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ABSTRACT

Melody analysis is an important processing step in several
areas of Music Information Retrieval (MIR). Processing
the pitch values extracted from raw input audio signal may
be computationally complex as it requires substantial effort
to reduce the uncertainty resulting i.a. from tempo vari-
ability and transpositions. A typical example is the melody
matching problem in Query-by-Humming (QbH) systems,
where Dynamic Time Warping (DTW) and note-based ap-
proaches are typically applied.

In this work we present a new, simple and efficient
method of investigating the melody content which may be
used for approximate, preliminary matching of melodies
irrespective of their tempo and length. The proposed so-
lution is based on Discrete Total Variation (DTV) of the
melody pitch vector, which may be computed in linear
time. We demonstrate its practical application for finding
the appropriate melody cutting points in the R∗-tree-based
DTW indexing framework. The experimental validation
is based on a dataset of 4431 queries and over 4000 tem-
plate melodies, constructed specially for testing Query-by-
Humming systems.

1. INTRODUCTION

Content-based search and retrieval is becoming a popular
and attractive way to locate relevant resources in the ever-
growing multimedia collections and databases. For Mu-
sic Information Retrieval (MIR) several important appli-
cation areas have been defined over the last decades, with
Audio Fingerprinting, and Query by Humming (QbH) be-
ing perhaps the most prominent examples. The latter one
is specific as it is exclusively based on the user-generated
sound signal and it depends mostly on a single parameter
of this signal – the pitch of the consecutive notes, forming
the melody sung by the user.

In a typical QbH system the query in the form of
raw audio data is subjected to a pitch-tracking procedure,
which yields a sequence of pitch values in consecutive time
frames, often referred to as a pitch vector. The music re-
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sources in the database are represented by templates, hav-
ing the similar form, so that the search is essentially based
on simply comparing the pitch vectors in order to find the
template melody best matching the query melody.

An additional step of note segmentation may be used
to obtain symbolic representation, explicitly defining the
pitch and length of separate notes. In this case, several
efficient methods based on e.g. transportation distance or
string matching algorithms may be used. This approach
enables fast searching, although it is difficult to obtain high
precision due to unavoidable ambiguities of the note seg-
mentation step. Comparing the pitch vectors directly usu-
ally yields higher-quality results but on the cost of the in-
creased computational complexity, as the local tempo vari-
ations require to use tools for automatic alignment between
the compared melodies.

Dynamic Time Warping (DTW) is a standard method
applied for comparing data sequences, generated by pro-
cesses that may exhibit substantial, yet semantically ir-
relevant local decelerations and accelerations. The exam-
ples include e.g. handwritten signature recognition or gait
recognition for biometric applications, sign language anal-
ysis, spoken word recognition and many other problems
involving temporal patterns analysis. It is also a method of
choice for direct comparison of pitch vectors in the Query
by Humming task.

2. PREVIOUS WORK

Early works on the QbH systems date back to the 1990’s,
with some background concepts and techniques being in-
troduced much earlier [21, 24]. Initially, the symbolic,
note-based approach was used [6, 20, 30], often in the
simplified form comprising only melody direction change
(U/D/S - Up/Down/the Same) [6, 21]. In the following
decade the direct pitch sequence matching with Hidden
Markov Models (HMM) [26] and Dynamic Time Warp-
ing [11, 19] was proposed and extensively used, in paral-
lel to note-based approaches employing transportation dis-
tances, such as Earth Mover’s Distance (EMD) [28,29]. In
many practical QbH systems, such as those presented in
the annual MIREX competition [1, 27], a multi-stage ap-
proach is applied involving the application of the EMD
to filter out most of the non-matching candidate tem-
plates, leaving only the most promising ones for the ac-
curate, but more computationally expensive DTW-based
search [31, 32, 34].
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Another possibility of search time optimization is to
accelerate the computation of DTW itself. For this pur-
pose several methods have been proposed, including iter-
ative deepening [2], Windowed Time Warping [18], Fast-
DTW [25] and SparseDTW [3].

Yet another approach, which is of special interest to
us, is to apply efficient DTW indexing techniques, based
on lower bounding functions [13]. These methods re-
duce computational complexity by limiting the number of
times the DTW algorithm must be run, but – unlike the
aforementioned EMD-based multi-stage systems – they
are not domain specific. Introduced by Keogh [13, 16] as
a general-purpose method for time-series matching, they
have also been successfully applied for the Query by Hum-
ming task [17, 35].

2.1 Indexing the dynamic time warping

DTW indexing is based on a more general approach
to indexing time series, known as GEMINI framework
(GEneric Multimedia INdexIng) [5, 14]. In this approach
the sequences are indexed with R-trees, R*-trees or other
Spatial Access Methods (SAM) [7] after being subjected
to dimensionality reduction transformation. The typical
SAMs require that the data are represented in a not more
than 12-16–dimensional index space I [14, 15]. Searching
in the index space is guaranteed to yield a superset of all the
relevant templates (i.e. it will produce no false rejections),
provided that a proper distance measure ρI is defined in I .
Let N denote the length of the original time series and let
M � N be the number of dimensions of the index space.
It may be shown [5] that when the distance ρX between el-
ements TN , QN of the input space X is properly bounded
from below by the distance between their low-dimensional
representations TM , QM in the index space, i.e. when:

ρI(TM , QM ) ≤ ρX(TN , QN ) , (1)

then it is possible to construct an indexing mechanism
which guarantees no false dismissals. The efficient, SAM-
optimized query in the index space may only return some
false positives which are then eliminated by direct match-
ing of the time series in the original, input space X . De-
pending on the tightness of the lower bound (Eq. 1), the
number of times the matching must be done in X may be
reduced even by orders of magnitude. The detailed de-
scription of the appropriate algorithms for k-nearest neigh-
bor search and range queries may be found in [5, 14].

The generality of the GEMINI framework enables
its application with many dimensionality reducing trans-
forms, based on e.g. discrete Fourier transform (DFT) [5],
Haar Wavelet Transform [12] or piecewise aggregate ap-
proximation (PAA) [14, 33]. However, comparing se-
quences under dynamic time warping differs quite signif-
icantly from the case of Euclidean spaces, i.a. because
DTW is not – strictly speaking – a metric (it does not sat-
isfy the triangle inequality). It has been however shown
that it is possible to define a valid lower-bounding dis-
tance measure [13] when proper global constraints, such
as Sakoe and Chiba band [24] or Itakura parallelogram [9]

are used. The dimensionality reduction may be obtained
by the simple PAA algorithm, as demonstrated by Keogh
in [13]. A more general approach, based on properties of
container-invariant time series envelopes, was introduced
by Zhu and Shasha, who extended the lower-bounding cri-
terion to the whole class of linear transforms [35].

The aforementioned techniques of DTW indexing may
be successfully applied to accelerate the melody matching
in Query by Humming systems, as demonstrated in [35]
on an example of a small music database of 50 Beatles
songs. However, in real-life, large-scale systems some
practical problems are likely to occur, especially when het-
erogeneous audio material is used as input for querying the
database.

One of these problems is that the actual length and
tempo of the query, with respect to the potentially match-
ing template, are not known in advance. As we will
demonstrate in the following section, this uncertainty
makes the use of the global constraints of the DTW dif-
ficult, which in turn put in doubt the practical applicability
of the DTW indexing schemes in the Query by Humming
task.

As a remedy, we propose a novel solution, based on
computation of Discrete Total Variation (DTV) of the pitch
vector, which enables to assess the optimal cutting point of
the query with respect to the template (Sect. 4). In this
way, the DTW indexing becomes feasible even for diver-
sified input data, containing the queries of varied length
and tempo. Moreover, the analysis of the DTV may appear
beneficial also for fixed-length queries. This conclusion
will be supported by the experimental results presented in
Section 5.

3. PROBLEM SETTING

The implicit assumption underlying the efficient DTW in-
dexing methods introduced in [13] is that the beginning
and the end of both compared sequences coincide. Un-
fortunately, in the query-by-humming task, this condition
is rarely met, especially with respect to the ending point.
The beginning is less problematic because most users typi-
cally sing from the beginning of a phrase [8]. The length of
the query, on the other hand, is often unknown in advance,
both in terms of absolute time units and with relation to
the template. It is possible to control the absolute length of
the query in the acquisition module, e.g. by stopping the
recording session after x seconds. Even then, however, the
assessment of the exact number of notes or phrases sung
is impossible, mainly due to tempo differences between
users. The query may therefore end anywhere within the
course of the template, as illustrated in Fig. 1.

Fortunately, the DTW may deal with this case quite eas-
ily, as the endpoint of the warping path may effectively
be searched for along the last row of the DTW matrix (or
along the last column, if we also expect queries longer than
templates). The real problem is, however, that it is now
impossible to effectively use the global constraints, such
as Sakoe and Chiba band (Fig. 1b), which are the sine qua
non condition in the DTW indexing techniques [13, 35].
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Figure 1. Optimal warping path in the DTW matrix
(with Sakoe and Chiba band shown) for fixed-length query,
where the query is much shorter than the template: a) The
“fast singer” case – both the beginning and the ending
points coincide; b) The “normal singer” case – the query
ends in the middle of the template melody.

Relaxing the constraints (e.g. increasing the radius of
the band) may help to incorporate more queries deviat-
ing from the diagonal, but on the cost of making the in-
dexing less efficient. Hence, although in theory the lower
bounding techniques guarantee no false dismissals, we ar-
rive again at the trade-off between time-efficiency and re-
trieval rate. In fact, setting the proper constraints is always
a matter of a compromise, but here the problem is much
more severe, as even moderate tempo mismatch may lead
to significant accumulation of deviations at the end of a
query.

A real-life example – a template and the matching
queries from Jang’s dataset [10] – is presented in Fig. 2
where the ending point of each query, with respect to the
template, has been determined on the basis of the optimal
warping path in the DTW matrix. Fig. 2 reveals, that al-
though within the fixed time of 8s most users managed to
sing between two and three two-bar motifs (out of all four),
there were also some “lazy singers” that did not manage to
complete two motifs and some “fast singers” who com-
pleted the whole or almost the whole melody. With in-
dexing, these queries may be easily lost, unless some ex-
tremely loose constraints were applied.

Let us note that the problem occurs even for optimal
template length (e.g. from Fig. 2 we may conclude that
this particular template is actually too long). In fact, in
many datasets the templates tend to be much longer than
the queries. For example, in Jang’s [10] collection the
template length varies from ca. 12 seconds up to over 5
minutes. Hence, determining the reasonable cutting point
for the templates, prior to indexing, becomes a necessary
preliminary step of processing.

It is important to note that this step cannot be done reli-
ably without some form of melodic content analysis. Nat-
urally we might try – for fixed query length of x seconds –
to cut the templates to the same x seconds, assuming that
the tempo of the template roughly corresponds to the mean
tempo of the queries. However, we have no guarantee that
this assumption is correct, which may obviously lead to

suboptimal indexing results.
In the following section we present an automatic

method for determining the cutting point of the template
melody. The same method is also applied to each query to
cut it at the point corresponding to the cutting point of the
template.

Although it may seem not obvious, we should note that
we also touch the problem of query transposition here. A
user may sing the melody in any key, so it must be trans-
posed to a reference key before matching, which is typi-
cally done by mean subtraction. However, the mean pitch
of a melody obviously depends on the location of its end-
ing point, which gives an additional motivation for trying
to agree on a common cutting point among all the poten-
tially matching melodies. The proposed method is based
on a simple content-based filter, which enables the prelim-
inary match of the lengths of the compared melodies and –
in consequence – the practical use of the efficient indexing
algorithms.

4. THE DISCRETE TOTAL VARIATION

An intuitive solution to our problem might be formulated
as follows: given a perfect note segmentation of the audio
files we could cut every melody after a fixed number of
notes (the same for all melodies – templates and queries).
This would guarantee the endpoint match for efficient in-
dexing and the consecutive DTW would successfully deal
with potential rhythm and tempo discrepancies. Unfor-
tunately, while it is straightforward for MIDI-based tem-
plates, it is not so for the sung queries. The singer’s im-
precision on one hand and the specificity of a given pitch
tracking algorithm on the other hand may lead to note seg-
mentation errors that will make this approach unusable.

In our approach, instead of a crisp note segmentation we
prefer to construct a soft measure of pitch value variability
in time. In continuous case, for p(τ) representing the pitch
value at time τ , we would define the following functional:

TV (t) =

t∫

0

∣∣∣∣
d

dτ
p(τ)

∣∣∣∣ dτ . (2)

We may note that this definition, corresponding to the
L1 norm of the pitch signal derivative, may be seen as a
one-dimensional version of Total Variation (TV) as intro-
duced by Rudin [22, 23] in the image analysis and noise
removal context. The one-dimensional Discrete Total Vari-
ation DTV may be defined as:

DTV (n) =
n∑

k=1

|p(k)− p(k − 1)| , (3)

where p(k) denotes the k-th time frame of the pitch vector.
The fundamental property of DTV is that it accumu-

lates pitch changes in the course of the melody, irrespec-
tive of the actual direction of the changes (Fig. 3). We
may therefore set a threshold TDTV for the accumulated
pitch changes and cut all the compared melodies when they
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Figure 2. Example template from Jang’s [10] collection (top) and the ending points of all the 170 matching queries
(bottom).

Figure 3. Pitch vector representation of the melody from
Fig. 2 (top, light-grey) and the corresponding DTV se-
quence (bottom, dark-grey).

reach TDTV , as follows:

pc = [p(0), p(1), ..., p(nc)] , (4)

where pc denotes the pitch vector reduced to the first nc+1
values and where:

nc = min {n ∈ N ;DTV (n) ≥ TDTV } . (5)

The proposed DTV -based cutting scheme has some fur-
ther properties that are relevant to the considered problem:

1. TheDTV sequence is monotonically nondecreasing
and it stays constant only within segments of fixed
pitch. The latter fact means that the note lengths are
basically ignored – only the number of notes and the
span of the consecutive musical intervals (pitch dif-
ference) influence the increase of the value ofDTV .

2. Ignoring the direction of the pitch changes means
that the DTV is not unique. For example, ascend-
ing chromatic scale will yield the same DTV se-
quence as the descending one, assuming the same
tempo and the same number of notes (diatonic scale
would produce different results due to different or-
dering of whole steps and half steps).

3. DTV -based cutting leads to obtaining the melody
representation robust to glissandi, occurring fre-
quently in sung queries, where the pitch changes are
“spread” over several consecutive time frames.

4. DTV -based cutting leads to obtaining the melody
representation which is not robust to jitter and vi-
brato, which may be present within single notes, i.e.
in segments of – otherwise constant – pitch.

Property 1 implies a fundamental fact that two versions
of a melody, consisting of identical pitch sequences but
with different rhythm and tempo will yield the same DTV
sequence for corresponding notes. In particular, their rep-
resentations obtained with Eq. 4 may have different num-
ber of frames, but they will basically represent the same
melodic content.

Property 2 means that the DTV may be interpreted as
a hash function which may occasionally return equal val-
ues for dissimilar input data. In fact, what we need is the
opposite implication: the results for similar input must be
also similar and – fortunately – this condition is generally
fulfilled.

Property 3 is connected to an important advantage of the
proposed method to ignore the slope of the pitch changes.
When singing a musical interval, the second note is often
reached after several frames of intermediate pitch values,
as opposed to MIDI-based signals where the changes are
instantaneous. This difference is well visible in Fig. 4 (top
plots). It can be observed that despite the fuzzy note tran-
sitions in frames 30–33 and 51–59 of the query (plot a)),
the obtainedDTV sequences (Fig. 4, the bottom plots) are
indeed similar. Therefore setting a given threshold value
TDTV in Eq. 5 would allow to obtain the similar melody
sections both for the query and for the template, irrespec-
tive of the significant tempo discrepancy between the two.
For example, for TDTV = 5 both sequences would be cut
at the onset of the 4th note.

Property 4 indicates a potential weakness of the pro-
posed solution as jitter and vibrato are ubiquitous in pitch
vectors of sung melodies. However, a popular and simple
median filter, which is often used to pre-process the pitch
vectors prior to further melody analysis, may be effectively
applied here to suppress the minor pitch fluctuations. The
example in Fig. 4 had been already filtered with median fil-
ter of 9th order which had appropriately smoothed almost
the whole signal, except of the small artefact in frames
86–88. As a comparison, Fig. 5 a) presents the original
query. The dramatic distortion of the obtained DTV se-
quence may be assessed even better on the right plot (b)),
where we see over twofold increase of the accumulated
pitch changes for the unfiltered query with respect to the
filtered one.

5. EXPERIMENTAL VALIDATION

In order to evaluate the usefulness of the proposed method
in melody indexing, we performed tests on the well-
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Figure 4. The first motif of the melody from Fig. 2: a) query; b) template. Top plots present the original pitch vectors
(after transposition by 3 octaves down, for visualization purposes); the bottom plots show the DTV sequences.

Figure 5. a) the same melody as in Fig. 4, but without the median filter; b) comparison of the obtained DTV sequences:
query without median filter (light grey, top); template (black, middle); query after median filter (dark grey, bottom).

known, publicly available dataset, consisting of a collec-
tion of 48 popular songs (in the form of ground-truth MIDI
files) to be matched against 4431 queries sung by about
200 users [10]. In order to increase the difficulty of the
problem, the set of templates was artificially expanded, so
that it contained – apart from the 48 ground-truth files –
4225 additional noise midi files from Essen collection [4].

Piecewise aggregate approximation was applied as a di-
mensionality reduction technique. Each template melody
was represented as a point in 16-dimensional index space
where R∗-tree was used as the spatial index. For each
query melody the minimal bounding rectangle (MBR) was
computed and used for k-NN search, according to [15].
Two quantities were measured during the tests: the CPU
time of computation and the number of correctly recog-
nized queries. The baseline results obtained by a non-
indexing system, computing the DTW match between ev-
ery query and every template, were: 4211 out of 4431
queries recognized (95.03%) in 48h 55m 28s.

For the indexing tests several melody cutting strategies
were applied and the corresponding results have been pre-
sented in Fig. 6. All the queries in the test database are
of the same length of 8s. Our first attempt was therefore
to apply the straightforward approach based on cutting the
templates to the same 8s (250 frames with a step of 32 ms)
prior to indexing. This in fact yields the optimal template
length also in terms of the melody content because, as we
have found, there is no bias towards faster or slower queries
in the test database, i.e. the mean tempo of each query is
basically the same as the tempo of the corresponding tem-

plate.

However, it appears that even in this optimal setting,
our DTV-based cutting scheme may increase the recogni-
tion rate with respect to the fixed template cutting point
(for the same number of nearest neighbors). For example,
the recognition rate obtained for the fixed-length templates
with 1500 nearest neighbors could be obtained for the tem-
plates cut on the basis of their DTV with 1100 nearest
neighbors, which means ca. 25% gain in the computation
time (Fig. 6).

The key point in the effective application of the DTV is
setting the proper threshold TDTV . Too low value leads
(Fig. 6, TDTV = 20) to extracting and indexing very
short melody fragments, which means that they contain
few notes and hence many templates may even become
indistinguishable from each other. Moreover, for short
queries the lower bounding measure often happens to be
zero which prevents establishing the right order of the re-
sults.

On the other hand, too high TDTV threshold means that
many queries will not reach it before their “hard” cut point
(8s in our case). This problem will not occur in the case
of the templates, because they are usually much longer. As
a result, after the cutting procedure the templates will be
generally longer than the queries and they will also contain
much more melodic material, which will make the index-
ing ineffective.

As a partial remedy, we propose to use a simple con-
dition, limiting the absolute length of the templates to the
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Figure 6. Top-ten results for various cutting point setting

absolute length of the queries:

n̂c = min{nc, |q|} (6)

where nc is given by Eq. 5 and |q| is the fixed length of
the queries. In this way the template lengths are limited
similarly as the queries. We should note that the only prob-
lem which may occur here is when some monotonous, not-
much-varied melodies are sung by a “fast singer”, because
these queries will contain more melodic material than –
then prematurely cut – template. This problem generally
cannot be avoided without a priori knowledge on the cor-
rect classification of the query, but it appears not to have
much impact on the recognition rate. The results in Fig. 6
have been obtained with template length limiting (Eq. 6)
and as we may see they are stable in a quite broad range
of the threshold values (TDTV = 30, TDTV = 40). Going
beyond this optimal range (TDTV = 50) deteriorates the
recognition but still the obtained results are only slightly
worse that the fixed cutting point approach.

6. CONCLUSION

In this work we have introduced a new method of deter-
mining the optimal cutting point for melody comparisons,
based on Discrete Total Variation of the melody pitch vec-
tor. Our solution is fast to compute and it yields useful
information about the melody, which enables to effectively
apply DTW indexing strategies, introduced in [13]. We
demonstrated the usefulness of the proposed solution for
the indexing task on a known database, designed for testing
Query-by-Humming systems. It should be noted, however,
that the method has potentially much broader application
area. In particular, much more significant gain may be ex-
pected in less constrained, on-line QbH systems, especially
when more relaxed limits of the query length are used,

and/or when greater singing tempo discrepancies may be
expected. The ability to find the appropriate melody length
in a fast way, without detailed note-based analysis and
without computationally expensive DTW is an advantage
which may simplify and accelerate many content-based
music information retrieval tasks.
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