illustrate a number of phenomena. Firstly, the
histograms for height and average path length suggest that
all the data sets, both ground-truth and algorithmically-
produced, show a preference for MOPs that are a com-
promise between balanced and unbalanced, but tending to-
ward balanced: very deep MOPs or MOPs with long path
lengths (values close to 1) are avoided in all data sets.
PARSEMOP-B and -C have higher average heights and av-
erage path lengths than PARSEMOP-A due to the presence
of an Urlinie, which is always triangulated in a deep, un-
balanced fashion. This is most evident in the PARSEMOP-
B and -C plots for left-right skew: these show a dramatic
left-branching structure that is almost certainly due to the
Urlinie, especially when compared to the histogram for
PARSEMOP-A.

Secondly, it is clear that in some situations, the context-
free grammar formalism does a remarkably good job at
preserving the overall shape of the distribution of the
attributes, at least through visual inspection of the his-
tograms. We can confirm this by computing Spearman’s
rank correlation coefficient ρ for each pair of data — this
calculates the correlation between a list of the 41 pieces
sorted by a ground-truth metric and the same metric after
having been run through PARSEMOP. All pairs show pos-
itive correlation coefficients, with eight of the nine being
statistically significant at the α = 0.005 level (obtained
via the Šidák correction on 0.05). In particular, rank corre-
lation coefficients for all three PARSEMOP-B comparisons
are all greater than 0.9, indicating a strong correlation.

However, a high Spearman ρ coefficient does not nec-
essarily imply the distributions are identical. We ran two-
sample two-tailed t-tests on each pair of data to determine
if the means of the two data sets in question were dif-
ferent (the null hypothesis being that the means of each
data set within a pair were identical). Two cases resulted
in p-values significant at the α = 0.005 level, indicat-
ing rejection of the null hypothesis: the height compar-
isons for PARSEMOP-B, and the left-right skew compar-
isons for PARSEMOP-C. This implies a situation where
PARSEMOP-B is apparently very good preserving relative
ranks of MOP heights in the data set (this rank correlation
between algorithmic MOP heights and ground-truth MOP
heights was revealed above), but there is also a statistically
significant, though small, difference in the means of the
distribution of these heights.

4. SECOND EXPERIMENT

Our first experiment suggests that there may be some bias
in our calculations being introduced by the Urlinie, namely
because it has a particular structure that is always present in
the resulting analyses. This situation is further complicated
by the presence of a number of short pieces of music in the
SCHENKER41 data set, where, for instance, the music may
consist of ten notes, five of which constitute the Urlinie.
In a situation like this, the MOP structure is already likely
determined by the locations of the notes of the Urlinie, and
so the PARSEMOP algorithm has very little effect on the
final shape of the MOP analysis. In short, we suspect that
these two factors may be artificially increasing the height
and average path length of the algorithmically-produced
MOPs.

To address this, we replicated the first experiment but
only calculated the global MOP attributes for pieces with at
least 18 notes (leaving 23 pieces out of 41), hypothesizing
that having more notes in the music would outweigh the
effects of the Urlinie. The leave-one-out cross-validation
step was not altered (this still used all the data). Figure 5 il-
lustrates the new histograms compiled for this experiment.
In short, these new data support our hypothesis: removing
short pieces largely eliminates very deep MOPs and those
with very long average path lengths.

We can again address similarities and differences us-
ing tests involving Spearman’s correlation coefficient ρ
and paired t-tests. All of the statistically significant re-
sults for ρ relating to PARSEMOP-B still remain: all three
global MOP structure attributes calculated on the PARSE-
MOP-B MOPs are strongly positively rank-correlated (ρ >
0.8) with the ground-truth MOP attributes. There is a
weaker rank correlation (ρ ≈ 0.583) between the left-
right skew attribute calculated on the PARSEMOP-C data
and its ground-truth that is also statistically significant
(p < 0.005). In contrast, the two statistical significances
identified via the t-tests in the first experiment both disap-
pear when run on only the pieces of at least 18 notes, sug-
gesting that these association may have spurious, caused
by noise in the shorter pieces.

5. THIRD EXPERIMENT

In our third experiment, we branched out from Schenke-
rian analysis to explore A Generative Theory of Tonal Mu-
sic’s time-span and prolongational reductions. These are
two forms of music analysis that, like Schenkerian analy-
sis, are designed to illustrate a hierarchy among the notes
of a musical composition.

Time-span reduction is introduced in GTTM as
grounded in the concept of pitch stability: listeners con-
struct pitch hierarchies based primarily on the relative con-
sonance or dissonance of a pitch as determined by the prin-
ciples of Western tonal music theory. However, pitch sta-
bility is not a sufficient criteria upon which to found a re-
ductional system, because pitches do not occur in a vac-
uum, but take place over time: there are temporal and
rhythmic considerations that are required. Lerdahl and
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Figure 4. Histograms displaying the distribution of global MOP attributes comparing algorithmically-generated MOPs
(grey bars) and ground-truth MOPs (black bars). Sample means are shown for algorithmic and truth MOPs, respectively.
The ground-truth bars for PARSEMOP-A are different from -B and -C because PARSEMOP-A has no conception of the
Urlinie, and therefore the Urlinie in the ground-truth MOPs is triangulated slightly differently in the training data for
PARSEMOP-A.
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Jackendoff address this by basing time-span reductions on
their conceptualizations of metrical and grouping struc-
ture, where metrical structure is determined from analyz-
ing the strong and weak beats of a composition, while the
grouping structure comes from a listener perceiving notes
grouped into motives, phrases, themes, and larger sections.

Though similar to time-span reduction, prolongational
reduction adds the concepts of tension and relaxation to the
criteria that are used to form a musical hierarchy. The mo-
tivation for the need for two types of reduction is that time-
span reductions cannot express some structural relation-
ships that take place across grouping boundaries, which
determine the overall form of a time-span analysis. In con-
trast, prolongational reductions are not tied to grouping
boundaries, and therefore can represent rising and falling
tension across such boundaries. The two types of trees
produced by the reductional systems are often similar in
branching structure at the background levels, but become
more dissimilar at lower levels of the hierarchies [10].

Because time-span and prolongation reductions seem
similar on the surface, it is appropriate to address their sim-
ilarities and differences through a study of the three global
attributes calculated for MOPs in the previous section. We
perform this study by using the GTTM database developed
by Hamanaka et al. [3], through their research on the fea-
sibility of automating the analytical methods described in
GTTM [4]. This database consists of 300 eight-bar ex-
cerpts of music from the common practice period, along
with time-span reductions and prolongational reductions
for certain subsets of the pieces. Specifically, there are 99
excerpts that include both time-span and prolongational re-
ductions. Note that these reductions in the database were
produced by a human expert, not an algorithm.

Our first task was to convert the time-span and prolon-
gation reductions into MOPs. This is necessary because
although time-span and prolongational reductions are ex-
pressed through binary trees (which are structurally equiv-
alent to MOPs), the GTTM reductions use binary trees cre-
ated over the notes of a composition, whereas MOPs are
equivalent to binary trees created over melodic intervals
between notes, as shown earlier in Figure 2. Therefore, we
require an algorithm to convert between these two funda-
mentally different representations.

Time-span and prolongational reductions are repre-
sented by trees with primary and secondary branching, like
that of Figure 7(a). Phase one of the conversion algorithm
converts these trees into an intermediate representation: a
multi-way branching tree where all children of a note are
represented at the same level, as in Figure 7(b). Phase
two converts this intermediate representation to a MOP
by adding edges in appropriate places, as in Figure 7(c).
This conversion algorithm is guaranteed to preserve all hi-
erarchical parent-child relationships present in the original
time-span or prolongational tree. It may introduce other
relationships through adding additional edges, however.

Once all the time-span and prolongational reductions
were converted into MOPs, we computed histograms of the
MOP height, average path length, and left-right skew for

W X Y Z

Y

W X Z

Y

W
X Z

(a) (b) (c)

Figure 7. Illustration of a time-span/prolongational tree
structure converted into a MOP.

both the time-span reductions and prolongational MOPs.
These are shown in Figure 6. Spearman’s rank coefficient
test reveals positive rank-correlations between MOP height
(ρ = 0.660), average path length (ρ = 0.762), and left-
right skew (ρ = 0.300) calculated from time-span analyses
and the corresponding attribute for prolongational analy-
ses. At the same time, paired t-tests suggest that the sample
means have statistically significant differences for all three
attributes as well, when comparing time-span and prolon-
gational reductions. Lastly, though the paired histograms
for height and average path length may appear similar, the
left-right skew paired histograms seem more visually dif-
ferent. This is confirmed via a two-sample Kolmogorov-
Smirnov test, which indicates the left-right skew values for
time-span versus prolongational reductions are drawn from
different distributions. All of these statistical significances
account for multiple comparisons using the Šidák correc-
tion (α = 0.05→ α = 0.017).

6. CONCLUSIONS

The data presented here suggest a number of conclusions.
The first two experiments involving PARSEMOP imply that
when PARSEMOP makes mistakes in analyzing music, the
mistakes do not drastically change the overall shape or
structure of the corresponding ground-truth analysis. This
information is challenging to reconcile with the fact that
PARSEMOP, like any music analysis algorithm derived
from context-free parsing techniques, does no global cal-
culations related to shape or structure during the analyti-
cal process. One explanation is that the notes of a music
composition imply an overall shape and structure that the
analytical process simply reveals, in that the shape is in-
herently present in the music and does not have to be given
explicitly to the grammar. If this were true, then using
a formal grammar class higher in the Chomsky hierarchy
(e.g., a grammar with some amount of context-sensitivity)
may not be necessary to create algorithms that can analyze
music satisfactorily.

The third experiment comparing time-span and prolon-
gational analyses reveals fundamental differences and sim-
ilarities in the overall structure of the two analytical forms.
For instance, it is clear that both types of reductional sys-
tem strongly prefer balanced, shallow trees, as is clear
from the histograms on height, average path length, and
left-right skew. Also, both analysis varieties produce trees
that slightly skew to the left. However, our statistical tests
also strongly suggest that the underlying distributions of
the global MOP structure attributes are different, even if
the differences in means happen to be small.
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ABSTRACT

We propose a human-driven Optical Music Recognition
(OMR) system that creates symbolic music data from com-
mon Western notation scores. Despite decades of devel-
opment, OMR still remains largely unsolved as state-of-
the-art automatic systems are unable to give reliable and
useful results on a wide range of documents. For this rea-
son our system, Ceres, combines human input and machine
recognition to efficiently generate high-quality symbolic
data. We propose a scheme for human-in-the-loop recog-
nition allowing the user to constrain the recognition in two
ways. The human actions allow the user to impose either
a pixel labeling or model constraint, while the system re-
recognizes subject to these constraints. We present evalua-
tion based on different users’ log data using both Ceres and
Sibelius software to produce the same music documents.
We conclude that our system shows promise for transcrib-
ing complicated music scores with high accuracy.

1. INTRODUCTION

Optical Music Recognition (OMR), the musical cousin of
Optical Character Recognition (OCR), seeks to convert
score images into symbolic music representations. Suc-
cess in this endeavor would usher music into the 21st cen-
tury alongside text, paving the way for large scale symbolic
music libraries, digital music stands, computational musi-
cology, and many other important applications.

Research in Optical Music Recognition (OMR) dates
back to the 1960s with efforts by a large array of re-
searchers on many aspects of the problem [3, 5, 10–14, 17,
18, 20, 21, 25, 29] including several overviews [6, 23], as
well as well-established commercial efforts [2] [1]. While
evaluation of OMR is a challenging task in its own right
[8], it seems fair to say that the problem remains largely
unsolved, in spite of this long history. The reason is sim-
ply that OMR is very hard, representing a grand challenge
of document recognition.

One reason OMR is so difficult stems from the heavy
tail of symbols used in music notation. While a small
core of symbols account for the overwhelming majority
of ink on the printed page, these are complemented by a

c© Liang Chen, Erik Stolterman, Christopher Raphael. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Liang Chen, Erik Stolterman, Christopher
Raphael. “Human-Interactive Optical Music Recognition”, 17th Interna-
tional Society for Music Information Retrieval Conference, 2016.

long list of familiar symbols that may be absent in many
or most pages. These include repeat signs, D.S. and D.C.
directives, a wide variety of possible ornaments and ar-
ticulations, harmonics, fingerings, pedaling, arpeggiation,
fermati, double sharps and flats, pedaling, 1st and 2nd
endings, repeats, etc. While each of these symbols can
be recognized with reasonable accuracy by fairly standard
means, the symbols are rare enough that the unavoidable
false positives they produce often outweigh the value of
the correct detections we may find. This constitutes one
of the the essential paradoxes of OMR: we cannot simply
ignore unusual symbols, though their inclusion often leads
to worse performance overall.

We sometimes refer to the heavy tail described above
as the “sprawl of OMR.” This sprawl is not limited to the
range of symbols, but also includes the many exceptions to
familiar notational rules. For instance, in standard notation
beamed groups, notes and chords carry the majority of mu-
sical content, thus their recognition must be central to any
OMR effort. The construction of these symbols is highly
rule-bound, arguing strongly for recognition approaches
that exploit the symbols’ grammatical nature. The diffi-
culty here comes from the many special cases we must
account for. For example, note heads usually lie on one
side of the stem, though chords with note heads on adja-
cent staff positions are usually rendered with “wrong side”
note heads; beamed groups usually have closed note heads
though measured alternations between two pitches is often
abbreviated with two open note heads in a beamed group;
beam groups usually have stems that go in a single direc-
tion from the beam, though one occasionally sees both di-
rections from a single beamed group; beamed groups are
usually associated with a single staff, but can span both
staves of a grand staff when necessary; augmentation dots
are generally placed to the right of the note heads they be-
long to, though dense voicing can force them to wander
far off their nominal positions. As with the heavy tail of
symbols, these special cases can all be modeled and rec-
ognized, though the results are not what one would hope
for. The majority of notation will not contain these rarer
cases; allowing for these exceptions when they do not oc-
cur begs for trouble, reliably degrading the recognized re-
sults. However, these exceptions are common enough that
we doubt a useful OMR system can be developed without
accounting for them somehow. This is essentially the same
paradox as that posed by the heavy tail: we must recognize
these unusual cases but cannot allow them to result in de-
graded performance overall. Dealing with this sprawl is a
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central issue we address in this paper.
In light of these (and other) obstacles we doubt that any

fully automatic approach to OMR will ever deal effectively
with the wide range of situations encountered in real life
recognition scenarios. For this reason we formulate the
challenge in terms of human-in-the-loop computing, devel-
oping a mixed-initiative system [15, 19, 27, 28] fusing both
human and machine abilities. The inclusion of the human
adds a new dimension to the OMR challenge, opening a
vast expanse of unexplored potential.

However, there is another reason for the human-
computer formulation we favor. While there may be some
uses for moderate quality symbolic music data, we believe
the most interesting applications require a level of accu-
racy near that of published scores. The human will not
only play the important role of guiding the system toward
the required level of accuracy, but must also “bless” the
results when they are complete. We expect symbolic mu-
sic data lacking this human imprimatur will be of dubious
value.

Commercial systems often deal with this issue by
pipelining their results into a score-writing program, thus
allowing the user to fix the many recognition problems.
This approach creates an artificial separation into the two
phases of recognition and correction. Rather, since we re-
quire a human to sign-off on the end result, we propose to
involve her in the heart of the process as well.

In what follows we present the view of human-in-the-
loop OMR taken in our Ceres system. Our essential idea
is to allow the user two axes of control over the recogni-
tion engine. In one axis the user chooses the model that
can be used for a given recognition task, specifying both
the exceptions to the “rules” discussed above as well as the
relevant variety of symbols to be used. In the other, the
user labels misrecognized pixels with the correct primitive
type, allowing the system to re-recognize subject to user-
imposed constraints. This provides a simple interface in
which the user can provide a wealth of useful knowledge
without needing to understand the inner-workings and rep-
resentations of the system. Thus we effectively address
the communication issue of mixed-initiative literature. Our
work has commonalities with various other human-in-the-
loop efforts such as [26, 30], though most notably with
other approaches that employ constrained recognition as
driven by a user [4, 7, 24].

2. HUMAN-INTERACTIVE SYSTEM

The main part of our Ceres OMR system deals with symbol
recognition, which occurs after the basic structure of the
page has been identified. For each type of symbol or group
of symbols we use a different graphical model. Here we
depict only the isolated chord graph in Fig. 1 which serves
as a template for the others, and refer the more detailed
discussions to our previous papers [9, 22].

Each individual music symbol (beamed group, chord,
clef-key-signature, slur, etc.) is grammatically constrained
based on a generative graph, enabling automatic, model-
driven, symbolic recognition. Perhaps more difficult than
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Figure 1: (a) Graphical model for isolated chord. (b) Sym-
bol samples generated via random walk over the graphical
model shown in (a).

individual symbol recognition is the challenge of decom-
posing the image into disjoint, grammatically-consistent
symbols. To address this problem, our system identifies
candidates for the different symbol types such as chords,
beamed groups, dynamics, slurs, etc. The user chooses
some of these candidates for interactive recognition. Af-
ter each recognition task is completed the resulting sym-
bol will be saved, thus constituting a constraint for future
candidate detection and recognition — we constrain our
system to identify mostly non-overlapping symbols.

Our current human-driven system performs recognition
in a symbol-by-symbol fashion as opposed to the measure-
based version proposed in [9]. The symbol-based scheme
allows for a responsive and efficient interface, which func-
tions with the symbol recognizers implemented in our sys-
tem . Here the human is allowed to interact with all
three steps: candidate identification, interactive recogni-
tion, and post-processing. In the candidate identification
and post-processing steps, the user directs the decision-
making process by either selecting a system-proposed can-
didate, adding a missing candidate, or deleting an incor-
rectly saved symbol. In the interactive recognition step,
the user actions impose extra labeling or model constraints
to the recognizer, while the system automatically invokes
re-recognition subject to these constraints.

The interactive recognition begins by performing fully
automatic recognition of the selected candidate. In many
cases the result will be correct and will be saved. Other-
wise the process iterates between human action and ma-
chine re-recognition until it yields the correct result. In
each iteration of this process the user will click on a partic-
ular pixel to input the corresponding primitive label (solid
note head, stem, beam, etc.) or change the model settings
to an appropriate choice. The whole process requires only
basic knowledge of music notation and thus extends the
range of potential users.

Our recognizers seek hypotheses that give the highest
probability to the pixel intensities, g(x), where x is a par-
ticular location. More explicitly, we regard a hypothesis, h,
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as a labeling of pixel sites, x, with models, Mh(x), where
Mh(x) ∈ L = {b, w, t, 0}. The labels in L correspond to a
probability models for black, white, transitional, and back-
ground pixels (Pb, Pw, Pt, P0). We measure the quality of
a hypothesis, h, by

S(h) =
∑

x∈D(h)

log
PMh(x)(g(x))

P0(g(x))
(1)

where D(h) is the support of the hypothesis.
As mentioned, the hypotheses are highly constrained

and we express these constraints through graphs as in Fig-
ure 1. We denote the possibility that a graph G generates
a hypothesis h by G ⇒ h. Thus our recognizers seek to
compute

H∗G = argmax
{h|G⇒h}

S(h) (2)

By normalizing by the background model, P0, in Eqn. 1,
the result S(h) = 0 means that h explains the pixels no bet-
ter or worse than the background model (iid sample from
the overall gray-level distribution), thus calibrating the in-
terpretation of our scoring function and providing a natural
threshold for detection. This data model is more explicitly
explained in our previous works [9, 22].

2.1 Label Constraints

When the user labels a pixel, x, with a primitive (the most
fundamental unit that constitutes a symbol), l, such as
stem, flag, open note head, etc., we create a constraint of
the form (x, l). If several such user labelings are required
to correctly recognize a symbol we have a collection of
constraints of the form L = {(xi, li) : i = 1, . . . , n}.
Each time we get a new constraint the system re-recognizes
the current candidate subject to these user-imposed con-
straints. Thus we modify our original scoring function to
be

S(h) =
∑

x∈D(h)

log
PMh(x)(g(x))

P0(g(x))
+ t(x,Qh(x)) (3)

where

t(x,Qh(x)) =

{
−∞ x = xi, Qh(x) 6= li some i

0 otherwise

Here Qh(x) represents the primitive label of hypothesis h
at location x, thus t(x,Qh(x)) disallows h if the pixel label
is inconsistent with the hypothesis.

Fig. 2 illustrates a use case for a label constraint. In this
example the original recognition, shown in the top panel of
the figure, misidentifies the natural sign modifying the ’e’
as an additional note head. In the top panel the user clicks
on this pixel, labeling it with the “natural” primitive type.
The bottom panel shows that re-recognition subject to the
constraint fixes the problem.

In addition to primitive labels, the system also allows
the user to label a rectangle of pixels as “white space”, thus
disallowing the recognizer from covering these pixels with

(a)

(b)

Figure 2: (a) During the initial recognition the natural was
misidentified as a note head. The user is adds the correct
primitive label to any location within the the natural. (b)
Re-recognition correctly identifies the whole symbol by
using the user-imposed label constraint.

any primitive symbol. In practice this turns out to be one of
the most powerful constraints as it addresses the common
case in which our recognition “spills over” into adjacent
symbols.

2.2 Model Constraint

Model constraints change the graph, G, over which we op-
timize. Our interface contains a number of toggle switches
each enabling a special case of recognition thus enlarging
the graph. In general, the recognition works best when the
minimal possible graph is chosen, though in many cases an
overly permissive graph structure still produces the desired
result without help from the user. In this case we still opti-
mize Eqn. 2, though with a new graph, G′, playing the role
of G.

Fig. 3 gives an example in which an inappropriately
restrictive graph generates a result with many primitive
errors (top panel). In this case the original recognition
was done without allowing note and chords to span the
grand staff, as they do in this example. The result com-
pletely misses the penultimate note in the beamed group,
while recognizing the last note with extraneous ledger lines
which would be syntactically necessary when the note be-
longs to the upper staff. After enabling the grand staff abil-
ity we get the correct result in the bottom panel of the fig-
ure.

After the interactive recognition of a symbol is com-
plete the user can save the symbol. When this occurs, we
reset the list of pixel constraints placed by the user — these
do not carry forward to future recognition tasks. The pixels
involved in the recognized hypothesis are considered un-
available in subsequent symbol recognition, thus express-
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(a) (b)

Figure 3: (a) Recognition using a beamed group graph that
does not allow notes to span the grand staff. (b) Recogni-
tion using grand-staff beamed group graph.

Figure 4: Human-driven (blue) and Machine-driven (red)
actions in Ceres system. The possible state transitions are
shown by arrowed connections.

ing the notion that the symbols cannot touch. Of course,
symbols do sometimes touch in practice, so we allow the
user to label a rectangle of pixels as “reuse,” thus allowing
the user to override the basic non-overlapping constraint
when needed.

3. USER INTERFACE

Our interface allows the user to control and direct the
recognition process. The overall process is organized in
terms of measures, while the interaction flow within a mea-
sure is described in the “action graph” of Fig. 4.

In the candidate proposal step (2nd level of the fig-
ure), the user can switch between the different candidate
types (beamed group, isolated chord, slur, dynamics, etc.).
Within each candidate type the user is presented with a
left-to-right sequence of candidates she may choose to rec-
ognize or skip over. The color of the highlighted candidate
reflects the candidate’s type, also showing the direction of
the stem, beam, and slurs with arrow signs, as this infor-
mation is needed by the recognizers. The interface for this
phase is shown in Fig. 5.

After a candidate is chosen, the system moves to the
symbol recognition step. In this step, the system collab-
orates with user to improve the recognition in an iterative
process. In each iteration the user either accepts the current
recognition or imposes a new constraint (label or model),
as discussed in Section 2. For a labeling constraint, the
user inputs the pixel labels through a message box after
clicking on the desired pixel position, as in Fig. 2a. For a
model constraint, the user changes the current settings on
the checkboxes or pull-down menu. The interface is shown
in Fig. 6.

(a) (b) (c)

Figure 5: (a) The system detects and indicates a stem-up
chord candidate for the user; (b) The system detects and
indicates a stem-up beamed group candidates for the user;
(c) The user adds a missing chord candidate.

Figure 6: Checkboxes and pull-down menu for different
model settings.

The system uses different colors to distinguish the cur-
rent symbol from saved symbols. When the user wants
to revisit an incorrectly saved symbol, she can select and
delete the symbol before redoing the recognition.

Ceres has shortcut keys designed for the user to move
from one step to another one, and also has a “cancel” key
that allows the user to exit this process while moving to
a “default” state. These interface units together constitute
the visible part of Ceres’ human-in-the-loop system.

4. EVALUATION

We evaluate our system both in terms of accuracy and
speed. Both criteria are important since we believe the
most interesting applications of OMR require accuracy on
par with published scores, while it won’t be possible to cre-
ate large quantities of such data through OMR unless the
process is highly efficient.

We measure accuracy here at the primitive level (beams,
flags, note heads, accidentals, etc.), rather than, say, in
terms of pitch and rhythm as in [16]. We prefer primitive
evaluation because it is generic (all symbols are evaluated
in the same way), it allows for all symbols our recognizer
treats — not just those carrying pitch and rhythm infor-
mation, and it is easy to relate primitive error analysis to
specific aspects of the recognition engine.

The test set consists of first three pages of the Bre-
itkopf and Härtel 1862-90 edition of Beethoven’s Piano
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(a) (b)

(c) (d)

Figure 7: Clock time versus accuracy for novice and ex-
perienced Ceres users to generate one page: (a) page 1, (b)
page 2, (c) page 3, (d) average performance.

Sonata No. 23, (the “Appassionata”), having 1606, 1501,
and 1651 primitives respectively. We annotated the symbol
primitives by hand with an interactive tool, thus creating
our ground truth. In doing this we left out a few symbols
appearing in the document that our system does not yet
handle: grace notes, text and fermati. Our ground truth ac-
counts for the overwhelming majority of what appears on
the pages.

After recognition we decompose our structured results
into an unstructured list of primitives, counting both false
positives and false negatives. A recognized symbol counts
as a false positive if its distance to all ground truth primi-
tives of the same type is greater than some threshold. Anal-
ogously, a false negative occurs if a ground truth primi-
tive is not sufficiently close to any recognized primitive.
All symbol-to-symbol distances are measured in terms of
a fixed reference point on each symbol.

Our subjects contained both novice users having about
an hour of training, and more experienced users who were
involved in the development of the user interface. Figure 7
shows both clock time and accuracy (an F-score) measured
for these test subjects separately on each page. The figure
shows overall error rates in the range of 1%, short of our
eventual goal, but also showing that highly accurate results
are within reach. The effect of user experience is evident
both in accuracy and speed, though it is worth noting that
the novice users were still able to get usable results from
Ceres.

A primitive-level breakdown of errors is detailed in Fig-
ure 8, which counts both false positives and negatives by
each class and user. A number of the errors are due to
small symbols, such as augmentation dots, staccato mark-
ings, and short slurs. As illustrated in Section 3, our sys-
tem superimposes the recognized results over the original
image, usually making recognition errors obvious, though

(a)

(b)

Figure 8: Distribution of Ceres-user-generated (a) false
positive and (b) false negative errors with respect to their
primitive labels on all the three pages.

they are occasionally hard to see with small symbols. This
highlights the need to explore better ways of visualizing re-
sults. The fingering errors were mostly due to our system’s
inability to recognize markups in non-standard positions
such as to the side of a note head — an issue we have since
accounted for. One can also see that a number of the er-
rors come from ledger lines. This is due to a bug causing
our system to occasionally produce syntactically impossi-
ble configurations of these primitives. These observations
show the virtue of primitive-based evaluation since the er-
rors are easily traced to their root causes.

We wanted to compare with a system other than our
own, though between-system comparisons in OMR are
challenging due to differences in the representations of
both intermediate and end results. While commercial
score-writing programs have different goals than OMR
systems, both create symbolic representations of music
documents that can be used to generate score images.
Aside from these basic similarities there are a great many
differences that may call comparisons into question. Still,
in order to gain a point of reference for evaluation we com-
pared our results with the commercial score-writing pro-
gram, Sibelius.

Due to the steep learning curve involved with this pro-
gram we engaged a professional Sibelius user with many
years of professional experience, charging him with the
task of recreating the original notation from scratch ac-
cording to our test images. Even when directed otherwise,
music copyists can substitute equivalent or nearly equiva-
lent notation making it impossible to find a one-to-one cor-
respondence between primitives. Thus we could not make
meaningful accuracy comparisons with Sibelius.

However, we can compare the time to create the sym-
bolic results as in Figure 9. This figure shows the necessary
clock time to create the various pages. The results vary
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Figure 9: Clock time versus number of primitives for each
page. Each point represents a single user from one of the
following three groups: professional Sibelius user, experi-
enced Ceres user or novice Ceres user.

significantly from page to page, but show Ceres as com-
petitive in all cases, and on two out of three pages showing
significantly faster results than Sibelius with far less expe-
rienced users. Fig. 10 shows a similar comparison using
keystrokes and mouse clicks as the measure of user effort.
Here Ceres is seen to be considerably more efficient than
Sibelius producing the results with much less user activity.
This is because notation programs require detailed super-
vision while our system offloads as much work as possi-
ble to the machine. We also see from this figure that the
experienced Ceres user makes more efficient strategies by
minimizing the number of mouse and key actions.

The representations produced by these two systems
have little in common, with different strengths and weak-
nesses for generating notation. Sibelius understands more
of the inherent relations between symbols which must be
preserved under renotation. Ceres captures a great deal
of information about notational decisions (groupings, stem
directions, spacing, etc.) which is also useful in renotation.
The images at the website below 1 show notation generated
from the two representations thus allowing for a subjective
comparison of the two representations for renotation.

5. CONCLUSION

We have proposed a human-in-the-loop scheme for OMR
that addresses several of the core difficulties of OMR. By
allowing the user to select parameters of the models and
symbol vocabulary, we deal with the heavy tail of rare sym-
bols and notational exceptions. We also address the funda-
mental challenge of segmentation through recognition —
now facilitated by a human guide. Finally, we demonstrate
a feasible means to achieve the level of accuracy we believe
is essential for successful application of OMR. The exper-
iments show that our system has the potential to produce
high-quality symbolic data more efficiently than a score-
writing system, though we believe we must still improve

1 http://music.informatics.indiana.edu/papers/ismir16/

(a) (b)

(c) (d)

Figure 10: Clock time versus number of mouse and key
activities used for each page: (a) page 1, (b) page 2, (c)
page 3, (d) average performance. Each point represents a
single user from one of the following three groups: pro-
fessional Sibelius user, experienced Ceres user or novice
Ceres user.

significantly on this benchmark for our system to gain ac-
ceptance.

One promising application of Ceres-generated data is
renotation. The current renotated pages are basically a
one-to-one reconstruction of the original score, essentially
denoising the image. We continue to explore more gen-
eral renotation problems allowing various transformations
of existing notation such as reformatting into arbitrarily-
sized rectangles, transposition, and construction of parts
from a score. This line of work will facilitate the flexible
rendering of scores for electronic music readers.

We also remain engaged with improving the perfor-
mance of our system. On one hand, we must continue to
refine the core recognition abilities of our system, as these
promise to improve both accuracy and speed of our system
by handling a greater proportion of the work through auto-
matic means. On the other hand we see considerable room
for improvement and creativity in constructing the inter-
face. We are interested in intelligent interactive approaches
that increase the efficiency of the approach, e.g. automatic
planning of human-machine-collaborated actions to min-
imize time cost, active prediction of human labeling and
model selection, intelligent aggregation of multiple con-
strains through MIDI keyboard input, or adaptive learning
to better recognize new documents. These interesting dis-
cussions are a part of our future plan.
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ABSTRACT

We present an analysis of musical influence using intact
lyrics of over 550,000 songs, extending existing research
on lyrics through a novel approach using directed net-
works. We form networks of lyrical influence over time
at the level of three-word phrases, weighted by tf-idf.
An edge reduction analysis of strongly connected compo-
nents suggests highly central artist, songwriter, and genre
network topologies. Visualizations of the genre network
based on multidimensional scaling confirm network cen-
trality and provide insight into the most influential genres
at the heart of the network. Next, we present metrics for in-
fluence and self-referential behavior, examining their inter-
actions with network centrality and with the genre diversity
of songwriters. Here, we uncover a negative correlation
between songwriters’ genre diversity and the robustness of
their connections. By examining trends among the data for
top genres, songwriters, and artists, we address questions
related to clustering, influence, and isolation of nodes in
the networks. We conclude by discussing promising future
applications of lyrical influence networks in music infor-
mation retrieval research. The networks constructed in this
study are made publicly available for research purposes.

1. INTRODUCTION

Lyrics have been used to study many topics in music infor-
mation retrieval (MIR) including genre classification [6],
hit prediction [9], similarity searching [10], cultural stud-
ies [4], and computational musicology [5]. One approach
to lyrical analysis is the bag-of-words model, which con-
siders word frequencies in a text irrespective of order. In
2004, Logan et al. used this approach to produce promising
preliminary results for measuring artist similarity through
topic models, and observed that some genres naturally
group with others based on shared vocabulary [9]. Fell
and Sporleder later found that some genres (e.g. Rap,
Metal) have relatively unique vocabularies, while others
(e.g. Folk, Blues, and Country) cluster into groups [6].
Most recently, Ellis et al. computed bag-of-words novelty

c© Jack Atherton and Blair Kaneshiro. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jack Atherton and Blair Kaneshiro. “I Said It First: Topo-
logical Analysis of Lyrical Influence Networks”, 17th International Soci-
ety for Music Information Retrieval Conference, 2016.

of lyrics and found that top-100 music was less lexically
novel than less popular music [5].

In contrast, n-gram models consider ordered phrases
of n words. A. Smith et al. used trigrams (n-grams with
n = 3) and rhyme structures to develop a metric for cliché
in lyrics, finding that number-one hits were more clichéd
than average songs [14]; here, trigrams proved to be the
better metric for measuring cliché. They also inspected
their data by genre and found that genres had generally
unique most-frequent phrases, though some phrases were
shared by many genres. Later, Fell and Sporleder devel-
oped a suite of lexical features and used these, along with
n-grams, to achieve performance gains in various classi-
fication tasks, but confirmed that n-grams alone achieved
satisfactory baseline performance [6].

Networks—or graphs—are a natural and increasingly
prevalent tool for analyzing structure between musical en-
tities such as artists, songwriters, and genres. Networks
comprise sets of nodes and sets of edges, or relations, be-
tween nodes. Most networks use unweighted, undirected
edges, whereby edges are binary measures of whether two
nodes are connected. Weighted edges ascribe varying im-
portance to the relationships, and directed edges give each
relationship a direction or flow. A 2006 study by R. Smith
revealed the community structure of rappers by construct-
ing a network between rappers who collaborated [15]. This
study weighted edges by frequency of collaboration and
found that different groupings such as large communities,
music labels, and groups such as the famous Wu-Tang Clan
emerged when varying percentages of the least significant
edges were removed from the graph. We will refer to this
process here as edge reduction. Collins later considered
the flow of musical influence in synth-pop music [3], while
Gunaratna et al. built a collaboration network for Brazilian
musicians and composers [8]. Finally, Bryan and Wang
constructed a directed graph connecting genres based on
sampling of musical content, showing that Funk, Soul, and
Disco heavily influence many modern popular genres [2].

Both lyrics and graphs allow us to ask deep ques-
tions about similarity, popularity, and interconnectedness
in the music landscape. To our knowledge, no study has
formed lyrics-based networks to analyze musical relation-
ships formed directionally over time, although Fujihara et
al. created a system for hyperlinking between lyrics and
from lyrics to audio [7]. The current study combines lyri-
cal analysis with graphs to observe influence of genres,
artists, and writers, through networks formed by re-use of

654



lyrics. Our networks’ directional edges highlight lyrical in-
fluence over time, allowing us to address questions like that
raised by A. Smith et al. of whether Pop music makes use
of existing clichés or creates new ones [14]. We examine
the topology of influence networks of genres, artists, and
writers to quantifiably assess grouping behavior, robust-
ness of connections, and centrality within the networks.

The remainder of this paper is structured as follows:
first, we explain the formation of the influence networks
and the computation of several of their properties. Next,
we demonstrate and visualize the topology of the networks.
Finally, we show how the basic building blocks of network
properties can be used to address many outstanding musi-
cological and MIR research questions.

2. METHODS

2.1 Data Sources

Past research has shown that n-grams (phrases) are supe-
rior to bag-of-words (vocabulary) for lyrical MIR tasks
such as classification and computational musicology [6,
14]. With this in mind, we obtained intact lyrics data and
artist/writer metadata via a signed research agreement with
LyricFind, whose data were used previously in the Ellis et
al. bag-of-words study on lexical novelty [5]. We addition-
ally obtained primary genre and release date at the album
level through the free iTunes Search API. 1 After filtering
out songs with no lyrics, as well as those with no entry in
the sparse iTunes dataset, we were left with 554,206 songs,
collectively representing 42,802 artists, 95,349 writers,
and 214 genres.

2.2 Constructing the Networks

The first step was to exhaustively measure the trigrams
present in every song. Phrases were considered equiva-
lent if they were cleaned to the same base phrase. We
cleaned the lyrics using a procedure previously validated
by Ellis et al. [5], avoiding stemming the words and using
their rules for misspellings, alternate spellings, hyphens,
and slang (modified to avoid expanding contractions and
to correct a few inaccurate slang terms). We also filtered
out stopwords—words too common to impart any lexical
significance (e.g. pronouns and articles). We used a list of
English stopwords from the Natural Language Toolkit, 2

augmented with many of the contractions ignored in the
cleaning phase and misspellings of stopwords common to
the LyricFind data. If a phrase was reduced in size due
to stopword removal, we added an additional word and re-
peated the process until we obtained a cleaned trigram with
no stopwords. This process allowed us to consider and
match phrases originally longer than three words on the
basis of only semantically significant words; for example,
two four-word phrases that differed only by a specific pro-
noun (e.g. “he” / “she”) would be matched after stopword

1 http://apple.co/1qHOryr
2 http://www.nltk.org/

removal. After initial results revealed spurious phrases cre-
ated across lines of lyrics, we modified the algorithm to
search for phrases only within lines of lyrics.

Next, songs were separated by year of release date in or-
der to compute their phrases’ term frequency-inverse doc-
ument frequency (tf-idf ). Tf-idf is a robust measure of sig-
nificance common to information retrieval that increases
an item’s weight if it is common within its document and
decreases its weight if it is common across the dataset [11].
Past MIR studies have used tf-idf for automatic mood clas-
sification of lyrics [16]—also in conjunction with rhyme
information [17]—and to measure lexical novelty [5]. To
capture the changing significance of phrases over time, we
treated each individual year as a separate dataset. This way,
the first person to use a phrase would have a significantly
higher idf for that phrase than a person using it when it
is already popular. Tf-idf is computed as in equation (1),
where np is the number of occurrences of a phrase p in a
song, ns is the number of phrases in that song, sy is the
number of songs in a year y, and sp is the number of songs
in that year containing p.

tf-idf(p) = np

ns
· log( sysp ) (1)

We then constructed the three influence networks, one
each for genres, artists, and writers. For every phrase in
the dataset, we generated a list of all pairs of songs shar-
ing that phrase. Pairs of songs released in the same year
were ignored. This limit sets a minimum on the time dif-
ference necessary before a repeated phrase is considered
influential, and also avoids forming links between potential
duplicate entries in the dataset. For pairs of songs occur-
ring in different years, we formed an edge from the earlier
song to the later one. The edge’s weight was the product
of the tf-idfs of the phrase in both songs in order to cap-
ture the significance of the phrase in both years. Using
song metadata, we then added the edge to the genre, artist,
and writer graphs. For example, if a phrase was used in a
Rock song in 1990 and in a Pop song in 1991, the resulting
edge was drawn from the Rock node to the Pop node in the
genre graph. If either song had multiple artists or writers,
we added edges between all possible pairings. If multiple
edges were added between two nodes, they were combined
by summing their weights.

Next, influence scores were computed for each node of
each graph. The influence Ii of node i is defined as the
ratio of the sum of its outgoing edge weights (eij) to the
sum of its incoming edge weights (eji):

Ii =

∑
j

eij

∑
j

eji
(2)

Influence is thus a measure of the degree to which a node
impacted future work or quoted previous work, but does
not depend on the node’s total volume of work.

Genre diversity scores were computed for each artist
and writer as the number of genres they are credited in, di-
vided by their total number of songs. This gives a measure
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of how many genres the person has contributed to without
being skewed by their total number of contributions. 3

Finally, each node’s self-reference score was computed
as the weight of the edge pointing from that node to itself,
divided by that node’s total number of contributions. This
normalization again avoids skewing the score by volume,
as edge weights were formed by summing over all possible
pairings of phrases shared between two nodes.

The graphs were constructed with Graph-tool. 4 We
make the graph data from this study publicly available for
research purposes [1].

2.3 Network Analyses

The graphs were first assessed for clustering behavior.
Adapting the method used by R. Smith, we analyzed the
graphs in stages while removing increasing percentages of
the least significant edges [15]. The first, global edge re-
duction method removed the Xg% lowest-weighted edges
across the entire the graph, with Xg ranging from 0 to 99.
The second, local method removed edges from each node
that have a weight less than Xl% of the strongest weight
at that node. At each stage of both procedures, the graphs
were analyzed for their strongly connected components in
order to examine the grouping behavior of the nodes.

Next, we performed multidimensional scaling (MDS)
on the genre graph in order to embed its nodes in two di-
mensions for visualization. MDS converts a set of pair-
wise dissimilarities among objects into coordinates that
can be used to visualize the objects in a low-dimensional
space [13]. Here, the dissimilarities were computed using
mutual influence Dij below, where eij is the weight be-
tween nodes i and j. Graph visualizations were performed
using Gephi. 5

Dij = log(eij ∗ eji)−1 (3)

Finally, we computed a series of correlations between
the various metrics defined above, as well as the in-degree,
out-degree, and average tf-idf of incoming and outgoing
edges of each node. The r and p values were computed
with the Scipy Statistics pearsonr function. 6

3. RESULTS

3.1 Most Common Phrases

Table 1 shows the phrases used across the highest number
of years. Many of these phrases are considered timeless,
and all are semantically significant. Also, no phrase oc-
curred in every year. The repetition of “dream(s) come
true” does suggest that using word stems might improve
performance. We note also that pronouns and other stop-
words are absent from all phrases, which allowed the con-
sideration of longer phrases with internal stopwords. For
example, “makes feel like” is a combination of “makes

3 Un-normalized genre count did not significantly interact with any
other variables in the study.

4 https://graph-tool.skewed.de/
5 https://gephi.org/
6 http://docs.scipy.org/doc/scipy-0.16.0/reference/

(me) feel like,” “makes (you) feel like,” and other simi-
lar phrases. Overall, we treat these results as verification
that our cleaning procedure was adequate.

Phrase Years Phrase Years

dreams come true 49 one two three 43
never let go 48 late last night 42
new york city 46 whole wide world 42
long time ago 46 come back home 42
dream come true 45 makes feel like 41

Table 1: The most common phrases, ordered by number of
years in which they appeared (maximum possible is 62).

3.2 Network Components

In our global edge reduction analysis, we expected that the
graphs would split into several components. Instead, each
graph remained concentrated in one large strongly con-
nected component, with a few negligible side components.
The size of the central component at a few points in the
global edge reduction process is shown in Table 2.

The writer graph was the most robust: its central com-
ponent was largest at nearly every point in the edge reduc-
tion process, and with only the top 1% of edges remain-
ing in the graph (Xg = 99), it still contained nearly 200
components of 5 or more writers. We believe this result
arose because many songs have multiple writers, while few
songs have multiple artists; therefore, more relationships
among writers would emerge from the same songs.

Using the local edge reduction method, a few small, sig-
nificant components did break off of the main component.
For example, with Xl = 2, the pairs {Celtic, Contempo-
rary Celtic} and {Folk-Rock, Contemporary Folk} split off
the main genre component. Table 3 shows the Brazilian
and Spanish-speaking Latin American components formed
with Xl = 3 and Xl = 4, respectively.

The graphs’ strongly connected components split apart
much more quickly using local edge reduction than with
global edge reduction. At Xl = 4, the main component
consisted of 21 genres; at Xl = 20, the only components
remaining of size more than 1 were the two in Table 4.
At Xl = 25, the main component had reduced to the pair
{Rock, Pop}, but the Latin American component remained
unchanged from Xl = 20. The answer to why the Latin
American component was so robust probably lies in our
data preparation method: since we did not filter out the
stopwords of any language but English, the connections
between genres of other languages were strengthened by
spurious connections with no lexical significance. This
result shows the importance of a cleaning procedure that
works uniformly across the dataset.

Graph Xg = 0 Xg = 90 Xg = 99

Genre 95% 54% 13%
Artist 99% 52% 12%
Writer 98% 66% 28%

Table 2: Percentage of nodes in the central component
with Xg% edge reduction.
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Xl = 3 Xl = 4

MPB Latin Pop
Sertanejo Latin Alternative & Rock
Samba Latino
Pagode Salsa y Tropical
Axé Regional Mexicano

Baladas y Boleros
Latin Urban

Table 3: Genres contained in two components that split
from the main component with Xl% edge reduction.

Main Component Latin American Component

Pop Latin Pop
Rock Latin Alternative & Rock
Alternative Latino
R&B/Soul Salsa y Tropical
Country Regional Mexicano

Table 4: Components with Xl = 20% edge reduction.

3.3 Multidimensional Scaling and Visualizations

To explore the seemingly central nature of the graphs, we
performed MDS and visualized the genre graph. 7 The vi-
sualization (Figure 1) promisingly showed that nearly all
edges in the graph were focused toward the center.

To more closely observe the behavior at the center of
the graph, we next visualized only the 28 genres that ap-
pear in the central component with global edge reduction
(Xg = 99), and displayed only each node’s top three in-
coming edges. Using dissimilarities computed from all
edges (not just those present in the visualization), we
performed MDS again to obtain the node positions for
Figure 2 and Figure 3. Jazz, Pop, and Rock are firmly at
the center of the genre network. Here, 21 of the 28 nodes in
the central component include Jazz among their top three
influences, while 16 include Pop and 13 include Rock.

3.4 Influence and Self Reference

We next sought a statistical explanation for the central-
ity of the highlighted nodes in Figure 1. Turning first
to influence, the ratio of a node’s outgoing to incoming
edge weights, we expected that central genres would have
high influence, meaning that many genres draw from the
phrases used in the central genres. In fact, the extremes of
the influence metric are dominated by outliers, including
rare genres as well as artists and writers who appear only
very early or very late in the dataset. These groups do not
have much opportunity for incoming or outgoing edges,
respectively. In contrast, central genres are referenced at
about the same rate that they reference previous material,
having influence scores close to 1.0. Figure 2 and Table 5
show the influence of central genres.

We then turned to the self-reference score, a measure
of how much a genre re-uses lyrics from its past. Our in-
tuition here was that genres that refer to themselves fre-
quently create a particular subculture that is ripe for other
genres to draw influence from. Table 5 shows the top 10

7 Because of their sheer size, visualizations of the artist and writer
graphs were not feasible at the time of the study.

Figure 1: MDS layout of the genre graph, having 214
nodes and 17,438 edges. World, far left, is pushed out of
the central area by its extreme dissimilarity to Pop Punk,
far right. Light gray nodes are the 28 nodes in the central
component with global edge reduction, Xg = 99%.
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Dance
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Electronic
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Vocal Pop

Classical
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Figure 2: MDS layout of the central component of the
genre graph. Node size denotes node influence, and arrow
size denotes edge weight. Here, the sensitivity of the in-
fluence metric to outliers is shown (for example, with the
large size of the Brazilian node).
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Figure 3: MDS layout of the central component of the
genre graph. Node size denotes self-reference, and arrow
size denotes edge weight. Self-reference, more than influ-
ence (Figure 2), correlates with centrality in the network.
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Genre Influence (%) Self-reference (%)

Jazz 1.039 (65.3%) 166.516 (100%)
Holiday 1.031 (64.5%) 82.276 (99.6%)
Blues 1.176 (73.6%) 7.698 (99.1%)
Vocal 1.301 (76.6%) 6.818 (98.6%)
R&B/Soul 0.987 (63.2%) 6.369 (98.1%)
Country 0.974 (60.2%) 6.202 (97.7%)
Rock 1.083 (67.5%) 6.124 (97.2%)
Pop 0.836 (51.9%) 6.074 (96.7%)
Christian & Gospel 1.149 (71.9%) 5.883 (96.3%)
Christmas 0.690 (47.6%) 5.759 (95.8%)

Table 5: Top genres by self-reference. Raw values and
percentiles are shown.

genres by self-referential behavior. These genres indeed
correspond with genres near the center of the graph, and
they are all in the central component of Figure 1. Jazz and
Holiday have particularly outlying scores, perhaps reflect-
ing that these genres often consist of standards—covers of
widely known songs. Across the entire genre graph, log-
self-reference correlates with centrality in the MDS graph
(measured as the negative sum of euclidean distances from
a node to all others), with r = 0.610, p < 0.0001.

After seeing the importance of self-reference in the
genre graph, we computed this metric for the other two
graphs. The list of top artists by self-reference is domi-
nated by Jazz artists. This could reflect more the outlying
nature of the genre than it does anything about Jazz artists.
However, viewing the top artists by decade yields some in-
teresting results when Jazz artists are ignored. For exam-
ple, Sam Smith, Two Door Cinema Club, and Owl City are
among the top-10 most self-referential artists of the 2010s.

3.5 Self-Reference and Volume

To better understand the metrics of self-reference and in-
fluence, we assessed their correlations with other aspects
of the data. First, we determined the extent to which
genre volume (number of songs in a genre) affects its self-
reference. Using the un-normalized value of self-reference
(i.e. the genre’s raw self edge weight, not divided by the
genre’s volume), log-self-reference correlates highly with
log-volume (r = 0.846, p < 0.0001). This is because
the raw edge weight is a sum of all connections between
songs of that genre, and more songs allow more connec-
tions. But, when self-reference is normalized by genre vol-
ume (see § 2.2), log-self-reference still correlates highly
with log-volume (r = 0.780, p < 0.0001). Our intuition
for this is that as the number of songs in a genre increases,
the average quality of self-references increases, and so the
normalized contribution from each song increases.

3.6 Genre Diversity, Influence, and Connectedness

Having investigated self-reference as a measure of phrase
sharing within genres, we next assessed sharing of phrases
across genres. We expected that people with high genre di-
versity are able to transfer phrases between genres, which
would increase their influence score as the transferred
phrases are referenced by people with less genre diversity.

Name Influence (%) Self-Reference (%)

Paul McCartney 0.970 (55.4%) 114.061 (99.8%)
John Lennon 0.974 (55.6%) 119.660 (99.8%)
Max Martin 0.421 (31.7%) 0.739 (70.4%)
Mariah Carey 1.039 (59.6%) 3.595 (88.9%)
Barry Gibb 1.111 (62.4%) 7.661 (95.0%)

Table 6: Top writers, ordered by number-one singles. Raw
values and percentiles are shown.

However, we found that influence has a low, though sta-
tistically significant correlation with genre diversity (r =
0.079 for artists, r = 0.155 for writers, p < 0.0001).

Surprised by this result, we investigated further the ef-
fect of genre diversity on connections in the network. First,
we investigated whether drawing influence from many
genres correlates with more complex references and found
a low, though statistically significant, correlation between
writers’ log-average incoming tf-idf value and genre diver-
sity (r = −0.167, p < 0.0001). Next, we examined the
degree to which writing in many genres correlates with di-
rectional influence forward and backward in time. We ac-
tually found a negative correlation between log-out-degree
and genre diversity (r = −0.572, p < 0.0001), as well as
between log-in-degree and genre diversity (r = −0.563,
p < 0.0001). Thus, although influence (the ratio of out-
going to incoming edges) explains little genre diversity,
increased genre diversity correlates moderately with less
robust connections within the graph in both future and past
directions. This could suggest that writers who contribute
to a wider variety of genres use complicated phrases that
are less likely to be shared with other writers, or that they
use more stopwords that are filtered by the algorithm.

Artists showed similar correlation behavior to writers,
but with lower correlation magnitudes, perhaps reflecting
that artists are often a step removed from writing lyrics and
may perform lyrics written by a variety of writers.

3.7 Top Genres, Writers, and Artists

We showed in § 3.5 that the volume of a genre in the dataset
correlates highly with its self-reference score. Compared
to other popular music genres, Rap has a particularly low
self-reference score: it is the 6th most numerous genre in
the data, but ranks 48th in self-reference. Similarly, Metal
is the 8th most numerous genre in the data, but ranks 40th
in self-reference. Rap’s low self-reference score may re-
flect a particular subculture within this genre that values
lyrical originality over references to past material.

Having analyzed lyrical influence between genres over
time, we can now address whether Pop music is more
clichéd than other genres because it draws from many
sources or because it popularizes new phrases [14]. Rock
and Pop are the two most common genres in our dataset.
Rock’s influence score is 1.083, while Pop’s is only 0.836.
Since Pop’s influence is less than 1.0, Pop music quotes
phrases from other genres more often than it influences
them. This suggests that Pop music draws on existing
clichés more than it creates new ones, especially when
compared to other popular genres such as Rock.

658 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



Name Influence Self-Reference

The Beatles 0.140 (21.5%) 2.699 (95.4%)
Elvis Presley 0.847 (56.1%) 9.964 (99.6%)
Mariah Carey 1.688 (73.0%) 3.362 (96.6%)
Rihanna 0.381 (36.9%) 1.114 (90.2%)
Michael Jackson 0.869 (56.8%) 6.527 (98.9%)
The Supremes 0.762 (53.6%) 5.068 (98.2%)
Madonna 3.901 (87.1%) 1.344 (91.3%)
Whitney Houston 2.010 (76.5%) 2.369 (94.7%)
Stevie Wonder 0.247 (29.0%) 2.297 (94.5%)
Janet Jackson 1.162 (64.2%) 1.723 (92.8%)

Table 7: Top artists, ordered by number-one singles. Raw
values and percentiles are shown.

The all-time top writers of number-one hits have influ-
ence scores close to 1, with more successful writers having
slightly lower influence scores (Table 6). This result mir-
rors that found for central genres and suggests that these
writers were well connected in a lyrical culture that they
both contributed to and drew from. The exception is Max
Martin, whose lower influence score perhaps reflects the
less quotable nonsense phrases he often uses in songs [12].
Martin is also the least self-referential of the top writers,
which might be explained by noting that he writes for a
variety of artists with different styles, whereas the other
writers are most famous for writing for themselves.

Table 7 shows the top 10 artists by number-one hits. In
contrast to writer position, artist position does not seem
strongly affected by influence score. However, all top
artists fall into the top decile (10%) of self-reference. Also,
female artists in the list have much higher influence scores
than males, with the exception of The Supremes and Ri-
hanna. We note also that Mariah Carey has a much higher
influence score as an artist than as a writer. Further analysis
of this phenomenon is complicated by the fact that many
people use a pseudonym as an artist but not as a writer.

4. DISCUSSION

We explored topologies of genre, artist, and songwriter in-
fluence networks constructed from links between trigrams
over time. Through edge reduction and strongly connected
component analyses, we showed that all three graphs are
highly centralized around a large component with robust
links. We confirmed this organization with an MDS vi-
sualization of the genre graph based on mutual influence.
Alternative methods of edge reduction revealed separate
components, but primarily along language differences. We
found that the best predictor of a genre’s centrality to the
influence network was the degree to which it referenced it-
self, and that the network especially centered around three
popular and self-referential genres: Jazz, Pop, and Rock.

Our current metrics are useful building blocks for study-
ing relationships between genres, artists, and writers. The
centrality of our influence networks supplements earlier
findings showing clustering between some genres and iso-
lation of others [6, 9]. However, our data do not produce
the Folk, Country, and Blues cluster observed by Fell and
Sporleder [6]; rather, we find these genres have similar in-

fluences but do not draw significant influence from each
other. Fell and Sporleder also found Rap and Metal to
be lyrically isolated when analyzed with a bag-of-words
model [6]. Our trigram analysis shows Rap and Metal to be
well connected in the network, though their self-reference
scores are low compared to other popular genres. Further-
more, the notion of lyrical novelty [5] can be approximated
with influence, as the influence network incorporates nov-
elty into the edge weights with tf-idf; cliché [14] can be
understood as the inverse of novelty. Overall, our analyses
do not suggest the same degree of genre segmentation sug-
gested in prior studies. We conclude that significant dif-
ferences between genres may not occur at the phrase level,
but instead arise from key vocabulary differences [6, 9] as
well as musical and sociocultural factors [2, 15].

There are several potential areas for improvement in the
present study. First, a phrase shared across songs does not
necessarily signify direct influence. Next, albums were oc-
casionally labeled with incorrect years, which would im-
pact the temporal dimension of our networks. We used
primary iTunes album genre for our analysis, but acknowl-
edge that such labels may not adequately characterize the
songs, especially for non-Western music or for songs that
conceivably belong to more than one genre. Also, the de-
crease in connection robustness from cleaning may not be
uniform across genres. In particular, the present results
could be refined by analyzing English lyrics only or by in-
cluding stopwords and cleaning rules for other languages.
The cleaning procedure we followed [5] may benefit from
stemming. Finally, the decision to ignore phrases spanning
lines of lyrics reflects the organization of phrases for most
genres, but may have broken up phrases from genres with
more complicated lyrics (such as Rap).

Our findings highlight exciting possibilities for future
research. Recall that at one point in our component anal-
yses, Jazz was excluded from the central component com-
prising Pop and Rock—not because it was less influen-
tial, but because it drew much less influence from Pop
and Rock than they drew from it, leaving no path back to
Jazz from Pop or Rock when only the highest-magnitude
edges remained in the graph. Future analyses could exam-
ine whether the edge reduction component analysis aligns
more closely with self-reference when graphs are treated
as undirected. Future work could also find cliques, which
would be more robustly interconnected than strongly con-
nected components. Assessing changes in network struc-
ture when higher-order n-grams are used is another topic
that can be explored in future research. Finally, future
studies could examine further the notion of robustness
of connection; differences in influence when people act
as artists versus writers; trends that emerge when peo-
ple are grouped by gender, race, or geolocation; network
topologies when rare genres are grouped into categories;
and could contribute visualizations to help understand the
structure of artist and writer networks.
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ABSTRACT

The goal of this study is to explore which aspects of
people’s analytical decision making are affected when ex-
posed to music. To this end, we apply a stochastic sequen-
tial model of simple decisions, the drift-diffusion model
(DDM), to understand risky decision behavior. Numerous
studies have demonstrated that mood can affect emotional
and cognitive processing, but the exact nature of the impact
music has on decision making in quantitative tasks has not
been sufficiently studied. In our experiment, participants
decided whether to accept or reject multiple bets with dif-
ferent risk vs. reward ratios while listening to music that
was chosen to induce positive or negative mood. Our re-
sults indicate that music indeed alters people’s behavior in
a surprising way - happy music made people make bet-
ter choices. In other words, it made people more likely
to accept good bets and reject bad bets. The DDM de-
composition indicated the effect focused primarily on both
the caution and the information processing aspects of de-
cision making. To further understand the correspondence
between auditory features and decision making, we stud-
ied how individual aspects of music affect response pat-
terns. Our results are particularly interesting when com-
pared with recent results regarding the impact of music
on emotional processing, as they illustrate that music af-
fects analytical decision making in a fundamentally differ-
ent way, hinting at a different psychological mechanism
that music impacts.

1. INTRODUCTION

There is plentiful evidence that one’s mood can affect how
one processes information. When the information being
processed has emotional content (words, for instance), this
phenomenon is referred to as mood-congruent processing,
or bias, and it’s been found that positive mood induces a
relative preference for positive emotional content and vice
versa [2,7]. However, what effect does music have on non-
emotional decision making? This study focuses on the im-
pact of music on risky decision behavior which requires

c© Elad Liebman, Peter Stone, Corey N. White. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Elad Liebman, Peter Stone, Corey N. White. “Impact
of Music on Decision Making in Quantitative Tasks”, 17th International
Society for Music Information Retrieval Conference, 2016.

quantitative reasoning. To this end, we design an experi-
ment in which participants decide whether to accept or re-
ject gambles with different win-loss ratios (meaning they
have different expected payoff).

Previous work in this area shows robust effects of loss
aversion, whereby participants put more weight on poten-
tial losses than potential gains. Loss aversion in this con-
text manifests as subjects being unwilling to accept gam-
bles unless the potential gain significantly outweighs the
potential loss (e.g., only accepting the gamble if the gain
is twice as large as the loss [12, 13]). The present study
focuses on whether and how emotional music influences
such risky decision behavior.

Not much work has studied the direct connection be-
tween music and risky decision making. Some previous
work has studied the general connection between gambling
behavior and ambiance factors including music [1, 3, 11]
in an unconstrained casino environment. Additionally,
Noseworthy and Finlay have studied the effects of music-
induced dissociation and time perception in gambling es-
tablishments [6]. In this paper, we take a deeper and more
controlled look at how music impacts decision making in
this type of risk-based analytical decision making. To this
effect, we use a popular model of simple decisions, the
drift-diffusion model (DDM; [8]), to explore how music-
induced mood affects the different components of the de-
cision process in such tasks. Our results indicate that mu-
sic indeed has a nontrivial and unexpected effect, and that
certain types of music led to better decision making than
others.

The structure of the paper is as follows. In Section 2
we outline the characteristics of the drift-diffusion model,
which we use in this study. In Section 3 we discuss our
experimental design and how data was collected from par-
ticipants. In Section 4 we present and analyze the results
of our behavioral study. In Section 5 we analyze how indi-
vidual auditory components correlate with the behavioral
patterns observed in our human study. In Section 6 we re-
cap our results and discuss them in a broader context.

2. THE DRIFT-DIFFUSION MODEL

This study employs the Drift Diffusion Model (DDM)
of simple decisions to decompose the observed decision
behavior into its underlying decision components. The
DDM, shown in Figure 1, belongs to a family of evi-
dence accumulation models which frame simple decisions
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in terms of gradual sequential accumulation of noisy evi-
dence until a decision criterion is met. In the model, the
decision process starts between the two boundaries that
correspond to the response alternatives. Evidence is ac-
cumulated over time to drive the process toward one of
the boundaries. Once a boundary is reached, it marks the
choice of a specific response. The time taken to reach
the boundary represents the decision time. The overall
response time is the sum of the time it takes to make a
decision plus the time required for processes outside the
decision process like encoding and motor execution. The
model includes a parameter for this nondecision time (Ter),
to account for the duration of these processes.

The primary components of the decision process in the
DDM are the boundary separation, the starting point, and
the drift rate. Boundary separation represents response
caution or the speed vs. accuracy tradeoff exhibited by the
participant. Wide boundaries indicate a cautious response
style where more evidence needs to be accumulated before
a decision is reached. The need for more evidence makes
the decision process slower, but also more accurate, since it
is less likely to reach the wrong boundary by mistake. The
starting point of the diffusion process (z) reflects response
expectancy. If z is closer to the top boundary, for instance,
it means less evidence is required to reach that boundary,
so “positive” responses will be faster and more probable
than “negative” responses. Finally, the drift rate (v) rep-
resents the processing of evidence from stimulus which
drives the accumulation process. Positive values indicate
evidence for the top boundary, and negative values for the
bottom boundary. Furthermore, the absolute value of the
drift rate represents the strength of the stimulus evidence,
with larger values indicating strong evidence and leading
to fast and accurate responses.

In the framework of the DDM, there are two mecha-
nisms that can drive behavioral bias. Changes in the start-
ing point (z) reflect a response expectancy bias, whereby
there is an a-priori preference for one response even before
the stimulus is shown [5,14]. Experimentally, response ex-
pectancy bias is observed when participants have an expec-
tation that one response is more likely to be correct and/or
rewarded than the other. In contrast, changes in the drift
rate (v) reflect a stimulus evaluation bias, whereby there is
a shift in how the stimulus is evaluated to extract the de-
cision evidence. Experimentally, stimulus evaluation bias
is observed when there is a shift in the stimulus strength
and/or the criterion value used to classify the stimuli. Thus
response expectancy bias, reflected by the starting point in
the DDM, indicates a shift in how much evidence is re-
quired for one response relative to the other, whereas stim-
ulus evaluation bias, reflected by a shift in the drift rates in
the DDM, indicates a shift in what evidence is extracted by
the stimulus under consideration. Importantly, both mech-
anisms can produce behavioral bias (faster and more prob-
able responses for one choice [14]), but they differentially
affect the distribution of response times. In brief, response
expectancy bias only affects fast responses, whereas stim-
ulus evaluation bias affects both fast and slow responses

Figure 1. An Illustration of the Drift-Diffusion Model.

(see [14]). It is this differential effect on the response time
(abbreviated RT) distributions that allows the DDM to be
fitted to behavioral data to estimate which of the two com-
ponents, starting point or drift rates, is driving the bias
observed in the RTs and choice probabilities. The DDM
has been shown to successfully differentiate these two bias
mechanisms from behavioral data in both perceptual and
recognition memory tasks [14].

This study used the DDM approach described above to
investigate how music-induced mood affects the different
decision components when performing a quantitative task.
Participants listened to happy or sad music while deciding
whether to bet or fold as bets with different win-loss ra-
tios were proposed to them. The DDM was then fitted to
each participant’s behavioral data to determine whether the
mood induction affected response expectancy bias, stimu-
lus evaluation bias, or both.

3. METHODS

Participants were presented with simple binary gambles
and were asked whether to accept (bet) or reject them
(fold). Each gamble had a 50%-50% chance of success,
with varying win to loss ratio, reflecting how much was
to be gained vs. lost. For example, a 15:5 win-loss ratio
reflect a 50% chance to win 15 points and a 50% chance
of losing 5 points. After a fixation cue was shown for 500
ms, each gamble was presented in the center of the screen
and remained on screen until a response was given. If no
response was given after 3.5 seconds, the trial ended as a
“no response” trial. Responses were indicated with the “z”
and “/” keys, and mapping between the key and response
was counterbalanced across participants.

The gamble stimuli were partitioned to very negative
(win-loss ratio in range [0.33, 0.66)), negative (win-loss
ratio in range [0.66, 1)), positive (win-loss ratio in range
[1, 2)), and very positive (win-loss ratio in range [2, 3]).
The actual values of the bets were randomized in the
range of [3, 60]. Each experiment comprised 20 batches
of 20 gambles, such that in each batch each stimuli condi-
tion was repeated 5 times (gamble order was randomized).
Subjects were not shown the outcome of their gambles im-
mediately as that would be distracting. Instead, between
each batch subjects were shown the overall score they ac-
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crued for the previous batch (whereas each batch score
starts as 0). To encourage competitive behavior, they were
also shown the expected score for that batch. A different
song was played during each block of 5 batches, alternat-
ing from positive to negative music across blocks. The or-
der of the songs was counterbalanced across subjects. The
entire experiment lasted less than 30 minutes. To ensure
that the results were not specific to the particular choice
of songs, the entire experiment was repeated with a large
sample of participants (N = 84), and two separate sets of
songs to assess result reliability.

The music used for this experiment is the same as that
used in [4]. It is a collection of 8 publicly available songs
which was surveyed to isolate two clear types - music that
is characterized by slow tempo, minor keys and somber
tones, typical to traditionally “sad” music, and music that
has upbeat tempo, major scales and colorful tones, which
are traditionally considered to be typical to “happy” music.
The principal concern in selecting these musical stimuli,
rather than their semantic categorization as either happy or
sad, was to curate two separate “pools” of music sequences
that were broadly characterized by a similar temperament
(described above), and show they produced consistent re-
sponse patterns. In [4], it has been shown experimentally
that the selected music was effective for inducing the ap-
propriate mood. This was done by selecting a separate pool
of 40 participants and having them rate each song on a 7-
point Likert scale, with 1 indicating negative mood and 7
indicating positive mood. It was then shown that the songs
designated as positive received meaningfully and statisti-
cally significantly higher scores than those denoted as sad.

The DDM was fitted to each participant’s data, sepa-
rately for positive and negative music blocks, to estimate
the values of the decision components. The data entered
into the fitting routine were the choice probabilities and
RT distributions (summarized by the .1, .3, .5, .7, and .9
quantiles) for each response option and stimulus condi-
tion. The parameters of the DDM were adjusted in the
fitting routine to minimize the χ2 value, which is based
on the misfit between the model predictions and the ob-
served data (see [9]). For each participant’s data set, the
model estimated a value of boundary separation, nondeci-
sion time, starting point, and a separate drift rate for each
stimulus condition. Because of the relatively low number
of observations used in the fitting routine, the variability
parameters of the full DDM were not estimated (see [8]).
This resulted in two sets of DDM parameters for each par-
ticipant, one for the positive music blocks and one for the
negative music blocks.

4. EXPERIMENTAL RESULTS

The response times and choice probabilities shown in Fig-
ure 2 indicate that the mood-induction successfully af-
fected the decision making behavior observed across par-
ticipants. The left column shows the response proportions,
the center column shows normalized response times for
betting decisions, and the right panel shows normalized
response times for the folding decisions. The betting pro-

portions and response time (or RT) measures for the two
conditions - the happy songs and the sad songs - indicate a
clear difference between the conditions. Generally speak-
ing, happy music led to more “correct” behavior - partici-
pants were more likely to accept good bets and reject bad
bets under the happy song condition than the sad song con-
dition. These trends are evident across all gamble propor-
tions and bet-fold decisions, but were only shown to be
statistically significant for some of the settings; the differ-
ence in betting proportions is shown to be significant for
very negative, positive and very positive gambles, whereas
the difference in response times is only shown to be signif-
icant for folding decisions in very positive gambles. Sig-
nificance was evaluated using a paired t-test with p ≤ 0.05.

Figure 3 shows the DDM parameters fitted for the ex-
periment. Although the two bias-related measures (start-
ing point and drift rates) are of primary interest, all of the
DDM parameters were compared across music conditions.
It is possible that the different music conditions could af-
fect response caution and nondecision time. For example,
the slower tempo of the sad songs could lead participants
to become more cautious and have slower motor execu-
tion time. Thus all parameters were investigated. As the
top-left and top-center panels of Figure 3 show, the music
conditions did not differentially affect response caution or
encoding/motor time, as neither boundary separation nor
nondecision time differed between happy and sad music
blocks. Of primary interest were the starting point and
drift rate parameters, which provide indices of response
expectancy and stimulus evaluation bias, respectively. In-
terestingly, as apparent in the top-right and bottom-right
panels of Figure 3, overall, we did not observe any stimu-
lus (evidence processing) bias nor starting point (response
expectancy) bias in the two music conditions. However,
the key difference lied in the drift rates themselves. Fitting
parameters for the drift rates for the four gamble types indi-
cate an overall change in evidence processing in the happy
vs. the sad music conditions, which is statistically signifi-
cant for all gamble proportions. This outcome is shown in
the bottom-left panel of Figure 3. In other words, people
were faster to process the evidence and make betting deci-
sions for good gambles and folding decisions for bad gam-
bles in happy vs. sad music. This difference is summarized
in the bottom-center panel of Figure 3, which presents the
discriminability factor in the happy vs. the sad condition.
Discriminability is defined as the sum of the drift rates for
good bets minus the sum of the drift rates for the bad bets,
(dpositive + dvery−positive − dnegative − dvery−negative).
This measure represents the “processing gap” between
good evidence (good bets) and bad evidence (bad bets).
The discriminability was dramatically higher for happy
songs compared to sad songs.

The DDM results show that the music-based manipula-
tion of mood affected the overall processing of information
in the quantitative task of deciding when to bet and when
to fold, rather than any single bias component. There were
no effects of music on response caution, nondecision time,
or response or stimulus bias, meaning that people weren’t
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Figure 2. Response patterns in terms of response times and bet-fold proportions for the behavioral experiment. A statis-
tically significant difference between the happy song and the sad song conditions is evident for betting proportions given
the four clusters of betting ratios (very negative, negative, positive and very positive). There is also a large statistically
significant difference between response times for folding in the two different conditions. Error bars reflect 95% confidence
intervals. * = p < .05; ** = p < .01; *** = p < .001.

more likely to accept bets or reject them in one condition
or the other, but rather the change impacted the entire de-
cision process. In other words, the mood change induced
by music neither affected the a-priori inclination of people
to bet or to fold, nor has it led to a relative difference in
processing one type of bet vs. the other, but rather simply
made people make better decisions (more likely to accept
good bets and reject bad ones).

5. CORRELATING RESPONSES AND MUSICAL
FEATURES

The partition between “positive” and “negative” mood-
inducing songs is easy to understand intuitively, and in it-
self is enough to induce the different behavioral patterns
discussed in the previous section. However, similarly to
the analysis performed in [4], we are interested in find-
ing a deeper connection between the behavior observed
in the experiment and the different characteristics of mu-
sic. More exactly, we are interested in finding the corre-
spondence between various musical features, which also
happen to determine how likely a song is to be perceived
as happy or sad, and the gambling behavior manifested
by participants. To this end, we considered the 8 songs
used in this experiment, extracted key characterizing fea-
tures which we assume are relevant to their mood classifi-
cation, and examined how they correlate with the subject
gambling behavior we observed.

5.1 Extracting Raw Auditory Features

We focused on three major auditory features: a) overall
tempo; b) overall “major” vs. “minor” harmonic character;
c) average amplitude, representing loudness. Features (a)
and (c) were computed using the Librosa library [10]. To
compute feature (b), we implemented the following proce-
dure, similar to that described in [4]. For each snippet of

20 beats an overall spectrum was computed and individual
pitches were extracted. Then, for that snippet, according
to the amplitude intensity of each extracted pitch, we iden-
tified whether the dominant harmonic was major or minor.
The major/minor score was defined to be the proportion of
major snippets out of the overall song sequence. Analy-
sis done in [4] confirms these three features were indeed
associated with our identification as “positive” vs. “nega-
tive”. Having labeled “positive” and “negative” as 1 and
0 respectively, a Pearson correlation of 0.7 − 0.8 with p-
values ≤ 0.05 was observed between these features and
the label. Significance was further confirmed by applying
an unpaired t-test for each feature for positive vs. negative
songs (p-values < .05).

5.2 Processing Observed Gambling Behavior

Given the complexity of the behavioral experiment dis-
cussed in this paper, several behavioral breakdowns of
participant behavior were extracted. Normalizing the re-
sponse times (RTs) for each participant, we separately con-
sidered the average response times for betting and for fold-
ing for all four gamble types and songs (64 values overall).
Subsequently, we aggregated these average response times
per decision (bet or fold), per gamble type (very negative,
negative, positive and very positive), per song (4 happy
songs, 4 sad songs overall), to obtain 64 average response
times and response time variance per 〈decision, gamble
type, song〉 configuration. Then we could correlate these
values per 〈decision, gamble type〉 setting with the features
extracted for each song. Similarly, we extracted the aver-
age bet-fold ratio and bet-fold variance across all partic-
ipants for each 〈decision, gamble type, song〉 configura-
tion as well. As a result we were also able to examine the
relationship between bet-fold ratios per 〈decision, gamble
type〉 setting with the features extracted for the songs.
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Figure 3. Drift-Diffusion Model parameters fitted for the behavioral experiment. A statistically significant difference
between the happy song and the sad song conditions is evident for betting proportions given the four clusters of betting
ratios (very negative, negative, positive and very positive). There is also a large statistically significant difference between
response times for folding in the two different conditions. Error bars reflect 95% confidence intervals. * = p < .05; **
= p < .01; *** = p < .001.

Decision Gamble RT Avg RT Var. Avg. p-val Var. p-val
bet v. negative -0.73 -0.61 0.03 0.1
bet negative -0.65 0.48 0.07 0.22
bet positive -0.77 -0.64 0.02 0.07
bet v. positive -0.78 -0.59 0.02 0.11
fold v. negative -0.81 -0.65 0.01 0.07
fold negative -0.78 -0.56 0.02 0.14
fold positive -0.45 -0.45 0.25 0.25
fold v. positive -0.77 0.76 0.02 0.02

Table 1. Correlation values between tempo and response
times (average and variance). Results with p-value ≤ 0.1
are marked in bold.

5.3 Observed Correlations

In this section we discuss how the auditory features corre-
sponded with the normalized response time and bet-fold
ratio information extracted from the behavioral experi-
ment. We proceed to analyze the more exact correspon-
dence between the DDM parameters as extracted per song
individually and the auditory features of the songs. We
note that since we are correlating continuous scalar aggre-
gates across users with continuous auditory features, using
the assumptions implicit in a standard Pearson correlation
is reasonable.

5.3.1 Correlation with RTs and Bet-Fold Ratio

Examining the relationship between the features extracted
per song and the response time and bet-fold ratio data dis-
cussed in 5.2 reveals a compound and interesting picture.

Tempo was consistently and in most cases statistically
significantly inversely correlated with response times. This
was true for all gamble types and decision combinations.
Tempo also tended to be inversely proportional to the ob-
served response time variance. Again, this result was con-
sistent across all gamble type and decision combinations.
In other words, generally speaking, not only people re-
sponded faster (lower response times) the faster the music
was, the variance in response times also tended to be re-
duced. The observed Pearson correlations for average nor-
malized response times and response time variances across
the 8 gamble type and decision combinations is provided
in Table 1.

Tempo was also inversely correlated with the average
bet-fold ratio for very negative gambles (r = −0.74, p =
0.03). This also manifested in the correlation with the bet-
fold variance (r = −0.66, p = 0.06). However, it was lin-
early correlated with the bet-fold ratio in the very positive
gambles case (r = +0.71, p = 0.04). Furthermore, in the
very positive gambles case, the variance was still reduced,
leading to a negative correlation (r = −0.71, p = 0.04).
In other words, the faster the music, the more people are
likely to bet on very good bets, and more consistently (re-
ducing variance). Furthermore, the faster the music, the
more likely people are to fold on bad bets, and more con-
sistently (reducing variance). This is a strong signal for
how tempo improves the quality of decision making in
quantitative tasks.

There is evidence that the major dominance feature (de-
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termining the major to minor chord proportion in each
song) is inversely correlated to the average bet-fold ra-
tio and the bet-fold ratio variance in the very negative
gambles case (average: r = −0.6, p = 0.11, variance:
r = −0.61, p = 0.10). Similarly, there is some evidence
that major dominance is linearly correlated with the aver-
age bet-fold ratio and inversely correlated to the bet-fold
variance in the strong-positive case, but this result wasn’t
as convincing (average: r = +0.42, p = 0.29, variance:
r = −0.58, p = 0.14). This result, though inconclusive,
hints at the possibility that the more major chords there
are in a song, the better the analytical decision making that
subjects manifest.

Interestingly, the major dominance feature (determining
the major to minor chord proportion in each song) was in-
versely proportional to the variance in response times when
folding on a very positive bet (r = −0.71, p = 0.04).
Major dominance was also inversely proportional to vari-
ance in response times betting on a very negative bet
(r = −0.65, p = 0.07). In other words, the more major
chords appeared in a song, the less variability people dis-
played in the time it took them to make a poor decision.
This could be a side effect of people making fewer such
mistakes in these gamble - decision combinations, as was
documented in previous sections.

The average amplitude was inversely correlated to the
average bet-fold ratio and the bet-fold ratio variance for
negative and very negative gambles. These observations
seem borderline significant (average: r = −0.59, p = 0.12
for negative, r = −0.53, p = 0.17 for very negative, vari-
ance: r = −0.58, p = 0.13 for negative, r = −0.7, p =
0.05 for very negative). This would imply that the louder
the music, the less likely people are to make betting deci-
sions on bad gambles, and variance is also reduced.

5.3.2 Correlation with DDM Decomposition

Finally, we were also interested in examining how the in-
dividual DDM parameters fitted for each song separately
corresponded with the song features. Comparing the DDM
parameters per song with the tempo, major dominance and
amplitude data, we observed a statistically significant cor-
relation between the tempo and the drift rate for very pos-
itive gambles (Figure 4(a), r = −0.72, p = 0.04), tempo
and very negative gambles (Figure 4(b), r = +0.79, p =
0.01), and, interestingly, between the mean amplitude and
the response caution, a connection that was also suggested
in [4] (Figure 4(c), r = −0.67, p = 0.06). These obser-
vations corroborate both the observations in Section 5.3.1,
and in Section 4.

6. SUMMARY & DISCUSSION

In this paper, we study how music-induced mood affects
decision making in risky quantitative tasks. Subjects were
presented with gambles and needed to decide whether to
accept or reject these gambles as different types of music
were played to them. Our results show that while there is
no evidence for music-induced bias in the decision making
process, music does have a differential effect on decision

Figure 4. (a) Correlation between tempo and the drift rate
for very negative gambles. (b) Correlation between tempo
and the drift rate for very positive gambles. (c) Correlation
between mean amplitude and the overall response caution
(boundary separation).

making behavior. Participants who listened to music cate-
gorized as happy were faster to make decisions than people
who listened to music categorized as sad. Moreover, the
decisions participants made while listening to happy mu-
sic were consistently better than those made while listening
to sad music, implying increased discriminabilty. Further
analysis indicates there is a correlation between tempo and
the speed and quality of decision making in this setting. In-
terestingly, previous work on gambling behavior has found
a connection between the tempo and the speed of decision
making, but was unable to isolate further impact on the
quality of decision making, due to a fundamentally differ-
ent design and different research questions [1].

Of particular note is the comparison between the results
of a recent paper studying the connection between music-
induced mood and mood-congruent bias [4]. In that pa-
per, participants were requested to classify words as happy
or sad as music categorized as happy or sad was played.
Results indicated a clear expectancy bias, meaning mu-
sic affected people’s a-priori tendency to classify words as
happy or sad. This paper, which uses the exact same set of
songs, has reported no such bias effect, or any bias effect,
for that matter. This difference suggests the psychological
mechanisms involved in emotional classification and risky
analytical decision making are inherently different.

This paper is a meaningful step towards a better under-
standing of the impact music has on commonplace cogni-
tive processes which involve quantitative reasoning and de-
cision making. In future work, additional tasks and other
music stimuli should be studied to better understand the
relationship between music and this type of cognitive pro-
cessing.
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ABSTRACT

The recording of classical music is mostly centered around
the score of a composition. During editing of these record-
ings, however, further technical visualizations are used.
Introducing digital interactive scores to the recording and
editing process can enhance the workflow significantly and
speed up the production process. This paper gives a short
introduction to the recording process and outlines possi-
bilities that arise with interactive scores. Current related
music information retrieval research is discussed, showing
a potential path to score-based editing.

1. INTRODUCTION

Classical music generally revolves around the musical
score. It is used as fundamental interpretation directions
by musicians and conductors. During recording of classi-
cal music, scores are used as a means of communication as
well as direct working material of record producers. Suc-
cessive working steps towards a finished music production
however utilize additional views upon the recorded audio
material while still frequently referring to the score. This
media disruption can take a great deal of time since these
different views are not synchronized in any way. Although
most technologies that are needed to overcome this dis-
advantage are already present, they have not been used
in this specific field of application. This paper therefore
summarizes the ongoing efforts of introducing interactive
scores to the classical music production process and dis-
cusses open issues.

2. CLASSICAL MUSIC PRODUCTION

In order to understand the score-related needs and issues
arising during classical music production, a brief overview
of the production process will be given. It is neither com-
plete in terms of performed steps taken nor does it claim
to comprehensively address every aspect of the production

c© Simon Waloschek, Axel Berndt, Benjamin W. Bohl,
Aristotelis Hadjakos. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Simon Waloschek,
Axel Berndt, Benjamin W. Bohl, Aristotelis Hadjakos. “Interactive
Scores in Classical Music Production”, 17th International Society for Mu-
sic Information Retrieval Conference, 2016.

Figure 1. Annotations made in the score during a record-
ing session.

process. Tasks that have implications for further consider-
ations will be outlined in more detail.

The production of classical music recordings is usually
divided into three major phases: pre-production, produc-
tion and post-production [5]. During pre-production an es-
sential goal is to set up a production plan in concordance
with the artistic director or conductor. From the record pro-
ducer’s perspective this of course includes analyzing the
piece(s) of music to be recorded. This includes several as-
pects, such as identifying challenging passages. Generally
speaking, the record producer’s main goal is to familiar-
ize himself with the piece in a way that will allow him
to perform his later tasks in a best possible manner, e.g.
by listening to existing recordings and studying the score.
During this process, the record producer might annotate
and mark passages in the score for later consideration. As
the score will later be a major means of communication
with the conductor or musicians, it should be identical to
the conducting score with respect to its appearance, e.g.
page-layout or reference points.

Capturing the raw audio material from the musicians’
performance in the Digital Audio Workstation (DAW) is
the main goal of the the production phase. This might be
done in several recording sessions, depending on the scope
and nature of the music. Moreover it is common prac-
tice to repeat musically or technically unsatisfying pas-
sages multiple times but yet keep all of the recorded takes.
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The responsible record producer has to carefully listen to
the played music as well as pay attention to the musical
score at the same time. Deviations from the score and
other score-related comments—positive and negative—are
mostly annotated directly in the score as shown in Figure
1. It is to be noted that there is no standardized set of sym-
bols that is commonly used by record producers, e.g. be-
ginnings or endings of the takes or annotating the quality of
a certain passage during a take. Every producer develops
his own set of symbols based on his personal experience
and specific needs.

Oftentimes, an additional take list is manually main-
tained that reflects the beginning and ending measures of
the individual takes in relation to their take number, see
Table 1.

On the basis of their observations during individual
takes, the record producer’s tasks include keeping an
overview of whether all passages have been recorded in a
satisfying manner. If they have not, they will communicate
this to the musicians and ask for additional takes. Commu-
nication with the musicians is done orally using dedicated
audio lines aka talkback channels. For this purpose the
score and its consistency with the conductor’s score and
the musicians’ parts is an essential basis for communica-
tion. Page numbers, measure numbers and other reference
marks of the score will be used to communicate the precise
location to be considered.

The following editing process is dominated by selecting
and splicing parts from the takes that best conform to the
musical aesthetics and technical demands of the produc-
tion. This often requires reviewing huge amounts of audio
data with identical sections spread across the various takes.
With the takes usually being rendered consecutively in the
editing environment as waveforms (see Figure 2), naviga-
tion for auditory comparisons becomes a time-consuming
task, see Section 3.4.

A well-organized take list helps to decrease the time
needed to identify the takes containing a specific section
of the recorded composition. Nevertheless, deciding which
takes to splice might be a process of consecutive compar-
isons of several takes that often cannot be broken down
to mere technical aspects (in the sense of the musicians’
playing technique, as well as the recording quality) but has
to account for aesthetic aspects too, e.g. the quality of a
passage’s musical performance. When a decision has been
made about which takes to splice, it comes to rendering the
splice imperceptible. Besides some technical aspects like
selecting an adequate zero crossing in the waveforms, ad-

Take Pos. / Measures Comment
1 α - Ω
2 α - 17 Beautiful start
3 13 - 31
4 22 - 31 Quarters not in time
5 29 - 52
...

...

Table 1. Exemplary list of takes from a recording session.

Figure 2. DAW with multiple takes lined up in a row.

justing the loudness of the takes, and optimizing the cross-
fade between the two takes, it is the editor’s ears that will
allow them to asses the quality of the splice. All in all, this
often means specifying the precise edit location by ear and
on the basis of a sound music-aesthetic sensitivity of the
editor.

The mixing phase ensures that the sound of the record-
ing has the right balance in terms of each instrument’s vol-
ume levels. Dynamics and panoramic position are manipu-
lated and filters and effects such as reverb may be added to
produce a mix that is more appealing to the listener. These
tasks as well as the final mastering are not further consid-
ered, as the annotated score and take list do not play major
roles in them.

3. INTERACTIVE SCORES AS
MUSIC PRODUCTION INTERFACES

Replacing conventional paper scores with their interactive
counterparts opens up a variety of workflow optimizations
for music production and establishes fruitful connections
to further research and application areas such as digital
music edition. The following sections describe the parts
of the workflow that could benefit from a more ubiquitous
use of digital scores. The corresponding research topics
are mainly located in the field of human-computer interac-
tion (pen and touch interaction, gesture development and
recognition, user interface design), audio processing and
music information retrieval (audio-to-audio and audio-to-
score alignment).

3.1 Sheet Music Interaction and Annotations

Sheet music marks a central work object in the pre-pro-
duction phase, recording session (here in particular) and in
the editing phase as the preceding introduction to classical
music production shows. Handwritten annotations in the
score are an effective, easily accessible and versatile means
to document the recording process and communicate with
the musicians. However, the number of remarks increases
drastically during a recording session and tends to hamper
readability and complicate the assignment of annotations
to specific takes.
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Figure 3. Mock-up of a Pen and Touch-based User Interface for Take Selection and Editing

A transformation of the analog writing on the music
sheet into the digital domain can be achieved via digital
pen and paper technology such as Anoto. An overview
of respective technologies can be found in [20]. The ad-
vantage of digital paper lies in its possibility to link the
annotations with the recorded audio data and process them
accordingly. Limitations become apparent when musical
sections have to be recorded repeatedly, each take intro-
ducing new annotations until the paper sheet is overfull and
hardly readable. Furthermore, the step from the recording
to the editing phase introduces a media disruption. In the
latter, the focus lies on navigating, selecting and editing
takes which cannot be done with the sheet music. Here,
a continuous staff layout, aligned with the audio data, is
desirable.

Even though printed sheet music has some practical
limitations, it features the aforementioned clear advan-
tages. These motivate a fundamental design decision that
will underlay our further concept development: The inter-
active score should become the central interface widget
during the recording and editing phase. Up to now, the
DAW (see Figure 2) marks the central productive inter-
face and the printed score serves as a secondary medium
to hold further information. To preserve the advantages of
(digital) pen and paper we regard pen and touch displays
as the most promising technology. The score layout can
easily be switched from a traditional page-wise style dur-
ing the recording sessions to a continuous staff layout in
the editing phase. Annotations can likewise be shifted as
they are linked to score positions (e.g., measures and single
notes). Figure 3 demonstrates the continuous score layout,
aligned with the recorded audio material and supplemented
by handwritten annotations.

We conceive pen and touch interaction with interac-
tive scores for music production according to the following
scheme. Touch input is mainly used for navigation (turning
score pages, panning and zooming) and to toggle buttons
and input mode switches. Productive input—primarily the

creation of annotations and the editing of takes—is done
with the pen as these require a higher precision. At this, we
follow the same precedent as Yee [19], Hinckley et al [10]
and Frisch [7].

Annotations are layered for each take, i.e., each record-
ing starts with a non-annotated score. However, previous
annotations can be switched on, if required. This over-
comes the problem of overfull music sheets during the
recording session. Hence, the record producer can make
annotations at their exact place in the score without hav-
ing to deal with previous annotations. Annotations can be
structured, moved, hidden, or deleted. This allows, for
example, to show only those annotations that have been
written throughout the last three takes, helping to keep an
overview. Mostly, annotations are also rated as positive,
neutral or negative which helps the record producer to se-
lect the best takes in the editing phase. Such ratings may
be indicated by symbols such as “+”, “−” and “∼”. All
annotations have to be made very quickly during the music
performance and each additional mark costs time. Instead
of such additional symbols, the side-switch of a digital pen
and its eraser can be used as mode switches and the anno-
tations may be color coded accordingly. These may come
in handy during the editing phase to quickly find the right
takes (see Section 3.4).

Moreover, annotations can even serve as control ges-
tures. Record producers typically note the start and stop
position of a take in the score by “ ¬” and “¬” and a serial
number. Instead of controlling the recording functionality
at a different place, it can be triggered immediately when
the input symbol is recognized as a control gesture. The
take’s serial number and naming can be generated. The
symbols and their positions in the score further help to
align the recorded audio material with the score.

3.2 Protocol Automation

Centering the recording and editing workflow around dig-
ital scores is advantageous also during the pre-production
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Figure 4. A pen and touch display used for score annota-
tion.

phase. Digital scores can be generated from commonly
used notation formats such as MusicXML and MEI (Sec-
tion 4.1 addresses music formats with regard to technolog-
ical requirements). In the latter case, i.e. MEI, elements
of the editors’ critical report can be included and help to
clarify the musical idea.

The information that are provided by MusicXML, MEI
and other symbolic music representation formats, that may
underlay the digital score, often include information about
the instrumentation, the number of voices and voice group-
ings. From these information a basic recording project can
be automatically initialized, i.e. the creation of audio tracks
and their naming. Even a rough panning setup can be gen-
erated from the typical orchestra setting and from the mik-
ing plan that is made during the preparatory meeting.

During the recording sessions, the record producer
might maintain a take list, see Table 1. This is done in ad-
dition to the interactions in the DAW and the annotations
in the score. The information in the take list is actually
redundant with the score annotations and can be generated
from them which relieves the record producer. Take list
comments can be generated from the qualitative connota-
tions of the score annotations (positive, negative, neutral)
and from textual annotations and symbols that may be rec-
ognized by the system.

3.3 Communication

Interactive scores can help communicating with the musi-
cians and serve as communication channel. In the record-
ing session the music notation is displayed in a traditional
page-wise score layout that matches with the layout that
the musicians have. This eases the communication. Refer-
ring to a position in the music is mostly done in the for-
mat (page, staff line, measure). If the musicians use digital
music stands, the digital score can even become a means
for visual communication. Here, the record producer may
make annotations in their score that are synchronously dis-
played on the musicians’ music stands. This audiovisual
mode can help making the communication more effective,
less ambiguous and faster.

3.4 Take Selection & Editing

The editing phase and the recording phase utilize differ-
ent facets of the interface. During the recording phase, the
record producer needs to be able to orient himself quickly
in the digital score that must be consistent with the musi-
cians’ score 1 to facilitate communication. In the editing
phase the score and all its additional information (annota-
tions, take list etc.) should facilitate a quick selection of
suitable takes which are then spliced via cross-fades.

Since the music editing process changed from analog to
digital, the average splice count and frequency increased
drastically [18]. We conducted a preliminary survey with
15 record producers to determine the approximate dura-
tions of specific tasks in the editing phase. While recording
a 10 minute piece takes approx. 2:26h, the pure navigation
and splicing process takes 1.62 times as much. The ac-
tual selection of the takes in terms of aesthetics was not
considered. Navigation between suitable takes marks the
most time-consuming part of the editing phase, 54.9% of
the time.

Cues that help to identify promising takes are spread
over the score and the take list. Takes are arranged consec-
utively and not aligned in accordance with their actual mu-
sical content. However, it is possible to tackle these flaws
and approach a solution similar to Figure 3, i.e., a contin-
uous score, each take aligned with it and color coded for
qualitative indication.

From the control gestures (“ ¬” and “¬”, see Sec-
tion 3.1) we know each take’s corresponding score posi-
tion. This helps aligning them with each other and with the
score. Annotations made in the recording phase are linked
to positions and even regions in the score. They can also be
linked to the actual audio recordings via an audio-to-score
alignment. Thereby, problematic passages can be indicated
directly in the takes since annotations have a qualitative
connotation. Selecting a take reveals its annotations in the
score. Based on these qualitative connotations, takes can
be recommended and automatically combined into a “raw
edit version”. This does not make the detailed work of the
editor obsolete but accelerates the time-consuming search
for good candidates.

4. TECHNOLOGICAL STATE OF THE ART

Many of the previously outlined aspects and issues have
already been addressed by current research. This section
provides an overview of the relevant developments and
links together fundamental techniques that can be used to
implement the aforementioned features.

4.1 Digital Score Format

The most basic requirement for score interactivity is the
availability of scores in a digital format. Unfortunately,
most publishers do still publish their scores solely in a
printed form. In order to produce digital counterparts, two
different ways can be employed: Optical Music Recogni-
tion (OMR) [15], which aims at digitizing printed scores

1 at least with the conductor’s score.
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via image recognition algorithms, and direct encoding of
notes in an appropriate data format. While OMR tech-
niques have been used for linking scores with audio [6,11],
they present the same layout related issues discussed in
Section 3.1. Therefore, further considerations concentrate
mainly on symbolic music encoding.

In order to adequately represent symbolic music data,
the Music Encoding Initiative (MEI) [16] was founded and
elaborated a data format (also called MEI), that is able to
hold both musical and layout data of a score.

Although encoding music directly in such formats is
a rather time-consuming task, it offers the best flexibility
in terms of post processing capabilities and manual lay-
out restructuring. The latter oftentimes provides a tremen-
dous advantage in readability over automatically generated
score layouts.

Ongoing digitization efforts of major music publishers
will most likely help to overcome the lack of digital scores
in the near future.

4.2 Digital Score Rendering

Various approaches have been used in rendering digital
scores paired with interactivity, mainly for musical prac-
tice. MOODS [2] and muse [8] are two early examples.

MOODS is a collaborative music editor and viewer,
which lets musicians, the conductor and the archivist view
and annotate the score based on their user priviliges. A
similar approach would be useful to support the commu-
nication between the record producer and the musicians
during music production (see Section 3.3). The muse lets
the user view and annotate the music score. It turns pages
automatically using audio to score alignment [8]. Page-
turning in the MOODS system is based on a horizontal
separator that splits the page into two parts: the part be-
low the separator is currently being played, the part above
is a preview of the next page, which is good for musicians
who oftentimes read ahead.

An alternative representation is an infinite scroll of mu-
sic score without page breaks as shown in Figure 3. In
the score editing software Sibelius this approach is called
“Panorama” and its “Magic Margins” provide information
about clef, key and measure number on the left side. 2

With the advent of Verovio [14], a more modern ap-
proach to score rendering is available. Providing an easy
interface to render MusicXML as well as MEI files with
custom layout properties, it is gaining usage amongst web-
based score applications.

4.3 Linking Scores and Audio

In order to visualize the recorded audio takes time-
synchronously to the score (see Figure 3), both represen-
tations have to be aligned algorithmically; Each position
in the individual takes should be linked to the equivalent
position in the score and vice versa.

2 http://www.sibelius.com/products/sibeliusedu/5/panorama.html (last
accessed March 2016)

Symbolic music representations offer the possibility to
be transformed into audio files, reducing the score-to-
audio-alignment task to the (commonly considered) sim-
pler problem of audio-to-audio-alignment. This way, the
generated audio can be annotated automatically with cue
points from the score. Tools such as music21 [9] and
meico 3 are able to transform MEI, MusicXML etc. into
MIDI, which in return can be used to output audio data.

In the next step, these audio data are to be aligned with
the recorded takes. Various approaches have been applied
and are thoroughly discussed by Thomas et al. [17] and
Müller [13]. Annotations in the score during the recording
phase as described in Section 3.1 can be used to bypass
false alignments in situations, where identical musical pas-
sages occur multiple times throughout a composition.

Scenarios with partial usage of alignment techniques in
recording situations can be found in [4, 12], though prac-
tical implementations are still lacking. This renders com-
prehensive evaluations of new score-based editing methods
impossible.

4.4 Interaction

Changing from printed to digital scores allows for a wide
range of interaction possibilities as presented in Section
3.4. Rendering engines like Verovio output the score as
Scalable Vector Graphics (SVGs), which can be viewed
in every modern web browser. SVG however developed
from a pure visualization format into a major interactivity
framework. The content can be changed programmatically
with low expenditure of time and allows for pixel-precise
reaction to pen and touch input. Using a web browser as
front-end enables the usage of JavaScript as the underlying
programming language.

Ready-to-use gesture frameworks, e.g. the $N Mul-
tistroke Recognizer [1], can easily be incorporated and
adapted to make use of established Pen & Touch interac-
tion modalities [3] and the aforementioned gestures to start
and stop the recording etc. due to its JavaScript nature.

Hardware-wise, large pen-enabled touch screen dis-
plays as shown in Figure 4 are already widely used by me-
dia designers and can be adapted to the discussed scenario
without further modifications.

5. CONCLUSIONS

Although many technical aspects of interactive scores in
recording scenarios have already been addressed by re-
search, the main issue remains in bringing their results
together in a usable manner. This usability is generally
driven by in-depth insights into the workflow of record pro-
ducers. Classical music recording is in its roots a rather
conservative task that remains skeptical about new devel-
opments and, therefore, requires comprehensive analysis
in advance. Unfortunately, this field of work seems to be
not very accessible in terms of open exchange of working
strategies.

3 http://www.zemfi.de/resources/meico-mei-converter/ (last accessed
March 2016)
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Once the (classical) recording process is well docu-
mented, new interface and usability concepts as exemplary
outlined in Section 3 can be developed and evaluated. To
have an impact on the actual work processes, the concep-
tion and development should be as close as possible to po-
tential users.

The software implementation of such an interface can
gain advantage of present MIR and usability engineering
research and brings together several topics in a new way.
Thus, it provides an interesting and unique use case for fu-
ture research on music information retrieval methods com-
bined with user interaction analysis.
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[11] Ö. İzmirli and G. Sharma. Bridging printed music and
audio through alignment using a mid-level score repre-
sentation. In Proc. of the Int. Soc. for Music Informa-
tion Retrieval Conf., pages 61–66, 2012.

[12] N. Montecchio and A. Cont. Accelerating the mixing
phase in studio recording productions by automatic au-
dio alignment. In Proc. of the Int. Soc. for Music Infor-
mation Retrieval Conf., 2011.

[13] M. Müller. Fundamentals of Music Processing: Audio,
Analysis, Algorithms, Applications. Springer Interna-
tional Publishing, 2015.

[14] L. Pugin, R. Zitellini, and P. Roland. Verovio: A Li-
brary For Engraving MEI Music Notation Into SVG. In
Proc. of the Int. Soc. for Music Information Retrieval
Conf., Taipei, Taiwan, 2014.

[15] Ana Rebelo, I. Fujinaga, F. Paszkiewicz, A. R. S.
Marcal, C. Guedes, and J. S. Cardoso. Optical Music
Recognition: State-of-the-Art and Open Issues. Inter-
national Journal of Multimedia Information Retrieval,
1(3):173–190, 2012.

[16] Perry Roland. The music encoding initiative (mei). In
Proceedings of the First International Conference on
Musical Applications Using XML, pages 55–59, 2002.

[17] V. Thomas, Chr. Fremerey, M. Müller, and M. Clausen.
Linking Sheet Music and Audio – Challenges and New
Approaches. Dagstuhl Follow-Ups, 3, 2012.

[18] S. Weinzierl and C. Franke. ’Lotte, ein Schwindel!’
– History and practice of editing recordings of
Beethoven’s symphony No. 9. In 22. Tonmeistertagung
– VDT International Convention, 2003.

[19] K. Yee. Two-handed Interaction on a Tablet Display.
In CHI ’04 Extended Abstracts on Human Factors in
Computing Systems, CHI EA ’04, pages 1493–1496,
Vienna, Austria, 2004. ACM.

[20] R. B. Yeh. Designing Interactions That Combine Pen,
Paper, and Computer. PhD thesis, Stanford, CA, USA,
2008.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 673



JAZZ ENSEMBLE EXPRESSIVE PERFORMANCE MODELING

Bantula, Helena Giraldo, Sergio Ramirez, Rafael
.Music Technology Group, Universitat Pompeu Fabra, Barcelona (Spain)

helenabantula@gmail.com, {sergio.giraldo, rafael.ramirez}@upf.edu

ABSTRACT

Computational expressive music performance studies
the analysis and characterisation of the deviations that a
musician introduces when performing a musical piece. It
has been studied in a classical context where timing and
dynamic deviations are modeled using machine learning
techniques. In jazz music, work has been done previously
on the study of ornament prediction in guitar performance,
as well as in saxophone expressive modeling. However,
little work has been done on expressive ensemble perfor-
mance. In this work, we analysed the musical expressivity
of jazz guitar and piano from two different perspectives:
solo and ensemble performance. The aim of this paper is to
study the influence of piano accompaniment into the per-
formance of a guitar melody and vice versa. Based on a
set of recordings made by professional musicians, we ex-
tracted descriptors from the score, we transcribed the gui-
tar and the piano performances and calculated performance
actions for both instruments. We applied machine learning
techniques to train models for each performance action,
taking into account both solo and ensemble descriptors.
Finally, we compared the accuracy of the induced models.
The accuracy of most models increased when ensemble in-
formation was considered, which can be explained by the
interaction between musicians.

1. INTRODUCTION

Music is a very important part in the life of milions of peo-
ple, whether they are musicians, they enjoy attending live
music concerts or simply like listening to musical record-
ings at home. The engaging part of music is the human
component added to the performance: instead of a ”dead”
score, musicians shape the music by changing parameters
such as intensity, velocity, volume and articulation. The
study of music expressive performance from a computa-
tional point of view consists of characterising the devia-
tions that a musician introduces in a score, often in order
to render human-like performances from inexpressive mu-
sic scores.

There are numerous works which study expressive per-
formance in classical music, and most of these studies have

c© . Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: . “Jazz Ensemble
Expressive Performance Modeling”, 17th International Society for Music
Information Retrieval Conference, 2016.

been done on piano performances (for an overview, see
Goebl [24]). Other works analyse expressivity in a jazz
context. For instance, Giraldo and Ramı́rez [8] study and
model the ornamentation introduced to a jazz melody by
using machine learning techniques. In an ensemble con-
text, the musicians’ performance is influenced by what
is being played by the other musicians. Although most
works are focused on soloist performances, some works
take into account ensemble performances in classical mu-
sic ( [26], [12], [15]). However, to our knowledge lit-
tle work addresses ensemble expressive performance in a
jazz context. In this work, we present a method to study
the interaction between jazz musicians from a computa-
tional perspective. Our data set consisted of 7 jazz pieces
recorded by a jazz quartet (guitar, piano, bass and drums),
in which each instrument was recorded on a separate track.
In this study we considered the interaction between guitar
melodies and the accompaniment of piano. We extracted
individual (soloist) score descriptors as well as ensemble
descriptors. We calculated performance actions for both
guitar (embellishments) and piano (chord density, range
and weight). We applied machine learning techniques to
predict these performance actions using Artificial Neural
Networks, Support Vector Machine and Decision Trees.
We generated individual models for each instrument and
measured the level of interaction between musicians by in-
troducing ensemble descriptors into each individual model
to create mixed models, and compared the individual mod-
els with the mixed models. Finally, we evaluated the per-
formance of the algorithms by computing statistical signif-
icance tests (Paired T-Test).

The rest of the paper is organised as follows. In Sec-
tion 2, we present related work in expressive music per-
formance. In section 3, we describe the materials we have
used. In Section 4, the proposed method is described and
the evaluation process is explained. In Section 5, the re-
sults of the evaluation are presented. Finally, in Section 6
we put forward conclusions and future improvements.

2. RELATED WORK

Many works study expressive performance actions in mu-
sic, defined as variations in timing (duration and onsets),
energy, articulation, and vibrato from different perspec-
tives, including psychology ( [6], [19]), neurology ( [13]),
musicology ( [22]) and at a computational level. Previous
work has been done in a classical context by Friberg [5],
who develops a set of rules using analysis by synthesis to

674



generate the deviations to be applied to a score, obtaining
human-like performances. Widmer [25] analyses record-
ings of 13 complete Mozart piano sonatas and uses a ma-
chine learning approach to create predictive rules for note-
level timing, dynamics and articulation. In a jazz context,
previous work has focused on the saxophone: Lopez de
Mántaras et al. [1] use case-based reasoning to develop a
system capable of modeling expressive performances (on-
set, duration and energy) of jazz saxophone. Ramı́rez and
Hazan [20] apply classification and regression methods to
a set of acoustic features extracted from saxophone record-
ings and a set of descriptors which characterised the con-
text of the performed notes. In jazz guitar, Giraldo and
Ramı́rez ( [9], [10]) use machine learning techniques to
model and synthesise embellishments by training models
to classify score notes as embellished or not, according to
the characteristics of the notes’ context.

2.1 Ensemble Performance

In ensemble performance, the expressivity of a soloist
might be influenced by what the other musicians are play-
ing. Most of the literature refers to classical context,
studying timing asynchrony among performers. Repp [21]
studies the synchronisation of the task of tapping by taking
into account phase and frequency correction mechanisms.
Wing et al. [26] develop a model for studying synchronisa-
tion in string quartets in different contexts (democratic or
dictatorial). Goebl and Palmer [12] investigate the effect of
the auditory and visual feedback so to study the synchro-
nisation among musicians. More recently, Marchini [15]
studies the interaction between musicians by generating
independent machine learning models of expressive per-
formance for each musician and taking into account the
influence of the other musicians.

3. MATERIALS

We recorded 7 jazz standards performed by a jazz quar-
tet both in wav and MIDI format, using the digital audio
workstation Logic Pro X [14]. The scores were written in
Music-XML format using Muse Score [18] to extract de-
scriptors. We developed code by using the computing envi-
ronment Matlab [17], concretely, the MidiToolBox Library
developed by Toiviainen and Eerola [4] to process the data
in MIDI format. We used the fundamental frequency esti-
mator YIN [3] to create an automatic guitar melody tran-
scriber. We performed beat tracking of the recordings us-
ing the beat tracker developed by Zapata [27]. Finally,
we used the Weka Data Mining Software [16] for machine
learning modeling.

4. METHODOLOGY

The methodology is divided into three stages, which are
depicted in Figure 1. Firstly, we acquired the data from
recordings and its respective scores (Section 4.1). Sec-
ondly, the data was analysed to extract the chords played
by the pianist, which were aligned with the score after-
wards so as to obtain piano performance actions. For gui-

tar, we transcribed the audio into MIDI, and aligned the
played notes with the score to obtain guitar performance
actions. From the score, descriptors for notes and chords
were extracted. We manually transcribed the audio of the
piano and guitar into a new score in order to also extract
descriptors from the performed score. The audio mix was
used for beat tracking, and to compute a mean tempo.
Thirdly, machine learning techniques were applied using
the different data sets created from the extracted data to
predict the calculated performance actions (Section 4.3).

Figure 1. Overall framework: the data related to the score
is shown inside ellipses while the data related to the record-
ings is placed inside rectangles.

4.1 Data acquisition and pre-processing

We recorded a jazz ensemble consisting of keyboard, elec-
tric guitar, electric bass and drums. We only used the gui-
tar data in wav format, the piano data in MIDI format and
an audio mix of the band in wav format for further tempo
computation. Improvisers usually play the main melody at
the beginning and end of a performance with improvisa-
tions in the central part and so both the recordings and the
scores were segmented in order to contain only the melody
part (no introductions or solos).

4.2 Data analysis

The aim of this part was to obtain a machine readable
representation from the input data (recordings and scores)
in the form of descriptors (data extracted from the score
which characterised both notes and chords by taking into
account their properties and the properties of their con-
texts) and performance actions (deviations from the score
introduced by the musician to add expressivity, extracted
from the recordings). In this stage, there were 4 types of
input data: piano recordings, guitar recordings, scores and
audio mix recordings. The following Sections explain the
processing of this data.

4.2.1 Piano Data

We detected chords in the piano data by grouping together
individual notes. The process consisted of identifying
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groups of notes played at the same time and so we cre-
ated heuristic rules based on the work done by Traube and
Bernays [23], who identify groups of notes which have
near-synchronous onsets by analysing onset differences
between two consecutive notes. Our approach consisted
of three rules: the first one searched for and grouped notes
which were played at the same time. The second one, was
in charge of merging chords with an inter onset difference
< 100ms. Finally, the third rule took into consideration
pedal notes (notes that remain while two or more chords
are played consequently).

Alignment was performed to link the detected chords
with the score chords. It was done at a beat level: since
the position of the beats was computed by the beat tracker
(see Section 4.2.4), we converted the onsets/offsets of each
performed chord from seconds to beats. Based on beat in-
formation, we aligned a chord written in the score with the
chord (or chords) that had been played.

Based on the alignment of the played chords to the
score, the performance actions for every chord in the score
were calculated according to what had been played. We
computed three performance actions: density (Equation
1), defined as low or high depending on the number of
chords used to perform a score chord (i.e. chords played
with a duration of half-note or more were labelled as low
while a duration of less than a half note corresponded to a
”high” label); weight (Equation 2), defined as low or high
according to the total number of notes which were utilised
to perform a score chord; and range (Equation 3), defined
as low or high if the distance in semitones from the high-
est to the lowest performed note per chord in the score was
larger than 18 (an octave and a half) .

den(chordS) =





low if
∑

chordsP

dur(chordS)
< 1/2

high if
∑

chordsP

dur(chordS)
≥ 1/2

(1)

Where:

chordS : is the corresponding chord on the score

∑
chordsP : is the amount of performed chords for a chord on

the score

dur(chordS): is the duration of the corresponding chord on the
score

wei(chordS) =





low if
∑

notesP∑
chordsP

< 4

high if
∑

notesP∑
chordsP

≥ 4

(2)

Where:

chordS : is the corresponding chord on the score

∑
notesP : is the total number of performed notes for a chord

on the score

∑
chordsP : is the amount of performed chords for a chord on

the score

ran(chordS) =





low if max(pitchPN )−min(pitchPN ) < 18

high if max(pitchPN )−min(pitchPN ) ≥ 18
(3)

Where:

chordS : is the corresponding chord on the score

pitchPN : is the vector of pitch of the performed notes (PN ) for
a chord on the score

4.2.2 Guitar Data

We automatically converted the guitar recording in wav
format into a MIDI format in order to obtain a note repre-
sentation based on pitch, onset (in seconds) and offset (in
seconds) by following the framework presented in Bantula
et al. work [2].

Alignment was then performed at two levels. Firstly,
the onsets and offsets of the MIDI notes were converted
from seconds to beats using the beats’ information com-
puted by the beat tracker (see Section 4.2.4). Secondly, we
performed manual alignment between the performed notes
and the score notes by using a graphical interface that al-
lowed to link the performed notes and the score notes in
two pianoroll representations [11]. Embellishments were
computed by following the same approach by Giraldo and
Ramı́rez [11]: a note was considered to be embellished if
two or more notes were played in its place. Then, each
score note was labelled as embellished or not (y/n) accord-
ing to the previous alignment.

4.2.3 Score Data

In this stage, we extracted horizontal and vertical descrip-
tors from the score to characterise both chords and notes.

• Chord Descriptors (Figure 2) For chords, the hori-
zontal context concerned harmonic information and
the vertical context considered melodic, ensemble
information. In Table 1, the intrinsic descriptors of
the reference chords are listed. In Table 3, the har-
monic horizontal descriptors, computed according to
the neighbours of the reference chord are shown. Ta-
ble 2 includes the vertical descriptors computed by
averaging or weighting the single note descriptors of
the notes below the region defined by the reference
chord.

Figure 2. Excerpt of Autumn Leaves: horizontal and verti-
cal contexts for the reference chord F7
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descriptor units computation range
id num root→ number [0,11]

type label type
{M, m, +,7,

dim, half dim}
tens label tension based on

musical criteria {++, +, -, - -}
chord dur beats chord dur [1,∞)

on b beats on b [1,∞)

Table 1. Individual descriptors for a reference chord (no
context).

descriptor units computation range
onset b beats min(onsetnotes) [1,∞)

dur b beats
max(onsetnotes)
+max(durnotes)
−min(onsetnotes)

[1,∞)

meanPitch
(mP) MIDI note mean(pitchnotes) [36,96]

onset s seconds 60 ∗ onset b
tempo

[1,∞)
dur s seconds 60 ∗ dur b

tempo
[1,∞)

chroma half
tones mod12(mP ) [0,11]

measure num measure [1,∞)
pre dur b beats pre dur b [1,∞)
pre dur s seconds 60 ∗ pre dur b

tempo
[1,∞)

nxt dur b beats nxt dur b [1,∞)
nxt dur s seconds 60 ∗ nxt dur b

tempo
[1,∞)

prev int half
tones prevmP −mP [1,∞)

next int half
tones mP − nextmP [1,∞)

note2key half
tones chroma− key [0,11]

note2chord half
tones chroma− id [0,11]

isChordN* label - {y,n}
mtr* label mean(metpos(notes))

{strong,
weak}

intHop* num mean(intervals) [0,96]
melody* num #notes

chord dur
-

Table 2. Chord melodic descriptors (vertical)

descriptor units computation range
tempo bpm tempo [1,300]

keyMode label keyMode
{major,
minor}

numKey num key position in
the Fifths Circle [0,11]

keyDistance half
tones id− numKey [0,11]

metP* label metrical position

{strongest,
strong,
weak,

weakest}

function label
harmonic

analysis from
keyDistance

{tonic,
subdom,

dom,
no func}

next root int half
tones id− nextid [0,11]

prev root int half
tones previd − id [0,11]

Table 3. Chord harmonic descriptors (horizontal)

• Note descriptors (Figure 3) For note descriptors,
the horizontal context included melodic information
while the vertical context included harmonic, en-
semble information. Following the approach made
by Giraldo [7], we computed horizontal note de-
scriptors using the information of the reference
notes’ neighbours whereas we computed vertical
note descriptors by using the chords’ information.
Since every note belonged to a chord, the features
of the note were merged with the descriptors of the
corresponding chord by concatenating both lists and
eliminating repeated items.

Figure 3. Excerpt of All Of Me: Horizontal and Vertical
contexts for a reference note

4.2.4 Audio mix Data

For every recording, we performed a semi-automatic align-
ment between the performance and the score.The tempo
varied during the performance because no metronome was
used. Hence, beat positions were not equidistant and beat-
tracking was performed to create a beat grid which allowed
to link the performed information to the score informa-
tion. We used the algorithm developed by Zapata et al. [27]
to track the beats, followed by manual correction. After-
wards, the mean tempo of each song was computed using
Equation 4, where beats was the vector of beats computed
in the previous step.

tempo = round

(
60

mean(diff(beats))

)
(4)

4.3 Machine learning

4.3.1 Datasets

As it can be seen in Figure 1, the inputs of the Machine
Learning stage were the performance actions for both pi-
ano and guitar as well as the score descriptors (for chords
and notes). Hence, we constructed three types of datasets,
shown in Figure 4.

• Simple Datasets (D1): Horizontal score context. It
only contained individual descriptors of the chords
or notes.

• Score Mixed Datasets (D2): D1 plus vertical
score context, which contained merged descriptors
of chords and notes.

• Performance Mixed Datasets (D3): D1 plus verti-
cal performance context (extracted from the manual
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transcriptions of the performances), which contained
merged features of chords and notes, taking into ac-
count the real interaction between musicians.

Figure 4. Three different datasets depending on the in-
cluded descriptors

Therefore, for piano we trained models to learn the
function shown in Equation 5 while for guitar, the func-
tion to learn is presented in Equation 6.

f(Chord)→ (Den,Wei,Ran) (5)

Where:

Chord: is a chord only characterised by harmonic descriptors
plus melodic descriptors (depending on the dataset)

Den, Wei, Ran: are the predicted density, weight and range
labels (high/low), respectively.

f(Note)→ (Emb) (6)

Where:

Note: is a note characterised by the set of melodic descriptors
plus harmonic descriptors (depending on the dataset)

Emb: corresponds to the predicted embellishment label (yes/no).

4.3.2 Feature Selection

The aim of this part was to identify specific score descrip-
tors that best described the previously defined performance
actions, so as to train models with the most representative
ones. Therefore, for every dataset we evaluated the de-
scriptors by their information gain. Tables 4, 5, 6 and 7
show the best ranked descriptors for density, weight, range
and embellishments, respectively.

D1 D2 D3
metP mtr metP

chord dur metP chord dur
function chord dur intHop

type isChordN isChordN
tens type function
metP tens type

tens

Table 4. Selected features for density

D1 D2 D3
tens tens tens

function function function
chord dur type type

metP metP metP
isChordN keyMode
keyMode isChordN

mtr tens

Table 5. Selected features for weight

D1 D2 D3
numKey numKey numKey
function dur s pre dur s

type duration b prev int
tens pre dur b function

keyMode nxt dur b type
metP isChordN mtr

function isChordN
mtr tens
type keyMode
tens metP

keyMode
metP

Table 6. Selected features for range

D1 D2 D3
phrase phrase phrase
dur b dur b dur b
dur s dur s dur s

pre dur b pre dur b pre dur b
pre dur s pre dur s pre dur s

onset onset onset
tens tens
type type

function function
isChordN isChordN
keyMode keyMode

metP

Table 7. Selected features for embellishments

4.3.3 Algorithms

The aim of this stage was to compare the results of the
widely used algorithms Decision Trees, Support Vector
Machine (SVM) (with a linear kernel) and Neural Networks
(NN) (with one hidden layer). We used the implementa-
tion of these algorithms in the Weka Data Mining Soft-
ware [16], utilising the default parameters.

5. RESULTS

Since every performance action contained 3 datasets, we
generated a model for each of them. Thus, the results we
present include a comparison between the datasets as well
as the algorithms.

5.1 Piano data: density, weight and range

We evaluated the accuracy (percentage of correct classifi-
cations) using 10-cross fold validation with 10 iterations.
We performed statistical testing by using the t-test with a
significance value of 0.05 to compare the methods with the
baseline (Zero Rule Classifier) and decide if one produced
measurably better results than the other.
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Table 8 shows the results for density. It can be seen
that the accuracy increased when ensemble information
was considered (datasets D2 and D3). The significant
improvements were achieved by the algorithms NN and
SVM, being 65.13 the highest accuracy reached with the
dataset D2 which consisted in both harmonic and melodic
score descriptors. For weight (Table 9), none of the re-
sults was statistically significant and the performance of
the three models can be interpreted as random. The high-
est results were achieved when only piano information was
considered (D1), showing no interaction between this per-
formance action and the guitar melody. Table 10 presents
the results for range. In that case, the three algorithms
reached their maximum accuracy when information of the
ensemble performance (D3) was considered, which can be
explained as a presence of correlation between the range of
the chords performed and the melody the piano player was
hearing. Moreover, the results for the algorithms Decision
Trees and SVM were statistically significant.

Dataset Baseline NN SVM Decision Tree
D1 51.82 61.19 ◦ 62.13 ◦ 53.75
D2 51.82 61.72 65.13 ◦ 55.34
D3 51.82 55.75 61.75 57.65
◦, • statistically significant improvement or degradation

Table 8. Accuracy for the models of density in comparison
to the baseline using NN, SVM and Decision Trees

Dataset Baseline NN SVM Decision Tree
D1 53.73 63.52 52.96 54.48
D2 53.73 50.62 49.64 51.85
D3 53.73 57.70 50.90 51.36
◦, • statistically significant improvement or degradation

Table 9. Accuracy for the models of weight in comparison
to the baseline using NN, SVM and Decision Trees

Dataset Baseline NN SVM Decision Tree
D1 56.73 54.51 62.06 63.72
D2 56.73 57.11 60.90 60.93
D3 56.73 58.83 67.85 ◦ 67.98 ◦
◦, • statistically significant improvement or degradation

Table 10. Accuracy for the models of range in comparison
to the baseline using NN, SVM and Decision Trees

5.2 Guitar data: embellishments

In that case, there was a skewed classes distribution, which
led us to evaluate the sensitivity (true positive rate) rather
than the accuracy of the model. Table 11 presents the re-
sults obtained. It can be seen that, despite the low percent-
age of sensitivity, the results for the three algorithms in-
creased when considering ensemble information (D2, D3).

6. CONCLUSIONS

In this work we have developed a system which studies
the interaction between musicians by using techniques re-

Dataset NN SVM Decision Tree
D1 26 20 12
D2 30 38 26
D3 30 32 24

Table 11. Sensitivity percentage for embellishments

lated to computational analysis of expressive music perfor-
mance and machine learning. We have created a database
consisting of recordings of 7 jazz standards played by a
quartet (piano, guitar, bass and drums) and their corre-
sponding scores. For processing both the recordings and
the scores, we have developed code libraries consisting
of specific functions for every stage of the process: se-
lect chords, extract vertical and horizontal descriptors for
both notes and chords, align and compare the recordings
with the score and extract performance actions. Finally,
we have generated models for different datasets consisting
of information from individual performances and ensem-
ble performances. Based on the accuracy and sensitivity of
the models, we have obtained numerical results which have
allowed us to estimate the level of interaction between mu-
sicians. The data analysis indicated that, in general terms,
the performance actions of the accompaniment are influ-
enced by the soloist and vice versa, since both written and
performed descriptors contributed to a better performance
of the models.

In a future work, it would be interesting to extract other
performance actions such as energy or duration for both
chords and notes and to study the extent to which the
measures are sensitive to the incorporation of other instru-
ments. Moreover, since we have at our disposal a database
which contains the recordings of bass and drums, it would
be interesting to incorporate both instruments into the anal-
ysis. We have observed that the majority of the models got
better results with ensemble information but the accura-
cies of the models could still improve by collecting more
data (making new recordings) or extracting more descrip-
tors. Finally, the parameters of the used algorithms could
be further investigated so as to improve the results.
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ABSTRACT

Native American music is perhaps one of the most doc-
umented repertoires of indigenous folk music, being the
subject of empirical ethnomusicological analyses for sig-
nificant portions of the early 20th century. However, it
has been largely neglected in more recent computational
research, partly due to a lack of encoded data. In this pa-
per we use the symbolic encoding of Frances Densmore’s
collection of over 2000 songs, digitized between 1998 and
2014, to examine the relationship between internal musical
features and social function. More specifically, this paper
applies contrast data mining to discover global feature pat-
terns that describe generalized social functions. Extracted
patterns are discussed with reference to early ethnomusi-
cological work and recent approaches to music, emotion,
and ethology. A more general aim of this paper is to pro-
vide a methodology in which contrast data mining can be
used to further examine the interactions between musical
features and external factors such as social function, geog-
raphy, language, and emotion.

1. INTRODUCTION

Studying “musical universals” in the context of contem-
porary theories of music evolution, Savage et al. [23] ar-
gue that many of the most common features across musi-
cal cultures serve as a way of facilitating social cohesion
and group bonding (see also [2, 18]). The focus of their
analysis, however, is on comparing geographical regions
without systematically differentiating between social con-
texts and functions of music making. Across these regions,
the authors look for links and elements of “sameness”. The
application and methodology presented here can be viewed
as complementary to the earlier study [23]. Firstly, we fo-
cus on the relationship between internal musical features
(such as pitch range, melodic or rhythmic variability) and
the specific social function ascribed to songs rather than
feature distributions across geographic regions. Secondly,

c© Daniel Shanahan, Kerstin Neubarth, Darrell Conklin.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Daniel Shanahan, Kerstin Neubarth,
Darrell Conklin. “Mining Musical Traits of Social Functions in Native
American Music”, 17th International Society for Music Information Re-
trieval Conference, 2016.

using computational techniques we study features that can
contrast between different social functions within a cul-
ture, rather than those that are potentially universal in mu-
sic.

The folk songs of Native American groups provide a
convenient starting point for the analysis of social function
and musical features: a large number of pieces has been
recorded by (relatively few) individuals who often anno-
tated the music with an explicit social function. Nettl com-
mented in 1954 that “more musical material [was] avail-
able from this large area [...] than from any other of similar
size” [20, p. 45]. The collection created by Frances Dens-
more [25] covers repertoires from five out of the six mu-
sical areas postulated by Nettl. Densmore collected songs
by Native American groups (see Table 1), and recorded
the social usage of songs, ranging from the general (e.g.
war songs) to the specific (e.g. songs of the corn dance).
Building on Densmore’s work, Herzog [10] discussed four
categories of social function in music of the North Ameri-
can Plains, specifically love songs, songs of hiding games,
ghost dance songs, and songs in animal stories. Employing
quantitative analysis, Gundlach also compared songs used
in different situations, e.g. war songs or healing songs;
groups of songs were taken as proxies for studying mood,
specifically asking if “objective characteristics of a piece of
music form the basis for the mood which it may arouse” [7,
pp. 134-135]. Interestingly, Gundlach found a diversity in
the treatment of some musical features to convey emotion
across indigenous groups, such as larger intervals mainly
associated with “sad” love songs among the Chippewa and
Ojibway but with “happy” love songs among the Teton-
Sioux [7, p. 139].

This paper builds upon Gundlach’s work, exploring
quantitative analysis to identify musical traits of songs as-
sociated with different social functions. More specifically,
we adopt contrast data mining [1, 5, 21], a type of descrip-
tive supervised data mining. In the context of music infor-
mation retrieval, supervised data analysis has been largely
dominated by predictive classification, i.e. building mod-
els that discriminate labeled groups in data and predict the
group label of unseen data instances. Classifiers are gen-
erally treated as a black box, and results tend to focus on
predictive accuracy. By comparison, contrast data mining
aims to discover distinctive patterns which offer an under-
standable symbolic description of a group.
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Discovered patterns are discussed both in light of eth-
nomusicological writings such as those by Densmore, Her-
zog and Gundlach, and in the context of research into mu-
sic and emotion. The music information retrieval commu-
nity has engaged with models and classifiers of emotion
in music from many different perspectives and utilizing a
wide range of approaches. For example, Han et al. [8] im-
plemented support vector regression to determine musical
emotion, and found their model to correlate quite strongly
with a two-dimensional model of emotion. Schmidt and
Kim used conditional random fields to model a dynamic
emotional response to music [24]. For a thorough review of
emotional models in music information retrieval, see Kim
et al. [14], and for an evaluation and taxonomy of the many
emotional approaches to music cognition, see Eerola and
Vuoskoski [6]. Unlike these studies, the current study does
not attempt to model emotion or provide a method of emo-
tion classification, but considers findings from emotion and
ethological research in discussing the mining results.

2. THE DENSMORE CORPUS

Frances Densmore’s transcriptions of Native American
folksongs provide an invaluable dataset with which we
might examine issues pertaining to geography, language,
and culture. As Nettl points out, many of the earlier
recordings were conducted in the very early days of field
recording, and contain performances from elderly individ-
uals who had little contact and influence from the Western
musical tradition [20]. The fact that this collection was
transcribed by a single individual, covers such a large geo-
graphic area, and focuses on cultures with disparate social
and linguistic norms, makes it immensely useful for studies
of large-scale relationships between music and language,
geography, and social function.

Interest in digitally encoding Frances Densmore’s col-
lection of Native American songs began in the late 1990s,
when Paul von Hippel encoded excerpts of the first book
of Chippewa songs in 1998 into Humdrum’s **kern for-
mat. David Huron encoded the Pawnee and Mandan books
in 2000, and Craig Sapp encoded the lengthy Teton Sioux
book in 2002. In 2014, Eva and Daniel Shanahan encoded
the remaining books into **kern format [25]. The dig-
itized collection contains 2,083 folksongs from 16 books
(Table 1), collected between 1907 and 1958. 1

The Densmore volumes provide a rich source of infor-
mation because they not only give transcriptions of all the
collected songs, but also additional information – includ-
ing the associated social function – and musical analy-
ses. Densmore’s annotations were integrated as metadata
into the digital collection. As exact phrasings and anno-
tation criteria vary across the chronological span of Dens-
more’s writing, the metadata vocabulary was prepared by
cleaning and generalizing social function terms: firstly, in-
consistent phrasings were harmonized, e.g. “hand game
songs” (Northern Ute book) and “songs of the hand game”
(Cheyenne and Arapaho book). Secondly, functions were

1 The corpus is available at musiccog.lsu.edu/densmore

Book Year published

Chippewa I 1910
Chippewa II 1913
Teton Sioux 1918
Northern Ute 1922
Mandan and Hidatsa 1923
Papago 1929
Pawnee 1929
Menominee 1932
Yuman and Yaqui 1932
Cheyenne and Arapaho 1936
Nootka and Quileute 1939
Indians of British Columbia 1943
Choctaw 1943
Seminole 1956
Acoma, Isleta, Cochiti, and Zuñi Pueblos 1957
Maidu 1958

Table 1. Collections included in the Densmore corpus.
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Figure 1. Excerpt of the social functions ontology.

merged to create generalized functions, e.g. different game
songs such as hand game songs and moccasin game songs
were collated into one group “game songs” (see Fig. 1).

Songs which Densmore listed as “uncategorized” or
“miscellaneous” were not considered. The resulting on-
tology reduces the 223 distinct terms used by Densmore to
31 generalized functions. Note that songs can be assigned
more than one function, e.g. bird dance songs are anno-
tated as both “animal” and “dance” (see Fig. 1).

3. CONTRAST DATA MINING

Contrast data mining [1, 5] refers to a range of methods
which identify and describe differences between groups in
a dataset, and has been applied with success to several folk
song corpora [21]. In the current study with the Dens-
more corpus, groups are defined by songs associated with
different social functions. Following several other earlier
works on contrast data mining in folk music analysis, in
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Attribute Definition High (H)

AverageMelodicInterval average melodic interval in semitones ≥ 1.676

AverageNoteDuration average duration of notes in seconds ≥ 0.347

DirectionofMotion fraction of melodic intervals that are rising rather than falling ≥ 0.388

Duration total duration of piece in seconds ≥ 22.294

DurationofMelodicArcs average number of notes that separate melodic peaks and troughs ≥ 1.704

PitchVariety number of pitches used at least once ≥ 6.583

PrimaryRegister average MIDI pitch ≥ 55.578

Range difference between highest and lowest MIDI pitches ≥ 13.084

RepeatedNotes fraction of notes that are repeated melodically ≥ 0.462

SizeofMelodicArcs average melodic interval separating the top note of melodic peaks and
bottom note of melodic troughs

≥ 4.899

StepwiseMotion fraction of melodic intervals corresponding to a minor or major second ≥ 0.250

VariabilityofNoteDuration standard deviation of note durations in seconds ≥ 0.224

DcontRedundancy duration contour relative redundancy ≥ 0.749

DurRedundancy note duration relative redundancy ≥ 0.667

IntRedundancy melodic interval relative redundancy ≥ 0.606

MlRedundancy metric level relative redundancy ≥ 0.681

PcontRedundancy melodic pitch contour relative redundancy ≥ 0.751

PitchRedundancy pitch relative redundancy ≥ 0.603

Table 2. A selection of attributes used in this study. Top: jSymbolic attributes [17]. Bottom: information-theoretic
attributes. The rightmost column indicates the value range for the discretisation bin High.

this study songs are described by global features which
are attribute-value pairs each describing a song by a single
value. Global features have been used productively in com-
putational folk music analysis in the areas of classification
(e.g. [11, 17, 27]) and descriptive mining (e.g. [16, 26]).

It is important to highlight the distinction between at-
tribute selection and contrast data mining. Whereas the
former is the process of selecting informative attributes,
usually for the purposes of classifier construction, contrast
data mining is used to discover particular attribute-value
pairs (features) that have significantly different supports in
different groups.

3.1 Global feature representation

All songs in the corpus were converted to a MIDI for-
mat, ignoring percussion tracks and extracting one sin-
gle melodic spine for each song. Since only a fraction
of the songs in the corpus were annotated with tempo in
the **kern files, all songs were standardized to a tempo of
♩ = 60. This was followed by computing 18 global at-
tributes: twelve attributes from the jSymbolic set [17] and
six newly implemented information-theoretic attributes.
After discarding attributes not applicable to the current
study such as those related to instrumentation, dynamics,
or polyphonic texture, the twelve jSymbolic attributes were
selected manually, informed by Densmore’s own writings,
additional ethnomusicological studies of Native American
music [7, 10, 20] and research into music and emotions
[6, 13, 22]. The six information-theoretic attributes mea-
sure the relative redundancy within a piece of a particular
event attribute (pitch, duration, interval, pitch contour, du-
ration contour, and metric level). The features are defined

as 1 − H/Hmax where H is the entropy of the event at-
tribute in the piece and the maximum entropy Hmax is the
logarithm of the number of distinct values of the attribute
in the piece. The value of relative redundancy therefore
ranges from 0 (low redundancy, i.e. high variability) to 1
(high redundancy, i.e. low variability) of the particular at-
tribute. Numeric features were discretized into categorical
values, with a split point at the mean: the value Low cov-
ers attribute values below the average across the complete
dataset, the value High covers attribute values at the av-
erage or above (cf. [26]). Table 2 gives definitions for the
attributes which contribute to the contrast patterns reported
in Section 4.

3.2 Contrast data mining method

Global features are assessed as candidate contrast patterns
by evaluating the difference in pattern support between dif-
ferent groups (e.g. [1, 5]). A feature (attribute-value pair)
is supported by a song if the value of the attribute is true
for the song. Then the support n (X ∧ G) of a feature X
in a group G is the number of songs in group G which
support feature X . A feature is a contrast pattern for a
certain group if its support in the group, n (X ∧ G), is
significantly higher or lower than in the remaining groups
taken together, n (X ∧ ¬G). This is known as a one-vs.-
all strategy for contrast mining [5, 21] as it contrasts one
group against the combined set of other groups rather than
contrasting groups in pairs. The significance of a pattern,
that is, how surprising is the under- or over-representation
of X in G, can be quantified using the hypergeometric
distribution (equivalent to Fisher’s exact test). This uses
a 2 × 2 contingency table (see Table 3) which gives the
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G ¬G
X n (X ∧G) n (X ∧ ¬G) n (X)

¬X n (¬X ∧G) n (¬X ∧ ¬G) n (¬X)

n (G) n (¬G) N

Table 3. Contingency table showing the occurrence of a
pattern X and its complement ¬X in a target group G and
in the background ¬G. The highlighted area is the support
of the putative contrast pattern X ∧ G. For the Densmore
corpus N = 2083.

probability of sampling n(X) pieces, and finding exactly
n (X ∧G) successes (instances of group G). Thus the left
or right tails of the hypergeometric distribution give the
two desired p-values: the probability of observing at most
or at least n (X ∧G) instances in a single random sample
of n(X) instances. A low p-value, less than some speci-
fied significance level α, indicates a statistically significant
contrast pattern which is assumed to be interesting for fur-
ther exploration [3].

Following the extraction of features as described in Sec-
tion 3.1, each song in the corpus is represented by a set of
global features together with a set of group labels (func-
tions) of the song. Note that, as mentioned above, more
than one function can be assigned to a song. From this
input dataset candidate patterns are generated as the cross-
product for all occurring pairs of featuresX and groupsG.
For each X ∧G pair its support and a p-value for each tail
are computed and the results processed to form a matrix of
function/feature patterns.

4. RESULTS AND DISCUSSION

A total of 17 social function groups (uncategorized and
miscellaneous songs and groups supported by less than ten
songs were not considered) were mined for contrast pairs
with 18 attributes. The 17 groups together cover most of
the corpus: 1891 of the 2083 songs. Regarding the at-
tributes for global features, though each has two possi-
ble values High (H) and Low (L), if one is significantly
over-represented the other must be significantly under-
represented, therefore in this study only the High value was
considered during mining. Table 4 presents the results of
the contrast data mining. Each cell in the matrix shows
the distribution of a particular feature in a particular group.
White indicates presence of the feature in the group (with
area n(X ∧G)) and black absence (with area n(¬X ∧G)).
Thus the total area covered by a cell in a row indexed by
group G is n(G). The rows and columns in the table are
ordered by the geometric mean of the p-value to all other
functions or features in that particular row or column.

Statistical significance of each contrast pattern was
evaluated using the hypergeometric distribution as de-
scribed above, with significance level α = 0.05 adjusted
using a Bonferroni multiple testing correction factor of
306 = 17 × 18, representing the number of contrast pat-
terns tested for significance. Using the adjusted signifi-
cance level of 0.05/306 =1.6e-4, green areas in Table 4

indicate significant over-representation, and red areas sig-
nificant under-representation of a feature in a group. A to-
tal of 56 significant patterns were found (colored patterns
of Table 4).

As a statistical control, a permutation method was used
to estimate the false discovery rate, assuming that most
contrast patterns found in randomized data would be arti-
factual. Social function labels were randomly redistributed
over songs, while maintaining the overall function counts,
then the number of significant (left or right tail p-value ≤
1.6e-4) contrast patterns using the 306 possible pairs was
counted. Repeated 1000 times, this produced a mean of
just 1.14 significant contrast patterns per iteration, suggest-
ing that there are few false discoveries to be expected in the
colored patterns of Table 4.

Bearing in mind that the exact data samples and feature
definitions differ, the results seem to confirm – and gen-
eralize to a larger dataset – several observations presented
in earlier studies. The significance of PrimaryRegister : H

for love songs recalls Gundlach’s finding that “love songs
tend to be high” [7, p. 138]. Herzog describes the “melodic
make-up” of love songs as “spacious” [10, p. 28]: in our
analysis we find that love songs generally have larger aver-
age melodic intervals and a wider range than other songs.
The over-representation of AverageNoteDuration :H in love
songs may reflect characterisations of love songs as slow
[7, 10]. For hiding game songs of the Plains, Herzog no-
tices that they are comparatively short with a very often
limited range [10, p. 29]; game songs in the current cor-
pus – including 90 out of the 143 game songs explicitly
associated with hiding games such as moccasin, hand and
hiding-stick or hiding-bones games – show a significant
under-representation of Duration : H and Range : H. The
narrow range that Gundlach observed in healing songs [7,
pp. 138,140] is also reflected in the results in Table 4, but
in the current analysis is not statistically significant. Gund-
lach compared healing songs specifically against war and
love songs: considering only those two groups as the back-
ground does indeed lead to a lower p-value (left-tail) for
Range : H in healing songs (6.8e-9 instead of 2.6e-3). To-
gether with other traits which are common in healing songs
but not distinctive from other song types — e.g. a high
proportion of repeated notes and low variability in pitch,
intervals or duration — a comparatively narrow range may
contribute to a soothing character of many healing songs,
intended “to remove discomfort” [4, p. 565].

The information-theoretic features are particularly char-
acteristic of songs labelled as “nature”, which show an
over-representation of redundancy values above the aver-
age for all six considered event attributes. The group con-
tains 13 Yuman lightning songs, which trace the journey of
White Cloud who controls lightning, thunder and storms.
More generally, Yuman songs tend to be of comparatively
small range, the melodic movement on the whole mainly
descending, the rhythm dominated by few duration val-
ues and isometric organisation more common than in other
repertoires [9,20]; structurally, Yuman music is often based
on repeated motifs [9]. The example of the Yuman light-
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Table 4. Pie charts for contrast patterns showing the distribution of social function groups (rows) against features (columns).
White indicates presence and black absence of the corresponding feature. Green/red (light/dark gray in grayscale) indicate
significant over/under-representation of a feature in a group.
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ning songs opens avenues for future analysis, such as con-
sidering also sequential pattern mining [3], and encourages
applying data mining to questions left unanswered in ear-
lier work, such as exploring the stylistic unity of songs
forming a series related to a myth or ritual [9, p. 184].

It can be productive to discuss the mining results in the
context of recent work that takes an “ethological” approach
to music and emotion. This approach argues that pitch
height, tempo, dynamics, and variability convey levels of
both arousal and valence, and many of these relationships
are innate, cross-cultural, and cross-species [12, 13, 19].
Similarly to Gundlach’s earlier work [7], we find that war
songs and love songs exhibit several salient musical traits.
In the Densmore collection, war songs are distinguished
from other song types by significant over-representation
of a wider than average range, higher than average regis-
ter, and higher variability in both pitch and duration (over-
representation of PitchVariety :H and under-representation
of PitchRedundancy : H and DurRedundancy : H). Interest-
ingly, dance songs also show significant contrasts in these
features, but consistently in the opposite direction com-
pared to war songs. War songs and dance songs might
both be thought of as “high arousal”, but on opposite ends
of the valence spectrum on Russell’s Circumplex model
[22]. This hypothesis invites further inspection of war and
dance songs in the corpus. Significant features shared be-
tween dance and animal songs (Range :H, PitchVariety :H,
PrimaryRegister : H and VariabilityofNoteDuration : H being
under-represented) reflect the fact that many of the sup-
porting songs – e.g. bird, bear or deer dance songs – are
annotated with both “dance” and “animal” (see also Fig. 1).

In love songs, the over-representation of higher pitch
registers, observed both by Gundlach and in the current
study, seems in line with Huron’s acoustic ethological
model [13], according to which higher pitches (alongside
quiet dynamics) connote affiliation. For a Pawnee love
song Densmore relates her informant’s explanation that
in this song a married couple for the first time openly
expressed affection for each other. Both Densmore and
Gundlach characterize many love songs as “sad”, asso-
ciated with departure, loss, longing or disappointment,
which might be reflected in the relatively slow movement
of many love songs (see above). Remarkably, though,
at first inspection other contrast patterns describing love
songs (e.g. under-representation of IntRedundancy : H or
over-representation of PrimaryRegister : H) seem at odds
with findings on e.g. sad speech which contains markers of
low arousal such as weak intervallic variability and lower
pitch [15]. However, when comparing observations across
studies, their specific feature definitions and analysis meth-
ods need to be taken into account. In the current study,
significant contrast features are discovered relative to the
feature distributions in the dataset, both in terms of feature
values and thus the mean value in the corpus (used in dis-
cretizing global features into values Low and High), and oc-
currence across groups (used in evaluating significant over-
or under-representation during contrast mining).

5. CONCLUSIONS

This paper has presented the use of descriptive contrast pat-
tern mining to identify features which distinguish between
Native American songs associated with different social
functions. Descriptive mining is often used for explorative
analysis, as opposed to statistical hypothesis testing or pre-
dictive classification. Illustrating contrast pattern mining
in an application to the Densmore collection, results sug-
gest musical traits which describe contrasts between mu-
sics in different social contexts. Different from studies
focusing on putative musical universals [23], which test
generalized features with disjunctive values (e.g. two- or
three-beat subdivisions), and from attribute selection stud-
ies [27], which do not specify distinctive values, global-
feature contrast patterns make explicit an attribute and
value pair which is distinctive for a certain song type. In
this case study, mining results confirm findings of earlier
ethnomusicological research based on smaller samples, but
also generate questions for further investigation.

The Densmore corpus of Native American music pro-
vides a rich resource for studying relations between inter-
nal musical features and contextual aspects of songs, in-
cluding not only their social function but also e.g. lan-
guages and language families [25], geographical or mu-
sical areas [20]. Thus, contrast mining of the Densmore
collection could be extended to other groupings. Regard-
ing social functions, the ontology used here possibly could
be linked to anthropological taxonomies on functions of
musical behaviour (e.g. [2, 18]), whose categories on their
own are too broad for the purposes of contrast pattern min-
ing but could open additional interpretations if integrated
into hierarchical, multi-level, mining. Regarding pattern
representations, the method of contrast data mining is very
general and in theory any logical predicate can be used to
describe groups of songs. For future work we intend to
explore the use of sequential melodic patterns to describe
social functions in the Densmore corpus, and also to apply
the methods to other large folk song collections.
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ABSTRACT

Understanding the listening habits of users is a valuable
undertaking for musicology researchers, artists, consumers
and online businesses alike. With the rise of Online Mu-
sic Streaming Services (OMSSs), large amounts of user
behavioral data can be exploited for this task. In this pa-
per, we present SWIFT-FLOWS, an approach that mod-
els user listening habits in regards to how user attention
transitions between artists. SWIFT-FLOWS combines re-
cent advances in trajectory mining, coupled with mod-
ulated Markov models as a means to capture both how
users switch attention from one artist to another, as well as
how users fixate their attention in a single artist over short
or large periods of time. We employ SWIFT-FLOWS on
OMSSs datasets showing that it provides: (1) semantically
meaningful representation of habits; (2) accurately models
the attention span of users.

1. INTRODUCTION

Is it possible to create expressive yet succinct represen-
tations of individuals’ music listening habits? Are there
common patterns on how music is listened to across dif-
ferent genres and different artists that have highly differ-
ent popularity? For a long time such questions have at-
tracted the attention of researchers from different fields. In
the fields of psychology and musicology [10, 20, 21], re-
searchers exploit musical preferences to study social and
individual identity [20], mood regulation [23], as well as
the underlying factors of preferences [21]. Computer sci-
entists are also tackling such questions as they become cen-
tral to develop music recommender systems [3, 4, 7].

With the rise of Online Music Streaming Services
(OMSSs) over the last decade, large datasets of user 1 be-
havior can be used to shed light on questions like the ones
above. More specifically, digital traces of the listening
habits of individuals are readily available to researchers.

1 Since our case study is on Online Music Streaming Services
(OMSSs), we use the terms users and listeners interchangeably.

c© Figueiredo, Ribeiro, Faloutsos, Andrade, Almeida. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Figueiredo, Ribeiro, Faloutsos, Andrade,
Almeida. “Mining Online Music Listening Trajectories”, 17th Interna-
tional Society for Music Information Retrieval Conference, 2016.

In this paper, we focus on the online listening habits of
users as trajectories [7] (or trails [24]). Given that a user,
u, listens to music by switching attention between different
artists, a trajectory captures the sequence of artists or songs
visited by a user when listening to music. The main con-
tribution of this paper is to present the SWIFT-FLOWS 2

model, a general technique designed to study user trajec-
tories in OMSSs. We tackle several challenges that stem
from the complexity of user behavior, such as:

(a) Asynchronous users with mixed but similar behav-
ior: Users that consume music from a set of artists
will not start their playlists at the same time or listen
to songs in the same order.

(b) Repeated consumption: Users tend to listen to artists
in bursts, more than what one would expect at ran-
dom in a shuffled playlist.

(c) Biased Observations & Small Subpopulations: User
behavior datasets are naturally sparse and biased to-
wards more popular artists. Nevertheless, we still
want to be able to analyze underrepresented subpop-
ulations of users and artists.

SWIFT-FLOWS effectiveness is evaluated in large datasets,
with results showing that SWIFT-FLOWS: (1) captures se-
mantically meaningful representation of artist transitions;
(2) accurately models the attention span of users.

2. RELATED WORK

Understanding the listening habits of individuals has at-
tracted interest from different research fields. Among
other problems, musicologists and social psychologists
have looked into the latent factors that explain musical
preferences [20, 21], factors that affect listener experience
(e.g., Music itself, Situational Factors and the Listener
him/herself) [10], as well as the relationships between mu-
sical imagination and human creativity [10].

Regarding the material methods listeners exploit to lis-
ten to music, Nowak [16] discussed the social-material re-
lations of music consumption. The authors conclude that
even the same user still relies on multiple forms of listen-
ing to music (e.g., legal and illegal downloading, streaming
services, CDs, etc). These various forms of consumption
were also discussed by Bellogin et al. [1]. Here, the au-

2 Switch and Fixation Trajectory Flows
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thors showed the disagreement between different web and
social music services (in terms of artist popularity).

Several studies, such as the ones Marques et al. [12],
Park et al. [18], and Moore et al. [15], characterized the ex-
ploratory behavior of users in OMSSs. Marques et al. [12]
described the habits of users when searching for novel
songs to listen to. Park et al. [18] defined a new measure
to compute the diverseness of musical tastes. Moore et
al. [15] looked into the tastes of users over time through
the use of Latent Markov Embedding (LME) [3, 4].

In contrast with the aforementioned studies, our work
with SWIFT-FLOWS is focused on extracting the latent tra-
jectories that explain user attention when listening to music
online. Nevertheless, SWIFT-FLOWS can be used to tackle
problems as the ones described. For instance, we are able
to aggregate the preferences of users from different demo-
graphics as shown in Section 4. For musicologists and psy-
chologists, these results indicate how SWIFT-FLOWS can
be used as a tool to better understand the hidden factors that
define our consumption habits. Regarding OMSSs, previ-
ous work [12, 17, 18] usually relied on defining specific
point estimates that are used to understand and capture lis-
tening behavior. Such measures are susceptible to effects
(a-c) described in Section 1.

To capture both the inter-artist transitions, those were
a listener changes attention from one artist to another, as
well the long and short tails of listener fixation in a single
artist, SWIFT-FLOWS advances the state-of-the-art [7] by
defining a combined approach that can capture both behav-
iors. Inter-artist transitions, or switches in attention, are
captured by exploring the ideas in [7]. Intra-artist transi-
tions, or fixation, is captured by modulated Markov mod-
els [22]. In this sense, SWIFT-FLOWS provides a inter-
pretable results than [7] or [22] in isolation. We describe
the details of the model next.

3. THE SWIFT-FLOWS MODEL

We now describe SWIFT-FLOWS. Let D be a dataset con-
sisting of (user, artist, timestamp) tuples observed over a
time window (i.e., the temporal range of our datasets).
Each tuple registers that a user listened to songs from an
artist at a moment in time. Let u ∈ U define the set of
users and a ∈ A define the set of artists. By ordering D
according to the timestamps, each user can be represented
as a trajectory: Tu =< au,1, au,2, ..., au,|Tu| >. This tra-
jectory represents the history of the user listening to mu-
sic transitioning between songs of a same artist – in intra-
artist (au,i = au,i+1) transitions – and songs from different
artists – in inter-artist (au,i 6= au,i+1) transitions.

Both inter and intra artist transitions are important
when studying trajectories. Inter-artist transitions capture a
switch in users attention from one artist to another, whereas
intra-artist transitions captures a fixation on a same artist.
SWIFT-FLOWS isolates both effects and exploits stochas-
tic complementation [14] to propose two complementary
Markov models, as illustrated in Figure 1, that together are
able to capture both the intra-artist and inter-artist transi-
tion behavior. Isolation of intra from inter artist transitions

is necessary to model both the long and and short attention
tails of repeated consumption [6, 22].

The intra-artist (Figure 1-b), or fixation, model consists
of a modulated Markov model that is able to capture how
users revisit artists. Intra/inter transition separation is pos-
sible by treating user attention as a reducible system, where
we model the strong memory of intra-artist transitions –
some users continuously listen to the same artist for hours
– as only interfering with the inter-artist dynamics through
limited user attention. This creates an effective separation
between the intra-artist model and the inter-artist model.
A play takes us to an inter-artist transition from artist s to
artist d, s 6= d, which then again transitions to the intra-
artist model of artist d. The inter-artist (Figure 1-c) at-
tention, or switch, transitions are captured by a graphical
model, using a Bayesian approach to estimate inter-artist
transitions. This approach avoids problems associated with
point estimates [7, 19] and is robust to infrequent transi-
tions of small sub-populations of interest.

Data Representation: Let users (artists) to be num-
bered between one and |U| (|A|). Let ndsu, the number of
times user u ∈ U transitioned from s ∈ A to d ∈ A:

ndsu =

|Tu|∑

i=2

1(au,i−1 = s ∧ au,i = d), (1)

where, 1 is an indicator function that will evaluate to 1
when au,i−1 = s and (∧) au,i = d, 0 otherwise.

With these counts, we can define a tensor X (as shown
in Figure 1-a) X =

[
X1,X2, · · · ,X|U|

]
, where Xu is:

Xu =



n11u · · · n1|A|u

...
. . .

...
n|A|1u · · · n|A||A|u


 (2)

This data representation is distinct from other tensor de-
compositions that mine D in its original “user”, “object”
and “time” coordinates as the three tensor modes [13, 25].
These techniques are meant to capture synchronous user
behavior. As shown in previous work [7], the represen-
tation of X is more suitable to capture the asynchronous
but similar behavior patterns that emerge when we have
a mixed population of users, spread across different time
zones and with different activity patterns as in OMSSs.

We now describe both the inter-artist an intra-artist
models. In the following, we use the “·” notation to imply
a sum over a given dimension (e.g., nds· =

∑
u∈U ndsu).

3.1 Switch Model

To model inter-artist transitions, we define X− = X −
diagonals(X ) by removing the cases where s = d from
X , since this behavior is captured by the Fixation model
(next subsection). Our goal with the Switch model is to
estimate trajectories as an interpretable probability space.
That is, our goal is to decompose X in a probability matrix
P, where each cell in this matrix captures the probability
of a user switching attention for s to d (or p(d|s)).

A naı̈ve way to define P is simply to define p(d|s) ∝
nds·. That is, to use maximum likelihood estimates [11].
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Figure 1. The SWIFT-FLOWS model: Data representation by tensor X (left), the repeated consumption model (center)
and the inter-artist graphical model (right).

However, this approach has three undesirable proper-
ties [19]: (1) there are not enough samples to accurately
estimate the transition probabilities for most artists; (2) the
transition probability matrix P is sparse, stating that it is
impossible to transition from an artist s to d when no user
has done so in the past; and, (3) it does not take into ac-
count user preferences. For example, if we observe that
the transition Sepultura→Beyonce is very common for a
single or small group of users, this does not imply that it is
frequent for all of the listeners in the OMSSs.

In order to deal with such issues, we employ the
Bayesian model depicted in Figure 1-c. With this model,
our goal is capture the latent spaces of inter-artist transi-
tion patterns shared by a group of users. We call this the
Switch model. The latent space Z defines a set of tran-
sitions between pairs of artists s and d. We refer to each
latent factor z as an attention transition gene, and the col-
lection of genes as a genome. These terms are inspired
by the “Music Genome Project”, a proprietary approach
developed by Pandora that aims to describe in detail the
musical characteristics of individual songs 3 .

Estimating the Model: Let k = |Z| (k << |A|) be
an input variable determining the number of genes (or la-
tent factors) to be estimated. Later, we shall describe our
approach to define k. The two other inputs are the hyper-
parameters α and β. The outputs of the Switch model are
two matrices, Θ and Φ, as well as a vector z. Θ has |U|
rows and |Z| columns, where each cell contains the prob-
ability that a user has a preference towards a given gene:

p(z|u) = Θ(u, z) = θz|u(z) =
nzu + α

n·u + |Z|α (3)

where nzu is estimated by the model. Matrix Φ has |Z|
rows and |A| columns. It captures the probability that
when a user is interest in gene z it will transition to a, i.e.:

p(a|z) = Φ(z, a) = φa|z(a) =
naz + β

n·z + |A|β (4)

where, once again, naz is estimated from the data by the
model. Finally, vector z contains the probabilities of each
gene z ∈ Z , referred to as p(z), that is: p(z) ∝ nz . Finally,

3 http://www.pandora.com/about/mgp

the decomposed transition matrix P is defined by:

P(s, d) =
∑

z∈|Z|
p(z|s)p(d|z) (5)

where p(d, s|z) = p(s|z)p(d|z), and p(z|s) ∝ p(s|z)p(z).
Gibbs Sampling: We use a collapsed Gibbs sampler [8]

to estimate matrices Θ and Φ by estimating nzu and naz ,
as well as vector z. We sample from the posterior defined
by the product θz|uφs|zφd|z [7]. We fix hyper-parameters
α = 50

|Z| , and βs = βd = 0.001, as is usually done with
similar models [7, 13]. We execute the sampler for 800
iterations with 300 being discarded as burn-in.

Estimating k: We apply the minimum description
length (MDL) principle [9], which is largely used for prob-
lems of model selection, to determine the number of genes
k = |Z|. With MDL, we fine tune SWIFT-FLOWS in order
to extract a succinct, yet still accurate, representation of the
listening habits of users. MDL captures how good a model
M (P in our case) represents the data by taking into ac-
count the trade-off between the “goodness” (or likelihood)
and the complexity (or generality) of the model.

To apply MDL we first define the likelihood of the data
given the modelM. Given nds = n·ds the number of tran-
sitions from s to d by all users, the log likelihood of matrix
P is given by

∑
s,d|s6=d ndslog(p(d|s)) 4 . The MDL cost

of modelM is given by the sum:

Cost(P,M) = Cost(P | M) + Cost(M). (6)

Cost(P | M), defined as the negative log-likelihood,
captures the goodness-of-fit of the data given the model:
higher-values imply on accurate but yet succinct (less fac-
tors) recoveries of P. Cost(M) captures the complexity:

Cost(M) = log∗(|A|) + log∗(|Z|) +
∑

s,d,z

[log∗(dp(d|z)n··e)

+ log∗(dp(s|z)n··e) + log∗(dp(z)n··e)]

where log∗ is the universal coding cost (number of bits)
for integers [9]. Cost(M) represents the encoding each
matrix in the model in integer representation with precision
n·· (the total number of transitions) 5 .

4 The likelihood is the product of p(d|s) for all nds transitions [5].
5 Since we deal with counts, the smallest probability value is (1/n··).
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3.2 Fixation Model

Users’ bursty repeated consumption of artists requires
modeling this behavior with a stochastic process that has
memory. Markov modulated processes are a class of mod-
els that are particularly versatile for this task [22]. Our goal
here is not only to model user behavior but also, through
the use of intuitive parameters, understand how users re-
peatedly consume artists. Most importantly, we want to re-
produce user attention giving rise to both exponential and
power law distributions observed in our datasets.

Our fixation model, which captures the intra-artist tran-
sitions, is a Markov modulated process where we use an in-
finite number of states, an approach widely used to model
systems with bursty behavior [22]. Figure 1 (b) illustrates
our model (only the initial states). The “start” circle repre-
sents the initial transition from the Inter-artist model. From
state zero we are interested in how long it takes to exit from
the “exit” transition. Thus, circles “start” and “exit” in Fig-
ure 1 (b) are not states but rather entrance (exit) transitions
from (to) the inter-artist model. The states of the model
capture the affinity of the user for the artist, that is how
much the user is willing to repeatedly listen the artist’s
songs. There is a fixed residency time ∆t on each state.
Thus, higher states represent that the user has a higher
affinity and thus dedicates more play-time to the artist.

The model has parameters 0<r<1 and 1≤f<4r. The
limit of 4r is required as described in [22] 6 . Parameter r
models the user “rush”, capturing how users are led to hear
more from an artist (e.g. entire album) after hearing some
music by this artist. Parameter f models user “fixation”,
representing how long it takes for users to get over an ini-
tial impulse to listen to an artist, which is also a function of
the artist’s song inventory size. A large value of f implies
that users quickly get over their initial impulse or happens
because the artist has just a few songs.

We can fit the Fixation model to the complementary cu-
mulative distribution function (CCDF) of the time users
dedicate to an artist using the Levenberg-Marquardt algo-
rithm. The CCDF will define the probability of the res-
idency time in the chain. The infinite number of states
can be captured by using a sufficient number of states (100
in our datasets). We evaluate the algorithm on the mean
squared error of the real data and the residency times gen-
erated by the model. As we shall show empirically in our
results, this model is capable of generating both power-law
and exponential residency times as also discussed in [22].

One interesting property of the Fixation model is that
it is able to estimate the expected amount time users will
fixate on a given artist. To achieve this, we can compute
the expected number of steps that it takes to go from the
Start state to the End state [11] 7 . If we define this value
per artist as ea, we can couple the Switch model with the
Fixation model by estimating the expected fixation steps
per latent spaces, ez , as:

6 The authors write the model in terms of a = 2/r and b = f/a.
7 https://en.wikipedia.org/wiki/Absorbing Markov chain

ez =
∑

a∈|A|
p(a|z)ea (7)

That is, ea is the expected number of steps a user will
remain in artist a with regards to his/her interest in gene z.

In the next section we describe SWIFT-FLOWS at work.

4. SWIFT-FLOWS AT WORK

We apply SWIFT-FLOWS on datasets crawled from
Last.FM. Last.FM aggregates various forms of digital
music consumption, ranging from desktop/mobile me-
dia players to streaming services (theirs and others) 8 .
Last.FM is also an online social network (OSN), allow-
ing the creation of user groups as well as providing demo-
graphical data. The datasets we explore are:

Last.FM-2009 Collected in using a snowball sam-
pling [2]. After the snowball sampling, 992 uni-
formly random users were selected. The dataset
contains, for each user, the complete listening his-
tory (all plays) from February 2005 to May 2009,
the self-declared nationality, age (at the time), and
registration date [2]. This dataset accounts for 18.5
million user, artist, and timestamp triples, as well as
107,397 unique artists.

Last.FM-2014 Crawled in 2014 by identifying users that
participate in discussion groups on Last.FM. Con-
tains the listening history (from February 2005 to
August 2014) of a subset of the users that discuss
pop-artists on Last.FM discussion groups. The total
number of users in this dataset is 15,329. Also, this
dataset contains 836,625 unique artists and roughly
218 million user, artist, and timestamp triples. As
is the case with Last.FM-2009, this dataset provides
the age and nationality of all the users.

Because of these various means of consumption [16],
Last.FM presents itself as an interesting platform for study-
ing online behavior. The service aggregates user accesses
from desktop media players (that incorporates legal and il-
legal downloads), free, and also paid streaming services.
Nevertheless, it is important to point out that the observed
attention trajectories will be impacted by how the data
was gathered (e.g., Last.FM-2014 has a bias towards pop
artists), as well as the internal mechanisms of the OMSSs
(e.g., such as recommendation services and user inter-
faces). As we shall discuss in our results, regardless of
the data biases, SWIFT-FLOWS is able to represent the at-
tention trajectories of under-represented user populations.

We run the inter-artist attention Switch model of
SWIFT-FLOWS on X−, and the Fixation model of
SWIFT-FLOWS on the intra-artist transitions. In both
cases, only artists which had at least five plays by five users
are considered. In total, the Last.FM-2014 dataset has over
3M plays of such artists, while Last.FM-2009 has roughly

8 Aggregation is done using plugins available on other OMSSs and
media players.
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Figure 2. Validation of Fixation Model.

176k plays. We note that even after filtering, there still re-
mains a significant number of rare transitions as 44% of
the inter-artist transitions happen less than ten times.

4.1 The Fixation Model at Work

We first discuss the Fixation model. We begin by show-
ing how it fits the time users spend listening to different
artists on any given day (referred to as daily fixation time).
Figure 2 shows the fitted and empirical complementary cu-
mulative distribution functions (CCDF) of the daily fixa-
tion time for two particular example artists, namely Ra-
diohead, and T.I. feat. Justin Timberlake (a collaboration
between two artists). This example was extracted from the
Last.FM-2014 dataset.

The distribution for Radiohead clearly has long tails,
and is similar to the distributions for most artists. In con-
trast, the distribution for the T.I. feat. Justin Timberlake
collaboration has a much shorter tail, approaching an ex-
ponential distribution. Unlike for the other artists, there is
only one song by this artist collaboration in our dataset,
which might explain why users tend to spend less time lis-
tening to them. Yet, our Fixation model provides close fit-
tings for both distributions, capturing both long and short
tails. Interestingly, we can also use the model parameters r
and f to distinguish between these artists: compared to Ra-
diohead, the T.I. feat. Justin Timberlake collaboration has
a slightly higher rush parameter (r = 0.996) but a much
lower fixation parameter (f = 1.002). Despite the higher
initial surge of attention, users lose interest more quickly
in them. If it were not for our separation of the intra-artist
from the inter-artist transitions, it would be impossible to
capture these different distributions with SWIFT-FLOWS.
That is, these superior fits are only possible through the use
the modulated Markov models as done by our intra-artist
model. This allows the model to capture both long and
short tails of user attention [22].

We proceeded to fit our model to the daily fixation
times of 36,344 and 2,570 artists in the Last.FM-2014 and
Last.FM-2009 datasets respectively (artists with more than
5 plays by at least 5 users). In Figure 3 we show a scatter
plot of the fixation versus rush scores for the Last.FM-2014
dataset. We found that, the vast majority of the artists have
very high values of rush r (above 0.95) and values of fixa-
tion f (1.5 to 2.5). There were also two other small groups
of artists with very low (near 1) fixation.

Looking into these groups, we found many collabora-
tions between artists, such as the aforementioned TI feat
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Figure 3. Rush vs Fixation

Justin Timberlake. Another example of a collaboration is
The Revelations feat Tre Williams, it has both low fixa-
tion and low rush scores, thus attracts little attention in our
datasets. We also found that Blue Nile is an interesting ex-
ample. Blue Nile is a Scottish alternative/pop band whose
lead singer is Paul Buchanan. From the plot, we can see
that the band has higher rush and lower fixation than the
solo songs by Paul Buchanan. This is likely because the
solo career of Paul Buchanan mostly attracts more inter-
ested fans. Another example is Lorde, a relatively new
pop singer at time (2014). The artist obtains high rush and
somewhat lower fixation. This may be explained listeners
discovering her music.

Our fitting errors are very small in most cases. The av-
erage Mean Squared Errors (MSE) of each fitted distribu-
tion for artists in Last.FM-2014 is only of 0.02, whereas
in the Last.FM-2009 dataset it was of 0.03. The standard
deviations were of 0.02 and 0.04 for the Last.FM-2014 and
Last.FM-2009 datasets, respectively.

4.2 Extracting Listening Trajectories

We now discuss the Switch model. The first step to ex-
ecute the model us to decide the number of genes (latent
factors) k using the MDL-based criteria described previ-
ously. To measure the MDL score, we searched for k in
the range k ∈ [2, 400] 9 . With MDL, we aim at finding a
succinct (smaller) yet accurate latent representation of our
datasets. In our search, we found that in both datasets as
k increases the MDL cost first decreases and then rapidly
increases, reaching global minimum at k=40. This value
was achieved in both sets of data. For this reason, our ex-
periments use a genome with 40 genes.

Table 1 describes four different genes (latent fac-
tors) extracted by SWIFT-FLOWS from the Last.FM-2014
dataset. For each gene, the table shows the top 7 source
s and destination d artists in a single column ranked by
(p(a | z)). To further examine the genes, the table also
summarizes the nationality and age reported in the LastFM
profile of the top 50 users which have attention transitions
within each gene. Finally, we cross-referenced the top
artists in each gene with the AllMusic guide 10 for an au-
thoritative source on artist metadata. The labels given to
each gene stem from our own interpretation.

9 We searched k ∈ {2, 4, 8, 10, 20, 30, 40, 50, 100, 200, 300, 400}.
10 http://www.allmusic.com/
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Table 1. Genes from the Last.FM-2014 dataset: top source and destination artists, and demographics of top-50 users.
Artists and users are sorted by probabilities p(a|z) and p(z|u), respectively. Countries are: BR = Brazil, US = USA, NL =
Netherlands, DE = Germany, PL = Poland, FI = Finland. Age statistics presented here are the 1st, 2nd and 3rd quartiles.
We also show the expected fixation ez per gene.

Gene=18 (“BR/US pop”) Gene=20 (“metal”) Gene=23 (“electronic”) Gene=39 (“pop‘”)
So

ur
ce

/D
es

t
A

rt
is

ts
Britney Spears Nightwish Daft Punk Britney Spears

Wanessa Within Temptation David Guetta Madonna
Christina Aguilera Epica Deadmau5 Christina Aguilera

t.A.T.u. Korn Skrillex Rihanna
Katy Perry Disturbed The Prodigy Lady Gaga

Pitty Marilyn Manson Tiesto Katy Perry
Lady Gaga Rammstein Pendulum Kesha

U
se

rs
N

at
io

na
lit

y BR=98% DE = 18% US = 18% BR=78%
NL=2% PL = 16% BR = 10% US=10%

US = 12% PL = 10% PL=5%
FI = 8% UK = 10%

A
ge

Q
ua

rt
ile

s

1st = 19 1st = 21 1st = 20 1st = 19
2nd = 21 2nd = 24 2nd = 22 2nd = 22
3rd = 24 3rd = 29 3rd = 25 3rd = 25

e z ez = 793.55 ez = 642.15 ez = 636.10 ez = 886.10

Overall, the genes found through SWIFT-FLOWS point
to a semantically sound segmentation of transition spaces
that combines characteristics of the artists and users of
the OMSS. Illustratively, gene z = 18 is predominately
formed by female pop/rock singers as both sources and
destinations. This is not the only gene with similar pop
singers; gene z = 39 is another gene with a similar com-
position in this respect. Yet, the presence of Brazilian pop
artists (e.g., Wanessa, Claudia Leitte, and Pitty) in gene
z = 18 explains why the vast majority (98%) of the top
users in this gene are Brazilians (BR). Gene z = 20 in turn
is mostly focused on different sub-genres of metal (e.g.,
goth-metal and rap-metal). A large fraction of the top-50
users of the “heavy metal” gene are from Germany and
Poland. Finally, gene z = 23 represents users of different
nationalities (American being the most frequent one) who
like to listen to electronic dance music, often transitioning
between different artists of that genre. It is also notewor-
thy that in a dataset mostly comprised of pop artists fans
(Last.FM-2014), SWIFT-FLOWS is able to account for the
trajectories of heavy metal and electronic music fans.

To understand the expected fixation of users per gene,
we make use of Equation 7 (ez). Initially translate ez val-
ues to seconds. That is, we performed a linear regression
using the values of ea (see Eq. 7), expected number of
steps per artist, with the average fixation time per day (de-
scribed in the previous subsection). With this regression,
we found that each step in the chain accounts for, approx-
imately, 1.11 seconds. From the table, we can see that
genes 20 and 23 have lower expected fixation times. That
is, gene z = 20 expects 642 steps (roughly 12 minutes)
in the Fixation model, whereas gene z = 23 expects 632

steps (11.6 minutes). The highest value in the table is from
gene z = 18 (14 minutes).

Notice that both models combined provide a general
overview of attention. That is, we are able to understand
how users will transition between artists, as well as the ex-
pected number of steps users will listen to a given artist.
This represents one of the major strengths of SWIFT-
FLOWS when compared to previous efforts [7, 22].

5. CONCLUSIONS

In this paper, we presented the SWIFT-FLOWS model. One
of the main advantages of SWIFT-FLOWS is that it allows
researchers to explore user listening habits based on com-
plementary behaviors: the fixation on a single artist over
short or long bursts, as well as the change in attention
from one artist to the next. We applied SWIFT-FLOWS to
uncover semantically meaningful maps of attention flows
in large OMSSs datasets. Moreover, SWIFT-FLOWS pro-
vides excellent fits to the attention time dedicated to artists.
SWIFT-FLOWS, therefore, is an useful tool for further re-
search aiming to understand listening behavior.
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ABSTRACT
We propose a method for estimating the musical “typical-
ity” of a song from an information theoretic perspective.
While musical similarity compares just two songs, musi-
cal typicality quantifies how many of the songs in a set are
similar. It can be used not only to express the uniqueness
of a song but also to recommend one that is representative
of a set. Building on the type theory in information the-
ory (Cover & Thomas 2006), we use a Bayesian generative
model of musical features and compute the typicality of a
song as the sum of the probabilities of the songs that share
the type of the given song. To evaluate estimated results,
we focused on vocal timbre which can be evaluated quan-
titatively by using the singer’s gender. Estimated typicality
is evaluated against the Pearson correlation coefficient be-
tween the computed typicality and the ratio of the number
of male singers to female singers of a song-set. Our result
shows that the proposed measure works more effectively to
estimate musical typicality than the previous model based
simply on generative probabilities.

1 INTRODUCTION

The amount of digital content that can be accessed has
been increasing and will continue to do so in the future.
This is desirable with regard to the diversity of the content,
but is making it harder for listeners to select from this con-
tent. Furthermore, since the amount of similar content is
also increasing, creators will be more concerned with the
originality of their creations. All kinds of works are influ-
enced by some existing content, and it is difficult to avoid
an unconscious creation of content partly similar in some
way to other content.

This paper focuses on musical typicality which reflects
the number of songs having high similarity with the tar-
get song as shown in Figure 1. This definition of musi-
cal typicality is based on central tendency, which in cog-
nitive psychology is one of the determinants of typical-
ity [2]. Musical typicality can be used to recommend a
unique or representative song for a set of songs such as
those in a particular genre or personal collection, those on

c© Tomoyasu Nakano, Daichi Mochihashi, Kazuyoshi
Yoshii, Masataka Goto. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Tomoyasu
Nakano, Daichi Mochihashi, Kazuyoshi Yoshii, Masataka Goto. “Mu-
sical Typicality: How Many Similar Songs Exist?”, 17th International
Society for Music Information Retrieval Conference, 2016.
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Figure 2. Estimation of music typicality represented by a
discrete sequence based on the type theory. Both the pre-
vious and the proposed approach are illustrated.

a specific playlist, or those released in a given year or a
decade. And it can help listeners to understand the rela-
tionship between a song and such a song set. However,
human ability with regard to typicality is limited. Judg-
ing similarity between two songs is a relatively simple task
but is time-consuming, so judging the similarities of a mil-
lion songs is impossible. Consequently, despite the coming
of an era in which people other than professional creators
can enjoy creating and sharing works, the monotonic in-
crease in content means that there is a growing risk that
one’s work will be denounced as being similar to some-
one else’s. This could make it difficult for people to freely
create and share content. The musical typicality proposed
in this paper can help create an environment in which spe-
cialists and general users alike can know the answers to the
questions “How often does this occur?” and “How many
similar songs are there?”.

Much previous work has focused on musical similarity
because it is a central concept of MIR and is also impor-
tant for purposes other than retrieval. For example, the use
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of similarity to automatically classify musical pieces (into
genres, music styles, etc.) has been studied [10,13], as has
its use for music auto-tagging [17]. Each of these applica-
tions, however, is different from musical typicality: musi-
cal similarity is usually defined by comparing two songs,
music classification is defined by classifying a given song
into one out of a set of categories (category models, cen-
troids, etc.), and music auto-tagging is defined by compar-
ing a given song to a set of tags (tag models, the closest
neighbors, etc.).

Nakano et al. proposed a method for estimating mu-
sical typicality by using a generative model trained from
the song set (Figure 2) [16] and showed its application to
visualizing relationships between songs in a playlist [14].
Their method estimates acoustic features of the target song
at each frame and represents the typicality of the target
song represented as an average probability of each frame
of the song calculated using the song-set model. However,
we posit that the generative probability is not truely appro-
priate to represent typicality.

The method we propose here, in contrast, introduces the
type from information theory for improving estimated mu-
sical typicality by a bag-of-features approach [16]. In this
context, the type is same meaning with the unigram distri-
bution. We first model musical features of songs by using
a vector quantization method and latent Dirichlet alloca-
tion (LDA) [4]. We then estimate a song-set model from
the song models. Finally, we compute the typicality of the
target song by calculating the probability of a type of the
musical sequence (quantized acoustic features) calculated
using the song-set model (Figure 2).

2 METHOD

The key concept of the method in this paper is the type of
a sequence on which we consider the typicality of a given
music. Previous work have mentioned/used simple gen-
erative probabilities to compute musical similarity [1] or
typicality [16] of a music and for singer identification [8].
However, simple generative probability will not conform
to our notion of typicality. Imagine the simplest example
in Figure 3: here, each song consists of alphabets of {0, 1}
and the stationary information source has a probability dis-
tribution on alphabets Q(0) = 2/3, Q(1) = 1/3.

Clearly, while the song “a” has the highest probability
of generation, we can see that the sequences like “b” and
“c” will occur more typically. This means that we should

think about the sum of the probabilities of songs that are
similar to the song to measure the typicality.

2.1 Type and the Typicality

Let us formalize our ideas from the viewpoint of informa-
tion theory [5–7]. Let x = {x1, x2, · · · , xn} be a sequence
of length n whose alphabet x comes from a set X . We
assume that x comes from a stationary memoryless infor-
mation source, i.e. we can drop the order of symbols in x
and regard x as a bag of words. Next, we introduce some
definitions:
Definition 1 (type). Let N(x|x) be the number of times
that x ∈ X appeared in sequence x. The type Px of the
sequence x is an empirical probability distribution of sym-
bols in x:

Px =

{
1

n
N(x|x)

∣∣∣∣ x ∈ X
}

. (1)

We denote the space of all Px as Pn.
Definition 2. Let P ∈ Pn. A set of sequences of length n
that share the same type P is called a type class Tn of P :

Tn(P ) = {x ∈ X n | Px = P} . (2)

Now let us denote the probability of a sequence x from
an memoryless information whose symbol probabilities
are Q(x):

p(x) = Qn(x) =
n∏

i=1

Q(xi) . (3)

Given these definitions, the following simple theorems fol-
low:
Theorem 1. The probability of a sequence x having type
P from a stationary memoryless information source Q is
expressed as follows:

Qn(x) = exp
[
−n(H(P ) + D(P ||Q))

]
(4)

Here, H(P ) and D(P ||Q) are an entropy of P and
Kullback-Leibler divergence of P from Q, respectively.

H(P ) = −
∑

x∈X
P (x) log P (x) (5)

D(P ||Q) =
∑

x∈X
P (x) log

P (x)

Q(x)
(6)

Proof.

Qn(x) =
n∏

i=1

Q(xi) =
∏

x

Q(x)N(x|x) =
∏

x

Q(x)nP (x)

=
∏

x

exp
[
nP (x) log Q(x)

]
(7)

= exp
[
−n

(
−

∑

x

P (x) log Q(x)
)]

(8)

= exp
[
−n

(
H(P ) + D(P ||Q)

)]
. � (9)

Theorem 2 (lower and upper bounds). For any type P ∈
Pn,

1

(n + 1)|X |−1
exp{nH(P )}

≤ |Tn(P )| ≤ exp{nH(P )}. (10)
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Using the theorems above, the following important the-
orem can be proved.
Theorem 3. For any type P ∈ Pn and any probability
distribution Q,

Qn(Tn(P ))
.
= exp{−nD(P ||Q)}, (11)

where an
.
= bn if limn→∞(1/n) log(an/bn) = 0.

Proof. Using (4) and (10),

Qn(Tn(P )) =
∑

x∈T n(P ) Qn(x)

= |Tn(P )| exp(−n(H(P ) + D(P ||Q)))
.
= exp(nH(P )) · exp(−n(H(P ) + D(P ||Q)))

= exp{−nD(P ||Q)} . � (12)

This theorem says that the sum of the probabilities of
sequences that share the same type P is given by an expo-
nential of Kullback-Leibler divergence from the informa-
tion source Q. While the equation (11) is usually used in
information theory to formalize that such a probability ex-
ponentially decays with the length n, here we do not care
for n but for the form of the function. Thus, we normalize
(11) for a unit observation like the well-known perplexity,
yielding the definition of typicality as follows:
Definition 3 (Typicality).

Typicality(P |Q) = exp{−D(P ||Q)} (13)

where P is the type of a musical sequence and Q is a gen-
erative model of its musical features.

2.2 Generative modeling and Type

To evaluate the typicality estimation method, we compute
the type of each song by modeling them in a way based
on our previous work [16]. From polyphonic musical au-
dio signals including a singing voice and sounds of various
musical instruments, we first extract vocal timbre. We then
model the timbre of songs by using a vector-quantization
method and latent Dirichlet allocation (LDA) [4]. Finally,
a song-set model Q is estimated by integrating all song
models (Figure 2).

In addition, we use the expectation of Dirichlet topic
distribution as a type P because the hyperparameter of the
posterior Dirichlet distribution can be interpreted as the
number of observations of the corresponding topic. In the
other words, the P indicates mixing weights of the multi-
ple topics.

2.2.1 Extracting acoustic features: Vocal timbre

We use the mel-frequency cepstral coefficients of the LPC
spectrum of the vocal (LPMCCs) and the ΔF0 of the vo-
cal to represent vocal timbre because they are effective for
identifying singers [8, 15]. In particular, the LPMCCs rep-
resent the characteristics of the singing voice well, since
singer identification accuracy is greater when using LPM-
CCs than when using the standard mel-frequency cepstral
coefficients (MFCCs) [8].

We first use Goto’s PreFEst [11] to estimate the F0 of
the predominant melody from an audio signal and then the

F0 is used to estimate the ΔF0 and the LPMCCs of the
vocal. To estimate the LPMCCs, the vocal sound is re-
synthesized by using a sinusoidal model based on the esti-
mated vocal F0 and the harmonic structure estimated from
the audio signal. At each frame the ΔF0 and the LPMCCs
are combined as a feature vector.

Then reliable frames (frames little influenced by ac-
companiment sound) are selected by using a vocal GMM
and a non-vocal GMM (see [8] for details). Feature vec-
tors of only the reliable frames are used in the following
processes (model training and probability estimation).

2.2.2 Quantization

Vector quantization is applied using the k-means algorithm
to convert acoustic feature vectors of each element to a
symbolic time series representation. In that algorithm the
vectors are normalized by subtracting the mean and divid-
ing by the standard deviation, and then the normalized vec-
tors are quantized by prototype vectors (centroids) trained
previously. Hereafter, we call the quantized symbolic time
series acoustic words.

2.2.3 Probabilistic generative model: song model

The observed data we consider for LDA areD independent
songs X = {X1, ..., XD}. A song Xd is Nd acoustic
words Xd = {xd,1, ..., xd,Nd

}. The size of the acous-
tic words vocabulary equals to the number of clusters of
the k-means algorithm, V . We consider a K-dimensional
multinomial of latent topic proportions θd for each Xd,
and write θ = (θ1, · · · , θD).

Introducing latent topic assignments Zd =
{zd,1, ..., zd,Nd

} for Xd and collectively write
Z = {Z1, ..., ZD}, the full joint distribution of our
LDA model is given by

p(X, Z, θ, φ) = p(X|Z, φ)p(Z|θ)p(θ)p(φ) (14)

where φ indicates the emission distribution of each topic.
The first two terms are likelihood functions, and the other
two are prior distributions. The likelihood functions are
defined as

p(X|Z, φ) =

D∏

d=1

Nd∏

n=1

V∏

v=1

(
K∏

k=1

φ
zd,n,k

k,v

)xd,n,v

(15)

and

p(Z|θ) =

D∏

d=1

Nd∏

n=1

V∏

v=1

θ
zd,n,k

d,k . (16)

We endow θ and φ conjugate Dirichlet priors:

p(θ) =
D∏

d=1

Dir(θd|α0) ∝
D∏

d=1

K∏

k=1

θα0−1
d,k (17)

p(φ) =

K∏

k=1

Dir(φk|β0) ∝
K∏

k=1

V∏

v=1

φβ0−1
k,v . (18)

where p(θ) and p(φ) are products of Dirichlet distributions
and α0, β0 are their prior hyperparameters.

Finally, we obtain a type of each song Xd as an expec-
tation of the Dirichlet posterior distribution of θd.
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Dir(6,2,2) Dir(6,2,6) Dir(6,6,2)

Dir(18,10,10) Dir(5.4, 2.9, 2.8)

Previous approach Proposed method

Dir(7,1,1) Dir(1,1,7) Dir(1,7,1)

Dir(9,9,9) Dir(0.92, 0.89, 0.97)

Previous approach Proposed method

Figure 4. Song-set model estimation of previous approach and a model estimated by our proposed method.

2.3 Typicality over a set of Songs

Given the type of each song, we wish to compute the typi-
cality of a song as compared to a set of other songs. In Sec-
tion 2.1, we defined the typicality of a sequence of type P
from an information source having distribution Q. There-
fore, we need some way to estimateQ from the set of songs
(i.e. types) beforehand. Actually, we do not have to esti-
mate a single Q but compute an expectation around it:

Typicality(P |Θ) = E[exp(−D(P ||θ))]θ∼Dir(α) (19)

where Θ = {θ1, · · · , θn} is a set of types of other songs
and Dir(α) is a prior Dirichlet distribution from which
each θi ∈ Θ is deemed to be generated.

In the previous work [16], we estimated the hyper-
parameter α by just summing the topic distributions
θ1, · · · , θn. As shown in Figure 4, however, this could lead
to an undesirable result and we employ a Bayesian formula
to estimate α. This derivation is based on the following
Dirichlet and Gamma distributions:

Dir(θ|α) =
Γ (

∑
k αk)∏

k Γ(αk)

∏

k

θαk−1
k (20)

Ga(α|a, b) =
ba

Γ(a)
αa−1e−bα (21)

Therefore,

p(α|Θ) ∝ p(Θ|α)p(α) (22)

∝
∏

k

αa−1
k e−bαk ·

∏

j

Γ (
∑

k αk)∏
k Γ(αk)

∏

k

θαk

k , (23)

which leads to

p(αk|αk−1, Θ) ∝ αa−1
k e−bαk ·

∏

j

Γ (
∑

k αk)

Γ(αk)
θαk

k . (24)

Because we cannot expand Γ(
∑

k αk)/Γ(αk), we make a
following approximation with n being a nearest integer to∑

j �=k αk [18]:

Γ(
∑

k αk)

Γ(αk)
=

Γ(αk+
∑

j �=k αj)

Γ(αk)
� Γ(αk+n)

Γ(αk)
(25)

= αk(αk + 1) · · · (αk + n − 1) (26)

=
n−1∏

i=0

αk(αk + i) (27)

=
n−1∏

i=0

∑

y∈{0,1}
(αk)yi(i)1−yi . (28)

Therefore, introducing auxiliary variables

yi ∼ Bernoulli

(
αk

αk+ i

)
, (29)

we can make a following Gamma proposal for αk:

p(αk|αk−1, Θ) (30)

� αa−1
k e−bαk ·

∏

j

eαk log θjk ·
∏

j

n−1∏

i=0

α
yji

k (31)

= α
a+

∑
j

∑n−1
i=0 yji−1

k · e−αk(b−∑
j log θjk) (32)

= Ga(a +
∑

j

n−1∑

i=0

yji, b −
∑

j

log θjk). (33)

Because this is just a proposal, we further correct the bias
using a Metropolis-Hastings algorithm with the exact like-
lihood formula (24).

2.4 Computing the Expectation

Once we obtain α fromΘ, we can compute the expectation
(19) analytically. Denoting P = (p1, · · · , pK) and writing
E[] as 〈〉,
Typicality(P |Θ) =

〈
exp(−D(P ||θ))

〉
θ∼Dir(α)

(34)

=

〈
exp

K∑

k=1

pk log
θk

pk

〉

θ∼Dir(α)

=
1

exp(
∑

k pk log pk)

〈
exp

∑

k

pk log θk

〉

θ∼Dir(α)

= exp(H(P ))

〈
K∏

k=1

θpk

k

〉

θ∼Dir(α)

. (35)

Here, the second term is
〈

K∏

k=1

θpk

k

〉

θ∼Dir(α)

=
Γ(

∑
k αk)∏

k Γ(αk)

∫ ∏

k

θαk−1
k ·

∏

k

θpk

k dθ

=
Γ(

∑
k αk)∏

k Γ(αk)

∫ ∏

k

θαk+pk−1
k dθ

=
Γ(

∑
k αk)∏

k Γ(αk)

∏
k Γ(αk+pk)

Γ(
∑

k αk+pk)
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=
1∑
k αk

∏

k

Γ(αk+pk)

Γ(αk)
. (36)

Therefore, from (35) we finally obtain

Typicality(P |Θ) =
exp(H(P ))∑

k αk

∏

k

Γ(αk+pk)

Γ(αk)
. (37)

3 EXPERIMENTS

The proposed methods were tested in an experiment eval-
uating the estimated typicality. To evaluate estimated re-
sults, we focused on vocal timbre which can be evaluated
quantitatively by using the singer’s gender.

3.1 Dataset

The song set used for the LDA-model-training and typical-
ity estimation comprised 3,278 Japanese popular songs1
that appeared on a popular music chart in Japan (http:
//www.oricon.co.jp/) and were placed in the top
twenty on weekly charts appearing between 2000 and
2008. Here we refer to this song set as the JPOP MDB.

The song set used for GMM training and k-means train-
ing to extract the acoustic features consisted of 100 popu-
lar songs from the RWC Music Database (RWC-MDB-P-
2001) [9]. These 80 songs in Japanese and 20 in English
reflect styles of the Japanese popular songs (J-Pop) and
Western popular songs in or before 2001. Here we refer
this song set as the RWC MDB.

3.2 Experimental Settings

Conditions and parameters of the methods described in the
METHODS section are described here in detail. Some
conditions and each parameter value were based on pre-
vious work [15, 16].

3.2.1 Typicality estimation

The number of iterations of the Bayesian song-set model
estimation described in Subsection 2.3 was 1000.

3.2.2 Extracting acoustic features

For vocal timbre features, we targeted monaural 16-kHz
digital recordings and extractedΔF0 and 12th-order LPM-
CCs every 10 ms. To estimate the features, the vocal sound
was re-synthesized by using a sinusoidal model. The ΔF0

was calculated every five frames (50 ms).
The feature vectors were extracted from each song, us-

ing as reliable vocal frames the top 15% of the feature
frames. Using the 100 songs of the RWC MDB, a vocal
GMM and a non-vocal GMM were trained by variational
Bayesian inference [3].

3.2.3 Quantization

To quantize the vocal features, we set the number of clus-
ters of the k-means algorithm to 100 and used the 100
songs of the RWC MDB to train the centroids.

1 Note that some are Western popular songs and English in them .

3.2.4 Training the generative models

Training song models and song-set models of the vocal
timbre by LDA, we used all of the 3,278 original record-
ings of the JPOP MDB.

The number of topics, K, was set to 100, and the model
parameters of LDA were trained using the collapsed Gibbs
sampler [12]. The hyperparameters of the Dirichlet distri-
butions for topics and words were initially set to 1 and 0.1,
respectively.

3.3 Four typicality measures

We evaluated the following four typicality computing con-
ditions.
T1: computing the Euclidean distance
T2: computing the generative probability [16]
T3: computing the KL-divergence, equation (13)
T4: computing the KL-divergence, equation (37)
As a baseline method, under the T1 condition, one sim-

ple method used to estimate the typicality of vocal timbre
calculated the Euclidean distance between mean feature
vectors of a song and a song-set. Each mean vector was
calculated from each song, using the reliable vocal frames,
and was normalized by subtracting the mean and dividing
by the standard deviation of all mean vectors.

Under the T2 condition, one typicality between a song
and a set of songs is obtained by calculating a genera-
tive probability [16] of song P calculated using a song-set
model of song Q. This typicality pg(P |Q) is defined as
follows:

log pg(P |Q) =
1

NP

NP∑

n=1

log p(xP,n| E[θQ], E[φ]), (38)

p(xP,n| E[θQ], E[φ]) =

K∑

k=1

(E[θQ,k] · E[φk,v]) , (39)

where E[·] is the expectation of a Dirichlet distribution,
NP is the number of frames, and v is the corresponding
index (the word id) of the K-dimensional 1-of-K observa-
tion vector xb,n.

The other two typicalities, under the T3 and T4 condi-
tions, are calculated Typicality(P, Q) by using equations
(13) and (37), respectively.

3.4 Experiment: musical typicality estimation

We evaluated the four typicality computing conditions (T1-
T4) in combination with the following three song-set mod-
eling conditions.
M1: computing a mean vector
M2: summing the Dirichlet hyperparameters [16]
M3: Bayesian estimation of the hyperparameters de-

scribed in Subsection 2.3
We computed typicalities under five evaluation conditions
T1+M1, T2+M2, T3+M2, T3+M3, and T4+M3.

Our typicality evaluation experiment used five hundred
songs by a hundred singers (50 male and 50 female), each
singer sung five songs. The songs are taken from the JPOP
MDB and each of the songs included only one vocal. To
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Evaluated First selection Second selection Third selection Fourth selection Fifth selection
conditions ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf ρm ρf ρmf

T1+M1 .855 .866 .855 .775 .821 .798 .935 .835 .882 .870 .876 .872 .914 .842 .876
T2+M2 .924 .930 .860 .905 .921 .866 .953 .918 .879 .925 .938 .875 .945 .910 .864
T3+M2 .921 .927 .861 .912 .921 .871 .951 .919 .880 .924 .935 .876 .944 .907 .865
T3+M3 .940 .961 .931 .910 .961 .926 .962 .955 .944 .936 .967 .934 .952 .950 .933
T4+M3 .936 .973 .942 .844 .973 .896 .968 .962 .952 .930 .976 .936 .970 .949 .939

Table 1. Pearson correlation coefficients of a hundred songs under the five evaluated conditions (“T4+M3” is the proposed
method) and the underline means the highest value. The songs are randomly selected five times from five hundred songs.
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Figure 5. Estimated typicalities (first selection) and those
scaled values for each of the five evaluation conditions.

estimate musical typicality, a hundred songs by different
singers are randomly selected five times. Then, to integrate
or estimate song-set models, fifty songs are randomly se-
lected from the songs with different ratios of the number of
male singers to female singers (1 : 49, 2 : 48, ..., 49 : 1).
When a model with a high proportion of female songs is
used, the typicality of songs sung by females is higher than
the typicality of songs sung by males (and vice versa).

Estimated typicality was evaluated against the Pearson
product-moment correlation coefficient between the com-
puted typicality the ratio of the number of male singers to
female singers with respect to song-set modeling. Before
computing the coefficients, the typicality for each song was
scaled to have values from 0 to 1 for evaluating smooth
transition. Let ρm, ρf , and ρmf denote the coefficients un-
der a set of songs consist of 50 songs by male singers, 50
songs by female singers, and all 100 songs, respectively.

The estimated typicalities and those scaled values are
shown in Figure 5 for each of the five evaluation con-
ditions. The Pearson’s correlation coefficients are listed
in Table 1. The results show that the proposed method
achieved the highest value of the correlation coefficient
(T4+M3). This means that the proposed method works

better than the baseline method based on the Euclidean dis-
tance of mean vectors (T1+M1) and the previous method
based on computing the generative probabilities (T2+M2).
The results also show that estimated musical typicality by
using the proposed method can reflect the ratio between
the number of songs belonging to a class (e.g., male singer)
and the number of songs belonging to another class (e.g.,
female singer).

4 CONCLUSION

We proposed a method for estimating musical typicality
based on the type theory. Although this method is used for
quantized acoustic features for vocal timbre in this paper,
it can be used for other discrete sequence representations
of music, such as quantized other acoustic features (e.g.,
MFCCs to represent musical timbre/genre), lyrics and mu-
sical score. It can also be used with probabilistic represen-
tation instead of estimating musical similarities of all pos-
sible song-pairs by using a model trained from each song,
for integrating or collaboration with other probabilistic ap-
proach as a unified framework.

Our definition of musical typicality was based on the
central tendency [2] which is only the definition to be com-
puted from the audio data; this is the reason to adopt it. In
future work we expect to deal with two other definitions
in cognitive psychology are frequency of instantiation and
ideals. The frequency of instantiation is a perspective on
social recognition, that is, things with a lot of exposure on
media or in advertisements are typical, and ideals focuses
on an ideal condition of the category, that is, things that are
close to an ideal condition are typical.

Musical typicality can be used not only for music-
listening support interface such as retrieving an uniqueness
song or visualizing typicalities, but also to do this by devel-
oping a music-creation support interface enabling high/low
typicality elements (e.g., timbre and lyrics) to be used to
increase originality or visualize typicality in order to avoid
unwarranted accusations of plagiarism. We also want to
promote a proactive approach to encountering and appre-
ciating content by developing music-appreciation support
technology that enables people to encounter new content
in ways based on its typicality to other content.
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ABSTRACT

With public data sources such as Million Song dataset, re-
searchers can now study longitudinal questions about the
patterns of popular music, but the scale and complexity
of the data complicate analysis. We propose MusicDB, a
new approach for longitudinal music analytics that adapts
techniques from relational databases to the music setting.
By representing song timeseries data relationally, we aim
to dramatically decrease the programming effort required
for complex analytics while significantly improving scal-
ability. We show how our platform can improve perfor-
mance by reducing the amount of data accessed for many
common analytics tasks, and how such tasks can be imple-
mented quickly in relational languages — variants of SQL.
We further show that expressing music analytics tasks over
relational representations allows the system to automati-
cally parallelize and optimize the resulting programs to im-
prove performance. We evaluate our system by expressing
complex analytics tasks including calculating song density
and beat-aligning features and showing significant perfor-
mance improvements over previous results. Finally, we
evaluate expressiveness by reproducing the results from a
recent analysis of longitudinal music trends using the Mil-
lion Song dataset.

1. INTRODUCTION

Over the past decade, a concerted investment in building
systems to help extract knowledge from large, noisy, and
heterogeneous datasets — big data — has had a transfor-
mative effect on nearly every field of science and industry.
Progress has also been fueled by the availability of pub-
lic datasets (e.g., the Netflix challenge [1], early releases
of Twitter data [14], Google’s syntatic n-grams data [7],
etc.), which have focused and accelerated research in both
domain science and systems. The field of Music Infor-
mation Retrieval (MIR) appears to been less affected, as
complications from copyright-encumbered properties have
limited the introduction of big datasets to the community.
Now, however, such datasets are finally making their way
into the field.

In other fields we have observed that as the data size

c© Jeremy Hyrkas, Bill Howe.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jeremy Hyrkas, Bill Howe. “Mu-
sicDB: A Platform for Longitudinal Music Analytics”, 17th International
Society for Music Information Retrieval Conference, 2016.

and scope of problems increased, issues of scale became
the bottleneck: single-site solutions written in R or python
give way to distributed shared-nothing systems that can
readily handle large datasets. These systems relieve the
user of worrying about issues such as memory manage-
ment, concurrency and distributed computing by focusing
on limited data models and APIs. General purpose systems
such as Hadoop [21] and Spark [22] provide MapReduce-
style dataflow computations [4], but can be hard to pro-
gram and optimize because of their generality and rela-
tively low-level interfaces. Increasingly, programmers are
experimenting with the models and languages of relational
databases [11,12,17] for non-relational analytics over time-
series, graphs, images, and more due to their higher-level
programming abstractions, simpler data models, and auto-
matic optimization.

In this paper, we propose a platform for longitudinal
music analytics built on a relational big data system. Be-
cause music data (which may include multi-dimensional
arrays and timeseries of extracted features) is ostensibly
not relational upon collection, we describe a ”relationaliza-
tion” of the data to afford distributed, parallel processing.
Then, we present four algorithms found in music analytics
tasks in the MIR literature and show that they can be ex-
pressed in declarative relational languages similar to SQL,
affording scalability, portability, and automatic optimiza-
tion, and freeing the programmer from systematic concerns
related to memory management, concurrency, and distributed
processing. The four algorithms are song density, feature
beat-alignment, pitch keyword distribution by year, and
timbre keyword distribution by year. The first two algo-
rithms are common music analysis tasks, and the latter two
are highly computational algorithms presented in a high
profile MIR study over the Million Song Data set [20]. We
reproduce prior results with only a few lines of code and
a significant performance improvement over prior experi-
ments on similar large-scale systems.

We propose our model as an approach for platforms to
raise the level of abstraction for longitudinal music analyt-
ics and reduce the barrier to entry for researchers in musi-
cology and sociology.

1.1 Million Song Dataset

The key dataset used in our experiments is the The Million
Song Dataset (MSD) [3]. The dataset includes metadata
and extracted features from one million pop music songs
from a period of decades, including information such as
genre tags, chroma measurements, timbre and loudness
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measurements, detected beats, artist and song metadata such
as year, duration and location, and many other attributes.
This dataset has been highly influential in the MIR commu-
nity, leading to the Million Song Dataset Challenge [16],
as well as being a key data set used to study music history
[20] and MIR tasks such as cover song detection [2, 10].
The MSD is available as available as a large collection of
HDF5 [5] files; at over 250GB even when heavily com-
pressed, it is the largest public dataset in MIR and is the
first true “Big Data” dataset in the field.

The MSD is available in a number of formats, including
a relational database. However, the database representa-
tion include the metadata only, and cannot be used for the
content-based longitudinal analytics tasks we aim to sup-
port with MusicDB.

2. RELATED WORK

Serra et al. provide a longitudinal analysis of music trends
in popular music by utilizing the MSD [20] . The au-
thors study the chroma, timbre, and loudness components
of the MSD and find that the frequency of chroma key-
words (which can be thought of as single notes, chords,
etc) fit a power law distribution which is mostly invariant
across time. However, the authors also find that transi-
tions from one keyword to the next have become more uni-
form over time, suggesting less complexity in newer mu-
sic. They also describe shifting trends in timbre and loud-
ness, including numerical evidence that recorded music is
increasingly louder on average. In Section 4 we describe
these tasks in detail and present new algorithms for them
using MusicDB. In Section 5 we evaluate our approach ex-
perimentally.

Raffek and Ellis analyzed MIDI files and matched them
to corresponding songs in the MSD [18] . Their algorithm
is fast but is not distributed; they estimate that running their
approach on roughly 140k MIDI files against the MSD
would take multiple weeks even when parallelized on their
multi-threaded processor with 12 threads.

Bertin-Mahieux and Ellis described a method for find-
ing cover songs in the MSD [2]. The method begins with
an aggressive filtering step, which requires computing jump-
codes for the entire MSD and storing them in a SQLite
database. Once the number of potential matches for a new
song is filtered, a more accurate matching process is run
to find cover songs. Using three cores, they computed
the jumpcodes for the entire MSD in roughly three days,
although matching cover songs once the jumpcodes are
computed takes roughly a second per new song. The au-
thors also mention that the jumpcodes had to be stored in
many different SQLite tables, as they were unable to index
roughly 1.5M codes in a single table. MusicDB provides
a platform that can process the data directly, in parallel,
without specialized engineering.

Humphrey, Nieto, and Bello also provide a method to
detect cover songs [10]. Their method starts by transform-
ing beat-aligned chroma of a song into a high-dimensional,
sparse representation by projecting its 2D Fourier Magni-
tude Coefficients. They then use PCA to reduce dimen-

sionality and use the results to find cover songs using a
distance function. The authors claim that using ten threads
on a machine with “plenty of RAM”, various methods can
take between 3-8 hours to complete this computation on
the MSD.

Hauger et al. describe the million musical tweets dataset
(MMTD) [9] collected from tweets with information about
a user’s location and what they were listening to at a certain
time. This dataset, as well as others, can be used to aug-
ment the MSD for new MIR tasks. As it exists, the MSD
is available as a directory hierarchy with hundreds of gi-
gabytes of HDF5 files stored on AWS. Incorporating new
data in analysis tasks over this dataset requires additional
effort in the analysis pipeline, leaving either the authors of
the data or the users of the data to write new code to han-
dle the new data source and manually join it with the MSD.
MusicDB provides a scalable substrate for such integration
tasks.

3. DATA MODEL

A key step in efficiently analyzing the MSD is to repre-
sent its information in an appropriate data model. The rep-
resentation of the MSD available on the website (on mil-
lion HDF5 files) support efficient lookup by ID, but any
more complex processing requires custom programs to be
written, and parallelization, concurrency, distribution, and
memory management are all the direct responsibility of the
programmer. Moreover, tasks that require only a portion of
metadata from each song must still access and load all song
data from disk.

Instead, we can organize the music data as sets of records.
In practice, this ”relationalization” of timeseries and mul-
tidimensional data can significantly increase the size of the
dataset. In our work, the end size of our relationalized
data is roughly 500GB, about twice as large as the orig-
inal dataset. However, all applications we have observed
do not require the entire MSD, and the subset of relation-
alized data necessary for computation is much smaller than
the entire MSD in HDF5 format. Further, representing the
data as a set of records affords automatic partitioning and
parallel processing, as we will see.

The steps to relationalization are as follows:

• Metadata that appears only once per song is inserted
into one table (songs), with song ID as the key. This
includes fields such as song duration, artist name,
song name, etc.

• Nested fields are represented in separate tables, re-
taining a foreign key to the songs table. To repre-
sent the order within the nested field, an additiona
column is added. For example, each song segment
is represented as a record (song id, segment number,
value, where segment number explicitly encodes the
implicit order in the original array. This additional
field is one source of the space overhead we find in
practice.
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• We use additional tables to support specific compo-
nents of the MSD, including a separate table for each
of the following: beat-aligned chroma features, beat-
aligned timbre features, and beat-aligned chroma fea-
tures that have been transposed such that most songs
are in C major or C minor.

table key arity non-key fields
songs song id 33 duration, key,

tempo, etc
segments song id,

seg num
31 timbre, loudness,

and pitch measure-
ments

mbtags song id, tag 3 tag count
bars song id,

bar num
4 bar start and confi-

dence
beats song id,

beat num
4 beat start and confi-

dence
sections song id, sec-

tion id
4 section start and

confidence
terms song id,

term
4 term frequency and

weight
tatums song id,

tatum num
4 tatum start and con-

fidence
similar
artists

song id,
artist id,
simi-
lar artist id

3 N/A

Table 1. Core tables after relationalization of the MSD.
Additional tables may be created, such as beat aligned fea-
tures.

4. ALGORITHMS

We describe four algorithms for scalable analysis of the
relationalized MSD dataset. The first two algorithms are
common MIR tasks, and the latter two come from an influ-
ential study using the MSD [20].

4.1 Song Density

In 2011, Lamere described a Hadoop-based approach for
calculating song density from the MSD [15]. A song’s
density is defined as the number of detected segments di-
vided by the duration of the song in seconds. To calculate
this metric for every song in the MSD, Lamere provides
a MapReduce [4] algorithm that scans each song, extracts
the segments, and computes the density. The map function
was written in Java specifically for this purpose.

This task can be expressed directly with no custom gen-
eral purpose code in SQL. In MusicDB, song density for a
single song can be expressed as a simple count query over
the segments table, followed by a join with the songs table
and division by song duration. This method generalizes to
the following query (in an imperative dialect of SQL used
by the Myria system [8]) that computes the density for all
songs.

Query 1. Lines 1-2 scan the relevant relations. Lines 4-
7 count the number of segments per song and lines 8-14
calculate the density by dividing the number of segments
by the duration in seconds. Line 15 stores the result.

1 segments = SCAN(SegmentsTable);
2 songs = SCAN(SongsTable);
3 -- implicit GROUP BY song_id
4 seg_count = SELECT
5 song_id,
6 COUNT(segment_number) AS c
7 FROM segments;
8 density = SELECT
9 songs.song_id,

10 (seg_count.c /
11 songs.duration) AS density
12 FROM songs, seg_count
13 WHERE songs.song_id =
14 seg_count.song_id;
15 store(song_density);

4.2 Beat-aligning features

While chroma and timbre data in the MSD are provided on
a per-segment basis, it is often more useful to align these
features to beats, which are easier to interpret musically.
Beat-aligning these features is an extremely common and
useful processing step that is used in cover song detec-
tion [2], longitudinal music studies [20], and many other
MIR tasks, and is therefore a useful task to consider for
MusicDB.

In 2011, Serra identifies dynamic time warping as one
of the best methods for beat-alignment [19]. Dynamic time
warping involves creating an SxB matrix, where S is the
number of segments of a song and B is the number of
beats. If a segment s overlaps with a beat b, the b, s entry
of the matrix is set to the fraction of the segment contained
in the beat (i.e. 1 if the segment falls entirely in the beat,
.5 if the beat contains exactly half of the segment, etc). All
other entries are set to 0, and then the rows are normalized
such that each row of values sums to 1. Segment-based
features such as chroma or timbre can then be beat-aligned
by transposing the beat matrix and performing matrix mul-
tiplication on the features (a BxS matrix multiplied by
a SxF matrix will result in a BxF matrix, where F is
the number of features). Some additional regularization of
rows is performed for chroma features.

In a relational system, the time warp operation can be
computed using just two operations: a join and an aggre-
gation. We first join the segments and beats table on the
start and end time of each segment and bar, such that over-
lapping segments and beats are joined:

Query 2. Portion of a query that joins overlapping seg-
ments and beats of a song so that beat aligned features can
be computed.

1 JOIN segments, beats WHERE
2 -- segment overlaps start of beat
3 (seg_start <= beat_start
4 AND seg_end <= beat_start)
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5 OR
6 -- segment overlaps end of beat
7 (seg_start < beat_end
8 AND seg_end >= beat_end)
9 OR

10 -- segment fully inside beat
11 (seg_start > beat_start
12 AND seg_end < beat_end)
13 OR
14 -- beat fully inside segment
15 (seg_start < beat_start
16 AND seg_end > beat_end)
17 ;

We can then perform two aggregations on the result,
and re-join the aggregate queries to perform an operation
identical to multiplying the features by a time warp matrix.
Refer to Figure 1, which visualizes this query. In each ag-
gregation, we will calculate the fraction of a segment that
falls within a beat, which is defined as the length of the
segment that falls within the beat divided by the length of
the segment (or 1.0 if the segment spans the beat).

On the right side of the diagram, we compute the first
aggregation. We use the fraction of the segment that falls
within a beat to scale each feature of that segment (i.e.
chroma or timbre features), and then take the sum of the
scaled features per beat.

On the left side of the diagram, we perform a second
aggregate which simply computes the sum of the segment
fractions for each beat. We call this sum the divisor.

The two aggregates are then re-joined on beat id and the
weighted sum from the first aggregate is normalized by di-
viding each value by the sum from the second aggregate.
This divisor serves the same function as making sure rows
of the time warp matrix sum to 1. The result of the joined
aggregates is a table with the schema (song id, beat id, fea-
ture columns), which is a relational representation of the
BxF feature matrix described above.

This algorithm, while correct, is not necessarily opti-
mal. Specifically, performing two aggregates over the same
joined relation and then re-joining is an expensive opera-
tion. Relational engines that support window functions of-
fer an alternative approach. A window function makes a
single pass over a dataset, applying an aggregation over
each window as defined by a grouping value or a fixed
size. The engine on which MusicDB is based (a variant
of the Myria system [8]) provides a generalization of win-
dow functions, but we do not employ that mechanism here
to ensure reuse across platforms.

4.3 Pitch Keyword Distribution by Year

In 2012, Serra et al studied the progression of chroma key-
words over time [20]. The authors form these keywords by
transposing every song to an equivalent main tonality by
correlating to tonal profiles provided by [13]. After that,
the beat-aligned chroma values are discretized to binary
values (1 if the value is greater than 0.5, 0 otherwise) and
then concatenated. Intuitively, this discretization repre-
sents whether or not a certain pitch is present or not. These

Figure 1. The relational algebra expression for beat-
aligning features from segments. Segments and beats from
a song are joined on song ID and overlap conditions. Two
aggregations are performed and rejoined to form a table
with features now aligned to beats instead of segments.
The process of generated two results and joining them can
be costly and can be aided by using window functions pro-
vided in many database systems.

keywords can then be summed over years and used to fit a
distribution. The authors show that these chroma keywords
fit a power law which has variables that are near invariant
over time.

The discretization and sum of keywords can be imple-
mented using our data model by the following SQL-like
program:

Query 3. Lines 1-2 scan the appropriate tables. Lines 4-19
(with some lines emitted) create an integer keyword based
on the value of each pitch column. Lines 21-26 count key-
words by year and line 28 stores the result.

1 songs = SCAN(SongsTable);
2 pitch = SCAN(PitchTransposed);
3

4 keywords = SELECT
5 p.song_id AS song_id,
6 p.beat_number AS beat_number,
7 CASE WHEN p.basis0 >= 0.5
8 THEN int(pow(2, 11))
9 ELSE 0

10 END
11 +
12 CASE WHEN p.basis1 >= 0.5
13 THEN int(pow(2, 10))
14 ELSE 0
15 END
16 +
17 ...
18 AS keyword
19 FROM pitch p;
20

21 -- implicit GROUP BY year, keyword
22 yearPitchKeywords = SELECT
23 s.year, k.keyword,
24 count(k.keyword)
25 FROM songs s, keywords k
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26 WHERE s.song_id = k.song_id;
27

28 store(yearPitchKeywords);

4.4 Timbre Keyword Distribution by Year

Similar to the pitch keywords in Section 4.3, the timbre
values from the MSD can be discretized and studied over
time. Serra et al sample timbre values from by year such
that no year is more represented from than any other [20].
From this sample set, they estimate the tertiles for each
timbre value. The tertile values are then used to discretise
the timbre values similarly to the pitch keywords. For each
timbre column, the value is converted to a 0 if it is less than
the first tertile, 1 if it is less than the second tertile, and 2
otherwise; concatenating these values makes one timbre
keyword.

The authors fit power laws to the timbre keywords as
before. However, they find that the power law distributions
significantly differ over time. They conclude that while
the chroma distribution appears to be time invariant, timbre
information (which encodes many complex factors such as
instrument use, tone, and production style) has changed
over time; additionally, the authors find that while there
are local shifts in timbre values, the distribution is slowly
converging.

The query for finding timbre keywords is similar to the
query in Section 4.3, but slightly more complex. It requires
access to a quantiles function that takes a quantile constant
and a column, and returns an integer representing which
quantile a row’s column value falls in (for example, quan-
tile(3, col) returns 0 if col is in the first tertile of the values
contained in col, 1 if it in the second, and 2 if it is in the
third).

Query 4. Lines 1-2 scan the appropriate tables. Lines 4-15
(with some lines emitted) create an integer keyword based
on the tertile each timbre column falls in (the function re-
turns 0 through 2). Lines 17-22 count keywords by year
and line 24 stores the result.

1 songs = SCAN(SongsTable);
2 timbre = SCAN(TimbreBeatAligned);
3

4 keywords = SELECT
5 t.song_id as song_id,
6 t.beat_number AS beat_number,
7 int(pow(10, 11)) *
8 QUANTILE(3, t.basis1)
9 +

10 int(pow(10, 10)) *
11 QUANTILE(3, t.basis2)
12 +
13 ...
14 AS keyword
15 FROM timbre t;
16

17 -- implicit GROUP BY year, keyword
18 yearTimbreKeywords = SELECT
19 s.year, k.keyword,

20 count(k.keyword)
21 FROM songs s, keywords k
22 WHERE s.song_id = k.song_id;
23

24 store(yearTimbreKeywords);

5. EXPERIMENTAL EVALUATION

We evaluate the feasibility of our relationalized approach
by measuring the wall-clock performance of our imple-
mentation on a 72-worker cluster and comparing perfor-
mance qualitatively with reports from the literature. We
find that the entire MSD dataset can be analyzed in sec-
onds or minutes, where previous results on large-scale plat-
forms report tens of minutes and required custom code,
while smaller-scale implementations reported taking hours
or days.

5.1 Song Density

We ran the song density query described in Section 4.1 on
a MusicDB cluster with 72 worker threads. The compu-
tation takes roughly half a minute, a far cry from the 20
minutes described in [15]. These two results are not di-
rectly comparable; the example in [15] was run on virtual
machines in EC2, so the hardware, software, number of
nodes, and most other factors are not comparable. How-
ever, the Hadoop implementation required custom code,
and the underlying platform on which we implemented
these algorithms (a variant of the Myria system [8]) has
been previously shown to significantly outperform Hadoop
on general tasks.

By using a relational model to represent the MSD and
using a distributed analytics database, we can quickly ana-
lyze the MSD using a simple query and allowing the sys-
tem and optimizer handle the complexities of computation.

5.2 Pitch Keyword Distribution by Year

We ran the query described in Section 4.3 on our 72-node
production cluster of MusicDB. Computing the pitch key-
words took about three minutes, while counting keywords
by year took an additional minute. The resulting dataset
contains the frequency for each keyword per year, and has
the schema (Keyword, Year, Count) with (Keyword, Year)
as the primary key. It is small enough (< 1GB) to down-
load locally and perform more complicated statistical tasks,
such as fitting power law distributions over counts per year
as in [20].

Figures 2, 3, and 4 show the power law distributions
for pitch keywords in the years 1965, 1975, and 1985. We
confirm the author’s results [20] that the power law coeffi-
cient is invariant over time. We used the R package pow-
eRlaw [6] to perform this post-processing analysis.

The database system we used does not have complex
functions such as power law fitting, so the last step of the
computation must be performed out of the system. How-
ever, this step could be run in parallel as the data for each
year is independent. Alternatively, in a more general dis-
tributed system, the keyword counts for each year could be
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Figure 2. Power law distribution for pitch keywords from
songs released in 1965.
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Figure 3. Power law distribution for pitch keywords from
songs released in 1975.

partitioned and evaluated in a distributed manner. We did
not demonstrate this capability in this case to avoid a con-
trivance; the resulting data’s size was not large enough to
justify the approach.

6. DISCUSSION AND FUTURE WORK

Distributed analytics systems have made it easier and faster
to perform complex analysis on large datasets. In Sec-
tion 2 we briefly mentioned several recent studies using
the MSD. The authors of these studies ran experiments that
ran on single-node systems, often taking hours or days to
complete. However, most of these tasks are embarrass-
ingly parallel and could be run not only in parallel on a
single machine, but on thousands of nodes in a distributed
system. Big data systems exist to empower users to easily
analyze data in such a distributed environment. As more
large dataset become available in the MIR community, it is
no longer feasible or necessary to run single or mutli-core
algorithms locally for weeks at a time.

We have shown that representing the data in the MSD
as tables can reduce the amount of data necessary for com-
putations (for example, only reading the segment and song
tables in Section 3, and only the segment and beat tables in
Section 4.2). This works especially well in a relational sys-
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Figure 4. Power law distribution for pitch keywords from
songs released in 1985.

tem, where joining tables is a common task with many op-
timizations. However, reading and distributed less data is
helpful outside of relational systems as well. Even though
we showed that many common MIR tasks can be expressed
relationally, some tasks are still very difficult to imple-
ment in an imperative language. If a distributed system
such as Hadoop or Spark is more preferable for a given
task, relationalizing the data can still be used to reduce
the data necessary for computation in these systems. Fi-
nally, since these systems utilize higher level coding mod-
els that abstract away parallelization and distributed com-
putation, they may empower musicologists who are less
familiar with these concepts to ask quickly questions over
larger data sets.
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ABSTRACT

In music information retrieval (MIR), dealing with differ-
ent types of noise is important and the MIR models are
frequently used in noisy environments such as live per-
formances. Recently, i-vector features have shown great
promise for some major tasks in MIR, such as music sim-
ilarity and artist recognition. In this paper, we introduce
a novel noise-robust music artist recognition system using
i-vector features. Our method uses a short sample of noise
to learn the parameters of noise, then using a Maximum
A Postriori (MAP) estimation it estimates clean i-vectors
given noisy i-vectors. We examine the performance of
multiple systems confronted with different kinds of addi-
tive noise in a clean training - noisy testing scenario. Using
open-source tools, we have synthesized 12 different noisy
versions from a standard 20-class music artist recognition
dataset encountered with 4 different kinds of additive noise
with 3 different Signal-to-Noise-Ratio (SNR). Using these
datasets, we carried out music artist recognition experi-
ments comparing the proposed method with the state-of-
the-art. The results suggest that the proposed method out-
performs the state-of-the-art.

1. INTRODUCTION

In MIR, the task of music artist recognition 1 is to recog-
nize an artist, from a part of a song. In real life, MIR sys-
tems have to cope with different kinds of noise; example
situations include music played in a public area such as
a pub or in a live performance. MIR systems are usually
trained with the high quality data from studio recordings
or noise-free audios, yet they may be used in noisy envi-
ronments.

In this paper, we are targeting a use-case, when an artist
recognition mobile app is used in a noisy environment,
while the artist recognition models are trained on clean
data and are integrated inside the app. In such a use-case,

1 We use the term music artist or artist to refer to the singer or the band
of a song.

c⃝ Hamid Eghbal-zadeh
Gerhard Widmer. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Hamid
Eghbal-zadeh Gerhard
Widmer. “noise robust music artist recognition using i-vector features”,
17th International Society for Music Information Retrieval Conference,
2016.

the models can not be trained or adapted on the mobile
phone, due to the limitation of computation. But using the
app, a short example of the noise can be prepared to im-
prove the performance of the system.

I-vector extraction is an unsupervised high-level feature
extraction technique that extracts excerpt-level features us-
ing frame-level features of an audio excerpt. I-vectors were
proposed for the first time in the field of speaker verifica-
tion [4], and then they were frequently used in other areas
such as emotion [29], language [5], and accent recogni-
tion [1] and audio scene detection [9]. Recently, they were
imported into the MIR domain, for singing language iden-
tification [17], music artist recognition [7] and music sim-
ilarity [6]. I-vector features provide a fixed-length low-
dimensional representation for songs which can capture
specific variabilities from acoustic features using Factor
Analysis (FA). In [7], i-vector systems used with noise-
free data, and clean mp3 audio files were used in the artist
recognition experiments.

I-vector based systems consist of 4 main modules: 1)
frame-level feature extraction such as Mel-Frequency Cep-
strum Coefficients (MFCC), 2) i-vector extraction, 3) inter-
class compensation and finally, 4) i-vector scoring. Within-
Class Covariance Normalization (WCCN) and Linear Dis-
criminant Analysis (LDA) are examples of methods used
in the inter-class compensation step. Cosine similarity and
Probabilistic Linear Discriminant Analysis (PLDA) scor-
ing are examples of methods used in the scoring step.

In this paper, we propose a noise-robust artist recog-
nition system using i-vector features that can be adapted
to different kinds of additive noise. We add an estima-
tion step after i-vector extraction, which estimates clean
i-vectors given noisy i-vectors in a clean training - noisy
testing scenario. Our method is superior because it can be
used to adapt i-vector based systems to different kinds of
noise, without training the models with noisy data. This is
done by learning the parameters of noise for different noisy
environments given a short example of additive noise and
estimating clean i-vectors that perform well with the mod-
els trained on clean data.

2. RELATED WORK

To make a MIR system robust to noise, a solution would
be to include noise information inside the MIR models
by adding noisy samples in training data. For example,
in [18] a method called multi-style training is proposed for
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speaker verification in noisy environments. This method
uses noisy data provided in the training set to extract
noisy training i-vectors, with the i-vector extraction models
trained on clean data. But it trains the inter-class compen-
sation and scoring models with noisy training i-vectors.

Because MIR models are usually expensive to train, if
no noisy data is available in training, the only option would
be to use the models trained on clean data for testing the
noisy data and try to reduce the effect of noise on the MIR
models.

In recent years, research focused on studying the vul-
nerability of i-vectors to noise and providing methods for
noise compensation. The de-noising techniques used with
i-vectors can be categorized according to the level they
work on (audio, frame-level features, i-vector extraction,
or scoring) [22].

In [8, 25] spectral and wavelet based enhancement ap-
proaches on the signal level were examined with i-vectors.
In [14], spectrum estimators were used for frame-level
noise compensation, while in [19–21], multiple approaches
were tested using vector Taylor series (VTS) in the cepstral
domain for noise compensation on the feature level. Both
signal-level and feature-level noise compensation tech-
niques have shown inconsistencies because of their depen-
dency on the type and level of noise. Also, they are mostly
designed for speech enhancement and not for music. And
in [18, 24] a method was proposed that improves the scor-
ing but it uses noisy audios in model training.

In [16], a novel method called “i-MAP” is proposed for
the purpose of speaker verification in noisy environments
that uses an extra estimation step between i-vector extrac-
tion and inter-class compensation steps. In the estimation
step, it estimates clean i-vectors given noisy i-vectors and
further uses these estimations with inter-class compensa-
tion and scoring models that are trained on clean data. This
method benefits from the Gaussian assumption of i-vectors
and proposes a MAP estimation of a clean i-vector given a
noisy i-vector. The i-MAP method can be used with differ-
ent types and levels of additive noise with the models that
are trained on clean data.

3. REVIEW OF I-VECTOR SYSTEMS

An i-vector refers to vectors in a low-dimensional space
called I-vector Space. The i-vector space models variabil-
ities encountered with both the artist and song [6] where,
the song variability defines as the variability exhibited by
a given artist from one song to another.

The i-vector space is created using a matrix T known
as i-vector space matrix. This matrix is obtained by factor
analysis, via a procedure described in details in [4]. In the
resulting space, a given song is represented by an i-vector
which indicates the directions that best separate different
artists. This representation benefits from its low dimen-
sionality and Gaussian distribution which enables us to use
the properties of Gaussians in the i-vector space.

Conceptually, a Gaussian mixture model (GMM) mean
supervector M adapted to a song from artist α can be de-
composed as follows:

M = m + T.y (1)

where m is the GMM mean supervector and T.y is an
offset. The low-dimensional subspace vector y is a latent
variable with the standard normal prior and the i-vector w
is a MAP estimate of y. The UBM is a GMM that is trained
unsupervised on acoustic features of sufficient amount of
songs. Also, M is assumed to be normally distributed with
mean vector m.

The obtained i-vector is an artist and song dependent
vector. The low-rank rectangular matrix T (i-vector space
matrix) is used to extract i-vectors from statistical super-
vectors of songs which are computed using UBM.

Using the UBM, we calculate statistical supervectors
for a specific song s. These statistical supervectors are
known as 0th and 1st order statistics (Ns and Fs) of song
s:

( 0th order statistics) Ns
c =

L∑

t=1

γt(c) (2)

( 1st order statistics) F s
c =

L∑

t=1

γt(c)Yt (3)

where γt(c) is the posterior probability of Gaussian
component c of UBM for frame t and Yt is the MFCC fea-
ture vector at frame t.

Using the statistical supervectors of songs in training
set, we learn the T matrix via an Expectation Maximiza-
tion (EM) algorithm: E-step, computes the probability of
P (w|X) where X is the given song and w is its i-vector.
M-step, optimizes T by updating the following equation:

w = (I + TtΣ−1N(s)T)−1 · TtΣ−1F (s) (4)

where N(s) and F (s) are diagonal matrices with Ns
c.I

and F s
c.I on diameter and Ns and Fs are 0th and 1st order

statistical supervectors of song s. Σ is the diagonal covari-
ance matrix, estimated during factor analysis training. The
actual computation of an i-vector w for a given song s can
be done using (4) after training T. More information about
the training procedure of T can be found in [4, 15].

4. MAP ESTIMATION OF A CLEAN I-VECTOR

In cases where only clean songs are available for training
but at testing the observations are noisy, the best way to im-
prove the performance of clean models encountered with
noisy data would be to have an estimation of how clean
data looks like. In an i-vector based approach, this esti-
mation is done in the i-vector space by estimating clean
i-vectors given noisy i-vectors.

This section describes a solution for music artist recog-
nition in noisy environments which uses a state-of-the-
art i-vector based system with an extra estimation step.
Our method benefits from a MAP estimation of clean i-
vectors given noisy i-vectors that was proposed in i-MAP
method [16] for speaker verification applications. The es-
timation step is applied after i-vector extraction, as it is
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Figure 1. Block diagram of the estimation step in the proposed artist recognition method. The blocks with an asterisk (∗)
indicate the training and testing audio data as the starting point of the diagram.

shown on the top of Figure 1. The resulting estimated
i-vectors are used for inter-class compensation and scor-
ing. The estimation step in i-MAP consists of: a) detecting
noise using a Voice Activity Detector (VAD), b) synthesiz-
ing polluted data, c) estimating the mean and covariance
of noise in i-vector space, and finally d) estimating clean i-
vectors given noisy i-vectors. To estimate a clean i-vector
given a noisy i-vector, i-MAP uses an estimation of the
mean and covariance of noise in i-vector space by using
noise audio samples detected in the noisy testing audios.

Based on i-MAP, the estimation step used in our pro-
posed artist recognition method is described as follows.

Considering two sets of clean and noisy i-vectors, we
define the following random variables:

• X: corresponding to the clean i-vectors

• Y : corresponding to the noisy i-vectors

And as i-vectors are normally distributed, we define:

X ∼ N (µX , ΣX) (5)

Y ∼ N (µY , ΣY ) (6)

We denote the probability density functions (PDF) of
X and Y by f(X) and f(Y ) with the parameters of (µX ,
ΣX ) and (µY , ΣY ) as mean and covariance of clean and
noisy i-vectors, respectively.

We now consider f(X|Y0) as the conditional PDF of
clean i-vectors given a noisy i-vector Y0. By Bayes’ rule,

f(X|Y0) =
f(Y0|X)f(X)

f(Y0)
(7)

Using a MAP estimator, a clean i-vector X̂0 can be es-
timated by maximizing f(X|Y0):

X̂0 = argmax
X

{f(X|Y0)} (8)

using (7) and taking ln we solve:

∂

∂X
{ln f(Y0|X) + ln f(X)} = 0 (9)

The solution of (9) would provide an estimation of clean
i-vector X̂0 from noisy i-vector Y0.

4.1 Clean i-vector estimation

In i-MAP [2] it is assumed that when the noise is additive
in the speech signal, the noise will be also additive in i-
vector space. We keep this assumption and thus, the noise
model defines as:

Y = X + N (10)

where N is a random variable corresponds to noise in
i-vector space:

N ∼ N (µN , ΣN ) (11)

where (µN , ΣN ) are parameters of noise in i-vector
space.

Also, the Gaussian conditional PDF f(Y0|X) is defined
as:

f(Y0|X) =
1

(2π)
p
2 |ΣN | 1

2

e− 1
2 (Y0−X−µN )tΣN

−1(Y0−X−µN )

(12)
and Gaussian PDF f(X) is:

f(X) =
1

(2π)
p
2 |ΣX | 1

2

e− 1
2 (X−µX)tΣX

−1(X−µX) (13)

where (µX , ΣX ) are parameters of clean i-vectors, and
(µN , ΣN ) are parameters of noise in i-vector space. Since
f(Y0|X) and f(X) are Gaussian, the resulting estimate of
f(X|Y0) is also a valid Gaussian PDF as discussed in [22].

Now, by replacing f(Y0|X) and f(X) by (12) and (13)
in (9) and solving it we will have:

X̂0 = (ΣN
−1 +Σ−1

X )−1(Σ−1
N (Y0 −µN )+Σ−1

X µX) (14)

X̂0 is the MAP estimation of a clean i-vector given a
noisy i-vector Y0.

4.2 Parameters of Noise in I-vector Space

To use the MAP estimation provided in (14), we need an
estimation of the parameters of clean i-vectors µX , ΣX

(which can be estimated from clean training i-vectors 2 )
and parameters of noise in i-vector space µN , ΣN .

2 We use the term clean training audios (e.g. clean training songs)
to address the audio data in training set that does not contain any noise.
Noisy training audios (e.g. noisy testing songs) indicates audio data in
testing set confronted with noise. The word polluted training audios (e.g.
polluted training songs) indicates the data that are synthesized from clean
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The parameters of clean training i-vectors (µX , ΣX )
can be learned by computing the mean and covariance ma-
trix of clean training i-vectors. To learn the parameters
of noise in i-vector space, we follow a similar procedure
suggested in i-MAP (step numbers can be found in Fig-
ure 1): a) we extract clean training i-vectors from clean
training songs and noisy testing i-vectors from noisy test-
ing songs (steps 1 and 2). b) we detect noise audio samples
in noisy testing songs (step 3). c) we use the noise audio
samples detected in step 3 to synthesize polluted training
songs from clean training songs (step 4). d) from polluted
training songs, we extract a set of i-vectors known as pol-
luted training i-vectors (step 5). e) using clean training
i-vectors and polluted training i-vectors, we estimate the
parameters of noise in i-vector space (step 6). f) now given
noisy testing i-vectors, by having the parameters of noise
in i-vector space, we estimate clean testing i-vectors via
MAP estimation (step 7). The clean testing i-vectors es-
timated in step 7 are used for testing experiments in the
proposed method.

In step 3, we use a noise detector which has the fol-
lowing steps: We first apply a windowing of 32 ms on the
song’s audio signal. Then for each window, we calculate
the energy of the signal. Using a fixed threshold in energy
of each window, we look at the beginning and ending area
of each song to detect the areas with lower energy in noisy
testing songs. We keep these areas as a set of noise audio
samples. These samples are low-activity and assumed to
be the examples of the additive noise that we are dealing
with. This step provides the short sample of noise (a couple
of seconds) in the use-case example described in Section 1.

Further, for each noise area detected in a noisy testing
song, we estimate the SNR of the song and the noise sam-
ple. We select a limited number of noise areas with longer
durations 3 . By adding the selected noise areas (noise
audio samples) to clean training songs with the estimated
SNR, we synthesize another audio set from our clean train-
ing songs which we know as polluted training songs.

Estimating the parameters of noise in step 6 is as fol-
lows: After extracting i-vectors from polluted training
songs, we compute noise in i-vector space for each song
by subtracting a clean training i-vector Xi from polluted
training i-vector of that specific song Yi as follows:

N ′
i = Y ′

i − Xi (15)

where Y ′
i is the polluted training i-vector extracted

from polluted training song Sp
i and Xi is the clean training

i-vector extracted from clean training song Sc
i and N ′

i is
the noise related to Y ′

i in i-vector space. Now the param-
eters of noise in i-vector space (µN , ΣN ) can be calculated
by:

training audios in training set, using audio samples of noise detected in
noisy testing set. Noisy testing i-vectors are i-vectors extracted from
noisy audios in testing set, polluted training i-vectors are i-vectors ex-
tracted from polluted training audios, and clean training i-vectors are i-
vectors extracted from clean training audios. Clean testing i-vectors are
estimated via MAP from noisy testing i-vectors.

3 These noise areas are usually very short in time (a couple of seconds).

µN = mean(N ′) (16)

ΣN = cov(N ′) (17)

where
N ′ = {N ′

i | i = 1, ..., n} (18)

and n is the number of training songs.
To use the proposed method in an adaptive way, we only

need new audio samples of noise (which in our use-case we
assumed the mobile app can provide, also described a fea-
sible solution in step 3 about how to prepare them) to create
a new set of polluted i-vectors to update the parameters of
noise in the i-vector space. When the noise is changed, our
parameters (µN , ΣN ) can also be updated to that noise.

5. EXPERIMENTS

5.1 I-vector Extractor

Our i-vector extractor consists of a UBM with 1024 Gaus-
sian components. This UBM is trained on all the MFCCs
of the clean training songs in each fold. The 0th and 1st

order statistics (also known as statistical supervectors) are
calculated for each song from MFCC features of the song
using the UBM. The i-vector space matrix (T) is learned
from the statistical supervectors, via an Expectation Max-
imization (EM) algorithm described in [4, 15] where T is
initialized from random and i-vector space dimensionality
is set to 400. Using T matrix, 400 dimensional i-vectors
are extracted for both training and testing set. All the i-
vector extraction procedure is done unsupervised. We use
20-dimensional MFCCs in all of our i-vector based sys-
tems, extracted with RASTAMAT [10] toolbox with the
same configuration as used in [7, 11]. The i-vector space
matrix (T) is trained using MSR identity toolbox [26].

5.2 Inter-class Compensation and Scoring

As we described in Section 3, i-vectors contain both artist
and song variability. To reduce the song variability in i-
vector space, multiple inter-class compensation methods
such as length normalization, LDA and WCCN are found
effective [4, 12]. Our i-vector inter-class compensation
consists of 3 modules: 1) length-normalization, 2) LDA
and 3) WCCN. For the scoring, we use a simple cosine
scoring approach as detailed in [3].

Length of i-vectors causes negative effects in i-vector
space [3, 12]. To discard these effects, we normalize the
length of i-vectors by dividing each i-vector by its length.
Thus, both training and testing i-vectors are first length
normalized [12]. Using the resulting clean training i-
vectors, a LDA projection matrix V is trained and both
training and testing i-vectors are projected using V. Then
the resulting clean training i-vectors are length normalized
again and then used to train a WCCN projection matrix
B. The WCCN matrix is used to project both training
and testing i-vectors resulted from the LDA step. The fi-
nal WCCN-projected i-vectors are used for cosine scoring.
For each testing i-vector, a similarity score is calculated
for each class separately. These scores are calculated given
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the model i-vectors that are computed by averaging LDA-
WCCN projected clean training i-vectors for each class.
And finally, the class with the maximum score is chosen as
the predicted label for the testing i-vector.

5.3 Within-Class Covariance Normalization (WCCN)

Within-Class Covariance Normalization (WCCN) pro-
vides an effective compensation that can be used with co-
sine scoring. After i-vectors are length normalized and
projected by LDA, they are encountered with WCCN pro-
jection matrix. WCCN scales the i-vector space in the
opposite direction of its inter-class covariance matrix, so
that directions of intra-artist variability are improved for
i-vector scoring. The within-class covariance is estimated
using clean training i-vectors as follows:

W =
1

A

α∑

a=1

1

na

na∑

i=1

(wa
i − wa)(wa

i − wa)t (19)

where wa = 1
na

∑na

i=1 wa
i is the mean of the LDA pro-

jected i-vectors for each artist α. A is the total number
of artists, and na is the number of songs of each artist α
in training set. We use the inverse of the W matrix to
normalize the direction of the projected i-vectors. WCCN
projection matrix B can be estimated such that:

BBt = W−1 (20)

5.4 Cosine Scoring

In the i-vector space, a simple cosine scoring has been suc-
cessfully used to compare two i-vectors [3]. Given a length
normalized, LDA and WCCN projected i-vector wi from
an unknown artist, cosine score for artist α is defined as:

score(wα, wi) =
(wα)t.wi

∥wα∥ . ∥wi∥
(21)

where wα represents the mean i-vector of artist α, cal-
culated by averaging all the length normalized, LDA and
WCCN projected clean training i-vectors extracted from
all the songs of artist α. score(wα, wi) represents the co-
sine score of testing i-vector wi for artist α. To predict the
artist label for i-vector wi, the artist with the highest cosine
score is chosen as the label for wi.

5.5 Dataset

In our experiments, we used Artist20 dataset [11], a freely
available 20-class artist recognition corpus which consists
of 1413 mp3 songs from 20 different artists mostly in pop
and rock genres. The dataset is composed of six albums
from each of 20 artists. A 6-fold cross validation is also
provided with the dataset which is used in all of our exper-
iments. In each fold, 5 out of 6 albums from all the artists
were used for training and the rest were used for testing.

For our experiments with noisy data, we synthesized 12
(4 × 3) different noisy sets from Artist20 dataset with 4
different kinds of additive noise (festival, humming, pink,
pub environment) of 3 different SNRs (5db, 10 db and 20

db), by applying the noise to all the songs. For apply-
ing the noise, the open-source Audio Degradation Toolbox
(ADT) [23] is used.

For all the experiments (except IVEC-CLN and EBLF-
CLN), the models are trained on training folds of clean
dataset and tested on the testing fold of noisy dataset.
For IVEC-CLN and EBLF-CLN experiments, models are
trained on training folds of clean dataset and tested on test-
ing fold of clean dataset.

We found noise samples of festival noise in the
FreeSound repository 4 . The festival noise sample is an
audio recording from a live performance during a festi-
val with a lot of cheering sounds and human speaking in
loudspeaker. This noise example is available upon request.
For the other additive noises (pub environment, pink-noise,
humming) the noise samples provided in ADT are used.
The pub environment noise sample, recorded in a crowded
pub, and the humming noise is recorded from a damaged
speaker.

5.6 Evaluation

To evaluate the performance of different methods dealing
with different kinds of noise, the averaged Fmeasure over
all the classes is used 5 . The reported results in Table 1
show the mean of the averaged Fmeasures over 6-folds of
our cross-validation, ± the standard deviation (std) of the
averaged Fmeasures over folds. To examine the statistical
significance, a t-test is applied for each sets of experiments
separately, comparing the Fmeasures of 6 folds between
the proposed method and each of the baselines (for exam-
ple: festival noise with 3 db SNR, comparing IVEC-NSY
and EBLF-NSY). Each set of experiments for a specific
kind of noise with a certain SNR is done independently.

5.7 Baseline Methods

We compare the performance of our proposed method
with two baselines. The first baseline is a state-of-the-art
standard i-vector based artist recognition system known
as IVEC-NSY. The reason we chose this baseline is to
show the improvements by adding the estimation step to
this baseline. We extract 400 dimensional i-vectors us-
ing 20-dimensional MFCCs and a 1024 components GMM
as UBM. Then we apply length normalization, LDA and
WCCN and further apply the cosine scoring to predict the
labels.

The second baseline (EBLF-NSY) uses an extended ver-
sion of Block-Level features [28] (EBLF) used in [27].
EBLF are the winner of multiple tasks in MIREX chal-
lenge 6 such as music similarity and genre classification
and provide a set of 8 song-level descriptors which repre-
sent different characteristics for a song. These 8 descrip-
tors contain a good variety of features such as rhythm and

4 http://freesond.org
5 Since the number of songs from each artist are more or less the same

(6 albums), the averaged Fmeasure seems to be a good measurement for
our multi-class artist recognition task.

6 Annual Music Information Retrieval eXchange (MIREX). More in-
formation is available at: http://www.music-ir.org
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timbre in a song. Since these features are frequently used
for multiple purposes in MIR, we chose them as our second
baseline to show how they perform in a noisy environment.
For classification, a WEKA [13] implementation of SMO
support vector machine is used as described in [27]. The
SVM model in this baseline is trained on features of clean
training songs and tested on features of noisy testing songs.

To demonstrate the maximum power of our baselines
on clean data, we also provided the performance of these
methods, dealing with only clean data. In these specific ex-
periments, we train and test the baselines using clean data
and the results can be found in the description of Table 1
as IVEC-CLN and EBLF-CLN.

The performance of EBLF-CLN is comparable with
the baselines in [7] which compares different approaches
for music artist recognition and therefore is a competitive
method to be used as a baseline. Also, the performance of
IVEC-CLN is comparable with the the best results achieved
using a state-of-the-art i-vector based artist recognition
system reported in [7] (which are known to be the best
artist recognition results on Artist20 dataset published so
far). Both IVEC-CLN and [7] use similar i-vector extrac-
tors. The difference between IVEC-CLN and [7] is in the
inter-class compensation and scoring. We used LDA fol-
lowed by WCCN as inter-class compensation and a simple
cosine scoring, while in [7] only LDA is used as inter-class
compensation and the best performance achieved with a
Discriminant Analysis classifier.

5.8 The Proposed Method

Our proposed method is shown in Table 1 as IVEC-MAP.
All the i-vector extraction (UBM,T), inter-class compen-
sation (LDA,WCCN) and scoring models are only trained
with clean training data and the only extra information
used in the proposed method compared to the baselines,
is the mean and covariance of noise in i-vector space. The
number of at least 500 i-vectors are needed to estimate the
parameters of noise as reported in [16] in a speaker verifi-
cation scenario. We used all the polluted training i-vectors
for parameter estimation, since our training set is not very
big (∼ 1100 songs).

5.9 Results and Discussion

By looking at Table 1 it can be seen that the proposed
method outperformed the baselines in all 12 cases of 4
different additive noises with 3 different SNRs. Having
a closer look at the results suggests the IVEC-NSY base-
line performed much better and more robust than EBLF-
NSY.By looking at the results dealing with noises of dif-
ferent SNR levels, it can be seen that as expected the lower
the SNR (more noise), the lower the performance of our
baselines are. Unlike the baselines, the change in SNR
does not affect the performance of our proposed method
significantly in festival and humming noises. Considering
the standard deviation of the averaged Fmeasures for all the
6-folds, results suggest that the proposed method is always
higher than 1 std from the performance of EBLF-NSY in
all the noises with all different SNRs. When the noise

Averaged Fmeasure (%)
snr nois. IVEC-NSY EBLF-NSY IVEC-MAP

fest. 68.22±8.85 19.01±23.31 81.08±7.68
hum. 75.28±8.14 5.21±5.15 82.56±6.82
pink 60.44±10.27 6.64±11.58 74.88±6.675

db

pub 44.11±8.13 14.01±22.27 71.12±8.09
fest. 74.27±8.97 24.32±27.39 81.91±7.55
hum. 77.15±8.97 25.71±26.5 82.64±7.24
pink 68.58±8.22 11.89±16.38 78.05±7.210

db

pub 66.15±9.04 22.7±25.91 79.87±7.31
fest. 77.28±7.6 36.12±26.76 81.89±7.47
hum. 77.32±7.43 36.89±25.3 82.86±7.1
pink 74.57±7.63 13.93±21.31 80.54±7.5320

db

pub 76.74±7.8 26.17±29.05 82.63±7.2

Table 1. Comparison of artist recognition performance of
different methods on Artist20 dataset dealing with differ-
ent kinds and levels of additive noise. The numbers indi-
cate the averaged Fmeasure (as described in Section 5.6)
with the standard deviation over all the folds. The per-
formance of the baselines IVEC-CLN and EBLF-CLN on
clean data are 83.73±7.58 and 72.26±7.42 respectively.

is in its highest level (SNR=5 db) the proposed method’s
Fmeasure is higher than IVEC-NSY by 1 std. On average,
the proposed method achieved the relative averaged Fmea-
sure of 28.41, 12.99 and 7.21 percentage points higher than
IVEC-NSY encountering additive noises with 5, 10 and 20
db SNR, respectively. Applying a t-test hypothesis test-
ing on the averaged Fmeasures for different folds to ex-
amine the performance between the proposed method and
the baselines (IVEC-NSY and EBLF-NSY), shows that the
test rejects the null hypothesis at 5% significance level for
all the experiments and our results are statistically signifi-
cant.

6. CONCLUSION

In this paper, we proposed a noise-robust artist recogni-
tion system using i-vector features and a MAP estima-
tion of clean i-vectors given noisy i-vectors. Our method
outperformed the state-of-the-art standard i-vector system
and EBLF, also showed a stable performance dealing with
multiple kinds of additive noise with different SNRs. We
showed that by adding an estimation step to a standard i-
vector based artist recognition system, the performance in
noisy environments can be significantly improved.
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ABSTRACT

Lyrics-to-audio alignment aims to automatically match
given lyrics and musical audio. In this work we extend a
state of the art approach for lyrics-to-audio alignment with
information about note onsets. In particular, we consider
the fact that transition to next lyrics syllable usually im-
plies transition to a new musical note. To this end we for-
mulate rules that guide the transition between consecutive
phonemes when a note onset is present. These rules are in-
corporated into the transition matrix of a variable-time hid-
den Markov model (VTHMM) phonetic recognizer based
on MFCCs. An estimated melodic contour is input to
an automatic note transcription algorithm, from which the
note onsets are derived. The proposed approach is evalu-
ated on 12 a cappella audio recordings of Turkish Makam
music using a phrase-level accuracy measure. Evaluation
of the alignment is also presented on a polyphonic version
of the dataset in order to assess how degradation in the ex-
tracted onsets affects performance. Results show that the
proposed model outperforms a baseline approach unaware
of onset transition rules. To the best of our knowledge, this
is the one of the first approaches tackling lyrics tracking,
which combines timbral features with a melodic feature in
the alignment process itself.

1. INTRODUCTION

Lyrics are one of the most important aspects of vocal mu-
sic. When a performance is heard, most listeners will fol-
low the lyrics of the main vocal line. The goal of auto-
matic lyrics-to-audio alignment is to generate a temporal
relationship between lyrics and recorded singing. In this
particular work, the goal is to detect the start and end times
of every phrase (1-4 words) from lyrics.

In recent years there has been a substantial amount of
work on the extraction of pitch of predominant singing
voice from polyphonic music [18]. Some algorithms have
been tailored to the music characteristics of a particular

c© Georgi Dzhambazov, Ajay Srinivasamurthy, Sertan
Şentürk , Xavier Serra . Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Georgi Dzham-
bazov, Ajay Srinivasamurthy, Sertan Şentürk , Xavier Serra . “On the use
of note onsets for improved lyrics-to-audio alignment in Turkish Makam
music”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

singing tradition [12]. This has paved the way to an in-
creased accuracy of note transcription algorithms. One
of the reasons for this is that a correctly detected melody
contour is a fundamental precondition for note transcrip-
tion. On the other hand, lyrics-to-audio alignment is a
challenging task: to track the timbral characteristics of
singing voice might not be straightforward [4]. An addi-
tional challenge is posed when accompanying instruments
are present: their spectral peaks might overlap and occlude
the spectral components of voice. Despite that, most work
has focused on tracking the transitions from one phoneme
to another only by timbral features [4, 14]. In fact, at a
phoneme transition, in parallel to timbral change, a change
of pitch or an articulation accent may be present, which
contributes to the perception of a distinct vocal note onset
. For example, a note onset occurs simultaneously with the
first vowel in a syllable. This fact has been exploited suc-
cessfully to enhance the naturalness of synthesized singing
voice [21].

In this work we present a novel idea of how to extend
a standard approach for lyrics-to-audio alignment by us-
ing automatically detected vocal note onsets as a comple-
mentary cue. We apply a state of the art note transcrip-
tion method to obtain candidate note onsets. The pro-
posed approach has been evaluated on time boundaries of
short lyrics phrases on a cappella recordings from Turk-
ish Makam music. An experiment on polyphonic audio
reveals the potential of the approach for real-world appli-
cations.

2. RELATED WORK

2.1 Lyrics-to-audio alignment

The problem of lyrics-to-audio alignment has an inherent
relation to the problem of text-to-speech alignment. For
this reason most of current studies exploit an approach
adopted from speech: building a model for each phoneme
based on acoustic features [5,14]. To model phoneme tim-
bre usually mel frequency cepstral coefficients (MFCCs)
are employed. A state of the art work following this ap-
proach [5] proposes a technique to adapt a phonetic recog-
nizer trained on speech: the MFCC-based speech phoneme
models are adapted to the specific acoustics of singing
voice by means of Maximum Likelihood Linear Regres-
sion. Further, automatic segregation of the vocal line is
performed, in order to reduce the spectral content of back-
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ground instruments. In general, in this approach authors
consider only models of phonetic timbre and are thus fo-
cused on making them more robust as a mean to improve
performance.

Few works for tracking lyrics combine timbral features
with other melodic characteristics. For example in [7]
a system for automatic score-following of singing voice
combines melodic and lyrics information: observation
probabilities of pitch templates and vowel templates are
fused to improve alignment. In [13] lyrics-to-audio align-
ment has been aided on a coarser level by chord-to-audio
alignment, assuming chord annotations are available in a
paired chord-lyrics format. However, to our knowledge,
no work so far has employed note onsets as additional cue
to alignment.

2.2 Automatic note segmentation

While the general problem of automatic music transcrip-
tion has been long-investigated, automatic singing tran-
scription has attracted the attention of MIR researchers
only in recent years [6, 11, 15]. A fundamental part of
singing transcription is automatic note segmentation. A
probabilistic note event model, using a HMM trained on
manual transcriptions is presented in [11]. The idea is that
a note consists of different states representing its attack,
sustain and decay phase. Then an onset is detected when
the decoding path goes through an attack state of a new
note.

A recent work on singing transcription with high onset
accuracy has been developed for singing voice from the fla-
menco genre [12]. It consists of two stages: predominant
vocal extraction and note transcription. As a primary step
of the note transcription stage, notes are segmented by a
set of onset detection functions based on pitch contour and
volume characteristics, which take into account the pecu-
liar for flamenco singing high degree of microtonal orna-
mentation.

3. PROPOSED APPROACH

A general overview of the proposed approach is presented
in Figure 1. An audio recording and its lyrics are input. A
variable time hidden Markov model (VTHMM), guided by
phoneme transition rules, returns start and end timestamps
of aligned words. For brevity in the rest of the paper our
approach will be referred to as VTHMM.

First an audio recording is manually divided into seg-
ments corresponding to structural sections (e.g. verse,
chorus) as indicated in a structural annotation, whereby
instrumental-only sections are discarded. All further steps
are performed on each audio segment. If we had used auto-
matic segmentation instead, potential erroneous lyrics and
features could have biased the comparison of a baseline
system and VTHMM. As we focus on evaluating the effect
of VTHMM, manual segmentation is preferred. In what
follows each of the modules is described in details.

Figure 1. Overview of the modules of the proposed ap-
proach. One can see how phoneme transition rules are
derived. Then together with the phonemes network and
the features extracted from audio segments are input to the
VTHMM alignment.

3.1 Vocal pitch extraction

To extract the melody contour of singing voice, we uti-
lize a method that performs detection of vocal segments
and in the same time pitch extraction for the detected seg-
ments [1]. It relies on the basic methodology of [19], but
modifies the way in which the final melody contour is se-
lected from a set of candidate contours, in order to reflect
the specificities of Turkish Makam music: 1) It chooses
a finer bin resolution of only 7.5 cents that approximately
corresponds to the smallest noticeable change in Makam
melodic scales. 2) Unlike the original methodology, it does
not discard time intervals where the peaks of the pitch con-
tours have relatively low magnitude. This accommodates
time intervals at the end of the melodic phrases, where
Makam singers might sing softer.

3.2 Note segmentation

In a next step, to obtain reliable estimate of singing
note onsets, we adapt the automatic singing transcrip-
tion method, developed for polyphonic flamenco record-
ings [12]. It has been designed to handle singing with
high degree of vocal pitch ornamentation. We expect that
this makes it suitable for material from Makam classical
singing having heavily vibrato and melismas, too. We re-
place the original first stage predominant vocal extraction
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method with the vocal pitch detection method described
above.

The algorithm [12] considers two cases of onsets: in-
terval onsets and steady pitch onsets. A Gaussian deriva-
tive filter detects interval onsets as long-term changes of
the pitch contour, whereas steady-pitch onsets are inferred
from pitch discontinuities. As in the current work phoneme
transitions are modified only when onsets are present, we
opt for increasing recall at the cost of losing precision. This
is achieved by reducing the value of the parameter cF : the
minimum output of the Gaussian filter. The extracted note
onsets are converted into a binary onset activation at each
frame ∆nt = (0, 1). Recall rates of extracted note onsets
are reported in Table 2.

3.3 Phoneme models

The formant frequencies of spoken phonemes can be in-
duced from the spectral envelope of speech. To this end,
we utilize the first 12 MFCCs and their delta to the pre-
vious time instant, extracted as described in [24]. For
each phoneme a one-state HMM, for which a 9-mixture
Gaussian distribution is fitted on the feature vector. The
lyrics are expanded to phonemes based on grapheme-to-
phoneme rules for Turkish [16, Table 1] and the trained
HMMs are concatenated into a phonemes network. The
phoneme set utilized has been developed for Turkish and
is described in [16]. A HMM for silent pause sp is added
at the end of each word, which is optional on decoding.
This way it will appear in the detected sequence only if
there is some non-vocal part or the singer makes a break
for breathing.

3.4 Transition model

We utilize a transition matrix with time-dependent self-
transition probabilities which falls in the general category
of variable time HMM (VTHMM) [9]. For particular
states, transitions are modified depending on the presence
of time-adjacent note onset. Let t′ be the timestamp of the
closest to given time t onset ∆nt′ = 1. Now the transition
probability can be rewritten as

aij(t) =

{
aij − g(t, t′)q, R1 orR3

aij + g(t, t′)q, R2 orR4
(1)

R1 to R4 stand for phoneme transition rules, which are
applied in the phonemes network by picking the states i
and j for two consecutive phonemes. The term q is a con-
stant whereas g(t, t′) is a weighting factor sampled from a
normal distribution with its peak (mean) at t′:

g(t, t′) =

{
f(t; t′, σ2) ∼ N (t′, σ2), |t− t′| ≤ σ
0 else

(2)

Since singing voice onsets are regions in time, they
span over multiple consecutive frames. To reflect that fact,
g(t, t′) serves to smooth in time the influence of the dis-
crete detected ∆nt, where σ has been selected to be 0.075

seconds. In this way an onset influences a region of 0.15
seconds - a threshold suggested for vocal onset detection
evaluation by [6] and used in [12]. Furthermore, this al-
lows to handle slight timestamp inaccuracies of the esti-
mated note onsets.

3.4.1 Phoneme transition rules

Let V denote a vowel, C denote a consonant and L denote
a vowel, liquid (LL, M, NN) or the semivowel Y. RulesR1
and R2 represent inter-syllable transition, e.g. phoneme i
is followed by phoneme j from the following syllable:

R1 : i = V j = ¬L
R2 : i = C j = L

(3)

For example, for rule R2 if a syllable ends in a con-
sonant, a note onset imposes with high probability that a
transition to the following syllable is done, provided that
it starts with a vowel. Same rule applies if it starts with
a liquid, according to the observation that pitch change
takes place during a liquid preceding the vowel [21, timing
of pitch change]. Rules R3 and R4 are for intra-syllabic
phoneme patterns:

R3 : i = V j = C
R4 : i = ¬L j = V

(4)

Essentially, if the current phoneme is vocal and the next
is non-voiced (e.g. R1, R3), Eq. (1) discourages tran-
sition no next phoneme and encourages transition in the
opposite cases. An example of R4 can be seen for the syl-
lable KK-AA in Figure 2 where the note onset triggers the
change to the vowel AA, opposed, for example, to onset
at Y for the syllable Y-E-T. Note that these rules assume

Figure 2. Ground truth annotation of syllables (in or-
ange/top), phonemes (in red/middle) and notes (with
blue/changing position). Audio excerpt corresponding to
word şikayet with syllables SH-IY, KK-AA and Y-E-T.
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total #sections #phrases per section #words per phrase

75 2 to 5 1 to 4

Table 1. Phrase and section statistics about the dataset.

that a syllable has one vowel, which is the case for Turk-
ish 1 . The optional silent phoneme sp is handled as a spe-
cial case: transition probability from any phoneme to sp is
derived according to intra-syllable rules, and the one from
any phoneme skipping to the phoneme following sp is de-
rived according to inter-syllable rules.

3.4.2 Alignment

The most likely state sequence is found by means of a
forced alignment Viterbi decoding.

δt(j) = max
i∈(j, j−1)

δt−1(i) aij(t) bj(Ot) (5)

Here bj(Ot) is the observation probability for state i for
feature vector Ot and δt(j) is the probability for the path
with highest probability ending in state j at time t (com-
plying with the notation of [17, III. B] 2 .

4. DATASET

The test dataset consists of 12 a cappella performances of
11 compositions with total duration of 19 minutes. The
performances are drawn from CompMusic corpus of clas-
sical Turkish Makam repertoire with provided annotations
of musical sections [23]. Solo vocal versions of the orig-
inals have been sung by professional singers, especially
recorded for this study, due to the lack of appropriate a cap-
pella material in this music tradition. A performance has
been recorded in sync with the original recording, whereby
instrumental sections are left as silence. This assures that
the order, in which sections are performed, is kept the
same. One of the contributions of this work is that we
make available the annotated phrase boundaries 3 . A mu-
sical phrase spans 1 to 4 words depending on the duration
of the words (as proposed in [10]). Table 1 presents statis-
tics about phrases, while the total number of words in the
dataset is 732.

Additionally, the singing voice for 6 recordings (with a
total duration of 10 minutes) from the dataset has been an-
notated with MIDI notes complying to the musical score 4 .
On annotation special care is taken to place the note on-
set on the time instant, at which the pitch becomes steady.
Thus we avoid placing the onset on an unvoiced phoneme
at the beginning of a syllable, which is assures rules R3
and R4 make sense (see Figure 2) 5 .

1 Among one-vowel syllabic languages are also Japanese and to some
extent Italian

2 To encourage reproducibility of this research an efficient open-
source implementation together with documentation is available at
https://github.com/georgid/AlignmentDuration/tree/noteOnsets

3 The audio and the annotations are available under a CC license at
http://compmusic.upf.edu/turkish-makam-acapella-sections-dataset

4 Creating the annotation is a time-consuming task, but we plan to an-
notate the whole dataset in the future

5 Onset annotations are available at

4.1 Evaluation metric

Alignment is evaluated in terms of alignment accuracy
as the percentage of duration of correctly aligned regions
from total audio duration (see [5, Figure 9] for an exam-
ple). A value of 100 means perfect matching of all phrase
boundaries in the evaluated audio. Thus accuracy can be
reported not only for an audio segment, but also on total
for a recording, or as a total for all the recordings.

5. EXPERIMENTS

5.1 Experiment 1: alignment with oracle onsets

As a precursor to the following experiments, lyrics-to-
audio alignment is run on these 6 recordings with manu-
ally annotated MIDI notes, which serve as an oracle for
note onsets. This is done to test the general feasibility
of the proposed model on the dataset, unbiased from er-
rors in the note segmentation algorithm, and to set a glass-
ceiling alignment accuracy. We have tested with different
values of q from Eq. 1 achieving best accuracy of 83.5%
at q = 0.23, which is used on all further reported experi-
ments.

5.2 Experiment 2: recognition of phonemes

In general, the comparison to other lyrics alignment sys-
tems is not feasible, because there is no current work de-
veloped for Turkish language. However, to have an idea
of how adequate the trained phoneme HMMs are, we have
annotated phoneme boundaries for some excerpts of total
length of 6 minutes. In [8] phonemes are recognized in
a cappella singing with no lyrics given in advance. With
phoneme MFCC-based HMMs - the same as our modeling
setting - a phoneme recall rate of 44% is reported. Even
though for forced alignment the recognition of phonemes
is relatively easier, given that they are ordered in a se-
quence, we measured lower overall phoneme recall of
37%. This indicates that our phoneme models trained only
on speech might not be the most optimal choice.

5.3 Experiment 3: comparison to a baseline

As a baseline we conduct alignment of the test dataset with
unaffected phoneme transition probabilities, e.g. setting all
∆nt = 0, which resulted in alignment accuracy of 70.2%.
Further, we measured the impact of the note segmentation
module (introduced in Section 3.2), varying onset detec-
tion recall by changing the minimum output of the Gaus-
sian filter (controlled by the parameter cF ). Table 2 sum-
marizes the alignment accuracy with VTHMM depending
on recall. On a cappella best improvement over the base-
line is achieved at recall of 72.3% (at cF = 3.5). This is
somewhat lower than the best recall of 81-84% achieved
for flamenco [12]. Setting recall higher than that degraded
performance because there are too many false alarms, re-
sulting in forcing false transitions.

http://compmusic.upf.edu/node/233
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Figure 3. Example of boundaries of phonemes for the word şikayet (SH-IY-KK-AA-Y-E-T): on top: spectrum and pitch;
then from top to bottom: ground truth boundaries, phonemes detected with HMM, detected onsets, phonemes detected with
VTHMM; (excerpt from the recording ’Kimseye etmem şikayet’ by Bekir Unluater).

cF 5 4.5 4.0 3.5 3.0

a cappella
OR 57.2 59.7 66.8 72.3 73.2

AA 71.1 73.3 74.5 75.7 72.0

polyphonic
OR 52.8 58.2 65.9 66.2 68.4

AA 61.2 63.3 64.8 64.6 60.3

Table 2. VTHMM performance on a cappella and poly-
phonic audio, depending on onset detection recall (OR).
Alignment accuracy (AA) is reported as a total for all the
recordings.

Figure 3 allows a glance at the level of detected
phonemes: the baseline HMM switches to the follow-
ing phoneme after some amount of time, similar for all
phonemes. One reason for this might be that the waiting
time in a state in HMMs with a fixed transition matrix can-
not be randomly long [25]. In contrast, for VTHMM the
presence of note onsets at vowels activates rules R1 or R3,
which allows waiting in the same state longer, as there are
more onsets (for example AA from the word SH-IY-KK-
AA-Y-E-T has five associated onsets). We chose to modify
cF because setting it to lower values increases the recall of
interval onsets: Often in our dataset several consecutive
notes with different pitch correspond to the same vowel.
In fact, it is characteristic of Turkish classical music that
a single syllable may have a complex melodic progression
spanning many notes (up to 12 in our dataset) [3]. How-
ever, for cases of vowels held long on same pitch, con-
ceptually VTHMM is not capable of bringing any benefit.
This is illustrated in Figure 3 by the prematurely detected
end boundary of E from the word SH-IY-KK-AA-Y-E-T.

In addition to that, we examined alignment accuracy per
recording (Figure 4). It can be observed that VTHMM
performs consistently better than the baseline HMM (with
some exceptions of where accuracy is close).

6. EXTENSION TO POLYPHONIC MATERIAL

To test the feasibility of the proposed approach on poly-
phonic material, the alignment is evaluated on the original
versions of the recordings in the dataset. Typical for Turk-
ish Makam is that vocal and accompanying instruments
follow the same melodic contour in their corresponding
registers, with slight melodic variations. However, the
vocal line usually has melodic predominance. This spe-
cial type of polyphonic musical interaction is termed het-
erophony [3]. In the dataset used in this study, a singer is
accompanied by one to several string instruments.

We applied the vocal pitch extraction and note seg-
mentation methods directly, since both are developed for
singing voice in a setting that has heterophonic characteris-
tics. However, instrumental spectral peaks deteriorate sig-
nificantly the shape of the vocal spectrum. To attenuate the
negative influence of instrumental spectrum, a vocal resyn-
thesis step is necessary.

6.1 Vocal resynthesis

For the regions with predominant voice, the vocal con-
tent is resynthesized as separate vocal part. Resynthesis
is conducted based on the harmonic model of [20]: Based
on the extracted predominant pitch (see Section 3.1) and
a set of peaks from the original spectrum, the harmonic
partials of the predominant voice are selected and resyn-
thesized. Then MFCCs are extracted from the resynthe-
sized vocal part as if it were monophonic singing. This is
a viable step, because the harmonic partials preserve well
the overall spectral shape of the singing voice, including
the formant frequencies, which encode the phoneme iden-
tities [22] 6 . More details and examples of the resynthesis
can be found in previous work, which showed that the ap-
plication of a harmonic model is suitable for aligning lyrics
in Makam music [2]. A conceptually similar resynthesis

6 The resynthesis allowed us to verify that vocals are intelligible de-
spite some distortions from overlap with instrumental harmonic partials
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Figure 4. Comparison between results for VTHMM and baseline HMM on a cappella.

step is an established part also in current methods for align-
ment of lyrics in polyphonic Western pop music [5, 14].

6.2 Experiment 4: comparison of a cappella and
polyphonic

The onset recall rates on polyphonic material after note
segmentation are not much worse than a cappella as pre-
sented in Table 2. Even though the degree of degradation
in onset detection is slight, degradation in alignment accu-
racy is significant. This can be attributed most probably to
the fact that our MFCC-based models are not very discrim-
inative and get confused by artifacts, induced from other
instruments on resynthesis. However, applying VTHMM
on polyphonic recordings still improves over the baseline
(see Table 3). Note that the margin in accuracy between
the baseline and the oracle glass ceiling is only about 6%,
which is about twice much in the case of solo voice.

HMM VTHMM oracle

a cappella 70.2 75.7 83.5

polyphonic 61.5 64.8 67.1

Table 3. Comparison of accuracy of baseline HMM,
VTHMM and, VTHMM with oracle onsets. VTHMM
shown are the best accuracies reported in Table 2. Align-
ment accuracy is reported on total for all recordings.

7. CONCLUSION

In this work we evaluated the behavior of a HMM-based
phonetic recognizer for lyrics-to-audio alignment in two
settings: with and without considering singing voice on-
sets as additional cue. Compared to existing work on lyrics
alignment, this is, to our knowledge, the first attempt to
include onsets of the vocal melody in the inference pro-
cess. Updating transition probabilities according to onset-
aware phoneme transition rules resulted in an improvement

of absolute 5.5 percent for aligning phrases of solo voice
from Turkish Makam recordings. In particular, due to rules
discouraging premature transition, the states of sustained
vowels could have longer durations.

Alignment on same data with instrumental accompani-
ment brought also some small improvement over a base-
line with no onset modeling. Having onset detection per-
forming not substantially worse than a cappella indicates
that improving the phoneme acoustic models in the future
could probably lead to even more significant improvement.

A practical limitation of the current alignment system is
the prerequisite for manual structural segmentation, which
we plan to automate in the future.
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ABSTRACT

The paper addresses issues related to the design of query
languages for searching and restructuring collections of
XML-encoded music scores. We advocate against a di-
rect approach based on XQuery, and propose a more pow-
erful strategy that first extracts a structured representation
of music notation from score encodings, and then manipu-
lates this representation in closed form with dedicated op-
erators. The paper exposes the content model, the result-
ing language, and describes our implementation on top of
a large Digital Score Library (DSL).

1. INTRODUCTION

It is now common to serialize scores as XML documents,
using encodings such as MusicXML [11, 16] or MEI [15,
18]. Ongoing work held by the recently launched W3C
Music Notation Community Group [20] confirms that we
can expect in a near future the emergence of large collec-
tions of digital scores.

1.1 Issues with Querying XML score databases

A natural question in a collection management perspec-
tive is the definition of a query and manipulation language
to access, search, and possibly analyze these collections.
While XQuery appears as a language of choice, we con-
sider that it does not constitute, as such, a suitable solution.
There are several reasons that prevent XQuery from being
able to address the complex requirements of music nota-
tion manipulation, at least beyond the simplest operations.

1. Issue 1: Heterogeneity. Score encodings closely
mix information related to the content (e.g., the se-
quence of notes of a voice) and to a specific render-
ing of this content (e.g., voice allocation to a staff,
positioning of notes/lines/pages, and other options
pertaining to scores visualization). While it is not
always obvious to clearly distinguish content from
rendering instructions, mixing both concerns leads
to an intricate encoding from which selecting the rel-
evant information becomes extremely difficult.

c© Raphaël Fournier-S’niehotta, Philippe Rigaux, Nico-
las Travers. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Raphaël Fournier-
S’niehotta, Philippe Rigaux, Nicolas Travers. “QUERYING XML
SCORE DATABASES: XQUERY IS NOT ENOUGH!”, 17th Interna-
tional Society for Music Information Retrieval Conference, 2016.

Extracting for instance melodic information from ei-
ther MusicXML or MEI turns out to be difficult;
and more sophisticated extractions (e.g., alignment
of melodic information for voices) are almost im-
possible.

2. Issue 2: Operations and closure. One of the main
requirements of a query language is a set of well-
defined operations that operate in closed form: given
as input objects that comply to some structural con-
straints (a data model), the language should guaran-
tee that any output obtained by combining the oper-
ators is model-compliant as well. This requirement
allows an arbitrary composition of operations, and
ensures the safety of query results. In our context,
it concretely means that we need operators that ma-
nipulate music notation, and that their output should
consist of valid music notation as well. There is
however no means to achieve that with XQuery, nor
even to simply know whether a query supplies a com-
pliant output or not.

3. Issue 3: Formats. Finally, a last, although less es-
sential, obstacle is the number of possible encod-
ings available nowadays, from legacy formats such
as HumDrum to recent XML proposal mentioned
above. Abstracting away from the specifics of these
formats in favor of the core information set that they
commonly aim at representing would allow to get rid
of their idiosyncrasies.

To summarize, we consider that XML representation of
scores are so far mostly intended as a serialization of docu-
ments that encapsulate all kinds of information, from meta-
data (creation date, encoding agent) to music information
(symbolic representation of sounds and sounds synchro-
nization) via rendering instructions. They are by no means
designed to supply a structured representation of a core as-
pect (music “content”), subject to investigation and manip-
ulation via a dedicated, model-aware query language.

1.2 Our approach

We make the case for an approach that leverages music
content information as virtual XML objects. Coupled with
a specialization of XQuery to this specific representation,
we obtain a system apt at providing search, restructuration,
extraction, analytic services on top of large collections of
XML-encoded scores. The system architecture is summa-
rized in Figure 1, and addresses the above issues.

723



Issue 1: Bringing homogeneity. The bottom layer is a
Digital Score Library managing collections of scores se-
rialized in MusicXML, MEI, or any other legacy format
(e.g., Humdrum). This encoding is mapped toward a model
layer where the content structured in XML corresponds to
the model structures. This defines, in intention, collections
of music notation objects that we will call vScore in the fol-
lowing. A vScore abstracts the part of the encoding (here
the content) we wish to focus on, and gets rid of informa-
tion considered as useless, at least in this context.
Issue 2: Defining a domain-specific language. In order
to manipulate these vScores, we equip XQuery with two
classes of operations dedicated to music content: struc-
tural operators and functional operators. The former im-
plement the idea that structured scores management cor-
responds, at the core level, to a limited set of fundamen-
tal operations, grouped in a score algebra, that can be de-
fined and implemented only once. The latter acknowledges
that the richness of music notation manipulations calls for
a combination of these operations with user-defined func-
tions at early steps of the query evaluation process. Model-
ing the invariant operators and combining them with user-
defined operations constitutes the operational part of the
model. This yields a query language whose expressions
unambiguously define the set of transformations that pro-
duce new vScores from the base collections.

Encodings

Mapping

Data model
(virtual collection)

MEI MusicXML
…

Structural 
ops

queries

Functional
ops+

Visualisation / analysis

others

Figure 1. Envisioned system

Issue 3: Serialization independence. One mapper has to
be defined for each possible encoding, as shown by the fig-
ure which assumes that MusicXML and MEI documents
cohabit in a single DSL. Adding a new source represented
with a new encoding is just a matter of adding a new map-
per. Each document in the DSL is then mapped to a (vir-
tual) XML document, instance of the model.

1.3 Contributions

In the present paper, we describe the implementation of
the above ideas in NEUMA [17]. The focus is on the model
layer, defined as a virtual XML schema, on the mapping
from raw documents to vScores, and on the integration of
XQuery with structural operators and external functions.
The score algebra, not presented here, is implemented in

our system as XQuery functions, whose meaning should
be clear from the context.

Section 2 gives the virtual XML schema for music con-
tent notation, and Section 3 shows how to create an XML
database referring to vScores. Section 4 presents the query
language and Section 5 discusses salient implementation
choices. Section 6 covers related work and Section 7 con-
cludes the paper.

2. MUSIC NOTATION: THE SCHEMA

We now describe the virtual data model with XML Schema
[22]. The model aims at representing polyphonic scores in
Common Music Notation (CMN). A score is composed of
voices, and a voice is a sequence of events.

2.1 Event type

An event is a value (complex or simple) observed during a
time interval. Events are polymorphic: the value may be
a note representation, a chord representation, a syllable or
any other value (e.g., an integer representing an interval).

The abstract definition of an event is a complex type
with a duration attribute.

<xs:complexType abstract="true" name="eventType">
<xs:attribute type="xs:integer" name="duration"

use="required"/>
</xs:complexType>

From this abstract type, we can derive concrete event
types with specific element names. The most important
are events denoting sounds, which covers simple n ≥ 0
simultaneous sounds, either rests (n = 0), notes (n = 1)
or chords (n > 1). The soundType is derived from the
eventType as follows:

<xs:complexType name="soundType">
<xs:complexContent>
<xs:extension base="eventType">
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="note" type="noteType"/>
<xs:element name="rest" type="restType"/>
<xs:element name="chord" type="chordType"/>

</xs:choice>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Due to space restrictions, we do not detail noteType
(containing ’pitch’ and ’octave’ attributes), restType (em-
pty element) and chordType (list of noteType). As
another example of a concrete event type, lyrics can be rep-
resented with syllabic events (and rests), with type:

<xs:complexType name="syllableType">
<xs:complexContent>
<xs:extension base="eventType">
<xs:choice minOccurs="1" maxOccurs="1">
<xs:element name="syll" type="xs:string"/>
<xs:element name="rest" type="restType"/>

</xs:choice>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Events are not restricted to musical domains. Events
in the xs:integer domain, for instance, can be used to
represent intervals, obtained by a 2-voices scores analysis.
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<monody>
<rest duration="24"/>
<note duration="16" p="D" o="5"/>
<rest duration="4"/>
<note duration="2" p="E" o="5"/>
<note duration="2" p="F" o="5"/>...

</monody>

<lyrics>
<rest duration="24"/>
<syll duration="16"/>Ah,</syll>
<rest duration="4"/>
<syll duration="2"/>que</syll>
<syll duration="2"/>je</syll>...

</lyrics>

<bass>
<note duration="8" p="D" o="4"/>
<note duration="4" p="C" o="4"/>
<chord duration="4">
<note p="D" o="4" a="-1"/>
<note p="B" o="3" a="-1"/></chord>

<note duration="4" p="A" o="3"/>
<note duration="4" p="G" o="3"/>...

</bass>

Figure 2. Voices representation

2.2 Voice type

A voice is a sequence of events. Its abstract definition is
given by the following schema:

<xs:complexType name="voiceType" abstract="true">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element type="eventType"/>

</xs:sequence>
</xs:complexType>

This type actually represents a function from the time
domain to the domain of events. There is an implicit non-
overlapping constraint: an event begins when its predeces-
sor ends. We can instantiate concrete voice types by simply
replacing the abstract eventType by one of its derived
types (e.g., soundType, syllableType, intType),
like in the following example:

<xs:complexType name="lyricsType">
<xs:extension base="voiceType">
<xs:sequence minOccurs="0" maxOccurs="unbounded">
<xs:element type="syllableType"/>
</xs:sequence>
</xs:extension>

</xs:complexType>

2.3 Score type

Finally, our virtual notation schema contains a score type
which describes a recursive structure defined as follows:

• if v a voice, then v is a score.

• if s1, · · · , sn are scores, the sequence< s1, · · · , sn >
is a score.

The generic definition of the XML schema for this struc-
ture is given below. Note that element names for scores and
voices will be specified for each specific corpus.

<xs:complexType name="scoreType" abstract="true">
<xs:sequence minOccurs="1" maxOccurs="unbounded">
<xs:choice>
<xs:element type="scoreType"/>
<xs:element type="voiceType"/>

</xs:choice>
</xs:sequence>

</xs:complexType>

2.4 Example

Let’s illustrate by an example our types and structure. Fig. 3
is partially represented by the vScore in Fig. 2.
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Figure 3. A score example

Our model decomposes the score in three voices. The
first one represents the monody of the vocal part. It con-
sists of a sequence of soundType events. The second
voice represents lyrics with syllableType events. And,
finally, the last voice is the bass. Its representation is a se-
quence of soundType events (here, notes and chords).

The vScore itself illustrates the recursive structure that
encapsulates the voices in a tree of score elements. The
upper level combines the bass voice and an embedded
scorewhich combines the monody and lyrics voices.
The structure is as follows.

<air>
<vocal>
<monody>(...)</monody>
<lyrics>(...)</lyrics>

</vocal>
<bass>(...)</bass>

</air>

It should be clear that this representation abstracts a part
of the content that can be found in all the encodings we are
aware of. The choice of the information subset which is se-
lected is here minimal, for the sake of conciseness. We can
obviously extend the representation with additional details
as long as it does not affect the structure. A voice can be
“decorated” by an instrument name, an event by the current
metric or the measure number, a score by its composer, all
represented as additional elements. In general, the issue
relates to what is considered as “content” subject to search
and analysis operations, and what is the suitable represen-
tation for this content. We will stick in the following to the
simple model given above which is sufficient to our needs.

Recall that the schema intends to define a virtual score
representation which is derived at search time (according
to rules explained in the next sections) from the actual
serialization. We briefly explain the mapping from Mu-
sicXML or MEI documents to vScores.

2.5 Mapping from MusicXML or MEI

In MusicXML, scores are organized as a tree of score,
part-group, and part elements. Voices are numbered
with respect to the part they belong to, and represented as
nested elements of notes, rest and chords. Our mapping
unifies the score, groups and parts in a recursive nesting of
score elements and (virtually) splits the music and lyrics
as two associated voices.

In MEI, the score structure is based on score, staves and
groups of staves. Voices are represented as layer objects
deeply nested in a hierarchy of measure and staff con-
tainers. Our mapping extracts the voice events from the
complex imbrication of MEI elements or organizes them
according to our recursive score structure.
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3. MUSIC NOTATION: THE DATABASE

XML databases are collections of documents. Although
the definition of a schema for a collection is not manda-
tory, it is a safe practice to ensure that all the documents
it contains share a similar structure. In our context, a col-
lection of digital scores is a regular XML collection where
one or several elements are of scoreType type. Here is
a possible example:

<xs:complexType name="opusType">
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="composer" type="xs:string"/>
<xs:element name="published" type="xs:string"/>
<xs:element type="scoreType"/>

</xs:sequence>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexType>

Note that this schema is strict regarding meta-data (title,
composer) but very flexible for the music notation because
we are using here the generic scoreType. It follows that,
from one document to the other in standard notations (mu-
sicXML, MEI, HumDrum), the score structure, the number
of voices and their identifiers may vary. Such a flexibility is
definitely not convenient when it comes to querying a col-
lection, since we cannot safely refer to the components of
a score. It seems more appropriate to base the organization
of score collections on an homogeneous score structure. A
Quartet collection for instance would only accept scores
complying to the following structure:

Quartet(id: int, title: string,
composer: string, published: date,
music: Score [v1, v2, alto, cello])

The XML Schema formalism accepts the definition of
restriction of a base type. In our case, the restriction con-
sists in specializing the scoreType definition to list the
number and names of voices, like in quartetType:

<xs:complexType name="quartetType">
<xs:complexContent>
<xs:restriction base="scoreType">
<xs:sequence>
<xs:element name="v1" type="soundVoiceType"/>
<xs:element name="v2" type="soundVoiceType"/>
<xs:element name="alto" type="soundVoiceType"/>
<xs:element name="cello" type="soundVoiceType"/>
</xs:sequence>
</xs:restriction>
<xs:attribute type="xs:ID" name="id"/>

</xs:complexContent>
</xs:complexType>

Using QuartetType in place of ScoreType in the
collection schema ensures that all the vScores in the col-
lection match the definition. Voices’ names are specified
and can then be used to access to the (virtual) music nota-
tion to start applying operations and transformations. This
can be done with XQuery, as explained in the next section.

4. XQUERY + SCORE ALGEBRA = QUERIES

With a well-defined collection and a clear XML model to
represent the notation of music content, we can now ex-
press queries over this collection with XQuery. However,
executing such queries gives rise to the following issues:

Issue 1: We cannot directly evaluate an XQuery expres-
sion, since they are interpreted over instances which are
partly virtual (scores, voices and events) and partly mate-
rialized (all the rest: title, composer, etc.).
Issue 2: Pure XQuery expression would remain limited to
exploit the richness of music notation;

The first issue is solved by executing, at run-time, the
mapping that transforms the serialized score (say, in Mu-
sicXML) to a vScore, instance of our model. This is fur-
ther explained in the next section, devoted to implementa-
tion choices. To solve the second issue, we implemented a
set of XQuery functions forming a score algebra. We in-
troduce it and illustrate the resulting querying mechanism
with examples.

4.1 Designing a score algebra

We designed a score algebra in a database perspective, as
a set of operators that operate in closed form: each takes
one or two vScores (instances of scoreType) as input
and produces a vScore as output. This brings composi-
tion, expressiveness, and safety of query results, since they
are guaranteed to consist of vScore instances that can, if
needed, be serialized back in some standard encoding (see
the discussion in Section 1 and the system architecture,
Fig. 1). The algebra is formalized in [8], and implemented
as a set of query functions whose meaning should be clear
from the examples given next.

4.2 Queries

The examples rely on the Quartet corpus (refer to the Sec-
tion 3 for its schema). Our first example creates a list of
Haydn’s quartets, reduced to the titles and violin’s parts.

for $s in collection("Quartet")
where $s/composer="Haydn"
return $s/title, Score($s/music/v1, $s/music/v2)

Recall that music is a QuartetType element in the
Quartet schema. This first query shows two basic opera-
tors to manipulate scores: projection on voices (obtained
with XPath), and creation of new scores from components
(voices or scores) with the Score() operator.

A third operator illustrated next is MAP. It represents
a higher-order function that applies a given function f to
each event in a vScore, and returns the score built from f ’s
results. Here is an example: we want the quartets where the
v1 part is played by a B-flat clarinet. We need to transpose
the v1 part 2 semi-tones up.

for $s in collection("Quartet")
where $s/composer="Haydn"
let $clarinet := Map ($s/music/v1, transpose (2))
let $clrange := ambitus ($clarinet)
return $s/title, $clrange,

Score($clarinet, $s/music/v2,
$s/music/alto, $s/music/cello)

This second query shows how to define variables that
hold new content derived from the vScore via user defined
functions (UDFs). For the sake of illustration we create
two variables, $clarinet and $clrange, calling re-
spectively transpose() and ambitus().
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In the first case, the function has to be applied to each
event of the violin voice. This is expressed with MAP

which yields a new voice with the transposed events. By
contrast, ambitus() is directly applied to the voice as a
whole. It produces a scalar value.

MAP is the primary means by which new vScores can
be created by applying all kinds of transformations. MAP

is also the operator that opens the query language to the
integration of external functions: any library can be inte-
grated as a first-class component of the querying system,
providing some technical work to “wrap” it conveniently.

The selection operator takes as input a vScore, a Boolean
expression e, and filters out the events that do not satisfy
e, replacing them by a null event. Note that this is dif-
ferent from selecting a score based on some property of
its voice(s). The next query illustrates both functionali-
ties: a user-defined function “lyricsContains” selects all
the psalms (in a Psalters collection) such that the vocal part
contains a given word (“Heureux”), “nullify” the events
that do not belong to the measures five to ten, and trim the
voice to keep only non-null events.

for $s in collection("Psalters")
let $sliced := trim(select ($s/air/vocal/monody,

measure(5, 10)))
where lyricsContains ($s/air/vocal/lyrics, "Heureux")
return $s/title, Score($sliced)

We can take several vScores as input and produce a doc-
ument with several vScores as output. The following ex-
ample takes three chorals, and produces a document with
two vScores associating respectively the alto and tenor voices.

for $c1 in collection("Chorals")[@id="BWV49"]/music,
$c2 in collection("Chorals")[@id="BWV56"]/music,
$c3 in collection("Chorals")[@id="BWV12"]/music

return <title>Excerpts of chorals 49, 56, 12</title>,
Score($c1/alto, $c2/alto, $c3/alto),
Score($c1/tenor, $c2/tenor, $c3/tenor)

Finally, our last example shows the extended concept of
score as a voice synchronization which are not necessarily
“music” voices. The following query produces, for each
quartet, a vScore containing the violin 1 and cello voices,
and a third one measuring the interval between the two.

for $s in collection("Quartet")/music
let $intervals := Map(Score($s/v1,$s/cello),interval())
return Score ($s/v1, $s/cello, $intervals)

Such a “score” cannot be represented with a traditional
rendering. Additional work on visualization tools that would
closely put in perspective music fragments along with some
computed analytic feature is required.

5. IMPLEMENTATION

Our system integrates an implementation of our score alge-
bra, a mapping that transforms serialized scores to vScores,
and off-the-shelf tools (a native XML database, BASEX 1 ,
a music notation library for UDFs, MUSIC21 2 [4]). This
simple implementation yields a query system which is both
powerful and extensible (only add new functions wrapped
in XQuery/BASEX). We present its salient aspects.

1 http://basex.org
2 http://web.mit.edu/music21

5.1 Query processing

The architecture presented in Figure 4 summarizes the com-
ponents involved in query processing. Data is stored in
BASEX in two collections: the semi-virtual collection (e.g.,
Quartet) of music documents (called opus), and the col-
lection of serialized scores, in MusicXML or MEI. Each
virtual element scoreType in the former is linked to an
actual document in the latter.

MEI / 
MusicXML

XQuery

XML/
vScores XQuery functions

Mappers,
Operators 
Music21…

1

3

2

4

Collection
link

virtual instances

mapping

query results
……

concrete instances
…

…

algebra

Serialized scores

Figure 4. Architecture

The evaluation of a query proceeds as follows. First
(step 1), BASEX scans the virtual collection and retrieves
the opus matching the where clause (at least for fields
that do not belong to the virtual part, see the discussion at
the end of the section). Then (step 2), for each opus, the
embedded virtual element scoreType has to be materi-
alized. This is done by applying the mapping that extracts
a vScore instance from the serialized score, thanks to the
link in each opus.

Once a vScore is instantiated, algebraic expressions, rep-
resented as composition of functions in the XQuery syn-
tax, can be evaluated (step 3). We wrapped several Python
and Java libraries as XQuery functions, as permitted by
the BASEX extensible architecture. In particular, algebraic
operators and mappers are implemented in Java, whereas
additional, music-content manipulations are mostly wrap-
ped from the Python Music21 toolbox.

The XQuery processor takes in charge the application of
functions, and builds a collection of results (that includes
instances of scoreType), finally sent to the client appli-
cation (step 4). It is worth noting that the whole mecha-
nism behaves like an ActiveXML [1] document which ac-
tivates the XML content on demand by calling an external
service (here, a function).

5.2 Mappers

In order to map scores from the physical representation to
the virtual one, references to physical musical parts are
matched, according to the collection schema. To achieve
this, an ID is associated to each voice element of the ma-
terialized score. This ID directly identifies the underlying
part of the physical document.

The main mapping challenge is to identify virtual and
serialized voices, in particular when they are not standard-
ized according to the collection schema. We need to gen-
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erate IDs for each parts on the underlying encoding (Mu-
sicXML, MEI, etc.), even for monody and lyrics parts which
can be merged on the physical document. Most of them
can be done automatically with metadata information given
by the collection schema.

5.3 Manipulating vScores with SCORELIB

The SCORELIB Java library is embedded in every BASEX
query in order to process our algebraic operations on vS-
cores. The library is responsible for managing the link be-
tween the virtual and the physical score, whatever the en-
coding format. Whenever a function activates a vScore by
calling a function (whether a structural function of the al-
gebra, or a user-defined function), the link is used to get
and materialize the corresponding score.

Once vScore has been materialized, it is kept in a cache
in order to avoid repeated and useless applications of the
mapping. Temporary vScores produced by applying alge-
braic operators are kept in the cache as well.

The Score() operator creates the final XML docu-
ment featuring one or several instances of scoreType. It
combines scores produced by operators and referred to by
XQuery variables.

5.4 Indexing music features

User Defined Functions (UDFs) are necessary to produce
derived information from music notation, and have to be
integrated as external components. Getting the highest note
of a voice for instance is difficult to express in XQuery,
even on the regular structures of our model. In general,
getting sophisticated features would require awfully com-
plex expressions. In our current implementation, UDFs are
taken from MUSIC21 and wrapped as XQuery functions.
This works with quite limited implementation efforts, but
can be very inefficient since every score must be materi-
alized before evaluating the UDF. Consider the following
example which retrieves all the quartets such that the first
violin part gets higher than e6:
for $s in collection("Quartet")
where highest($s/music/v1) > ’e6’ return $s

A naive, direct evaluation maps the MusicXML (or MEI)
document as a vScore, passes it to the XQuery function
that delegates the computation to the user library (e.g., MU-
SIC21 or any other) and gets the result. This has to be done
for each score in the collection, even though they do not all
match the selection criteria.

A solution is to materialize the results of User Defined
Functions as metadata in the virtual document and to index
this new information in BASEX. This can directly serve as
a search criteria without having to materialize the vScore.
The result of the highest() function is such a feature. Index
creation simply scans the whole physical collections, runs
the functions and records it result in a dedicated index
sub-element of each opus, automatically indexed in BA-
SEX. To evaluate the query above, it uses the access path
to directly get the relevant opus.
for $s in collection("Quartet")[index/v1/highest > ’e6’]
return $s

6. RELATED WORK

Accessing to structured music notation for search, analy-
sis and extraction is a long-term endeavor. Humdrum [13]
works on plain text (ASCII) file format, whereas MUSIC21
[4] deals with MIDI channels modeled as musical layers.
Both can import widely used formats like MusicXML or
MEI. Both are powerful toolkits, but their main focus is
on the development of scripts and not database-like access
to structured content. As a result, using, say MUSIC21 to
express the equivalent of our queries would require to de-
velop ad-hoc scripts possibly rather complex. It becomes
all the more complicated when dealing with huge collec-
tions of scores. On the other hand, there are many com-
putations that a database language cannot express, which
motivated our introduction of UDFs in the language.

Other musical score formalisms rather target generative
process and computer-aided composition. This is the case
of Euterpea [12] (in Haskell), musical programming ap-
proaches [3, 6, 7, 14] and operations on tiled streams in T-
Calculus [14]. They follow the paradigm of abstract data
types for music representation, bringing a simplification to
the music programming task, but they are not adapted to
the conciseness of a declarative query language.

Since modern score formats adopt an XML-based se-
rialization, XQuery [23] has been considered as the lan-
guage of choice for score manipulation [9]. THoTH [21]
also proposes to query MusicXML with patterns analy-
sis. For reasons developed in the introduction, we believe
that a pure XQuery approach is too generic to handle the
specifics of music representation.

Our work is inspired by XQuery mediation [10, 5, 2,
19], and can be seen as an application of method that com-
bines queries on physical and virtual instances. It borrows
ideas from ActiveXML [1], and in particular the definition
of some elements as “triggers” that activate external calls.

7. CONCLUSION

We propose in the present paper a complete methodology
to view a repository of XML-structured music scores as
a structured database, equipped with a domain-specialized
query language. Our approach aims at limiting the amount
of work needed to implement a working system. We model
music notation as structured scores that can easily be ex-
tracted from existing standards at run-time; we associate to
the model an algebra to access to the internal components
of the scores; we allow the application of external func-
tions; and finally we integrate the whole design in XQuery,
with limited implementation requirements.

We believe that this work brings a simple and promising
framework to define a query interface on top of Digital Li-
braries, with all the advantages of a concise and declarative
approach for data management. It also offers several inter-
esting perspectives: automatic content management (split
a score in parts, distribute them to digital music stands),
advanced content-based search, and finally advanced min-
ing tasks (derivation of features, annotation of scores with
these features).
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ABSTRACT

Music transcription is a core task in the field of music
information retrieval. Transcribing the drum tracks of mu-
sic pieces is a well-defined sub-task. The symbolic repre-
sentation of a drum track contains much useful information
about the piece, like meter, tempo, as well as various style
and genre cues. This work introduces a novel approach for
drum transcription using recurrent neural networks. We
claim that recurrent neural networks can be trained to iden-
tify the onsets of percussive instruments based on general
properties of their sound. Different architectures of recur-
rent neural networks are compared and evaluated using a
well-known dataset. The outcomes are compared to results
of a state-of-the-art approach on the same dataset. Further-
more, the ability of the networks to generalize is demon-
strated using a second, independent dataset. The exper-
iments yield promising results: while F-measures higher
than state-of-the-art results are achieved, the networks are
capable of generalizing reasonably well.

1. INTRODUCTION AND RELATED WORK

Automatic music transcription (AMT) methods aim at ex-
tracting a symbolic, note-like representation from the au-
dio signal of music tracks. It comprises important tasks in
the field of music information retrieval (MIR), as — with
the knowledge of a symbolic representation — many MIR
tasks can be address more efficiently. Additionally, a vari-
ety for direct applications of AMT systems exists, for ex-
ample: sheet music extraction for music students, MIDI
generation/re-synthesis, score following for performances,
as well as visualizations of different forms.

Drum transcription is a sub-task of AMT which ad-
dresses creating a symbolic representation of all notes
played by percussive instruments (drums, cymbals, bells,
etc.). The source material is usually, as in AMT, a monau-
ral audio source—either from polyphonic audio containing
multiple instruments, or a solo drum track. The symbolic
representation of notes played by the percussive instru-
ments can be used to derive rhythmical meta-information
like tempo, meter, and downbeat. The repetitive rhythmi-

c© Richard Vogl, Matthias Dorfer, Peter Knees. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Richard Vogl, Matthias Dorfer, Peter Knees. “Recur-
rent Neural Networks for Drum Transcription”, 17th International Society
for Music Information Retrieval Conference, 2016.

cal structure of the drum track, as well as changes therein,
can be used as features for high-level MIR tasks. They
provide information about the overall structure of the song
which can be utilized for song segmentation [18]. The
drum rhythm patterns can also be utilized for genre clas-
sification [7]. Other applications for rhythmic patterns in-
clude query-by-tapping and query-by-beat-boxing [11,19].

A common approach to the task of drum transcription
is to apply methods used for source separation like non-
negative matrix factorization (NMF), independent compo-
nent analysis (ICA), or sparse coding. In recent work,
Dittmar and Gärtner [5] use an NMF approach to tran-
scribe solo drum tracks into three drum sound classes
representing bass drum, snare drum, and hi-hat. They
achieve F-measure values of up to 95%. Their approach
focuses on real-time transcription of solo drum tracks for
which training instances of each individual instrument are
present. This is a very specific use case and in many
cases separate training instances for each instrument are
not available. A more general and robust approach which
is able to transcribe different sounding instruments is de-
sirable. Smaragdis [28] introduces a convolutional NMF
method. It uses two-dimensional matrices (instead of one-
dimensional vectors used in NMF) as temporal-spectral
bases which allow to consider temporal structures of the
components. Smaragdis shows that this method can be ap-
plied to transcribe solo drum tracks. Lindsay-Smith and
McDonald [21] extend this method and use convolutive
NMF to build a system for solo drum track transcription.
They report good results on a non-public, synthetic dataset.

Fitzgerald et al. [9] introduce prior subspace analysis,
an ICA method using knowledge of the signals to be sepa-
rated, and demonstrate the application for drum transcrip-
tion. Spich et al. [29] extend this approach by incorporat-
ing a statistical music language model. These works focus
on transcription of three and two instruments, respectively.

Scholler and Purwins [26] use a sparse coding approach
to calculate a similarity measure for drum sound classifica-
tion. They use eight basis vectors to represent the sounds
for bass drum, snare drum, and hi-hat in the time domain.
Yoshii et al. [33] present an automatic drum transcription
system based on template matching and adaptation, similar
to sparse coding approaches. They focus on transcription
of snare and bass drum only, from polyphonic audio sig-
nals.

Algorithms based on source separation usually use the
input signal to produce prototypes (or components) rep-
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Figure 1. Overview of the proposed method. The ex-
tracted spectrogram is fed into the trained RNN which out-
puts activation functions for each instrument. A peak pick-
ing algorithms selects appropriate peaks as instrument on-
set candidates.

resenting individual instruments and so called activation
curves which indicate the activity of them. A peak pick-
ing algorithm is needed to identify the instrument onsets in
the activation curves. Additionally, the identified compo-
nent prototypes have to be assigned to instruments. This is
usually done using machine learning algorithms in combi-
nation with standard audio features [6, 16].

Another approach found in the literature is to first seg-
ment the audio stream using onset detection and classify
the resulting fragments. Gillet and Richard [13] use a
combination of a source separation technique and a sup-
port vector machine (SVM) classifier to transcribe drum
sounds from polyphonic music. Miron et al. use a combi-
nation of frequency filters, onset detection and feature ex-
traction in combination with a k-nearest-neighbor [23] and
a k-means [22] classifier to detect drum sounds in a solo
drum audio signal in real-time. Hidden Markov Models
(HMMs) can be used to perform segmentation and classi-
fication in one step. Paulus and Klapuri [24] use HMMs
to model the development of MFCCs over time. Decoding
the most likely sequence yields activation curves for bass
drum, snare drum, and hi-hat and can be applied for both
solo drum tracks as well as polyphonic music.

Artificial neural networks consist of nodes (neurons)
forming a directed graph, in which every connection has
a certain weight. Since the discovery of gradient descent
training methods which make training of complex archi-
tectures computationally feasible [17], artificial neural net-
works regained popularity in the machine learning commu-
nity. They are being successfully applied in many differ-
ent fields. Recurrent neural networks (RNNs) feature ad-
ditional connections (recurrent connections) in each layer,
providing the outputs of the same layer from the last time
step as additional inputs. These connections can serve as
memory for neural networks which is beneficial for tasks
with sequential input data. RNNs have been shown to per-
form well, e.g., for speech recognition [25] and handwrit-
ing recognition [15]. Böck and Schedl use RNNs to im-
prove beat tracking results [3] as well as for polyphonic
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Figure 2. Spectrogram of a drum track and target functions
for bass drum, snare drum, and hi-hat. The target function
has a value of 1.0 at the frames at which annotations for the
instruments exist and 0.0 otherwise. The frame rate of the
target function is 100Hz, the same as for the spectrogram.
The third graph shows the output of the trained RNN for
the spectrogram in the first image.

piano transcription [4]. Sigtia et al. [27] use RNNs in the
context of automatic music transcription as music language
models to improve the results of a frame-level acoustic
classifier. Although RNNs have been used in the past for
transcription systems [4], we are not aware of any work
using RNNs for transcription of drum tracks.

2. TASK AND MOTIVATION

In this work, we introduce a new method for automatic
transcription of solo drum tracks using RNNs. While it is a
first step towards drum transcription from polyphonic mu-
sic, there also exist multiple applications for the transcrip-
tion of solo drum tracks. In electronic music production, it
can be used to transcribe drum loops if a re-synthesis using
different sounds is desired. The transcription of recorded
solo drum tracks can be used in the context of recording
and production of rock songs. Nowadays it is not unusual
to use sampled drums, e.g., in low-budget productions or
in modern heavy metal genres. One the one hand, this is
due to the complexity and costs of recording drums. On the
other hand, with sampled drums it is easier to achieve the
high precision and even robotic sounding style desired in
some genres. Instead of manually programming the drum
track, automatic transcription of a simple low-quality drum
recording can be used as basis for the production of a song.
As in other works, we focus on the transcription of bass
drum, snare drum, and hi-hat. These instruments usually
define the main rhythmic patterns [24], depending on genre
and play style. They also cover most (>80% in the case of
the ENST-Drums dataset, see Section 4.1) of the played
notes in full drum kit recordings. Since simple RNN ar-
chitectures already provide good transcription results (cf.
Section 5), it is worthwhile exploring their application in
this task further.
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Figure 3. Result visualization for the evaluation on the IDMT-SMT-Drums dataset. The left plot shows the F-measure
curve, the right plot the precision-recall curve for different threshold levels for peak picking.

3. METHOD

To extract the played notes from the audio signal, first
a spectrogram of the audio signal is calculated. This is
frame-wise fed into an RNN with three output neurons.
The outputs of the RNN provide activation signals for the
three drum instruments. A peak picking algorithm then
identifies the onsets for each instrument’s activation func-
tion, which yields the finished transcript (cf. Figure 1).

In this work, we compare four RNN architectures de-
signed for transcribing solo drum tracks. These are: i. a
simple RNN, ii. a backward RNN (bwRNN), iii. a bidi-
rectional RNN (bdRNN), and iv. an RNN with time shift
(tsRNN). The next section will cover the preprocessing of
the audio signal, which is used for all four RNNs. After
that, the individual architectures are presented in detail.

3.1 Signal Preprocessing

All four RNN architectures use the same features extracted
from the audio signal. As input, mono audio files with 16
bit resolution at 44.1 kHz sampling rate are used. The au-
dio is normalized and padded with 0.25 seconds of silence,
to avoid onsets occurring immediately at the beginning of
the audio file. First a logarithmic power spectrogram is
calculated using a 2048 samples window size and a re-
sulting frame rate of 100Hz. The frequency axis is then
transformed to a logarithmic scale using twelve triangular
filters per octave for a frequency range from 20 to 20,000
Hz. This results in a total number of 84 frequency bins.

3.2 Network Architectures

In this work, four different architectures of RNNs are com-
pared. The four architectures comprise a plain RNN and
three variations which are described in detail in the follow-
ing.

3.2.1 Recurrent Neural Network

The plain RNN features a 84-node input layer which is
needed to handle the input data vectors of the same size.
The recurrent layer consists of 200 recurrently connected

rectified linear units (ReLUs [14]). Although RNNs with
ReLU activations can be difficult to train [20], good results
without special initialization or treatment were achieved
in this work. The connections between the input and the
recurrent layer, the recurrent connections, and the connec-
tions between the recurrent layer and the output layer are
all realized densely (every node is connected to all other
nodes). The output layer consists of three nodes with
sigmoid transfer functions, which provide the activation
functions for the three instrument classes defined earlier.
The sigmoid transfer function was chosen because binary
cross-entropy was used as loss function for training, which
turned out to be easier to train in the experiments.

3.2.2 Backward RNN

This RNN is very similar to the basic RNN with the only
difference being that the recurrent connections are back-
ward instead of forward in time. This was done in order
to evaluate if the short sustain phase of percussive instru-
ments provides additional information for the classifica-
tion. The plain RNN has to identify the instruments at
exactly the time frame of the onset annotation, thus the
sustain phase of the notes can not be considered by it. This
architecture is not real-time-capable since the audio to be
transcribed is analyzed in reverse. Moreover, it might be
more hard for this architecture to find the exact position of
the onsets since the steep slope of the onset is only seen in
forward direction.

3.2.3 Bidirectional RNN

The architecture of the bidirectional RNN used in this work
consists of 100 nodes in a forward layer and 100 nodes in a
backward layer. Both the forward and backward layers are
directly connected to the input layer. Bidirectional RNNs
often produce better results than unidirectional RNNs be-
cause they can also use the context of future frames for
classification. In this work, they are meant to combine both
the strengths of the forward and backward RNN. Unfor-
tunately, this system has the same limitations as the back-
ward RNN, making it not usable for real-time applications.
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Figure 4. Result visualization for the evaluation on the ENST-Drums dataset. The left plot shows the F-measure curve, the
right plot the precision-recall curve for different threshold levels for peak picking.

3.2.4 RNN with Time Shift

This approach is architecturally the same as the simple for-
ward RNN, with the addition that this network can see
more frames of the spectrogram to identify the instruments
active at an onset. For training, the annotations are shifted
into the future by 25ms and after transcription the detected
onsets are shifted back by the same time. Doing this, the
RNN can take a small portion of the sustain phase of the
onset’s spectrogram also into account. This is meant to im-
prove the performance of the classification in the same way
the backward connections do, without losing the real-time
capabilities. The system is to a limited degree still real-
time capable—depending on the length of the time shift.
The used delay of 25ms in this work might still be suffi-
ciently small for certain applications like score following
and other visualizations and it can be tuned to meet the
demands of certain applications.

3.3 Peak Picking

The output neurons of the RNNs provide activation func-
tions for every instrument. To identify the instrument on-
sets, a simple and robust peak picking method designed for
onset detection is used [2]. Peaks are selected at a frame n
of the activation function F (n) if the following three con-
ditions are met:

1. F (n) = max(F (n− pre max : n+ post max)),

2. F (n) ≥ mean(F (n−pre avg : n+post avg))+δ,

3. n− nlastpeak > combination width,

where δ is a threshold varied for evaluation. Simply
put, a peak has to be the maximum of a certain win-
dow, and higher than the mean plus some threshold of
another window. Additionally there has to be a distance
of at least combination width to the last peak. Param-
eters for the windows were chosen to achieve good re-
sults on a development data set while considering that 10
ms is the threshold of hearing two distinct events (values
are converted from frames to ms): pre max = 20ms,

post max = 0ms, pre avg = 20ms, post avg = 0ms,
and combination width = 20ms. Setting post max and
post avg to zero allows the application in online scenarios.

3.4 RNN Training

The task which has to be solved by the RNNs in this work
is a three-way binary classification problem. When pro-
vided with the input spectrogram, the RNN has to identify
the onsets of the three instrument classes by predicting the
activation functions at the output neurons. The training al-
gorithm has to adapt the weights and biases of the network
in a way to achieve this functionality. In this work, the
rmsprop method proposed by Hinton and Tieleman [31]
is used as training algorithm. Additionally, dropout [30]
between the recurrent and the output layer of the RNNs
is used for training. When using dropout, randomly cho-
sen connections are disabled for a single training iteration.
The amount of disabled connections is determined by the
dropout rate.

The goal of the training algorithm is to minimize a
loss function. The loss function measures how much er-
ror the networks makes while reproducing the target func-
tions. As loss function for training, the mean of the bi-
nary cross-entropy of the values of the three output neurons
and the target functions is used (see Figure 2). The train-
ing with rmsprop is based on mini batches. In this work,
mini batches with a size of eight instances were used. The
training instances consist of 100-frame-segments of the ex-
tracted spectrogram. These are generated by extracting the
spectrogram as described in Section 3.1 from the training
files and cutting it into 100-frame-segments with 90 frames
overlap (i.e. 10 frames hop-size). The order of the seg-
ments for training is randomized.

During one epoch the training data is used to adapt the
weights and biases of the network. At the end of an epoch,
the validation data is used to estimate the quality of the
trained network. The training of the RNNs is aborted as
soon as the resulting loss for the validation set has not de-
creased for 10 epochs. As learning rate decay strategy, the
following method is applied: after every seven epochs the
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Results for IDMT-SMT-Drums
algorithm best F-measure[%] at threshold
RNN 96.3 0.15
bwRNN 97.1 0.30
bdRNN 98.1 0.15
tsRNN 98.2 0.25
NMF [5] 95.0 -

Table 1. Evaluation results on the IDMT-SMT-Drums
dataset. The NMF approach serves as state-of-the-art base-
line.

learning rate is halved. For the simple RNN, backward
RNN, and time shifted RNN the following parameter set-
tings are used: initial learning rate rl = 0.001 and dropout
rate rd = 0.2. In case of the bidirectional RNN the fol-
lowing parameter settings are used: initial learning rate
rl = 0.0005 and the dropout rate rd = 0.3. The network is
initialized with weights randomly sampled from a uniform
distribution in the range ±0.01, and zero-value biases.

All hyperparameters like network architecture, dropout
rate, and learning rate were chosen according to empiri-
cal experimentation on a development data set, experience,
and best practice examples.

3.5 Implementation

The implementation was done in Python using Lasagne [8]
and Theano for RNN training and evaluation. The mad-
mom [1] framework was used for signal processing and
feature extraction, as well as for peak picking and evalua-
tion metric calculation (precision, recall, and F-measure).

4. EVALUATION

To evaluate the presented system, the audio files of the test
subset are preprocessed as explained in Section 3.1. Sub-
sequently the spectrogram of the audio file is fed into the
input layer of the RNN. The three neurons of the output
layer provide the activation functions for the three instru-
ments for which the peak picking algorithm then identifies
the relevant peaks. These peaks are interpreted as instru-
ment onsets. The true positive and false positive onsets
are then identified by using a 20 ms tolerance window. It
should be noted that in the state-of-the-art methods for the
ENST-Drums dataset [24] as well as for the IDMT-SMT-
Drums dataset [5], less strict tolerance windows of 30 ms
and 50 ms, respectively, are used. Using these values, pre-
cision, recall, and F-measure for the onsets are calculated.

4.1 Datasets

For training and evaluation the IDMT-SMT-Drums [5]
dataset was used. Some missing annotations have been
added and additionally annotations for the #train tracks
have been created. The #train tracks are tracks contain-
ing separated strokes of the individual instruments. These
are only used as additional training examples and not used
in the test set, to maintain a fair comparison with the results

Results for ENST-Drums
algorithm best F-measure[%] at threshold
RNN 69.3 0.05
bwRNN 64.4 0.15
bdRNN 70.3 0.05
tsRNN 73.1 0.10
HMM [24] 81.5 -

Table 2. Evaluation results on the ENST-Drums dataset.
The HMM approach serves as state-of-the-art baseline.

in [5]. The dataset was split into train, validation, and test
subsets using 70%, 15%, and 15% of the files, respectively.

Additionally, the audio portion of the ENST-Drums [12]
dataset was used as a second independent dataset to evalu-
ate the generalization capabilities of the RNNs. From this
dataset, the wet mixes of the drum-only tracks of all three
drummers were used. Since all models were trained on the
IDMT-SMT-Drums dataset, no splitting of this dataset was
necessary.

For both datasets the three instruments’ target functions
are created by calculating the correct active frames (for a
target frame rate of 100 Hz) using the annotations for each
instrument. The target functions are one at the frames in
which an annotation is present and zero otherwise. See
Figure 2 for a visualization of the target functions in the
context of the input spectrogram.

4.2 Experiments

For all four architectures, two different experiments were
performed. First, the model was trained using the training
and validation subsets of the IDMT-SMT-Drums dataset.
Then, using the trained model, the tracks of the test split
of the dataset were transcribed and the resulting preci-
sion, recall, and F-measure were calculated. Second, the
trained model was evaluated by transcribing the ENST-
Drums dataset and calculating the validation metrics. This
was done to evaluate how well the trained models are able
to generalize and if the models are over-fitted to the train-
ing dataset. Since the ENST-Drums dataset contains more
than just the three instruments with which the model was
trained, only the snare, bass, and hi-hat annotations were
used. This makes it on the one hand easier to identify
all annotated notes, on the other hand, there are some
percussive onsets in the audio, which should not be tran-
scribed and which are counted as false positives if the net-
work falsely interprets them as snare, bass, or hi-hat hits.
The percentage of snare, bass, and hi-hat annotations is
81.2% (i.e., 18.8% are other instruments which are ignored
and potential false positives). The ENST-Drums dataset
contains more expressive and faster drumming styles than
the IDMT-SMT-Drums dataset, making it a more difficult
dataset to transcribe. This fact is reflected in the transcrip-
tion performances of both the state-of-the-art algorithms as
well as the proposed methods. This behavior can also be
observed in the work of Wu and Lerch [32] who apply their
method to both datasets.
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5. RESULTS AND DISCUSSION

Table 1 summarizes the results of all methods on the
IDMT-SMT-Drums dataset. It can be seen that the F-
measure values for all RNNs are higher than the state-of-
the-art. It should be noted at this point, that the approach
presented in [5] was introduced for real-time transcription.
Nevertheless, the used NMF approach uses audio samples
of the exact same instruments which should be transcribed
as prototypes, which is the best-case scenario for NMF
transcription. In contrast, our approach is trained on a split
of the full dataset which contains many different instru-
ment sounds, and thus is a more general model than the one
used in the state-of-the-art approach used as baseline. It
can be observed that the backward RNN performs slightly
better than the plain RNN, which indicates that indeed the
short sustain phases of the drum instruments contain in-
formation which is useful for classification. The bidirec-
tional RNN again performs slightly better than the back-
ward RNN, which comes as no surprise since it combines
the properties of the plain forward and backward RNNs.
The results of the forward RNN with time shift are not
significantly different from the results of the bidirectional
RNN. This indicates that the short additional time frame
provided by the time shift provides sufficient additional in-
formation to achieve similar classification results as with
a bidirectional RNN. Figure 3 shows a F-measure curve
as well as a precision-recall curve for different threshold
levels for peak picking.

The results of the evaluation of the models trained
on the IDMT-SMT-Drums dataset used to transcribe the
ENST-Drums dataset are shown in Table 2. The achieved
F-measure values are not as high as the state-of-the-art in
this case but this was expected. In contrast to [24], the
model used in this work is not trained on splits of the
ENST-Drums dataset and thus not optimized for it. Nev-
ertheless, reasonable high F-measure values are achieved
with respect to the fact that the model was trained on com-
pletely different and more simple data. This can be in-
terpreted as an indication that the model in fact learns, to
some degree, general properties of the three different drum
instruments. Figure 4 shows an F-measure curve as well
as a precision-recall curve for different threshold levels for
peak picking.

In Figures 3 and 4, it can be seen that the highest F-
measure values are found for low values for the threshold
of the peak picking algorithm. This suggests that the RNNs
are quite selective and the predicted activation functions
do not contain much noise—which can in fact be observed
(see Figure 2). This further implies that choices for peak
picking window sizes are not critical, which was also ob-
served in empiric experiments.

6. FUTURE WORK

Next steps for using RNNs for drum transcription will
involve adapting the method to work on polyphonic au-
dio tracks. It can be imagined to combine the presented
method with a harmonic/percussive separation stage, us-
ing, e.g., the method introduced by Fitzgerald et al. [10],

which would yield a drum track transcript from a full poly-
phonic audio track. As we show in this work, the transcrip-
tion methods using RNNs are quite selective and therefore
expected to be robust regarding artifacts resulting from
source separation. Training directly on full audio tracks
may also be a viable option to work on full audio tracks.

Another option is to use more instrument classes than
the three instruments used in this and many other works.
Theoretically, RNNs are not as vulnerable as source sepa-
ration approaches when it comes to the number of instru-
ments to transcribe. It has been shown that RNNs can per-
form well when using a much greater number of output
neurons, for example 88 neurons in the case of piano tran-
scription [4]. Although, for this, a dataset which has a bal-
anced amount of notes played by different instruments has
to be created first.

7. CONCLUSION

In this work, four architectures for drum transcription
methods of solo drum tracks using RNNs were introduced.
Their transcription performances are better than the re-
sults of the state-of-the-art approach which uses an NMF
method—even with the NMF approach having the advan-
tage of being trained on exactly the same instruments used
in the drum tracks. The RNN approaches seem to be able to
generalize quite well, since reasonable high transcription
results are yielded on another, independent, and more diffi-
cult dataset. The precision-recall curves show that the best
results are obtained when using a low threshold for peak
picking. This implies that the used transcription methods
are quite selective, which is an indication that they are ro-
bust and not bound to be influenced by noise or artifacts
when using additional preprocessing steps.
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ABSTRACT

This paper presents a system for the transcription of
singing voice melodies in polyphonic music signals based
on Deep Neural Network (DNN) models. In particular, a
new DNN system is introduced for performing the f0 es-
timation of the melody, and another DNN, inspired from
recent studies, is learned for segmenting vocal sequences.
Preparation of the data and learning configurations related
to the specificity of both tasks are described. The perfor-
mance of the melody f0 estimation system is compared
with a state-of-the-art method and exhibits highest accu-
racy through a better generalization on two different music
databases. Insights into the global functioning of this DNN
are proposed. Finally, an evaluation of the global system
combining the two DNNs for singing voice melody tran-
scription is presented.

1. INTRODUCTION

The automatic transcription of the main melody from poly-
phonic music signals is a major task of Music Information
Retrieval (MIR) research [19]. Indeed, besides applica-
tions to musicological analysis or music practice, the use
of the main melody as prior information has been shown
useful in various types of higher-level tasks such as music
genre classification [20], music retrieval [21], music de-
soloing [4, 18] or lyrics alignment [15, 23]. From a sig-
nal processing perspective, the main melody can be repre-
sented by sequences of fundamental frequency (f0) defined
on voicing instants, i.e. on portions where the instrument
producing the melody is active. Hence, main melody tran-
scription algorithms usually follow two main processing
steps. First, a representation emphasizing the most likely
f0s over time is computed, e.g. under the form of a salience
matrix [19], a vocal source activation matrix [4] or an en-
hanced spectrogram [22]. Second, a binary classification
of the selected f0s between melodic and background con-
tent is performed using melodic contour detection/tracking
and voicing detection.

c© François Rigaud and Mathieu Radenen. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: François Rigaud and Mathieu Radenen. “Singing Voice
Melody Transcription using Deep Neural Networks”, 17th International
Society for Music Information Retrieval Conference, 2016.

In this paper we propose to tackle the melody transcrip-
tion task as a supervised classification problem where each
time frame of signal has to be assigned into a pitch class
when a melody is present and an ‘unvoiced’ class when it is
not. Such approach has been proposed in [5] where melody
transcription is performed applying Support Vector Ma-
chine on input features composed of Short-Time Fourier
Transforms (STFT). Similarly for noisy speech signals,
f0 estimation algorithms based on Deep Neural Networks
(DNN) have been introduced in [9, 12].

Following such fully data driven approaches we intro-
duce a singing voice melody transcription system com-
posed of two DNN models respectively used to perform
the f0 estimation task and the Voice Activity Detection
(VAD) task. The main contribution of this paper is to
present a DNN architecture able to discriminate the differ-
ent f0s from low-level features, namely spectrogram data.
Compared to a well-known state-of-the-art method [19],
it shows significant improvements in terms of f0 accu-
racy through an increase of robustness with regard to mu-
sical genre and a reduction of octave-related errors. By
analyzing the weights of the network, the DNN is shown
somehow equivalent to a simple harmonic-sum method for
which the parameters usually set empirically are here auto-
matically learned from the data and where the succession
of non-linear layers likely increases the power of discrim-
ination of harmonically-related f0. For the task of VAD,
another DNN model, inspired from [13] is learned. For
both models, special care is taken to prevent over-fitting
issues by using different databases and perturbing the data
with audio degradations. Performance of the whole system
is finally evaluated and shows promising results.

The rest of the paper is organized as follows. Section 2
presents an overview of the whole system. Sections 3 and
4 introduce the DNN models and detail the learning con-
figurations respectively for the VAD and the f0 estimation
task. Then, Section 5 presents an evaluation of the system
and Section 6 concludes the study.

2. SYSTEM OVERVIEW

2.1 Global architecture

The proposed system, displayed on Figure 1, is composed
of two independent parallel DNN blocks that perform re-
spectively the f0 melody estimation and the VAD.
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Figure 1: Architecture of the proposed system for singing
voice melody transcription.

In contrast with [9,12] that propose a single DNN model
to perform both tasks, we did not find such unified func-
tional architecture able to discriminate successfully a time
frame between quantified f0s and ‘unvoiced’ classes. In-
deed the models presented in these studies are designed
for speech signals mixed with background noise for which
the discrimination between a frame of noise and a frame
of speech is very likely related to the presence or absence
of a pitched structure, which is also probably the kind of
information on which the system relies to estimate the f0.
Conversely, with music signals both the melody and the
accompaniment exhibit harmonic structures and the voic-
ing discrimination usually requires different levels of in-
formation, e.g. under the form of timbral features such as
Mel-Frequency Cepstral Coefficients.

Another characteristic of the proposed system is the par-
allel architecture that allows considering different types of
input data for the two DNNs and which arises from the
application restricted to vocal melodies. Indeed, unlike
generic systems dealing with main melody transcription of
different instruments (often within a same piece of music)
which usually process the f0 estimation and the voicing de-
tection sequentially, the focus on singing voice here hardly
allows for a voicing detection relying only on the distri-
bution and statistics of the candidate pitch contours and/or
their energy [2, 19]. Thus, this constraint requires to build
a specific VAD system that should learn to discriminate
the timbre of a vocal melody from an instrumental melody,
such as for example played by a saxophone.

2.2 Signal decomposition

As shown on Figure 1, both DNN models are preceded by
a signal decomposition. At the input of the global system,
audio signals are first converted to mono and re-sampled to
16 kHz. Then, following [13], it is proposed to provide the
DNNs with a set of pre-decomposed signals obtained by
applying a double-stage Harmonic/Percussive Source Sep-
aration (HPSS) [6,22] on the input mixture signal. The key
idea behind double-stage HPSS is to consider that within a
mix, melodic signals are usually less stable/stationary than
the background ‘harmonic’ instruments (such as a bass or
a piano), but more than the percussive instruments (such
as the drums). Thus, according to the frequency reso-

lution that is used to compute a STFT, applying a har-
monic/percussive decomposition on a mixture spectrogram
lead to a rough separation where the melody is mainly ex-
tracted either in the harmonic or in the percussive content.

Using such pre-processing, 4 different signals are ob-
tained. First, the input signal s is decomposed into the sum
of h1 and p1 using a high-frequency resolution STFT (typ-
ically with a window of about 300 ms) where p1 should
mainly contain the melody and the drums, and h1 the
remaining stable instrument signals. Second, p1 is fur-
ther decomposed into the sum of h2 and p2 using a low-
frequency resolution STFT (typically with a window of
about 30 ms), where h2 mainly contains the melody, and
p2 the drums. As presented latter in Sections 3 and 4, dif-
ferent types of these 4 signals or combinations of them will
be used to experimentally determine optimal DNN models.

2.3 Learning data

Several annotated databases composed of polyphonic mu-
sic with transcribed melodies are used for building the
train, validation and test datasets used for the learning (cf.
Sections 3 and 4) and the evaluation (cf. Section 5) of the
DNNs. In particular, a subset of RWC Popular Music and
Royalty Free Music [7] and MIR-1k [10] databases are
used for the train dataset, and the recent databases Med-
leyDB [1] and iKala [3] are split between train, validation
and test datasets. Note that for iKala the vocal and instru-
mental tracks are mixed with a relative gain of 0 dB.

Also, in order to minimize over-fitting issues and to in-
crease the robustness of the system with respect to audio
equalization and encoding degradations, we use the Audio
Degradation Toolbox [14]. Thus, several files composing
the train and validation datasets (50% for the VAD task and
25% for the f0 estimation task) are duplicated with one de-
graded version, the degradation type being randomly cho-
sen amongst those available preserving the alignment be-
tween the audio and the annotation (e.g. not producing
time/pitch warping or too long reverberation effects).

3. VOICE ACTIVITY DETECTION WITH DEEP
NEURAL NETWORKS

This section briefly describes the process for learning the
DNN used to perform the VAD. It is largely inspired from
a previous study presented in more detail in [13]. A similar
architecture of deep recurrent neural network composed of
Bidirectional Long Short-Term Memory (BLSTM) [8] is
used. In our case the architecture is arbitrarily fixed to 3
BLSTM layers of 50 units each and a final feed-forward lo-
gistic output layer with one unit. As in [13], different types
of combination of the pre-decomposed signals (cf. Section
2.2) are considered to determine an optimal network: s,
p1, h2, h1p1, h2p2 and h1h2p2. For each of these pre-
decomposed signals, timbral features are computed under
the form of mel-frequency spectrograms obtained using a
STFT with 32 ms long Hamming windows and 75 % of
overlap, and 40 triangular filters distributed on a mel scale
between 0 and 8000 Hz. Then, each feature of the input
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Figure 2: VAD network illustration.

data is normalized using the mean and variance computed
over the train dataset. Contrary to [13] the learning is per-
formed in a single step, i.e. without adopting a layer by
layer training.

Finally, the best architecture is obtained for the combi-
nation of h1, h2 and p2 signals, thus for an input of size
120, which corresponds to a use of the whole information
present in the original signal (s = h1 + h2 + p2). An
illustration of this network is presented in Figure 2.

A simple post-processing of the DNN output consisting
in a threshold of 0.5 is finally applied to take the binary
decision of voicing frame activation.

4. F0 ESTIMATION WITH DEEP NEURAL
NETWORKS

This section presents in detail the learning configuration
for the DNN used for performing the f0 estimation task.
An interpretation of the network functioning is finally pre-
sented.

4.1 Preparation of learning data

As proposed in [5] we decide to keep low level features
to feed the DNN model. Compared to [12] and [9] which
use as input pre-computed representations known for high-
lighting the periodicity of pitched sounds (respectively

based on an auto-correlation and a harmonic filtering), we
expect here the network to be able to learn an optimal
transformation automatically from spectrogram data. Thus
the set of selected features consists of log-spectrograms
(logarithm of the modulus of the STFT) computed from a
Hamming window of duration 64 ms (1024 samples for a
sampling frequency of 16000 Hz) with an overlap of 0.75,
and from which frequencies below 50 Hz and above 4000
Hz are discarded. For each music excerpt the correspond-
ing log-spectrogram is rescaled between 0 and 1. Since, as
described in Section 2.1, the VAD is performed by a sec-
ond independent system, all time frames for which no vo-
cal melody is present are removed from the dataset. These
features are computed independently for 3 different types
of input signal for which the melody should be more or less
emphasized: s, p1 and h2 (cf. Section 2.2).

For the output, the f0s are quantified between C#2
(f0 ' 69.29 Hz) and C#6 (f0 ' 1108.73 Hz) with a spac-
ing of an eighth of tone, thus leading to a total of 193
classes.

The train and validation datasets including audio de-
graded versions are finally composed of, respectively,
22877 melodic sequences (resp. 3394) for a total duration
of about 220 minutes (resp. 29 min).

4.2 Training

Several experiments have been run to determine a func-
tional DNN architecture. In particular, two types of neuron
units have been considered: the standard feed-forward sig-
moid unit and the Bidirectional Long Short-Term Memory
(BLSTM) recurrent unit [8].

For each test, the weights of the network are initialized
randomly according to a Gaussian distribution with 0 mean
and a standard deviation of 0.1, and optimized to mini-
mize the cross-entropy error function. The learning is then
performed by means of a stochastic gradient descent with
shuffled mini-batches composed of 30 melodic sequences,
a learning rate of 10−7 and a momentum of 0.9. The op-
timization is run for a maximum of 10000 epochs and an
early stopping is applied if no decrease is observed on the
validation set error during 100 consecutive epochs. In ad-
dition to the use of audio degradations during the prepa-
ration of the data for preventing over-fitting (cf. Section
2.3), the training examples are slightly corrupted during
the learning by adding a Gaussian noise with variance 0.05
at each epoch.

Among the different architectures tested, the best clas-
sification performance is obtained for the input signal p1
(slightly better than for s, i.e. without pre-separation) by
a 2-hidden layer feed-forward network with 500 sigmoid
units each, and a 193 output softmax layer. An illustration
of this network is presented in Figure 3. Interestingly, for
that configuration the learning did not suffered from over-
fitting so that it ended at the maximum number of epochs,
thus without early stopping.

While the temporal continuity of the f0 along time-
frames should provide valuable information, the use of
BLSTM recurrent layers (alone or in combination with
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Figure 3: f0 estimation network illustration.

feed-forward sigmoid layers) did not lead to efficient sys-
tems. Further experiments should be conducted to enforce
the inclusion of such temporal context in a feed-forward
DNN architecture, for instance by concatenating several
consecutive time frames in the input.

4.3 Post-processing

The output layer of the DNN composed of softmax units
returns a f0 probability distribution for each time frame
that can be seen for a full piece of music as a pitch ac-
tivation matrix. In order to take a final decision that ac-
count for the continuity of the f0 along melodic sequences,
a Viterbi tracking is finally applied on the network out-
put [5, 9, 12]. For that, the log-probability transition be-
tween two consecutive time frames and two f0 classes is
simply arbitrarily set inversely proportional to their abso-
lute difference in semi-tones. For further improvement of
the system, such transition matrix could be learned from
the data [5], however this simple rule gives interesting per-
formance gains (when compared to a simple ‘maximum
picking’ post-processing without temporal context) while
potentially reducing the risk of over-fitting to a particular
music style.
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Figure 4: Display of the weights for the two sigmoid feed-
forward layers (top) and the softmax layer (down) of the
DNN learned for the f0 estimation task.

4.4 Network weights interpretation

We propose here to have an insight into the network func-
tioning for this specific task of f0 estimation by analyzing
the weights of the DNN. The input is a short-time spec-
trum and the output corresponds to an activation vector for
which a single element (the actual f0 of the melody at that
time frame) should be predominant. In that case, it is rea-
sonable to expect that the DNN somehow behaves like a
harmonic-sum operator.

While the visualization of the distribution of the hidden-
layer weights usually does not provide with straightfor-
ward cues to analyse a DNN functioning (cf. Figure 4)
we consider a simplified network for which it is assumed
that each feed-forward logistic unit is working in the linear
regime. Thus, removing the non-linear operations, the out-
put of a feed-forward layer with index l composed of Nl

units writes
xl =Wl · xl−1 + bl, (1)

where xl ∈ RNl (resp. xl−1 ∈ RNl−1 ) corresponds to the
ouput vector of layer l (resp. l − 1), Wl ∈ RNl×Nl−1 is
the weight matrix and bl ∈ RNl the bias vector. Using this
expression, the output of a layer with index L expressed as
the propagation of the input x0 through the linear network
also writes

xL = W · x0 + b, (2)

where W =
∏L

l=1Wl corresponds to a global weight ma-
trix, and b to a global bias that depends on the set of pa-
rameters {Wl, bl, ∀l ∈ [1..L]}.

As mentioned above, in our case x0 is a short-time spec-
trum and xL is a f0 activation vector. The global weight
matrix should thus present some characteristics of a pitch
detector. Indeed as displayed on Figure 5a, the matrix
W for the learned DNN (which is thus the product of the
3 weight matrices depicted on Figure 4) exhibits an har-
monic structure for most output classes of f0s; except for
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Figure 5: Linearized DNN illustration. (a) Visualization
of the (transposed) weight matrix W. The x-axis corre-
sponds to the output class indices (the f0s) and the y-axis
represents the input feature indices (frequency channel of
the spectrum input). (b) Weights display for the f0 output
class with index 100.

some f0s in the low and high frequency range for which no
or too few examples are present in the learning data.

Most approaches dealing with main melody transcrip-
tion usually relies on such types of transformations to
compute a representation emphasizing f0 candidates (or
salience function) and are usually partly based on hand-
crafted designs [11, 17, 19]. Interestingly, using a fully
data driven method as proposed, parameters of a compara-
ble weighted harmonic summation algorithm (such as the
number of harmonics to consider for each note and their
respective weights) do not have to be defined. This can be
observed in more details on Figure 5b which depicts the
linearized network weights for the class index 100 (f0 '
289.43 Hz). Moreover, while this interpretation assumes a
linear network, one can expect that the non-linear opera-
tions actually present in the network help in enhancing the
discrimination between the different f0 classes.

5. EVALUATION

5.1 Experimental procedure

Two different test datasets composed of full music ex-
cerpts (i.e. vocal and non vocal portions) are used for
the evaluation. One is composed of 17 tracks from Med-
leyDB (last songs comprising vocal melodies, from Mu-
sicDelta Reggae to Wolf DieBekherte, for a total of∼ 25.5
min of vocal portions) and the other is composed of 63
tracks from iKala (from 54223 chorus to 90587 verse for

a total of ∼ 21 min of vocal portions).
The evaluation is conducted in two steps. First the per-

formance of the f0 estimation DNN taken alone (thus with-
out voicing detection) is compared with the state-of the
art system melodia [19] using f0 accuracy metrics. Sec-
ond, the performance of our complete singing voice tran-
scription system (VAD and f0 estimation) is evaluated on
the same datasets. Since our system is restricted to the
transcription of vocal melodies and that, to our knowledge
all available state-of-the-art systems are designed to target
main melody, this final evaluation presents the results for
our system without comparisons with a reference.

For all tasks and systems, the evaluation metrics are
computed using the mir eval library [16]. For Section
5.3, some additional metrics related to voicing detection,
namely precision, f-measure and voicing accuracy, were
not present in the original mir eval code and thus were
added for our experiments.

5.2 f0 estimation task

The performance of the DNN performing the f0 estima-
tion task is first compared to melodia system [19] using
the plug-in implementation with f0 search range limits set
equal to those of our system (69.29-1108.73 Hz, cf. Sec.
4.1) and with remaining parameters left to default values.
For each system and each music track the performance is
evaluated in terms of raw pitch accuracy (RPA) and raw
chroma accuracy (RCA). These metrics are computed on
vocal segments (i.e. without accounting for potential voic-
ing detection errors) for a f0 tolerance of 50 cents.

The results are presented on Figure 6 under the form
of a box plot where, for each metric and dataset, the ends
of the dashed vertical bars delimit the lowest and highest
scores obtained, the 3 vertical bars composing each center
box respectively correspond to the first quartile, the median
and the third quartile of the distribution, and finally the
star markers represent the mean. Both systems are char-
acterized by more widespread distributions for MedleyDB
than for iKala. This reflects the fact that MedleyDB is
more heterogeneous in musical genres and recording con-
ditions than iKala. On iKala, the DNN performs slightly
better than melodia when comparing the means. On Med-
leyDB, the gap between the two systems increases signif-
icantly. The DNN system seems much less affected by
the variability of the music examples and clearly improve
the mean RPA by 20% (62.13% for melodia and 82.48%
for the DNN). Additionally, while exhibiting more similar
distributions of RPA and RCA, the DNN tends to produce
less octave detection errors. It should be noted that this re-
sult does not take into account the recent post-processing
improvement proposed for melodia [2], yet it shows the
interest of using such DNN approach to compute an en-
hanced pitch salience matrix which, simply combined with
a Viterbi post-processing, achieves good performance.

5.3 Singing voice transcription task

The evaluation of the global system is finally performed
on the two same test datasets. The results are displayed as

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 741



RPA RCA RPA RCA
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
MedleyDB                                          iKala

 

 

NN

melodia
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(in black) and melodia (in gray) on MedleyDB (left) and
iKala (right) test sets for a f0 vocal melody estimation task.

boxplots (cf. description Section 5.2) on Figures 7a and 7b
respectively for the iKala and the MedleyDB datasets. Five
metrics are computed to evaluate the voicing detection,
namely the precision (P), the recall (R), the f-measure (F),
the false alarm rate (FA) and the voicing accuracy (VA). A
sixth metric of overall accuracy (OA) is also presented for
assessing the global performance of the complete singing
voice melody transcription system.

In accordance with the previous evaluation, the results
on MedleyDB are characterized by much more variance
than on iKala. In particular, the voicing precision of the
system (i.e. it’s ability to provide correct detections, no
matter the number of forgotten voiced frames) is signif-
icantly degraded on MedleyDB. Conversely, the voicing
recall which evaluate the ability of the system to detect all
voiced portions actually present no matter the number of
false alarm, remains relatively good on MedleyDB. Com-
bining both metrics, a mean f-measure of 93.15 % and
79.19 % are respectively obtained on iKala and MedleyDB
test datasets.

Finally, the mean scores of overall accuracy obtained
for the global system are equal to 85.06 % and 75.03 %
respectively for iKala and MedleyDB databases.

6. CONCLUSION

This paper introduced a system for the transcription of
singing voice melodies composed of two DNN models. In
particular a new system able to learn a representation em-
phasizing melodic lines from low level data composed of
spectrograms has been proposed for the estimation of the
f0. For this DNN, the performance evaluation shows a rel-
atively good generalization (when compared to a reference
system) on two different test datasets and an increase of ro-
bustness to western music recordings that tend to be repre-
sentative of the current music industry productions. While
for these experiments the systems have been learned from
a relatively low amount of data, the robustness, particu-
larly for the task of VAD, could very likely be improved
by increasing the number of training examples.
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Figure 7: Voicing detection and overall performance of the
proposed system for iKala and MedleyDB test datasets.
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ABSTRACT 

Spectro-temporal modulations (STMs) of the sound con-
vey timbre and rhythm information so that they are intui-
tively useful for automatic music genre classification. 
The STMs are usually extracted from a time-frequency 
representation of the acoustic signal. In this paper, we in-
vestigate the efficacy of two kinds of STM features, the 
Gabor features and the rate-scale (RS) features, selective-
ly extracted from various time-frequency representations, 
including the short-time Fourier transform (STFT) spec-
trogram, the constant-Q transform (CQT) spectrogram 
and the auditory (AUD) spectrogram, in recognizing the 
music genre. In our system, the dictionary learning and 
sparse coding techniques are adopted for training the 
support vector machine (SVM) classifier. Both spectral-
type features and modulation-type features are used to 
test the system. Experiment results show that the RS fea-
tures extracted from the log. magnituded CQT spectro-
gram produce the highest recognition rate in classifying 
the music genre. 

1. INTRODUCTION

For a classification task, selected features and the classi-
fier are critical to the performance of the system. Since 
the last decade, lots of researchers have proposed music 
genre classification systems using designed features or 
classifiers. For instance, the mel-frequency cepstral coef-
ficients (MFCCs), the pitch histogram and the beat histo-
gram were used in [1] as effective features to describe 
characteristics of timbre, pitch and rhythm of music. The 
SVM was used in a multi-layer fashion for genre classifi-
cation [2]. Later on, parameters of autoregressive models 
of spectral raw features were used for classification by 
including the temporal variations of the raw features [3]-
[5]. In addition to SVM, the adaptive boosting algorithm 
was used to train the classifier [6]. The non-negative ten-
sor factorization (NTF) was also considered to reduce the 
dimensionality in a sparse representation classifier (SRC) 
[7][8]. Another approach was to extract features from the 
separated cleaner signal [9] by first applying the harmon-
ic-percussion signal separation (HPSS) algorithm [10] to 
the music clip. The Gaussian supervector, which has been 
successfully used in speaker identification, was also in-
vestigated in music genre classification [11]. A super-

vised dictionary learning process was proposed for genre 
classification by using codebooks generated from existing 
coding techniques [12]. All these methods were operated 
on audio signals only. In addition, one can also combine 
features from other sources such as MIDI or lyrics [13]-
[17].  
    In recent years, sparse coding technique has been ap-
plied to music genre classification. Most sparse coding 
based automatic music genre classification systems trans-
form the music signal into frame-level raw features, and 
then encode the frame-level features into frame-level 
sparse codes. Since the encoding only considers infor-
mation in one frame, temporal pooling technique has 
been included in this kind of system. For instance, the 
combinations of statistical moments of a multiple frame 
representation were used for temporal pooling on raw 
features [18]. Histogram and pyramid based bag-of-
segments schemes were also considered for temporal 
pooling on encoding [19]. 
    In addition to considering temporal pooling on spectral 
features, amplitude modulations shown on the short-time 
Fourier transform (STFT) spectrogram, which depict the 
spectral patterns varying across time, were extracted us-
ing a set of 2-D Gabor filters for genre classification [20]. 
It has been shown that joint spectro-temporal modula-
tions (STMs) on the auditory (AUD) spectrogram are 
helpful for music signal categorization, hence helpful for 
music separation [21]. No doubt that STMs carry critical 
information and are suitable for genre classification. 
However, does the information conveyed by the STMs 
provide more benefit than the spectral features? If so, 
what kind of spectrogram provides the most informative 
STMs for genre classification? Is it the STFT spectro-
gram or the hearing-morphic spectrogram such as the 
constant-Q transform (CQT) spectrogram or the AUD 
spectrogram? This paper is trying to answer these ques-
tions. Here, we built a sparse coding based genre classifi-
cation system for evaluations.  
    The rest of this paper is organized as follows. A brief 
introduction of the tested spectrograms and STM features 
are presented in Section 2. Section 3 describes the sparse 
coding and dictionary learning. Section 4 describes the 
genre classification method and shows evaluation results. 
Lastly, Section 5 draws the conclusion. 

2. FEATURE EXTRACTION

In this section, we introduce the various features used in 
this paper. Two types of raw features are considered: the 
frame-level features extracted from STFT, CQT and 
AUD spectrograms; and their corresponding STM fea-
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tures. For the STM features, we apply Gabor filters to 
STFT spectrogram [20] and rate-scale (RS) filters to the 
hearing-morphic CQT and AUD spectrograms. Features 
mentioned in this section are considered as raw features 
in the dictionary for the sparse coding system.  

2.1 Frame-based Features 

2.1.1 STFT Spectrogram 

The STFT spectrogram is the most conventional time-
frequency representation of audio signals. In this paper, 
we computed 1024-point FFT for each frame and adja-
cent frames are with 50% overlap. This computation re-
sulted in a 513-dimensional magnitude spectrum which 
served as a feature vector. 

2.1.2 CQT Spectrogram 

The constant-Q transform (CQT) produces another kind 
of time-frequency audio representation with logarithmic 
frequency scale and different temporal/spectral resolu-
tions at different frequency bands. The CQT spectrogram 
is considered closely suited to human perception of sound.  
    In this paper, we set 8 octaves for the frequency range 
with the frequency resolution of 64 bins per octave, re-
sulting in 512-dimensional feature vectors. For imple-
mentation, we used the Constant-Q Transform Toolbox 
[22][23] which implements the computationally-efficient 
CQT transform based on FFT [24]. 

2.1.3 Auditory (AUD) Spectrogram 

The AUD spectrogram is produced by the cochlear mod-
ule of the auditory model [25]. An input sound is first fil-
tered by a bank of 128 overlapping asymmetric bandpass 
filters which mimic the frequency selectivity of the coch-
lea. The center frequencies of the cochlear filters are 
evenly distributed along a logarithmic frequency axis, 
over 5.3 octaves (180Hz ~ 7246Hz) with the frequency 
resolution of 24 filters per octave. The output of each fil-
ter is fed into a non-linear compression stage, which 
models the saturation of inner hair cells while transducing 
the vibrations of the basilar membrane into intracellular 
potentials. Next, a simple lateral inhibitory network (LIN) 
is implemented by a first-order differentiator across fil-
ters to account for the masking effect between adjacent 
filters. A half-wave rectifier combined with a lowpass 
filter serves as an envelope extractor after the LIN. At the 
end, the cochlear module produces 128-dimensional fea-
ture vectors. 
    The block diagram of the cochlear module is shown in 
Figure 1. Outputs at different stages can be formulized as 
follows: 

                     1( , ) ( ) ( ; )ty f t s t h t f   (1) 

                2 1( , ) ( ( , )) ( )t ty f t g y f t l t    (2) 

               3 2( , ) max( ( , ),0)fy f t y f t    (3) 

                     4 3( , ) ( , ) ( ; )ty f t y f t t     (4) 

 
where s(t) is the input audio signal,	 	;  is the impulse 
response of the cochlear filter with the center frequency f, 

∗  depicts convolution in time, g(.) is a sigmoid function, 
l(t) a lowpass filter, ,  are partial derivative along t, f 
axes, 	; /  is the integration window with 
the time constant , and  is the unit step function. 
Detailed discussions about this module can be assessed in 
[26]. 

 
 
Figure 1. Block diagrams for deriving an AUD spectro-
gram. 

2.2 Modulation Features 

2.2.1 Gabor Features 

Gabor features are the spectro-temporal “visual features” 
extracted from a STFT spectrogram as proposed in [20]. 
To obtain these features, an input audio signal was first 
transformed into a STFT spectrogram. Then, the STFT 
spectrogram was divided into 7 sub-spectrograms accord-
ing to the following 7 subbands: 0Hz ~ 200Hz, 200Hz ~ 
400Hz, 400Hz ~ 800Hz, 800Hz ~ 1600Hz, 1600Hz ~ 
3200Hz, 3200Hz ~ 8000Hz, and 8000Hz ~ half sampling 
frequency. Third, each sub-spectrogram was filtered by a 
set of 42 pre-defined 2-D Gabor filters: 
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where x and y represent the time and frequency axes of 
the STFT sub-spectrogram, ∈ 0°, 30°, … ,150° 	indicates 
the orientation of the Gabor filter, ∈ 2.5,5, … ,17.5 	de-
notes the thickness of the Gabor filter, and 0.5  for 
the standard deviation of the Gaussian function. This pro-
cess transformed the STFT spectrogram into 294 modula-
tion sub-spectrograms. The energy contour of each modu-
lation sub-spectrogram was obtained by averaging the 
modulation sub-spectrogram along the frequency axis. At 
this stage, the STFT spectrogram was transformed into 
294 modulation energy contours in the time domain. Fi-
nally, the mean and standard deviation of these contours 
were concatenated to form the “visual features”, referred 
to as the Gabor features in this paper. 
    Figure 2 demonstrates the meaning of the Gabor fea-
tures. The upper panel shows a segment of a sample 
STFT sub-spectrogram, while the bottom panel shows 
two energy contours derived from outputs of the two Ga-
bor filters ( 7.5, 0°	and	 7.5, 90°). We 
can observe that strong responses of the contours result 
from strong vertical and horizontal patterns in the spec-
trogram. 
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Figure 2. (a) A sample STFT sub-spectrogram. (b) The 
energy contours derived from outputs of two Gabor filters 
( 7.5, 0°	and	 7.5, 90°). 

2.2.2 Rate-Scale (RS) Features 

RS feature is another kind of modulation feature extract-
ed by the cortical module [25]. The cortical module, 
which is inspired by neural recordings of the auditory 
cortex (A1), models the spectro-temporal selectivity of 
neurons in A1 [26]. 
    Specifically, in the auditory model, the AUD spectro-
gram is further analyzed by neurons in A1. From func-
tional point of view, the cortical neurons are modeled as a 
bank of two-dimensional filters with different spectro-
temporal selectivity. These two-dimensional filters can be 
characterized by spectro-temporal modulation parameters, 
rate and scale. The rate parameter characterizes the veloc-
ity of the modulation varying along the temporal axis on 
the AUD spectrogram and the scale parameter character-
izes the density of the modulation distributed along the 
logarithmic frequency axis on the AUD spectrogram. The 
filtering process can be formulized as follows: 
 
              4, , , , , ; ,ftr f t y f t STIR f t         (8) 

 
where r denotes the 4-dimensional output of the cortical 
module, y4 is the AUD spectrogram, ∗  denotes the two-
dimensional convolution along temporal and logarithmic 
frequency axes, STIR  is the impulse response of the two-
dimensional modulation filter,  and   denote the rate 
and the scale parameter respectively. Figure 3 demon-
strates examples of rate-scale features of three time-
frequency (T-F) units in the AUD spectrogram. The top 
panel shows a sample AUD spectrogram and the bottom 
three panels show the rate-scale plots, which record the 
local amplitude resolved by each of the rate-scale modu-
lation filters, of the three T-F units indicated by the ar-
rows. The rate-scale plot reflects local modulation energy 
distribution and the sweeping direction of the modulation 
(positive/negative rate representing the down-
ward/upward directivity) of a particular T-F unit in the 
AUD spectrogram. Detailed explanations about the in-

formation encoded by the rate-scale plot can be assessed 
in [21]. 

 
 
Figure 3. (a) A sample AUD spectrogram. (b)(c)(d) Rate-
scale plots of the T-F units indicated by the arrows in (a). 
     
    In this paper, the local amplitude of the cortical output 
r  is averaged in each subband and concatenated, 
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where ∈ 1,2,3, … , O  is the index of the subband, Ni  is 
the number of bins in the i-th subband, O is the total 
number of subbands and r  is our final RS feature. We 
extract RS features from the AUD spectrogram and the 
CQT spectrogram. For the cases of AUD spectrogram, 
the parameters were selected as ∈ 2,4,8,16 , Ω ∈
0.25,0.5,1,2,4,8  and O=6(180Hz ~ 200Hz, 200Hz ~ 

400Hz, 400Hz ~ 800Hz, 800Hz ~ 1600Hz, 1600Hz ~ 
3200Hz, 3200Hz ~ 7246Hz), resulting in 288-
dimensional feature vectors. For the cases of CQT spec-
trogram, the parameter were selected as ∈ 2,4,8 , 
Ω ∈ 0.25,0.5,1,2,4,8,16  and O=7(0Hz ~ 200Hz, 200Hz 
~ 400Hz, 400Hz ~ 800Hz, 800Hz ~ 1600Hz, 1600Hz ~ 
3200Hz, 3200Hz ~ 8000Hz, 8000Hz ~ half-sampling fre-
quency), resulting in 294-dimensional feature vectors. 
These parameters were selected mainly to have compara-
ble feature dimensions with the restriction posed by the 
5.3-octave frequency coverage of the AUD spectrogram. 

3. SPARSE CODING AND DICTIONARY 
LEARNING 

Generally speaking, the sparse coding technique decom-
poses the original signal into a combination of a few 
codewords in a given codebook (or dictionary). The ob-
jective function of sparse coding can be formulated as: 
 

 2
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2
x D


         (11) 
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where ∈ ℝ  is the input signal (the feature vector in our 
case), ∈ ℝ  is the sparse code of x, ∈ ℝ  is a given 
dictionary and λ is a parameter which controls the sparsi-
ty of . The d is the dimension of the feature vector and 
the k is the codebook size. Equation (11) is usually re-
ferred to as the Lasso problem and can be solved by the 
LARS-lasso algorithm [27]. 

Furthermore, the objective function of dictionary 
learning can be formulated as: 
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        (12) 

where n is the total number of data to train the dictionary. 
Equation (12) represents a joint optimization problem in 
α and D. In this paper, the online dictionary learning 
(ODL) algorithm [28][29] was used to train the dictionary 
and the SPArse Modeling Software (SPAMS) [30] was 
used for implementation. 

4. EXPERIMENTS

In this section, we describe the settings of the experi-
ments and the classification results using various kinds of 
features. 

4.1 Dataset 

4.1.1 GTZAN Dataset 

This public dataset is frequently used in literature for 
evaluation of automatic music genre classification. The 
dataset is composed of 100 30-second music clips in each 
of the ten genres (blues, classical, country, disco, hip-hop, 
jazz, metal, pop, reggae, and rock). Each clip is sampled 
at 22050 Hz. 

4.1.2 H-L Dataset 

This dataset was collected by ourselves and used in this 
work for learning the dictionary of music. The dataset is 
composed of 100 30-second clips in each of the 21 genres 
(a cappella, A-pop, blues, bossa nova, classical, C-pop, 
electropop, funk, hip-hop, jazz, J-pop, latin, metal, musi-
cal, new age, opera, R&B, reggae, rock, romantical, and 
soul). All the clips in this dataset are different from those 
in the GTZAN dataset. Each clip is sampled at 44100 Hz. 

4.2 System Overview 

In our classification system, an input music clip is first 
transformed into the frame-level feature vectors. The fea-
ture vectors are then normalized to unit -norm vectors. 
Second, the normalized feature vectors are encoded into 
frame-level sparse codes. Next, we summarize the frame-
level sparse codes over the entire clip to obtain the song-
level feature w. Finally, w is power normalized using 
Equation (13) to train/test the classifier. The block dia-
gram of the classification system is shown in Figure 4. 

( )
a

w sign w w  (13)

    In all of the experiments, we set the codebook size to 
1024, the regularization parameter λ to 1/√ , and the 
power normalization parameter a in Equation (13) to 0.5. 
The linear-SVM implemented in LIBSVM [31] was used 
as the classifier. Evaluation results were obtained by av-
eraging results from 100 ten-fold cross-validation. 

Figure 4. The block diagram of the sparse coding based 
classification system. The H-L dataset was mainly used 
to generate the dictionary of music. 

4.3 Experiment Results 

Experiment results are shown in this section. For simplic-
ity, the name of the classification system is referred to as 
the name of the used raw features (e.g., the sparse coding 
based automatic genre classification system using STFT 
features is referred to as the STFT system). 

4.3.1 Spectrogram Features versus Modulation Features 

Recognition rates using the spectrogram features and the 
corresponding modulation features (STFT/Gabor, 
AUD/RS, CQT/RS) are shown in Figure 5. We can see 
that corresponding modulation features of the STFT spec-
trogram have a negative impact to system performance 
(75.8% to 73.8%) while they provide significant benefit 
to AUD spectrogram (71.0 to 79.7%) and CQT spectro-
gram (77.0% to 84.7%). 

The main difference among the three spectrograms is 
the frequency scale, linear scale in STFT but logarithmic 
scale in AUD and CQT spectrograms. We postulate that 
modulation features extracted from the logarithmic fre-
quency spectrogram are beneficial to genre classification. 
For validation, Gabor features were extracted from all 
three spectrograms and tested for system performance. 
Figure 6 shows the results of three Gabor systems 
(STFT/Gabor, AUD/Gabor, CQT/Gabor). Clearly, com-
paring with spectrogram features, Gabor features demon-
strate a positive effect on the genre classification rate 
when extracted from the AUD and CQT spectrograms but 
a negative effect when extracted from the STFT spectro-
gram. 
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Figure 5. The recognition rates using the spectrogram 
features and corresponding modulation features 
(STFT/Gabor, AUD/RS, CQT/RS). 
 

 
 
Figure 6. The recognition rates using the spectrogram 
features and Gabor modulation features (STFT/Gabor, 
AUD/Gabor, CQT/Gabor).  

4.3.2 AUD Spectrogram versus CQT Spectrogram 

Figure 5 and 6 show both Gabor and RS modulation fea-
tures extracted from the CQT spectrogram perform better 
than those extracted from the AUD spectrogram. The 
main differences between CQT and AUD spectrograms 
are the filter shape, the frequency resolution (64 bins per 
octave on CQT and 24 bins per octave on AUD), and the 
covered frequency range (40Hz ~ 10700Hz on CQT and 
180Hz ~ 7246Hz on AUD). 
    To investigate the effects from the frequency resolu-
tion and the frequency range, we tested RS modulation 
features extracted from CQT spectrograms with different 
settings listed in Table 1. The recognition rates are shown 
in Figure 7. We can observe that higher frequency resolu-
tion (64 bins/octave versus 24 bins/octave) does not nec-
essarily produce higher recognition rate. Finding the op-
timal frequency resolution for recognition rate, however, 
is beyond the scope of this work. On the other hand, wid-
er frequency coverage is more beneficial to system per-
formance. In Exp.4, the CQT spectrogram was computed 
using the same frequency resolution and frequency cov-
erage as the AUD spectrogram yet its RS features outper-
forms the RS features of AUD (82.4% versus 79.7% 
shown in Figure 5). It is probably because the CQT spec-
trogram possesses a higher Q value than the AUD spec-
trogram. A higher Q value generates a more sharpened 
spectrogram hence producing better performance. 

Exp. frequency range bins/octave ω Ω 

1 40Hz ~ 10700Hz 64 2~16 0.25~8

2 40Hz ~ 10700Hz 24 2~16 0.25~8

3 180Hz ~ 7246Hz 64 2~16 0.25~8

4 180Hz ~ 7246Hz 24 2~16 0.25~8

 
Table 1. Different frequency settings for generating 
CQT/RS modulation features 
 

 
 
Figure 7. The recognition rates using CQT/RS features 
with different frequency range and frequency resolutions 
as listed in Table 1. 

4.3.3 Gabor Features versus RS Features 

From Figure 5 and 6, we can observe that the RS feature 
set performs better than the Gabor feature set on both of 
CQT and AUD spectrograms. RS features and Gabor fea-
tures are produced using different sets of 2-D modulation 
filters. The parameters of the Gabor filter, θ and λ, and 
the parameters of the rate-scale filter, ω and Ω, affect the 
shape of the 2-D filter by changing its center frequency 
and bandwidth. 
    To demonstrate the effect of using different modula-
tion filters, we tested RS features extracted from CQT 
spectrogram using a different set of ω and	Ω. Experiment 
setting is listed as Exp.2 in Table 2 and the results are 
shown in Figure 8, where Exp.1 and Exp.3 are the 
RS/Gabor features using the original set of 2-D filters, 
respectively. We can observe that selecting different 2-D 
modulation filters significantly affect system perfor-
mance. Therefore, selecting an appropriate set of 2-D fil-
ters for modulation feature extraction is important to sys-
tem performance. 
 

Exp. 
2-D 

filter ω Ω θ λ 

1 RS 2~8 0.25~16   

2 RS 0.25~16 2~8   

3 Gabor   0 , 30 , ...,150    2.5, 5, ...,17.5  

 
Table 2. Different modulation filters used to extract 
modulation features from the CQT spectrogram 
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Figure 8. The recognition rates using different sets of 2-
D modulation filters on the CQT spectrogram. Parameters 
of the modulation filters are listed in Table 2. 

4.3.4 Linear Magnitude versus Log. Magnitude 

It has been shown that logarithmic magnitude STFT pro-
duces better features than the linear magnitude STFT for 
genre classification [12]. In this sub-section, we demon-
strate the effect of using log. magnitude on spectrograms. 
In addition to using spectrogram features, the system per-
formance using modulation features extracted from the 
log. magnitude spectrograms were also examined. 
    Experiment results of using log. magnitude spectro-
grams versus using linear magnitude spectrograms are 
shown in Figure 9. Results of using their corresponding 
modulation features (Gabor from STFT, RS from AUD, 
and RS from CQT) are shown in Figure 10. We can see 
that both spectrogram features and modulation features 
extracted from log. magnitude spectrograms perform bet-
ter than those extracted from linear magnitude spectro-
grams. 
 

 
 
Figure 9. Recognition rates of using spectral profiles ex-
tracted from log. magnitude spectrograms and from linear 
magnitude spectrograms. 

5. CONCLUSIONS 

In this paper, we investigate the efficacy of features de-
rived from joint spectro-temporal modulations, which in-
trinsically convey timbre and rhythm information of the 
sound, on music genre classification using a sparse cod-
ing based classification system. We extract two kinds of 
STM features, the Gabor and RS features, from three 
kinds of spectrograms, STFT, auditory, and CQT spec-

trograms, of the music signal and conduct several com-
parative experiments. The results show that modulation 
features do outperform spectral profiles in genre classifi-
cation. In addition, several conclusions can be drawn 
from our results: 1) modulation features extracted from 
the logarithmic frequency scaled spectrogram perform 
better than those extracted from the linear frequency 
scaled spectrogram; 2) the spectrogram with wider fre-
quency coverage produces more effective modulation 
features; 3) the selection of modulation filters could be 
task-dependent; 4) modulation features extracted from 
log. magnitude spectrograms produce higher genre 
recognition rates than those extracted from linear magni-
tude spectrograms. 
    

 
 

Figure 10. Recognition rates of using modulation fea-
tures extracted from log. magnitude spectrograms and 
from linear magnitude spectrograms. 
 

    In this paper, the highest genre recognition rate on 
GTZAN dataset using modulation features is 86.2%, 
which is obtained by using RS features extracted from the 
log. magnitude CQT spectrogram. From experiment re-
sults shown in Section 4, we can assume the performance 
can probably be better by fine-tuning the parameters of 
the classification system, including the rate, scale param-
eters of the modulation filters and the frequency resolu-
tion of the CQT spectrogram. 
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ABSTRACT

Rāga is the melodic framework of Indian art music. It is
a core concept used in composition, performance, organi-
zation, and pedagogy. Automatic rāga recognition is thus a
fundamental information retrieval task in Indian art music.
In this paper, we propose the time-delayed melody surface
(TDMS), a novel feature based on delay coordinates that
captures the melodic outline of a rāga. A TDMS describes
both the tonal and the temporal characteristics of a melody,
using only an estimation of the predominant pitch. Consid-
ering a simple k-nearest neighbor classifier, TDMSs out-
perform the state-of-the-art for rāga recognition by a large
margin. We obtain 98% accuracy on a Hindustani music
dataset of 300 recordings and 30 rāgas, and 87% accuracy
on a Carnatic music dataset of 480 recordings and 40 rāgas.
TDMSs are simple to implement, fast to compute, and have
a musically meaningful interpretation. Since the concepts
and formulation behind the TDMS are generic and widely
applicable, we envision its usage in other music traditions
beyond Indian art music.

1. INTRODUCTION

Melodies in Hindustani and Carnatic music, two art mu-
sic traditions of the Indian subcontinent, are constructed
within the framework of rāga [3, 29]. The rāga acts as a
grammar within the boundaries of which an artist com-
poses a music piece or improvises during a performance.
A rāga is characterized by various melodic attributes at dif-
ferent time scales such as a set of svaras (roughly speak-
ing, notes), specific intonation of these svaras, ārōhana-
avrōhana (the ascending and descending sequences of
svaras), and by a set of characteristic melodic phrases or
motifs (also referred to as ‘catch phrases’). In addition to
these melodic aspects, one of the most important charac-
teristics of a rāga is its calan [23] (literally meaning move-
ment or gait). The calan defines the melodic outline of a
rāga, that is, how a melodic transition is made from one
svara to another, the precise intonation to be followed dur-

c© Sankalp Gulati, Joan Serrà, Kaustuv K Ganguli, Sertan
Şentürk and Xavier Serra. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Sankalp
Gulati, Joan Serrà, Kaustuv K Ganguli, Sertan Şentürk and Xavier Serra.
“Time-delayed melody surfaces for Rāga recognition”, 17th International
Society for Music Information Retrieval Conference, 2016.

ing the transition, and the proportion of time spent on each
svara. It can also be thought of as an abstraction of the
characteristic melodic phrases mentioned above.

Rāga is a core musical concept used in the composition,
performance, organization, and pedagogy of Indian art mu-
sic (IAM). Numerous compositions in Indian folk and film
music are also based on rāgas [9]. Despite its significance
in IAM, there exists a large volume of audio content whose
rāga is incorrectly labeled or, simply, unlabeled. This is
partially because the vast majority of the tools and tech-
nologies that interact with the recordings’ metadata fall
short of fulfilling the specific needs of the Indian music tra-
dition [26]. A computational approach to automatic rāga
recognition can enable rāga-based music retrieval from
large audio collections, semantically-meaningful music
discovery, musicologically-informed navigation, as well as
several applications around music pedagogy.

Rāga recognition is one of the most researched top-
ics within music information retrieval (MIR) of IAM. As
a consequence, there exist a considerable amount of ap-
proaches utilizing different characteristic aspects of rāgas.
Many of such approaches use features derived from the
pitch or pitch-class distribution (PCD) [2, 4, 5, 16]. This
way, they capture the overall usage of the tonal material in
an audio recording. In general, PCD-based approaches are
robust to pitch octave errors, which is one of the most fre-
quent errors in the estimation of predominant melody from
polyphonic music signals. Currently, the PCD-based ap-
proach represents the state-of-the-art in rāga recognition.
One of these approaches proposed by Chordia et al. [2]
has shown promising results with an accuracy of 91.5% on
a sizable dataset comprising 23 rāgas and close to 550 ex-
cerpts of 120 s duration, extracted from 121 audio record-
ings (note that the authors use monophonic recordings
made under laboratory conditions).

One of the major shortcomings of PCD-based ap-
proaches is that they completely disregard the temporal as-
pects of the melody, which are essential to rāga character-
ization [23]. Temporal aspects are even more relevant in
distinguishing phrase-based rāgas [17], as their aesthetics
and identity is largely defined by the usage of meandering
melodic movements, called gamakas. Several approaches
address this shortcoming by modeling the temporal aspects
of a melody in a variety of ways [18, 21, 27]. Such ap-
proaches typically use melodic progression templates [27],
n-gram distributions [18], or hidden Markov models [21]
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to capture the sequential information in the melody. With
that, they primarily utilize the ārōhana-avrōhana pattern of
a rāga. In addition, most of them either transcribe the pre-
dominant melody in terms of a discrete svara sequence, or
use only a single symbol/state per svara. Thus, they dis-
card the characteristic melodic transitions between svaras,
which are a representative and distinguishing aspect of a
rāga [23]. Furthermore, they often rely on an accurate tran-
scription of the melody, which is still a challenging and an
ill-defined task given the nature of IAM [22, 24].

There are only a few approaches to rāga recognition that
consider the continuous melody contour and exploit its raw
melodic patterns [6, 11]. Their aim is to create dictionar-
ies of characteristic melodic phrases and to exploit them in
the recognition phase, as melodic phrases are prominent
cues for the identification of a rāga [23]. Such phrases
capture both the svara sequence and the transition char-
acteristics within the elements of the sequence. However,
the automatic extraction of characteristic melodic phrases
is a challenging task. Some approaches show promising
results [11], but they are still far from being perfect. In ad-
dition, the melodic phrases used by these approaches are
typically very short and, therefore, more global melody
characteristics are not fully considered.

In this paper, we propose a novel feature for rāga recog-
nition, the time-delayed melody surface (TDMS). It is in-
spired by the concept of delay coordinates [28], as rou-
tinely employed in nonlinear time series analysis [15]. A
TDMS captures several melodic aspects that are useful in
characterizing and distinguishing rāgas and, at the same
time, alleviates many of the critical shortcomings found in
existing methods. The main strengths of a TDMS are:

• It is a compact representation that describes both the
tonal and the temporal characteristics of a melody

• It simultaneously captures the melodic characteris-
tics at different time-scales, the overall usage of the
pitch-classes in the entire recording, and the short-
time temporal relation between individual pitches.

• It is robust to pitch octave errors.

• It does not require the transcription of the melody
nor a discrete representation of it.

• It is easy to implement, fast to compute, and has a
musically-meaningful interpretation.

• As it will be shown, it obtains unprecedented accura-
cies in the raga recognition task, outperforming the
state-of-the-art by a large margin, without the use of
any elaborated classification schema.

In our experiments, we use TDMSs together with a k-
nearest neighbor classifier and a set of well known distance
measures. The reported results are obtained on two scal-
able, diverse, and representative data sets of Carnatic and
Hindustani music, one of which is originally introduced in
this study and made publicly available. To the best of our
knowledge, these are the largest publicly available data sets
for rāga recognition in terms of the number of recordings,
number of rāgas, and total audio duration. The main con-
tributions of the present study are:

Pre-processing

Post-processing

Predominant Melody Estimation

Tonic Normalization

Surface Generation

Power Compression

Gaussian smoothening

Audio signal

TDMS

Figure 1. Block diagram for the computation of TDMSs.

• To perform a critical review of the existing methods
for rāga recognition and identify some of their main
constraints/limitations.

• To propose a novel feature based on delay coordi-
nates, the TDMS, that has all the previously outlined
strengths.

• To carry out a comparative evaluation with the best-
performing state-of-the-art methods under the same
experimental conditions.

• To publicly release a scalable Hindustani music
dataset for rāga recognition that contains relevant
metadata, annotations, and the computed features.

• To publicly release the code used for the computa-
tion of TMDSs and the performed evaluation.

2. RAGA RECOGNITION WITH TIME-DELAYED
MELODY SURFACES

2.1 Time-delayed melody surface

The computation of a TDMS has three steps (Figure 1):
pre-processing, surface generation, and post-processing.
In pre-processing, we obtain a representation of the
melody of an audio recording, which is normalized by
the tonic or base frequency of the music piece. In sur-
face generation, we compute a two dimensional surface
based on the concept of delay coordinates. Finally, in
post-processing, we apply power compression and Gaus-
sian smoothing to the computed surface. We subsequently
detail these steps.

2.1.1 Predominant melody estimation

We represent the melody of an audio excerpt by the pitch
of the predominant melodic source. For predominant
pitch estimation, we use the method proposed by Sala-
mon and Gómez [25]. This method performed favorably in
MIREX 2011 (an international MIR evaluation campaign)
on a variety of music genres, including IAM, and has been
used in several other studies for a similar task [7, 12, 13].
We use the implementation of this algorithm as available
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in Essentia [1]. Essentia 1 is an open-source C++ library
for audio analysis and content-based MIR. We use the de-
fault values of the parameters, except for the frame and
hop sizes, which are set to 46 and 4.44 ms, respectively. In
subsequent steps, we discard frames where a predominant
pitch cannot be obtained.

2.1.2 Tonic normalization

The base frequency chosen for a melody in IAM is the
tonic pitch of the lead artist [10], to which all other accom-
panying instruments are tuned. Therefore, for a musically
meaningful feature for rāga recognition we normalize the
predominant melody of every recording by considering its
tonic pitch ω as the reference frequency during the Hertz-
to-cent-scale conversion,

ci = 1200 log2

(
fi
ω

)
,

for 0 ≤ i < N , where N is the total number of pitch sam-
ples, ci is the normalized ith sample of the predominant
pitch (in cents), and fi is the ith sample of the predominant
pitch (in Hz). The tonic pitch ω for every recording is iden-
tified using the multi-pitch approach proposed by Gulati
et al. [10]. This approach is reported to obtain state-of-the-
art results and has been successfully used elsewhere [8,11].
We use the implementation of this algorithm as available
in Essentia with the default set of parameter values. The
tonic values for different recordings of an artist are further
majority voted to fix the Pa (fifth) type error [10].

2.1.3 Surface generation

The next step is to construct a two-dimensional surface
based on the concept of delay coordinates (also termed
phase space embedding) [15, 28]. In fact, such two-
dimensional surface can be seen as a discretized histogram
of the elements in a two-dimensional Poicaré map [15].
For a given recording, we generate a surface Š of size η×η
recursively, by computing

šij =
N−1∑

t=τ

I (B (ct) , i) I (B (ct−τ ) , j)

for 0 ≤ i, j < η, where I is an indicator function such
that I(x, y) = 1 iff x = y, I(x, y) = 0 otherwise, B is an
octave-wrapping integer binning operator defined by

B(x) =
⌊ ( ηx

1200

)
mod η

⌋
, (1)

and τ is a time delay index (in frames) that is left as a pa-
rameter. Note that, as mentioned, the frames where a pre-
dominant pitch could not be obtained are excluded from
any calculation. For the size of Š we use η = 120. This
value corresponds to 10 cents per bin, an optimal pitch res-
olution reported in [2].

An example of the generated surface Š for a music
piece 2 in rāga Yaman is shown in Figure 2 (a). We see that

1 https://github.com/MTG/essentia
2 http://musicbrainz.org/recording/e59642ca-72bc-466b-bf4b-

d82bfbc7b4af
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Figure 2. Generated surface for a music piece before (a)
and after (b) applying post-processing (Š and Ŝ, respec-
tively). For ease of visualization, both matrices are nor-
malized here between 0 and 1.

the prominent peaks in the surface correspond to the svaras
of rāga Yaman. We notice that these peaks are steep and
that the dynamic range of the surface is high. This can be
attributed to the nature of the melodies in these music tradi-
tions, particularly in Hindustani music, where the melodies
often contain long held svaras. In addition, the dynamic
range is high because the pitches in the stable svara re-
gions are within a small range around the svara frequency
compared to the pitches in the transitory melodic regions.
Because of this, the frequency values in the stable regions
are mapped to a smaller set of bins, making the prominent
peaks more steep.

2.1.4 Post-processing

In order to accentuate the values corresponding to the tran-
sitory regions in the melody and reduce the dynamic range
of the surface, we apply an element-wise power compres-
sion

S = Šα,

where α is an exponent that is left as a parameter. Once
a more compact (in terms of the dynamic range) surface
is obtained, we apply Gaussian smoothing. With that, we
attempt to attenuate the subtle differences in S correspond-
ing to the different melodies within the same rāga, while
retaining the attributes that characterize that rāga.

We perform Gaussian smoothing by circularly convolv-
ing S with a two-dimensional Gaussian kernel. We choose
a circular convolution because of the cyclic (or octave-
folded) nature of the TDMS (Eqn (1)), which mimics the
cyclic nature of pitch classes. The standard deviation of
this kernel is σ bins (samples). The length of the kernel is
truncated to 8σ+1 bins in each dimension, after which the
values are negligible (below 0.01% of the kernel’s maxi-
mum amplitude). We experiment with different values of
σ, and also with a method variant excluding the Gaussian
smoothing (loosely denoted by σ = −1), so that we can
quantify its influence on the accuracy of the system.

Once we have the smoothed surface Ŝ, there is only one
step remaining to obtain the final TDMS. Since the overall
duration of the recordings and of the voiced regions within
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them is different, the computed surface Ŝ needs to be nor-
malized. To do so, we divide Ŝ by its L1 matrix norm:

S = Ŝ/‖Ŝ‖1.

This also yields values of S, the final TDMS, that are in-
terpretable in terms of discrete probabilities.

The result after post-processing the surface
of Figure 2 (a) with power compression and Gaus-
sian smoothing is shown in Figure 2 (b). We see that the
values corresponding to the non-diagonal elements are
accentuated. A visual inspection of Figure 2 (b) provides
several musical insights to the melodic aspects of the
recording. For instance, the high salience indices along
the diagonal, (0, 0), (20, 20), (40, 40), (60, 60), (70, 70),
(90, 90), and (110, 110), correspond to the 7 svaras used
in rāga Yaman. Within which, the highest salience at
indices (110,110) correspond to the Ni svara, which is
the Vadi svara, i.e., musically the most salient svara of
the rāga, in this case rāga Yaman [23]. The asymmetry
in the matrix with respect to the diagonal indicates the
asymmetric nature of the ascending and descending svara
pattern of the rāga (compare, for example, the salience at
indices (70, 90) to indices (90, 70), with the former being
more salient than the latter). The similarity of the matrix
between indices (20, 20) and (70, 70) with respect to the
matrix between indices (70, 70) and (120, 120) delineates
the tetra-chord structure of the rāga. Finally, it should be
noted that an interesting property of TDMSs is that the
mean of the sum across its row and columns yields a PCD
representation (see Section 1).

2.2 Classification and distance measurement

In order to demonstrate the ability of the TDMSs in cap-
turing rāga characteristics, we consider the task of classify-
ing audio recordings according to their rāga label. To per-
form classification, we choose a k-nearest neighbor (kNN)
classifier [20]. The reasons for our choice are manifold.
Firstly, the kNN classifier is well understood, with well
studied relations to other classifiers in terms of both per-
formance and architecture. Secondly, it is fast, with prac-
tically no training and with known techniques to speed up
testing or retrieval. Thirdly, it has only one parameter, k,
which we can just blindly set to a relatively small value or
can easily optimize in the training phase. Finally, it is a
classifier that is simple to implement and whose results are
both interpretable and easily reproducible.

The performance of a kNN classifier highly depends on
the distance measure used to retrieve the k neighbors. We
consider three different measures to compute the distance
between two recordings n andmwith TDMS features S(n)

and S(m), respectively. We first consider the Frobenius
norm of the difference between S(n) and S(m),

D
(n,m)
F = ‖Sn − Sm‖2.

Next, we consider the symmetric Kullback-Leibler diver-
gence

D
(n,m)
KL = DKL

(
S(n),S(m)

)
+DKL

(
S(m),S(n)

)
,

with

DKL (X,Y) =
∑

X log

(
X

Y

)
,

where we perform element-wise operations and sum over
all the elements of the resultant matrix. Finally, we con-
sider the Bhattacharyya distance, which is reported to out-
perform other distance measures with a PCD-based feature
for the same task in [2],

D
(n,m)
B = − log

(∑√
S(n) · S(m)

)
.

We again perform element-wise operations and sum over
all the elements of the resultant matrix. Variants of our
proposed method that use DF, DKL and DB are denoted
byMF,MKL, andMB, respectively.

3. EVALUATION METHODOLOGY

3.1 Music collection

The music collection used in this study is compiled as a
part of the CompMusic project [26]. It comprises two
datasets: a Carnatic music data set (CMD) and a Hin-
dustani music data set (HMD). Due to the differences in
the melodic characteristics within these two music tradi-
tions, and for a better analysis of the results, we eval-
uate our method separately on each of these data sets.
CMD and HMD comprise 124 and 130 hours of commer-
cially available audio recordings, respectively, stored as
160 kbps mp3 stereo audio files. All the editorial meta-
data for each audio recording is publicly available in Mu-
sicbrainz 3 , an open-source metadata repository. CMD
contains full-length recordings of 480 performances be-
longing to 40 rāgas with 12 music pieces per rāga. HMD
contains full-length recordings of 300 performances be-
longing to 30 rāgas with 10 music pieces per rāga. The
selected music material is diverse in terms of the number
of artists, the number of forms, and the number of compo-
sitions. In these terms, it can be regarded as a represen-
tative subset of real-world collections. The chosen rāgas
contain diverse sets of svaras (notes), both in terms of the
number of svaras and their pitch-classes (svarasthānās).

Note that CMD has already been introduced and made
publicly available in [11]. With the same intentions
to facilitate comparative studies and to promote repro-
ducible research, we make HMD publicly available on-
line 4 . Along with the rāga labels for each recording,
we also make predominant melody, TDMSs, and the code
used for our experiments openly available online.

3.2 Comparison with existing methods

In addition to our proposed method, we evaluate and com-
pare two existing methods under the same experimental
setup and evaluation data sets. The two selected methods
are the ones proposed by Chordia & Şentürk [2], denoted
by EPCD, and by Gulati et al. [11], denoted by EVSM. Both
approaches have shown encouraging results on scalable

3 https://musicbrainz.org/
4 http://compmusic.upf.edu/node/300
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datasets and can be regarded as the current, most competi-
tive state-of-the-art in rāga recognition. The former, EPCD,
employs PCD-based features computed from the entire au-
dio recording. The latter, EVSM, uses automatically discov-
ered melodic phrases and vector space modeling. Read-
ers should note that the experimental setup used in [11] is
slightly different from the one in the current study. There-
fore, there exists a small difference in the reported accura-
cies, even when evaluated on the same dataset (CMD). For
both EPCD and EVSM, we use the original implementations
obtained from the respective authors.

3.3 Validation strategy

To evaluate the performance of the considered methods we
use the raw overall accuracy [20]. Since both CMD and
HMD are balanced in the number of instances per class,
we do not need to correct such raw accuracies to counteract
for possible biases towards the majority class. We perform
a leave-one-out cross validation [20], in which one record-
ing from the evaluation data set forms the testing set and
the remaining ones become the training set. To assess if the
difference in the performance between any two methods is
statistically significant, we use McNemar’s test [19] with
p < 0.01. To compensate for multiple comparisons, we ap-
ply the Holm-Bonferroni method [14]. Besides accuracy,
and for a more detailed error analysis, we also compute the
confusion matrix over the predicted classes.

In the case ofM, a test recording is assigned the major-
ity class of its k-nearest neighbors obtained from the train-
ing set and, in case of a tie, one of the majority classes is
selected randomly. Because we conjecture that none of the
parameters we consider is critical to obtain a good perfor-
mance, we initially make an educated guess and intuitively
set our parameters to a specific combination. We later
study the influence of every parameter starting from that
combination. We initially use τ = 0.3 s, α = 0.75, σ = 2,
and k = 1, and later consider τ ∈ {0.2, 0.3, 0.5, 1, 1.5} s,
α ∈ {0.1, 0.25, 0.5, 0.75, 1}, σ ∈ {−1, 1, 2, 3}, and k ∈
{1, 3, 5} (recall that σ = −1 corresponds to no smoothing;
Section 2.1.4).

4. RESULTS AND DISCUSSION

In Table 1, we show the results for all the variants of the
proposed methodMF,MKL andMB, and the two state-
of-the-art methods EPCD and EVSM, using HMD and CMD
data sets. We see that the highest accuracy obtained on
HMD is 97.7% byMKL andMB. This accuracy is con-
siderably higher than the 91.7% obtained by EPCD, and the
difference is found to be statistically significant. We also
see that EPCD performs significantly better than EVSM. Re-
garding the proposed variants, we see that, in HMD,MKL

andMB perform better thanMF, with a statistically sig-
nificant difference.

In Table 1, we see that the trend in the performance for
CMD across different methods is similar to that for HMD.
The variantsMKL andMB achieve the highest accuracy
of 86.7%, followed by EPCD with 73.1%. The difference

Data set MF MKL MB EPCD EVSM

HMD 91.3 97.7 97.7 91.7 83.0
CMD 81.5 86.7 86.7 73.1 68.1

Table 1. Accuracy (%) of the three proposed variants,
MF,MKL andMBC, and the two existing state-of-the-art
methods EPCD and EVSM (see text). The random baseline
for this task is 3.3% for HMD and 2.5% for CMD.
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Figure 3. Accuracy of MKL as a function of parameter
values. State-of-the-art approaches E and random base-
lines B are also reported for comparison.

betweenMKL (MB) and EPCD is found to be statistically
significant. For CMD, alsoMKL andMB perform better
thanMF, with a statistically significant difference.

In general, we notice that, for every method, the accu-
racy is higher on HMD compared to CMD. This, as ex-
pected, can be largely attributed to the difference in the
number of classes in HMD (30 rāgas) and CMD (40 rāgas).
A higher number of classes makes the task of rāga recog-
nition more challenging for CMD, compared to HMD. In
addition to that, another factor that can cause this differ-
ence could be the length of the audio recordings, which for
HMD are significantly longer than the ones in CMD.

As mentioned earlier, the system parameters corre-
sponding to the results in Table 1 were set intuitively, with-
out any parameter tuning. Since TDMSs are used here for
the first time, we want to carefully analyze the influence
that each of the parameters has on the final rāga recog-
nition accuracy, and ultimately perform a quantitative as-
sessment of their importance. In Figure 3, we show the
accuracy ofMKL for different values of these parameters.
In each case, only one parameter is varied and the rest are
set to the initial values mentioned above.

In Figure 3 (a), we observe that the performance of the
method is quite invariant to the choice of τ , except for
the extreme delay values of 1 and 1.5 s for CMD. This
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Figure 4. Confusion matrix of the predicted rāga labels
obtained byMKL on CMD. Shades of grey are mapped to
the number of audio recordings.

can be attributed to the melodic characteristics of Car-
natic music, which presents a higher degree of oscilla-
tory melody movements and shorter stationary svara re-
gions, as compared to Hindustani music. In Figure 3 (b),
we see that compression with α < 1 slightly improves
the performance of the method for both data sets. How-
ever, the performance degrades for α < 0.75 for CMD and
α < 0.25 for HMD. This again appears to be correlated
with the long steady nature of the svaras in Hindustani
music melodies. Because the dynamic range of Š is high,
TDMS features require a lower value for the compression
factor α to accentuate the surface values corresponding to
the transitory regions in the melodies of Hindustani mu-
sic. In Figure 3 (c), we observe that Gaussian smoothing
significantly improves the performance of the method, and
that such performance is invariant across the chosen values
of σ. Finally, in Figure 3 (d), we notice that the accuracy
decreases with increasing k. This is also expected due to
the relatively small number of samples per class in our data
sets [20]. Overall, the method appears to be invariant to
different parameter values to a large extent, which implies
that it is easier to extend and tune it to other data sets.

From the results reported in Figure 3, we see that there
exist a number of parameter combinations that could po-
tentially yield a better accuracy than the one reported in
Table 1. For instance, using τ = 0.3 s, α = 0.5, σ = 2,
and k = 1, we are able to reach 97.0% forMF and 98.0%
for bothMKL andMB on HMD. These accuracies are ad-
hoc, optimizing the parameters on the testing set. However,
and doing things more properly, we could learn the opti-

mal parameters in training, through a standard grid search,
cross-validated procedure over the training set [20]. As our
primary goal here is not to obtain the best possible results,
but to show the usefulness and superiority of TDMSs, we
do not perform such an exhaustive parameter tuning and
leave it for future research.

To conclude, we proceed to analyze the errors made by
the best performing variantMKL. For CMD, we show the
confusion matrix of the predicted rāga labels in Figure 4.
In general, we see that the confusions have a musical ex-
planation. The majority of them are between the rāgas in
the sets {Bhairavi, Mukhāri}, {Harikāmbhōji, Kāmbhōji},
{Madhyamvatī, At.āna, Śrī}, and {Kāpi, Ānandabhairavi}.
Rāgas within each of these sets are allied rāgas [29], i.e.,
they share a common set of svaras and similar phrases.
For HMD, there are only 7 incorrectly classified record-
ings (confusion matrix omitted for space reasons). Rāga
Alhaiyā bilāwal and rāga Dēś is confused with rāga Gaud.
Malhār, which is musically explicable as these rāgas share
exactly the same set of svaras. Rāga Rāgēśhrī is con-
fused with Bāgēśhrī, which differ in only one svara. In all
these cases, the rāgas which are confused also have simi-
lar melodic phrases. For two specific cases of confusions,
that of rāga Khamāj with Bāgēśhrī, and rāga Darbārī with
Bhūp, we find that the error lies in the estimation of the
tonic pitch.

5. CONCLUSION

In this paper, we proposed a novel melody representation
for rāga recognition, the TDMS, which is inspired by the
concept of delay coordinates and Poicaré maps. A TDMS
captures both the tonal and the short-time temporal char-
acteristics of a melody. They are derived from the tonic-
normalized pitch of the predominant melodic source in the
audio. To demonstrate the capabilities of TDMSs in cap-
turing rāga characteristics, we classified audio recordings
according to their rāga labels. For this, we used sizable
collections of Hindustani and Carnatic music with over
250 hours of duration. Using a k-nearest neighbor clas-
sifier, the proposed feature outperformed state-of-the-art
systems in rāga recognition. We also studied the influ-
ence of different parameters on the accuracy obtained by
TDMSs, and found that it is largely invariant to different
parameter values. An analysis of the classification errors
revealed that the confusions occur between musically sim-
ilar rāgas that share a common set of svaras and have sim-
ilar melodic phrases. In the future, we plan to investigate
if PCD-based, phrase-based, and TDMSs can be success-
fully combined to improve rāga recognition. In addition,
we would like to investigate the minimum duration of the
audio recording needed to successfully recognize its rāga.
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ABSTRACT

Automatic music transcription aims to transcribe musical
performances into music notation. However, existing tran-
scription systems that have been described in research pa-
pers typically focus on multi-F0 estimation from audio and
only output notes in absolute terms, showing frequency
and absolute time (a piano-roll representation), but not in
musical terms, with spelling distinctions (e.g., A[ versus
G]) and quantized meter. To complete the transcription
process, one would need to convert the piano-roll represen-
tation into a properly formatted and musically meaningful
musical score. This process is non-trivial and largely unre-
searched. In this paper we present a system that generates
music notation output from human-recorded MIDI perfor-
mances of piano music. We show that the correct estima-
tion of the meter, harmony and streams in a piano perfor-
mance provides a solid foundation to produce a properly
formatted score. In a blind evaluation by professional mu-
sic theorists, the proposed method outperforms two com-
mercial programs and an open source program in terms of
pitch notation and rhythmic notation, and ties for the top in
terms of overall voicing and staff placement.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of
inferring a symbolic music representation from a music
performance, such as a live performance or a recording.
The output of AMT can be a full musical score or an in-
termediate representation, such as a MIDI file [5]. AMT
has several applications in music education (e.g., providing
feedback to piano students), content-based music search
(e.g., searching for songs with a similar chord progression
or bassline), musicological analysis of non-notated music
(e.g., jazz improvisations and most non-Western music),
and music enjoyment (e.g., visual representation of the mu-
sic content).

Intermediate representations are closer to the audio file
even though they identify certain kinds of musical informa-

c© Andrea Cogliati*, David Temperley+, Zhiyao Duan*.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Andrea Cogliati*, David Temperley+,
Zhiyao Duan*. “Transcribing Human Piano Performances Into Music
Notation”, 17th International Society for Music Information Retrieval
Conference, 2016.

tion that are not readily accessible, such as explicit pitches
and note onsets. However, the encoding of this information
is generally not done in abstract musical terms but still re-
flects some of the arbitrariness of a human performance;
e.g., note onsets may be expressed in terms of absolute
times instead of being quantized to a meter, and pitches
may be expressed in terms of frequency or MIDI note num-
bers, instead of proper note spelling, e.g., C] has the same
MIDI note number as D[. Music notation provides further
information such as key signature, time signature, rhyth-
mic values, barlines, and voicing (e.g., the representation
of multiple voices with upward and downward stems); this
information is useful and indeed virtually necessary for
further performance and analysis [13].

While AMT was initially formulated as a method to
convert musical sounds into common music notation [15],
most AMT systems so far have opted for lower level rep-
resentations [5]; very few systems have attempted to es-
timate higher level musical information, such as beats or
pattern repetitions, directly from the audio [9, 14]. Higher
level musical information can also be estimated from an
intermediate representation [6, 18]. In this paper we opt
for the latter approach; this allows the conversion of MIDI
to notation, and eventually (in combination with an audio-
to-MIDI conversion system, such as [8]) could generate
notation from audio as well.

A MIDI file can represent a piano performance very ac-
curately; in fact, the only variables involved are note onset,
offset, velocity and pedal activation. Moreover, MIDI rep-
resentations of piano performances can be recorded from a
MIDI keyboard, or from a piano with key sensors. The
MIDI standard is capable of encoding high-level musi-
cal information, such as key and time signatures, into
MIDI files, but this information is not typically included
in recorded performances, unless the performer manually
inserts it. Furthermore, recorded MIDI performances are
typically unquantized, as performers continuously change
the speed of playing to obtain a more expressive perfor-
mance, and may play certain notes slightly earlier or later
than they should be to highlight certain musical lines.

The process of producing a correct full music nota-
tion from an unquantized and un-annotated MIDI file is
non-trivial and, to the authors’ knowledge, no system ca-
pable of producing full music notation has been imple-
mented and documented in academic research papers thus
far. Without a proper estimation of the meter and the har-
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(d) Proposed method

Figure 1. Transcription of a performance of the Minuet in G from Bach’s Notebook for Anna Magdalena Bach. (a) shows
the original score (b) shows the unquantized pianoroll of a MIDI performance. (c) shows the output from GarageBand,
which does not perform any analysis on the MIDI file. (d) shows the output of the proposed method after estimating the
correct meter, key signature, beats and streams. The music excerpts are of different lengths for better formatting.

mony, the results are very poor – see Fig. 1 (c). The task
can be divided into two main sub-tasks: musical structure
analysis and note placement on the score. For the first sub-
task, the MIDI file must be analyzed to estimate the key
signature and the correct note spelling, as well as the beats
and the correct time signature. For the second sub-task,
once the notes have been correctly spelled and quantized
to the correct meter, they must be properly positioned on
the staff. Piano music is normally notated on two staves.
The higher staff is usually notated in treble clef, and con-
tains the notes generally played by the right hand. The
lower staff is usually notated in bass clef, and contains the
notes generally played by the left hand. Notes should be
placed on staves to simplify the reading of the score, e.g.,
notes should be well spaced and typographical elements
should not clash with each other. The placement of the
notes and other typographical elements also convey mu-
sical meanings, e.g., notes pertaining to the same voice
should have the stems pointing in the same direction and

beaming should follow the rhythm of the musical passage.
Finally, concurrent notes played by a single hand as chords
should share the same stem. Exceptions to these basic rules
are not uncommon, typically to simplify the reading by a
performer, e.g., if a passage requires both hands to play in
the higher range of the piano keyboard, both staves may be
notated in the treble clef to avoid too many ledger lines and
too many notes on the same staff.

In this paper we present a novel method to fully no-
tate a piano performance recorded as an unquantized and
un-annotated MIDI file, in which only the note pitches
(MIDI number), onsets and offsets are considered. The
initial analysis of the piece is done through a probabilistic
model proposed by Temperley to jointly estimate meter,
harmony and streams [18]. The engraving of the score is
done through the free software LilyPond [1]. The evalua-
tion dataset and the Python code are available on the first
author’s web site 1 .

1 http://www.ece.rochester.edu/˜acogliat/
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2. RELATED WORKS

There are several free and commercial programs, such as
Finale, Sibelius and MuseScore, that can import MIDI files
and translate them into full music notation, but they typ-
ically require user intervention to inform the process to
a certain degree. For instance, Finale requires the user
to manually select the time signature, while it can infer
the key signature from the file itself. Certain sequencers
and Digital Audio Workstations, such as GarageBand and
Logic Pro, have various functions to facilitate the import of
MIDI files; for example, Logic Pro has a function to align
the time track to the beats in the MIDI files, but requires
the user to input the time signature and estimate the initial
tempo of the piece.

Among the programs used for the evaluation of the pro-
posed method, MuseScore [2] has the most advanced MIDI
file import feature. MuseScore has a specific option to im-
port human performances, and is capable of estimating the
meter and the key signature. During the experiment, Mus-
eScore showed a sophisticated capability to position dif-
ferent voices on the piano staves, which resulted in high
scores from the evaluators, especially in terms of overall
voicing and staff placement. Unfortunately, details on how
all these steps are performed are not documented in the
website [2] and have not been published in research pa-
pers.

The task of identifying musical structures from a MIDI
performance has been extensively researched, especially in
the past two decades. Cambouropoulos [6] describes the
key components necessary to convert a MIDI performance
into musical notation: identification of elementary musical
objects (i.e., chords, arpeggiated chords, and trills), beat
identification and tracking, time quantization and pitch
spelling. However, the article does not describe how to ren-
der a musical score from the modules presented. Takeda et
al. [16] describe a Hidden Markov Model for the automatic
transcription of monophonic MIDI performances. In his
PhD thesis, Cemgil [7] presents a Bayesian framework for
music transcription, identifying some issues related to au-
tomatic music typesetting (i.e., the automatic rendering of
a musical score from a symbolic representation), in partic-
ular, tempo quantization, and chord and melody identifica-
tion. Karydis et al. [12] proposes a perceptually motivated
model for voice separation capable of grouping polyphonic
groups of notes, such as chords or other forms of accom-
paniment figures, into a perceptual stream. A more re-
cent paper by Grohganz et al. [11] introduces the concepts
of score-informed MIDI file (S-MIDI), in which musical
tempo and beats are properly represented, and performed
MIDI file (P-MIDI), which records a performance in abso-
lute time. The paper also presents a procedure to approxi-
mate an S-MIDI file from a P-MIDI file – that is, to detect
the beats and the meter implied in the P-MIDI file, starting
from a tempogram then analyzing the beat inconsistency
with a salience function based on autocorrelation.

Musical structures can also be inferred directly from au-
dio. Ochiai et al. [14] propose a model for the joint es-
timation of note pitches, onsets, offsets and beats based

on Non-negative Matrix Factorization constrained with
a rhythmic structure modeled with a Gaussian mixture
model. Collins et al. [9] propose a model for multiple F0
estimation, beat tracking, quantization, and pattern discov-
ery. The pitches are estimated with a neural network. A
Hidden Markov Model (HMM) is separately used for beat
tracking. The results are then combined to quantize the
notes. Note spelling is performed by estimating the key of
the piece and assigning to MIDI notes the most probable
pitch class given the key.

3. PROPOSED METHOD

The proposed method takes an unquantized and un-
annotated MIDI file as input. The following subsections
explain each step in the proposed method. The entire pro-
cess is illustrated in Fig. 2. An example of the output is
shown in Fig. 1 (d).

3.1 Fix spurious overlapping notes

The first step is to fix spurious overlapping notes. Piano
players do not play notes with the correct length all the
time. As we can see from Fig. 1 (b), certain notes are
played shorter than they should be, resulting in gaps be-
tween notes, while other notes are played longer than they
should be, resulting in overlapping notes. Gaps between
notes in the same melodic line might result in extra rests
in the score, while overlapping notes might result in extra
streams being created by the probabilistic model [18] used
in the next step, resulting in extra voices in the final score.
In particular, the probabilistic model used in this paper al-
ways assigns overlapping notes to different streams, so it
is critical to remove erroneous overlaps.

To estimate whether the overlap is correct or wrong we
consider pairs of overlapping notes separately. For each
pair, we calculate one overlapping ratio for each note. The
ratio is defined as the length of the overlapping region over
the length of the note. The overlap is considered spurious
if the sum of the two ratios is below a certain threshold.
For the experiment we set a threshold of 30%. The output
of the first step is a note list, i.e., a list of note events, each
including an onset, a duration (both in milliseconds), and a
MIDI note number. An example is shown in Fig. 3. Notice
the small overlaps in the top figure between the three low
notes in the initial chord and the second bass note, as well
as the short overlaps in the scale in the soprano line; these
are removed in the second figure. Also notice that correct
overlapping notes, such as a melody line moving over the
same bass note, are preserved.

3.2 Estimate meter, harmony and streams

In the second step, we apply the probabilistic model [18] to
the note list. The probabilistic model estimates the meter,
the harmony, and the streams. The meter and harmony are
estimated in a single joint process. This process is mod-
eled as an HMM and is based on the concept of tactus-root
combination (TRC), a combination of two adjacent tactus
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Figure 2. Illustration of the proposed method. The arrows indicate dependencies between entities. The numbers refer to
the steps (subsection numbers) in Section 3.
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(b) Pianoroll after fixing spurious overlapping notes

Figure 3. An example of the step of fixing spurious over-
lapping notes.

beats and a chord root. The probability of a TRC only de-
pends on the previous TRC, and the probability of beats
and notes within a TRC only depends on the TRC. The
musical intuition behind this is that the “goodness” of a
tactus interval depends only on its relationship to the previ-
ous tactus interval (with a preference to minimize changes
in length from one interval to the next), the goodness of
a root depends only on the previous root (with a prefer-
ence to maintain the same root if possible, or to move to
another root that is a fifth away), and the goodness of a
particular pattern of notes within a short time interval de-
pends only on the current root and the placement of beats
within that interval (with a preference for note onsets on

tactus beats or at plausible points–e.g., roughly halfway–
in between them, and a preference for notes that are chord-
tones of the root). The process also considers different di-
visions of the tactus interval (representing simple or com-
pound meter) and placements of strong beats (duple versus
triple meter). In the current context, the metrical analy-
sis is useful for the placement of barlines and for rhythmic
notation; the harmonic analysis is useful for pitch spelling,
and also influences the metrical analysis, since there is a
preference for strong beats at changes of harmony (this is
the reason for estimating the meter and harmony jointly).
The stream segregation problem is solved with dynamic
programming by grouping notes into streams such that the
number of streams, the number and length of rests within
streams, and pitch intervals within streams are all mini-
mized [18].

The output of the probabilistic model is a list of beats,
notes, and chord roots. Each beat includes an onset in mil-
liseconds, and a level in a metrical hierarchy [17]. The
probabilistic model considers the tactus and two subdivi-
sions in the metrical structure; e.g., in a 3/4 meter, the tac-
tus will be the quarter note, the first subdivision will be
the 8th note, and the lowest subdivision the 16th note. The
metrical structure also indicates the downbeats. Each note
has an onset and a duration in milliseconds, a midi note
number, and a stream number. The chord roots are quan-
tized to the beats. An example of the output of this stage is
shown in Fig. 4.

3.3 Quantize notes

The third step quantizes the note onsets to the closest beat
subdivision. The offset of each note is also set to coin-
cide with the onset of the next note in a stream; i.e., gaps
within each stream are discarded. This avoids extra rests
in the final scores, which could stem from notes played
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Figure 4. Sample output of the probabilistic model for
estimating the metrical, harmonic, and stream structures.
The Xs above the pianoroll illustrate the meter analysis
(only 3 levels displayed). The letters above show the chord
root (only roots on the downbeats are shown). The num-
bers next to the notes indicate the stream.

shorter than they should be. See, for instance, the two quar-
ter notes in stream 4 in the second bar of the pianoroll in
Fig. 4; they were played slightly shorter than 8th notes.

3.4 Determine note spelling

The correct note spelling is determined from the harmony
generated by the probabilistic model and is based on the
proximity in the line of fifths (the circle of fifths stretched
out into a line) to the chord root. For example, the MIDI
note 66 (F]/G[) would be spelled F] on a root of D, but
spelled as G[ on a root of E[.

3.5 Assign streams to staves

The staves of the final score are set to be notated in treble
clef for the upper staff and bass clef for the lower staff.
Streams are assigned to the staff that accommodates all the
notes with the fewest number of ledger lines.
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Figure 5. First two measures of Bach’s Sinfonia in G mi-
nor, BWV 797. In the second bar, two streams are assigned
to the same staff, so two separate monophonic voices must
be created for proper rendering.

3.6 Detect concurrent voices

Once streams have been assigned to staves, we determine
bars and voices. Bars are easily determined by the metrical
structure, but note adjustments might be necessary if a note
starts in one bar and continues to the next bar. In that case,
the note has to be split into two or more tied notes. Concur-
rent notes in the same bar and staff must be detected and
encoded appropriately for the next step. If a staff contains

streams that overlap in time, we create monophonic voices
consisting of sequences of notes. A sequence is defined
as a gapless succession of notes and rests without over-
laps. For example, as shown in Fig. 5, concurrent streams
in measure 1 can be treated as monophonic inputs as they
are assigned to separate staves, but in measure 2, two con-
current streams are assigned to the same staff, so we have
to create two monophonic sequences of notes as input for
the next step, one containing the F dotted quarter, the other
containing the 16th notes and the D 8th note.

3.7 Generate the score

Finally, a Lilypond input file is generated. Lilypond is
a free, command-line oriented music engraving program,
which takes a text file as input and, thus, is suitable for the
automatic generation of music notation. A possible alter-
native to Lilypond, which was considered during our re-
search, is MusicXML [10]. Lilypond has the advantage
of a simpler and more concise syntax. For instance, the
music example from [10], which requires 130 lines of Mu-
sicXML, only requires 12 lines in Lilypond.

4. EVALUATION

To evaluate the proposed method, we asked five doctoral
students in the Music Theory department of the Eastman
School of Music, at various stages of advancement in their
program, to blindly rate the output of the proposed method,
two commercial programs (Finale 2015 [3] and Garage-
Band 10 [4]) and a free engraving program (MuseScore
2) applied to the Kostka-Payne dataset used to evaluate
the probabilistic model [18]. The commercial programs
have been chosen due to their popularity: GarageBand is
freely available to all Mac users, Finale is one of the two
major commercial music notation programs, the other be-
ing Sibelius. We also tested the import functionality of
Sibelius but the results were very similar to the ones ob-
tained by Finale, so we dropped this dataset to save time
during the human evaluation. The dataset comprises 19
music excerpts, all of them piano pieces by well-known
composers, for a total of 76 music scores to evaluate. The
pieces were performed on a MIDI keyboard by a semi-
professional piano player. For each piece we provided the
original score, i.e., the ground truth. All the scores had
been anonymized, so that the source program name was
unknown, and the order of the evaluation was randomized.
The evaluators were asked the following questions: 1) Rate
the pitch notation with regard to the key signature and the
spelling of notes. 2) Rate the rhythmic notation with regard
to the time signature, bar lines, and rhythmic values. 3)
Rate the notation with regard to stems, voicing, and place-
ment of notes on staves. These three questions summarize
the most important features that determine the formatting
and the readability of a musical score. The three features
are also fairly independent of each other.

The ratings were on a scale from 1 to 10 – 10 being
the best. We instructed the evaluators to rate the scores
to reflect how close each output was to the ground truth.
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Finally, we told the evaluators that, since each rating may
reflect multiple aspects of the notation, it was entirely up
to their judgment to decide how to balance them (e.g., the
relative importance of time signature, barline placement,
and rhythmic values for the second question).

The results are shown in Figs. 6, 7 and 8. The ratings
from each evaluator have been normalized (z-scores) by
subtracting the mean and dividing by the standard devi-
ation, and the results have been rescaled to the original
range by setting their mean to 5 and their standard devi-
ation to 2. The proposed method outperforms all the other
methods in the first two ratings – pitch notation and rhythm
notation – and ties for the top in median for the third rat-
ing – voicing and staff placement. Paired sign tests show
that the ratings of the proposed method are significantly
better than all the three baselines for the first two aspects,
at a significance level of p = 0.0001. For the third aspect,
the proposed method is superior to Finale and equivalent to
MuseScore at a significance level of p = 0.0001, while the
comparison with GarageBand is statistically inconclusive.

More work is needed in the note placement. One com-
mon aspect of music notation that has not been addressed
in the proposed method is how to group concurrent notes
into chords; we can see how that affects the output in
Fig. 1 (d). In the downbeat of the first bar, the lowest three
notes are not grouped into a chord, as in the ground truth
(Fig. 1 (a)). This makes the notation less readable, and
also introduces an unnecessary rest in the upper staff. A
possible solution to this problem consists in grouping into
chords notes that have the same onset and duration, and
that are not too far apart, i.e., so that they could be played
by one hand. A possible drawback of this approach is that
it may group notes belonging to different voices.

Another limitation of the proposed method is the posi-
tioning of concurrent voices in polyphonic passages. Cur-
rently, the proposed method relies on the streams detected
in step 2 to determine the order in which the voices are po-
sitioned in step 6. In polyphonic music, voices can cross
so the relative positioning of voices might be appropriate
for certain bars but not for others. A possible solution is
to introduce another step between 6 and 7 to analyze each
single measure and determine whether the relative posi-
tions of the voice is optimal or not. These two limitations
affect the note positioning, reflected in the scores shown
in Fig. 8. Finally, the probabilistic model does not always
produce the correct results, especially with respect to beats
and streams. A more sophisticated model may improve the
rhythm notation and the note positioning, reflected in the
scores shown in Fig. 7 and Fig. 8.

5. CONCLUSIONS

In this paper we presented a novel method to generate a
music notation output from a piano-roll input of a piano
performance. We showed that the correct estimation of the
meter, harmony and streams is fundamental in producing a
properly formatted score. In a blind evaluation by profes-
sional music theorists, the proposed method consistently
outperforms two commercial programs and an open source
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Figure 6. Normalized pitch notation ratings. Each box
contains 76 scores from each of the 5 evaluators.
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Figure 7. Normalized rhythm notation ratings. Each box
contains 76 scores from each of the 5 evaluators.
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Figure 8. Normalized note positioning ratings. Each box
contains 76 scores from each of the 5 evaluators.

program in terms of pitch notation and rhythmic notation,
and ties for the top in voicing and staff placement on 19
human performances on a MIDI keyboard. The proposed
method can also be combined with any note-level auto-
matic music transcription method to complete the audio to
music notation conversion process, but more experiments
are needed to assess the performance. For future work, we
also plan to design a transcription metric for objective eval-
uation on a larger dataset, which should include complete
piano pieces.
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ABSTRACT 

The Music Information Retrieval (MIR) community is 

becoming increasingly aware of a gender imbalance evi-

dent in ISMIR participation and publication. This paper 

reports upon a comprehensive informetric study of the 

publication, authorship and citation characteristics of fe-

male researchers in the context of the ISMIR confer-

ences. All 1,610 papers in the ISMIR proceedings written 

by 1,910 unique authors from 2000 to 2015 were collect-

ed and analyzed. Only 14.1% of all papers were led by 

female researchers. Temporal analysis shows that the 

percentage of lead female authors has not improved over 

the years, but more papers have appeared with female co-

authors in very recent years. Topics and citation numbers 

are also analyzed and compared between female and male 

authors to identify research emphasis and to measure im-

pact. The results show that the most prolific authors of 

both genders published similar numbers of ISMIR papers 

and the citation counts of lead authors in both genders 

had no significant difference. We also analyzed the col-

laboration patterns to discover whether gender is related 

to the number of collaborators. Implications of these find-

ings are discussed and suggestions are proposed on how 

to continue encouraging and supporting female participa-

tion in the MIR field. 

1. INTRODUCTION 

Music Information Retrieval (MIR) is a highly interdisci-

plinary field with researchers from multiple domains in-

cluding Electrical Engineering, Computer Science, In-

formation Science, Musicology and Music Theory, Psy-

chology, and so on. Perhaps due to the strong representa-

tion from the technical domains, the MIR field has been 

dominated by male researchers [12]. Responding to this 

trend, supporting female researchers has emerged as an 

important agenda for the MIR community. Since 2011, 

"Women in MIR" (WiMIR) sessions have been organized 

in order to identify current issues and challenges female 

MIR researchers face, and to brainstorm ideas for provid-

ing more support to female MIR researchers. The ses-

sions have been well attended by both female and male 

participants every year, and a number of initiatives have 

been started for ensuring the inclusion of female re-

searchers in various leadership roles such as session 

chairs, conference and program chairs, reviewers and me-

ta-reviewers, as well as ISMIR board members. In addi-

tion, a mentorship program targeted for junior female 

mentees has recently been established.
1
 

While we continue encouraging young female stu-

dents to enter the field, we lack a solid understanding of 

where our current female researchers come from, what 

their research strengths are, who they collaborate with 

and what their impact has been in the field. This makes it 

difficult to establish a mentoring relationship between 

these young researchers and established scholars, which 

has been identified as being critical for increasing the 

representation of female scholars and retaining them in 

the field. As an effort to provide useful empirical data to 

support such initiatives, this paper reports an informetric 

study analyzing the publication, authorship and citation 

patterns of female researchers in the context of the 

ISMIR conferences.  

2. RELATED  WORK 

2.1 Informetric Studies in MIR 

A few studies in MIR have used citation analysis (exam-

ining publication and citation counts, and co-citation pat-

terns) and co-authorship analysis to measure the impact 

of individual papers or authors and understand the pat-

terns of publication. Lee, Jones, and Downie [12] con-

ducted a citation analysis of ISMIR proceedings from 

2000 to 2008, aiming to discover how the publication pat-

terns have changed over time. They were able to identify 

the top 22 authors with the largest number of distinct co-

authors, distinguish the commonly used title terms re-

flecting the research foci in the ISMIR community, and 

reveal the increasing co-authorship among the MIR 

scholars. Lee and Cunningham [13] specifically exam-

ined 198 user studies in MIR and analyzed the overall 

growth, publication and citation patterns, popular topics, 

and methods employed. They found that overall the num-

ber of user studies increased, but not the ratio of user 

studies published in ISMIR proceedings over time. Addi-

tionally, they were able to identify a few strong networks 

                                                           
1
 http://www.ismir.net/wimir.html 
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of co-authorship based on universities and labs, and also 

found that many of the studies heavily focused on exper-

iment and usability testing. Another study by these au-

thors [4] applied informetric methods to investigate the 

influence of ISMIR and MIREX research on patents, 

through citation and topic analysis. The results showed 

evidence of strong links between academic and commer-

cial MIR research. Very recently, Sordo et al. [18] ana-

lyzed the evolution of topics and co-authorship networks 

in the ISMIR conference, and found larger groups with 

more variability of topics made more impact to the field. 

Notwithstanding the significance of these studies in 

measuring the status and impact of the field, there has not 

been any study focusing on the gender disparities in MIR 

research. The role of gender in scholarly research and ac-

ademic career has been a long standing topic in many 

fields, as briefly summarized in the next subsection.  

2.2 Female Authors and Scholarly Research 

Although there is abundant research showing that female 

researchers are as devoted as male researchers in the goal 

of discovery [17][19], women researchers are underrepre-

sented in almost all disciplines, especially in science, 

technology, engineering, and mathematics (STEM) [15]. 

In a recent study, Sugimoto et al. [11] analyzed 5,483,841 

articles published over the period 2008-2012, from the 

Web of Science database with over 27 million author-

ships. They found that only 30% of the authors were fe-

male, but surprisingly female authors dominated in some 

countries, such as Latvia and Ukraine. Kosmulski [10] 

studied publication patterns of scholars in Poland and 

found that female scientists in Poland published less than 

their male counterparts. However, an examination of 

yearly statistics reveals a trend moving towards gender 

equalization in recent years. Another study by Aksnes et 

al. [1] analyzed the publications of 8,500 Norwegian re-

searchers from all disciplines. Findings showed that fe-

male researchers published significantly fewer papers 

than their male counterparts, but the difference in citation 

rate was not as salient. They also found that among the 

most productive researchers, women perform as well as 

men do. Female researchers were even found to be more 

highly cited than male researchers in physical sciences, 

including computer science, informatics, and engineering. 

Conversely, a study of gender-based citation patterns in 

the field of International Relations [14] found that women 

were cited significantly less than men, even after control-

ling for variables including tenure status, institution, and 

year of publication. This discrepancy was identified as 

partly due to gender-based self-citation patterns (where 

men tend to self-cite more than women) and to a tenden-

cy for men to cite other men proportionately more than 

women—perhaps indicating that social networks can 

have an impact on citation practices. 

3. DATA COLLECTION AND PREPROCESSING 

Two sources were used to collect the titles of ISMIR pa-

pers and their authors: the ISMIR online proceedings and 

the ISMIR conference web pages. First, bibliographic 

records of papers published between 2000 and 2011 were 

downloaded from the Cumulative ISMIR Proceedings 

database
1
, which supports export in CSV format. Records 

for papers published between 2012 and 2015 were col-

lected by crawling the program webpages of the confer-

ences since they were only included in dblp
2
, which does 

not provide a function for exporting multiple records. The 

crawled raw HTML pages were then parsed with regular 

expressions, to extract titles and author names.  

3.1 Standardization and Deduplication of Names 

The downloaded author names needed to be standardized 

in several aspects. First, some names were inverted with 

the last name first. Second, some authors varied the form 

of their name across multiple papers (e.g., including or 

omitting middle name initials). Third, diacritic letters in 

names were occasionally replaced by English letters. Be-

sides manual inspection of these cases, we also made use 

of OpenRefine
3
, a tool for data cleansing and exploration, 

to help identify similar forms of names. Once different 

forms of a same name were identified, we kept the most 

frequently used version and removed others as duplicates.   

3.2 Author Gender Identification 

We manually determined and labelled the gender of each 

author based on their names. Some first names are exclu-

sively or almost exclusively used for one gender (e.g., 

Susan, Marie, and Yumi are female names by conven-

tion). Some names are almost exclusively attributed to 

males in one language but to females in another language 

(e.g., Rene is a male name in French but a female name in 

English). In these cases, we tried to determine the gender 

of authors, taking into account their cultural origin. How-

ever, many first names are androgynous, especially Chi-

nese names whose English written forms represent the 

pronunciations rather than the meanings, which makes 

determining the gender of those names difficult. To ad-

dress that, we relied on our collective knowledge of 

ISMIR authors and we used the affiliation information to 

search for these authors on the Web. Nevertheless, this 

did not allow us to assign genders to all authors. The last 

step was to send a call through the ISMIR mailing list to 

ask the community to help determine the gender of the 

authors we could not identify. We also directly contacted 

a few authors and labs when possible. In the end, we 

were able to determine the gender of 1,863 (97.54%) out 

of a total of the 1,910 unique authors on the list. 

3.3 Citation Counts 

Google Scholar (GS)
4
 was used as the source of citation 

data for this study, since ISMIR proceedings are not in-

dexed in Web of Science (WoS) or Scopus, the two other 

main sources of citation data for scholarly works. Studies 

have shown that GS coverage had grown substantially 

since its launch [21] and now even surpasses WoS cover-

age in certain disciplines, including Computer Science 

                                                           
1
 http://www.ismir.net/proceedings/ 

2
 http://dblp.uni-trier.de/db/conf/ismir/index.html 

3 http://openrefine.org 
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[7]. It also indexes a wider variety of academic sources, 

including more books, conference papers, and working 

papers than WoS [8]. As a result, GS has been considered 

as a reliable source of citation data and an adequate alter-

native to WoS for research evaluation [7][8]. Since GS 

does not offer a function for exporting multiple records at 

once, we used Publish or Perish
1
, an open source soft-

ware tool, to retrieve the citation data for ISMIR papers.  

3.4 Limitations 

As mentioned previously, we relied on name convention 

to determine the gender of a large proportion of the au-

thors. It is possible that some of the authors from one 

gender had a first name more traditionally attributed to 

the other gender and have thus been mislabelled. Moreo-

ver, a high proportion of the 2.56% (48) of authors whose 

gender could not be determined are of Chinese origin. 

Therefore, Chinese authors are underrepresented in our 

dataset. Moreover, our work only focuses on two genders 

(i.e., male and female) based on name convention and no 

other gender identity. It is possible that some of these au-

thors identify as neither male nor female and we are not 

able to represent that information in our analysis.  

The use of GS brings additional limitations. Alt-

hough GS is considered by researchers an adequate 

source of citation data for research evaluation, it still has 

some weaknesses. Research shows that the database con-

tains many errors such as duplicates and false positive 

citations [21] which can potentially inflate the number of 

citations, but we have no reason to believe that this would 

affect male- and female-led papers differently. Finally, 

ISMIR workshops were not consistently indexed in GS, 

and thus we had no citation data for 35 papers.  

4. RESULTS 

4.1 Number of Authors and Publications  

There are 1,910 unique authors who published at least 

one paper in ISMIR proceedings from 2000 to 2015. The 

gender information of 1,863 (97.54%) authors was identi-

fied. Among the identified authors, 274 (14.71%) were 

female and 1,589 (85.29%) were male. There were 1,610 

papers published over the years. Among them, 389 papers 

(24.2%) had female co-authors, 227 (14.1%) had female 

first authors, compared to 1,188 (73.8%) papers without 

any female authors and 1,362 (84.6%) led by male au-

thors. While the number of female authors did increase 

over time, the total number of ISMIR papers and male 

authors also significantly increased [12]. Figure 1 shows 

the percentage of papers with male and female first au-

thors over the years as well as those with and without fe-

male authors. There is virtually no improvement over the 

years in terms of the proportion of papers led by female 

authors, but more papers with female co-authors appeared 

in recent years (2014 and 2015). 

Figure 2 compares the number of papers led by fe-

male versus male researchers in histograms. The most 

proliferate female and male researchers had led almost 

                                                           
1
 http://www.harzing.com/resources/publish-or-perish 

equal number of papers, with 13 papers by Jin Ha Lee 

(female) and 12 by Xiao Hu (female) compared to 14 by 

Meinard Müller (male). This demonstrates a similar pat-

tern to the finding in [1] that the most productive women 

and men researchers perform equally well. 

 

Figure 1. Proportion of ISMIR papers by each gender. 

 

Figure 2. Number of ISMIR papers led by each gender. 

4.2 Institutions and Disciplines of Female Authors 

The 227 papers with female first authors (including single 

authored papers) were analyzed to identify the institu-

tions and disciplines of the first authors at the time of 

publication. Table 1 shows the institutions with the larg-

est number of such papers. The ranks of the top three in-

stitutions were in fact earned by their female students, as 

no female researchers with permanent positions in these 

institutions has led an ISMIR paper. This is evidence of a 

strong contribution that female students made to the field, 

supporting the importance of fostering the growth of jun-

ior female researchers through mentorship programs. 

Institutions Number of papers 

University of Illinois 12 

Queen Mary University of London 10 

McGill University 9 

University of Washington 9 

Indiana University 8 

University of Waikato 8 

University of Southern California 7 

Fraunhofer IDMT 6 

Goldsmiths, University of London 5 

Pompeu Fabra University 5 

Stanford University 5 

Utrecht University 5 

Table 1. Institutions with the most papers of first female 

authors. 
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Table 2 lists the most frequent disciplines of female 

authors who led ISMIR papers. The discipline infor-

mation was obtained from the departments of the female 

first authors’ affiliations as written in the papers. The dis-

ciplines were cleaned up such that closely related ones 

were combined. For example, “Computer Science and 

Informatics” was combined with “Computer Science”, 

and “Audio and Speech Processing” was combined with 

“Electronical Engineering”. The most popular discipline 

is Computer Science, following by Library and Infor-

mation Science and Music Technology. The latter two 

were interdisciplinary fields which historically had 

stronger female representations [16]. When looking at 

Tables 1 and 2 together, papers from some top ranked in-

stitutions were contributed from authors in Library and 

Information Science (University of Illinois, University of 

Washington) or Music Technology (Queen Mary Univer-

sity of London, McGill University), rather than the Engi-

neering disciplines predominant in the field. The results 

indicate that it can be promising to try to foster more fe-

male contributors to ISMIR from these disciplines. 
 

Discipline Number of papers 

Computer Science 87 

Library and Information Science 44 

Music Technology 40 

Electrical Engineering 18 

Musicology and Music Theory 12 

Table 2. Top disciplines of first female authors. 

From the affiliations of the female authors, we iden-

tified the geographic locations of the authors, as shown in 

Table 3. Unsurprisingly, most of them were in North 

America and Europe, in accordance with the fact that 

most labs in the MIR field are located in these areas. 

These are followed by Asia and Pacific region with 39 

papers led by female authors. Promoting international 

collaborations between regions with more established and 

reputable research facilities and other emerging but less 

developed regions can be a fruitful approach for fostering 

female researchers in the field. Sugimoto et al. [11] also 

advocated international collaboration as “it might help to 

level the playing field” (p.213). This observation may al-

so be related to a study by Ferreira [6] which reported 

that a steady growth of PhD dissertations written by fe-

male in the U.S. was observed, but the increase was at-

tributed to international female research students who 

came from other parts of the world including Asia. Alt-

hough further studies are warranted to verify whether this 

trend also holds for ISMIR authors, in our dataset we did 

observe circumstantial evidence in that many female au-

thor names with Asian origins were based at institutions 

in Europe or North America. 

4.3 Co-authorship 

Among all the papers led by female and male authors, the 

average number of co-authors is 2.69 and 2.86, respec-

tively. A two-sample unequal variance t-test reported a 

non-significant difference between the two (p = 0.289). 

Figure 3 illustrates the co-authorship trend over the years. 

In general, papers led by authors in either gender tend to 

have an increasing number of co-authors. 

Continent Number of papers 

North America 96 

Europe 90 

Asia 28 

Oceania 11 

South America 2 

Total 227 

Table 3. Continents of female leading authors. 

 

Figure 3. Number of co-authors per paper (2000-2015). 

There were 214 single authored papers: 35 (16.3%) 

of them written by female authors and 179 (83.7%) by 

males. This percentage of 16.3% is lower than what was 

reported in [20] in which they found that 26% of single-

authored papers published in the JSTOR network data-

bases since 1990 were contributed by female authors. In 

our dataset, 22 (8.0%) of female authors had single-

authored one or more ISMIR papers, whereas 129 (8.1%) 

of male authors had done so. The results indicate that 

both female and male authors reach out for collabora-

tions, perhaps due to the interdisciplinary nature of the 

MIR field. In addition, similar percentages of female and 

male authors opted to write single authored papers. 

We also conducted social network analysis (SNA) on 

the co-authorship networks of female researchers and 

their collaborators, to find out with which authors the fe-

male researchers most frequently collaborated. Figure 4 

shows the network graphs (generated by using the No-

deXL SNA tool [8]). The graphs’ nodes represent re-

searchers who were grouped into clusters by using the 

Clauset-Newman-Moore clustering algorithm [3], such 

that the authors who often collaborated with each other 

were grouped into a single cluster. The size of a node is 

proportional to the number of papers written by the re-

searcher. Figure 4 contains nine clusters, each of which 

has at least five female authors. Each female author in the 

graphs is represented by a node of diamond shape and the 

name is marked with an asterisk. In each graph, the 

names of authors with the most co-authors are labelled. 

As shown in Figure 4, some clusters contain multi-

ple female authors with a relatively high number of pub-

lications, such as the one with Jin Ha Lee, Xiao Hu and 

Sally Jo Cunningham, as well as the one with Rebecca 
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Fiebrink, Catherine Lai, etc. This can probably be at-

tributed to the research groups these authors were affiliat-

ed with, as this result corresponds to the pattern observed 

in Table 1: the two clusters match to the research groups 

in University of Illinois and McGill University, respec-

tively. Other clusters shown in this figure also reflect re-

search groups such as the Music Technology Group in 

Pompeu Fabra University (the cluster with Emilia 

Gomez) and Utrecht University (the cluster with Anja 

Volk). This pattern once again verifies the importance of 

having research labs or groups that can foster the growth 

of female researchers. 

 

Figure 4. Co-authorship networks of ISMIR female authors (groups with at least five female authors are presented) 

4.4 Citation analysis 

The average citation count of all papers with female re-

searcher as the leading authors is 34.30. Although this 

number is lower than that of papers with male leading 

authors (43.26), the difference was not significant (p = 

0.259). When considering citation counts of single-

authored papers, the difference is even smaller: 22.25 

versus 25.27 for female and male authors, respectively. 

Figure 5 shows the comparative distribution of pa-

pers led by female and male authors by number of cita-

tions. A chi-square independence test shows that the two 

distributions are very similar (χ
2
 = 11.124, df = 8, p = 

0.195). The proportion of papers with no citation is the 

same for both groups (9%). The proportion of highly cit-

ed papers (papers cited more than 100 times) is also very 

similar, representing 10% of female first-authored papers 

and 9% of male first-authored papers.  

These results indicate that the scholarly impact of au-

thors in both genders is similar. Although previous stud-

ies found that the difference between citation rates for 

male- and female-led papers was smaller than that be-

tween publication rates [1], it is unusual to see no signifi-

cant difference on citation rate between genders. The 

large scale study by Sugimoto et al. [11] found there were 

fewer citations for papers with female being sole author, 

first author or last author than in cases where a man was 

in one of these roles. As Sugimoto and her colleagues 

worked with more than 5 million of papers across all dis-

ciplines, it is an encouraging result that such gender dis-

parity in scholarly impact as measured by citation counts 

is not significant in MIR. 

 
Figure 5. Distribution of female and male-led 

ISMIR papers by number of citations. 

4.5 Topics 

Topic analysis was conducted with the titles of the pa-

pers, to identify the topics female authors tended to pur-

sue. Both single terms (unigrams) in the titles and combi-

nations of two consecutive terms (bigrams) were extract-

ed. To combine different forms of the same word prefix, 

the Porter stemmer was used. Stop words were also elim-

inated, as was the word “music” as it is related to all pa-

pers in ISMIR. The most frequently used title words 

(unigrams) are presented in Table 4. For comparison pur-

poses, the table includes the top title words for six paper 
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categories: all papers, papers with female lead authors, 

papers with at least one female author (but not the lead), 

papers with no female authors, papers with male lead au-

thors, as well as papers written by teams of all female au-

thors. As such, there are overlapping papers between the 

“Female 1
st
” and “All Female” categories, and between 

the “Female non-1
st
” and “Male 1

st
” categories. 

The first five columns in Table 4 show similar 

words such as “audio”, “retriev” (retrieval”), “classif” 

(classify). One exception is the female non-1
st
 author cat-

egory that contains terms such as “detect”, “evalu” (eval-

uation), and “record”, which suggests that female re-

searchers collaborated with male to work on key detec-

tion and evaluation. Several terms from all female teams 

are quite different from those in other categories (e.g., 

“digit”, “user”, “kei” (key) and “evalu”), which suggests 

that areas in which female authors worked together in-

clude user studies, key detection and evaluation. 

As single words may bear limited semantics, we al-

so extracted bigrams from the paper titles of the afore-

mentioned six categories of gender authorship. Bigrams 

are two consecutive words which are often phrases, and 

thus may provide more meanings than unigrams. As 

listed in Table 5, the differences of bigrams across paper 

categories are even more obvious than those of unigrams. 

Papers with all female authors were most likely to be on 

audio key finding, digital libraries, melody extraction, 

and user studies. Papers led by female authors were more 

likely to focus on melody similarity, mood classification, 

retrieval systems, corpus and data sources, as well as 

cross-cultural issues. In contrast, male researchers were 

more likely to write about Markov model, audio signals, 

audio features, and Web-based approaches. These differ-

ences in focus may reflect the distribution of representa-

tion of women in Computer Science and Engineering, 

where proportionately more women in those fields focus 

on Human-Computer Interaction (e.g., user studies, cross-

cultural issues, digital libraries) rather than signal pro-

cessing (e.g., audio signals, audio features) [2]. 

All 
Female  

1st  

Female 

non-1st 
All male Male 1st All Female 

audio audio retriev audio audio inform 

retriev retriev audio retriev retriev retriev 

inform inform classif model similar digit 

automat classif inform featur featur similar 

classif similar analysi similar classif user 

similar model detect analysi automat audio 

featur automat evalu automat inform kei 

analysi polyphon record inform analysi evalu 

recognit song system classif system extract 

polyphon featur feature system recognit find 

Table 4. Most frequent words in paper titles (terms 

unique to female authors are bolded). 

  

All Female 1st Female non-1st  All male Male 1st All Female 

content-bas inform_retriev inform_retriev content-bas content-bas inform_retriev 

polyphonic_audio genr_classif polyphon_audio audio_signal non-negativ audio_kei 

real-tim melod_similar genr_classif markov_model polyphon_audio digit_librari 

non-negativ classif_us audio_record web-bas audio_signal kei_find 

markov_model content-bas auditori_model audio_feature markov_model melodi_extract 

audio_feature mood_classif base_transcrib audio_us audio_feature understand_user 

audio_signal retriev_system classif_us audio-bas web-bas  

audio_fingerprint comput_model corpus-bas polyphonic_audio audio_record  

audio_record cross-cultur data_sourc audio_record audio_us  

automati_chord machin_learn digit_imag score_inform audio-bas  

Table 5. Most frequent bigrams in titles of papers (terms unique to female authors are bolded).

5. CONCLUSION AND FUTURE WORK 

Overall our findings show both positive and negative as-

pects related to gender balance issues in MIR. While it is 

discouraging that the participation of female authors has 

hovered around 10-20% throughout the history of ISMIR 

without much improvement over time, we also see that 

the most prolific authors of both genders are similarly 

productive and papers led by both genders are cited at 

similar rates. Our analysis highlights the importance of 

the role of mentorship through co-authoring papers and 

also being part of the same labs or research groups for 

increasing the number of female scholars in the field. In-

ternational collaborations connecting female researchers 

in less represented regions with more established groups 

can be a promising approach. In addition, we may en-

courage and attract female contributors from interdisci-

plinary disciplines historically with better female repre-

sentations such as Information Science and Music Tech-

nology. Promoting research in these areas (whether by 

male or female authors) has also been identified as an 

important step forward for the field of MIR [5][12]—it is 

crucial to the development of usable, effective music sys-

tems that we understand our users and their needs, and 

work to create new systems that integrate with both tech-

nological and social infrastructures.  

In order to conduct a more accurate informetric 

study in the future, it would be useful for the ISMIR pro-

gram committee to collect gender information during the 

paper submission process directly from the authors. This 

will not only allow us to obtain a more accurate represen-

tation of the ISMIR community, but also enable the anal-

ysis on paper rejection rates in terms of gender. We also 

recommend the gathering of gender and research focus 

data for program committee members, to examine the 

possible effect of gender in the gatekeeping aspect of en-

try to the ISMIR community. 
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ABSTRACT

This research explores a Natural Language Processing
technique utilized for the automatic reduction of melodies:
the Probabilistic Context-Free Grammar (PCFG). Au-
tomatic melodic reduction was previously explored by
means of a probabilistic grammar [11] [1]. However, each
of these methods used unsupervised learning to estimate
the probabilities for the grammar rules, and thus a corpus-
based evaluation was not performed. A dataset of analyses
using the Generative Theory of Tonal Music (GTTM) ex-
ists [13], which contains 300 Western tonal melodies and
their corresponding melodic reductions in tree format. In
this work, supervised learning is used to train a PCFG for
the task of melodic reduction, using the tree analyses pro-
vided by the GTTM dataset. The resulting model is evalu-
ated on its ability to create accurate reduction trees, based
on a node-by-node comparison with ground-truth trees.
Multiple data representations are explored, and example
output reductions are shown. Motivations for performing
melodic reduction include melodic identification and sim-
ilarity, efficient storage of melodies, automatic composi-
tion, variation matching, and automatic harmonic analysis.

1. INTRODUCTION

Melodic reduction is the process of finding the more struc-
tural notes in a melody. Through this process, notes that
are deemed less structurally important are systematically
removed from the melody. The reasons for removing a
particular note are, among others, pitch placement, metri-
cal strength, and relationship to the underlying harmony.
Because of its complexity, formal theories on melodic re-
duction that comprehensively define each step required to
reduce a piece in its entirety are relatively few.

Composers have long used the rules of ornamentation to
elaborate certain notes. In the early 1900s, the music the-
orist Heinrich Schenker developed a hierarchical theory of
music reduction (a comprehensive list of Schenker’s pub-
lications was assembled by David Beach [7]). Schenker
ascribed each note in the musical surface as an elabora-
tion of a representative musical object found in the deeper

c© Ryan Groves. Licensed under a Creative Commons At-
tribution 4.0 International License (CC BY 4.0). Attribution: Ryan
Groves. “Automatic Melodic Reduction Using a Supervised Probabilistic
Context-Free Grammar”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.

levels of reduction. The particular categories of ornamen-
tation that were used in his reductive analysis were neigh-
bor tones, passing tones, repetitions, consonant skips, and
arpeggiations. Given a sequence of notes that can be iden-
tified as a particular ornamentation, an analyst can remove
certain notes in that sequence so that only the more impor-
tant notes remain.

In the 1980s, another theory of musical reduction was
detailed in the GTTM [16]. The authors’ goal was to cre-
ate a formally-defined generative grammar for reducing a
musical piece. In GTTM, every musical object in a piece
is subsumed by another musical object, which means that
the subsumed musical object is directly subordinate to the
other. This differs from Schenkerian analysis, in that ev-
ery event is related to another single musical event. In
detailing this process, Lerdahl and Jackendoff begin by
breaking down metrical hierarchy, then move on to identi-
fying a grouping hierarchy (separate from the metrical hi-
erarchy). Finally, they create two forms of musical reduc-
tions using the information from the metrical and grouping
hierarchies—the time-span reduction, and the prolonga-
tional reduction. The former details the large-scale group-
ing of a piece, while the latter notates the ebb and flow of
musical tension in a piece.

Many researchers have taken the idea—inspired by
GTTM or otherwise—of utilizing formal grammars as
a technique for reducing or even generating music (see
Section 2.0.0.0.2). However, most of these approaches
were not data-driven, and those that were data-driven of-
ten utilized unsupervised learning rather than supervised
learning. A dataset for the music-theoretical analysis of
melodies using GTTM has been created in the pursuit of
implementing GTTM as a software system [13]. This
dataset contains 300 Western classical melodies with their
corresponding reductions, as notated by music theorists ed-
ucated in the principles of GTTM. Each analysis is notated
using tree structures, which are directly compatible with
computational grammars, and their corresponding parse
trees. The GTTM dataset is the corpus used for the su-
pervised PCFG detailed in this paper.

This work was inspired by previous research on a PCFG
for melodic reduction [11], in which a grammar was de-
signed by hand to reflect the common melodic movements
found in Western classical music, based on the composi-
tional rules of ornamentation. Using that hand-made gram-
mar, the researchers used a dataset of melodies to calculate
the probabilities of the PCFG using unsupervised learn-
ing. This research aims to simulate and perform the pro-
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cess of melodic reduction, using a supervised Probabilisitic
Context-Free Grammar (PCFG). By utilizing a ground-
truth dataset, it is possible to directly induce a grammar
from the solution trees, creating the set of production rules
for the grammar and modelling the probabilities for each
rule expansion. In fact, this is the first research of its type
that seeks to directly induce a grammar for the purpose of
melodic reduction. Different data representations will be
explored and evaluated based on the accuracy of their re-
sulting parse trees. A standard metric for tree comparison
is used, and example melodic reductions will be displayed.

The structure of this paper is as follows: The next sec-
tion provides a brief history of implementations of GTTM,
as well as an overview of formal grammars used for mu-
sical purposes. Section 3 presents the theoretical founda-
tions of inducing a probabilistic grammar. Section 4 de-
scribes the data set that will be used, giving a more detailed
description of the data structure available, and the differ-
ent types of melodic reductions that were notated. Section
5 describes the framework built for converting the input
data type to an equivalent type that is compatible with a
PCFG, and also details the different data representations
used. Section 6 presents the experiment, including the
comparison and evaluation method, and the results of the
different tests performed. Section 7 provides some closing
remarks.

2. LITERATURE REVIEW

In order to reduce a melody, a hierarchy of musical events
must be established in which more important events are at
a higher level in the hierarchy. Methods that create such
a structure can be considered to be in the same space as
melodic reduction, although some of these methods may
apply to polyphonic music as well. The current section de-
tails research regarding hierarchical models for symbolic
musical analysis.

2.1 Implementing GTTM

While much research has been inspired by GTTM, some
research has been done to implement GTTM directly. Fred
Lerdahl built upon his own work by implementing a system
for assisted composition [17]. Hamanaka et al. [13] pre-
sented a system for implementing GTTM. The framework
identifies time-span trees automatically from monophonic
melodic input, and attained an f-measure of 0.60. Frank-
land and Cohen isolated the grouping structure theory in
GTTM, and tested against the task of melodic segmenta-
tion [10].

2.2 Grammars in Music

In 1979, utilizing grammars for music was already of much
interest, such that a survey of the different approaches was
in order [20]. Ruwet [21] suggested that a generative gram-
mar would be an excellent model for the creation of a
top-down theory of music. Smoliar [22] attempted to de-
compose musical structure (including melodies) from au-
dio signals with a grammar-based system.

Baroni et al. [4] also created a grammatical system for
analyzing and generating melodies in the style of Lutheran
chorales and French chansons. The computer program
would create a completed, embellished melody from an in-
put that consisted of a so-called “primitive phrase” (Baroni
et al. 1982, 208).

Baroni and Jacoboni designed a grammar to analyze and
generate melodies in the style of major-mode chorales by
Bach [5, 6]. The output of the system would generate the
soprano part of the first two phrases of the chorale.

2.3 Probabilistic Grammars

Gilbert and Conklin [11] designed a PCFG for melodic
reduction and utilized unsupervised learning on 185 of
Bach’s chorales from the Essen Folksong Collection. This
grammar was also explored by Abdallah and Gold [1], who
implemented a system in the logical probabilistic frame-
work PRISM for the comparison of probabilistic systems
applied to automatic melodic analysis. The authors im-
plemented the melodic reduction grammar provided by
Gilbert and Conklin using two separate parameterizations
and compared the results against four different variations
of Markov models. The evaluation method was based on
data compression, given in bits per note (bpn). The authors
found that the grammar designed by Gilbert and Conklin
was the best performer with 2.68 bpn over all the datasets,
but one of the Markov model methods had a very simi-
lar performance. The same authors also collaborated with
Marsden [2] to detail an overview of probabilistic sys-
tems used for the analysis of symbolic music, including
melodies.

Hamanaka et al. also used a PCFG for melodic reduc-
tion [12]. The authors used the dataset of treebanks that
they had previously created [13] to run supervised learn-
ing on a custom-made grammar that he designed, in or-
der to automatically generate time-span reduction trees.
This work is very similar to the work presented here, with
two exceptions. First, the grammar was not learned from
the data. Secondly, Hamanaka used a series of processes
on the test melodies using previous systems he had built.
These systems notated the metrical and grouping struc-
ture of the input melody, before inputting that data into
the PCFG. Hamanaka achieves a performance of 76% tree
accuracy.

2.4 Similar Methods for Musical Reduction

Creating a system that can perform a musical reduction
according to the theory of Heinrich Schenker has also
been the topic of much research. Marsden explored the
use of Schenkerian reductions for identifying variations
of melodies [19]. PCFGs have not yet been utilized for
this particular task. One notable caveat is the probabilistic
modelling of Schenkerian reductions, using a tree-based
structure [15]. Kirlin did not explicitly use a PCFG, how-
ever his model was quite similar, and also was a supervised
learning method.
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3. SUPERVISED LEARNING OF A PCFG

To understand the theoretical framework of the PCFG, it
is first useful to give a brief background of formal gram-
mars. Grammars were formalized by Chomsky [8] and
extended by himself [9] and Backus et al. [3]. The def-
inition of a formal grammar consists of four parameters,
G = {N,Σ, R, S}, which are defined as follows [14]:

N a set of non-terminal symbols
Σ a set of terminals (disjoint from N)
R a set of production rules, each of the form α→ β
S a designated start symbol

Each production rule has a right-hand side, β, that rep-
resents the expansion of the term found on the left-hand
side, α. In a Context-Free Grammar (CFG), the left-hand
side consists of a single non-terminal, and the right-hand
side consists of a sequence of non-terminals and terminals.
Non-terminals are variables that can be expanded (by other
rules), while terminals are specific strings, representing el-
ements that are found directly in the sequence (for exam-
ple, the ‘dog’ terminal could be one expansion for the Noun
non-terminal). Given a CFG and an input sequence of ter-
minals, the CFG can parse the sequence, creating a hierar-
chical structure by iteratively finding all applicable rules.
Grammars can be ambiguous; there can be multiple valid
tree structures for one input sequence.

PCFGs extend the CFG by modelling the probabilities
of each right-hand side expansion for every production
rule. The sum of probabilities for all of the right-hand side
expansions of each rule must sum to 1. Once a PCFG is
calculated, it is possible to find the most probable parse
tree, by cumulatively multiplying each production rule’s
probability throughout the tree, for every possible parse
tree. The parse tree with the maximum probability is the
most likely. This process is called disambiguation.

3.1 Inducing a PCFG

When a set of parse tree solutions (called a treebank) ex-
ists for a particular set of input sequences, it is possible
to construct the grammar directly from the data. In this
process, each parse tree from the treebank will be broken
apart, so that the production rule at every branch is isolated.
A grammar will be formed by accumulating every rule that
is found at each branch in each tree, throughout the en-
tire treebank. When a rule and its corresponding expan-
sions occurs multiple times, the probabilities of the right-
hand side expansion possibilities are modelled. Inducing a
PCFG is a form of supervised learning.

4. GTTM DATASET

The GTTM dataset contains the hierarchical reductions
(trees) of melodies in an Extensible Markup Language
(XML) representation.

There are two different types of reduction trees that are
created with the theories in GTTM: time-span reduction
trees, and prolongational reduction trees. The time-span

(a) (b)

(c)

Figure 1: The prolongational tree (a) and the time-span
tree (b) for the second four notes in Frédéric Chopin’s
“Grande Valse Brillante”, as well as the score (c). The in-
tervals between notes are notated in number of semitones.

reduction is built upon the grouping structure analysis pro-
vided in GTTM, which in turn uses the metrical structure
analysis to influence its decision-making. Time-span re-
duction trees are generally more reliant on the metrical in-
formation of a piece, since it utilizes the grouping structure
directly. The prolongational reductions are designed to no-
tate the ebb and flow of tension and progression in a piece.
In fact, in GTTM, the prolongational reductions use time-
span reduction trees as a starting point, but then build the
branching system from the top, down, based on pitch and
harmonic content in addition to the time-span information.

An example helps to detail their differences. Figure
1 shows a particular phrase from one of the melodies in
the GTTM dataset: Frédéric Chopin’s “Grande Valse Bril-
lante” [13]. The note labelled P1-2-2 is attached to the
last note of the melody in the prolongational reduction, be-
cause of the passing tone figure in the last 3 notes, whereas
the time-span tree connects note P1-2-2 to the first note of
the melody, due to its metrical strength and proximity.

The entire dataset consists of 300 melodies, with anal-
yses for each. However, the prolongational reduction trees
are only provided for 100 of the 300 melodies, while the
time-span trees are provided for all 300 melodies. The pro-
longational reductions require the annotations of the un-
derlying harmony. Likewise, there are only 100 harmonic
analyses in the dataset.

5. FORMING THE PCFG

Gilbert and Conklin decided to model the relevant charac-
teristics of the data by hand, by manually creating grammar
rules that represented the music composition rules of orna-
mentation [11]. The melodic embellishment rules included
in their grammar were the following: passing tone, neigh-
bor tone, repeated tone, and the escape tone. Additionally,
they created a “New” rule which was a kind of catch-all
for any interval sequence that could not be described by
the other rules. In order for the rules to be applicable at
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Figure 2: A visualization of a set of melodic embellish-
ment rules, encoded manually into the production rules of
a formal grammar [11, 3].

any pitch location, the fundamental unit of data was the in-
terval between two notes, rather than two separate values
for each note. The complete ruleset is shown in Figure 2.

When learning a grammar directly from a dataset of
annotations, the most important decision to make is the
data representation. The representation chosen should be
able to capture the most relevant characteristics of the data.
Similar to Gilbert and Conklin, each rule modelled two
consecutive intervals in a sequence of three notes, and had
the following form (notes labelled as n1 through n3):

intervaln1,n3 → intervaln1,n2 intervaln2,n3 (1)

The motivation was that melodic rules often involve a
sequence of 3 notes. This is true for the passing tone,
neighbor tone, and the escape tone. The repetition rule
would normally require only two notes, however to keep
a consistent format, repetitions were only reduced when
three consecutive notes of the same pitch were found,
which were then reduced to two notes of the same pitch
(creating one interval). The “New” rule was no longer
needed, since the model learns the rules directly from the
training data. This form of one interval expanding into
two consecutive intervals for the grammatical rules was
adopted for this research.

5.1 A Framework for Converting Trees

Utilizing a representation that required a sequence of two
intervals in every right-hand expansion presented a prob-
lem, because the GTTM reduction trees were in a format
that associated pairs of notes at each branch intersection—
not the three consecutive notes required for the two con-
secutive intervals. Given this challenge, a framework was
developed to convert the note representation of the GTTM
data into the interval notation desired, and to build the cor-
responding tree structure using the interval representation.

An example GTTM tree is shown in Figure 3. Note that
at the end of every branch is a single note. An algorithm
was developed to allow the conversion of these note-based
trees to any interval representation desired, based on a se-
quence of 3 notes. The algorithm traverses the tree from

Figure 3: The prolongational reduction tree for half of
the first melody in the GTTM dataset, Frédéric Chopin’s
“Grande Valse Brillante”, as displayed in the GTTM visu-
alizer provided by Hamanaka, Hirata, and Tojo [13].

Figure 4: A depiction of the process for converting a tree
that uses a note representation to a tree that uses an inter-
val representation, by traversing the tree breadth-wise and
relating sets of 3 notes.

the top, down, in a breadth-wise fashion. At each level of
depth, the sequence of notes at that depth are broken into
sets of 3 consecutive notes, and their intervals are com-
puted. The framework allows for any interval-based rep-
resentation to be applied. For example, it could be regular
pitch intervals, inter-onset interval (IOI), difference in met-
ric prominence, or even representations that consider the
notes’ relationships to scale and harmony. Figure 4 high-
lights the breadth-wise traversal process.

The framework was built in Python. It takes a function
as input, which allows the user to define unique interval
representations. When the function is called during the tree
conversion process, the information available for defining
the representation consists of the two notes (which contain
duration, onset and pitch information), the current key, and
the current underlying harmony (if available). The interval
encoding that is returned by the function is then used as a
node in the resulting tree.

5.2 Training/Induction

The Python-based Natural Language Toolkit (NLTK) was
used for the process of PCFG induction [18]. Given a tree-
bank of solutions, the process for inducing a PCFG is de-
scribed as follows. For every tree in the treebank, traverse
through the tree to identify each branching location. For
every branching location, create a rule with the node la-
bel as the left-hand side, and the children as the right-hand
side. Collect the set of rules found at every branch of ev-
ery tree in the treebank, and pass that list of production
rule instances into NLTK’s induce pcfg function. The in-
duce pcfg function will catalogue every rule, and build up
a grammar based on those rules. It will also model the
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probability of each rule’s unique expansions.

5.3 Data Representations

For the representation of intervals between two consecu-
tive notes, this research focused on a few certain musical
attributes. These attributes were tested first in isolation,
and then in combination. The following descriptions relate
to the attributes labelled in the results table (the key for
each attribute is given in parentheses following the name).

Pitch The difference in pitch between two notes was
a part of every data representation tested. However, the
encodings for these pitch values varied. Initially, a simple
pitch-class representation was used. This allowed pitch in-
tervals at different points in the musical scale to be grouped
into the same production rules. It was assumed that di-
rection of pitch would also be an important factor, so the
Pitch-Class (PC) attribute allowed the following range of
intervals: [-11, 11]. Melodic embellishment rules often
apply to the same movements of intervals within a musi-
cal scale. For this reason, the Key-Relative Pitch-Class
(KPC) was also used, which allowed a range of intervals
from [-7, 7], measuring the distance in diatonic steps be-
tween two consecutive notes.

Metrical Onset For encoding the metrical relation-
ships between two notes, the metric delta representation
was borrowed from previous research [11]. This metric
delta assigns every onset to a level in a metrical hierarchy.
The metrical hierarchy is composed of levels of descending
importance, based on their onset location within a metrical
grid. The onsets were assigned a level based on their clos-
est onset location in the metrical hierarchy. This metrical
hierarchy was also used in GTTM for the metrical structure
theory [16].

Because the GTTM dataset contains either 100 or 300
solutions (for prolongational reduction trees and time-span
trees, respectively), the data representations had to be de-
signed to limit the number of unique production rules cre-
ated in the PCFG. With too many production rules, there
is an increased chance of production rules that have a zero
probability (due to the rule not existing in the training set),
which results in the failure to parse certain test melodies.
Therefore, two separate metrical onset attributes were cre-
ated. One which represented the full metrical hierarchy,
named Metric Delta Full (Met1), and one which repre-
sented only the change in metric delta (whether the met-
ric level of the subsequent note was higher, the same, or
lower than the previous note), named Metric Delta Re-
duced (Met0).

Harmonic Relationship This research was also de-
signed to test whether or not the information of a note’s
relationship to the underlying harmony was useful in the
melodic reduction process. A Chord Tone Change (CT)
attribute was therefore created, which labelled whether or
not each note in the interval was a chord tone. This created
four possibilities: a chord tone followed by a chord tone, a

chord tone followed by a non-chord tone, a non-chord tone
followed by a chord tone and a non-chord tone followed by
a non-chord tone. This rule was designed to test whether
harmonic relationships affected the reduction process.

6. THE EXPERIMENT

Given a method for creating a treebank with any interval-
based data representation from the GTTM dataset and in-
ducing the corresponding PCFG, an experiment was de-
signed to test the efficacy of different data representa-
tions when applied to the process of melodic reduction.
This section details the experiment that was performed.
First, different representations that were tested are pre-
sented. Then, the comparison and evaluation method are
described. Finally, the results of cross-fold evaluation for
the PCFG created with each different data representation
are shown.

6.1 Comparison

The comparison method chosen was identical to the meth-
ods used in other experiments of the same type, in which
the output of the system is a tree structure, and the tree so-
lutions are available [13, 15]. First, for a given test, the
input melody is parsed, which yields the most probable
parse tree as an output. The output trees are then com-
pared with the solution trees. To do so, the tree is simply
traversed, and each node from the output tree is compared
for equivalence to the corresponding node in the solution
tree. This method is somewhat strict, in that mistakes to-
wards the bottom of the tree will be propagated upwards,
so incorrect rule applications will be counted as incorrect
in multiple places.

6.2 Evaluation

Cross-fold evaluation was used to perform the evaluation.
The entire treebank of solutions were first partitioned into 5
subsets, and 1 subset was used for the test set in 5 iterations
of the training and comparison process. The results were
then averaged. In order to keep consistency across data
representations, the same test and training sets were used
for each cross-validation process.

6.3 Results

Each data representation that was selected was performed
on both the set of time-span reduction trees and the set of
prolongational reduction trees, when possible. As men-
tioned previously, the set of prolongational reduction trees
amounted to only 100 samples, while the time-span trees
amounted to 300. In some situations, the data representa-
tion would create too many unique production rules, and
not all the test melodies could be parsed. All of the data
representations in the results table had at least a 90% cov-
erage of the test melodies, meaning that at least 90% of the
tests could be parsed and compared. There are also two
data representations that use time-span trees with the har-
monic representation. For these tests, the solution set con-
tained only 100 samples as opposed to the usual 300 for
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time-span trees, since there is only harmonic information
for 100 of the 300 melodies.

Tree- % nodes
type PC KPC Met1 Met0 CT correct
TS X 35.33
PR X 38.57
TS X X 40.40
PR X X 38.50
TS X X 44.12
PR X X 46.55
TS X X X 44.80
PR X X X 46.74

These results mostly progress as one might expect.
Looking at only the tests done with time-span trees, the re-
sults improve initially when using the Key-Relative Pitch-
Class encoding for pitch intervals paired with the Chord
Tone Change feature; it received a 5% increase as com-
pared with the PCFG that only used the Pitch-Class fea-
ture (which could be considered a baseline). It gained an
even bigger increase when using the Metric Delta Full
feature, an almost 9% increase in efficacy compared with
the Pitch-Class test. Combining metric and chord features
with the Key-Relative Pitch-Class encoding did not pro-
vide much further gain that with the metric feature alone.
The prolongational reduction also improved when given
the metric delta information, however the harmonic rela-
tionship feature affected the outcome very little.

The best performing PCFG was induced from the pro-
longational reduction trees, and used a data representa-
tion that included the Key-Relative Pitch-Class encod-
ing combined with both the simplified metric delta and the
chord tone information.

It is possible that the lack of data and the subsequent
limitation on the complexity of the data representation
could be avoided by the use of probabilistic smoothing
techniques (to estimate the distributions of those rules that
did not exist in the training set) [14, 97]. Indeed, the use of
the Key-Relative Pitch-class feature as the basis for most
of the representations was an attempt to limit the num-
ber of resulting rules, and therefore the number of zero-
probability rules. This would be an appropriate topic for
future experimentation.

A specific example helps to illustrate both the effec-
tiveness and the drawbacks of using the induced PCFG
for melodic reduction. Figure 5 displays the iterative re-
ductions applied by pruning a PCFG tree, level by level.
The grammar used to create this reduction was trained
on prolongational reduction trees, and included the Key-
Relative Pitch-class intervals, with notations for the Met-
ric Delta Reduced feature, and the Chord Tone Change
feature. This PCFG was the best performing, according to
the evaluation metric. From a musicological perspective,
the PCFG initially makes relatively sound decisions when
reducing notes from the music surface. It is only when it
begins to make decisions at the deeper levels of reduction
that it chooses incorrect notes as the more important tones.

Figure 5: A set of melodies that show the progressive re-
ductions, using the data representation that includes key-
relative pitch-class, metric delta and chord tone features.

7. CONCLUSION

This research has performed for the first time the induction
of a PCFG from a treebank of solutions for the process of
melodic reduction. It was shown that, for the most part,
adding metric or harmonic information in the data repre-
sentation improves the efficacy of the resulting probabilis-
tic model, when analyzing the results for the model’s abil-
ity to reduce melodies in a musically sound way. A specific
example reduction was generated by the best-performing
model. There is still much room for improvement, be-
cause it seems that the model is more effective at identi-
fying melodic embellishments on the musical surface, and
is not able to identify the most important structural notes
at deeper layers of the melodic reductions. The source
code for this work also allows any researcher to create
their own interval representations, and convert the GTTM
dataset into a PCFG treebank.

There are some specific areas of improvement that
might benefit this method. Currently there is no way to
identify which chord a note belongs to with the grammar—
the harmonic data is simply a boolean that describes
whether or not the note is a chord tone. If there were a
way to identify which chord the note belonged to, it would
likely help with the grouping of larger phrases in the re-
duction hierarchy. For example, if a group of consecutive
notes belong to the same underlying harmony, they could
be grouped together, which might allow the PCFG to bet-
ter identify the more important notes (assuming they fall
at the beginning or end of phrases/groups). Beyond that, it
would be greatly helpful if the sequences of chords could
be considered as well. Furthermore, there is no way to ex-
plicitly identify repetition in the melodies with this model.
That, too, might be able to assist the model, because if it
can identify similar phrases, it could potentially identify
the structural notes on which those phrases rely.

The source code for this research is available to the pub-
lic, and can be found on the author’s github account 1 .

1 http://www.github.com/bigpianist/SupervisedPCFG MelodicReduction
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ABSTRACT

Music is often experienced as a simultaneous progression
of multiple streams of notes, or voices. The automatic
separation of music into voices is complicated by the fact
that music spans a voice-leading continuum ranging from
monophonic, to homophonic, to polyphonic, often within
the same work. We address this diversity by defining voice
separation as the task of partitioning music into streams
that exhibit both a high degree of external perceptual sepa-
ration from the other streams and a high degree of internal
perceptual consistency, to the maximum degree that is pos-
sible in the given musical input. Equipped with this task
definition, we manually annotated a corpus of popular mu-
sic and used it to train a neural network with one hidden
layer that is connected to a diverse set of perceptually in-
formed input features. The trained neural model greedily
assigns notes to voices in a left to right traversal of the in-
put chord sequence. When evaluated on the extraction of
consecutive within voice note pairs, the model obtains over
91% F-measure, surpassing a strong baseline based on an
iterative application of an envelope extraction function.

1. INTRODUCTION AND MOTIVATION

The separation of symbolic music into perceptually inde-
pendent streams of notes, i.e. voices or lines, is gener-
ally considered to be an important pre-processing step for
a number of applications in music information retrieval,
such as query by humming (matching monophonic queries
against databases of polyphonic or homophonic music)
[13] or theme identification [12]. Voice separation adds
structure to music and thus enables the implementation of
more sophisticated music analysis tasks [17]. Depending
on their definition of voice, existing approaches to voice
separation in symbolic music can be organized in two main
categories: 1) approaches that extract voices as mono-
phonic sequences of successive non-overlapping musical
notes [5, 6, 8, 11, 14, 16, 17]; and 2) approaches that al-
low voices to contain simultaneous note events, such as

c© Patrick Gray, Razvan Bunescu. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Patrick Gray, Razvan Bunescu. “A Neural Greedy Model
for Voice Separation in Symbolic Music”, 17th International Society for
Music Information Retrieval Conference, 2016.

chords [4, 9, 10, 15]. Approaches in the first category typ-
ically use the musicological notion of voice that is refer-
enced in the voice-leading rules of the Western musical tra-
dition, rules that govern the horizontal motion of individual
voices from note to note in successive chords [1, 4]. Start-
ing with [4], approaches in the second category break with
the musicological notion of voice and emphasize a percep-
tual view of musical voice that corresponds more closely to
the notion of independent auditory streams [2, 3]. Orthog-
onal to this categorization, a limited number of voice sep-
aration approaches are formulated as parametric models,
with parameters that are trained on music already labeled
with voice information [6, 8, 11].

In this paper, we propose a data-driven approach to
voice separation that preserves the musicological notion
of voice. Our aim is to obtain a segregation of music
into voices that would enable a downstream system to de-
termine whether an arbitrary musical input satisfies the
known set of voice-leading rules, or conversely identify
places where the input violates voice-leading rules.

2. TASK DEFINITION

According to Huron [7], “the principal purpose of voice-
leading is to create perceptually independent musical
lines”. However, if a voice is taken to be a monophonic
sequence of notes, as implied by traditional voice-leading
rules [1], then not all music is composed of independent
musical lines. In homophonic accompaniment, for exam-
ple, multiple musical lines (are meant to) fuse together
into one perceptual stream. As Cambouropoulos [4] ob-
serves for homophonic accompaniment, “traditional voice-
leading results in perceivable musical texture, not indepen-
dent musical lines”. In contrast with the traditional no-
tion of voice used in previous voice separation approaches,
Cambouropoulos redefines in [4] the task of ’voice’ sepa-
ration as that of separating music into perceptually inde-
pendent musical streams, where a stream may contain two
or more synchronous notes that are perceived as fusing in
the same auditory stream. This definition is used in [9, 15]
to build automatic approaches for splitting symbolic music
into perceptually independent musical streams.

Since a major aim of our approach is to enable build-
ing “musical critics” that automatically determine whether
an arbitrary musical input obeys traditional voice-leading
rules, we adopt the musicological notion of voice as a
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monophonic sequence of non-overlapping notes. This def-
inition however leads to an underspecified voice separa-
tion task: for any non-trivial musical input, there usually
is a large number of possible separations into voices that
satisfy the constraints that they are monophonic and con-
tain notes in chronological order that do not overlap. Fur-
ther constraining the voices to be perceptually independent
would mean the definition could no longer apply to music
with homophonic textures, as Cambouropoulos correctly
noticed in [4]. Since we intend the voice separation ap-
proach to be applicable to arbitrary musical input, we in-
stead define voice separation as follows:

Definition 1. Voice separation is the task of partition-
ing music into monophonic sequences (voices) of non-
overlapping notes that exhibit both a high degree of exter-
nal perceptual separation from the other voices and a high
degree of internal perceptual consistency, to the maximum
degree that is possible in the given musical input.

Figure 1. Example voice separation from “Earth Song”.

Figure 1 shows a simple example of voice separation
obtained using the definition above. While the soprano and
bass lines can be heard as perceptually distinct voices, we
cannot say the same for the tenor and alto lines shown in
green and red, respectively. However, clear perceptual in-
dependence is not needed under the new task definition.
The two intermediate voices exhibit a high degree of per-
ceptual consistency: their consecutive notes satisfy to a
large extent the pitch proximity and temporal continuity
principles needed to evoke strong auditory streams [7]. In-
deed, when heard in isolation, both the tenor and the alto
are heard as continuous auditory streams, the same streams
that are also heard when the two are played together. The
two streams do not overlap, which helps with perceptual
tracking [7]. Furthermore, out of all the streaming possi-
bilities, they also exhibit the largest possible degree of ex-
ternal perceptual separation from each other and from the
other voices in the given musical input.

3. ANNOTATION GUIDELINES

According to the definition in Section 2, voice separation
requires partitioning music into monophonic sequences of
non-overlapping notes that exhibit a high degree of percep-
tual salience, to the maximum extent that is possible in the
given musical input. As such, an overriding principle that
we followed during the manual annotation process was to
always give precedence to what was heard in the music,
even when this appeared to contradict formal perceptual

principles, such as pitch proximity. Furthermore, when-
ever formal principles seemed to be violated by percep-
tual streams, an attempt was made to explain the apparent
conflict. Providing justifications for non-trivial annotation
decisions enabled refining existing formal perceptual prin-
ciples and also informed the feature engineering effort.

Listening to the original music is often not sufficient
on its own for voice separation, as not all the voices con-
tained in a given musical input can be distinctly heard. Be-
cause we give precedence to perception, we first annotated
those voices that could be distinguished clearly in the mu-
sic, which often meant annotating first the melodic lines
in the soprano and the bass. When the intermediate voices
were difficult to hear because of being masked by more
salient voices, one simple test was to remove the already
annotated most prominent voice (often the soprano [1])
and listen to the result. Alternatively, when multiple con-
flicting voice separations were plausible, we annotated the
voice that, after listening to it in isolation, was easiest to
distinguish perceptually in the original music.

Figure 2 shows two examples where the perceptual
principle of pitch proximity appears to conflict with what
is heard as the most salient voice. In the first measure,
the first D4 note can continue with any of the 3 notes in
the following I6 chord. However, although the bass note
in the chord has the same pitch, we hear the first D4 most
saliently as part of the melody in the soprano. The D4

can also be heard as creating a musical line with the next
D4 notes in the bass, although less prominently. The least
salient voice assignment would be between the D4 and the
intermediate line that starts on the following G4. While we
annotate all these streaming possibilities (as shown in Fig-
ure 7), we mark the soprano line assignment as the most
salient for the D4. Similarly, in the last chord from the sec-
ond measure from Figure 2, although E4 is closer to the
previous F4, it is the G4 that is most prominently heard as
continuing the soprano line. This was likely reinforced by
the fact that the G4 in the last chord was “prepared” by the
G4 preceding F4.

Figure 2. Voice separation annotations, for measures 5 in
“Knockin’ on Heaven’s Door” and 12 in “Let It Be”.

Other non-trivial annotation decisions, especially in the
beginning of the annotation effort, involved whether two
streams should be connected or not. Overall, we adopted
the guideline that we should break the music into fewer and
consequently longer voices, especially if validated percep-
tually. Figure 3, for example, shows the A4 in the third
measure connected to the following C5. Even though the
two notes are separated by a quarter rest, they are heard as
belonging to the same stream, which may also be helped
by the relatively long duration of A4 and by the fact that
the same pattern is repeated in the piece. We have also dis-
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Figure 3. Voice separation annotation in the treble for
measures 38-41 in “Count on Me”.

covered that “preparation” through previous occurrences
of the same note or notes one octave above or below can
significantly attenuate the effect of a large pitch distance
and thus help with connecting the note to an active stream.
This effect is shown in Figure 4, where the voice in the first
measure is most prominently heard as continuing with the
B4 in the second measure.

Figure 4. Voice separation annotation in the treble for
measures 26-27 in “A Thousand Miles”.

Sometimes, the assignment of a note to one of the avail-
able active voices is hard to make due to inherent musi-
cal ambiguity. An example is shown in Figure 5, where
it is hard to determine if the A4 in the second measure
connects to the top C6 or the C5 one octave below. Af-
ter being played separately, each voice assignment can be
distinguished perceptually in the original music. The C5 is
closer in pitch to the A4 and it is also in a range with better
defined pitch sensations than the C6. On the other hand,
the pitch distance between the upper C6 and the A4 is at-
tenuated by the synchronous C5. Eventually we annotated
A4 as connecting to the slightly more salient C5, but also
marked it as ambiguous between the two C notes.

Figure 5. Voice separation annotation in the treble for
measures 62-63 in “A Thousand Miles”.

Other examples of harmony influencing voice assign-
ment involve the seventh scale degree notes appearing in
VII and VII6 chords. As shown in Figure 6, when such a
chord is first used, the 7̂ note does connect to any of the
previous streams, despite the closer pitch proximity.

4. VOICE SEPARATION DATASET

We compiled a corpus of piano versions of 20 popular
compositions of varying complexity that are representative
of many genres of music. Each song was downloaded from
www.musescore.com and converted to MusicXML. In se-
lecting music, we followed a few basic criteria. First, we
avoided collecting piano accompaniments and gave pref-
erence to piano renditions that sounded as much as pos-
sible like the original song. Among other things, this en-
sured that each score contained at least one clearly defined

Figure 6. Voice separation annotation in the bass for mea-
sures 26-28 in “Earth Song”.

melody. Second, we collected only tonal music. Atonal
music is often comprised of unusual melodic structures,
which were observed to lead to a poor perception of voices
by the annotators. Following the annotation guidelines, we
manually labeled the voice for each note in the dataset. The
annotations will be made publicly available. The names
of the 20 musical pieces are shown in Table 1, together
with statistics such as the total number of notes, number
of voices, average number of notes per voice, number of
within-voice note pairs, number of unique note onsets, and
average number of notes per chord. The 20 songs were
manually annotated by the first author; additionally, the
10 songs marked with a star were also annotated by the
second author. In terms of F-measure, the inter-annotator
agreement (ITA) on the 10 songs is 96.08% (more de-
tailed ITA numbers are shown in Table 2). The last col-
umn shows the (macro-averaged) F-measure of our neural
greedy model, to be discussed in Section 6. As can be
seen in Table 1, the number of voices varies widely, rang-
ing between 4 for Greensleeves to 123 for 21 Guns, the
longest musical composition, with a variable musical tex-
ture and frequent breaks in the harmonic accompaniment
of the melody. The last line shows the same total/average
statistics for the first 50 four-part Bach Chorales available
in Music21, for which we use the original partition into
voices, without the duplication of unisons.

5. THE VOICE SEPARATION MODEL

To separate a musical input into its constituent voices, we
first order all the notes based on their onsets into a se-
quence of chords C = {c1, c2, ..., cT }, where a chord is
defined to be a maximal group of notes that have the same
onset. Assignment of notes to voices is then performed in
chronological order, from left to right, starting with the first
chord c1. Because voices are by definition monophonic,
each note in the first chord is considered to start a sepa-
rate, new voice. These first voices, together with an empty
voice ε, constitute the initial set of active voices V . At each
onset t, the algorithm greedily assigns a note n from the
current chord ct to one of the voices in the active set by se-
lecting the active voice v that maximizes a trained assign-
ment probability p(n, v), i.e. v(n) = arg maxv∈V̂ p(n, v).
Notes from the current chord are assigned to voices in the
order of their maximal score p(n, v(n)). If a note is as-
signed to the empty voice, then a new voice is added to
the active set. The set of candidate active voices V̂ avail-
able for any given note n is a subset of active voices V
constrained such that assigning n to any of the voices in
V̂ would not lead to crossing voices or to multiple syn-
chronous notes being assigned to the same voice.
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Popular Music dataset # Notes # Voices # N / V # Pairs # Onsets Synchronicity F-measure
21 Guns (Green Day) 1969 123 16.01 1801 666 2.96 86.24
Apples to the Core (Daniel Ingram) 923 29 31.83 892 397 2.32 77.67
Count on Me (Bruno Mars) 775 11 70.45 764 473 1.64 97.22
Dreams (Rogue)∗ 615 12 51.25 603 474 1.30 98.32
Earth Song (Michael Jackson)∗ 431 15 28.73 416 216 2.00 93.27
Endless Love (Lionel Richie) 909 23 39.52 886 481 1.89 96.52
Forest (Twenty One Pilots) 1784 89 20.04 1695 1090 1.64 91.93
Fur Elise (Ludwig van Beethoven)∗ 900 77 11.69 823 653 1.38 91.98
Greensleeves∗ 231 4 57.75 213 72 3.21 92.88
How to Save a Life (The Fray)∗ 440 13 33.85 427 291 1.51 98.11
Hymn for the Weekend (Coldplay) 1269 50 25.38 1218 706 1.80 92.30
Knockin’ on Heaven’s Door (Bob Dylan)∗ 355 41 8.66 312 180 1.97 90.92
Let It Be (The Beatles)∗ 563 22 25.59 540 251 2.24 87.29
One Call Away (Charlie Puth) 993 56 17.73 937 505 1.97 91.33
See You Again (Wiz Khalifa)∗ 704 66 10.67 638 359 1.96 81.16
Teenagers (My Chemical Romance) 315 18 17.50 297 145 2.17 91.39
A Thousand Miles (Vanessa Carlton)∗ 1001 61 16.41 937 458 2.19 96.61
To a Wild Rose (Edward Macdowell) 307 20 15.35 287 132 2.33 88.72
Uptown Girl (Billy Joel) 606 46 13.17 560 297 2.04 93.41
When I Look at You (Miley Cyrus)∗ 1152 82 14.05 1067 683 1.69 92.92
Totals & Averages 16242 42.90 26.28 15313 8529 2.01 91.51
Bach Chorales dataset 12282 4 61.41 11874 4519 2.73 95.47

Table 1. Statistics for the Popular Music dataset and the Bach Chorales dataset.

The assignment probability p(n, v) captures the com-
patibility between a note n and an active voice v. To com-
pute it, we first define a vector Φ(n, v) of perceptually in-
formed compatibility features (Section 5.2). The probabil-
ity is then computed as p(n, v) = σ(wThW (n, v)), where
σ is the sigmoid function and hW (n, v) is the vector of
activations of the neurons on the last (hidden) layer in a
neural network with input Φ(n, v).

To train the network parameters θ = [w,W ], we maxi-
mize the likelihood of the training data:

θ̂ = arg max
θ

T∏

t=1

∏

n∈ct

∏

v∈V̂

p(n,v|θ)l(n,v)(1−p(n,v|θ))1−l(n,v)

(1)
where l(n, v) is a binary label that indicates whether or not
note n was annotated to belong to voice v in the training
data. This formulation of the objective function is flexible
enough to be used in 2 types of voice separation scenarios:

1. Ranking: Assign a note to the top-ranked candidate
active voice, i.e. v(n) = arg max

v∈V̂
p(n, v).

2. Multi-label classification: Assign a note to all can-
didate active voices whose assignment probability is
large enough, i.e. V (n) = {v ∈ V̂|p(n, v) > 0.5}.

The first scenario is the simplest one and rests on the work-
ing assumption that a note can belong to a single voice.
The second scenario is more general and allows a note to
belong to more than one voice. Such capability would be
useful in cases where a note is heard simultaneously as
part of two musical streams. Figure 7, for example, shows
the voice separation performed under the two scenarios for
the same measure. In the ranking approach shown on the
left, we label the second F4 as belonging to the soprano
voice. Since in this scenario we can assign a note to just
one voice, we select the voice assignment that is heard as
the most salient, which in this case is the soprano. In the

multi-label approach shown on the right, we label the sec-
ond F4 as belonging to both active voices, since the note is
heard as belonging to both. In the experiments that we re-

Figure 7. Two voice separation scenarios, for measure 16
from “A Thousand Miles”.

port in this paper (Section 6), we used the simpler ranking
approach, leaving the more general multi-label approach
for future work.

5.1 Iterative Envelope Extraction

We also propose a baseline system for voice-separation
that iteratively extracts the upper envelope i.e. the topmost
monophonic sequence of non-overlapping notes. Figure 8
shows how the iterative envelope extraction process works
on the second measure from Figure 2, copied here for read-
ability. The top left measure is the original measure from

Figure 8. Voice separation as iterative envelope extraction.

Figure 2 and we use it as the current input. Its upper en-
velope is shown in the bottom left measure, which will be-
come the first voice. After extracting the first voice from
the input, we obtain the second measure in the top staff,
which is now set to be the current input. We again apply
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the same envelope extraction process to obtain the second
voice, shown in the second measure on the bottom staff.
After extracting the second voice from the current input,
we obtain a new current input, shown in the third measure
on the top staff. Extracting the third voice from the current
input results in an empty set and correspondingly the base-
line algorithm stops. For this input, the baseline extracted
voice 1 without errors, however it made a mistake in the
last note assignment for voice 2.

5.2 Voice Separation Features

The assignment probability p(n, v) is computed by the
neural model based on a vector of input features Φ(n, v) =
[φ0, φ1, ..., φK ] that will be described in this section, using
v.last to denote the last note in the active voice v.

5.2.1 Empty Voice Feature

The empty voice feature φ0 is set to 1 only for the empty
voice, i.e. φ0(n, ε) = 1 and φ0(n, v) = 0,∀v 6= ε. All the
remaining features in any feature vector for an empty voice
Φ(n, ε) are set to zero. This allows the empty voice to ac-
tivate a bias parameter w0, which is equivalent to learning
a threshold −w0 that the weighted combination of the re-
maining features must exceed in order for the note to be as-
signed to an existing, non-empty, active voice. Otherwise,
the note n will be assigned to the empty voice, meaning it
will start a new voice.

5.2.2 Pitch and Pitch Proximity Features

According to Huron’s formulation of the pitch proximity
principle, the coherence of an auditory stream is main-
tained by close pitch proximity in successive tones within
the stream [7]. Correspondingly, we define a pitch prox-
imity feature φ1(n, v) = pd(n, v.last) = |ps(n) −
ps(v.last)| to be the absolute distance in half steps be-
tween the pitch space representations of notes n and v.last.
The pitch proximity feature enables our system to quickly
learn that notes rarely pair with voices lying at intervals
beyond an octave. We also add two features φ2(n, v) =
ps(n) and φ3(n, v) = ps(v.last) that capture the absolute
pitch of the note n and v.last. Pitch values are taken from
a pitch space in which C4 has value 60 and a difference of
1 corresponds to one half step, e.g. C5 has value 72. Us-
ing absolute pitches as separate input features will enable
neurons on the hidden layer to discover possibly unknown
pitch-based rules for perceptual streaming.

5.2.3 Temporal and Temporal Continuity Features

We define an inter-onset feature φ4(n, v) as the tempo-
ral distance between the note onsets of n and v.last. An
additional feature φ5(n, v) is computed as the temporal
distance between the note onset of n and the note offset
(the time when a note ends) of v.last. These complemen-
tary features help our system model both acceptable rest
lengths between notes and the gradual dissipation of note
salience throughout the duration of a note.

Notes that lie between the onsets of v.last and n may
influence the voice assignment. Thus, we appropriately de-
fine a feature φ6(n, v) as the number of unique onsets
between the onsets of v.last and n. We also define two
features φ7(n, v) = qd(n) and φ8(n, v) = qd(v.last)
for the durations of n and v.last, respectively, where note
durations are measured relative to the quarter note. These
features, when combined in the hidden layer, enable the
system to learn to pair notes that appear in common dura-
tion patterns, such as dotted quarter followed by an eighth.

5.2.4 Chordal Features

Notes that reside in the soprano either alone or at the
top of a chord tend to be heard as the most salient. As
a result, the most prominent melodic line of a score of-
ten navigates through the topmost notes, even in situa-
tions where a candidate active voice lies closer in pitch
to the alto or tenor notes of the current chord. Notes in
a low bass range that stand alone or at the bottom of a
chord exhibit a similar behavior. To enable the learning
model to capture this perceptual effect, we define two fea-
tures φ9(n, v) = cp(n) and φ10(n, v) = cp(v.last) to
mark the relative positions of n and v.last in their respec-
tive chords, where the chord position number (cp) starts
at 0 from the top of a chord. To place chord positions
into the appropriate context, we define φ11(n, v) as the
number of notes in n’s chord and φ12(n, v) as the num-
ber of notes in v.last’s chord. For more direct compar-
isons between notes in n’s chord and the active voice, we
calculate pitch proximities (pd) between v.last and n’s
upper and lower neighbors n.above and n.below. Thus,
we define the features φ13(n, v) = pd(v.last, n.above)
and φ14(n, v) = pd(v.last, n.below). We also add the
features φ15(n, v) = pd(n, n.above) and φ16(n, v) =
pd(n, n.below) to encode the intervals between n and its
chordal neighbors.

5.2.5 Tonal Features

We use scale degrees φ17(n, v) = sd(n) and φ18(n, v) =
sd(v.last) of the notes n and v.last as features in order to
enable the model to learn melodic intervals that are most
appropriate in a given key. For example, if a candidate ac-
tive voice ends on a leading tone, then it is likely to resolve
to the tonic. We also define a feature φ19(n, v) for the
interval between the note n and the root of its chord, and
similarly, a feature φ20(n, v) for the interval between the
note v.last and the root of its chord.

The last tonal feature φ21(n, v) is a Boolean feature that
is set to 1 if the note v.last in the active voice v appears in a
tonic chord at a cadence. Tonic chords at cadences induce
a sense of finality [1], which could potentially break the
voice from the notes that follow.

5.2.6 Pseudo-polyphony Features

In pseudo-polyphony, two perceptually independent
streams are heard within a rapidly alternating, monophonic
sequence of notes separated by relatively large pitch inter-
vals. Figure 9 presents an example of pseudo-polyphony.
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Dataset Model All within-voice pairs of notes Exclude pairs of notes separated by rests
Jaccard Precision Recall F-measure Jaccard Precision Recall F-measure

Popular Music
Baseline 59.07 74.51 74.03 74.27 67.55 80.48 80.79 80.64

NGModel 83.55 92.08 90.01 91.03 85.73 92.74 91.89 92.31
ITA 92.45 94.96 97.21 96.08 93.04 95.12 97.70 96.41

Bach Chorales Baseline 87.25 93.34 93.04 93.18 87.62 93.22 93.58 93.39
NGModel 91.36 95.59 95.37 95.47 91.66 95.91 95.39 95.64

Table 2. Comparative results of Neural Greedy (NG) Model vs. Baseline on Popular Music and Bach Chorales; Inter-
Annotator (ITA) results on the subset of 10 popular songs shown in Table 1.

Although the offset of each D4 note is immediately fol-
lowed by the onset of the next note, the often large inter-
vals and the fast tempo break the upper and lower notes
into two perceptually independent streams.

Figure 9. Example pseudo-polyphony from ”Forest”.

We model this phenomenon by introducing three fea-
tures to the neural system. In designing these features,
we first employ the envelope extraction method described
in Section 5.1 to gather monophonic sequences of non-
overlapping notes. We next find the maximal contiguous
subsequences with an alternating up-down pattern of di-
rection changes, like the one shown in Figure 9. The first
feature φ22(n, v) = apv(n) is set to be the alternating
path value (apv) of the note n, which is 0 if n is not on an
alternating path, 1 if it is in the lower part of an alternating
path, and 2 if it is in the upper part of an alternating path.
Similarly, we define φ23(n, v) = apv(v.last) to be the al-
ternating path value of the note v.last. The third feature is
set to 1 if both n and v.last have the same alternating path
value, i.e. φ24(n, v) = 1[apv(n) = apv(v.last)].

6. EXPERIMENTAL EVALUATION

We implemented the neural greedy model as a neural net-
work with one hidden layer, an input layer consisting of
the feature vector Φ(n, v), and an output sigmoid unit that
computes the assignment probability p(n, v|θ). The net-
work was trained to optimize a regularized version of the
likelihood objective shown in Equation 1 using gradient
descent and backpropagation. The model was trained and
tested using 10-fold cross-validation. For evaluation, we
considered pairs of consecutive notes from the voices ex-
tracted by the system and compared them with pairs of
consecutive notes from the manually annotated voices. Ta-
ble 2 shows results on the two datasets in terms of the Jac-
card similarity between the system pairs and the true pairs,
precision, recall, and micro-averaged F-measure. Preci-
sion and recall are equivalent to the soundness and com-
pleteness measures used in [6, 11]. We also report results
for which pairs of notes separated by rests are ignored.

The results show that the newly proposed neural model
performs significantly better than the envelope baseline,

Dataset Model Precision Recall F-measure

10 Fugues [6] 94.07 93.42 93.74
NGModel 95.56 92.24 93.87

30 Inv. 48 F. [14] 95.94 70.11 81.01
NGModel 95.91 93.83 94.87

Table 3. Comparative results on Bach datasets.

especially on popular music. When pairs of notes sepa-
rated by rests are excluded from evaluation, the baseline
performance increases considerably, likely due to the ex-
clusion of pseudo-polyphonic passages.

Close to our model is the data-driven approach from [6]
for voice separation in lute tablature. Whereas we adopt
a ranking approach and use as input both the note and the
candidate active voice, [6] use only the note as input and
associate voices with the output nodes. Therefore, while
our ranking approach can label music with a variable num-
ber of voices, the classification model from [6] can extract
only a fixed number of voices. Table 3 shows that our neu-
ral ranking model, although not specifically designed for
music with a fixed number of voices, performs compet-
itively with [6] when evaluated on the same datasets of
10 Fugues by Bach. We also compare the neural rank-
ing model with the the approach from [14] on a different
dataset containing 30 inventions and 48 fugues 1 .

7. CONCLUSION AND FUTURE WORK

We presented a neural model for voice separation in sym-
bolic music that assigns notes to active voices using a
greedy ranking approach. The neural network is trained
on a manually annotated dataset, using a perceptually-
informed definition of voice that also conforms to the mu-
sicological notion of voice as a monophonic sequence of
notes. When used with a rich set of note-voice features,
the neural greedy model outperforms a newly introduced
strong baseline using iterative envelope extraction. In fu-
ture work we plan to evaluate the model in the more gen-
eral multi-label classification setting that allows notes to
belong to multiple voices.

We would like to thank the anonymous reviewers for
their helpful remarks and Mohamed Behairy for insightful
discussions on music cognition.

1 In [14] it is stated that soundness and completeness “as suggested
by Kirlin [11]” were used for evaluation; however, the textual definitions
given in [14] are not consistent with [11]. As was done in [6], for lack of
an answer to this inconsistency, we present the metrics exactly as in [14].
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ABSTRACT

This paper addresses the matching of short music audio
snippets to the corresponding pixel location in images of
sheet music. A system is presented that simultaneously
learns to read notes, listens to music and matches the
currently played music to its corresponding notes in the
sheet. It consists of an end-to-end multi-modal convolu-
tional neural network that takes as input images of sheet
music and spectrograms of the respective audio snippets.
It learns to predict, for a given unseen audio snippet (cov-
ering approximately one bar of music), the corresponding
position in the respective score line. Our results suggest
that with the use of (deep) neural networks – which have
proven to be powerful image processing models – working
with sheet music becomes feasible and a promising future
research direction.

1. INTRODUCTION

Precisely linking a performance to its respective sheet mu-
sic – commonly referred to as audio-to-score alignment –
is an important topic in MIR and the basis for many appli-
cations [20]. For instance, the combination of score and
audio supports algorithms and tools that help musicolo-
gists in in-depth performance analysis (see e.g. [6]), al-
lows for new ways to browse and listen to classical music
(e.g. [9, 13]), and can generally be helpful in the creation
of training data for tasks like beat tracking or chord recog-
nition. When done on-line, the alignment task is known as
score following, and enables a range of applications like
the synchronization of visualisations to the live music dur-
ing concerts (e.g. [1, 17]), and automatic accompaniment
and interaction live on stage (e.g. [5, 18]).

So far all approaches to this task depend on a symbolic,
computer-readable representation of the sheet music, such
as MusicXML or MIDI (see e.g. [1, 5, 8, 12, 14–18]). This
representation is created either manually (e.g. via the time-
consuming process of (re-)setting the score in a music no-
tation program), or automatically via optical music recog-
nition software. Unfortunately automatic methods are still
highly unreliable and thus of limited use, especially for
more complex music like orchestral scores [20].

c© Matthias Dorfer, Andreas Arzt, Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Matthias Dorfer, Andreas Arzt, Gerhard
Widmer. “Towards Score Following in Sheet Music Images”, 17th Inter-
national Society for Music Information Retrieval Conference, 2016.

The central idea of this paper is to develop a method that
links the audio and the image of the sheet music directly,
by learning correspondences between these two modali-
ties, and thus making the complicated step of creating an
in-between representation obsolete. We aim for an algo-
rithm that simultaneously learns to read notes, listens to
music and matches the currently played music with the cor-
rect notes in the sheet music. We will tackle the problem in
an end-to-end neural network fashion, meaning that the en-
tire behaviour of the algorithm is learned purely from data
and no further manual feature engineering is required.

2. METHODS

This section describes the audio-to-sheet matching model
and the input data required, and shows how the model is
used at test time to predict the expected location of a new
unseen audio snippets in the respective sheet image.

2.1 Data, Notation and Task Description

The model takes two different input modalities at the same
time: images of scores, and short excerpts from spectro-
grams of audio renditions of the score (we will call these
query snippets as the task is to predict the position in the
score that corresponds to such an audio snippet). For this
first proof-of-concept paper, we make a number of simpli-
fying assumptions: for the time being, the system is fed
only a single staff line at a time (not a full page of score).
We restrict ourselves to monophonic music, and to the pi-
ano. To generate training examples, we produce a fixed-
length query snippet for each note (onset) in the audio.
The snippet covers the target note onset plus a few addi-
tional frames, at the end of the snippet, and a fixed-size
context of 1.2 seconds into the past, to give some temporal
context. The same procedure is followed when producing
example queries for off-line testing.

A training/testing example is thus composed of two in-
puts: Input 1 is an image Si (in our case of size 40 × 390
pixels) showing one staff of sheet music. Input 2 is an au-
dio snippet – specifically, a spectrogram excerpt Ei,j (40
frames× 136 frequency bins) – cut from a recording of the
piece, of fixed length (1.2 seconds). The rightmost onset
in spectrogram excerpt Ei,j is interpreted as the target note
j whose position we want to predict in staff image Si. For
the music used in our experiments (Section 3) this context
is a bit less than one bar. For each note j (represented by
its corresponding spectrogram excerpt Ei,j) we annotated
its ground truth sheet location xj in sheet image Si. Coor-
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(a) Spectrogram-to-sheet correspondence. In this ex-
ample the rightmost onset in spectrogram excerpt Ei,j

corresponds to the rightmost note (target note j) in
sheet image Si. For the present case the temporal con-
text of about 1.2 seconds (into the past) covers five
additional notes in the spectrogram. The staff image
and spectrogram excerpt are exactly the multi-modal
input presented to the proposed audio-to-sheet match-
ing network. At train time the target pixel location xj

in the sheet image is available; at test time x̂j has to
be predicted by the model (see figure below).

(b) Schematic sketch of the audio-to-sheet matching task targeted
in this work. Given a sheet image Si and a short snippet of au-
dio (spectrogram excerpt Ei,j ) the model has to predict the audio
snippet’s corresponding pixel location xj in the image.

Figure 1: Input data and audio-to-sheet matching task.

dinate xj is the distance of the note head (in pixels) from
the left border of the image. As we work with single staffs
of sheet music we only need the x-coordinate of the note
at this point. Figure 1a relates all components involved.

Summary and Task Description: For training we present
triples of (1) staff image Si, (2) spectrogram excerpt Ei,j

and (3) ground truth pixel x-coordinate xj to our audio-to-
sheet matching model. At test time only the staff image
and spectrogram excerpt are available and the task of the
model is to predict the estimated pixel location x̂j in the
image. Figure 1b shows a sketch summarizing this task.

2.2 Audio-Sheet Matching as Bucket Classification

We now propose a multi-modal convolutional neural net-
work architecture that learns to match unseen audio snip-
pets (spectrogram excerpts) to their corresponding pixel lo-
cation in the sheet image.

2.2.1 Network Structure

Figure 2 provides a general overview of the deep network
and the proposed solution to the matching problem. As
mentioned above, the model operates jointly on a staff im-
age Si and the audio (spectrogram) excerpt Ei,j related to
a note j. The rightmost onset in the spectrogram excerpt
is the one related to target note j. The multi-modal model

consists of two specialized convolutional networks: one
dealing with the sheet image and one dealing with the au-
dio (spectrogram) input. In the subsequent layers we fuse
the specialized sub-networks by concatenation of the latent
image- and audio representations and additional process-
ing by a sequence of dense layers. For a detailed descrip-
tion of the individual layers we refer to Table 1 in Section
3.4. The output layer of the network and the corresponding
localization principle are explained in the following.

2.2.2 Audio-to-Sheet Bucket Classification

The objective for an unseen spectrogram excerpt and a cor-
responding staff of sheet music is to predict the excerpt’s
location xj in the staff image. For this purpose we start
with horizontally quantizing the sheet image into B non-
overlapping buckets. This discretisation step is indicated
as the short vertical lines in the staff image above the score
in Figure 2. In a second step we create for each note j in
the train set a target vector tj = {tj,b} where each vec-
tor element tj,b holds the probability that bucket b covers
the current target note j. In particular, we use soft tar-
gets, meaning that the probability for one note is shared
between the two buckets closest to the note’s true pixel lo-
cation xj . We linearly interpolate the shared probabilities
based on the two pixel distances (normalized to sum up
to one) of the note’s location xj to the respective (closest)
bucket centers. Bucket centers are denoted by cb in the
following where subscript b is the index of the respective
bucket. Figure 3 shows an example sketch of the compo-
nents described above. Based on the soft target vectors we
design the output layer of our audio-to-sheet matching net-
work as a B-way soft-max with activations defined as:

φ(yj,b) =
eyj,b

∑B
k=1 e

yj,k

(1)

φ(yj,b) is the soft-max activation of the output neuron rep-
resenting bucket b and hence also representing the region
in the sheet image covered by this bucket. By applying the
soft-max activation the network output gets normalized to
range (0, 1) and further sums up to 1.0 over all B output
neurons. The network output can now also be interpreted
as a vector of probabilities pj = {φ(yj,b)} and shares the
same value range and properties as the soft target vectors.

In training, we optimize the network parameters Θ by
minimizing the Categorical Cross Entropy (CCE) loss lj
between target vectors tj and network output pj :

lj(Θ) = −
B∑

k=1

tj,k log(pj,k) (2)

The CCE loss function becomes minimal when the net-
work output pj exactly matches the respective soft target
vector tj . In Section 3.4 we provide further information
on the exact optimization strategy used. 1

1 For the sake of completeness: In our initial experiments we started
to predict the sheet location of audio snippets by minimizing the Mean-
Squared-Error (MSE) between the predicted and the true pixel coordinate
(MSE regression). However, we observed that training these networks
is much harder and further performs worse than the bucket classification
approach proposed in this paper.
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Figure 2: Overview of multi-modal convolutional neural network for audio-to-sheet matching. The network takes a staff image and
a spectrogram excerpt as input. Two specialized convolutional network parts, one for the sheet image and one for the audio input, are
merged into one multi-modality network. The output part of the network predicts the region in the sheet image – the classification bucket
– to which the audio snippet corresponds.

Figure 3: Part of a staff of sheet music along with soft tar-
get vector tj for target note j surrounded with an ellipse. The
two buckets closest to the note share the probability (indicated as
dots) of containing the note. The short vertical lines highlight the
bucket borders.

2.3 Sheet Location Prediction

Once the model is trained, we use it at test time to predict
the expected location x̂j of an audio snippet with target
note j in a corresponding image of sheet music. The output
of the network is a vector pj = {pj,b} holding the prob-
abilities that the given test snippet j matches with bucket
b in the sheet image. Having these probabilities we con-
sider two different types of predictions: (1) We compute
the center c∗b of bucket b∗ = argmaxb pj,b holding the high-
est overall matching probability. (2) For the second case
we take, in addition to b∗, the two neighbouring buckets
b∗ − 1 and b∗ + 1 into account and compute a (linearly)
probability weighted position prediction in the sheet im-
age as

x̂j =
∑

k∈{b∗−1,b∗,b∗+1}
wkck (3)

where weight vector w contains the probabilities
{pj,b∗−1, pj,b∗ , pj,b∗+1} normalized to sum up to one and
ck are the center coordinates of the respective buckets.

3. EXPERIMENTAL EVALUATION

This section evaluates our audio-to-sheet matching model
on a publicly available dataset. We describe the experi-
mental setup, including the data and evaluation measures,
the particular network architecture as well as the optimiza-
tion strategy, and provide quantitative results.

3.1 Experiment Description

The aim of this paper is to show that it is feasible to learn
correspondences between audio (spectrograms) and im-
ages of sheet music in an end-to-end neural network fash-
ion, meaning that an algorithm learns the entire task purely
from data, so that no hand crafted feature engineering is re-
quired. We try to keep the experimental setup simple and
consider one staff of sheet music per train/test sample (this
is exactly the setup drafted in Figure 2). To be perfectly
clear, the task at hand is the following: For a given au-
dio snippet, find its x-coordinate pixel position in a corre-
sponding staff of sheet music. We further restrict the audio
to monophonic music containing half, quarter and eighth
notes but allow variations such as dotted notes, notes tied
across bar lines as well as accidental signs.

3.2 Data

For the evaluation of our approach we consider the Not-
tingham 2 data set which was used, e.g., for piano tran-
scription in [4]. It is a collection of midi files already split
into train, validation and test tracks. To be suitable for
audio-to-sheet matching we prepare the data set (midi files)
as follows:

2 www-etud.iro.umontreal.ca/˜boulanni/icml2012
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Sheet-Image 40× 390 Spectrogram 136× 40

5× 5 Conv(pad-2, stride-1-2)-64-BN-ReLu 3× 3 Conv(pad-1)-64-BN-ReLu
3× 3 Conv(pad-1)-64-BN-ReLu 3× 3 Conv(pad-1)-64-BN-ReLu

2× 2 Max-Pooling + Drop-Out(0.15) 2× 2 Max-Pooling + Drop-Out(0.15)
3× 3 Conv(pad-1)-128-BN-ReLu 3× 3 Conv(pad-1)-96-BN-ReLu
3× 3 Conv(pad-1)-128-BN-ReLu 2× 2 Max-Pooling + Drop-Out(0.15)

2× 2 Max-Pooling + Drop-Out(0.15) 3× 3 Conv(pad-1)-96-BN-ReLu
2× 2 Max-Pooling + Drop-Out(0.15)

Dense-1024-BN-ReLu + Drop-Out(0.3) Dense-1024-BN-ReLu + Drop-Out(0.3)
Concatenation-Layer-2048

Dense-1024-BN-ReLu + Drop-Out(0.3)
Dense-1024-BN-ReLu + Drop-Out(0.3)

B-way Soft-Max Layer

Table 1: Architecture of Multi-Modal Audio-to-Sheet Matching Model: BN: Batch Normalization, ReLu: Rectified Linear Activation
Function, CCE: Categorical Cross Entropy, Mini-batch size: 100

1. We select the first track of the midi files (right hand,
piano) and render it as sheet music using Lilypond. 3

2. We annotate the sheet coordinate xj of each note.

3. We synthesize the midi-tracks to flac-audio using
Fluidsynth 4 and a Steinway piano sound font.

4. We extract the audio timestamps of all note onsets.

As a last preprocessing step we compute log-spectrograms
of the synthesized flac files [3], with an audio sample rate
of 22.05kHz, FFT window size of 2048 samples, and com-
putation rate of 31.25 frames per second. For dimension-
ality reduction we apply a normalized 24-band logarithmic
filterbank allowing only frequencies from 80Hz to 8kHz.
This results in 136 frequency bins.

We already showed a spectrogram-to-sheet annotation
example in Figure 1a. In our experiment we use spectro-
gram excerpts covering 1.2 seconds of audio (40 frames).
This context is kept the same for training and testing.
Again, annotations are aligned in a way so that the right-
most onset in a spectrogram excerpt corresponds to the
pixel position of target note j in the sheet image. In ad-
dition, the spectrogram is shifted 5 frames to the right to
also contain some information on the current target note’s
onset and pitch. We chose this annotation variant with the
rightmost onset as it allows for an online application of our
audio-to-sheet model (as would be required, e.g., in a score
following task).

3.3 Evaluation Measures

To evaluate our approach we consider, for each test note j,
the following ground truth and prediction data: (1) The true
position xj as well as the corresponding target bucket bj
(see Figure 3). (2) The estimated sheet location x̂j and the
most likely target bucket b∗ predicted by the model. Given
this data we compute two types of evaluation measures.

The first – the top-k bucket hit rate – quantifies the ratio
of notes that are classified into the correct bucket allowing

3 http://www.lilypond.org/
4 http://www.fluidsynth.org/

a tolerance of k−1 buckets. For example, the top-1 bucket
hit rate counts only those notes where the predicted bucket
b∗ matches exactly the note’s target bucket bj . The top-2
bucket hit rate allows for a tolerance of one bucket and so
on. The second measure – the normalized pixel distance –
captures the actual distance of a predicted sheet location x̂j
to its corresponding true position xj . To allow for an eval-
uation independent of the image resolution used in our ex-
periments we normalize the pixel errors by dividing them
by the width of the sheet image as (x̂j − xj)/width(Si).
This results in distance errors living in range (−1, 1).

We would like to emphasise that the quantitative eval-
uations based on the measures introduced above are per-
formed only at time steps where a note onset is present. At
those points in time an explicit correspondence between
spectrogram (onset) and sheet image (note head) is es-
tablished. However, in Section 4 we show that a time-
continuous prediction is also feasible with our model and
onset detection is not required at run time.

3.4 Model Architecture and Optimization

Table 1 gives details on the model architecture used for
our experiments. As shown in Figure 2, the model is struc-
tured into two disjoint convolutional networks where one
considers the sheet image and one the spectrogram (audio)
input. The convolutional parts of our model are inspired by
the VGG model built from sequences of small convolution
kernels (e.g. 3 × 3) and max-pooling layers. The central
part of the model consists of a concatenation layer bring-
ing the image and spectrogram sub-networks together. Af-
ter two dense layers with 1024 units each we add a B-way
soft-max output layer. Each of the B soft-max output neu-
rons corresponds to one of the disjoint buckets which in
turn represent quantised sheet image positions. In our ex-
periments we use a fixed number of 40 buckets selected as
follows: We measure the minimum distance between two
subsequent notes – in our sheet renderings – and select the
number of buckets such that each bucket contains at most
one note. It is of course possible that no note is present
in a bucket – e.g., for the buckets covering the clef at the
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Figure 4: Summary of matching results on test set. Left: His-
togram of bucket distances between predicted and true buckets.
Right: Box-plots of absolute normalized pixel distances between
predicted and true image position. The box-plot is shown for both
location prediction methods described in Section 2.3 (maximum,
interpolated).

beginning of a staff. As activations function for the inner
layers we use rectified linear units [10] and apply batch
normalization [11] after each layer as it helps training and
convergence.

Given this architecture and data we optimize the param-
eters of the model using mini-batch stochastic gradient de-
scent with Nesterov style momentum. We set the batch
size to 100 and fix the momentum at 0.9 for all epochs.
The initial learn-rate is set to 0.1 and divided by 10 every
10 epochs. We additionally apply a weight decay of 0.0001
to all trainable parameters of the model.

3.5 Experimental Results

Figure 4 shows a histogram of the signed bucket distances
between predicted and true buckets. The plot shows that
more than 54% of all unseen test notes are matched ex-
actly with the corresponding bucket. When we allow for
a tolerance of ±1 bucket our model is able to assign over
84% of the test notes correctly. We can further observe that
the prediction errors are equally distributed in both direc-
tions – meaning too early and too late in terms of audio.
The results are also reported in numbers in Table 2, as the
top-k bucket hit rates for train, validation and test set.

The box plots in the right part of Figure 4 summarize
the absolute normalized pixel distances (NPD) between
predicted and true locations. We see that the probability-
weighted position interpolation (Section 2.3) helps im-
prove the localization performance of the model. Table 2
again puts the results in numbers, as means and medians of
the absolute NPD values. Finally, Fig. 2 (bottom) reports
the ratio of predictions with a pixel distance smaller than
the width of a single bucket.

4. DISCUSSION AND REAL MUSIC

This section provides a representative prediction example
of our model and uses it to discuss the proposed approach.
In the second part we then show a first step towards match-
ing real (though still very simple) music to its correspond-
ing sheet. By real music we mean audio that is not just

Train Valid Test
Top-1-Bucket-Hit-Rate 79.28% 51.63% 54.64%
Top-2-Bucket-Hit-Rate 94.52% 82.55% 84.36%
mean(|NPDmax|) 0.0316 0.0684 0.0647
mean(|NPDint|) 0.0285 0.0670 0.0633
median(|NPDmax|) 0.0067 0.0119 0.0112
median(|NPDint|) 0.0033 0.0098 0.0091
|NPDmax| < wb 93.87% 76.31% 79.01%
|NPDint| < wb 94.21% 78.37% 81.18%

Table 2: Top-k bucket hit rates and normalized pixel distances
(NPD) as described in Section 3.4 for train, validation and test
set. We report mean and median of the absolute NPDs for both
interpolated (int) and maximum (max) probability bucket predic-
tion. The last two rows report the percentage of predictions not
further away from the true pixel location than the width wb of one
bucket.

synthesized midi, but played by a human on a piano and
recorded via microphone.

4.1 Prediction Example and Discussion

Figure 5 shows the image of one staff of sheet music along
with the predicted as well as the ground truth pixel location
for a snippet of audio. The network correctly matches the
spectrogram with the corresponding pixel location in the
sheet image. However, we observe a second peak in the
bucket prediction probability vector. A closer look shows
that this is entirely reasonable, as the music is quite repet-
itive and the current target situation actually appears twice
in the score. The ability of predicting probabilities for
multiple positions is a desirable and important property, as
repetitive structures are immanent to music. The resulting
prediction ambiguities can be addressed by exploiting the
temporal relations between the notes in a piece by meth-
ods such as dynamic time warping or probabilistic models.
In fact, we plan to combine the probabilistic output of our
matching model with existing score following methods, as
for example [2]. In Section 2 we mentioned that training a
sheet location prediction with MSE-regression is difficult
to optimize. Besides this technical drawback it would not
be straightforward to predict a variable number of locations
with an MSE-model, as the number of network outputs has
to be fixed when designing the model.

In addition to the network inputs and prediction Fig. 5
also shows a saliency map [19] computed on the input
sheet image with respect to the network output. 5 The
saliency can be interpreted as the input regions to which
most of the net’s attention is drawn. In other words, it high-
lights the regions that contribute most to the current output
produced by the model. A nice insight of this visualiza-
tion is that the network actually focuses and recognizes the
heads of the individual notes. In addition it also directs
some attention to the style of stems, which is necessary to
distinguish for example between quarter and eighth notes.

5 The implementation is adopted from an example by Jan Schlüter in
the recipes section of the deep learning framework Lasagne [7].
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Figure 5: Example prediction of the proposed model. The top row shows the input staff image Si along with the bucket borders as thin
gray lines, and the given query audio (spectrogram) snippet Ei,j . The plot in the middle visualizes the salience map (representing the
attention of the neural network) computed on the input image. Note that the network’s attention is actually drawn to the individual note
heads. The bottom row compares the ground truth bucket probabilities with the probabilities predicted by the network. In addition, we
also highlight the corresponding true and predicted pixel locations in the staff image in the top row.

The optimization on soft target vectors is also reflected
in the predicted bucket probabilities. In particular the
neighbours of the bucket with maximum activation are also
active even though there is no explicit neighbourhood re-
lation encoded in the soft-max output layer. This helps the
interpolation of the true position in the image (see Fig. 4).

4.2 First Steps with Real Music

As a final point, we report on first attempts at working with
“real” music. For this purpose one of the authors played
the right hand part of a simple piece (Minuet in G Major
by Johann Sebastian Bach, BWV Anhang 114) – which,
of course, was not part of the training data – on a Yamaha
AvantGrand N2 hybrid piano and recorded it using a sin-
gle microphone. In this application scenario we predict
the corresponding sheet locations not only at times of on-
sets but for a continuous audio stream (subsequent spec-
trogram excerpts). This can be seen as a simple version
of online score following in sheet music, without taking
into account the temporal relations of the predictions. We
offer the reader a video 6 that shows our model following
the first three staff lines of this simple piece. 7 The ra-
tio of predicted notes having a pixel-distance smaller than
the bucket width (compare Section 3.5) is 71.72% for this

6 https://www.dropbox.com/s/0nz540i1178hjp3/
Bach_Minuet_G_Major_net4b.mp4?dl=0

7 Note: our model operates on single staffs of sheet music and requires
a certain context of spectrogram frames for prediction (in our case 40
frames). For this reason it cannot provide a localization for the first couple
of notes in the beginning of each staff at the current stage. In the video
one can observe that prediction only starts when the spectrogram in the
top right corner has grown to the desired size of 40 frames. We kept this
behaviour for now as we see our work as a proof of concept. The issue
can be easily addressed by concatenating the images of subsequent staffs
in horizontal direction. In this way we will get a “continuous stream of
sheet music” analogous to a spectrogram for audio.

real recording. This corresponds to a average normalized-
pixel-distance of 0.0402.

5. CONCLUSION

In this paper we presented a multi-modal convolutional
neural network which is able to match short snippets of
audio with their corresponding position in the respective
image of sheet music, without the need of any symbolic
representation of the score. First evaluations on simple pi-
ano music suggest that this is a very promising new ap-
proach that deserves to be explored further.

As this is a proof of concept paper, naturally our method
still has some severe limitations. So far our approach can
only deal with monophonic music, notated on a single
staff, and with performances that are roughly played in the
same tempo as was set in our training examples.

In the future we will explore options to lift these limi-
tations one by one, with the ultimate goal of making this
approach applicable to virtually any kind of complex sheet
music. In addition, we will try to combine this approach
with a score following algorithm. Our vision here is to
build a score following system that is capable of dealing
with any kind of classical sheet music, out of the box, with
no need for data preparation.
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Janer. Audio-to-score alignment at note level for or-
chestral recordings. In Proc. of the International
Conference on Music Information Retrieval (ISMIR),
Taipei, Taiwan, 2014.

[15] Meinard Müller, Frank Kurth, and Michael Clausen.
Audio matching via chroma-based statistical features.
In Proc. of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), London, Great
Britain, 2005.

[16] Bernhard Niedermayer and Gerhard Widmer. A multi-
pass algorithm for accurate audio-to-score alignment.
In Proc. of the International Society for Music In-
formation Retrieval Conference (ISMIR), Utrecht, The
Netherlands, 2010.

[17] Matthew Prockup, David Grunberg, Alex Hrybyk, and
Youngmoo E. Kim. Orchestral performance compan-
ion: Using real-time audio to score alignment. IEEE
Multimedia, 20(2):52–60, 2013.

[18] Christopher Raphael. Music Plus One and machine
learning. In Proceedings of the International Confer-
ence on Machine Learning (ICML), 2010.

[19] Jost Tobias Springenberg, Alexey Dosovitskiy,
Thomas Brox, and Martin Riedmiller. Striving for sim-
plicity: The all convolutional net. arXiv:1412.6806,
2014.

[20] Verena Thomas, Christian Fremerey, Meinard Müller,
and Michael Clausen. Linking Sheet Music and Au-
dio - Challenges and New Approaches. In Meinard
Müller, Masataka Goto, and Markus Schedl, editors,
Multimodal Music Processing, volume 3 of Dagstuhl
Follow-Ups, pages 1–22. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik, Dagstuhl, Germany, 2012.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 795
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ABSTRACT

MIDI files abound and provide a bounty of information
for music informatics. We enumerate the types of infor-
mation available in MIDI files and describe the steps nec-
essary for utilizing them. We also quantify the reliability
of this data by comparing it to human-annotated ground
truth. The results suggest that developing better methods
to leverage information present in MIDI files will facili-
tate the creation of MIDI-derived ground truth for audio
content-based MIR.

1. MIDI FILES

MIDI (Music Instrument Digital Interface) is a hardware
and software standard for communicating musical events.
First proposed in 1983 [1], MIDI remains a highly per-
vasive standard both for storing musical scores and com-
municating information between digital music devices. Its
use is perhaps in spite of its crudeness, which has been
lamented since MIDI’s early days [21]; most control values
are quantized as 7-bit integers and information is transmit-
ted at the relatively slow (by today’s standards) 31,250 bits
per second. Nevertheless, its efficiency and well-designed
specification make it a convenient way of formatting digi-
tal music information.

In the present work, we will focus on MIDI files, which
in a simplistic view can be considered a compact way of
storing a musical score. MIDI files are specified by an ex-
tension to the MIDI standard [2] and consist of a sequence
of MIDI messages organized in a specific format. A typical
MIDI file contains timing and meter information in addi-
tion to a collection of one or more “tracks”, each of which
contains a sequence of notes and control messages. The
General MIDI standard [3] further specifies a collection of
128 instruments on which the notes can be played, which
standardizes the playback of MIDI files and has therefore
been widely adopted.

When paired with a General MIDI synthesizer, MIDI
files have been used as a sort of semantic audio codec,

c© Colin Raffel and Daniel P. W. Ellis. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Colin Raffel and Daniel P. W. Ellis. “Extracting Ground
Truth Information from MIDI Files: A MIDIfesto”, 17th International
Society for Music Information Retrieval Conference, 2016.

with entire songs only requiring a few kilobytes of stor-
age. The early availability of this “coding method”, com-
bined with the expense of digital storage in the 90s, made
MIDI files a highly pervasive method of storing and play-
ing back songs before the advent of the MP3. Even af-
ter high-quality perceptual audio codecs were developed
and storage prices plummeted, MIDI files remained in use
in resource-scarce settings such as karaoke machines and
cell phone ringtones. As a result, there is an abundance of
MIDI file transcriptions of music available today; through
a large-scale web scrape, we obtained 178,561 MIDI files
with unique MD5 checksums. Given their wide availabil-
ity, we believe that MIDI files are underutilized in the Mu-
sic Information Retrieval community.

In this paper, we start by outlining the various sources
of information present in MIDI files and reference rele-
vant works which utilize them in Section 2. In Section
3, we discuss the steps needed to leverage MIDI-derived
information as ground truth for content-based MIR. We
then establish a baseline for the reliability of MIDI-derived
ground truth by comparing it to handmade annotations in
Section 4. Finally, in Section 5, we argue that improving
the process of extracting information from MIDI files is a
viable path for creating large amounts of ground truth data
for MIR.

2. INFORMATION AVAILABLE IN MIDI FILES

While various aspects of MIDI files have been used in
MIR research, to our knowledge there has been no uni-
fied overview of the information they provide, nor a dis-
cussion of the availability and reliability of this informa-
tion in MIDI transcriptions found “in the wild”. We there-
fore present an enumeration of the different information
sources in a typical MIDI file and discuss their applicabil-
ity to different MIR tasks. Because not all MIDI files are
created equal, we also computed statistics about the pres-
ence and quantity of each information source across our
collection of 178,561 MIDI files; the results can be seen in
Figure 1 and will be discussed in the following sections.

2.1 Transcription

MIDI files are specified as a collection of “tracks”, where
each track consists of a sequence of MIDI events on one
of 16 channels. Commonly used MIDI events are note-
on and note-off messages, which together specify the start
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Figure 1: Statistics about sources of information in 178,561 unique MIDI files scraped from the internet. Histograms in
the top row show the number of MIDI files which had a given number of events for different event types; in the bottom row,
we show distributions of the different values set by these events across all MIDI files. All counts are reported in thousands.
For example, about 125,000 MIDI files had a single time signature change event, and about 210,000 4/4 time signature
changes were found in all of our MIDI files.

and end time of notes played at a given pitch on a given
channel. Various control events also exist, such as pitch
bends, which allow for finer control of the playback of
the MIDI file. Program change events determine which in-
strument these events are sent to. The General MIDI stan-
dard defines a correspondence between program numbers
and a predefined list of 128 instruments. General MIDI
also specifies that all notes occurring on MIDI channel 10
play on a separate percussion instrument, which allows for
drum tracks to be transcribed. The distribution of the to-
tal number of program change events (corresponding to
the number of instruments) across the MIDI files in our
collection and the distribution of these program numbers
are shown in Figures 1(a) and 1(e) respectively. The four
most common program numbers (shown as the four tallest
bars in Figure 1(e)) were 0 (“Acoustic Grand Piano”), 48
(“String Ensemble 1”), 33 (“Electric Bass (finger)”), and
25 (“Acoustic Guitar (steel)”).

This specification makes MIDI files naturally suited to
be used as transcriptions of pieces of music, due to the
fact that they can be considered a sequence of notes played
at different “velocities” (intensities) on a collection of in-
struments. As a result, many MIDI files are transcriptions
and are thus commonly used as training data for automatic
transcription systems (see [32] for an early example). This
type of data also benefits score-informed source separa-
tion methods, which utilize the score as a prior to improve
source separation quality [15]. An additional natural use
of this information is for “instrument activity detection”,
i.e. determining when certain instruments are being played
over the course of a piece of music. Finally, the enumera-
tion of note start times lends itself naturally to onset detec-
tion, and so MIDI data has been used for this task [4].

2.2 Music-Theoretic Features

Because many MIDI files are transcriptions of music, they
can also be used to compute high-level musicological char-
acteristics of a given piece. Towards this end, the soft-

ware library jSymbolic [20] includes functionality to
extract a wide variety of features, including instrumenta-
tion, rhythm, and pitch statistics. Similarly, music21 [9]
provides a general-purpose framework for analyzing col-
lections of digital scores (including MIDI files). Comput-
ing these features on a collection of MIDI transcriptions
is valuable for computational musicology and can enable
data-driven corpus studies. For example, [10] discusses
the use of music21 and jSymbolic to extract features
from scores and uses them to distinguish music from dif-
ferent composers and musical traditions.

2.3 Meter

Timing in MIDI files is determined by two factors:
The MIDI file’s specified “resolution” and tempo change
events. Each event within the MIDI file specifies the num-
ber of “ticks” between it and the preceding event. The res-
olution, which is stored in the MIDI file’s header, sets the
number of ticks which correspond to a single beat. The
amount of time spanned by each tick is then determined
according to the current tempo, as set by tempo change
events. For example, if a MIDI file has a resolution of
220 ticks per beat and the current tempo is 120 beats per
minute, 1 each tick would correspond to 60/(120∗220) =
0.00227 seconds. If a MIDI event in this file is specified
to occur 330 ticks after the previous event, then it would
occur 330 ∗ 0.00227 = .75 seconds later.

The timing in a MIDI file can vary over time by includ-
ing many tempo change events. In practice, as shown in
Figure 1(b), most MIDI files only contain a single tempo
change and are therefore transcribed at a fixed tempo.
However, there are many MIDI files in our collection
which have a large number of tempo change events (as
indicated by the rightmost bars in Figure 1(b)). We have
found that this is a common practice for making the tim-
ing of a MIDI transcription closely match that of an audio

1 Actually, tempo change events specify the number of microseconds
per quarter beat, but this can be readily converted to beats per minute.
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recording of the same song. Despite the fact that the de-
fault tempo for a MIDI file is 120 beats per minute, Figure
1(f) demonstrates that a wide range of tempos are used.
In practice, we find that this is due to the fact that even
when a single tempo event is used, it is often set so that the
MIDI transcription’s tempo approximates that of an audio
recording of the same song.

Time signature change events further augment MIDI
files with the ability to specify time signatures, and are
also used to indicate the start of a measure. By convention,
MIDI files have a time signature change at the first tick,
although this is not a requirement. Because time signature
changes are relatively rare in western popular music, the
vast majority of the MIDI files in our collection contain a
single time signature change, as seen in Figure 1(c). De-
spite the fact that 4/4 is the default time signature for MIDI
files and is pervasive in western popular music, a substan-
tial portion (about half) of the time signature changes were
not 4/4, as shown in Figure 1(g).

Because MIDI files are required to include tempo infor-
mation in order to specify their timing, it is straightforward
to extract beat locations from a MIDI file. By convention,
the first (down)beat in a MIDI transcription occurs at the
first tick. Determining the beat locations in a MIDI file
therefore involves computing beat locations starting from
the first tick and adjusting the tempo and time signature
according to any tempo change or time signature change
events found. Despite this capability, to our knowledge
MIDI files have not been used as ground truth for beat
tracking algorithms. However, [19] utilized a large dataset
of MIDI files to study drum patterns using natural language
processing techniques.

2.4 Key

An additional useful event in MIDI files is the key change
event. Any of the 24 major or minor keys may be specified.
Key changes simply give a suggestion as to the tonal con-
tent and do not affect playback, and so are a completely
optional meta-event. As seen in Figure 1(d), this results
in many MIDI files omitting key change events altogether.
A further complication is that a disproportionate number
(about half) of the key changes in the MIDI files in our
collection were C major, as shown in Figure 1(h). This
disagrees with corpus studies of popular music, e.g. [8]
which found that only about 26% of songs from the Bill-
board 100 were in C major. We believe this is because
many MIDI transcription software packages automatically
insert a C major key change at the beginning of the file.

2.5 Lyrics

Lyrics can be added to MIDI transcriptions by the use of
lyrics meta-events, which allow for timestamped text to
be included over the course of the song. This capabil-
ity enables the common use of MIDI files for karaoke; in
fact, a separate file extension “.kar” is often used for MIDI
files which include lyrics meta-events. Occasionally, the
generic text meta-event is also used for lyrics, but this is
not its intended use. In our collection, we found 23,801
MIDI files (about 13.3%) which had at least one lyrics
meta-event.

2.6 What’s Missing

Despite the wide variety of information sources available
in MIDI files outlined in the previous sections, there are
various types of information which are not possible (or not
common) to store in MIDI files. While the General MIDI
specification includes the vocal instruments “Choir Aahs”,
“Voice Oohs”, “Synth Choir”, “Lead 6 (voice)” and “Pad
4 (choir)”, in practice there is no specific program number
(or numbers) which is consistently used to transcribe vo-
cals. As a result, in a given MIDI file there is no reliable
way of determining which instrument is a transcription of
the vocals in a song. Furthermore, because a substantial
portion of MIDI files were designed for karaoke, the vo-
cals may not be transcribed at all.

While the MIDI specification does include “track
name”, “program name”, and “instrument name” meta-
events, they are not standardized and so are not used con-
sistently. It follows that there is no simple way to retrieve
the “melody” from a MIDI transcription, although the fact
that all instruments are transcribed separately can make its
estimation more straightforward than for audio files. For
example, [31] explores the use of simple features such as
the average velocity and note range within a track to pre-
dict whether it is a melody, and also finds that in a small
dataset the track name reliably indicates a melody track
44.3% of the time. Similarly, [23] uses heuristic features
and a random forest classifier to predict with high accuracy
whether a track is a melody.

There is also no explicit way for MIDI files to include
chord labels or structural segmentation boundaries (e.g.
“verse”, “chorus”, “solo”). While this would in princi-
ple be possible thanks to the generic MIDI “text” meta-
event, we have yet to find any MIDI files which store this
information. Nevertheless, estimating chords in particu-
lar is greatly facilitated by the presence of a ground truth
transcription. Both music21 [9] and melisma [30] in-
clude functionality for estimating chord sequences from
symbolic data. Rhodes et al. [29] also proposed a symbolic
chord estimation method using Bayesian Model Selection,
which was shown to outperform melisma on a dataset of
Beatles MIDI files in [14].

While text meta-events could also be used to store song-
level metadata (song title, artist name, etc.) in a MIDI file,
we seldom encountered this. There is no standardized way
to store this metadata in a MIDI file, although we found
that a minority of the filenames in our collection indicated
the song title and occasionally the artist name. The lack
of a metadata specification also inhibits the attribution of
MIDI transcriptions to the person who transcribed them.

3. UTILIZING MIDI FILES AS GROUND TRUTH

Utilizing MIDI files as ground truth information for au-
dio content-based MIR tasks requires the following: First,
the compact low-level binary format used by MIDI files
must be parsed so that the information can be readily ex-
tracted. Second, the artist and song of a MIDI file must be
determined so it can be paired with a corresponding audio
recording. Finally, for many uses, the MIDI file must be
aligned in time with its matching audio.
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3.1 Extracting Information

The information sources enumerated in Section 2 are not
readily available from MIDI files due to fact that they
follow a low-level binary protocol. For example, in or-
der to extract the time (in seconds) of all onsets from a
given instrument in a MIDI file, note events which oc-
cur on the same track and channel as program change
events for the instrument must be collected and their tim-
ing must be computed from their relative ticks using the
global tempo change events. Fortunately, various soft-
ware libraries have been created to facilitate this process.
pretty_midi [24] simplifies the extraction of useful in-
formation from MIDI transcriptions by taking care of most
of the low-level parsing needed to convert the information
to a more human-friendly format. It contains functions for
retrieving beats, onsets, and note lists from specific instru-
ments, and the times and values of key, tempo, and time
signature changes. It also can be used to modify MIDI
files, as well as to convert them to synthesized audio or a
spectrogram-like piano roll representation. The aforemen-
tioned jSymbolic contains an extensive collection of
routines for computing musicological features from MIDI
files. Finally, both music21 and melisma are capable
of inferring high-level music information from symbolic
data of various types, including MIDI.

3.2 Matching

Apart from metadata-agnostic corpus studies such as [19],
determining the song a given MIDI file represents is usu-
ally required. Matching a given MIDI file to, for example,
a corresponding entry in the Million Song Dataset [5] can
be beneficial even in experiments solely involving sym-
bolic data analysis because it can provide additional meta-
data for the track including its year, genre, and user-applied
tags. Utilizing information in a MIDI file for ground truth
in audio content-based MIR tasks further requires that it be
matched to an audio recording of the song, but this is made
difficult by the lack of a standardized method for storing
song-level metadata in MIDI files (as discussed in Sec-
tion 2.6). Content-based matching offers a solution; for
example, early work by Hu et al. [17] assigned matches
by finding the smallest dynamic time warp (DTW) dis-
tance between spectrograms of MIDI syntheses and au-
dio files across a corpus. This approach is prohibitively
slow for very large collections of MIDI and/or audio files,
so [25] explored learning a mapping from spectrograms to
downsampled sequences of binary vectors, which greatly
accelerates DTW. [27] provided further speed-up by map-
ping entire spectrograms to fixed-length vectors in a Eu-
clidean space where similar songs are mapped close to-
gether. These methods make it feasible to match a MIDI
file against an extremely large corpus of music audio.

3.3 Aligning

There is no guarantee that a MIDI transcription for a given
song was transcribed so that its timing matches an audio
recording of a performance of the song. For the many types
of ground truth data that depend on timing (e.g. beats, note
transcription, or lyrics), the MIDI file must therefore have

its timing adjusted so that it matches that of the perfor-
mance. Fortunately, score-to-audio alignment, of which
MIDI-to-audio alignment is a special “offline” case, has
received substantial research attention. A common method
is to use DTW or another edit-distance measure to find the
best alignment between spectrograms of the synthesized
MIDI and the audio recording; see [26] or [14] for surveys.

In practice, audio-to-MIDI alignment systems can fail
when there are overwhelming differences in timing or de-
ficiencies in the transcription, e.g. missing or incorrect
notes or instruments. Ideally, the alignment and match-
ing processes would automatically report the success of the
alignment and the quality of the MIDI transcription. [26]
explores the ability of DTW-based alignment systems to
report a “confidence” score indicating the success of the
alignment. We do not know of any research into automati-
cally determining the quality of a MIDI transcription.

4. MEASURING A BASELINE OF RELIABILITY
FOR MIDI-DERIVED INFORMATION

Given the potential availability of ground truth information
in MIDI transcriptions, we wish to measure the reliability
of MIDI transcriptions found “in the wild”. A straightfor-
ward way to evaluate the quality of MIDI-derived annota-
tions is to compare them with hand-made annotations for
the same songs. Given a MIDI transcription and human-
generated ground truth data, we can extract correspond-
ing information from the MIDI file and compare using
the evaluation metrics employed in the Music Information
Retrieval Evaluation eXchange (MIREX) [12]. We there-
fore leveraged the Isophonics Beatles annotations [18] as
a source of ground truth to compare against MIDI-derived
information. MIDI transcriptions of these songs are readily
available due to The Beatles’ popularity.

Our choice in tasks depends on the overlap in sources of
information in the Isophonics annotations and MIDI files.
Isophonics includes beat times, song-level key informa-
tion, chord changes, and structural segmentation. As noted
in Section 2, beat times and key changes may be included
in MIDI files but there is no standard way to include chord
change or structural segmentation information. We there-
fore performed experiments to evaluate the quality of key
labels and beat times available in MIDI files. Fortuitously,
these two experiments give us an insight into both song-
level timing-agnostic information (key) and alignment-
dependent timing-critical information (beats). To carry out
these experiments, we first manually identified 545 MIDI
files from our collection which had filenames indicating
that they were transcriptions of one of the 179 songs in the
Isophonics Beatles collection; we found MIDI transcrip-
tions for all but 11. The median number of MIDI tran-
scriptions per song was 2; the song “Eleanor Rigby” had
the most, with 14 unique transcriptions.

4.1 Key Experiment

In our first experiment, we evaluated the reliability of key
change events in MIDI files. We followed the MIREX
methodology for comparing keys [13], which proceeds as
follows: Each song may only have a single key. All keys
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Source Score Comparisons

MIDI, all keys 0.400 223
MIDI, C major only 0.167 146
MIDI, non-C major 0.842 77
QM Key Detector 0.687 151
whatkeyisitin.com 0.857 145

Table 1: Mean scores achieved, and the number of com-
parisons made, by different datasets compared to Isophon-
ics Beatles key annotations.

must be either major or minor, e.g. “C# Major” and “E
minor” are allowed but “D Mixolydian” is not. An esti-
mated key is given a score of 1.0 when it exactly matches
a ground truth key, 0.5 when it is a perfect fifth above the
ground truth key, 0.3 when it is a relative major or minor,
0.2 when it is a parallel major or minor, and 0.0 otherwise.
We utilized the evaluation library mir_eval [28] to com-
pute this score.

The Isophonics annotations mostly follow this format,
except that 21 songs contained multiple key annotations
and 7 others contained non-major/minor keys. To simplify
evaluation, we discarded these songs, leaving 151 ground
truth key annotations. Of our 545 Beatles MIDIs, 221 had
no key change event and 5 had more than one, which we
also omitted from evaluation. This left 223 MIDI files for
which we extracted key annotations and compared them to
valid Isophonics annotations. Because of the preponder-
ance of C major key change events noted in Section 2.4,
we also evaluated MIDI-derived C Major and non-C major
instances separately to see whether they were less reliable.

As a baseline, we also extracted keys using the QM
Vamp Key Detector plugin [7] whose underlying algorithm
is based on [22] which finds the key profile best corre-
lated with the chromagram of a given song. This plu-
gin achieved the highest score in MIREX 2013, and has
been the only key detection algorithm submitted in 2014
and 2015. This gives us a reasonable expectation for a
good audio content-based key estimator. To determine
the extent to which human annotators agree on key labels,
we also collected key annotations for Beatles’ songs from
whatkeyisitin.com. As with the Isophonics key an-
notations, some songs had multiple and/or modal key la-
bels; we discarded these and ended up with 145 labels for
songs in the Isophonics dataset.

The mean scores resulting from comparing each dataset
to the Isophonics annotations can be seen in Table 1. At
first glance, the mean score of 0.4 achieved by MIDI key
change messages is discouraging. However, by omitting
all MIDI files with C major key events (which achieved a
mean score of 0.167), the mean score jumps to 0.842. This
is comparable to the human baseline, and is substantially
higher than the algorithmically estimated score. We there-
fore propose that non-C major MIDI key change events are
as reliable as hand-annotated labels, but that C major key
annotations in MIDI files are effectively useless.

4.2 Beat Experiment

Utilizing many of the sources of information in MIDI files
depends on the precise alignment of a given MIDI file to
an audio recording of a performance of the same song. We
therefore performed an additional experiment to evaluate
the quality of MIDI-derived beat annotations, which are
evaluated on the scale of tens of milliseconds. Producing
valid beat annotations from a MIDI file requires not only
that the file’s meter information is correct, but also that it
has been aligned with high precision.

To align our Beatles MIDI files to corresponding audio
recordings, we used the scheme proposed in [26], which
was found by a large-scale search over common DTW-
based audio-to-MIDI alignment systems. We give an out-
line of this method below; for a full description, see [26].
First, the MIDI file is synthesized using the fluidsynth
program. Log-magnitude, constant-Q spectrograms of the
synthesized MIDI and audio recording are extracted and
their pairwise cosine distance matrix is computed. The
lowest-cost path through the distance matrix is then found
using DTW, with the constraint that the path must span at
least 96% of the shorter of the two spectrograms. In ad-
dition, all paths are penalized by adding the median value
of the distance matrix each time a frame in one spectro-
gram is mapped to multiple frames in the other. Finally, a
“confidence score” is computed as the mean pairwise dis-
tance along the lowest-cost path, normalized by mean of
the submatrix spanned by the path.

We followed [26] exactly, except for the following
changes: First, instead of computing spectrograms with a
hop size of 46 ms, we used 23 ms. This finer timescale
is more appropriate for the beat evaluation metrics we
will use, which have tolerances measured in tens of mil-
liseconds. Second, the confidence scores computed using
the method of [26] lie in the range [0.5, 1.0] where 0.5
corresponds to “highly confident” and 1.0 corresponds to
“likely wrong”; we mapped this linearly to a more easily-
interpretable range of [0.0, 1.0] where higher scores mean
higher confidence.

We used pretty_midi’s get_beats method to ex-
tract beat times from our 545 Beatles MIDI files, and
adjusted each beat’s timing according to the MIDI file’s
alignment to corresponding audio recordings. For eval-
uation, we used the F-measure, Any Metric Level Total,
and Information Gain metrics described in [11], as im-
plemented in mir_eval. As a baseline, we also com-
puted beat locations using the DBNBeatTracker from
the madmom software library, 2 which is based on the
algorithm from [6]. This represents a state-of-the-art
general-purpose beat tracker which, on the Beatles data,
can reliably produce high-quality annotations. If MIDI-
derived beat annotations are to be taken as ground truth,
they must achieve scores similar to or higher than the
DBNBeatTracker.

We visualize the resulting scores in Figure 2. Because
we don’t expect beats to be extracted accurately from MIDI
files that are poor transcriptions or when alignment failed,
we plotted each MIDI file as a single point whose x coor-

2 https://github.com/CPJKU/madmom
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Figure 2: Beat evaluation metric scores (compared to Isophonics beat annotations) and alignment confidence scores
achieved by different audio-to-MIDI alignments of Beatles MIDI files, with each shown as a blue dot. Mean scores for
each metric achieved by the DBNBeatTracker [6] are shown as dashed lines.

dinate corresponds to the alignment confidence score and
whose y coordinate is the resulting evaluation metric score
achieved. Ideally, all points in these plots would be clus-
tered in the bottom left (corresponding to failed alignments
with low confidence scores) or top right (corresponding
to a successful alignment and beat annotation extraction
with a high confidence score). For reference, we plot
the mean score achieved by the DBNBeatTracker as
dotted lines for each metric. From these plots, we can
see that in many cases, MIDI-derived annotations achieve
near-perfect scores, particularly for the F-Measure and Any
Metric Level Total metrics. However, there is no reliable
correspondence between high confidence scores and high
evaluation metric scores. For example, while it appears
that a prerequisite for an accurate MIDI-derived beat an-
notation is a confidence score above .5, there are many
MIDI files which had high confidence scores but low met-
ric scores (appearing in the bottom-right corner of the plots
in Figure 2).

We found that this undesirable behavior was primar-
ily caused by a few issues: First, it is common that the
alignment system would produce alignments which were
slightly “sloppy”, i.e. were off by one or two frames (cor-
responding to 23 milliseconds each) in places. This had
less of an effect on the F-measure and Any Metric Level
Total metrics, which are invariant to small temporal errors
up to a certain threshold, but deflated the Information Gain
scores because this metric rewards consistency even for
fine-timing errors. Second, many MIDI files had tempos
which were at a different metric level than the annotations
(e.g. double, half, or a third of the tempo). This affected
the Any Metric Level Total scores the least because it is in-
variant to these issues, except for the handful of files which
were transcribed at a third of the tempo. Finally, we found
that the confidence score produced by the alignment sys-
tem is most reliable at producing a low score in the event
of a total failure (indicated by points in the bottom left of
the plots in Figure 2), but was otherwise insensitive to the
more minor issues that can cause beat evaluation metrics
to produce low scores.

5. DISCUSSION

Our results suggest that while MIDI files have the poten-
tial to be valuable sources of ground truth information,
their usage may come with a variety of caveats. However,
due to the enormous number of MIDI transcriptions avail-
able, we believe that developing better methods to lever-
age information present in MIDI files is a tantalizing av-
enue for obtaining more ground truth data for music infor-
mation retrieval. For example, while C major key annota-
tions cannot be trusted, developing a highly reliable C ma-
jor vs. non-C major classification algorithm for symbolic
data (which would ostensibly be much more tractable than
creating a perfect general-purpose audio content-based key
estimation algorithm) would enable the reliable usage of
all key change messages in MIDI files. Further work into
robust audio-to-MIDI alignment is also warranted in or-
der to leverage timing-critical information, as is the ne-
glected problem of alignment confidence score reporting.
Novel questions such as determining whether all instru-
ments have been transcribed in a given MIDI file would
also facilitate their use as ground truth transcriptions. For-
tunately, all of these tasks are made easier by the fact
that MIDI files are specified in a format from which it is
straightforward to extract pitch information. Any tech-
niques developed towards this end could also be applied
to other ubiquitous symbolic digital music formats such as
MusicXML [16].

To facilitate further investigation, all 178,561 of the
MIDI files we obtained in our web scrape (including our
collection of 545 Beatles MIDIs) are available online, 3

as well as all of the code used in the experiments in this
paper. 4 We hope this data and discussion facilitates a
groundswell of MIDI utilization in the MIR community.
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Iñesta Quereda, and David Rizo Valero. Mining digital
music score collections: melody extraction and genre
recognition. In Peng-Yeng Yin, editor, Pattern Recognition
Techniques, Technology and Applications, chapter 25, pages
559–590. InTech, 2008.

[24] Colin Raffel and Daniel P. W. Ellis. Intuitive analysis, cre-
ation and manipulation of MIDI data with pretty_midi.
In 15th International Society for Music Information Retrieval
Conference Late Breaking and Demo Papers, 2014.

[25] Colin Raffel and Daniel P. W. Ellis. Large-scale content-
based matching of MIDI and audio files. In Proceedings
of the 16th International Society for Music Information Re-
trieval Conference, pages 234–240, 2015.

[26] Colin Raffel and Daniel P. W. Ellis. Optimizing DTW-based
audio-to-MIDI alignment and matching. In 41st IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 81–85, 2016.

[27] Colin Raffel and Daniel P. W. Ellis. Pruning subsequence
search with attention-based embedding. In 41st IEEE Inter-
national Conference on Acoustics, Speech, and Signal Pro-
cessing, pages 554–558, 2016.

[28] Colin Raffel, Brian McFee, Eric J. Humphrey, Justin Sala-
mon, Oriol Nieto, Dawen Liang, and Daniel P. W. Ellis.
mir_eval: A transparent implementation of common MIR
metrics. In Proeedings of the 15th International Society for
Music Information Retrieval Conference, pages 376–372,
2014.

[29] Christophe Rhodes, David Lewis, and Daniel Müllensiefen.
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ABSTRACT

We present a content-based automatic music tagging algo-
rithm using fully convolutional neural networks (FCNs).
We evaluate different architectures consisting of 2D con-
volutional layers and subsampling layers only. In the ex-
periments, we measure the AUC-ROC scores of the archi-
tectures with different complexities and input types using
the MagnaTagATune dataset, where a 4-layer architecture
shows state-of-the-art performance with mel-spectrogram
input. Furthermore, we evaluated the performances of the
architectures with varying the number of layers on a larger
dataset (Million Song Dataset), and found that deeper mod-
els outperformed the 4-layer architecture. The experiments
show that mel-spectrogram is an effective time-frequency
representation for automatic tagging and that more com-
plex models benefit from more training data.

1. INTRODUCTION

Music tags are a set of descriptive keywords that convey
high-level information about a music clip, such as emo-
tion (sad, anger, happy), genre (jazz, classical) and instru-
mentation (guitar, strings, vocal, instrumental). Since tags
provide high-level information from the listeners’ perspec-
tives, they can be used for music discovery and recommen-
dation.

Automatic tagging is a classification task that aims to
predict music tags using the audio signal. This requires
extracting acoustic features that are good estimators of the
type of tags we are interested in, followed by a single or
multi-label classification or in some cases, regression stage.
From the perspective of feature extraction, there have been
two main types of systems proposed in the literature. Con-
ventionally, feature extraction relies on a signal processing
front-end in order to compute relevant features from time
or frequency domain audio representation. The features are
then used as input to the machine learning stage. However,
it is difficult to know what features are relevant to the task
at hand. Although feature selection have been widely used
to solve this problem [29], clear recommendations which

c© Keunwoo Choi, György Fazekas, Mark Sandler.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Keunwoo Choi, György Fazekas,
Mark Sandler. “Automatic tagging using deep convolutional neural net-
works’, 17th International Society for Music Information Retrieval Con-
ference, 2016.

provide good association of features with tag categories are
yet to emerge. A more recent approach unifies feature ex-
traction with machine learning to allow relevant features to
be learnt automatically. This approach is known as feature
learning and requires deep neural networks (DNNs).

Aggregating hand-crafted features for music tagging was
introduced in [25]. Several subsequent works rely on a
Bag of frames approach - where a collection of features
are computed for each frame and then statistically aggre-
gated. Typical features are designed to represent phys-
ical or perceived aspects of sound and include MFCCs,
MFCC derivatives, and spectral features (e.g. spectral roll-
off and centroids). Since these are frame-level features,
their statistics such as mean and variance are computed
[25], or they are clustered and vector quantised [15] to ob-
tain clip-level features. Finally, classifiers such as k-NN or
Support Vector Machines are applied to predict tags.

As alternative to the above systems, DNNs have re-
cently become widely used in audio analysis, following
their success in computer vision, speech recognition [19]
and auto-tagging [6, 8, 18, 28]. From an engineering per-
spective, DNNs sidestep the problem of creating or finding
audio features relevant to a task. Their general structure
includes multiple hidden layers with hidden units trained
to represent some underlying structure in data.

In computer vision, deep convolutional neural networks
(CNNs) have been introduced because they can simulate
the behaviour of the human vision system and learn hier-
archical features, allowing object local invariance and ro-
bustness to translation and distortion in the model [14].
CNNs have been introduced in audio-based problems for
similar reasons, showing state-of-the-art performance in
speech recognition [19] and music segmentation [26].

Several DNN-related algorithms have been proposed for
automatic music tagging too. In [5] and [28], spherical k-
means and multi-layer perceptrons are used as feature ex-
tractor and classifier respectively. Multi-resolution spec-
trograms are used in [5] to leverage the information in
the audio signal on different time scales. In [28], pre-
trained weights of multilayer perceptrons are transferred
in order to predict tags for other datasets. A two-layer con-
volutional network is used in [6] with mel-spectrograms as
well as raw audio signals as input features. In [18], bag-
of-features are extracted and input to stacked Restricted
Boltzmann machines (RBM).

In this paper, we propose an automatic tagging algo-
rithm based on deep Fully Convolutional Networks (FCN).

805



FCNs are deep convolutional networks that only consists
of convolutional layers (and subsampling) without any fully-
connected layer. An FCN maximises the advantages of
convolutional networks. It reduces the number of parame-
ters by sharing weights and makes the learned features in-
variant to the location on the time-frequency plane of spec-
trograms, i.e., it provides advantages over hand-crafted and
statistically aggregated features by allowing the networks
to model the temporal and harmonic structure of audio sig-
nals. In the proposed architecture, three to seven convo-
lutional layers are employed combined with subsampling
layers, resulting in reducing the size of feature maps to
1×1 and making the whole procedure fully convolutional.
2D convolutional kernels are then adopted to take the local
harmonic relationships into account.

We introduce CNNs in detail in Section 2 and define
the problem in Section 3. Our architectures are explained
in Section 4, and their evaluation is presented in Section 5,
followed by conclusion in Section 6.

2. CNNS FOR MUSIC SIGNAL ANALYSIS

2.1 Motivation for using CNNs for audio analysis

In this section, we review the properties of CNNs with re-
spect to music signals. The development of CNNs was mo-
tivated by biological vision systems where information of
local regions are repeatedly captured by many sensory cells
and used to capture higher-level information [14]. CNNs
are therefore designed to provide a way of learning robust
features that respond to certain visual objects with local,
translation, and distortion invariances. These advantages
often work well with audio signals too, although the topol-
ogy of audio signals (or their 2D representations) is not the
same as that of a visual image.

CNNs have been applied to various audio analysis tasks,
mostly assuming that auditory events can be detected or
recognised by seeing their time-frequency representations.
Although the advantage of deep learning is to learn the fea-
tures, one should carefully design the architecture of the
networks, considering to what extent the properties (e.g.
invariances) are desired.

There are several reasons which justify the use CNNs in
automatic tagging. First, music tags are often considered
among the topmost high-level features representing song-
level information above intermediate level features such
as chords, beats, tonality and temporal envelopes which
change over time and frequency. This hierarchy fits well
with CNNs as it is designed to learn hierarchical features
over multilayer structures. Second, the properties of CNNs
such as translation, distortion, and local invariances can be
useful to learn musical features when the target musical
events that are relevant to tags can appear at any time or
frequency range.

2.2 Design of CNNs architectures

There have been many variants of applying CNNs to audio
signals. They differ by the types of input representations,
convolution axes, sizes and numbers of convolutional ker-
nels or subsamplings and the number of hidden layers.

2.2.1 TF-representation

Mel-spectrograms have been one of the widespread fea-
tures for tagging [5], boundary detection [26], onset de-
tection [21] and latent feature learning [27]. The use of the
mel-scale is supported by domain knowledge about the hu-
man auditory system [17] and has been empirically proven
by performance gains in various tasks [6, 18, 21, 26, 27].
The Constant-Q transform (CQT) has been used predomi-
nantly where the fundamental frequencies of notes should
be precisely identified, e.g. chord recognition [10] and
transcription [22].

The direct use of Short-time Fourier Transform (STFT)
coefficients is preferred when an inverse transformation is
necessary [3, 23]. It has been used in boundary detec-
tion [7] for example, but it is less popular in comparison
to its ubiquitous use in digital signal processing. Com-
pared to CQT, the frequency resolution of STFT is inade-
quate in the low frequency range to identify the fundamen-
tal frequency. On the contrary, STFT provides finer res-
olutions than mel-spectrograms in frequency bands>2kHz
given the same number of spectral bands which may be de-
sirable for some tasks. So far, however, it has not been the
most favoured choice.

Most recently, there have been studies focusing on learn-
ing an optimised transformation from raw audio given a
task. These are called end-to-end models and applied both
for music [6] and speech [20]. The performance is compa-
rable to the mel-spectrogram in speech recognition [20]. It
is also noteworthy that the learned filter banks in both [6]
and [20] show similarities to the mel-scale, supporting the
use of the known nonlinearity of the human auditory sys-
tem.

2.2.2 Convolution - kernel sizes and axes

Each convolution layer of size H×W×D learns D fea-
tures of H×W , where H and W refer to the height and
the width of the learned kernels respectively. The kernel
size determines the maximum size of a component it can
precisely capture. If the kernel size is too small, the layer
would fail to learn a meaningful representation of shape (or
distribution) of the data. For this reason, relatively large-
sized kernels such as 17×5 are proposed in [10]. This is
also justified by the task (chord recognition) where a small
change in the distribution along the frequency axis should
yield different results and therefore frequency invariance
shouldn’t be allowed.

The use of large kernels may have two drawbacks how-
ever. First, it is known that the number of parameters per
representation capacity increases as the size of kernel in-
creases. For example, 5×5 convolution can be replaced
with two stacked 3×3 convolutions, resulting in a fewer
number of parameters. Second, large kernels do not allow
invariance within its range.

The convolution axes are another important aspect of
convolution layers. For tagging, 1D convolution along the
time axis is used in [6] to learn the temporal distribution,
assuming that different spectral band have different distri-
butions and therefore features should be learned per fre-

806 Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016



quency band. In this case, the global harmonic relation-
ship is considered at the end of the convolution layers and
fully-connected layers follow to capture it. In contrast,
2D convolution can learn both temporal and spectral struc-
tures and has already been used in music transcription [22],
onset detection [21], boundary detection [26] and chord
recognition [10].

2.2.3 Pooling - sizes and axes

Pooling reduces the size of feature map with an operation,
usually a max function. It has been adopted by the majority
of works that are relying on CNN structures. Essentially,
pooling employs subsampling to reduce the size of feature
map while preserving the information of an activation in
the region, rather than information about the whole input
signal.

This non-linear behaviour of subsampling also provides
distortion and translation invariances by discarding the orig-
inal location of the selected values. As a result, pool-
ing size determines the tolerance of the location variance
within each layer and presents a trade-off between two as-
pects that affect network performance. If the pooling size
is too small, the network does not have enough distortion
invariance, if it is too large, the location of features may be
missed when they are needed. In general, the pooling axes
match the convolution axes, although it is not necessarily
the case. What is more important to consider is the axis in
which we need invariance. For example, time-axis pool-
ing can be helpful for chord recognition, but it would hurt
time-resolution in boundary detection methods.

3. PROBLEM DEFINITION

Automatic tagging is a multi-label classification task, i.e.,
a clip can be tagged with multiple tags. It is different from
other audio classification problems such as genre classifi-
cation, which are often formalised as a single-label clas-
sification problem. Given the same number of labels, the
output space of multi-label classification can exponentially
increase compared to single-label classification. Accord-
ingly, multi-label classification tasks require more data, a
model with larger capacity and efficient optimisation meth-
ods to solve. If there are K exclusive labels, the classifier
only needs to be able to predict one among K different
vectors, which are one-hot vectors. With multiple labels
however, the number of cases increases up to 2K .

In crowd-sourced music tag datasets [2,13], most of the
tags are false(0) for most of the clips, which makes ac-
curacy or mean square error inappropriate as a measure.
Therefore we use the Area Under an ROC (Receiver Oper-
ating Characteristic) Curve abbreviated as AUC. This mea-
sure has two advantages. It is robust to unbalanced datasets
and it provides a simple statistical summary of the perfor-
mance in a single value. It is worth noting that a random
guess is expected to score an AUC of 0.5 while a perfect
classification 1.0, i.e., the effective range of AUC spans
between [0.5, 1.0].

FCN-4
Mel-spectrogram (input: 96×1366×1)

Conv 3×3×128
MP (2, 4) (output: 48×341×128)

Conv 3×3×384
MP (4, 5) (output: 24×85×384)

Conv 3×3×768
MP (3, 8) (output: 12×21×768)

Conv 3×3×2048
MP (4, 8) (output: 1×1×2048)

Output 50×1 (sigmoid)

Table 1. The configuration of FCN-4

4. PROPOSED ARCHITECTURE

Table 1 and Figure 1 show one of the proposed architec-
tures, a 4-layer FCN (FCN-4) which consists of 4 convolu-
tional layers and 4 max-pooling layers. This network takes
a log-amplitude mel-spectrogram sized 96×1366 as input
and predicts a 50 dimensional tag vector. The input shape
follows the size of the mel-spectrograms as explained in
Section 5.1.

The architecture is extended to deeper ones with 5, 6
and 7 layers (FCN-{5, 6, 7}). The number of feature maps
and subsampling sizes are summarised in Table 2. The
number of feature maps of FCN-5 are adjusted based on
FCN-4, making the hierarchy of the learned features deeper.
FCN-6 and FCN-7 however have additional 1×1 convolu-
tional layers(s) on the top of FCN-5. Here, the motivation
of 1×1 is to take advantage of increased nonlinearity [16]
in the final layer, assuming that the five layers of FCN-5
are sufficient to learn hierarchical features. An architec-
ture with 3 layers (FCN-3) is also tested as a baseline with
a pooling strategy of [(3,5),(4,16),(8,17)] and [256, 768,
2048] feature maps. The number of feature maps are ad-
justed based on FCN-4 while the pooling sizes are set to
increase in each layer so that low-level features can have
sufficient resolutions.

Figure 1. A block diagram of the proposed 4-layer archi-
tecture, FCN-4. The numbers indicate the number of fea-
ture maps (i.e. channels) in each layer. The subsampling
layers decrease the size of feature maps to 1×1 while the
convolutional layers increase the depth to 2048.
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Other configurations follow the current generic optimi-
sation methods in CNNs. Rectified Linear Unit (ReLU) is
used as an activation function in every convolutional layer
except the output layer, which uses Sigmoid to squeeze the
output within [0, 1]. Batch Normalisation is added after ev-
ery convolution and before activation [11]. Dropout of 0.5
is added after every max-pooling layer [24]. This acceler-
ates the convergence while dropout prevents the network
from overfitting.

Homogeneous 2D (3×3) convolutional kernels are used
in every convolutional layers except the final 1×1 convolu-
tion. 2D kernels are adopted in order to encourage the sys-
tem to learn the local spectral structures. The kernels at the
first convolutional layer cover 64 ms×72 Hz. The cover-
age increases to 7s×692 Hz at the final 3×3 convolutional
layer when the kernel is at the low-frequency. The time
and frequency resolutions of feature maps become coarser
as the max-pooling layer reduces their sizes, and finally a
single value (in a 1×1 feature map) represents a feature of
the whole signal.

Several features in the proposed architecture are distinct
from previous studies. Compared to [28] and [18], the pro-
posed system takes advantages of convolutional networks,
which do not require any pre-training but fully trained in
a supervised fashion. The architecture of [6] may be the
most similar to ours. It takes mel-spectrogram as input,
uses two 1D convolutional layers and two (1D) max-pooling
layers as feature extractor, and employs one fully-connected
layer as classifier. The proposed architectures however
consist of 2D convolution and pooling layers, to take the
potential local harmonic structure into account. Results
from many 3s clips are averaged in [6] to obtain the final
prediction. The proposed model however takes the whole
29.1s signal as input, incorporating a temporal nonlinear
aggregation into the model.

The proposed architectures can be described as fully-

FCN-5 FCN-6 FCN-7
Mel-spectrogram (input: 96×1366×1)

Conv 3×3×128
MP (2, 4) (output: 48×341×128)

Conv 3×3×256
MP (2, 4) (output: 24×85×256)

Conv 3×3×512
MP (2, 4) (output: 12×21×512)

Conv 3×3×1024
MP (3, 5) (output: 4×4×1024)

Conv 3×3×2048
MP (4, 4) (output: 1×1×2048)

· Conv 1×1×1024 Conv 1×1×1024
· Conv 1×1×1024

Output 50×1 (sigmoid)

Table 2. The configurations of 5, 6, and 7-layer architec-
tures. The only differences are the number of additional
1×1 convolution layers.

convolutional networks (FCN) since they only consist of
convolutional and subsampling layers. Conventional CNNs
have been equipped with fully-connected layers at the end
of convolutional layers, expecting each of them to perform
as a feature extractor and classifier respectively. In general
however, the fully connected layers account for the major-
ity of parameters and therefore make the system prone to
overfitting. This problem can be resolved by using FCNs
with average-pooling at the final convolutional layer. For
instance in [16], the authors assume that the target visual
objects may show large activations globally in the corre-
sponding images. Our systems resemble the architecture
in [16] except the pooling method, where we only use max-
pooling because some of the features are found to be local,
e.g. the voice may be active only for the last few seconds
of a clip.

5. EXPERIMENTS AND DISCUSSION

5.1 Overview

Two datasets were used to evaluate the proposed system,
the MagnaTagATune dataset [13] and the Million Song
Dataset (MSD) [2]. The MagnaTagATune dataset has been
relatively popular for content-based tagging, but similar
performances from recent works [5,6,18,28] seem to sug-
gest that performances are saturated, i.e. a glass-ceiling
has been reached due to noise in the annotation. The MSD
contains more songs than MagnaTagATune, it has various
types of annotations up to 1M songs. There have not been
many works to compare our approach with, partly because
audio signals do not come with the dataset. Consequently,
we use the MagnaTagATune dataset to compare the pro-
posed system with previous methods and evaluate the vari-
ants of the system using the MSD.

In Experiment I, we evaluate three architectures (FCN-
{3,4,5}) with mel-spectrogram input as proposed in Sec-
tion 4. Furthermore, we evaluated STFT, MFCC, and mel-
spectrogram representations as input of FCN-4. The archi-
tecture of STFT input is equivalent to that of mel-spectrograms
with small differences in pooling sizes in the frequency
axis due to the different number of spectral bands. For the
architecture of MFCCs, we propose a frame-based 4-layer
feed-forward networks with time-axis pooling (instead of
2D convolutions and poolings) because relevant informa-
tion is represented by each MFCC rather than its local rela-
tionships. In Experiment II, we evaluate five architectures
(FCN-{3,4,5,6,7}) with mel-spectrogram input.

Computational cost is heavily affected by the size of the
input layers which depends on basic signal parameters of
the input data. A pilot experiment demonstrated similar
performances with 12 and 16 kHz sampling rates and mel-
bins of 96 and 128 respectively. As a result, the audio in
both datasets was trimmed as 29.1s clips (the shortest sig-
nal in the dataset) and was downsampled to 12 kHz. The
hop size was fixed at 256 samples (21 ms) during time-
frequency transformation, yielding 1,366 frames in total.
STFT was performed using 256-point FFT while the num-
ber of mel-bands was set as 96. For each frame, 30 MFCCs
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and their first and second derivatives were computed and
concatenated.

We used ADAM adaptive optimisation [12] on Keras
[4] and Theano [1] framework during the experiments. Bi-
nary cross-entropy function is used since it shows faster
convergence and better performance than distance-based
functions such as mean squared error and mean absolute
error.

5.2 Experiment I: MagnaTagATune

The MagnaTagATune dataset consists of 25,856 clips of
29.1-s, 16 kHz-sampled mp3 files with 188 tags. We only
uses Top-50 tags, which includes genres (classical, rock),
instruments (piano, guitar, vocal, drums), moods (soft, am-
bient) and other descriptions (slow, Indian). The dataset is
not balanced, the most frequent tag is used 4,851 times
while the 50-th most frequent one used 490 times in the
training set. The labels of the dataset consist of 7,644
unique vectors in a 50-dimensional binary vector space.

The results of the proposed architecture and its variants
are summarised in Table 3. There is little performance
difference between FCN-4 and FCN-5. It is a common
phenomenon that an additional layer does not necessarily
lead to an improved performance if, i) the gradient may
not flow well through the layers or ii) the additional layer
is simply not necessary in the task but only adds more pa-
rameters. This results in overfitting or hindering the opti-
misation. In our case, the most likely reason is the latter
of the two. First, the scores are only slightly different, sec-
ond, both FCN-4 and FCN-5 showed similar performances
compared to previous research as shown in Table 4. Simi-
lar results were found in the comparison of FCN-5, FCN-6,
and FCN-7 in Experiment II. These are discussed in Sec-
tion 5.3.

Methods AUC
FCN-3, mel-spectrogram .852
FCN-4, mel-spectrogram .894
FCN-5, mel-spectrogram .890
FCN-4, STFT .846
FCN-4, MFCC .862

Table 3. The results of the proposed architectures and in-
put types on the MagnaTagATune Dataset

Figure 2. The numbers of bins per 1kHz bandwidth in
mel-spectrograms and STFTs .

Methods AUC
The proposed system, FCN-4 .894
2015, Bag of features and RBM [18] .888
2014, 1D convolutions [6] .882
2014, Transferred learning [28] .88
2012, Multi-scale approach [5] .898
2011, Pooling MFCC [8] .861

Table 4. The comparison of results from the proposed and
the previous systems on the MagnaTagATune Dataset

The degradations with other types of input signals–STFT
and MFCC–are rather significant. This result is aligned
with the preferences of mel-spectrograms over STFT on
automatic tagging [5,6,18,27]. However, this claim is lim-
ited to this or very similar tasks where the system is trained
on labels such as genres, instruments, and moods. Fig-
ure 2 shows how 96 frequency bins are allocated by mel-
spectrograms and STFT in every 1kHz bandwidth. This
figure, combined with the result in Table 3 shows that high-
resolution in the low-frequency range helps automatic tag-
ging. It also supports the use of downsampling for auto-
matic tagging. Focusing on low-frequency can be more
efficient.

Table 4 shows the performance of FCN-4 in comparison
to the previous algorithms. The proposed algorithm per-
forms competitively against the other approaches. How-
ever, many different algorithms only show small differ-
ences in the range of an AUC score of 0.88 – 0.89, making
their performances difficult to compare. This inspired the
authors to execute a second experiment discussed in the
next section. In summary, the mel-spectrograms showed
better performance than other types of inputs while FCN-4
and FCN-5 outperformed many previously reported archi-
tectures and configurations.

5.3 Experiment II: Million Song Dataset

We further evaluated the proposed structures using the Mil-
lion Song Dataset (MSD) with last.fm tags. We select the
top 50 tags which include genres (rock, pop, jazz, funk),
eras (60s – 00s) and moods (sad, happy, chill). 214,284
(201,680 for training and 12,605 for validation) and 25,940
clips are selected from the provided training/test sets by
filtering out items without any top-50 tags. The number of
tags ranges from 52,944 (rock) to 1,257 (happy) and there
are 12,348 unique tag vectors. Note that the size of the
MSD is more than 9 times larger than the MagnaTagATune
dataset.

The results of the proposed architectures with differ-
ent numbers of layers are summarised in Table 5. Unlike
the result from Experiment I, where FCN-4 and FCN-5
showed a slight difference of the performance (AUC differ-
ence of 0.008), FCN-5,6,7 resulted in significant improve-
ments compared to FCN-4, showing that deeper structures
benefit more from sufficient data. However, FCN-6 out-
performed FCN-5 only by AUC 0.003 while FCN-7 even
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Methods AUC
FCN-3, mel-spectrogram .786
FCN-4, — .808
FCN-5, — .848
FCN-6, — .851
FCN-7, — .845

Table 5. The results from different architectures of the
proposed system on the Million Song Dataset

Figure 3. The learning curves of the AUC scores measured
on the validation set (on the Million Song Dataset)

showed a slightly worse performance than FCN-6. This
result agrees with a known insight in using deep neural
networks. The structures of DNNs need to be designed
for easier training when there are a larger number of lay-
ers [9]. In theory, more complex structures can perform
at least equal to simple ones by learning an identity map-
ping. Our results supports this. In the experiment, the per-
formances of FCN-6 and FCN-7 were still making small
improvements at the end of the training, implying it may
perform equal to or even outperform FCN-5. In practice,
this approach is limited by computational resources and
therefore very deep structures may need to be designed to
motivate efficient training, for instance, using deep resid-
ual networks [9].

Figure 3 illustrates the learning curves of the AUC scores
on the validation set. At the beginning of the training, there
is a tendency that simpler networks show better perfor-
mance because there is a fewer number of parameters to
learn. FCN-4 and FCN-5 show similar performance be-
tween around 20–40 epochs. Based on this, it can be as-
sumed that learning on the MagnaTagATune dataset stayed
within this region and failed to make more progress due to
the scarcity of training data. To summarise, FCN-5, FCN-
6, and FCN-7 significantly outperformed FCN-3 and FCN-
4. The results imply that more complex models benefit
from more training data. The similar results obtained us-
ing FCN-5, FCN-6 and FCN-7 indicate the need for more
advanced design methodologies and training of deep neu-
ral networks.

6. CONCLUSION

We presented an automatic tagging algorithm based on deep
fully convolutional neural networks (FCN). It was shown
that deep FCN with 2D convolutions can be effectively
used for automatic music tagging and classification tasks.
In Experiment I (Section 5.2), the proposed architectures
with different input representations and numbers of layers
were compared using the MagnaTagATune dataset against
the results reported in previous works showing competi-
tive performance. With respect to audio input represen-
tations, using mel-spectrograms resulted in better perfor-
mance compared to STFTs and MFCCs. In Experiments
II (Section 5.3), different number of layers were evaluated
using the Million Song Dataset which contains nine times
as many music clips. The optimal number of layers were
found to be different in this experiment indicating deeper
networks benefit most from the availability of large train-
ing data. In the future, automatic tagging algorithms with
variable input lengths will be investigated.
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ABSTRACT

We propose a hybrid Gaussian-HMM-Deep-Learning ap-
proach for automatic chord estimation with very large
chord vocabulary. The Gaussian-HMM part is similar to
Chordino, which is used as a segmentation engine to divide
input audio into note spectrogram segments. Two types of
deep learning models are proposed to classify these seg-
ments into chord labels, which are then connected as chord
sequences. Two sets of evaluations are conducted with two
large chord vocabularies. The first evaluation is conducted
in a recent MIREX standard way. Results show that our
approach has obvious advantage over the state-of-the-art
large-vocabulary-with-inversions supportable ACE system
in terms of large vocabularies, although is outperformed
by in small vocabularies. Through analyzing and deduc-
ing system behaviors behind the results, we see interesting
chord confusion patterns made by different systems, which
conceivably point to a demand of more balanced and con-
sistent annotated datasets for training and testing. The sec-
ond evaluation preliminarily demonstrates our approach’s
superiority on a jazz chord vocabulary with 36 chord types,
compared with a Chordino-like Gaussian-HMM baseline
system with augmented vocabulary capacity.

1. INTRODUCTION

Automatic chord estimation (ACE) is currently undergoing
a paradigm shift from Gaussian-HMM (Hidden Markov
Model) approaches to deep learning approaches. Recently,
there have been quite a few deep learning powered ACE
approaches in the field, including a convolutional neu-
ral network (CNN) approach [10], a hybrid feedforward-
recurrent neural network (DNN-RNN) approach [3], a
deep belief network (DBN) approach [19], and a hybrid
DBN-RNN approach [16]. Some are more purely deep
learning oriented, which only apply minimal amount of
feature extractions, while others consider combination of
traditional signal processing techniques and deep learning.

c© Junqi Deng and Yu-Kwong Kwok. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Junqi Deng and Yu-Kwong Kwok. “A Hybrid Gaussian-
HMM-Deep-Learning Approach For Automatic Chord Estimation With
Very Large Vocabulary”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.

One common point of these approaches is that they
are all evaluated under major/minor vocabulary (MajMin),
which is far from reflecting the complexity of chord vocab-
ulary in pop/rock music practice. In 2013, MIREX ACE
has introduced a new evaluation scheme [14] focusing on
much more complicated chord vocabulary, the “Sevenths-
Bass”, which includes MajMin, three types of their sev-
enth chords, and all of their inversions. The SeventhsBass,
although also omitting some rare chords in pop/rock prac-
tice, is much closer to the reality compared with MajMin.
It differentiates among triads, sevenths and their inversions
because they all have different harmonic qualities. It is
not only important for ACE systems to be evaluated on
more complex chord vocabulary, but also to actually sup-
port that vocabulary. Unfortunately from 2013 to 2015,
there have been only two systems that actually support
SeventhsBass [6], others mostly do not even support chord
inversions. Not being able to generate inversions is musi-
cally problematic since in some musical context they have
very different harmonic qualities from their root positions.
As shown in Figure 1, for example, the chord inversions
serve as a diatonic or chromatic continuations of the bass
line. If some of these are replaced by their root positions,
the continuations are broken and thus the pieces will sound
very different.

1) | G | D/F# | F | C/E | Cm/Eb | 

2) | A | Bm | A/C# | D | 

3) | C | G/B | Am | Am/G | F | C/E | 

4) | C | F | C/E | D/F# | E/G# | F#/A# | Bm7 | C# |

Figure 1. Four chord progressions that contain bass line
continuations which demand chord inversions. Progres-
sions like 1,2 and 3 are very popular among pop/rock. Pro-
gression 4 induces a key shift from C major to F# minor.

Following the above argument, we propose an ACE
system that not only supports but also be evaluated on
SeventhsBass. This system uses a Chordino-like module
[13] as a chord segmentation engine, and classifies chords
within each segment using a deep learning model. Evalua-
tion results show that the best system variants have obvious
advantage over the state-of-the-art SeventhsBass support-
able ACE system in terms of Sevenths (MajMin + maj7,
min7, 7) and SeventhsBass.
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Besides, we also try the proposed approach on a jazz
vocabulary. The comparison target remains the same ex-
cept for an augmentation of its chord vocabulary capacity.
Since the standard evaluation tool [14] does not apply for
this vocabulary, evaluation is done manually via compari-
son of weighted chord symbol recall 1 . Results show sim-
ilar ranking as in the SeventhsBass’ results, and still the
best system significantly outscores the baseline approach.

The rest of this paper is organized as follows: Section
2 gives an overview of the proposed ACE system frame-
work and its workflow; Section 3 elaborates the imple-
mentations of two deep learning based models (DBN and
BLSTM-RNN); Section 4 reports both SeventhsBass and
jazz vocabulary evaluation results, with a detailed discus-
sion of chord confusion and how they affect systems’ per-
formances; Section 5 concludes the paper and puts forward
some possible future considerations in ACE.

2. SYSTEM OVERVIEW

The proposed ACE approach 2 has a simple workflow as
shown in Figure 2. The test data goes through a Chordino-
like module for segmentation. Then each note spectrogram
(referred to as “notegram” below) segment will be classi-
fied using a deep learning model. The output chord se-
quence is obtained by connecting the classified labels.

test data

Chordino-like
segments

Chord Classifier

training data

chord labels

Figure 2. System overview. The audio input (test data)
goes through a Chordino-like process for segmentation,
then the segments are classified into chord labels.

The Chordino-like module is implemented according to
the algorithmic description of Chordino [12, 13]. The au-
dio input is first resampled at 11025 Hz, and transformed
by a 4096-point Hamming window short-time-Fourier-
transform (STFT) with 512 point hop size. The linear-scale
spectrogram is then mapped to a log-scale spectrogram, or
notegram. After standard tuning (tuned notegram) and fea-
ture scaling, note activation patterns are extracted from the
notegram via non-negative-least-square (NNLS) method.
A piece of chromagram is derived by bass-treble profiling
of the note activation patterns. The chromagram is then de-
coded and segmented by a Gaussian-HMM with very high
self-transition weights.

The chord classifier is implemented using deep learning
models, which will be discussed in the following section.
Applying different deep learning models leads to different
system variants out of the proposed framework. In the fol-

1 http://www.music-ir.org/mirex/wiki/2013:Audio Chord Estimation
2 the full implementation of this ACE system is accessible via:

https://github.com/tangkk/tangkk-mirex-ace

lowing, we refer to these “variants” as “systems”, and the
framework as the “approach”.

3. DEEP LEARNING MODELS

We consider two types of deep learning models. They both
have input at the tuned notegram level. The deep neu-
ral network will learn the rest of the transformations from
tuned notegram all the way to chord label. Since there are
different numbers of frames in different chord segments, in
order to use a fixed-length input structure, we conducted a
preliminary study and found that 6 sub-segments are good
for single chord classification task. Note that the number of
sub-segments should at least reflect the temporal order of
bass line in order to differentiate root position from inver-
sions. Thus we compute a 6-frame notegram for each seg-
ment as follows: at first the segment is divided into 6 equal-
size sub-segments; if the total number of frames is not di-
visible by 6, the last frame is extended several times to
make it divisible; then notegram in each sub-segment is av-
eraged over time, resulting in one frame per sub-segment.

3.1 DBN Model

We first consider a DBN model. It contains two hidden
layers, each of 800 neurons. The input layer is of 6× 252-
dimension (252 is the size of a notegram frame), and the
output layer is a #chord-way softmax layer. The neurons
of both input and output layers are of Gaussian type (real
value from 0 to 1). The neurons in both hidden layers are
of Bernoulli type (binary value 0 or 1).

During unsupervised pre-training, the first restricted-
Boltzmann-machine (RBM) formed by the first two layers
is considered as a Gaussian-Bernoulli RBM, and the sec-
ond RBM formed by the two hidden layers is considered as
a Bernoulli-Bernoulli RBM. The pre-training is conducted
using persistent-contrastive-divergence-10 [17] (PCD-10),
for 100 epochs with learning rate 0.001. During super-
vised fine-tuning, the network connections are updated us-
ing mini-batch stochastic gradient descent, and the updates
are regularized by dropout [8] (with 0.5 dropout probabil-
ity) and early-stopping. The stopping criteria is monitored
by a validation set, which randomly contains 20% of the
training set. The other 80% are used for computing the
gradients. Due to the randomness of train/validation split,
we repeatedly train 6 models. The model with the best val-
idation score will be saved for testing.

For comparison, we also consider a feed-forward mul-
tilayer perceptron (MLP) model, whose network configu-
ration is the same as the DBN, but trained using only the
fine-tuning procedure described above.

3.2 BLSTM-RNN Model

Historically, long-short-term-memory (LSTM) [9] unit is
introduced to try to solve the gradient vanishing problem
[2] when training a recurrent neural network with a long
sequence of examples.
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3.2.1 LSTM Unit

Instead of having only one input port, an LSTM unit has
four input ports. As shown in Figure 3, three of them are
used for gating purpose, and the other is used for normal
purpose. Each gate computes an output gating signal from
the weighted sum of its inputs using a non-linear activation
function. The gating signal computed by input gate, out-
put gate and forget gate will interact with both the LSTM
unit’s input value and the LSTM cell value through simple
multiplications, resulting in the LSTM unit’s output value.
Input gate regulates the amount of input feeding into the
cell; forget gate regulates the current cell value by the pre-
vious cell value; and output gate regulates the amount of
output by interacting with the current cell value. Since all
functions involved in an LSTM unit are differentiable or
partially differentiable, all connections can be trained us-
ing the same back-propagation-through-time (BPTT) [7]
technique as used in training a normal RNN.

Cell

O I F

…

…

L

Figure 3. LSTM unit. O = output gate; I = input gate; F =
forget gate; Black dots indicate multiplication operations

3.2.2 BLSTM-RNN

We then consider a BLSTM-RNN model [7] as shown in
Figure 4. It has both forward and backward LSTM layers,
each of which has 800 LSTM units. Before the #chord-way
softmax output layer, it performs mean pooling to summa-
rize results from all frames. During training, the RNN is
always unrolled to 6 frames, and the weights are updated
via BPTT using AdaDelta algorithm [18], regularized with
dropout (with 0.5 dropout probability) and early-stopping,
monitored by a validation set chosen in the same way as
in DBN’s case. Due to the randomness of train/validation
split, we repeatedly train 6 models. The model with the
best validation score will be saved for testing.

4. EVALUATION

For SeventhsBass ACE implementation, four datasets of
266 tracks in total are used in training. They con-
tain both eastern and western pop/rock songs. They
are: 1, JayChou29 dataset [5]; 2, a Chinese pop song
dataset (CNPop20) 3 ; 3, Carole King + Queen dataset

3 containing 20 songs from both male and female singer-songwriters
from Chinese cultural backgrounds including mainland China, Hong
Kong and Taiwan

input layer

252 neurons /each

forward layer

800 LSTM units/ 

each

#chord-way

softmax

backward layer

800 LSTM units / 

each

Wif

Uf

Wib

Ub

6 frames

Mean Pooling

Wo

Figure 4. Bidirectional-long-short-term-memory recur-
rent neural network (BLSTM-RNN) used in the proposed
approach

(KingQueen26) 4 ; 4, 191 songs from USPop dataset (U) 5 .
In order to see the effect of data size, all models will be in-
crementally trained on: 1, JayChou29 and CNPop20 (CJ);
2, CJ + KingQueen26 (CJK); 3, all four datasets (CJKU).

For Jazz ACE implementation, 99 pieces of jazz chord
comping + soloing dataset extracted from a jazz guitar
book [15] (JazzGuitar99) are used as training/validation
dataset, and 7 pieces from Gary Burton’s online course [1]
(GaryBurton7) are used as test dataset. JazzGuitar99’s an-
notations are taken directly from the book, and GaryBur-
ton7’s annotations are taken from the leadsheets provided
along with the course. The jazz chord vocabulary contains
36 types 6 . Note that inversions are not considered in this
preliminary jazz ACE study because: 1. there are very few
inversion notations in the currently used datasets; 2. it re-
sults in huge number of classes based on these 36 types.

All training data are to be used at their tuned notegram
level, which does not contain phase information. Assum-
ing well temperament, we can augment all training data
by pitch shifting their notegrams to all 12 keys with zero
padding. Adjusting the chord labels accordingly, this re-
sults in 12 times of training data.

4.1 SeventhsBass Vocabulary Systems Evaluation

SeventhsBass evaluation is conducted in a MIREX stan-
dard way. We use TheBeatles180 (B) as the test set and
run end-to-end automatic chord transcriptions from raw
audio to chord progression for every track within. The met-
ric score is computed in a weighted chord symbol recall
(WCSR) way using the MIREX ACE evaluation tool [14].
All systems are compared with each other and compared
with Chordino. Chordino is the only other suitable system

4 http://isophonics.net/datasets
5 https://github.com/tmc323/Chord-Annotations
6 They are: maj, min, min6, 6, maj7, maj7#5, maj7#11, maj7b5, min7,

minmaj7, min7b5, min7#5, 7, 7b5, 7b9, 7#9, 7#5#9, 7#5b9, 7b5b9, 7#5,
7sus4, aug7, dim7, maj9, min9, 9, 9#11, min11, min11b5, 11, min13,
maj13, 13, 13b9, 69 and N
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Mm MmB S SB
Chordino 74.30 71.40 52.99 50.60
CJ-MLP 67.25 62.27 55.15 50.86
CJ-DBN 70.68 66.52 58.23 54.71

CJ-BLSTM 69.09 64.51 56.47 52.74
CJK-MLP 65.18 63.12 53.82 52.00
CJK-DBN 67.44 65.56 55.64 54.03

CJK-BLSTM 70.46 68.56 59.11 57.50
CJKU-MLP 67.95 65.87 55.98 54.09
CJKU-DBN 68.53 66.49 56.19 54.37

CJKU-BLSTM 72.62 70.47 59.37 57.47

Table 1. WCSRs of four main MIREX ACE vocabulary
(Mm = MajMin, MmB = MajMinBass, S = Sevenths, SB
= SeventhsBass; CJ = JayChou29 + CNPop20; CJK = CJ
+ KingQueen26; CJKU = CJK + USPop191)

for comparison because this is the only publicly available
system which also supports SeventhsBass vocabulary [4].

Here we argue for the validity of our evaluation method-
ology. Note that our systems are trained with combination
of C, J, K, U, and tested on B. Some may challenge that
since these two sets may be drawn from two different chord
populations (NOT in terms of chord types, but chord ren-
dering styles), thus the test results may not reflect the true
system performance. It is true that they contain different
distributions of chord rendering styles, especially in terms
of the “dominant sevenths” chord, as also reflected in the
results and discussions in Section 4.1.2. But as we will see
in the results, in general, the C,J,K,U-trained systems gen-
eralize very well on B. In fact, since there could be count-
less of possible chord rendering styles of each chord, it is
difficult to “make sure” that two datasets are drawn from
the “same” population, not to mention that it is even more
difficult to define the possible “properties” of such “pop-
ulation”. An average k-fold cross-validation score could
be a better indication of system performance in terms of
the combined CJKUB training/test set, but neither is this a
standard benchmarking method, nor can this score be di-
rectly compared with an expert system such as Chordino.

4.1.1 Overall Results of SeventhsBass

The WCSRs of four main MIREX ACE vocabularies are
shown in Table 1. In MajMin and MajMinBass, Chordino
still does the best among all systems. But in Sevenths and
SeventhsBass (the main focus in this paper), all our sys-
tems perform better than Chordino, with CJ-DBN, CJK-
BLSTM and CJKU-BLSTM performing best.

Let’s take CJ-DBN as representative for the moment. It
seems that it performs better at recognizing seventh chords
but worse at inversions compared with Chordino, but this is
not a correct deduction from the table. Note that Sevenths
is a collapse of chords, regardless of root positions or in-
versions, to their maj, min, maj7, min7 or 7 forms; and
MajMinBass is a collapse of chords, regardless of tetrads
or triads, to their maj, min, maj/3, maj/5, min/b3 or min/5
forms. Considering SeventhsBass as all chords in their
original forms, the score boost from SeventhsBass to Sev-
enths indicates the amount of confusion between root po-
sitions and inversions (let’s call it “bass confusion”); the
score boost from SeventhsBass to MajMinBass indicates

maj min maj/3 maj/5 min/b3 min/5
maj (r) 0.66 0.03 0.00 0.02 0.00 0.00
min (r) 0.10 0.60 0.00 0.01 0.00 0.00

maj/3 (r) 0.35 0.13 0.19 0.00 0.00 0.00
maj/5 (r) 0.50 0.08 0.00 0.23 0.00 0.00

min/b3 (r) 0.36 0.30 0.01 0.06 0.00 0.00
min/5 (r) 0.19 0.55 0.04 0.04 0.00 0.00

Table 3. Chordino’s bass confusion matrix.

maj min maj/3 maj/5 min/b3 min/5
maj (r) 0.72 0.06 0.03 0.03 0.00 0.00
min (r) 0.15 0.63 0.02 0.02 0.00 0.00

maj/3 (r) 0.34 0.28 0.23 0.01 0.00 0.02
maj/5 (r) 0.49 0.11 0.03 0.19 0.01 0.00

min/b3 (r) 0.39 0.20 0.06 0.07 0.01 0.00
min/5 (r) 0.28 0.28 0.11 0.06 0.00 0.06

Table 4. CJ-DBN’s bass confusion matrix.

the amount of confusion between tetrads and triads (let’s
call it “seventh confusion”); and the score boost from Sev-
enthsBass to MajMin approximately sums up two types of
confusion. It should be noted that there are yet other types
of confusion, such as confusion of roots, or of maj and min,
which could not be regarded as correct in any ways under
the current evaluation method.

Following this deduction, the Sevenths result actu-
ally indicates that CJ-DBN still scores much better than
Chordino if bypassing bass confusion; while the MajMin-
Bass result indicates that CJ-DBN scores much lower than
Chordino if bypassing seventh confusion. Therefore com-
pared with Chordino, CJ-DBN has a better chance of bass
confusion, but less chance of seventh confusion. Notice
that in CJ-DBN, the difference between MmB and SB is
much larger than that between S and SB, which means
the net amount of seventh confusion is much more than
that of bass confusion. The same is also true in Chordino.
Therefore in both systems, there are much higher chances
of making seventh confusion than bass confusion.

As for the intra-comparison among all proposed sys-
tems, three observations are noticeable: 1, DBN has ad-
vantage over MLP, and this advantage decreases with the
increase of training data size; 2, BLSTM-RNN has obvi-
ous advantage over DBN with big enough training data
size; 3, the investment of more data yields diminishing
return. The first point is mainly due to the intensive un-
supervised pre-training in DBN. The second point demon-
strates that the proposed BLSTM-RNN model has better
capability in modeling a single chord than the proposed
DBN model. BLSTM-RNN is good at modeling tempo-
ral dependency, but DBN is good at modeling spacial de-
pendency. An input feature with 6 frames of time depen-
dent notegrams should be more suitable for temporal mod-
eling, thus a plausible reason behind the second observa-
tion. The third observation may possibly point to a ground
truth annotation consistency problem [11], which will be
explained in next subsection.

4.1.2 Details of SeventhsBass

A deeper look at the per chord-type WCSR of Sevenths-
Bass may reveal more details behind the overall scores.
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SeventhsBass M/5 M/3 M M7/5 M7/3 M7/7 M7 7/5 7/3 7/b7 7 m/5 m/b3 m m7/5 m7/b3 m7/b7 m7
B% 2.0 1.0 63.3 0.0 0.2 0.3 0.8 0.1 0.1 0.4 8.3 0.6 0.4 15.0 0.0 0.1 0.4 2.4

Chordino 19.9 17.1 54.4 0.0 0.0 0.0 55.6 0.0 0.0 5.7 41.0 0.0 0.0 54.3 0.0 0.0 0.0 51.0
CJ-MLP 15.8 19.8 58.2 0.0 0.0 0.0 30.0 0.0 0.0 9.5 11.5 3.7 0.7 54.2 0.0 0.0 0.2 19.9
CJ-DBN 19.2 21.7 63.0 0.0 0.0 0.0 35.5 0.0 0.0 20.8 9.0 5.6 0.7 59.8 0.0 0.0 0.0 21.6

CJ-BLSTM 15.3 22.4 60.4 0.0 0.0 0.0 34.8 0.0 0.0 13.1 10.2 10.2 1.0 59.0 0.0 0.0 0.0 28.0
CJK-MLP 5.6 14.2 62.7 0.0 0.0 0.0 30.7 0.0 0.0 2.7 10.0 1.7 0.0 46.7 0.0 0.0 0.0 22.8
CJK-DBN 7.6 19.2 64.2 0.0 0.0 0.0 37.7 0.0 0.0 5.0 13.5 1.9 1.6 51.5 0.0 0.0 0.0 27.0

CJK-BLSTM 6.4 12.0 70.5 0.0 0.0 0.0 37.8 0.0 0.0 10.2 8.5 9.8 1.9 48.7 0.0 0.0 0.3 32.1
CJKU-MLP 11.8 18.3 63.8 0.0 0.0 0.0 18.4 0.0 0.0 3.7 19.4 0.5 0.4 52.7 0.0 0.0 0.6 20.9
CJKU-DBN 8.2 16.2 64.3 0.0 0.0 0.0 19.5 0.0 0.0 1.2 20.4 1.9 2.1 52.9 0.0 0.0 0.0 20.2

CJKU-BLSTM 22.4 16.1 66.6 0.0 0.0 0.0 33.2 0.0 0.0 8.9 23.9 2.8 3.2 59.0 0.0 0.0 0.3 26.6

Table 2. WCSRs of every SeventhsBass category. (M=maj, m=min). %B shows the constitution of chord in test set.

Table 2 shows the categorical breakdowns of the Sevenths-
Bass’ WCSRs. Our systems’ advantages in M and m are
as expected. As the training data contains huge amount of
their examples, deep learning models can take full advan-
tages and draw clear boundaries between M v.s.non-M and
m v.s. non-m. Table 3 and 4 show a comparison of bass
confusion in Chordino and CJ-DBN 7 , which not only re-
flects CJ-DBN’s advantages in M and m, but also confirms
our previous deduction that CJ-DBN makes slightly more
bass confusion than Chordino.

The results of M/5, M/3 and 7/b7 deserve further inves-
tigation. The “CJ-” systems generally perform better than
Chordino in these categories. This could be due to both
C and J contain a large number of consistent annotations
of these chords. In the meantime we observe their scores
generally drop with introduction of K and U, seemingly in
exchange for more score boost from M. This seems contra-
dictory: since all three chord types (M, M/3 and M/5) have
clear distinctions by definition, thus given a neural net-
work with enough modeling capacity and properly trained
(which we assume is the case), more ground truth data
should yield better classification boundaries. But instead
the introduction of K and U also introduces chaotic classi-
fication behaviors regarding, M/3, M/5, 7/b7 and M. Thus
we have to believe that these results conceivably point to a
ground truth annotation consistency problem [11], where,
for example, some similarly rendering M/3 chords in dif-
ferent datasets are annotated differently (as M, M/3, M/5
or others), so that when trained on a combined dataset,
the classifier is getting confused about the boundaries be-
tween those similar chords. Assuming more inversions
are “mis-annotated” 8 as root positions than vice versa
(which might unfortunately be true), if such inconsisten-
cies abound, classifications will be bias towards the domi-
nating root position chords.

The most noticeable drawback of our systems is the
poor performance of all sevenths chords (M7, 7 and m7)
compared with Chordino. Chordino has a very nice and
balanced chord confusion matrix. Shown in Table 5, al-
most every chord type has less than 50% confusion with
other types. As for our approach, taking CJK-BLSTM as
example, the main problem is that both M7 and 7 chords
are easily confused with maj, and m7 is easily confused

7 The numbers in the table are normalized durations. Reference labels
are indicated by “(r)”

8 technically not necessarily a “miss” but let’s just use this expression
for convenience in this context

maj min maj7 min7 7
maj (r) 0.66 0.03 0.11 0.03 0.13
min (r) 0.10 0.60 0.03 0.20 0.03
maj7 (r) 0.22 0.08 0.62 0.02 0.01
min7 (r) 0.12 0.20 0.01 0.56 0.08

7 (r) 0.30 0.08 0.06 0.06 0.47

Table 5. Chordino’s seventh confusion matrix.

maj min maj7 min7 7
maj (r) 0.82 0.05 0.03 0.02 0.03
min (r) 0.21 0.52 0.01 0.17 0.02
maj7 (r) 0.42 0.07 0.39 0.03 0.01
min7 (r) 0.21 0.31 0.02 0.34 0.03

7 (r) 0.67 0.12 0.01 0.05 0.10

Table 6. CJK-BLSTM’s seventh confusion matrix

with min (Table 6). The most undesirable case is the con-
fusion between 7 and maj . The main reason behind this,
as we try to analyze, is the different distribution of 7s in
the training datasets and the test dataset. The Beatles’ al-
bums contain a lot of chord progressions that involve 7s,
where the bass lines are moving by arpeggio or running
as broken chords, but in CJK, there are very few such ex-
amples. CJK contains 7s that are mostly bass line static.
Thus CJK-BLSTM does not have enough chance to learn
7 in dynamic bass line population, resulting in these poor
results. This analysis is to some degree confirmed by the
much better scores of 7 after adding dataset U, which con-
tains a lot more 7 chord renderings in dynamic style.

For Sevenths’ inversions other than “7/b7”, since there
are not many examples in all datasets, it is not meaningful
for further discussion. Actually, their WCSRs are all rela-
tively low. This fact might in some sense invalidate the ne-
cessity to recognize more complicated inversions, but does
not invalidate the need to capture inversions in general.

4.2 Jazz Chord Vocabulary Systems Evaluation

Following the MIREX ACE convention, system perfor-
mance on jazz chord vocabulary should also be evaluated
based on WCSR. The WCSR score computing procedure
in its fairest/strictest sense should count each chord as it is

µ σ2

Bass - Chord Bass 1 0.1
Treble - Chord Note 1 0.2

Neither bass nor treble 0 0.2
“N” Chord 1 0.2

Table 7. Gaussian model of Jazz-Chordino
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systems WCSR SQ
Jazz-Chordino 57.99 81.68

Jazz-MLP 61.81 76.18
Jazz-DBN 62.33 80.73

Jazz-BLSTM 66.41 80.78

Table 8. WCSRs and SQ (segmentation quality) of jazz
chord vocabulary.

without applying any sort of mapping scheme, as happens
to SeventhsBass. In the following we evaluate each system
in this way. The baseline is an augmented Chordino with
jazz vocabulary extension (Jazz-Chordino). The augmen-
tation is done within its Gaussian-HMM engine by apply-
ing the jazz chord dictionary to the Gaussian model, whose
setting is described in Table 7.

The jazz vocabulary systems have the same system
framework as the SeventhsBass systems, but their deep
learning models are trained using JazzGuitar99 dataset.
All systems are tested using GaryBurton7 dataset 9 . Re-
sults are shown in Table 8. Jazz-BLSTM system per-
forms the best, and outperforms Jazz-Chordino by about
10 points. The ranking is very similar to SeventhsBass’,
but the results are in a sense more convincing, since the
test set is not dominated by chords like major and minor.
In fact the composition of chords in GaryBurton7 is rela-
tively balanced, though rare chords are still rare. Therefore
in this set of results we see clearly the advantage of hy-
brid Gaussian-HMM-Deep-Learning approach over a pure
Gaussian-HMM approach for very large chord vocabulary.

Meanwhile, notice that the SQ of these systems are
all relatively high, and these are achieved in pure jazz
test audio. All systems use Jazz-Chordino’s Gaussian-
HMM as segmentation engine. The differences between
SQ scores are caused by different merging of consecu-
tive chord boundaries in different systems. Obviously the
success of Jazz-BLSTM is based on the success of the
Gaussian-HMM segmentation at the beginning; then based
on the robust segmentation it performs classifications with-
out taking care of chord progression context. This task is
comfortable to deal with by a fixed-length input deep learn-
ing model. The advantage may not be obvious under a
small chord vocabulary, but is obvious under a large chord
vocabulary.

5. CONCLUSION

In this paper we propose a hybrid Gaussian-HMM-Deep-
Learning approach towards SeventhsBass and jazz vocab-
ulary automatic chord estimation. Based on a Chordino-
like segmentation engine, the approach applies two types
of deep learning models, i.e., DBN and BLSTM-RNN, for
chord classifications.

For SeventhsBass implementation, we train several
models of each type using four datasets in an incremen-
tal way. The systems are tested using another dataset,
and compared with Chordino. Results show that the

9 Composition of chords in GaryBurton7: maj:0.09; min7:0.13;
7:0.22; min7b5:0.12; 7b9:0.06; min:0.1; maj:0.14; others:0.14.

best system variant, CJKU-BLSTM obviously outper-
forms Chordino in both Sevenths and SeventhsBass, but
is slightly outperformed by Chordino in MajMin and Ma-
jMinBass. We find that our system tends to make more
bass confusion but less seventh confusion compared with
Chordino. The major success of our systems is in triads,
while the major drawbacks are in sevenths chords. The
trends within the results along incremental training data
sizes may indicate a possible data annotation inconsistency
issue that conceivably leads to diminishing return effect.

For jazz vocabulary implementation, we train one
model for each type using JazzGuitar99 dataset, test them
using GaryBurton7 dataset, and compare them with a
Chordino-like system augmented with jazz chord vocabu-
lary (Jazz-Chordino). Results show a similar system rank-
ing as in SeventhsBass’ results, with high segmentation
qualities. The best system, Jazz-BLSTM, outscores Jazz-
Chordino obviously. Given that GaryBurton7 is a rela-
tively chord balanced dataset, the results demonstrate more
clearly the advantage of hybrid Gaussian-HMM-Deep-
Learning approach over pure Gaussian-HMM approach,
which might not be so obvious with much smaller chord
vocabulary.

Generally speaking, Chordino is an elegant music
knowledge driven expert system that generally recognizes
chords very well. But at times it fails also because of its
simplicity, which fails to capture chords rendered in ab-
normal ways. On the other hand, our approach is data
driven. The success or non-success of it depends highly on
the chord balancing, distribution and population of train-
ing data. While performances on some dominating chords
benefit much from the data, other performances suffer a lot
from data insufficiency or inconsistency.

There are a few concerns to be addressed. The first con-
cern is about the manually engineered segmentation en-
gine. The Gaussian-HMM segmentation engine is good
indeed, but for scientific interest, we are also very curious
about whether by doing a deep training on huge amount
of data can one system learn that transformation. Prelimi-
nary researches are ongoing, but none of our attempts have
achieved that level yet. We believe this can be achieved
gradually by deeper models and more data. A separate
training for segmentation only might be beneficial. The
second concern is about datasets. A better training based
system asks for more ground truth annotations, especially
those of skew classes, so as to train a more balanced system
and to avoid the main contribution of performance being
dominated by a few classes. Generally more data will lead
to more examples of skew classes, but due to annotation
inconsistency issue, simply “more data” may not be the fi-
nal solution at all, which leaves much more works to be
done in this area. Finally there is a concern of vocabulary
size (seems contradictory to the previous concern), which
asks for gradually exploring ACE systems’ capabilities on
more complex vocabularies as it is the way to approach the
ultimate goal of ACE, which is to match human expert’s
ability of doing chord recognition.
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ABSTRACT

Singing melody extraction is a task that tracks pitch con-
tour of singing voice in polyphonic music. While the ma-
jority of melody extraction algorithms are based on com-
puting a saliency function of pitch candidates or sepa-
rating the melody source from the mixture, data-driven
approaches based on classification have been rarely ex-
plored. In this paper, we present a classification-based
approach for melody extraction on vocal segments us-
ing multi-column deep neural networks. In the proposed
model, each of neural networks is trained to predict a pitch
label of singing voice from spectrogram, but their outputs
have different pitch resolutions. The final melody contour
is inferred by combining the outputs of the networks and
post-processing it with a hidden Markov model. In order to
take advantage of the data-driven approach, we also aug-
ment training data by pitch-shifting the audio content and
modifying the pitch label accordingly. We use the RWC
dataset and vocal tracks of the MedleyDB dataset for train-
ing the model and evaluate it on the ADC 2004, MIREX
2005 and MIR-1k datasets. Through several settings of
experiments, we show incremental improvements of the
melody prediction. Lastly, we compare our best result to
those of previous state-of-the-arts.

1. INTRODUCTION

Melody is a pitch sequence with which one might hum
or whistle a piece of polyphonic music in an identifiable
manner [10]. Among others, singing voice has been used
as a main source of the melody, particularly in popular
music. Thus, extracting melodies from singing voice can
be used for not only music retrieval, for example, query-
by-humming [5] or cover song identification [16] but also
voice separation as a guide to inform the voice source.

A number of melody extraction algorithms, which can
be applied for singing voice with an additional voice de-
tection step, have been proposed so far and they are well
summarized in [13]. The majority of the algorithms are

c© Sangeun Kum, Changheun Oh, Juhan Nam. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Sangeun Kum, Changheun Oh, Juhan Nam. “Melody
Extraction on Vocal Segments Using Multi-Column Deep Neural Net-
works”, 17th International Society for Music Information Retrieval Con-
ference, 2016.

based on computing a saliency function of pitch candidates
or separating the melody source from the mixture. They
typically return melody as a continuous pitch stream. On
the other hand, data-driven approaches based on classifi-
cation, which categorizes melody into a finite set of pitch
labels, have rarely been explored. An early work by Ellis
and Poliner used a support vector machine classifier to pre-
dict a pitch label from spectrogram [7]. Recently, Bittner
et. al. proposed a method using a random forest classifier
that predicts a pitch contour from highly hand-crafted fea-
tures [3]. To the best of our knowledge, no other attempts
have been made so far.

This scarcity of classification-based approach might be
attributed to the following limitations. First, the extracted
melody is supposed to be quantized by the pitch catego-
rization (e.g. semitone unit in [7]). While this discrete
outcome may be useful for some applications that require
a MIDI-level pitch notation, it loses detailed information
about singing styles, for example, vibrato or note-to-note
transition patterns. Second, the data-driven approach typ-
ically requires sufficient labeled training data to achieve
good performance. Finer pitch resolutions may need even
more training data and possibly more complicated classi-
fiers that can handle it.

In this paper, we address these limitations of the
classification-based approach using multi-column deep
neural networks (MCDNN). In the proposed model, each
of DNN is trained to predict a pitch label of singing voice
with different pitch resolutions. The outputs of the net-
works are combined and post-processed with a hidden
Markov model to produce the final melody contour. Given
a single DNN and training data, we observed that perfor-
mance is inversely proportional to pitch resolutions. By
combining the multiple DNNs, we show that the model can
achieve higher pitch resolutions and better performance at
the same time. In addition, we augment the training data
by pitch-shifting the audio content and modifying the pitch
label accordingly. We show that this is an effective tech-
nique to improve classification performance of the model.

2. RELATED WORK

The MCDNN was originally devised as an ensemble
method to improve the performance of DNN for image
classification [4]. In this model, each column (or single
DNN) share the same network configuration and training
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data. However, they are randomly initialized, and the in-
put data may be preprocessed in different ways for each
column. The predictions from all columns are averaged to
produce the final output. The multi-column approach was
applied to image denoising as well [1]. In this approach,
each column is trained on a different type of noise, and the
outputs are adaptively weighted to handle a variety of noise
types. Our proposed model may pose half-way between
these two approaches. Each column is trained to conduct a
different role, having a different number of outputs. How-
ever, we combine the outputs with even weights as they are
the same pitch quantity with different resolutions.

As aforementioned, classification-based melody extrac-
tion is rarely attempted. Among them, our proposed model
is similar to the SVM approach by Ellis and Poliner [7] in
that both of them predict a pitch label from spectrogram
using a classifier and a hidden Markov model for post-
processing. However, our model produces a finer pitch
resolution. Also, we take advantage of deep neural net-
works, which recently has proved to be capable of having
great performance with sufficient labeled data and comput-
ing power.

3. PROPOSED METHODS

3.1 Multi-Column Deep Neural Networks

Our architecture of the MCDNN is illustrated in Figure 1.
Each of the DNN columns takes an odd-numbered spec-
trogram frames as input to capture contextual information
from neighboring frames and predicts a pitch label at the
center position of the context window. The DNNs are con-
figured with three hidden layers and ReLUs for the non-
linear function in common, but the output layers predict a
pitch label with different resolutions. The lowest resolu-
tion is semitone, corresponding to the leftmost one. The
next ones progressively have higher resolutions by two
times (e.g. 0.5 semitones, 0.25 semitones, ...), thereby
having as much pitch labels as the increased resolutions.
Given the outputs of the columns, we compute the com-
bined posterior as follows:

yNMCDNN =

N∏

i=1

(yiDNN + ε) (1)

where yiDNN corresponds to the prediction from ith col-
umn DNN, and N corresponds to the number of total
columns. We use multiplication in a maximum-likelihood
sense, assuming that the column DNNs are independent.
We add a small value, ε to prevent numerical underflow.
Note that, before combining the predictions, those with
lower resolutions are actually expanded by locally repli-
cating each element so that the output sizes are the same
for all columns. For example, the leftmost DNN in Fig-
ure 1, which predicts pitch in semitone, expands the output
vector by a factor of 4. As a result, the merged posterior
maintains the highest pitch resolution.

Figure 1: Block diagram of our proposed multi-column
deep neural networks for singing melody extraction

3.2 Data Augmentation

Recent advances in deep learning are attributed to the
availability of large-scale labeled data among others. Con-
sidering that melody-labeled public datasets are not much
available, and manual labeling is laborious, it is desirable
to augment existing datasets. In our experiments, we aug-
ment our training set by changing the global pitch of the
audio content. Instead of pitch-shifting by resampling [10],
which carries out time-stretching at the same time, we use
a phase-vocoder method approach to achieve more natu-
ral transposition [9]. Pitch shifting proved to be an effec-
tive method of data augmentation for singing voice detec-
tion [15]. We will show that it works for singing melody
extraction as well. On top of this, we also augment the
training data by simply using an extra dataset that covers
more music genres, as melody characteristics are quite dis-
criminative over different music genres [14].

3.3 Temporal Smoothing by HMM

Although the MCDNN is trained to capture contextual in-
formation by taking multiple frames as input data, this may
be limited to learn long-term temporal dependencies that
appear on the pitch contours of singing voices. Also, the
prediction is performed independently every time step. In
order to incorporate the sequential structure further, we
conduct temporal smoothing for the combined output of
the MCDNN using HMM. We implemented the HMM, fol-
lowing the procedure in [7].

3.4 Singing Voice Detection

The MCDNN is trained with only voiced frames for pitch
classification. Therefore, a separate singing voice detec-
tion step is necessary for the test phase. However, since
singing voice detection itself is a challenging task and not
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our main concern in this paper, we evaluate the test data
using two scenarios. In the first scenario, we assume that a
perfect singing voice detector is available so that we focus
on the performance of our model only on voiced frames. In
the second scenario, we use a simple energy-based singing
voice detector introduced in [7]. The detector sums spec-
tral energy between 200 Hz and 1800 Hz where the singing
voice is likely to have a higher level than background mu-
sic. The sum is normalized by the median energy in the
band, and a threshold is used to determine the presence
of singing voice. We expect that the performance of our
model will range between the results from the two scenar-
ios if a better singing voice detector is available.

4. DATASETS

4.1 Training Datasets

We use the RWC pop music database as our main train-
ing set [8]. It contains 100 popular songs with singing
voice melody annotations. We divide the database into two
splits, 85 songs for training and the remaining 15 songs for
validation. In order to avoid bias by gender and the num-
ber of singers, we select the songs such that male/female
singers and solo/chorus singing are evenly distributed over
the training and validation sets. We also prevent the same
singer’s songs from being split over the two sets so that
singer voices in the validation stage are never heard. In or-
der to train the MCDNN more effectively, we augment the
training set by applying pitch-shifting by ±1, 2 semitones.
This increases the amount of the training set by five times.
Also, we modify the corresponding pitch label accordingly.

Since the RWC database includes only pop music, the
model trained on the set may not work well for other gen-
res. We thus increase the size of training set and genre di-
versity by using 60 vocal tracks of the MedleyDB dataset
as an additional training set [3].

4.2 Test Datasets

We examine our proposed model with three publicly
available datasets: ADC2004, MIREX05, and MIR1k.
Due to the limited accessibility to the datasets 1 and the
limitation of our model that can handle singing voice
only, we test them with several options. Specifically,
the ADC2004 dataset includes some instrumental pieces
where the melody is played by saxophones or other mu-
sical instruments. The MIREX05 dataset we obtained has
only 13 out of the total 25 songs. Furthermore, only 9
of the 13 songs contain singing voice. For these reasons,
we evaluate our model on all songs and those with singing
voices separately for the two sets.

We report various evaluation metrics for melody ex-
traction, including overall accuracy, raw pitch accuracy,
raw chroma accuracy, voicing detection rate and voicing
false alarm rate. We compute them using mir eval [11],

1 We downloaded the ADC2004 and MIREX05 datasets from
http://labrosa.ee.columbia.edu/projects/melody/ and the MIR1k dataset
from https://sites.google.com/site/unvoicedsoundseparation/mir-1k

a Python library designed for objective evaluation in MIR
tasks.

4.3 Preprocessing

We resample the audio files to 8 kHz and merge stereo
channels into mono. We then compute spectrogram with
Hann window of 1024 samples and hop size of 80 sam-
ples, and finally compress the magnitude by a log scale.
Following the strategy in [7], we use only 256 bins from
0 Hz to 2000 Hz where the human singing voices have a
relatively greater level than in other frequency bands with
regard to background music.

5. EXPERIMENTS

Given the MCDNN model and training data, we conduct
several experiments to figure out the effect of different set-
tings in the model. In the followings, we describe options
in training the MCDNN and the experiments.

5.1 DNN Training

We configure the DNN to have three hidden layers, each
with 512, 512 and 256 units, and ReLUs for the nonlin-
ear function. For the output layer, we use the sigmoid
function instead of the softmax function, which is a typ-
ical choice in the categorical classification, because the
sigmoid slightly worked better in our experiments. Thus,
we use binary cross-entropy between the output layer and
the one-hot representation of pitch labels as an objective
function to minimize. The pitch labels cover from D2 to
F#5 in semitone unit. The label vectors are expanded as
pitch resolution increases. We initialize the weights with
random values from the uniform distribution and optimize
the objective function using RMSprop and 20% dropout
for all hidden layers to avoid overfitting to the training set.
For fast computing, we run the code using Keras 2 , a deep
learning library in Python, on a computer with two GPUs.

5.2 Context Size

Our model takes multiple frames of spectrogram as input
to take contextual information into account. Our first ex-
periment is to figure out an optimal size of the input for
different pitch resolutions. For this experiment, we train a
single-column DNN using one million examples from the
RWC training set. Every training iteration, we randomly
select a subset from the pool. We then verify classification
accuracy using only voiced frames on the RWC validation
set. Figure 2 shows the classification accuracy for a vary-
ing size of the spectrogram input. We experimented with
multi-frame as inputs of DNN where the input data were
taken from N neighbor spectrogram frames. The accuracy
progressively increases up to 7 or 9 frames and then con-
verge to a certain level. This is expected because pitch con-
tours of singing voices usually have continuous curve pat-
terns and this temporal features can be captured better by

2 https://github.com/fchollet/keras
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Figure 2: Classification accuracy on the validation
set. “res=1” indicates pitch resolution in semitone unit.
“res=2”, “res=4”, and “res=8” indicate progressively
higher resolutions than semitone by a factor of 2.

taking multiple frames. The result also shows that the val-
idation accuracy is inversely proportional to the pitch res-
olution. That is, as the resolution increases, the accuracy
drops quite significantly. This is also expected because the
number of input data per label will decrease given the same
training condition and also the accuracy criterion becomes
more strict (i.e., slight missing between neighboring pitch
labels could have been regarded as a correct prediction).
For the following experiments, we fix the input size to 11
frames.

5.3 Data Augmentation

As described in Section 4.1, we augment the training set
in two folds. One is by expanding the existing train-
ing set using pitch shifting and the other is by making
up with another dataset, i.e., 60 songs including singing
voices among the MedleyDB dataset. For this experiment,
we train a single-column DNN using the increased train-
ing pool, specifically, six million examples from the aug-
mented RWC training set and additional 200,000 examples
or so from the MedleyDB songs. Again, we verify classi-
fication accuracy using only voiced frames on the RWC
validation set.

Figure 3 shows the classification accuracy for a varying
size of pitch resolution when the pitch-shifted RWC data
and MedleyDB data are added to the training data pool in
turn. Overall, the accuracy increases by 2 to 3 % with
the additional sets. An interesting result is that, with the
pitch-shifted data, the accuracy increases more when pitch
resolution is low (1 or 2) and, with the additional Med-
leyDB songs, the accuracy increases more when pitch res-
olution is high (4 or 8). This is probably because the RWC
data is pitch-shifted in semitone units and so technically in-
creases data with low pitch resolutions whereas strong vi-
brato voices in the opera songs included in the MedleyDB
dataset increase data with high pitch resolutions relatively
more.

5.4 Single-column vs. Multi-column

As shown in the previous experiments, the classification
accuracy is inversely proportional to the pitch resolution
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Figure 3: Classification accuracy on the validation set
when the pitch-shifted versions of the RWC dataset and
60 vocal songs of the MedleyDB dataset are added in turn
to the training set.

in the single-column DNN (SCDNN). That is, as the reso-
lution becomes finer, the classification accuracy decreases,
and vice versa. The MCDNN was devised from this empir-
ical result, hoping to achieve both high accuracy and high
pitch resolution simultaneously by using the SCDNN with
different pitch resolutions together. In this experiment, we
validate the idea by comparing the SCDNN and two dif-
ferent combinations of MCDNN. In particular, we evalu-
ate them on the three test sets (ADC2004, MIREX05 and
MIR1k), assuming the voiced frames are perfectly detected
(the first singing voice detection scenario in Section 3.4).

Figure 4 displays the raw pitch accuracy (RPA) and raw
chroma accuracy (RCA). Note that we evaluate the models
on the ADC2004 and MIREX05 datasets separately for all
songs including instrumental pieces and a subset excluding
them (for the latter, the dataset name is suffixed with “vo-
cal”). Overall, the MCDNN improves the melody extrac-
tion accuracies. An interesting result is that the MCDNN
increases the accuracies on the sets with singing voices
quite significantly (about 5 % in RPA and RCA on the
MIREX05-vocal) whereas it can be even worse than the
SCDNN when instrumental pieces are included. This is
actually expected because our model is trained only using
voiced frames. This indicates that our model is a special-
ized melody extraction algorithm that works only on mu-
sic including singing voices. Comparing the two MCDNN
models, there is no significant difference in performance.
Thus, the simpler model (the 1-2-4 MCDNN) seems to be
a better choice.

5.5 HMM-based Postprocessing

We conduct the Viterbi decoding based on a HMM model
for temporal smoothing of the combined prediction. We
estimate the prior probabilities and transition matrix from
ground-truth of the training set. We then use the prediction
of whole tracks as posterior probabilities. Table 1 shows
the results as performance increments after applying the
Viterbi decoding for the 1-2-4 MCDNN on the test sets.

5.6 A Case Example of Singing Melody Extraction

Our proposed model is capable of predicting temporally
smooth pitch contours by using multi-resolution pitch la-
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Figure 4: Raw pitch accuracy (RPA) and raw chroma accuracy (RCA) on the ADC2004, MIREX2005 and MIR1K dataset
that compare one SCDNN and two different MCDNNs. The “vocal” suffix indicates their subsets that include songs with
vocals. Here we assume that we have a perfect voice detector to focus on accuracy on voiced frames.

without HMM with HMM
Dataset RPA RCA RPA RCA
ADC2004 0.749 0.806 0.762 0.816
ADC2004-vocal 0.827 0.852 0.835 0.856
MIREX05 0.801 0.817 0.803 0.817
MIREX05-vocal 0.869 0.875 0.871 0.877
MIR1k 0.766 0.813 0.769 0.813

Table 1: Performance increment by HMM-based smooth-
ing on the 1-2-4 MCDNN.

bels, and the capability is supported more by the aug-
mented datasets. Here we verify it by illustrating an ex-
ample of singing melody extraction. We selected an opera
song from the ADC2004 dataset because the singing voices
have dynamic pitch motions such as strong vibrato. Fig-
ure 5 shows the results from three different melody ex-
traction models. The left one is from the SCDNN with
a pitch resolution of 4 (i.e. 1/4 semitone) and trained only
with the RWC dataset. The middle one is from the same
SCDNN but trained with additional pitch-shifted RWC
dataset and MedleyDB dataset. The right one is from the
1-2-4 MCDNN that has the three pitch resolutions. Com-
paring the first two models, the additional songs help track-
ing the vibrato but the second model still misses the whole
excursion. With the additional resolutions, the MCDNN
makes further improvement, tracking the pitch contours
quite precisely.

5.7 Comparison to State-of-the-art Methods

We compare our proposed method with state-of-the-art al-
gorithms on the three test datasets in Table 2. The com-
pared algorithms are all based on pitch saliency [2, 6, 12].
The evaluation metrics include overall accuracy (OA), raw
pitch accuracy (RPA), raw chroma accuracy (RCA), voice
recall (VR) and voice false alarm (VFA). As mentioned

Algorithm OA RPA RCA VR VFA
Arora [2] 0.690 0.814 0.859 0.765 0.235
Dressler [6] 0.853 0.883 0.889 0.901 0.158
Salamon [12] 0.735 0.763 0.787 0.805 0.151
MCDNN(all) 0.655 0.703 0.759 0.874 0.469
MCDNN(vocal) 0.731 0.758 0.783 0.889 0.412

(a) ADC2004

Algorithm OA RPA RCA VR VFA
Arora [2] 0.634 0.692 0.765 0.810 0.344
Dressler [6] 0.715 0.770 0.806 0.831 0.300
Salamon [12] 0.657 0.676 0.762 0.773 0.263
MCDNN(all) 0.616 0.733 0.752 0.894 0.585
MCDNN(vocal) 0.684 0.776 0.786 0.870 0.490

(b) MIREX05

Algorithm OA RPA RCA VR VFA
MCDNN(vocal) 0.613 0.726 0.770 0.934 0.658

(c) MIR-1K

Table 2: Melody extraction results on three test datasets.
In this evaluation, we used a simple energy-based voice
detector for fair comparison.

in Section 4.2, we have only 13 songs in the MIREX05
dataset. Since we use a simple energy-based voice detec-
tor (the second singing voice detection scenario in Section
3.4), the results of our model were not very impressive.
However, even with it, the accuracies are quite comparable
to some of the algorithms when the test sets include singing
vocals. Also, from Figure 4, we can see the RPA and RCA
when we have a perfect voice detector. This shows that the
accuracies significantly increase, being comparable to the
top-notch one.
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(a) SCDNN with a pitch resolution
of 4 trained with the RWC dataset
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(b) SCDNN with a pitch resolu-
tion of 4 trained with the addi-
tional pitch-shifted RWC dataset
and MedleyDB dataset
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(c) 1-2-4 MCDNN trained with
the additional pitch-shifted RWC
dataset and MedleyDB dataset

Figure 5: A case example of melody extraction on an opera song using different models and training data

6. CONCLUSIONS

In this paper, we proposed a novel classification-based
melody extraction algorithm on vocal segments using the
multi-column deep neural networks. We showed how the
data-driven approach can be improved by different settings
of the model such as input size, data augmentation, use
of multi-column DNN with different pitch resolutions and
HMM-based smoothing. The limitation of this model is
that it works well only for singing voice because we trained
it only with songs where vocals lead the melody. However,
this also indicates that our model can be improved to a gen-
eral melody extractor if a sufficient amount of instrumental
pieces are included in the training sets. We compared our
model to previous state-of-the-arts. Since we used a sim-
ple energy-based singing voice detector, the performance
of our model has limitations. However, the results show
that, with a better voice detector, our model can be im-
proved further.
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Donzé, Alexandre 192
Dorfer, Matthias 129, 475, 730, 789
Downie, J. Stephen 765
Driedger, Jonathan 239, 246, 502
Droogenbroeck, Marc Van 136
Duan, Zhiyao 758
Duggan, Bryan 53
Durand, Simon 386
Dzhambazov, Georgi 716

Eghbal-zadeh, Hamid 578, 709
Ellis, Daniel 796
Elowsson, Anders 351
Embrechts, Jean-Jacques 136
Espinosa-Anke, Luis 150
Essid, Slim 386
Ewert, Sebastian 30, 239

Faloutsos, Christos 688
Fazekas, György 73, 316, 805
Fields, Ben 199
Figueiredo, Flavio 633, 688
Font, Frederic 269
Fournier-S’niehotta, Raphael 723
Freed, Adrian 192
Fremont, Daniel J. 192
Fujinaga, Ichiro 94
Fuller, John 626

Ganguli, Kaustuv Kanti 232, 605, 751
Giraldo, Sergio 674
Giraud, Mathieu 164
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