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ABSTRACT

To advance research on automatic music transcription
(AMT), it is important to have labeled datasets with suf-
ficient diversity and complexity that support the creation
and evaluation of robust algorithms to deal with issues
seen in real-world polyphonic music signals. In this paper,
we propose new datasets and investigate signal processing
algorithms for multipitch estimation (MPE) in choral and
symphony music, which have been seldom considered
in AMT research. We observe that MPE in these two
types of music is challenging because of not only the
high polyphony number, but also the possible imprecision
in pitch for notes sung or played by multiple singers
or musicians in unison. To improve the robustness of
pitch estimation, experiments show that it is beneficial to
measure pitch saliency by jointly considering frequency,
periodicity and harmonicity information. Moreover, we
can improve the localization and stability of pitch by the
multi-taper methods and nonlinear time-frequency reas-
signment techniques such as the Concentration of Time
and Frequency (ConceFT) transform. We show that the
proposed unsupervised methods to MPE compare favor-
ably with, if not superior to, state-of-the-art supervised
methods in various types of music signals from both
existing and the newly created datasets.

1. INTRODUCTION

The ability to identify concurrent pitches in polyphonic
music is considered admirable by most people. Through-
out history, such an ability has been symbolic of a music
genius, with the most popular legendary story possibly
being Mozart’s transcription of Allegri’s Miserere at the
age of fourteen. An interesting question is then whether
computers can also possess the ability and perform auto-
matic music transcription (AMT). A great deal of research
has been done in the music information retrieval (MIR)
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community to develop AMT algorithms, but to date it is
still an unsolved problem [4].

AMT is challenging for multiple reasons. One such
challenge has to do with the creation of labeled multip-
itch data with diversity, for the labeling process requires
considerable expertise and is usually time-consuming [24].
Existing multipitch datasets are often small in size and
limited in diversity, and in combination they still cannot
represent the rich variety found in music performances.
For example, to our knowledge, there is no labeled multip-
itch data for choir, one of the most common type of music
through the ages and cultures and also known as the theme
featuring the legendary story of Mozart. As the evaluation
of AMT algorithms requires labeled data, the transcription
of choir music remains largely unexplored.

The rich variety of music also poses challenges in
designing features robust to variations in timbre, genre, and
type of performance. For example, it is difficult to design
a feature that performs equally well in characterizing the
pitch information in both piano and choir music, for they
are fairly different — the latter involves a group of people
singing in unison but each having her or his own vocal
characteristics and control of pitch. This specific issue of
possible imprecision in pitch has rarely been dealt with in
the literature, possibly due to the scarcity of related labeled
data. The shift-invariant Probabilistic Latent Component
Analysis (PLCA) algorithm [3] can support non-ideal
tuning and frequency so might be able to partially address
this issue, but such an evaluation has not been reported
before. Moreover, while PLCA is a supervised algorithm
that demands the availability of data, we are interested in
unsupervised algorithms.

This work attempts to address the aforementioned is-
sues for multipitch estimation (MPE), a sub-task of AMT.
Specifically, we propose new datasets and discuss the char-
acteristics and distinct technical issues of MPE for choir
and symphony music. Besides, by extending a previous
work [23] we propose an unsupervised approach that inter-
prets a pitch event in three dimensions — frequency, peri-
odicity and harmonicity. Moreover, we introduce recent
advance in time-frequency (TF) analysis, including the
Synchrosqueezing Transform (SST) and the Concentration
of Time and Frequency (ConceFT) method, to improve the
stablization and localization of pitch information in our
feature representation. Result shows that that the proposed
unsupervised methods compare favorably with state-of-
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the-art supervised methods in various types of music.
Finally, a simple decision fusion framework also shows the
effectiveness of combining multiple MPE methods.

2. PROBLEM DEFINITION

To facilitate our discussion on feature representation, we
focus on the feature design for frame-level transcription
of polyphonic music, namely the MPE sub-task. Other
transcription sub-tasks such as note tracking and timbre
streaming [7] are not discussed in this paper.

We refer to a multipitch signal as a superposition of
multiple “perceptually mono-pitch” signals. This partic-
ular type of mono-pitch signal can be produced either
by a single performer, with rather well-defined pitch and
loudness, or by a group of performers playing instruments
or singing in unison. The latter case, often referred to as
“chorus” or “ensemble” sounds, has quite different signal-
level characteristics from the former. The major difference
lies in the small, independent variations in the fundamental
frequency (F0), a.k.a. the voice flutter phenomenon [25].
For example, early research in choral music showed that
the “dispersion of F0” (measured as the bandwidths of
partial tones) among three reputable choirs varied typically
in the range of 20–30 cents [17]. It is also found that
the pitch scatter (i.e., the standard deviation of F0 across
singers, averaged over the duration of each tone [17, 25])
among choir basses is 10–15 cents [26]. Previous work on
the synthesis of chorus/ensemble effect also adjusted pitch
scatter parameters in similar ranges [12, 18].

We assume that every sound contributing to the mono-
pitch signal of interest is composed of a series of sinusoidal
components which are with nearly integer multiples of the
F0, i.e., every sound has low inharmonicity. In this way,
the bandwidth of each partial is mainly determined by the
amount of the frequency variations of every sound. Be-
sides, we ignore issues of missing fundamental or stacked
harmonics found in real-world polyphonic signals, for they
both have been discussed in our previous work [23]. In
summary, we assume the signal under analysis has discern-
able F0s and small but nonzero degree of inharmonicity
and pitch scatter.

3. RELATED WORK

3.1 Pitch saliency features

For a signal x(t) with multiple periodicities, a pitch
candidate is determined by 1) a frequency representation
V (t, f) that reveals the saliency of every fundamental
frequency and its harmonic frequencies (i.e., its integer
multiples) in a signal, 2) a periodicity representation
U(t, q) that reveals the saliency of every fundamental
period and its integer multiples in a signal, 1 and 3) the
constraints on harmonicity described as follows: at a
specific time t0, a pitch candidate f0 = 1/q0 is the true
pitch when there exists Mv,Mu ∈ N such that [23]:

1 The fundamental period of a periodic signal x(t) is defined as the
smallest q such that x(t + q) = x(t). Since q is measured in time, we
refer to q as in the lag domain, to distinguish it from t in the time domain.

1. A sequence of prominent peaks found at V (t0, f0),
V (t0, 2f0), . . ., V (t0,Mvf0).

2. A sequence of prominent peaks found at U(t0, q0),
U(t0, 2q0), . . ., U(t0,Muq0).

An MPE algorithm following this approach has been
found useful in transcribing a wide variety of music,
including complicated music signals like symphony [23].
The frequency representation being used is the short-time
Fourier transform (STFT). For a window function h(t), the
STFT of x(t) is formulated by

V (h)
x (t, f) =

∫
x(τ)h(τ − t)e−j2πf(τ−t)dτ . (1)

For periodicity representations, an important one for MPE
is the the generalized cepstrum [16, 28]:

U
(h,gξ)
x (t, q) =

∫
gξ(V

(h)
x (t, f))e−j2πqudu , (2)

where q is referred to as lag or quefrency, and gξ(·) is a
nonlinear scaling function defined by either g1(y) = |y|γ
or g2(y) = (|y|γ−1)/γ, 0 < γ ≤ 2. We remark that when
γ = 2, U (h,g1)

x becomes the ACF according to the Wiener-
Khinchin theorem, and when γ → 0, U (h,g2)

x approximates
to the real cepstrum. U

(h,g1)
x and U

(h,g2)
x are different

merely in the scale and the zero-quefrency term, so for
simplicity we use U (h,g1)

x in this paper. We will omit ξ in
the notation and simply denote U (h,gξ)

x (t, q) as U (h)
x (t, q).

3.2 Multi-taper time-frequency analysis

In conventional STFT, the spectrum is estimated by only
one window function. In contrast, multi-taper TF anal-
ysis estimates the spectrum by averaging of the spectral
estimation of multiple windows (i.e., tapers) [27]. The
main purpose of multi-tapering is to stabilize the spectrum
estimation by reducing the variance due to noises or
boundary of the segments. The tapers are basically orthog-
onal to each other, and their estimates are approximately
uncorrelated. Therefore, the average of them can reduce
the variance. To be more specific, given z = [ν1, . . . , νJ ],
a set of J-taper window with good concentration in the
TF plane, where νi ∈ RT is a window of length T for
i = 1, 2, . . . , J , and z forms an orthonormal basis in RT ,
the multi-taper STFT is given by 1

J

∑J
j=1 V

(νj)
x (t, f), the

average of every V (νj)
x (t, f).

Although rarely seen in the literature of MIR, the
multi-tapering method has been found useful in several
different applications in speech processing such as speaker
identification and emotion recognition [1, 14], because of
its stable output of feature representation.

3.3 Synchrosqueezing Transform (SST)

SST is a special case of time-frequency reassignment [2],
a class of nonlinear TF analysis techniques. In a nut-
shell, it aims at moving the spectral-leakage terms caused
by Heisenberg-Gabor uncertainty to the center of mass
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of true component, and therefore sharpens the harmonic
peaks and achieves high localization [5]. SST uses the
frequency reassignment vectors estimated by the instan-
taneous frequency deviation (IFD). In music processing,
such a method can better discriminate closely-located
components, and applications have be found in music
processing tasks such as chord recognition, synthesis, and
melody extraction [11, 13, 20, 22].

Let V (h)
x = |V (h)

x |eΦhx . The IFD, Ω
(h,θv)
x , is defined as

the time derivative of the instantaneous phase term Φhx:

Ω(h,θv)
x (t, η) :=

∂Φhnx
∂t

= −= V
(Dh)
x (t, η)

V
(h)
x (t, η)

∣∣∣∣∣
Nv

, (3)

where = means the imaginary part and Nv := {f :

|V (hn)
x (t, f)| > θv} gives a threshold so as to avoid

computation instability when |V (hn)
x (t, f)| is very small.

This formulation (3) can be derived by definition. The SST
is therefore represented as

S(h,θv)
x (t, f) =

∫

Nv

V (h)
x (t, η)δ

(
|f − Ω(h)

x (t, η)|
)

dη .

(4)
As the result of our analysis is not sensitive to the value

of the parameter θv , we set θv to 10−6 of the root mean
square energy of the signal under analysis throughout the
paper. For convenience, we also omit θv in the notation
and simply denote Ω

(h,θv)
x and S(h,θv)

x as Ω
(h)
x and S(h)

x .

3.4 ConceFT

The main drawback of the TF reassignment is the spurious
terms contributed by inaccurate IFD estimation resulting
from correlations between noise and the window function.
To achieve both localization and stability at the same time,
a solution is the multi-taper SST, the average of multiple
SST computed by a finite set of orthogonal windows
[30]. Recently, Daubechies, Wang and Wu improved this
idea and proposed the ConceFT method [6]. ConceFT
emphasizes the use of over-complete windows rather than
merely orthogonal windows, by assuming that a spurious
term in a specific TF location just appears sparsely for the
TF representations using different windows. Theoretical
analysis proves that the ConceFT leads to sharper estimates
of the instantaneous frequencies for signals that are cor-
rupted by noise. Experiments also showed that ConceFT
is useful in estimating the instantaneous frequencies with
a fluctuated trajectory [6], a case similar to pitch scatter.

The over-complete window functions for ConceFT is
generated from z. This set of window functions h =
[h1, . . . , hN ] with N windows is constructed as h1(t) =

ν1(t) and hn(t) =
∑J
j=1 rnjνj(t) for j = 2, . . . , J ,

n = 2, . . . , N , and rn = [rn1, . . . , rnJ ] is a random vector
with unit norm. In ConceFT we need J > 1 and N ≥ J .
In contrast, a single window TF analysis requires J = 1
and N = 1, where h = h1. ConceFT is represented by

C(h)
x (t, f) =

1

N

N∑

n=1

S(hn)
x (t, f) . (5)

We refer the reader with interest to [6] for a summary of
the current progress in this direction.

For simplicity, we use J = 2 in this paper. Specifically,
we use the Hamming window 0.54 + 0.46 cos (2πt/T ) for
ν1, and the sine window sin (2πt/T ) for ν2. Obviously, ν1

is orthogonal to ν2, and the spectrum of ν1 is concentrated
to zero frequency whereas ν2 has a zero at f = 0.

4. PROPOSED METHOD

4.1 Combining frequency and periodicity

An intuitive way to combine the frequency and periodicity
representations is to multiply V (hn)

x and U (hn)
x , after map-

ping the latter from time-quefrency into the TF domain:

W (hn)
x (t, f) = |V (hn)

x (t, f)|U (hn)
x

(
t,

1

f

)
. (6)

This approach has been mentioned in previous work on
single pitch detection [19], where the F0 is determined
simply by f0(t) = arg maxf W

(hn)
x (t, f). Please note

that here we only consider the co-occurrence of salience
in the frequency and periodicity representations, and so far
the constraints of harmonicity have not been included. A
threshold on either V (hn)

x or U (hn)
x for removing unwanted

terms is also critical to system performance. We will
consider these issues below.

4.2 Constraints on harmonicity

To identify the location of the harmonic components in the
STFT, one may use pseudo-whitening, a preprocessing step
of estimating the spectrum envelope [15]. This method,
however, is unreliable for a spectrum whose envelope is
not smoothly varying or not supported by a large number
of harmonics. This happens to be the case in choral music,
since the singers tend to sing with more power in the F0
region rather than in the singer’s format region [21].

To address this issue, we propose to assess whether a
component at (t, f) is a sinusoidal component by using
the IFD, instead of the spectral envelope. The rational is:
as small |Ω(h)

x | implies that the corresponding component
in STFT is close to the true component, we can assume
that |Ω(h)

x | is bounded by a positive value θs around the
harmonic components in the STFT. We have accordingly
the constraint on harmonicity in frequency representation:

Ns := {f : max
[
|Ω(hn)
x (t, (1 : Mv)f)|

]
< θs} , (7)

where we use (t, (1 : Mv)f) as the shorthand for the set
of points {(t, f), (t, 2f), . . . , (t,Mvf)}. That is, for an F0
at (t0, f0), we require that |Ω(h)

x (t0, f0)| is smaller than θs
at (t0, f0) and its integer multiples. Similarly, for a fun-
damental period event at (t0, q0), the amplitude of U (hn)

x

should be above a threshold θc not only at (t0, q0) but also
the multiples of its period. This leads to the constraint on
sub-harmonicity in periodicity representation:

Nc := {f : min
[
U (hn)
x (t, (1 : Mu)q)

]
> θc} . (8)
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With (3), (7) and (8), we have a more succinct feature
representation Y (hn)

x (t, f) by removing most of the non-
harmonic-related terms in W (hn)

x (t, f):

Y (hn)
x (t, f) = W (hn)

x (t, f)
∣∣∣
N
, (9)

where N := Nv ∩ Ns ∩ Nc. Moreover, to enhance
localization of this multipitch feature, we consider syn-
chrosqueezing operation on Y (hn)

x (instead of on V (hn)
x ):

S(hn)
x (t, f) :=

∫

N

Y (hn)
x (t, η)δ

(
|f − Ω(hn)

x (t, η)|
)

dη ,

(10)
Finally, by modifying (4), the multi-taper or ConceFT-
based multipitch feature is obtained from averaging either
Y

(hn)
x or S(hn)

x over n = 1, 2, . . . , N , respectively:

B(h)
x (t, f) =

1

N

N∑

n=1

Y (hn)
x (t, f) , (11)

C(h)
x (t, f) =

1

N

N∑

n=1

S(hn)
x (t, f) . (12)

In the experiments we will compare the performance of the
four features formulated in (9)–(12).

4.3 Implementation issues

There are several ways to sample the value ofU (hn)
x (t, 1/f)

from U
(hn)
x (t, q), the simplest way being assigning every

components in q to the bin closest to f = 1/q. However,
the problem is there are usually insufficient low-quefrency
points in U (hn)

x (t, q) to represent the high-frequency part
in U (hn)

x (t, 1/f). For example, there are only 34 points
in U

(hn)
x to represent frequencies ranging from 1 kHz

to 4 kHz for a signal sampled at 44.1 kHz. A simple
yet effective solution is to linearly interpolate U (hn)

x (t, q)
into a fine grid with 0.4 Hz spacing, 2 and then have
U

(hn)
x (t, 1/f) =

∑
j∈P(f) U

(hn)
x (t, qj), where P(f) :=

{j : 1/(f + 0.5/T ) < qj < 1/(f − 0.5/T )}. A short-pass
lifter described in [23] is also applied to U (hn)

x (t, q).
Another issue of this mapping scheme is that the low-

frequency part could be overemphasized since the summa-
tion is over a wide quefrency range and thereby cannot
reveal true salience of pitch. This is not a critical issue
if the dynamic information of each note is not required in
transcription, but such dynamic information is needed here
for late fusion. To address this, in our implementation we
use a binarized version of U (hn)

x to treat it as a mask in
filtering out unwanted harmonic peaks in V (hn)

x , by setting
U

(hn)
x (t, q) = 1 if U (hn)

x (t, q) > θc and 0 otherwise.

5. EXPERIMENT

5.1 Datasets

To provide available source for the research on transcribing
music with pitch scatter, we propose two new datasets,

2 Pilot studies show that finer grid spacing results in smoother feature
representation but provides no significant empirical gains in MPE.

directly named Choir and Symphony here, which contain 5
excerpts of choral music from 3- to 8-part, and 5 excerpts
of symphony, respectively. The length of the excerpts
ranges from 18 to 108 seconds, totaling 5 minutes and
40 seconds. Information of each note events, including
onset, offset, pitch name and instrument, are annotated by
a professional pianist using the annotation methodology
proposed in [24]. The audio, annotation, and other detailed
information will be made public through a website. 3

To test the generalizability of the proposed method,
we also experiment on another two commonly used MPE
datasets — Bach10 [8] and TRIOS [9]. The former
contains ten quartets of four different instruments, while
the latter consists of five pieces of fully synthesized music
of piano and two other pitched instruments. The sampling
rate of all the audio files is 44.1 kHz.

5.2 Numerical illustration

For all the proposed features, we empirically set the
window length T to 0.14 second, hop size H to 0.01
second and use θc = 2 × 10−4. For Y (h1)

x and B(h)
x , we

set N = 1 and θs = 3 bins (21.43 Hz); and for S(h1)
x and

C
(h)
x , we set N = 10 and θs = 1 bin (7.14 Hz), a narrower

bandwidth to enhance localization. The nonlinear scaling
factor of gξ in (2) is set to 0.15.

Figure 1 shows in row the ground truth, V (h1)
x (t, f),

U
(h1)
x (t, 1/f),W (h1)

x (t, f) andC(h)
x (t, f) of four 5-second

excerpts sampled respectively from the four datasets in-
troduced in Section 5.1. Notice that U (h1)

x (t, 1/f) shown
here is after thresholding of (7) to avoid negative values.
We apply a power scale (·)0.1 in drawing the figures.

The second and third columns show that V (h1)
x (t, f) or

U
(h1)
x (t, 1/f) alone is not a good multipitch feature since

the former suffers from unwanted harmonic terms and the
latter from “sub-harmonic” ones. However, most of these
terms are removed in W (h1)

x , as seen in the fourth column.
Furthermore, in the rightmost column, C(h)

x achieves very
sharp components with few noises; it also nicely localizes
the pitches. Notably, we see that the STFT components
in Choir and Symphony spread widely and are much more
fluctuated than those in Bach10 and TRIOS (due to severe
pitch scatter), but the sharpness of the components in C(h)

x

of the four samples are almost the same.
It can also be seen that there are still some challenging

cases in the symphony due to its high complexity. For ex-
ample, the short pitch activation above 1kHz in the ground
truth (pizzicato of the 1st violin) remains unrecalled even
in C(h)

x . This is a subject of future work.

5.3 Piano roll output and post-processing

To obtain the piano roll output, all the features are pro-
cessed first by a moving median filter with length 0.21
second to enhance smoothness, and then by a peak peaking
process to pertain local maxima and discard other non-
peak terms. Then, the MPE result, represented in piano

3 https://sites.google.com/site/lisupage/research/new-methodology-
of-building-polyphonic-datasets-for-amt
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Figure 1. Illustration of the ground truth, V (h1)
x (t, f), U (h1)

x (t, 1/f),W (h1)
x (t, f) andC(h)

x (t, f) of four 5-second excerpts.
V

(h1)
x : STFT; U (h1)

x : generalized cepstrum; W (h1)
x : combination of STFT and generalized cepstrum; C(h)

x : the proposed
representation with ConceFT. First row: ‘01-AchGottundHerr.wav’ (i.e. Bach’s Ach Gott und Herr, wie gros und schwer,
BWV 255) in quartet (violin, clarinet, saxophone and bassoon). Second row: Mozart’s Trio in Eb major ‘Kegelstatt’,
K.498, in piano, clarinet and viola. Third row: William Byrd, Ave Verum Corpus, in SATB choir. Fourth row: Tchaikovsky,
Symphony No.6, Op.74 (Pathetique), Mov.2., in flute, oboe, clarinet, bassoon, horn, trumpet and strings.

roll O(t, p), where p = 13, 14, . . . , 76 is the piano roll
number from A1 (55 Hz) to C7 (2,093 Hz), is obtained
by O(t, p) =

∑
F(p)X(t, f), where F(p) = {f : 440 ×

2(p−49−0.5)/12 ≤ f < 440 × 2(p−49+0.5)/12} (notice that
A4 is the 49th key on the piano), and X denotes one of the
feature representations described in (9)–(12).

The results of the proposed and baseline algorithms are
refined by the same post-processing steps. The first step
removes isolated pitches that are above C5 and leave any
other pitches in the affinity of 0.1 second by more than
an octave. This is done because composers usually prefer
smaller intervals within one octave in the high-pitch range.
The second step is again a moving median filter with length
also 0.21 second for smoothness.

5.4 Baselines and evaluation

Three baseline methods are considered. The first baseline
is the unsupervised method proposed in our previous
work [23], which also combines information of frequency,
periodicity and harmonity, but its harmonicity constraint
was performed on the piano roll representation rather than
directly on the TF representation. We did not use advanced
TF analysis such as SST and ConceFT in the prior work
[23]. Moreover, the method of computing the adaptive
threshold of spectral representation is also different. We
use the parameters suggested in [23], and the nonlinear
scaling factor for generalized cepstrum is also set to 0.15.

The second one is an unsupervised method based on the
Constrained Non-negative Matrix Factorization (C-NMF)
algorithm proposed by Vincent et al. [29]. 4 For the
experiment on all datasets, we set β = 0.5 for computing
the β-divergence and the value of ϑ = −32 dB for
thresholding the activation patterns in C-NMF.

The third baseline is a supervised method based on
the shift-invariant PLCA proposed by Benetos et al. [3]. 5

This approach uses labeled data to learn five templates for
each pitch of each instrument and voice. The templates
are learned from the single notes of the RWC instrument
dataset [10], which contains various instruments as well
as five vowels of human voice including soprano, alto,
tenor and bass. We set the parameter for instrument
activation sz = 1.3, the parameter for source contribution
su = 1.1 and the parameter for pitch shifting sh = 1.1,
all similar to [3]. To facilitate the comparison between
the supervised and unsupervised approaches to MPE, we
employ an instrument-informed setting that uses templates
learned from different instruments for different music
pieces, which might have given PLCA some advantages.

Moreover, to investigate cross-model behaviors of the
algorithms, we experiment with a late fusion scheme that
combines our method with PLCA. We first normalized

4 http://www.irisa.fr/metiss/members/evincent/
multipitch_estimation.m

5 https://code.soundsoftware.ac.uk/projects/
amt_mssiplca_fast
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Table 1. Experiment result. Y (h1)
x , B(h)

x , S(h1)
x and C(h)

x are described in (9), (10), (11), (12), respectively. Y (h1)
x : single-

window, without synchrosqueezing; B(h)
x : single-window, with synchrosqueezing; S(h1)

x : overcomplete-window, without
synchrosqueezing; C(h)

x : overcomplete-window, with synchrosqueezing

Dataset
Proposed Baseline Proposed+PLCA (Late fusion)

Y
(h1)
x B

(h)
x S

(h1)
x C

(h)
x [23] C-NMF PLCA Y

(h1)
x B

(h)
x S

(h1)
x C

(h)
x

Bach10 83.96 83.29 79.18 82.13 81.97 79.78 70.57 82.39 82.14 82.69 82.04
TRIOS 66.30 66.30 60.23 66.26 64.09 59.40 64.93 71.10 70.79 70.35 70.57
Choir 57.44 59.71 51.29 61.18 44.98 45.62 61.07 64.36 64.88 64.06 65.31

Symphony 49.14 50.44 46.95 50.33 48.82 40.34 47.04 51.73 52.46 51.02 51.86

every frame of the piano roll output by its l2 norm, then
combine them through linear superposition, and finally
discard the terms which are smaller than a threshold ε:

Ōfusion = (αŌPLCA + (1− α)Ōproposed − ε)+ , (13)

where Ō is the normalized piano roll output, α ∈ [0, 1]
controls the relative weights of the two methods, and
(x)+ = max(0, x) is a hard thresholding function.

We evaluate the accuracy of MPE using the micro-
average frame-level F-score, which counts the number
of true positives, false positives and false negatives over
all the frames within a dataset and then calculates the
harmonic mean of the precision and recall rates.

6. RESULT

Table 1 lists the F-scores on the four datasets using the
proposed methods using features (9)–(12), three baseline
methods and late fusion of proposed features with PLCA.
The main findings are reported below.

First, the four proposed methods outperform the three
baselines in general. Although the method [23] adopted
the same approach of combining frequency and periodicity
information as the proposed methods do, it was reported
to be sensitive to γ, the nonlinear scaling factor in com-
puting the generalized cepstrum. Besides, the method
[23] cannot benefit from the constraint on harmonics,
especially in the case of Choir, as the estimation of the
spectral threshold and noise terms is rather inaccurate
without IFD information. C-NMF also performs poorly
for such challenging musical signals. In comparison to the
two unsupervised baselines, PLCA performs fairly well in
Choir and Symphony, perhaps because it uses supervised
templates and allows template shifting in pitch [3].

Second, among the proposed methods, we find the
multi-taper ones B(h)

x and C
(h)
x do perform better than

those use only one window, i.e., Y (h1)
x and S

(h1)
x , for

datasets with pitch scatter (i.e., Choir and Symphony).
However, for Bach10 and TRIOS, where most of the
pitches are played with only one instrument, multi-tapering
and SST do not give better performance, as there is no need
to reduce the variance of a spectral peak of a single source.

Moreover, the method using single-window SST S
(h1)
x

performs the worst among the proposed methods, as its
nonlinearity usually gives rise to unwanted speckle terms,
a major known drawback of SST [6]. This problem

is nicely solved by ConceFT, as we can see that C(h)
x

outperforms S(h1)
x by around 10% in Choir and 3% in

Symphony. This suggests the need to introduce multi-
tapering to stabilize the estimation, when feature localiza-
tion is an important requirement for the system.

Finally, a grid search over the four datasets shows that
the optimal result of late fusion is achieved by setting
α = 0.05 (i.e. emphasizing the proposed method) and ε =

3 × 10−5. Combining PLCA and C(h)
x achieves 65.31%

for Choir, which amounts to more than 4% improvement
over C(h)

x . Combining PLCA and Y (h)
x further improves

the F-score by 4.8%. However, less improvement is
found in Bach10 and Symphony, possibly because that
the former already has limited space for improvement and
the latter is rather complicated such that some information
cannot be well captured by both method. Although the
weighting on PLCA is small, PLCA does capture some
critical information missed by the proposed methods. This
suggests the importance of fusing different MPE models,
in particular unsupervised and supervised ones.

7. CONCLUSION

To improve the robustness of MPE algorithms in dealing
with diverse music signals, we introduce and incorporate
novel TF analysis tools including SST and ConceFT to en-
hance the stability and localization of multipitch features.
The proposed unsupervised methods also measure pitch
saliency by jointing considering frequency, periodicity and
harmonicity. Result on two newly created datasets of
choral and symphony music demonstrates the superiority
of the proposed methods for MPE in music signals featur-
ing pitch scatter. Slightly better result can be obtained by
combining our methods and the supervised method PLCA.
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