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ABSTRACT

In this paper, we present a new corpus for research in
computational ethnomusicology and automatic music tran-
scription, consisting of traditional dance tunes from Crete.
This rich dataset includes audio recordings, scores tran-
scribed by ethnomusicologists and aligned to the audio
performances, and meter annotations. A second contri-
bution of this paper is the creation of an automatic music
transcription system able to support the detection of multi-
ple pitches produced by lyra (a bowed string instrument).
Furthermore, the transcription system is able to cope with
deviations from standard tuning, and provides temporally
quantized notes by combining the output of the multi-pitch
detection stage with a state-of-the-art meter tracking al-
gorithm. Experiments carried out for note tracking using
25ms onset tolerance reach 41.1% using information from
the multi-pitch detection stage only, 54.6% when integrat-
ing beat information, and 57.9% when also supporting tun-
ing estimation. The produced meter aligned transcriptions
can be used to generate staff notation, a fact that increases
the value of the system for studies in ethnomusicology.

1. INTRODUCTION

Automatic music transcription (AMT), the process of con-
verting a music recording into notation, has largely focused
on genres of eurogenetic [17] popular and classical mu-
sic and especially on piano repertoire; see [3] for a re-
cent overview. This is reflected in various AMT datasets,
which consist of audio recordings along with a machine
readable reference notation that specifies the time values
of note onsets and offsets. Such datasets include the RWC
database [14], the MAPS dataset [12], and the Bach10
dataset [9]. The reasons for the focus on certain styles
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seem manifold: Some aspects that might play a role are
the cultural background of the AMT engineers, the rela-
tive ease of compiling reference notations for a piano using
MIDI, and the predominant goal of transcription, i.e. the
piano-roll, being closely related to the piano. As a point
of fundamental importance, eurogenetic music lends itself
nicely to the task of transcription, because in most cases
a composition is first notated, and then performed using
this notation. Hence, the notation can be interpreted as the
ground-truth for an AMT system. The attempt to recon-
struct this ground-truth, which is seen as a hidden gener-
ative concept for the performance [6], appears, at least at
first glance, to be a well-defined task.

However, in the field of ethnomusicology, the process
of transcribing a music performance mainly serves the
means to analyse the structure of previously not notated
music [11]. As a first contribution of this paper, we align a
set of such recordings to transcriptions by ethnomusicolo-
gists, this way compiling an evaluation corpus for AMT
that can enable us to monitor the performance of AMT
systems on the music of a specific oral tradition. The mu-
sic consists of Cretan dance tunes that were performed by
Cretan musicians and recorded and transcribed by ethno-
musicologists in the Crinnos project [2] that targeted the
documentation of that specific music idiom. Only a small
subset of the pieces recorded in the Crinnos project were
transcribed, due to the large amount of effort that man-
ual transcription takes. While it is clear that the building
blocks of the tunes are small melodic phrases (see Sec-
tion 2 for more detail), the way these phrases are strung
together is largely improvised in the performance. These
choices are not verbalized by the musicians, and an accu-
rate transcription method will constitute an important tool
to infer the grammar that underlies folk dance tunes in the
area of the Eastern Mediterranean and beyond.

Therefore, as the second contribution of this paper, we
extend an existing transcription algorithm [5] to be able to
cope with tuning deviations and to take into account the
metrical structure of the dance tunes. In Cretan music, as
well as in many other music styles in the world, musicians
tune their instruments according to personal preference. To
the authors’ knowledge, whilst several AMT systems sup-
port the extraction of multiple pitches in a high frequency
resolution (e.g. [9, 13]), no AMT system has yet exploited
that information for estimating the overall tuning level and
to compensate for tuning deviations during the pitch quan-
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tisation step. In addition, for many music styles, especially
when related to dance, a clear metrical organization and
a predictable tempo development enable for synchronisa-
tion between dancers and musicians in performances. For
that reason, we apply a state-of-the-art meter tracking algo-
rithm [15] for tracking beats and measures, and apply this
information in order to achieve a temporal quantisation of
note positions obtained from our AMT system. This way,
we can obtain a transcription with temporal precision that
is clearly increased to that of previously presented systems.
In addition, this step enables us to obtain a visualisation
of the transcription in a staff notation including bar posi-
tions, a perspective that marks an important step beyond
the piano-roll as AMT output.

Our paper is structured as follows; Section 2 provides
some detail about the musical idiom and corpus, and de-
scribes the process that was followed to align transcriptions
with performances on the note level. Section 3 summarizes
the chosen AMT system, and describes the extensions pro-
posed in this paper. We then evaluate the performance of
our systems, and provide illustrative examples in Section 4.
Section 5 concludes the paper.

2. THE SOUSTA CORPUS

2.1 Background and motivation

The recordings that constitute the Sousta corpus presented
in this paper were conducted in 2004 within the Crinnos
project [2] in Rethymnon, Crete, Greece. Within the Crin-
nos project 444 pieces of Cretan music were recorded, and
40 of these performances were transcribed by ethnomusi-
cologists. The transcriptions contain the melody played by
the main melody instrument, as well as the vocal melody if
vocals are present in a piece, and ignore the rhythmic ac-
companiment. Half of the 40 transcriptions regard a spe-
cific dance calledSousta. These transcriptions were cho-
sen for a note-to-note alignment for several reasons.

First, this way we obtain a music corpus that is highly
consistent in terms of musical style, which made a uni-
fied alignment strategy applicable to the recordings. The
Sousta dance is usually notated in2/4 meter, and is charac-
terized by a relatively stable tempo that lies between 110-
130 beats per minute (bpm). The instrumental timbres are
highly consistent, with usually two Cretan lutes playing the
accompaniment, and one Cretan lyra (a pear-shaped fiddle)
playing the main melody. All recordings were performed
in the same studio, but with differing musicians. Apart
from supporting our alignment procedure, the consistency
of the recordings will enable a style comparison between
individual musicians as part of our future work.

The second reason to choose the Sousta tunes lies
with their value for music segmentation approaches. Like
many tunes in the Eastern Mediterranean, the Sousta dance
follows an underlying syntax that has been termed as
parataxis [18]. In parataxis tunes, the building elements
are short melodic phrases that are strung together in appar-
ently arbitrary order without clear conjunctive elements.
These phrases have a length of typically two measures

for the Sousta dance. The 20 transcriptions were anal-
ysed within the Crinnos project and its elementary melodic
phrases were identified by the experts. This way, a cat-
alogue of 337 phrases was compiled that describes the
melodic content of the tunes. Each measure of the corpus
is assigned to a particular phrase. The note-to-note align-
ment that is made available in this paper enables to identify
the phrase boundaries within the recordings, and this way
the corpus can serve for music segmentation experiments.
Such a corpus can form a basis for the development of an
accurate system for syntactic analysis of music styles in
the Eastern Mediterranean and elsewhere.

Such an analysis system, however, needs to be built on
an AMT system that works as accurately as possible, in or-
der to be able to analyse performances for which no man-
ual transcription is available. We take this as a motivation
to use for the first time, to the best of our knowledge, a
set of performance transcriptions as the source for what is
usually called ground-truth in MIR. This way, as ourthird
motivation for choosing this specific style, we contribute to
a larger diversity in available AMT datasets, by providing
access to the aligned data for research purposes. The chal-
lenging aspects for AMT systems are the high density of
notes, the tuning deviations, and the necessary focus on a
bowed string instrument (lyra) within a pitched percussive
accompaniment (lutes).

2.2 Alignment procedure

The first step to obtain a note-to-note alignment is to cor-
rect for transpositions between transcription and perfor-
mance. Four out of the 20 pieces were played either one or
two semitones higher than the transcription implied. Ap-
parently, transcribers preferred to notate the upper empty
string of the lyra as the note A, even if the player tuned the
instrument one or several semitones higher.

As a second step, we conduct a meter tracking to ob-
tain estimations for beat and measure positions, using the
algorithm presented in [15]. The meter tracker was trained
on the meter-annotated Cretan music used in [15], and
then applied to track the meter in the 20 Sousta perfor-
mances (for more details on the tracking algorithm see Sec-
tion 3.4).

After that, the MIDI file obtained from the transcrip-
tion is synthesized, and the algorithm from [16] is used to
obtain an initial alignment of the MIDI file to the recorded
performance. The timing of the measures is extracted from
the aligned MIDI using the Matlab MIDI Toolbox [10].
Each of the estimated measures in the MIDI is then cor-
rected to take the time value of the closest beat as obtained
from the meter tracker from the recording. This step was
included to compensate for timing inaccuracies of the auto-
matic alignment. The obtained downbeats were manually
corrected using Sonic Visualizer1 . The output of this pro-
cess is the exact timing of all measures that are notated in
the transcription.

These manually corrected measure positions are then
used as a source for the exact timing of the pre-aligned

1 http://sonicvisualiser.org/
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MIDI, by determining an alignment curve that corrects all
note onsets accordingly. After that, also the note dura-
tions are edited to fit the notated length in seconds (e.g.
a quarter note at 120 bpm should last 0.5 s). The result
was again manually checked for inaccuracies. In addition,
vocal sections were manually annotated. During vocal sec-
tions, the main instrument usually stops, and the transcrip-
tion of musical phrases is of interest only for the instru-
mental sections in a recording. To the authors’ knowledge,
this measure-informed process is a novel and promising
way to generate note-level transcriptions, as opposed to
performing manual note corrections on an automatically
aligned MIDI file, or by relying on an expert musician to
follow and perform the recorded music in real-time [20].

The obtained corpus contains 35357 aligned notes in
4455 measures, distributed along the 20 recordings with
a total length of 71m16s2 , 84% being instrumental. The
average polyphony (on voiced frames only) is 1.08, and the
average note duration is 108ms.

3. BEAT-INFORMED TRANSCRIPTION

This section describes the AMT system developed to tran-
scribe the traditional dance corpus of Section 2. The main
contributions of the proposed system are: (i) Supporting
the transcription of lyra, a bowed string instrument that is
present in all recordings of the corpus, by supplying the
system with lyra templates; (ii) Estimating the overall tun-
ing level and compensating for deviations from 440Hz tun-
ing (cf. Section 1 for a discussion on related work for tun-
ing estimation in AMT systems); (iii) Incorporating me-
ter and beat information (from either manual meter anno-
tations or estimations from a state-of-the-art meter track-
ing system [15]), resulting in a temporally quantised music
transcription.

As a basis for the proposed work, the AMT system
of [4] is adapted, which was originally aimed for tran-
scribing 12-tone equal tempered music and supported Eu-
rogenetic orchestral instruments. The system is based on
probabilistic latent component analysis (PLCA), aspectro-
gram factorization method that decomposes an input time-
frequency representation into a series of note templates and
note activations. The system of [4] also supports the ex-
traction of tuning information per transcribed note, which
is used in this paper to estimate the overall tuning level.
A diagram for the proposed system can be seen in Fig. 1,
with all system components being presented in the follow-
ing subsections.

3.1 Time-Frequency Representation

As input time-frequency representation for the transcrip-
tion system, the variable-Q transform (VQT) spectrogram
is used [19], denotedVω,t (ω is the log-frequency index
andt is the time index). Here, the interpolated VQT spec-
trogram has a frequency resolution of 60 bins/octave (i.e.
20 cent resolution), using a variable-Q parameterγ = 30,
with a minimum frequency of 36.7 Hz (i.e. at D1). As

2 For a list of recordings see www.rhythmos.org/ISMIR2016Sousta.html

with the constant-Q transform (CQT), this VQT represen-
tation allows for pitch changes to be represented by shifts
across the log-frequency axis, whilst offering an increased
temporal resolution in lower frequencies compared to the
CQT.

3.2 Multi-pitch Detection

The multi-pitch detection model takes as input the VQT
spectrogram of an audio recording and returns an initial
estimate of note events. Here, we adapt the PLCA-based
spectrogram factorization model of [4] for transcribing
music produced by lyra. The model approximatesVω,t as a
bivariate probability distributionP (ω, t), which is in turn
decomposed into a series of probability distributions, de-
noting note templates, pitch activations, tuning deviations,
and instrument/source contributions.

The model is formulated as:

P (ω, t) =

P (t)
∑

q,p,f,s

P (ω|q, p, f, s)Pt(f |p)Pt(s|p)Pt(p)Pt(q|p)

(1)

whereq denotes the sound state (e.g. attack, sustain parts
of a note),p denotes pitch,s denotes instrument source,
andf denotes log-frequency shifting with respect to 12-
tone equal temperament (12-TET) at a tuning of 440 Hz
for note A4. In (1),P (t) is the energy of the VQT spectro-
gram, which is known.P (ω|q, p, f, s) is a 5-dimensional
tensor that represents the pre-extracted spectral templates
of lyra notes, per sound stateq, pitch p and instrument
models, which are also pre-shifted across log-frequency
f (cf. Section 4.1 on the extraction of lyra templates).
Pt(f |p) is the time-varying log-frequency shifting distri-
bution per pitch (used to estimate tuning deviations per
produced note),Pt(s|p) is the source contribution per pitch
over time, Pt(q|p) is the time-varying sound state acti-
vation per pitch, and finallyPt(p) is the pitch activation,
i.e. the resulting multi-pitch detection output. In the
proposed model,p ∈ {1 . . . , 88}, with p = 1 denot-
ing A0 andf ∈ {1, . . . , 5}, which respectively denote
{−40, −20, 0, 20, 40} cent deviation from ideal tuning us-
ing 12-TET.

The unknown model parameters (Pt(f |p), Pt(s|p),
Pt(p), Pt(q|p)) are iteratively estimated using the
expectation-maximization (EM) algorithm [8], with the
update rules described in [4]. With 30 iterations set in the
system, the runtime for multi-pitch detection is approxi-
mately 3×real-time using a Sony VAIO S15 laptop. The
output of the model isP (p, t) = P (t)Pt(p), which repre-
sents pitch activation probability in semitone scale.

3.3 Tuning Estimation - Postprocessing

The output of the multi-pitch detection model,P (p, t), is
non-binary and needs to be converted into a list of note
events or a MIDI file. Firstly, in order to compensate for
any tuning deviations from A4=440 Hz, a tuning estima-
tion step is proposed, utilising information from the pitch
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Figure 1: Diagram for the proposed system.

shifting parameterPt(f |p). The tuning probability vector
is computed as:

P (f) =
∑

p,t

Pt(f |p)Pt(p)P (t). (2)

P (f) provides an estimate on tuning deviations from
440 Hz tuning, with the variousf values corresponding
to {−40, −20, 0, 20, 40} cent deviation. The final tuning
estimate is given byargmaxf P (f). Then, a 20 cent reso-
lution time-pitch representation is computed:

P (f ′, t) = [P (f, 1, t) · · · P (f, 88, t)] (3)

where P (f, p, t) = Pt(f |p)Pt(p)P (t), and f ′ =
{1, . . . , 88∗5} denotes pitch values between 1 and 88 with
20 cent resolution. The time-pitch representation is subse-
quently shifted towards 440 Hz tuning by reassigning the
indexf ′ = f ′ + argmaxf P (f) − 3 (sincef = 3 repre-
sents 0 cent tuning deviation). Then, a tuning-compensated
pitch activationP (p, t) is re-computed fromP (f ′, t):

P (p, t) =

5p∑

f ′=5p−4

P (f ′, t), ∀p ∈ {1, . . . , 88}. (4)

Following tuning compensation, thresholding is performed
onP (p, t), followed by a process for removing note events
with a duration less than 40 ms. This results in a list of
note events, denoted by onset, offset, and pitch, denoted
nmatm(on, off , p), with m ∈ {1, . . . , M} denoting the
note index, withon and off being the onset and offset
times, respectively.

3.4 Meter Tracking & Quantisation

Since most dance tunes have an underlying stable meter
and a relatively predictable tempo that enables dancers to
synchronize, a quantisation of the estimated notes onto a
tight metrical grid is likely to improve transcription perfor-
mance. In addition, the notes in the obtained transcription
are assigned positions within the meter, and obtain quan-
tised note durations, which enables for an immediate visu-
alisation as staff notation including a time signature.

In this paper, beat and measure positions for a recording
are computed using the Bayesian meter tracker presented
in [15]. Given a series of observations/featuresyk, with
k ∈ {1, ..., K}, computed from a music signal, a set of
hidden variablesxk is estimated. The hidden variables de-
scribe at each analysis framek the positionΦk within a
measure, and the tempo in positions per frame (Φ̇k). The

goal is to estimate the hidden state sequence that maxi-
mizes the posterior (MAP) probabilityP (x1:K |y1:K). If
we express the temporal dynamics as a Hidden Markov
Model (HMM), the posterior is proportional to

P (x1:K |y1:K) ∝ P (x1)

K∏

k=2

P (xk|xk−1)P (yk|xk) (5)

In (5), P (x1) is the initial state distribution,
P (xk|xk−1) is thetransition model, andP (yk|xk) is the
observation model. When discretising the hidden variable
xk = [Φk, Φ̇k], the inference in this model can be per-
formed using the Viterbi algorithm. As in [15], a uniform
initial state distributionP (x1) was chosen. The transition
model factorizes into two components according to

P (xk|xk−1) = P (Φk|Φk−1, Φ̇k−1)P (Φ̇k|Φ̇k−1) (6)

with the two components describing the transitions of posi-
tion and tempo states, respectively. The position transition
model increments fromΦk−1 toΦk deterministically using
the tempoΦ̇k−1, starting from a value of 1 (at the begin-
ning of a metrical cycle) to a value of 800. The tempo tran-
sition model allows for tempo transitions to the adjacent
tempo states, allowing for gradual tempo changes. The ob-
servation modelP (yk|xk) divides the2/4-bars of meter-
annotated Sousta tunes used in [15] into 32 discrete bins.
Spectral-flux features are assigned to one of these metrical
bins, and parameters of a Gaussian Mixture Model (GMM)
are determined. The computation follows exactly the pro-
cedure described in [15], which lead to an almost perfect
beat tracking for the Cretan tunes.

In order to quantise the detected note eventsnmatm

with respect to the estimated beat positions, firstly a met-
rical grid is created from the beat positions (beatn, n ∈
{1, . . . , N}). The metrical grid times are:

gridD(n−2)+d+1 = beatn−1 + (d/D)(beatn − beatn−1)
(7)

which are computed forn = 2, . . . , N . In (7), D is the
beat subdivision factor (D = 4, 8 corresponds to 16th and
32nd note subdivisions, respectively) andd = {0, . . . , D−
1}. Then, the beat-quantised transcription is produced by
changing the onset time for each detected notenmatm to
the closest time instant computed from (7).

4. EXPERIMENTS

4.1 Training

Spectral templates for lyra are extracted from 20 short
segments of solo lyra recordings, taken from the Crinnos
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project [2] (disjoint from the recordings in the corpus de-
scribed in Section 2). These are used asP (ω|q, p, f, s)
in the model of (1). The recordings are partially anno-
tated, identifying non-overlapping pitches. Then, for each
recording the VQT spectrogram is computed as in Section
3.1 and spectral templates for each note are extracted using
standard PLCA, whilst keeping the pitch activation matrix
fixed to the reference pitch annotations. The templates are
pre-shifted across log-frequency to account for tuning de-
viations, and templates for missing notes are created by
shifting the extracted templates across the log-frequency
axis. The resulting note range for the training templates is
B3-F5.

4.2 Metrics

For assessing the performance of the proposed system in
terms of multi-pitch detection, we utilise the onset-based
metric used in the MIREX note tracking evaluations [1].
Here, a note event is assumed to be correct if its pitch cor-
responds to the ground truth pitch and its onset is within a
±25 ms range of the ground truth onset. This is in contrast
with the±50 ms onset tolerance setting used in MIREX,
since the current corpus has fast tempo with short note du-
rations. Using the above rule, the precision (P), recall (R),
and F-measure (F) metrics are defined:

P =
Ntp

Nsys
, R =

Ntp

Nref
, F =

2 · R · P
R + P (8)

where Ntp is the number of correctly detected pitches,
Nsys is the number of detected pitches, andNref is the
number of ground truth pitches. The above metrics are
computed only for the recording regions that do not con-
tain any vocal parts (a comparative experiment is done in
Section 4.3).

4.3 Results

Using the evaluation metrics of Section 4.2, average results
on the corpus described in Section 2 are presented in Table
1. Various configurations for the proposed system are used
to evaluate the performance of each system component.
Configuration 1 refers to simply using the output of the
multi-pitch detection method from Section 3.2. Configura-
tion 2 involves multi-pitch detection plus the proposed tun-
ing estimation method from Section 3.3. Configuration 3
refers to multi-pitch detection combined with meter track-
ing from Section 3.4, thus producing a beat-aligned note
output. Configuration 4 combines multi-pitch detection,
tuning estimation, and meter tracking. Finally, Configura-
tion 5 is an oracle version of Configuration 4, with the au-
tomatically estimated beats being replaced by the manually
annotated measure positions, obtained as described in Sec-
tion 2.2. In all configurations that utilise beat information
the beat subdivision factor used isD = 4 (corresponding
to 16th notes).

As can be seen from Table 1, when integrating tun-
ing estimation the system performance improves by +2.2%
in terms of F-measure. Likewise, by incorporating me-
ter tracking, system performance improves by +13.5%,

System F P R
Configuration 1 41.12% 45.33% 37.79%
Configuration 2 43.37% 48.12% 39.64%
Configuration 3 54.61% 66.38% 46.53%
Configuration 4 57.92% 70.71% 49.21%
Configuration 5 58.25% 71.14% 49.47%

Table 1: Average multi-pitch detection results using the
corpus of Section 2, using various system configurations
explained in Section 4.3.

whereas when integrating both tuning and meter informa-
tion the overall improvement is at +16.8%. Finally, us-
ing the reference measure annotations (Configuration 5)
leads to an improvement of only +0.3% over the automatic
beat extraction, indicating the reliability of meter tracking.
Indeed, comparing the manually corrected measure anno-
tations with those obtained from the automatic tracking,
we obtain an F-measure [7] of 94.5%. This is an even
higher meter tracking performance than observed on the
Cretan recordings in [15], possibly caused by the fact that
the recordings used in this paper were all conducted in the
studio, and all tunes relate to the same dance. A discrep-
ancy is also observed between average precision and aver-
age recall; the lower recall is mostly attributed to repeated
notes in the ground truth, which are merged into single note
events in the output transcription. The aforementioned re-
sults are approximately at the level of the state-of-the-art
for AMT, when using other datasets [1]; results for indi-
vidual recordings range fromF = 70.9% to 34.2% (the
latter for a particularly idiosyncratic recording).

In Figure 2, an example of transferring a beat-quantised
transcription obtained with Configuration 4 (F = 56.17%
for this piece) to staff notation is depicted, along with the
manually transcribed reference notation. Spurious differ-
ences occur (e.g. added note G in the first measure) and
the style of notation seems artificial. However, the re-
semblance between melodic contour in reference and auto-
matic transcription is apparent. According to the analysis
in the Crinnos project, the phrase depicted in Figure 3 is
repeated with slight variations four times in the eight bars
of this example, and comparing the phrase with each two
consecutive bars in the transcriptions, this structure canbe
recognized. Figure 4 depicts the VQT and the pitch activa-
tions for the same eight bars. Further examples, all tran-
scriptions obtained with Configuration 4 (MIDI and au-
dio), and the reference annotations will be available on the
paper’s website3 .

A comparison with a state-of-the-art AMT method is
also made, employing the system of [21], which is based
on non-negative matrix factorization. The aforementioned
system decomposes a pitched sound as the sum of nar-
rowband spectra. Results using multi-pitch detection only
reach F = 26.08% (in contrast with41.12% for the
proposed system). By integrating multi-pitch detection
with beat information, the performance of [21] reaches

3 www.rhythmos.org/ISMIR2016Sousta.html
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(a) Automatic transcription

(b) Manual transcription, source [2]

Figure 2: Four repetitions of a two-bar phrase.

Figure 3: Sousta phrase that is repeated (in slight varia-
tions) in Figure 2 four times, source [2].

F = 35.94% (as compared with54.61% for the proposed
method). It should be noted that tuning estimation cannot
be achieved using the aforementioned system, as the output
is quantised on the MIDI scale.

Experiments are also carried out using a larger onset
tolerance for the metrics of Section 4.2, set to 50 ms (as
in the MIREX evaluations [1]). When evaluating Config-
uration 4,F = 60.74%, while using the method of [21]
F = 38.17%. The relatively small difference between
using 25 ms or 50 ms tolerance is attributed to the fact
that the employed corpus contains several short repeated
notes; since the utilised evaluation metrics consider du-
plicate notes in the same temporal region as false alarms,
a larger tolerance window penalises the systems’ perfor-
mance.

As mentioned in Section 4.2, the results presented in
Table 1 are computed only for instrumental regions of the
corpus, thus excluding any vocal parts. When also tran-
scribing vocal parts, performance using Configuration 4
drops by 1.9% (F = 55.84%), due to the fact that the
training data do not contain vocal templates; however, the
transcription of vocal music is not in the scope of this work.
Finally, experiments were carried out using a beat subdivi-
sion factorD = 8, which corresponds to 32nd notes. This
results inF = 48.2%, which indicates that the onsets for
some of the detected notes were placed in incorrect tempo-
ral positions on the metrical grid.

t (sec)

p

(b)

ω
(a)

40 41 42 43 44 45 46 47

40 41 42 43 44 45 46 47

30

40

50

60

70

100

200

300

400

Figure 4: (a) The VQT spectrogram for the section tran-
scribed in Figure 2. (b) The corresponding pitch activation
P (p, t).

5. DISCUSSION

In this paper, we presented a corpus for evaluation of AMT
systems that is based on performance transcriptions man-
ually compiled by experts in ethnomusicology. We then
proposed an AMT system that can cope with tuning devia-
tions, and we improve the performance of the AMT system
by quantising its output on a metrical grid that was esti-
mated using a state of the art meter tracker. Apart from the
performance improvement, this quantisation enables for
a straightforward generation of staff notation. For future
work, we intend to improve the transcription by includ-
ing instrument templates for the accompaniment instru-
ments, which will enable for a better estimation of the main
melody. Furthermore, we plan to conduct a user study with
ethnomusicologists, who will evaluate the performance of
our AMT system.
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[19] C. Scḧorkhuber, A. Klapuri, N. Holighaus, and
M. Dörfler. A Matlab toolbox for efficient perfect
reconstruction time-frequency transforms with log-
frequency resolution. InAES 53rd Conference on Se-
mantic Audio, page 8 pages, London, UK, January
2014.

[20] L. Su and Y.-H. Yang. Escaping from the abyss of man-
ual annotation: New methodology of building poly-
phonic datasets for automatic music transcription. In
Int. Symp. Computer Music Multidisciplinary Research
(CMMR), June 2015.

[21] E. Vincent, N. Bertin, and R. Badeau. Adaptive har-
monic spectral decomposition for multiple pitch esti-
mation.IEEE Transactions on Audio, Speech, and Lan-
guage Processing, 18(3):528–537, March 2010.

Proceedings of the 17th ISMIR Conference, New York City, USA, August 7-11, 2016 537


