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ABSTRACT

We propose a human-driven Optical Music Recognition
(OMR) system that creates symbolic music data from com-
mon Western notation scores. Despite decades of devel-
opment, OMR still remains largely unsolved as state-of-
the-art automatic systems are unable to give reliable and
useful results on a wide range of documents. For this rea-
son our system, Ceres, combines human input and machine
recognition to efficiently generate high-quality symbolic
data. We propose a scheme for human-in-the-loop recog-
nition allowing the user to constrain the recognition in two
ways. The human actions allow the user to impose either
a pixel labeling or model constraint, while the system re-
recognizes subject to these constraints. We present evalua-
tion based on different users’ log data using both Ceres and
Sibelius software to produce the same music documents.
We conclude that our system shows promise for transcrib-
ing complicated music scores with high accuracy.

1. INTRODUCTION

Optical Music Recognition (OMR), the musical cousin of
Optical Character Recognition (OCR), seeks to convert
score images into symbolic music representations. Suc-
cess in this endeavor would usher music into the 21st cen-
tury alongside text, paving the way for large scale symbolic
music libraries, digital music stands, computational musi-
cology, and many other important applications.

Research in Optical Music Recognition (OMR) dates
back to the 1960s with efforts by a large array of re-
searchers on many aspects of the problem [3,5,10-14, 17,
18,20, 21, 25, 29] including several overviews [6, 23], as
well as well-established commercial efforts [2] [1]. While
evaluation of OMR is a challenging task in its own right
[8], it seems fair to say that the problem remains largely
unsolved, in spite of this long history. The reason is sim-
ply that OMR is very hard, representing a grand challenge
of document recognition.

One reason OMR is so difficult stems from the heavy
tail of symbols used in music notation. While a small
core of symbols account for the overwhelming majority
of ink on the printed page, these are complemented by a
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long list of familiar symbols that may be absent in many
or most pages. These include repeat signs, D.S. and D.C.
directives, a wide variety of possible ornaments and ar-
ticulations, harmonics, fingerings, pedaling, arpeggiation,
fermati, double sharps and flats, pedaling, 1st and 2nd
endings, repeats, etc. While each of these symbols can
be recognized with reasonable accuracy by fairly standard
means, the symbols are rare enough that the unavoidable
false positives they produce often outweigh the value of
the correct detections we may find. This constitutes one
of the the essential paradoxes of OMR: we cannot simply
ignore unusual symbols, though their inclusion often leads
to worse performance overall.

We sometimes refer to the heavy tail described above
as the “sprawl of OMR.” This sprawl is not limited to the
range of symbols, but also includes the many exceptions to
familiar notational rules. For instance, in standard notation
beamed groups, notes and chords carry the majority of mu-
sical content, thus their recognition must be central to any
OMR effort. The construction of these symbols is highly
rule-bound, arguing strongly for recognition approaches
that exploit the symbols’ grammatical nature. The diffi-
culty here comes from the many special cases we must
account for. For example, note heads usually lie on one
side of the stem, though chords with note heads on adja-
cent staff positions are usually rendered with “wrong side”
note heads; beamed groups usually have closed note heads
though measured alternations between two pitches is often
abbreviated with two open note heads in a beamed group;
beam groups usually have stems that go in a single direc-
tion from the beam, though one occasionally sees both di-
rections from a single beamed group; beamed groups are
usually associated with a single staff, but can span both
staves of a grand staff when necessary; augmentation dots
are generally placed to the right of the note heads they be-
long to, though dense voicing can force them to wander
far off their nominal positions. As with the heavy tail of
symbols, these special cases can all be modeled and rec-
ognized, though the results are not what one would hope
for. The majority of notation will not contain these rarer
cases; allowing for these exceptions when they do not oc-
cur begs for trouble, reliably degrading the recognized re-
sults. However, these exceptions are common enough that
we doubt a useful OMR system can be developed without
accounting for them somehow. This is essentially the same
paradox as that posed by the heavy tail: we must recognize
these unusual cases but cannot allow them to result in de-
graded performance overall. Dealing with this sprawl is a
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central issue we address in this paper.

In light of these (and other) obstacles we doubt that any
fully automatic approach to OMR will ever deal effectively
with the wide range of situations encountered in real life
recognition scenarios. For this reason we formulate the
challenge in terms of human-in-the-loop computing, devel-
oping a mixed-initiative system [15,19,27,28] fusing both
human and machine abilities. The inclusion of the human
adds a new dimension to the OMR challenge, opening a
vast expanse of unexplored potential.

However, there is another reason for the human-
computer formulation we favor. While there may be some
uses for moderate quality symbolic music data, we believe
the most interesting applications require a level of accu-
racy near that of published scores. The human will not
only play the important role of guiding the system toward
the required level of accuracy, but must also “bless” the
results when they are complete. We expect symbolic mu-
sic data lacking this human imprimatur will be of dubious
value.

Commercial systems often deal with this issue by
pipelining their results into a score-writing program, thus
allowing the user to fix the many recognition problems.
This approach creates an artificial separation into the two
phases of recognition and correction. Rather, since we re-
quire a human to sign-off on the end result, we propose to
involve her in the heart of the process as well.

In what follows we present the view of human-in-the-
loop OMR taken in our Ceres system. Our essential idea
is to allow the user two axes of control over the recogni-
tion engine. In one axis the user chooses the model that
can be used for a given recognition task, specifying both
the exceptions to the “rules” discussed above as well as the
relevant variety of symbols to be used. In the other, the
user labels misrecognized pixels with the correct primitive
type, allowing the system to re-recognize subject to user-
imposed constraints. This provides a simple interface in
which the user can provide a wealth of useful knowledge
without needing to understand the inner-workings and rep-
resentations of the system. Thus we effectively address
the communication issue of mixed-initiative literature. Our
work has commonalities with various other human-in-the-
loop efforts such as [26, 30], though most notably with
other approaches that employ constrained recognition as
driven by a user [4,7,24].

2. HUMAN-INTERACTIVE SYSTEM

The main part of our Ceres OMR system deals with symbol
recognition, which occurs after the basic structure of the
page has been identified. For each type of symbol or group
of symbols we use a different graphical model. Here we
depict only the isolated chord graph in Fig. 1 which serves
as a template for the others, and refer the more detailed
discussions to our previous papers [9,22].

Each individual music symbol (beamed group, chord,
clef-key-signature, slur, etc.) is grammatically constrained
based on a generative graph, enabling automatic, model-
driven, symbolic recognition. Perhaps more difficult than
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Figure 1: (a) Graphical model for isolated chord. (b) Sym-
bol samples generated via random walk over the graphical
model shown in (a).

individual symbol recognition is the challenge of decom-
posing the image into disjoint, grammatically-consistent
symbols. To address this problem, our system identifies
candidates for the different symbol types such as chords,
beamed groups, dynamics, slurs, etc. The user chooses
some of these candidates for interactive recognition. Af-
ter each recognition task is completed the resulting sym-
bol will be saved, thus constituting a constraint for future
candidate detection and recognition — we constrain our
system to identify mostly non-overlapping symbols.

Our current human-driven system performs recognition
in a symbol-by-symbol fashion as opposed to the measure-
based version proposed in [9]. The symbol-based scheme
allows for a responsive and efficient interface, which func-
tions with the symbol recognizers implemented in our sys-
tem . Here the human is allowed to interact with all
three steps: candidate identification, interactive recogni-
tion, and post-processing. In the candidate identification
and post-processing steps, the user directs the decision-
making process by either selecting a system-proposed can-
didate, adding a missing candidate, or deleting an incor-
rectly saved symbol. In the interactive recognition step,
the user actions impose extra labeling or model constraints
to the recognizer, while the system automatically invokes
re-recognition subject to these constraints.

The interactive recognition begins by performing fully
automatic recognition of the selected candidate. In many
cases the result will be correct and will be saved. Other-
wise the process iterates between human action and ma-
chine re-recognition until it yields the correct result. In
each iteration of this process the user will click on a partic-
ular pixel to input the corresponding primitive label (solid
note head, stem, beam, etc.) or change the model settings
to an appropriate choice. The whole process requires only
basic knowledge of music notation and thus extends the
range of potential users.

Our recognizers seek hypotheses that give the highest
probability to the pixel intensities, g(x), where x is a par-
ticular location. More explicitly, we regard a hypothesis, A,
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as a labeling of pixel sites, z;, with models, M}, (z), where
Mp(z) € £ = {b,w,t,0}. The labels in £ correspond to a
probability models for black, white, transitional, and back-
ground pixels (Py, Py, P;, Py). We measure the quality of
a hypothesis, &, by

S(h) = ;U %8 = (9(2)) M

where D(h) is the support of the hypothesis.

As mentioned, the hypotheses are highly constrained
and we express these constraints through graphs as in Fig-
ure 1. We denote the possibility that a graph G generates
a hypothesis h by G = h. Thus our recognizers seek to
compute

H{ = argmax S(h) 2)

{h|G=h}

By normalizing by the background model, Py, in Eqn. 1,
the result S(h) = 0 means that h explains the pixels no bet-
ter or worse than the background model (iid sample from
the overall gray-level distribution), thus calibrating the in-
terpretation of our scoring function and providing a natural
threshold for detection. This data model is more explicitly
explained in our previous works [9,22].

2.1 Label Constraints

When the user labels a pixel, x, with a primitive (the most
fundamental unit that constitutes a symbol), [, such as
stem, flag, open note head, etc., we create a constraint of
the form (z,1). If several such user labelings are required
to correctly recognize a symbol we have a collection of
constraints of the form L = {(z;,l;) : ¢ = 1,...,n}.
Each time we get a new constraint the system re-recognizes
the current candidate subject to these user-imposed con-
straints. Thus we modify our original scoring function to
be

_ o PMh(ar)(g(x)) z z
S(h)—z;(h)lgipo(g(x)) +t(z,Qulx) )

where

-0 ==z, Qn(x) #1; some i
Hw, Qn(@)) = { 0 otherwise )
Here Qp, () represents the primitive label of hypothesis h
atlocation x, thus t(x, Q5 (x)) disallows h if the pixel label
is inconsistent with the hypothesis.

Fig. 2 illustrates a use case for a label constraint. In this
example the original recognition, shown in the top panel of
the figure, misidentifies the natural sign modifying the ’e’
as an additional note head. In the top panel the user clicks
on this pixel, labeling it with the “natural” primitive type.
The bottom panel shows that re-recognition subject to the
constraint fixes the problem.

In addition to primitive labels, the system also allows
the user to label a rectangle of pixels as “white space”, thus
disallowing the recognizer from covering these pixels with
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Figure 2: (a) During the initial recognition the natural was
misidentified as a note head. The user is adds the correct
primitive label to any location within the the natural. (b)
Re-recognition correctly identifies the whole symbol by
using the user-imposed label constraint.

any primitive symbol. In practice this turns out to be one of
the most powerful constraints as it addresses the common
case in which our recognition “spills over” into adjacent
symbols.

2.2 Model Constraint

Model constraints change the graph, GG, over which we op-
timize. Our interface contains a number of toggle switches
each enabling a special case of recognition thus enlarging
the graph. In general, the recognition works best when the
minimal possible graph is chosen, though in many cases an
overly permissive graph structure still produces the desired
result without help from the user. In this case we still opti-
mize Eqn. 2, though with a new graph, G’, playing the role
of G.

Fig. 3 gives an example in which an inappropriately
restrictive graph generates a result with many primitive
errors (top panel). In this case the original recognition
was done without allowing note and chords to span the
grand staff, as they do in this example. The result com-
pletely misses the penultimate note in the beamed group,
while recognizing the last note with extraneous ledger lines
which would be syntactically necessary when the note be-
longs to the upper staff. After enabling the grand staff abil-
ity we get the correct result in the bottom panel of the fig-
ure.

After the interactive recognition of a symbol is com-
plete the user can save the symbol. When this occurs, we
reset the list of pixel constraints placed by the user — these
do not carry forward to future recognition tasks. The pixels
involved in the recognized hypothesis are considered un-
available in subsequent symbol recognition, thus express-
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Figure 3: (a) Recognition using a beamed group graph that
does not allow notes to span the grand staff. (b) Recogni-
tion using grand-staff beamed group graph.

Figure 4: Human-driven (blue) and Machine-driven (red)
actions in Ceres system. The possible state transitions are
shown by arrowed connections.

ing the notion that the symbols cannot touch. Of course,
symbols do sometimes touch in practice, so we allow the
user to label a rectangle of pixels as “reuse,” thus allowing
the user to override the basic non-overlapping constraint
when needed.

3. USER INTERFACE

Our interface allows the user to control and direct the
recognition process. The overall process is organized in
terms of measures, while the interaction flow within a mea-
sure is described in the “action graph” of Fig. 4.

In the candidate proposal step (2nd level of the fig-
ure), the user can switch between the different candidate
types (beamed group, isolated chord, slur, dynamics, etc.).
Within each candidate type the user is presented with a
left-to-right sequence of candidates she may choose to rec-
ognize or skip over. The color of the highlighted candidate
reflects the candidate’s type, also showing the direction of
the stem, beam, and slurs with arrow signs, as this infor-
mation is needed by the recognizers. The interface for this
phase is shown in Fig. 5.

After a candidate is chosen, the system moves to the
symbol recognition step. In this step, the system collab-
orates with user to improve the recognition in an iterative
process. In each iteration the user either accepts the current
recognition or imposes a new constraint (label or model),
as discussed in Section 2. For a labeling constraint, the
user inputs the pixel labels through a message box after
clicking on the desired pixel position, as in Fig. 2a. For a
model constraint, the user changes the current settings on
the checkboxes or pull-down menu. The interface is shown
in Fig. 6.
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Figure 5: (a) The system detects and indicates a stem-up
chord candidate for the user; (b) The system detects and
indicates a stem-up beamed group candidates for the user;
(c) The user adds a missing chord candidate.
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Figure 6: Checkboxes and pull-down menu for different
model settings.

The system uses different colors to distinguish the cur-
rent symbol from saved symbols. When the user wants
to revisit an incorrectly saved symbol, she can select and
delete the symbol before redoing the recognition.

Ceres has shortcut keys designed for the user to move
from one step to another one, and also has a “cancel” key
that allows the user to exit this process while moving to
a “default” state. These interface units together constitute
the visible part of Ceres’ human-in-the-loop system.

4. EVALUATION

We evaluate our system both in terms of accuracy and
speed. Both criteria are important since we believe the
most interesting applications of OMR require accuracy on
par with published scores, while it won’t be possible to cre-
ate large quantities of such data through OMR unless the
process is highly efficient.

We measure accuracy here at the primitive level (beams,
flags, note heads, accidentals, etc.), rather than, say, in
terms of pitch and rhythm as in [16]. We prefer primitive
evaluation because it is generic (all symbols are evaluated
in the same way), it allows for all symbols our recognizer
treats — not just those carrying pitch and rhythm infor-
mation, and it is easy to relate primitive error analysis to
specific aspects of the recognition engine.

The test set consists of first three pages of the Bre-
itkopf and Hdrtel 1862-90 edition of Beethoven’s Piano
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Figure 7: Clock time versus accuracy for novice and ex-
perienced Ceres users to generate one page: (a) page 1, (b)
page 2, (c) page 3, (d) average performance.

Sonata No. 23, (the “Appassionata”), having 1606, 1501,
and 1651 primitives respectively. We annotated the symbol
primitives by hand with an interactive tool, thus creating
our ground truth. In doing this we left out a few symbols
appearing in the document that our system does not yet
handle: grace notes, text and fermati. Our ground truth ac-
counts for the overwhelming majority of what appears on
the pages.

After recognition we decompose our structured results
into an unstructured list of primitives, counting both false
positives and false negatives. A recognized symbol counts
as a false positive if its distance to all ground truth primi-
tives of the same type is greater than some threshold. Anal-
ogously, a false negative occurs if a ground truth primi-
tive is not sufficiently close to any recognized primitive.
All symbol-to-symbol distances are measured in terms of
a fixed reference point on each symbol.

Our subjects contained both novice users having about
an hour of training, and more experienced users who were
involved in the development of the user interface. Figure 7
shows both clock time and accuracy (an F-score) measured
for these test subjects separately on each page. The figure
shows overall error rates in the range of 1%, short of our
eventual goal, but also showing that highly accurate results
are within reach. The effect of user experience is evident
both in accuracy and speed, though it is worth noting that
the novice users were still able to get usable results from
Ceres.

A primitive-level breakdown of errors is detailed in Fig-
ure 8, which counts both false positives and negatives by
each class and user. A number of the errors are due to
small symbols, such as augmentation dots, staccato mark-
ings, and short slurs. As illustrated in Section 3, our sys-
tem superimposes the recognized results over the original
image, usually making recognition errors obvious, though
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Figure 8: Distribution of Ceres-user-generated (a) false
positive and (b) false negative errors with respect to their
primitive labels on all the three pages.

they are occasionally hard to see with small symbols. This
highlights the need to explore better ways of visualizing re-
sults. The fingering errors were mostly due to our system’s
inability to recognize markups in non-standard positions
such as to the side of a note head — an issue we have since
accounted for. One can also see that a number of the er-
rors come from ledger lines. This is due to a bug causing
our system to occasionally produce syntactically impossi-
ble configurations of these primitives. These observations
show the virtue of primitive-based evaluation since the er-
rors are easily traced to their root causes.

We wanted to compare with a system other than our
own, though between-system comparisons in OMR are
challenging due to differences in the representations of
both intermediate and end results. While commercial
score-writing programs have different goals than OMR
systems, both create symbolic representations of music
documents that can be used to generate score images.
Aside from these basic similarities there are a great many
differences that may call comparisons into question. Still,
in order to gain a point of reference for evaluation we com-
pared our results with the commercial score-writing pro-
gram, Sibelius.

Due to the steep learning curve involved with this pro-
gram we engaged a professional Sibelius user with many
years of professional experience, charging him with the
task of recreating the original notation from scratch ac-
cording to our test images. Even when directed otherwise,
music copyists can substitute equivalent or nearly equiva-
lent notation making it impossible to find a one-to-one cor-
respondence between primitives. Thus we could not make
meaningful accuracy comparisons with Sibelius.

However, we can compare the time to create the sym-
bolic results as in Figure 9. This figure shows the necessary
clock time to create the various pages. The results vary
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Figure 9: Clock time versus number of primitives for each
page. Each point represents a single user from one of the
following three groups: professional Sibelius user, experi-
enced Ceres user or novice Ceres user.

significantly from page to page, but show Ceres as com-
petitive in all cases, and on two out of three pages showing
significantly faster results than Sibelius with far less expe-
rienced users. Fig. 10 shows a similar comparison using
keystrokes and mouse clicks as the measure of user effort.
Here Ceres is seen to be considerably more efficient than
Sibelius producing the results with much less user activity.
This is because notation programs require detailed super-
vision while our system offloads as much work as possi-
ble to the machine. We also see from this figure that the
experienced Ceres user makes more efficient strategies by
minimizing the number of mouse and key actions.

The representations produced by these two systems
have little in common, with different strengths and weak-
nesses for generating notation. Sibelius understands more
of the inherent relations between symbols which must be
preserved under renotation. Ceres captures a great deal
of information about notational decisions (groupings, stem
directions, spacing, etc.) which is also useful in renotation.
The images at the website below ! show notation generated
from the two representations thus allowing for a subjective
comparison of the two representations for renotation.

5. CONCLUSION

We have proposed a human-in-the-loop scheme for OMR
that addresses several of the core difficulties of OMR. By
allowing the user to select parameters of the models and
symbol vocabulary, we deal with the heavy tail of rare sym-
bols and notational exceptions. We also address the funda-
mental challenge of segmentation through recognition —
now facilitated by a human guide. Finally, we demonstrate
a feasible means to achieve the level of accuracy we believe
is essential for successful application of OMR. The exper-
iments show that our system has the potential to produce
high-quality symbolic data more efficiently than a score-
writing system, though we believe we must still improve
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Figure 10: Clock time versus number of mouse and key
activities used for each page: (a) page 1, (b) page 2, (c)
page 3, (d) average performance. Each point represents a
single user from one of the following three groups: pro-
fessional Sibelius user, experienced Ceres user or novice
Ceres user.

significantly on this benchmark for our system to gain ac-
ceptance.

One promising application of Ceres-generated data is
renotation. The current renotated pages are basically a
one-to-one reconstruction of the original score, essentially
denoising the image. We continue to explore more gen-
eral renotation problems allowing various transformations
of existing notation such as reformatting into arbitrarily-
sized rectangles, transposition, and construction of parts
from a score. This line of work will facilitate the flexible
rendering of scores for electronic music readers.

We also remain engaged with improving the perfor-
mance of our system. On one hand, we must continue to
refine the core recognition abilities of our system, as these
promise to improve both accuracy and speed of our system
by handling a greater proportion of the work through auto-
matic means. On the other hand we see considerable room
for improvement and creativity in constructing the inter-
face. We are interested in intelligent interactive approaches
that increase the efficiency of the approach, e.g. automatic
planning of human-machine-collaborated actions to min-
imize time cost, active prediction of human labeling and
model selection, intelligent aggregation of multiple con-
strains through MIDI keyboard input, or adaptive learning
to better recognize new documents. These interesting dis-
cussions are a part of our future plan.
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