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ABSTRACT

Speech recognition in singing is still a largely unsolved
problem. Acoustic models trained on speech usually pro-
duce unsatisfactory results when used for phoneme reco-
gnition in singing. On the flipside, there is no phonetically
annotated singing data set that could be used to train more
accurate acoustic models for this task.

In this paper, we attempt to solve this problem using
the DAMP data set which contains a large number of re-
cordings of amateur singing in good quality. We first align
them to the matching textual lyrics using an acoustic model
trained on speech.

We then use the resulting phoneme alignment to train
new acoustic models using only subsets of the DAMP sin-
ging data. These models are then tested for phoneme reco-
gnition and, on top of that, keyword spotting. Evaluation
is performed for different subsets of DAMP and for an un-
related set of the vocal tracks of commercial pop songs.
Results are compared to those obtained with acoustic mo-
dels trained on the TIMIT speech data set and on a version
of TIMIT augmented for singing. Our new approach shows
significant improvements over both.

1. INTRODUCTION

Automatic speech recognition encompasses a large variety
of research topics, but the developed algorithms have so
far rarely been adapted to singing. Most of these tasks be-
come harder when used on singing because singing data
has different characteristics, which are also often more va-
ried than in pure speech [12] [2]. For example, the typical
fundamental frequency for women in speech is between
165 and 200Hz, while in singing it can reach more than
1000Hz. Other differences include harmonics, durations,
pronunciation, and vibrato.

Speech recognition in singing can be used in many in-
teresting practical applications, such as automatic lyrics-
to-music alignment, keyword spotting in songs, language
identification of musical pieces or lyrics transcription.

A first step in many of these tasks is the recognition
of phonemes in the audio recording. We showed in [9]
that phoneme recognition is a bottleneck in tasks such as
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language identification and keyword spotting in singing.
Other publications also demonstrate that phoneme reco-
gnition on singing is more difficult than on speech [15] [5]
[12]. This is further compounded by the fact that models
are usually trained on pure speech data.

As shown on a small scale in [5] and [9], recognition
gets better when singing is used as part of the training
data. This has so far not been done comprehensively due
to the lack of singing data sets annotated with phonemes or
words.

In this paper, we present a new approach to training
acoustic models on actual singing data. This is done by
first assembling the data from a set of recordings of unac-
companied singing and the matching textual lyrics. These
lyrics are then automatically aligned to the audio data using
models trained solely on speech. Next, the resulting an-
notated data sets are used to train new acoustic models for
phoneme recognition in singing. We then evaluate the pho-
neme recognition results on different subsets of the singing
corpus and on an unrelated data set of vocal tracks. Finally,
we also use the recognized phonemes to perform keyword
spotting.

This paper is structured as follows: We first present the
state of the art in section 2 and the data sets in section 3.
Then, we describe our proposed approach in more detail in
section 4. The experiments and their results are presented
in sections 5 and 6. Finally, we give a conclusion in section
7 and make suggestions for future experiments in section
8.

2. STATE OF THE ART

2.1 Phoneme recognition in singing

As described in [12], [2], and [9], there are significant dif-
ferences between speech and singing audio, such as pitch
and harmonics, vibrato, phoneme durations and pronuncia-
tion. These factors make phoneme recognition on singing
more difficult than on speech. It has only been a topic of
research for the past few years.

Fujihara et al. first presented an approach using Pro-
babilistic Spectral Templates to model phonemes in [3].
The phoneme models are gender-specific and only model
five vowels, but also work for singing with instrumental ac-
companiment. The best result is 65% correctly classified
frames.

In [4], Gruhne et al. describe a classical approach that
employs feature extraction and various machine learning
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algorithms to classify singing into 15 phoneme classes.
It also includes a step that removes non-harmonic com-
ponents from the signal. The best result of 58% correctly
classified frames is achieved with Support Vector Machine
(SVM) classifiers. The approach is expanded upon in [17].

Mesaros presented a complex approach that is based
on Hidden Markov Models which are trained on Mel-
Frequency Cepstral Coefficients (MFCCs) and then adap-
ted to singing using three phoneme classes separately [15]
[14]. The approach also employs language modeling and
has options for vocal separation and gender and voice ad-
aptation. The achieved phoneme error rate on unaccompa-
nied singing is 1.06 without adaptation and 0.8 with sin-
ging adaptation using 40 phonemes (the error rate greater
than one means that there were more insertion, deletion,
or substitution errors than phoneme instances). The results
also improve when using gender-specific adaptation (to an
average of 0.81%) and even more when language modeling
is included (to 0.67%).

Hansen presents a system in [5] which combines the
results of two Multilayer Perceptrons (MLPs), one using
MFCC features and one using TRAP (Temporal Pattern)
features. Training is done with a small amount of singing
data. Viterbi decoding is then performed on the resulting
posterior probabilities. On a set of 27 phonemes, this ap-
proach achieves a recall of up to 48%.

Finally, we trained new models for phoneme recogni-
tion in singing by modifying speech data to make it more
“song-like” [11]. We employed time-stretching, pitch-
shifting, and vibrato generation algorithms. Using a model
trained on speech data with all three modifications, we ob-
tained 18% correctly classified frames (6% improvement)
and a weighted phoneme error rate of 0.71 (0.06 improve-
ment).

Generally, comparing the existing approaches is not tri-
vial since different datasets, different phoneme sets, and
different evaluation measures are used.

2.2 Keyword spotting in singing

A first approach to keyword spotting in singing was presen-
ted in [9]. This approach employs keyword-filler HMMs
which detect the keyword. The recognition is performed
on phoneme posteriorgrams, which were generated with
acoustic models trained on speech. We obtained F1 mea-
sures of 33% for spoken lyrics and 24% for a-capella sin-
ging. Using post-processing techniques on the posterior-
grams, the a-capella result was improved up to 27%.

In [10], we improved upon this result by employing
phoneme duration modeling algorithms. The best result
on a-capella singing was an F1 measure of 39%.

In [1], HMM models and position-HMM-DBNs were
employed to search for certain phrases of lyrics in traditio-
nal Turkish music. The approach obtained an F1 measure
of 13% for the 1-best result.

3. DATA SETS

3.1 Speech data sets

For training our baseline phoneme recognition models, we
used the well-known Timit speech data set [7]. Its trai-
ning section consists of 4620 phoneme-annotated English
utterances spoken by native speakers. Each utterance is a
few seconds long.

Additionally, we also trained phoneme models on a mo-
dification of Timit where pitch-shifting, time-stretching,
and vibrato were applied to the audio data. This process
was described in [11]. The data set will be referred to as
TimitM.

3.2 Singing data sets

3.2.1 Damp

For training models specific to singing, we used the DAMP
data set, which is freely available from Stanford Univer-
sity 1 [16]. This data set contains more than 34,000 re-
cordings of amateur singing of full songs with no back-
ground music, which were obtained from the Smule Sing!
karaoke app. Each performance is labeled with metadata
such as the gender of the singer, the region of origin, the
song title, etc. The singers performed 301 English lan-
guage pop songs. The recordings have good sound quality
with little background noise, but come from a lot of diffe-
rent recording conditions.

No lyrics annotations are available for this data set, but
we obtained the textual lyrics from the Smule Sing! web-
site 2 . These were, however, not aligned in any way. We
performed such an alignment on the word and phoneme
levels automatically (see section 4.1).

Out of all those recordings, we created several different
sub-data sets:
DampB Contains 20 full recordings per song (6000 in

sum), both male and female.
DampBB Same as before, but phoneme instances were

discarded until they were balanced and a maximum
of 250,000 frames per phoneme where left, where
possible. This data set is about 4% the size of
DampB.

DampBB small Same as before, but phoneme instances
were discarded until they were balanced and 60,000
frames per phoneme were left (a bit fewer than the
amount contained in Timit). This data set is about
half the size of DampBB.

DampFB and DampMB Using 20 full recordings per
song and gender (6000 each), these data sets were
then reduced in the same way as DampBB. DampFB
is roughly the same size, DampMB is a bit smaller
because there are fewer male recordings.

DampTestF and DampTestM Contains one full recor-
ding per song and gender (300 each). These data
sets were used for testing. There is no overlap with
any of the training data sets.

1 https://ccrma.stanford.edu/damp/
2 http://www.smule.com/songs
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# Keywords
2 eyes
3 love, away, time, life, night
4 never, baby, world, think, heart,

only, every
5 always, little

Table 1: All 15 tested keywords, ordered by number of
phonemes.

Order-13 MFCCs plus deltas and double-deltas were ex-
tracted from all data sets and used in all experiments.

3.2.2 Acap

We also ran some tests on a small data set of the vocal
tracks of 15 pop songs, which were hand-annotated with
phonemes and words. This data set was first presented
in [5]. Despite the small size, we provide results on this
data set for comparison with our previous approaches, and
because the ground truth annotations can be assumed to be
correct (in contrast with the automatically generated anno-
tations of the Damp-based data sets).

3.3 Keywords

From the 301 different song lyrics of the Damp data sets,
15 keywords were chosen by semantic content and fre-
quency to test our keyword spotting algorithm. Each key-
word occurs in at least 50 of the 301 songs. The keywords
are shown in table 1.

4. PROPOSED APPROACH

4.1 Lyrics alignment

Since the textual lyrics were not aligned to the singing au-
dio data, we first performed an automatic alignment step.
A monophone HMM acoustic model trained on Timit using
HTK was used. Alignment was performed on the word and
phoneme levels. This is the same principle of so-called
“Forced Alignment” that is commonly used in Automatic
Speech Recognition [8] (although it is commonly done on
shorter utterances). We hand-checked some examples and
found the alignment to already be very good over-all. Of
course, errors cannot be avoided when doing automatic for-
ced alignment. We considered repeating this process with
the newly trained models, but preliminary tests suggested
that this would not improve the alignments very much.

The resulting annotations were used in the following ex-
periments. This approach provided us with a large amount
of annotated singing data, which could not feasibly have
been done manually.

4.2 New acoustic models

Using these automatically generated annotations, we
then trained new acoustic models on DampB, DampBB,
DampBB small, DampFB, and DampMB. Models were
also trained on Timit and TimitM.

All models are DNNs with three hidden layers of 1024,
850, and again 1024 dimensions with a sigmoid activation

function. The output layer corresponds to 37 monophones.
Inputs are either frame-wise MFCCs (39 dimensions) or
MFCCs with 4 context frames on either side (351 dimen-
sions).

4.3 Phoneme recognition and evaluation

Using these models, phoneme posteriorgrams were then
generated on the test data sets (DampTestF, DampTestM,
and Acap). For all non-gender dependent acoustic models,
results over both of the DampTest sets were averaged.

The recognized phonemes were then evaluated using
the percentage of correct frames, the phoneme error rate,
and the weighted phoneme error rate as evaluation measu-
res (see [11]). In the case of the DampTest data sets, the
results were compared to the automatic alignment results,
which is a potential source of error.

4.4 Keyword spotting and evaluation

Finally, the phoneme posteriorgrams were evaluated for
keyword spotting. A keyword-filler HMM algorithm was
employed. Keyword-filler HMMs consist of two sub-
HMMs: One to model the keyword and one to model eve-
rything else (=filler). The keyword HMM has a simple
left-to-right topology with one state per keyword phoneme.
The filler HMM is a fully connected loop of all phone-
mes. When the Viterbi path with the highest likelihood
passes through the keyword HMM rather than the filler
loop, the keyword is detected. We previously employed
this approach in [9]. However, the evaluation data set ba-
sed on Damp is a different, much bigger set of recordings.
The keyword set was changed to better reflect frequently
occurring words in these songs. Additionally, the keyword
detection was performed on whole songs, which may be
more realistic for practical applications. For comparison,
results on our old data set (Acap) for whole songs are also
provided below. Song-wise F1 measures were calculated
for evaluation.

5. PHONEME RECOGNITION EXPERIMENTS
AND RESULTS

5.1 Experiment A: Comparison of models trained on
Timit and Damp data sets

In our first experiments, we generated phoneme posterior-
grams on the data sets DampTestF and DampTestM using
the models trained on the two variants of Timit and on the
three differently-sized Damp training sets that were not
split by gender. The results are averaged over both sets.
For comparison, we also generated these posteriorgrams
on Acap. The results for the DampTest sets in terms of per-
centage of correct frames, phoneme error rate, and weigh-
ted phoneme error rate are shown in figure 1.

Models trained on the modified version of Timit already
show some improvement over plain Timit [11], but even
the small Damp training set improves the result signifi-
cantly more. As mentioned before, this data set is actually
smaller than Timit. The percentage of correct frames rises
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(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 1: Evaluation measures for the results obtained on the DampTest data sets using models trained on Timit and on
various Damp-based data sets.

from 13% to 19%, the phoneme error rate sinks from 1.27
to 1.04, and the weighted phoneme error rate from 0.9 to
0.77.

When the whole set of 6000 recordings is used for trai-
ning (DampB), the percentage of correct frames even rises
to 23%, while the phoneme error rate falls to 0.8 and the
weighted phoneme error rate to 0.6. When using the smal-
ler, more balanced version (DampBB), these results are so-
mewhat worse, but not much, with 23% correct frames, a
phoneme error rate of .86, and a weighted phoneme error
rate of 0.65. This is particularly interesting because this
data set is only 4% the size of the bigger one and training
is therefore much faster.

The results on the Acap data set show a similar impro-
vement, but are better in general. The percentage of cor-
rectly classified frames jumps from 12% to 22%, 25%, and
27% for DampBB small, DampB, and DampBB respec-
tively. The weighted phoneme error rate sinks from 0.8
to 0.69, 0.61, and 0.56. Since this data set is has been an-
notated by hand and is completely different material from
the training data sets, we are confident that our approach is
able to model the properties of each phoneme, rather than
reproducing the model that was used for aligning the sin-
ging training sets. The somewhat better values might be
caused by these more accurate annotations, too, or by the
fact that these are recordings of professional singers who
enunciate more clearly.

5.2 Experiment B: Influence of context frames

We then ran the same experiment again, but this time used
models that were trained with 4 context frames on either
side of each input frame. This provides more long-term
information. The results are shown in figure 2. (In each
figure, the “No context” part is the result from the previous
experiment).

Surprisingly, using context frames did not improve the
result in any case except for the DampBB small models.
Since this is the smallest data set, this improvement might
happen just because the context frames virtually provide
more training data for each phoneme. In the other cases,
there already seems to be a sufficient amount of training
data and the context frames may blur the training data ins-

tead of providing more information about the context of
each phoneme. Additionally, it is possible that this ap-
proach compounds error that were made in the automatic
alignment in the case of the bigger Damp training data sets.

The same effect can be observed when calculating these
values on the hand-annotated Acap test data set. We there-
fore decided to not employ context frames in the following
experiments. This also speeds up the training process.

5.3 Experiment C: Comparison of gender-dependent
models

Finally, we generated phoneme posteriorgrams using mo-
dels that were only trained on recordings of the same gen-
der. I.e., for phoneme recognition on the DampTestF set,
we used a model trained only on female singing recordings
(DampFB). The results are shown in figure 3. (Note that
the results for DampB and DampBB are different from the
previous experiments because the test data sets were split
by gender).

Surprisingly, the results do not improve when using
gender-specific acoustic models. The percentage of cor-
rect frames, when compared to the results using the mo-
dels trained on the DampBB drops sligthly from 23% to
21% for the female test set, and stays at 23% for the male
one. The weighted phoneme error rate rises from 0.65 to
0.68 and from 0.65 to 0.69 for the female and male test
sets respectively.

This might happen because the training data sets are
slightly smaller, but, more likely, because some variation in
the singing voices might be lost when using training data
of only one gender. In singing, pitches cover a broader
range than in speech. This effect might take away some of
the improvement usually seen in speech recognition when
using gender-specific models.

6. KEYWORD SPOTTING EXPERIMENTS AND
RESULTS

6.1 Experiment D: Comparison of models trained on
Timit and Damp data sets

We then performed keyword spotting on the phoneme pos-
teriorgrams from Experiment A. The results in terms of F1
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(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 2: Evaluation measures for the results obtained on the DampTest data sets using models trained on Timit and on
various Damp-based data sets with no context and with 8 context frames.

(a) Percentage of correct frames (b) Phoneme error rate (c) Weighted phoneme error rate

Figure 3: Evaluation measures for the results obtained on the DampTestM and DampTestF data sets using models trained
on Damp-based data sets, mixed and split by gender.

measure across the whole DampTest sets are shown in fi-
gure 4a. Figure 4b show the results of the same experiment
on the small Acap data set.

Across all keywords, we obtain a document-wise F1

measure of 0.35 using the posteriorgrams generated with
the Timit model on the DampTest data sets. This result
is slightly higher for the TimitM models and rises to 0.45
using the model trained on the small DampBB small sin-
ging data set. Surprisingly, the model trained on DampBB
is only slightly better than the much smaller one. Using the
very big DampB training data set, the F1 measure reaches
0.47.

On the hand-annotated Acap test set, the difference is
even more pronounced, rising from 0.29 for the Timit mo-
del to 0.5 for DampB. This might, again, be caused by the
more accurate annotations or by the higher-quality singing.
Additionally, the data set is much smaller with fewer oc-
currences of each keyword, which could emphasize both
positive and negative tendencies in the detection.

6.2 Experiment E: Comparison of gender-dependent
models

We also performed keyword spotting on the posteriorgrams
generated with the gender-dependent models from Experi-
ment C. The results are shown in figure 5.

In contrast to the phoneme recognition resultes from
Experiment C, the gender-dependent models perform
slightly better for keyword spotting than the mixed one of
the same size, and almost as good as the one trained on
much more data (DampB). The F1 measures for the fe-
male test set are 0.48 for the DampB model, 0.45 for the

(a) F1 measures for keyword
spotting results on the Damp-
Test data sets.

(b) Keyword spotting results
on the Acap data set.

Figure 4: F1 measures for keyword spotting results using
posteriorgrams generated with various acoustic models.

DampBB model, and 0.46 for the DampFB model. For the
male test set, they are 0.46 and 0.45 for the first two, and
0.46 for the DampMB model.

6.3 Experiment F: Individual analysis of keyword
results

Figure 6 shows the individual F1 measures for each key-
word using the best model (DampB), ordered by their oc-
currence in the DampTest sets from high to low (i.e. num-
ber of songs which include the song). There appears to
be a tendency for more frequent keywords to be detected
more accurately. This happens because a high recall is of-
ten achievable, while the precision depends very much on
the accuracy of the input posteriorgrams. The more fre-
quent a keyword, the easier it also becomes to achieve a
higher precision for it.
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Figure 5: F1 measures for keyword spotting results on
the DampTestM and DampTestF data sets using mixed and
gender-dependent models.

Figure 6: Individual F1 measures for the results for each
keyword, using the acoustic model trained on DampB.

As shown in literature [18], the detection accuracy also
depends on the length of the keyword: Keywords with
more phonemes are usually easier to detect. This might ex-
plain the relative peak for “every”, “little”, and “always”,
in contrast to “eyes” or “world”. Since keyword detection
systems tend to perform better for longer words and most
of our keywords only have 3 or 4 phonemes, this result is
especially interesting.

One potential source of error are sequences of phone-
mes that overlap with our keywords, but are not included
in the calculation of the precision. Equally spelled words
were included, but split phrases or other spellings were not
(e.g. “away” as part of “castaway” would be counted, but
“a way” would not be counted as “away”). This might arti-
ficially lower our results and we will look into possibilities
for improvement in the future. Additionally, only one pro-
nunciation for each keyword was provided, but there may
be several possible.

7. CONCLUSION

In this paper, we trained new acoustic models on a large
corpus of unaccompanied singing recordings. Since no an-
notations for these existed, we first had to automatically
align lyrics to them. The new models could then directly
be trained on these automatic annotations. To our know-
ledge, this has not been done before for singing.

We trained three different models with mixed gender
recordings: One on 6000 full recordings of 301 songs, one
on just 4% of this data, and one which was balanced by
phonemes and is roughly half the size of the medium-sized

one. We then tested their performance on two other subsets
of the same corpus which did not overlap with the training
data, and on a small unrelated data set of commercial vocal
tracks which were hand-annotated.

In all cases, the three new models showed a strong im-
provement over those trained only on speech. Even the
model trained on the smallest set produced a jump in cor-
rectly classified frames from 13% to 19%, and in weighted
phoneme error rate from 0.9 to 0.77 on the large test set.
With the model trained on the medium-sized data set, we
obtained 23% correct frames and a weighted phoneme er-
ror rate of 0.65. With the biggest one, the weighted pho-
neme error rate falls to 0.6. The results are similar on the
small hand-annotated test set.

We also tested acoustic models with 8 context frames,
and models trained on gender-specific data. Neither of
them showed improvement over the first ones.

We then performed keyword spotting for 15 keywords
on phoneme posteriorgrams generated with these new mo-
dels using a keyword-filler approach. The resulting F1

measure rises from 0.35 for the models trained on speech
to 0.47 for our new models. This result is especially inte-
resting because most of the keywords have few phonemes.
For keyword spotting, gender-dependent models perform
slightly better than mixed-gender models of the same size.

8. FUTURE WORK

So far, we have only tested this approach using MFCC fea-
tures. As shown in our previous experiments [9], other
features like TRAP or PLP may work better on singing.
So-called log-mel filterbank features have also been used
successfully with DNNs [6]. Another interesting factor is
the size and configuration of the classifiers, of which we
have only tested one so far. Since the alignment appears
to provide valid training data, we believe the features and
model configuration could be the greatest sources of im-
provement.

We showed that there is only a slight amount of impro-
vement between the model trained on all 6000 songs and
the one trained only on 4% of this data. It would be interes-
ting to find the exact point at which additional training data
does not further improve the models. On the evaluation
side, a keyword spotting approach that allows for pronun-
ciation variants or sub-words may produce better results.
Language modeling might also help to alleviate some of
the errors made during phoneme recognition.

These models have not yet been applied to singing with
background music, which would be interesting for practi-
cal applications. Since this would probably decrease the
result when used on big, unlimited data sets, more speci-
fied systems would be more manageable, e.g. for specific
music styles, sets of songs, keywords, or specialized ap-
plications. Searching for whole phrases instead of short
keywords could also make the results better usable in prac-
tice.

As shown in [13] and [2], alignment of textual lyrics
and singing already works well. A combined approach that
also employs textual information could be very practical.
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