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ABSTRACT

Separating a polyphonic symbolic score into monophonic
voices or streams helps to understand the music and may
simplify further pattern matching. One of the best ways
to compute this separation, as proposed by Chew and Wu
in 2005 [2], is to first identify contigs that are portions of
the music score with a constant number of voices, then to
progressively connect these contigs. This raises two ques-
tions: Which contigs should be connected first? And, how
should these two contigs be connected? Here we propose
to answer simultaneously these two questions by consid-
ering a set of musical features that measures the quality of
any connection. The coefficients weighting the features are
optimized through a genetic algorithm. We benchmark the
resulting connection policy on corpora containing fugues
of the Well-Tempered Clavier by J. S. Bach as well as on
string quartets, and we compare it against previously pro-
posed policies [2, 9]. The contig connection is improved,
particularly when one takes into account the whole content
of voice fragments to assess the quality of their possible
connection.

1. INTRODUCTION

Polyphony, as opposed to monophony, is music created
by simultaneous notes coming from several instruments or
even from a single polyphonic instrument, such as the pi-
ano or the guitar. Polyphony usually implies chords and
harmony, and sometimes counterpoint when the melody
lines are independent.

Voice separating algorithms group notes from a
polyphony into individual voices [2,4,9,11,13,15]. These
algorithms are often based on perceptive rules, as studied
by Huron [7] or Deutsch [5, chapter 2], and at the first place
pitch proximity – voices tend to have small intervals.

Separating polyphony into voices is not always possible
or meaningful: many textures for polyphonic instruments
include chords with a variable number of notes. Con-
versely, one can play several streams on a monophonic in-
strument. Stream separation algorithms focus thus on a
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voice separation by better connecting contigs”, 17th International Soci-
ety for Music Information Retrieval Conference, 2016.

narrower scale, extracting groups of coherent notes. These
segments are not necessarily connected throughout the
whole score: a voice can be split into several streams and
a stream can cluster notes from different voices [14, 16].

Both voice and stream segmentation algorithms provide
a better understanding of polyphony and make inference
and matching for relevant patterns easier. We previously
showed that voice and stream separation algorithms are
two facets of the same problem that can be compared with
similar evaluation metrics [6]. Pertinent evaluation met-
rics measure how segments or voices of the ground truth
are grouped together in the algorithms predictions, as the
transition-based evaluation [2] or the measure of mutual
information [6, 12].

Based on these metrics, it appears that the contig ap-
proach, as initially proposed by Chew and Wu [2] (Sec-
tion 2), is one of the best approaches to separate voices,
starting from contigs having a constant number of voices.
The results depends on how the contigs are connected,
larger voice or stream segments being built starting from
smaller ones.

In this article we propose and compare several criteria
to ground the connection policy, that is both the choice of
the order of the contigs to be connected, and the connec-
tion itself between contigs. In addition to the criteria used
in the literacy, we introduce new criteria that take into ac-
count more musical context, averaging pitches and dura-
tions over voice fragments (Section 3). We weight these
criteria using a genetic algorithm (Section 4). We show
how some values of these criteria can partially simulate
the previous methods, and evaluate the results on sets of
fugues and string quartets. By improving this contig con-
nection, we improve the precision of voice separation al-
gorithms (Section 5). We further study the distribution of
failures, showing that a higher precision can be obtained
by stopping the contig connection before the connection
quality drops.

2. VOICE SEPARATION BASED ON CONTIGS

The contig approach, proposed by Chew and Wu (denoted
by CW in the following) first separates the music score into
contigs that have a constant number of notes played at the
same time then progressively connect these contigs to the
whole score [2].

The first step splits the input polyphonic data into
blocks called contigs such that the number of simultaneous
notes in a contig does not change (Figure 1). Notes cross-
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Figure 1. In this piano-roll symbolic representation, each
segment describes a note. The horizontal axis represents
time and the vertical axis represents pitches. The notes
can be grouped in four contigs, each of them containing a
constant number of notes played at the same time. Con-
tig 2 contains three voice fragments 2a, 2b and 2c. The
challenge of contig-based voice separation algorithms is to
connect these voice fragments across contigs to build co-
herent voices throughout the score. The non-vertical dotted
lines show a possible solution of the voice separation.

ing the border of several contigs are split in several notes.
The idea behing building contigs is that the voice separa-
tion is relatively easy inside them: Notes in each contig are
grouped by pitch height to form voice fragments.

The second step links together fragments from distinct
contigs, following some musical principles (Figure 2). The
algorithm has now to take two kinds of decisions, follow-
ing what we call a connection policy:

• which contigs should be connected first?

• how should these two contigs be connected?

Figure 2. Any connection policy should decide which
contigs should be connected (such as, for example, 1
and 2) and how to do this connection. There are here
three possible connections (without voice crossing) be-
tween the contigs 1 and 2: C1 = {(1a, 2a), (1b, 2b)},
C2 = {(1a, 2a), (1b, 2c)}, and C3 = {(1a, 2b), (1b, 2c)}.

Order of connection of contigs. In CW algorithm, the con-
nection starts from the maximal contigs (i.e. contigs con-
taining the maximal number of voices). Since the voices
tend not to cross, the voice separation and connection in
these contigs with many voices were thought to be more
reliable. Then, CW continues the connection process to
the left and to the right of these maximal contigs. In Fig-
ure 1, the CW policy will thus connect contigs 1, 2, 3, then
finally 0, 1, 2, 3.

Ishigaki, Matsubara and Saito (denoted IMS in the fol-
lowing) suggested another connection policy, starting with

minimal contigs and connecting contigs with an increasing
number of fragments (i.e. the number of fragments in the
left contig is lower or equal to the number of fragments in
the right contig) [9]. The idea is that the (local) start of a
new voice is a more perceptible event than the (local) end
of a voice. Once all those possible connections are done,
maximal contigs are considered as in CW algorithm to ter-
minate the process. In Figure 1, IMS policy will connect
contigs 0, 1, then 0, 1, 2, and finally 0, 1, 2, 3.

Fragment connection. The policy to connect fragments of
the original CW algorithm, reused by IMS, is based on
two principles: Intervals are minimized between succes-
sive notes in the same stream or voice (pitch proximity);
Voices tend not to cross. Formally, the connection between
two contigs is a set of (`, r) fragments that maximize a
connection score. This score is here based on the absolute
difference between the pitch of the last note of the left frag-
ment ` and the pitch of the first note of the right fragment
r. There is moreover a very large score for the connection
of notes split between two contigs to keep them in the same
final voice.

3. MORE MUSICAL FEATURES TO IMPROVE
THE CONNECTION POLICY

3.1 A new view on the contig-based approach

We argue that the two questions of the connection pol-
icy (which contigs should be connected? how to connect
them?) should be handled at a same time: to build coherent
voices across a piece, one should always connect the con-
tigs yielding the “safest” connections between voice frag-
ments. The quality of these connections should be properly
evaluated with musical features that will be introduced be-
low.

Given two successive contigs i and i + 1, and one way
C to connect them (set of pairs of fragments), we define a
connection score S(i, C), computed as a weighted sum of
musical features, that measures the quality of this connec-
tion: The higher the connection score, the safer the con-
nection. The connection scores will extend the ones used
by CW and IMS, that did not systematically explore the re-
lation between the two decisions of the connection policy.

At each step of the algorithm, the (i, C) maximizing S
is selected, giving both the “best contigs” to connect and
the “best way” to connect them. Once this connection is
made, the connections scores between the newly formed
contig and its left and right neighbors have to be computed.

Definitions. Let n be the maximal number of simultaneous
notes in the piece. Let ni (respectively ni+1) be the max-
imal number of voices of the contig i (i + 1). After some
connections have been made, a contig may have a different
number of simultaneous notes at its both extremities, but
the hanging voices are “projected” to these extremities.

For two successive contigs i and i + 1, let C be a set
of pairs (`, r), where ` is a fragment of the (left) con-
tig i and r a fragment of the (right) contig i + 1, each
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fragment appearing at most once in C (Figure 2). C has
thus at most m = min(ni, ni+1) elements, and, in the
following, we only consider sets with m elements, that is
with the highest possible number of connections. Denot-
ingM = max(ni, ni+1), there areM !/(M−m)! different
such combinations for C, and only

(
M
m

)
if one restricts to

the combinations without voice crossing.
We consider that we have N features

f1(i, C), f2(i, C) . . . fN (i, C) characterizing some
musical properties of the connection C between contigs
i and i + 1. Each feature fk(i, C) has a value between
0 and 1. Finally let α1, α2, . . . , αN be N coefficients
such that

∑N
k=1 αk = 1. We then define the con-

nection score as a linear combination of the features
S(i, C) =

∑N
k=1 αkfk(i, C).

In the two following paragraphs, we propose different
features fk(i, C) depending on the musical properties of
contigs and fragments. The values of the coefficients αk

will be discussed in Section 4.

3.2 Features on the contigs

First we consider features that are not related to the con-
nection C but depend only on the contigs, more precisely
on the maximum number of voices in each contig.

• maximal voices(i) = max(ni, ni+1)/n. The closer
the number of voices to the maximal number of
voices, the higher the connection score .

• minimal voices(i) = (n+1−min(ni, ni+1))/n. The
closer the number of voices to 1, the higher the con-
nection score.

One can in particular favor some contig connection
based on the comparison of the number of voices between
the left and the right contigs:

• difference nb voices(i) = 1− (|ni−ni+1|/(n−1)).
The closer the number of voices of the left and the
right contigs, the higher the connection score.

Or with the following binary features, that will equal 0
if the condition is not met:

• increase(i) = 1 iff ni < ni+1;

• increase one(i) = 1 iff ni + 1 = ni+1;

• increase equal(i) = 1 iff ni ≤ ni+1;

• decrease(i) = 1 iff ni > ni+1;

• decrease one(i) = 1 iff ni − 1 = ni+1;

• decrease equal(i) = 1 iff ni ≥ ni+1.

Those features are inspired by the connection policy of
the existing algorithms. The maximal voices(i) feature re-
flects the idea used by the CW algorithm: It is safer to
first connect contigs having a large number of voices. The
reverse idea, as measured by minimal voices(i), was pro-
posed together with the increase(i) idea by the IMS algo-
rithm, favoring the connection of contigs with an increas-
ing number of voices. The idea is that the (local) start of a

new voice is a more perceptible event than its (local) end.
This is even more remarkable in contrapuntal music such
as fugues where enterings of voice on thematic patterns
(subjects, counter-subjects) are often clearly heard.

We propose to further use the increase one(i) feature
that should better assert an entry of exactly one new
voice. Conversely, we also evaluate the opposite idea (de-
crease(i), decrease one(i), decrease equal(i)).

Finally the connection could favor successive contigs
sharing a same note:

• maximal sim notes(i) = n=/min(ni, ni+1), where
n= is the number of notes with the same pitch and
same onset (i.e. note split in two) at the extremities
of contigs i and i + 1. The more the contigs share
common notes, the higher the connection score is.

This feature derives from the original implementation
of CW, where connectig contigs with shared notes was
awarded a very large score.

3.3 Features on the fragments

Now we consider features based on the individual fragment
connections (`, r) composing C.

Pitches. How can we measure the quality of connecting a
fragment ` to a fragment r? The main criterion of the CW
and IMS algorithms was to follow the pitch proximity prin-
ciple, favoring connections of fragments having a small
pitch interval. Given C and (`, r) ∈ C, let last pitch(`)
and first pitch(r) be the pitches of the extreme note of the
left fragment ` and the right fragment r:

• extreme pitch(C) = 1 −∑(`,r)∈C |last pitch(`) −
first pitch(r)|/ν. The closer the pitches between the
connected notes, the higher the connection score.

The normalization factor ν = 60 · |C| semitones was
chosen in order to range the feature value between 0 (5 oc-
taves between connected pitches) and 1 (equal pitches).
However, this extreme pitch(C) score only considers one
note on each side. We propose to extend this feature by
evaluating the pitch range coherence, taking into account
the average pitch (average pitch) of all notes of one or
both fragments. Indeed, voices tend to have the same pitch
range throughout the piece, and moreover through the frag-
ments:

• avg pitch right(C) = 1−∑(`,r)∈C |last pitch(`)−
average pitch(r)|/ν;

• avg pitch left(C) = 1 −∑
(`,r)∈C |average pitch(`)− last pitch(r)|/ν;

• avg pitch(C) = 1 −∑(`,r)∈C |average pitch(`) −
average pitch(r)|/ν.

Some voice separation algorithms assign each note to
the voice with the closest average pitch [10]. These algo-
rithms are quite efficient, and the avg pitch(C) feature re-
produces this idea at a local scale: Given a fragment with
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a few notes, even if one may not know to which (global)
voice it belongs, one already knows a local pitch range.

Durations. Similarly, we can measure the difference of
durations to favor connection of contiguous fragments with
a same rhythm. Indeed, the musical textures of each voice
tend to have coherent rhythms. For instance, a voice in
whole notes and another one in eights will often be heard
as two separate voices, even if they use very close pitches.
Given C and (`, r) ∈ C, let last dur(`) and first dur(r) be
the durations, taken in a log scale, of the extreme notes of
the left fragment ` and the right fragment r:

• extreme dur(C) = 1 − (
∑

(`,r)∈C |last dur(`) −
first dur(r)|/λ). The closer the durations between
the connected notes, the higher the connection score.

The normalization factor λ = 6 · |C| accounts for
the maximal difference (in a log scale) between whole
notes (6) and 64th notes, the shortest notes in our corpora
(0). Once more, this feature can also be extended to take
into account the average log duration (average dur) of one
or both fragments instead of the duration of the extreme
note:

• avg dur right(C) = 1 − ∑(`,r)∈C |last dur(`) −
average dur(r)|/λ;

• avg dur left(C) = 1−∑(`,r)∈C |average dur(`)−
last dur(r)|/λ;

• avg dur(C) = 1 − ∑
(`,r)∈C |average dur(`) −

average dur(r)|/λ.

These features measure how a fragment may be “mostly
in eights” or “mostly in long notes”, even if it contains
other durations as for ending notes. They handle also
rhythmic patterns: a fragment repeating the pattern “one
quarter, two eights” has an average dur of about 3 + 1/3.

Voice crossings. Finally, two features control the voice
crossing. On one hand, voice crossings do exist, on the
other hand, they are hard to predict. Voice separation algo-
rithms (such as CW and IMS) usually prevent them.

• crossed voices(C) = 1 if C contains a crossing
voice, and 0 otherwise;

• no crossed voices(C) = 1 if C does not contain a
crossing voice, and 0 otherwise.

4. LEARNING COEFFICIENTS THROUGH A
GENETIC ALGORITHM

The selection of features coefficients α = (α1, α2, . . . αN )
was achieved with a genetic algorithm with mutation and
crossover operators [1]. For computation efficiency, a gen-
eration is a set of 60 solutions, each solution being a set of
coefficients totaling 1. The first generation G0 is a set of
solutions drawn with random values. The following gener-
ations are built through mutations and crossovers.

Mutation. Given a generation Gt, each solution is mu-
tated 4 times, giving 4× 60 mutated solutions. Each muta-
tion consists in randomly transferring a part of the value of
a randomly chosen coefficient into another one. A new set
of 40 solutions is selected from both the original solutions
and the mutated solutions, by taking the 30 best solutions
and 10 random other solutions.

Crossover. The solutions in this set are then used to
generate 20 children solutions by taking random couples
of parents. Each parent is taken only once, and a child
solution is the average of the coefficients of the parent so-
lutions. The new generation Gt+1 is formed by the 40 par-
ents and the 20 children solutions.

5. RESULTS

We trained the coefficients weighting the features with the
genetic algorithm on the 24 fugues in the first book of
the Well-Tempered Clavier by J. S. Bach (corpus “wtc-
i”). This gives the set of coefficients GA1 after 36 genera-
tions (the process stabilized after that). We then evaluated
these GA1 coefficients and other connection policies on the
24 fugues of the second book of the Well-Tempered Cla-
vier (corpus “wtc-ii”) and on 17 first movements of classi-
cal and romantic string quartets (Haydn op. 33-1 to 33-6,
op. 54-3, op. 64-4, Mozart K80, K155, K156, K157 and
K387, Beethoven op. 18-2, Brahms op. 51-1 and Schubert
op. 125-1). Our implementation is based on the Python
framework music21 [3], and we worked on .krn files
downloaded from kern.ccarh.org [8]. The explicit
voice separation coming from the spines of these files
forms the ground truth on which the algorithms are trained
and evaluated.

5.1 Learned coefficients

The column GA1 of Table 1 shows the learned coefficients
of the best solution. The high no crossed voices(C) coef-
ficient confirms that trying to predict crossing voices cur-
rently gives many false connections. It may suggest that
such detection should be avoided until specific algorithms
could handle these cases. We draw two other observations:

• The pitch is the most important feature
(the four pitch coefficients totaling 0.271).
However, avg pitch right(C) is higher than
extreme pitch(C) – and summing avg pitch left(C),
avg pitch right(C) and avg pitch(C) gives 0.181,
twice extreme pitch(C). This confirms that using
the pitch range coherence is more reliable than
using the pitch proximity alone;

• The durations are also important features, especially
when one takes the average durations (avg dur(C)
or avg dur right(C), totaling 0.121). Note that the
extreme dur(C) coefficient is very low, confirming
the idea that even if the individual durations change,
rhythmic textures or small-scale patterns are con-
served inside voice fragments.
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Finally, the increase equal(i) feature as suggested by
IMS is high, but, surprisingly, the decrease equal(i) fea-
ture is also high. These two features combined seem to un-
derline that the contig connection is safer when both frag-
ments have the same number of notes. Further experiments
should be made to explore these features.

5.2 Quality of the connection policy

Evaluation metrics. The transition recall (TR-rec) (or com-
pleteness) is the ratio of correctly assigned transitions (pair
of notes in the same voice) over the number of transi-
tions in the ground truth. The transition precision (TR-
prec) (or soundness) is the ratio of correctly assigned tran-
sitions over the number of transitions in the predicted
voices [2,6,11]. The TR-rec and TR-prec metrics are equal
for voice separation algorithms connecting voices through-
out all the piece. Stream segmentation algorithms usu-
ally lead to higher TR-prec values as they predict fewer
transitions. The ground truth and the output of the algo-
rithms can also be considered as an assignation of a label
to every note, enabling to compute the So and Su met-
rics based on normalized entropies H(output|truth) and
H(truth|output). These scores report how an algorithm
may over-segment (So) or under-segment (Su) a piece
[6, 12]. They measure whether the clusters are coherent,
even when streams cluster simultaneous notes. Moreover,
we point out the contig connection correctness (CC), that is
the ratio of correct connections over all connections done.

Results. Table 2 details the evaluation metrics on the train-
ing set and the evaluation sets, both for the GA1 coef-
ficients and for coefficients SimCW and SimIMS simu-
lating the CW and IMS policies, displayed on Table 1.
The metrics reported here may be slightly different from
the results reported in the original CW and IMS imple-
mentations [2, 9]. The goal of our evaluation is to eval-
uate connection policies inside a same implementation.
On all corpora, the GA1 coefficients obtain better TR-
prec/TR-rec/CC results than the SimCW and SimIMS co-
efficients. The GA1 coefficients indeed make better con-
nections (more than 87% of correct connections on the test
corpus “wtc-ii”). The main source of improvement comes
from the new features that consider the average pitches
and/or lengths, as showed by the example on Figure 3.

5.3 Lowering the failures by stopping the connections

The first step of CW, the creation of contigs, is very reli-
able: TR-prec is more than 99% on both fugues corpora
(lines “no connection” in Table 2). Most errors come from
the connection steps. We studied the distribution of these
errors. With the SimIMS coefficients, and even more with
the GA1 coefficients, the first connections are generally
reliable, more errors being done in the last connections
(Figure 4). This confirms that considering more musical
features improves the connections.

By stopping the algorithm with the GA1 coefficients
when 75% of the connections have been done, almost half

Feature GA1 SimCW SimIMS
increase(i) 0.004 0 0

increase one(i) 0.004 0 0
increase equal(i) 0.137 0 0.250

decrease(i) 0.013 0 0
decrease one(i) 0.019 0 0

decrease equal(i) 0.112 0 0
difference nb voices(i) 0.009 0 0

maximal voices(i) 0.026 0.500 0
minimal voices(i) 0.007 0 0.250

maximal sim notes(i) 0.007 0 0
crossed voices(C) 0.009 0 0

no crossed voices(C) 0.248 0.250 0.250
extreme pitch(C) 0.090 0.250 0.250

avg pitch right(C) 0.117 0 0
avg pitch left(C) 0.023 0 0

avg pitch(C) 0.041 0 0
extreme dur(C) 0.007 0 0

avg dur right(C) 0.048 0 0
avg dur left(C) 0.006 0 0

avg dur(C) 0.073 0 0

Table 1. Coefficients weighting the musical features used
to measure the connection quality, with best coefficients
learned on the wtc-i corpus (GA1) and coefficients simu-
lating the connection policy of CW and IMS.

of the bad connections are avoided, giving streams with
a good compromise between precision and consistency
(lines “GA1-75%” in Table 2).

5.4 Other sets of coefficients

To assess reproducibility, we ran the experiment two other
times. The learned coefficients GA1′ and GA1′′ are very
close to GA1 (data not shown) and give comparable re-
sults on the learning corpus “wtc-i” (TR-prec = 97.83%
and 97.81%, instead of 97.84%). We also optimized coef-
ficients to find a worst solution (data not shown). The co-
efficients values crossed voices(C) and minimal voices(i)
stand out. This confirms that predicting crossing voices is
difficult and than small contigs are difficult to connect.

6. CONCLUSION

Voice and stream separation are improved when one opti-
mizes at the same time when and how the voice fragments
should be connected. We explored several features to eval-
uate the quality of these connections on fugues and string
quartets. Taking into account the average pitches and dura-
tions of fragments leads to better connections. The result-
ing algorithm connects voice fragments more reliably than
with the previous contig policies, and especially computes
high-quality connections at the first steps. This work could
be extended by considering more corpora and by evaluat-
ing further melodic or structural analysis on the resulting
voices or streams. The proposed principles apply to contig-
based algorithms but may also be used by other methods
clustering notes into voices or streams.
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Corpus Connection policy CC TR-rec TR-prec So Su

no connection – 86.78% 99.32% 0.98 0.34
GA1-75% 92.61% 93.45% 98.54% 0.91 0.42

wtc-i GA1 89.30% 97.84% 0.72 0.72
(training set) worst 16.93% 85.25% 0.06 0.09

SimCW 81.26% 96.58% 0.65 0.64
SimIMS 80.62% 96.55% 0.68 0.69

wtc-ii

no connection – 86.66% 99.29% 0.98 0.35
GA1-75% 92.54% 92.53% 98.36% 0.91 0.40

GA1 87.50% 97.14% 0.71 0.71
worst 25.06% 84.22% 0.05 0.07

SimCW 83.27% 96.22% 0.69 0.68
SimIMS 81.61% 96.07% 0.69 0.68

string quartets

no connection – 82.61% 97.00% 0.94 0.29
GA1-75% 85.30% 87.06% 94.80% 0.83 0.32

GA1 78.44% 92.59% 0.44 0.44
worst 31.88% 80.59% 0.12 0.13

SimCW 75.99% 92.29% 0.39 0.38
SimIMS 74.53% 91.79% 0.62 0.61

Table 2. Evaluation of the quality of various connection policies. Note that the two first policies (No connection, GA1-75%)
do not try to connect the whole voices: they have very high TR-prec/So metrics, but poorer TR-rec/Su metrics.
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Figure 3. Extract of the fugue
in C major BWV 846 by J.-
S. Bach. (Top.) The con-
nection policy of previous algo-
rithms fails on connection c28
because of the fifth leap be-
tween the D and the G in the
tenor voice. This error leads
to the wrong connection c55 at
a later stage of the algorithm.
(Bottom.) Because the coef-
ficients GA1 take into account
the feature avg pitch(C) and the
related features, the connection
is correct here.

Figure 4. Errors done during the successive connection steps. The lower the curves, the better. Coefficients SimCW (blue):
the error rate is almost constant. Coefficients SimIMS (yellow): the first connections are more reliable. Coefficients
GA1 (green): the first connections are even more reliable, enabling to improve the algorithm by stopping before too much
bad connections happen. The highest number of bad connections for string quartets (compared to fugues) is probably due
to a less regular polyphonic writing, with in particular stylistic differences leading to larger intervals.
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