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ABSTRACT

We introduce aligned hierarchies, a low-dimensional rep-
resentation for music-based data streams, such as record-
ings of songs or digitized representations of scores. The
aligned hierarchies encode all hierarchical decompositions
of repeated elements from a high-dimensional and noisy
music-based data stream into one object. These aligned hi-
erarchies can be embedded into a classification space with
a natural notion of distance. We construct the aligned hier-
archies by finding, encoding, and synthesizing all repeated
structure present in a music-based data stream. For a data
set of digitized scores, we conducted experiments address-
ing the fingerprint task that achieved perfect precision-
recall values. These experiments provide an initial proof of
concept for the aligned hierarchies addressing MIR tasks.

1. INTRODUCTION

From Foote’s field-shifting introduction of the self-
similarity matrix visualization for music-based data
streams in [9] to the enhanced matrix representations in
[11, 17] and hierarchical segmentations in [14, 18, 21],

music information retrieval (MIR) researchers have been
creating and using representations for music-based data
streams in pursuit of addressing a variety of MIR tasks,
including structure tasks [10, 14, 17, 18], comparison tasks
[2–4,11], and the beat tracking task [1,5,8,13]. These rep-
resentations are often tailored to a particular task, limited
to a single layer of information, or committed to a single
decomposition of structure. As a result most of the rep-
resentations for music-based data streams provide narrow
insight into the content of the data stream they represent.

In this work, we introduce aligned hierarchies, a novel
representation that encodes multi-scale pattern information
and overlays all hierarchical decompositions of those pat-
terns onto one object by aligning 1 these hierarchical de-
compositions along a common time axis. This representa-

1 We note that ‘alignment’ in this case refers to placing found structure
along a common axis, not to matching a score to the recording of a piece.
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tion uncovers repeated structures observed in matrix rep-
resentations widely used in MIR (such as self-similarity
matrices, self-dissimilarity matrices, and recurrence plots)
and can be used to visualize all decompositions of the re-
peated structures present in a particular music-based data
stream as well as the relationships between the repeats
in that data stream. By including and aligning all re-
peated structures found in a music-based data stream, the
aligned hierarchies exist in the middle ground of represen-
tations between the density of information in Foote’s self-
similarity matrix visualization [9] and the sparsity of infor-
mation in representations like those found in [1,11,14,20].

Beyond the visualization benefits, aligned hierarchies
have several compelling properties. Unlike many repre-
sentations in the literature, the aligned hierarchies can be
embedded into a classification space with a natural dis-
tance function. This distance function serves as the basis
for comparing two music-based data streams by measuring
the total dissimilarity of the patterns present. Additionally,
the aligned hierarchies can be post-processed to narrow our
exploration of a music-based data stream to certain lengths
of structure, or to address numerous MIR tasks, including
the cover song task, the segmentation task, and the chorus
detection task. Such post-processing techniques are not the
focus of this paper and will be explored further in future
work. In this paper, as a proof of concept for our approach
to MIR comparison tasks, we use aligned hierarchies to
perform experiments addressing the fingerprint task on a
data set of digitized scores.

There are previous structure-based approaches to the
cover song task, such as [1, 11, 20], that do not use the
formal segmentation of pieces of music and instead, use
enhanced matrix representations of songs as the basis of
their comparisons. Like those in [9], these representations
compare the entire song to itself, but fail to intuitively show
detailed structural decompositions of each song. In [2–4],
a variety of music comparison tasks are addressed by de-
veloping a method of comparison based on audio shingles,
which encode local information. In this work, we use audio
shingles as the feature vectors to form the self-dissimilarity
matrices representing the scores in the data set.

In Section 2, we introduce the aligned hierarchies and
the algorithm that builds them. In Section 3, we define
the classification space that aligned hierarchies embed into
and the associated distance function. In Section 4, we re-
port on experiments using aligned hierarchies to address
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the fingerprint task for a data set of digitized scores, and
we summarize our contributions in Section 5.

2. ALIGNED HIERARCHIES

In this section, we define the aligned hierarchies for a
music-based data stream and present a motivating exam-
ple. We introduce the three phases for constructing the
aligned hierarchies with discussions about the purpose and
motivation for each phase. For simplicity, we will use
‘song’ to refer to any kind of music-based data stream.

The algorithm finds meaningful repetitive structure in
a song from the self-dissimilarity matrix representing that
song. The algorithm aligns all possible hierarchies of that
structure into one object, called the aligned hierarchies of
the song. The aligned hierarchiesH has three components:
the onset matrix BH with the length vector wH and anno-
tation vector αH that together act as a key for BH .

The onset matrix BH is an (n× s)-binary matrix,
where s is the number of time steps in the song, and where
n is the number of distinct kinds of repeated structure
found in the song. We define BH as follows

(BH)i,j =





1 if an instance of ith repeated
structure begins at time step j,

0 otherwise
(1)

The length vector wH records the lengths of the re-
peated structure captured in the rows of BH in terms
of number of time steps, and the annotation vector αH
records the labels for the groups of repeated structure en-
coded in these rows. These labels restart at 1 for each dis-
tinct length of repeated structure and serve to distinguish
groups of repeated structure with the same length from
each other. We note that we can exchange any two rows in
BH representing repeats with the same length without los-
ing any information stored in the aligned hierarchies and
without changing either wH or αH .

2.1 Motivating Example

Suppose we have a song that has two kinds of non-
overlapping repetitive structure, such as a verse and a cho-
rus, denoted V and C, respectively, appearing in the or-
der V CV CV . We say that the song has the segmenta-
tion V CV CV , where V and C are the repeated sections.
We can segment the song in several ways: {V,C, V, C, V },
{(V C), (V C), V }, or {V, (CV ), (CV )}, with (V C) rep-
resenting the piece of structure composed of the V struc-
ture followed by the C structure and similarly for (CV ).
Noting that both (V C) and (CV ) can be decomposed into
smaller pieces, we would like to find an object that captures
and synthesizes all possible decompositions. Figure 1 is a
visualization of one such object where the V structure is 3
beats long and the C structure is 5 beats long.

The object that produces the visualization shown in Fig-
ure 1 is known as the aligned hierarchies, and it encodes the
occurrences and lengths of all the repeated structure found
in a song. In Figure 1, we see that repeats of (V C) and
the repeats of (CV ) overlap in time, but are not contained

in each other. We also note that all decompositions of the
repeats of (V C) and (CV ) are encoded in this object.

In this example, we have four kinds of repeated struc-
tures: V , C, (V C), and (CV ). Therefore BH associ-
ated to the aligned hierarchies will have four rows, one
corresponding to each kind of repeated structure, and 19
columns, one for each beat. Listing the rows in order of
the lengths of the repeated structures and the initial occur-
rences of those repeats, we have that BH is a sparse matrix
with 1’s for the V structure at {(1,1), (1,9), (1,17)}, with
1’s for the C structure at {(2,4), (2,12)}, with 1’s for the
(V C) structure at {(3,1), (3,9)}, and with 1’s for the (CV )
structure at {(4,4), (4,12)}. Then wH is the column vector
[3, 5, 8, 8]t and αH is [1, 1, 1, 2]t.

V V V

C C

(V C) (V C)

(CV ) (CV )

Beats
1 4 9 12 17 20

Figure 1: Visualization of aligned hierarchies for a song
with segmentation V CV CV incorporating all possible de-
compositions of the song with V structure 3 beats long and
C structure 5 beats long.

2.2 Building the Aligned Hierarchies

The construction of the aligned hierarchies begins with ei-
ther a self-similarity matrix or a self-dissimilarity matrix.
By beginning with a matrix representation for a song, we
assume that we do not have access to the original presen-
tation of the song, such as the audio recording, score, or
midi file. In a world with proprietary data, extremely high-
dimensional data, and limited or restricted access to data,
we believe that it is important to develop robust techniques
for representing and comparing songs beginning from a
data representation that cannot be reverse engineered back
to the original presentation of the data. For this work, we
will use a self-dissimilarity matrix to represent each song;
an example of one for the score of Chopin Mazurka Op. 6,
No. 1 is shown in Figure 3a.

Our construction of the aligned hierarchies for a song is
motivated by the fact that repeated structures in a song are
represented as diagonals of small-valued entries in D, the
self-dissimilarity matrix representing the song [6, 16, 17].
If such a diagonal of length k exists inD beginning at entry
(i, j), then the section of the song beginning at time step i
that is k time steps long is a repeat of the k time step long
section beginning at time step j, and vice versa. We call
these sections a pair of repeats of size k.

We construct the aligned hierarchies from simple and
meaningful repetitive structure present in a song. For ex-
ample, suppose a sequence of five chords is played repeat-
edly in a song. We do not regard repetitions of just the
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first three chords as meaningful repeats, unless there is at
least one instance in the song of those three chords without
the last two or at least one instance of the last two chords
without the first three.

Building the aligned hierarchies has three phases:

1. Extract repeated structure of all possible lengths
from D, the self-dissimilarity matrix of the song

2. Distill extracted repeated structure into their essen-
tial structure components

3. Build aligned hierarchies for the song using the es-
sential structure components

2.2.1 Phase 1 - Extract Repeated Structure from
Self-Dissimilarity Matrix D
There are four steps to extracting repeated structure from
D. First, we define what repeats are, in context of the data
and task at hand. Second, we extract the coarsest repeated
structure from D. Third, we use this found structure to
uncover further repeated structure hidden by the presenta-
tion of the song as D. Lastly, we create groups of repeated
structure from the extracted pairs of repeats. In this last
step, we enforce a mimicking how humans notice and in-
terpret patterns by removing any group of repeated struc-
ture that contains overlapping repeats.

Step 1: Based on the data and the task of interest, we set
a threshold T that defines how similar two sections must
be in order to be considered repeats of each other and then
threshold D accordingly. We note that many ways exist in
the literature to set this threshold, such as [2, 10, 11, 16].
The resulting thresholded matrix T is a binary matrix of
the same dimensions as D and is given by

Ti,j =
{

1 if Di,j < T
0 otherwise

(2)

Step 2: We next find and extract pairs of coarse repeats
in the song, by finding all non-zero diagonals in T , record-
ing relevant information about the pair of repeats, and fi-
nally removing the associated diagonal from T . We loop
over all possible repeat lengths, beginning with the largest
possible structure (the number of columns in T ) and end-
ing with 1 (the smallest possible structure).

To find simple and meaningful structure of exactly
length k represented by diagonals of exactly length k, we
must remove all diagonals of length greater than k. Sup-
pose that we did not remove diagonals of length (k + 1)

before searching for diagonals of length k, and let d̂i,j be
one such diagonal of 1’s in T . Then along with the other
diagonals of length k, our algorithm would find two diag-
onals of length k: one starting at (i, j) and another starting
at (i + 1, j + 1). Our algorithm would not be able to tell
that these diagonals of length k are contained in the diago-
nal d̂i,j or that together these diagonals make the diagonal
d̂i,j . Thus our algorithm would not be finding simple and
meaningful repeated structure in the song as required.

Step 3: Once we have extracted all diagonals from T ,
we use the smaller extracted repeated structure to find ad-
ditional repeated structures hidden in the coarse repeats.

Suppose we examine a piece of text where a certain word
is repeated both by itself and in a repeated phrase. In the
previous step, our algorithm would find the repeated word
on its own and the repeated phrase, but would not detect
the repeated word as part of that repeated phrase. In this
step, our algorithm realizes that our repeated word is part
of the repeated phrase and that the repeated phrase breaks
up into at most three pieces, those being: 1) the part of
the phrase before our repeated word, 2) the repeated word
itself, and 3) the part of the phrase after the repeated word.

V C N V C V

t = 1 10 15 30 40 45 55
t = 1

10

15

30

40

45

55

(a) T for a toy song with sections marked
Start Time Step Start Time Step Repeat Length

VC 1 31 15
V 1 46 10
V 31 46 10

(b) Pairs of repeats after Step 2 of Phase 1, the initial extraction
from T with sections marked

Start Time Step Start Time Step Repeat Length
VC 1 31 15
V 1 46 10
V 31 46 10
V 1 31 10
C 11 41 5

(c) Pairs of repeats after Step 3 of Phase 1, the second part of
extraction with sections marked

Figure 2: Thresholded matrix T and the pairs of repeats
uncovered after each step of repeat extraction for toy song
with segmentation V CNV CV

Consider the song with segmentation V CNV CV and
with the thresholded distance matrix T shown in Figure 2a.
In the initial extraction, the algorithm finds three pairs of
repeats, two pairs encoding repeats of the V structure by
itself and one pair encoding two repeats of (V C), as shown
in Table 2b. But the algorithm has not detected that the pair
of (V C) repeats contain the smaller found V structure as
well as the yet to be isolated C structure. In this step, as
shown in Table 2c, by using either of the pairs of V repeats,
we find that the pair of (V C) repeats does contain a pair of
V repeats as well as a pair of smaller repeats that is not the
same as the V structure, known as the C structure.

Step 4: In the last step of this phase, we form groups
of repeats from the pairs of repeats such that each kind of
repeated structure has exactly one group of repeats associ-
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ated to it. For the example shown in Figure 2a, we have
three groups: one associated to (V C), another associated
to V , and a third associated to C.

To mimic human segmentation of music, we check that
each group does not contain repeats that overlap in time.
For the example in Section 2.1, we are more likely to de-
scribe the structure of a popular song by saying “the verse
and chorus are repeated twice together followed by the
verse again,” than by saying “the verse, chorus, and verse
are repeated together twice such that those two repeats
overlap at one verse.” Thus we do not encode the repeated
structure (V CV ) in the aligned hierarchies shown in Fig-
ure 1, even though it occurs twice in V CV CV .

2.2.2 Phase 2 - Distill Essential Structure Components

Just like words that are composed of syllables, musical el-
ements, such as motifs and chord progressions, are com-
posed of smaller components. In this step, we distill re-
peats of the song into their essential structure components,
the building blocks that form every repeat in the song.

By definition, we allow each time step to be contained
in at most one of the song’s essential structure compo-
nents. In this phase, we pairwise compare groups of re-
peats, checking if the repeats in a given pair of groups over-
lap in time. If they do, we divide the repeats in a similar
fashion as used in Step 3 in Phase 1, forming new groups
of repeats that do not overlap in time. We iterate this pro-
cess, dividing repeats as necessary, until each time step is
contained in at most one repeated structure. The repeats
remaining at the end of this phase are our essential struc-
ture components. For the example in Section 2.1 shown
in Figure 1, the essential structure components are the in-
stances of the V and C structures. Figure 3b is a visualiza-
tion of the essential structure components for the score of
Chopin’s Mazurka Op. 6, No. 1.

2.2.3 Phase 3 - Construct Aligned Hierarchies from
Essential Structure Components

In this final phase, we build the aligned hierarchies from
the essential structure components. We employ a process
that is akin to taking right and left unions of the essential
structure components to find all possible non-overlapping
repeats in the song. We encode these repeats in the on-
set matrix and form the length and annotation vectors that
together are the key for the onset matrix. Figure 4 is a visu-
alization of the aligned hierarchies for a score of Chopin’s
Mazurka Op. 6, No. 1.

3. COMPARING ALIGNED HIERARCHIES

To compare aligned hierarchies, we embed them into a
classification space with a distance function measuring
the total dissimilarity between pairs of songs. In Sec-
tion 3.1, we explain how aligned hierarchies embed into
this classification space, and we present the distance func-
tion used for comparing aligned hierarchies of songs in
Section 3.2. 2

2 The proofs for the material in this section can be found in the author’s
doctoral thesis [12].

(a) Self-dissimilarity matrix D. Black denotes values near 0.

(b) Essential structure components

Figure 3: Visualizations for a score of Chopin’s Mazurka
Op. 6, No. 1 with repeat markers observed.

3.1 Classification Space for Aligned Hierarchies

To define (S∗)n, the space that we embed aligned hierar-
chies into, while simultaneously demonstrating how this
embedding occurs, we begin by representing aligned hier-
archies as a sequence of matrices.

Definition 3.1. Given a particular song with s time steps
and its aligned hierarchies H , we define a sequence of s
binary matrices

{
Bk
}s
k=1

where the kth binary matrix Bk

is the rows of BH such that wH = k, which are the rows
corresponding to repeats of exactly k time steps. If there
are no repeats of exactly k time steps, then Bk is a row of
s zeros. For brevity, we will use

{
Bk
}

for
{
Bk
}s
k=1

.

We note that each binary matrix in
{
Bk
}

does not have
a pair of vectors acting as a key for it, as we have in H .
Our definition of

{
Bk
}

naturally encodes the information
from wH in

{
Bk
}

. Similarly, we construct αH so that the
labels for the groups of repeats restart at 1 for each distinct
repeat length l. Thus, for each l, the label corresponding to
a row in Bl ∈

{
Bk
}

is simply that row’s index in Bl.
We recall that we can exchange any two rows of BH

with wH = l without changing the annotation labels.
So we say that two matrices encoding repeats of exactly
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Figure 4: Visualization of aligned hierarchies for a score
of Chopin’s Mazurka Op. 6, No. 1 with repeat markers
observed.

length l are the same if one is a row permutation of the
other. Therefore the space that we embed the aligned hier-
archies into must inherit this notion of matrix equality.

Definition 3.2. Let S be the space of (m×t)-binary matri-
ces with m, t ∈ Z≥1. Consider the symmetric group Sm,
the group of all permutations for the rows of the matrices.
The matrix denoted Mσ(r) ∈ S is the matrix with the rows
of M ∈ S in the order prescribed by σ(r) ∈ Sm.

Proposition 3.1. Let ∼ be the relation on S such that for
M,Q ∈ S , we say that M ∼ Q if M = Qσ(r), for some
σ(r) ∈ Sm. Then ∼ is an equivalence relationship on S.

Definition 3.3. Let S∗ be the quotient space S/∼. Then
the product space (S∗)n is composed of n-copies of S∗.

We embed H into (S∗)n by setting t = s, the number
of time steps in the song, and choosing m = κmax, where
κmax = max

l∈{1,...,s}

{
r|r is the number of rows in Bl

}
. Then

we place each Bl ∈
{
Bk
}

into the lth space of (S∗)n. So
the lth quotient space in (S∗)n corresponds to the classifi-
cation space of patterns of length l present in songs.

Notation: The elements of product space (S∗)n are
sequences of elements in S∗, pedantically denoted as
(qg)ng=1 with qg ∈ S∗, for each g ∈ {1, . . . , n}. For
brevity, we will use (qg) for (qg)ng=1.

3.2 Metric for Comparing Aligned Hierarchies

To define a metric on the space (S∗)n that will measure the
total dissimilarity between two songs represented by their
aligned hierarchies, we begin by defining a function that
measures the dissimilarity between patterns of a fixed size
present in those two aligned hierarchies.

Definition 3.4. Let || · ||1 be the entry-wise 1-norm. Given
any s1, s2 ∈ S∗, let f : S∗ × S∗ → R be the function
given by

f(s1, s2) = min
δ∈s1
β∈s2

||δ − β||1 (3)

Proposition 3.2. The function f : S∗ × S∗ → R is a
distance function.

To define the metric that measures the total dissimilarity
between two songs, we use the above function f to com-
pute the dissimilarity between the repeated patterns at each
size and total the measured dissimilarities. This gives us
the total dissimilarity between the repeated patterns of all
sizes present in two aligned hierarchies.

Corollary 1. Let (qg), (rg) ∈ (S∗)n. The function
dH : (S∗)n × (S∗)n → R is a distance function, where
dH is given by

dH ((qg), (rg)) =
n∑

g=1

f(qg, rg). (4)

4. PROOF OF CONCEPT RESULTS

In this section, we consider the fingerprint task for a data
set of digitized musical scores. These experiments serve as
a proof of concept for our method of comparing songs via
their aligned hierarchies. With the exception of the feature
extraction, the code implementing the creation and com-
parison of aligned hierarchies is written in MATLAB. 3

4.1 Data Set and Features

Our data set is based on 52 Mazurka scores by Chopin.
For each score, we download two human-coded, digitized
versions, called **kern files, posted on the KernScore on-
line database [19]. 4 The first version has the repeated sec-
tions repeated as many times as marked in the score and
the second has the repeated sections presented only once
per time written. For scores that have no sections that are
repeated in their entirety, we download the single **kern
file twice, marking one copy as having the repetitions re-
peated and the second copy as having the repetitions not
repeated. Each version of a score is referred to as a song
and there are 104 songs in our data set.

In this data set, the notion of time is in terms of beats
with one time step per beat. For each beat, we extract the
chroma feature vector, encoding the amount of each of the
12 Western pitch classes present in that beat [15]. To do

3 The URL to the code used for the experiments can be found at
https://github.com/kmkinnaird/ThesisCode/releases/tag/vT.final2

4 The **kern files can be accessed at:
http://kern.humdrum.org/search?s=t&keyword=Chopin
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this, we used the music21 Python library [7]. 5 We form
audio shingles, that encode local contextual information,
by concatenating γ consecutive chroma feature vectors, for
a fixed integer γ.

We create a symmetric self-dissimilarity matrixD using
a cosine dissimilarity measure between all pairs of audio
shingles. Let ai, aj be the audio shingles for time steps i
and j, respectively. Then we define

Di,j =
(
1− < ai, aj >

||ai||2||aj ||2

)
(5)

By setting γ, we set the smallest size of repeated struc-
ture that can be detected. For this work, we set γ = 6 or
γ = 12. Assuming that the average tempo of a Mazurka is
approximately 120 beats per minute, if γ = 6, our shingles
encode about 3 seconds of information similar to the audio
shingles in [2,3]. Similarly, if γ = 12, our shingles encode
four bars of three beats each or about 6 seconds.

4.2 Evaluation Procedure

For all of our experiments, given a particular threshold, we
construct the aligned hierarchies for each score. We com-
pute the pairwise distances between the songs’ representa-
tions as described in Section 3.2. Using these pairwise dis-
tances, we create a network for the data set with the songs
in the data set as the nodes. In the fingerprint task, we only
match songs that are exact copies of each other, and so we
define an edge between two nodes if the distance between
the two aligned hierarchies associated to the songs is 0.

We evaluate the results of our experiments by comput-
ing the precision-recall values for the resulting network
compared against a network representing the ground truth,
which is formed by placing edges between the two identi-
cal copies of the score present in the data set. This ground
truth was informed by a data-key based on human-coded,
meta-information about the scores.

For each experiment, we set γ, the width of the audio
shingles, and T , the threshold value for defining when two
audio shingles are repeats of each other. The choice of γ
and T affects the amount of structure classified as repeats,
which impacts whether or not a song has aligned hierar-
chies to represent it. If a song does not have aligned hier-
archies, due to the choice of γ and T , we remove the node
representing that song from consideration in both our ex-
periment network and in our ground truth network, as there
would be nothing for our method to use for comparison.

4.3 Results

We conducted 10 experiments with the threshold
T ∈ {0.01, 0.02, 0.03, 0.04, 0.05} and with γ ∈ {6, 12}.
Each experiment yielded a perfect precision-recall value.
For the experiment with T = 0.01 and γ = 12, we had
5 songs without aligned hierarchies including 2 pairs of
songs based on scores without repeated sections. For the
experiment with T = 0.02 and γ = 12, we had 1 song
without aligned hierarchies, but this song was based on a

5 See http://web.mit.edu/music21/ for information about music21.

score with repeated sections and thus, under the fingerprint
task, would not be matched to another song in our data set.

We note that our method did discover an error in the
data key for the Mazurka scores. According to the human-
coded, meta-information, Mazurka Op. 17, No. 1 was clas-
sified as having sections marked in the score as being re-
peated. However, the score of Mazurka Op. 17, No. 1 in
fact does not have any sections marked to be repeated. Our
algorithm correctly detected this error, and we corrected
our version of the data key for these Mazurka scores. The
corrected data key is our ground truth, which is what our
precision-recall values are based on. To our knowledge,
there is no published work using this data set, therefore
we cannot provide numerical comparisons between our
method and other ones.

For all 10 experiments, we have correctly identified all
scores, with aligned hierarchies, that do not have sections
marked in the score to be repeated. Based on the construc-
tion of the score data set, a perfect recall rate was expected.
More interestingly, the perfect precision rate means that we
do not falsely match scores using the aligned hierarchies.

5. CONCLUSION

In this paper, we have introduced the aligned hierarchies,
an innovative, multi-scale structure-based representation
for music-based data streams. The aligned hierarchies pro-
vide a novel visualization for repeated structure in music-
based data streams. Differing from the literature of en-
hanced matrix representations, instead of showing a com-
parison of a data stream to itself, the visualization of the
aligned hierarchies synthesizes all possible hierarchical de-
compositions of that data stream onto one time axis, al-
lowing for a straightforward understanding of the tempo-
ral relationships between the repeated structures found in a
particular data stream.

The aligned hierarchies also provide a mathemati-
cally rigorous method for comparing music-based data
streams using this low-dimensional representation. We
performed experiments addressing the fingerprint task for
data based on digitized scores. These experiments had per-
fect precision-recall rates and provided a proof of concept
for the aligned hierarchies.

In future work, we will develop post-processing tech-
niques for the aligned hierarchies. These techniques will
allow us to address additional MIR tasks, such as the cover
song task and the chorus detection task. We also will con-
tinue to develop the theory and metrics associated with
aligned hierarchies and their derivatives.
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