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ABSTRACT

Tempo estimation is a common task within the music infor-
mation retrieval community, but existing works are rarely
evaluated with datasets of music loops and the algorithms
are not tailored to this particular type of content. In addi-
tion to this, existing works on tempo estimation do not put
an emphasis on providing a confidence value that indicates
how reliable their tempo estimations are. In current mu-
sic creation contexts, it is common for users to search for
and use loops shared in online repositories. These loops
are typically not produced by professionals and lack anno-
tations. Hence, the existence of reliable tempo estimation
algorithms becomes necessary to enhance the reusability
of loops shared in such repositories. In this paper, we test
six existing tempo estimation algorithms against four mu-
sic loop datasets containing more than 35k loops. We also
propose a simple and computationally cheap confidence
measure that can be applied to any existing algorithm to
estimate the reliability of their tempo predictions when ap-
plied to music loops. We analyse the accuracy of the algo-
rithms in combination with our proposed confidence mea-
sure, and see that we can significantly improve the algo-
rithms’ performance when only considering music loops
with high estimated confidence.

1. INTRODUCTION

Tempo estimation is a topic that has received consider-
able attention within the music information retrieval (MIR)
community and has had a dedicated task in the Music In-
formation Retrieval Evaluation eXchange (MIREX) since
its first edition in 2005. Tempo estimation consists in the
automatic determination of the “rate of musical beats in
time” [10], that is to say, in the identification of the rate
at which periodicities occur in the audio signal that con-
vey a rhythmic sensation. Tempo is typically expressed in
beats per minute (BPM), and is a fundamental property to
characterise rhythm in music [13]. Applications of tempo
estimation include, just to name a few, music recommen-
dation, music remixing, music browsing, and beat-aware
audio analysis and effects.
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Our particular research is aimed at automatically anno-
tating user provided music loops hosted in online sound
sharing sites to enhance their potential reusability in music
creation contexts. We can define music loops as short mu-
sic fragments which can be repeated seamlessly to produce
an “endless” stream of music. In this context, BPM is an
important music property to annotate. The kind of music
loops we are targeting can include noisy and low quality
content, typically not created by professionals. This may
increase the difficulty of the tempo estimation task. Tak-
ing that into consideration, it is particularly relevant for
us to not only estimate the tempo of music loops, but to
also quantify how reliable an estimation is (i.e., to pro-
vide a confidence measure). Except for the works de-
scribed in [10, 14] (see below), tempo estimation has been
rarely evaluated with datasets of music loops, and we are
not aware of specific works describing algorithms that are
specifically tailored to this particular case.

In this paper we evaluate the accuracy of six state of
the art tempo estimation algorithms when used to annotate
four different music loop datasets, and propose a simple
and computationally cheap confidence measure that can
be used in combination with any of the existing methods.
The confidence measure we propose makes the assump-
tion that the audio signal has a steady tempo thorough its
whole duration. While this assumption can be safely made
in the case of music loops, it does not necessarily hold for
other types of music content such as music pieces. Hence,
the applicability of the confidence measure we propose is
restricted to music loops. Using our confidence measure
in combination with existing tempo estimation algorithms,
we can automatically annotate big datasets of music loops
and reach accuracies above 90% when only considering
content with high BPM estimation confidence. Such reli-
able annotations can allow music production systems to,
for example, present relevant loops to users according to
the BPM of a music composition, not only by showing
loops with the same BPM but also by automatically trans-
forming loops to match a target BPM. This effectively in-
creases the reusability of user provided music loops in real-
world music creation contexts.

The rest of the paper is organised as follows. In Sec. 2
we give a quick overview of related work about tempo es-
timation. In Sec. 3 we describe the confidence measure
that we propose. Sections 4 and 5 describe the evaluation
methodology and show the results of our work, respec-
tively. We end this paper with some conclusions in Sec. 6.
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In the interest of research reproducibility, the source code
and one of the datasets used in this paper have been made
available online in a public source code repository ! .

2. RELATED WORK

A significant number of works within the MIR research
field have been focused on the task of tempo estimation.
In general, tempo estimation algorithms are based on de-
tecting onsets in an audio signal, either as a continuous
function [3, 14, 15] or as discrete events in time [5]. Then,
a dominant period is extracted from the onsets either by
analysing inter-onset intervals, using autocorrelation [11]
or resonating filters [12]. Some approaches perform more
complex operations such as analysing periodicities in dif-
ferent frequency bands [8, 19], performing source separa-
tion [6,9], or using neural networks to learn features to use
instead of usual onset information [1].

While comparative studies of tempo estimation algo-
rithms have been carried out in the past [10,21], we are
not aware of any study solely devoted to the evaluation of
tempo estimation algorithms for music loops. One of the
typical datasets that some of the existing tempo estima-
tion works use for evaluation is the ISMIR 2004 dataset re-
leased for the tempo induction contest of that year? . This
dataset is divided into three subsets, one of them com-
posed of 2k audio loops. Gouyon et. al. [10] published
the evaluation results for the contest considering the dif-
ferent subsets of the dataset, but no significant differences
are reported regarding the accuracies of the tempo esti-
mation algorithms with the loops subset compared to the
other subsets. To the best of our knowledge, the only other
work that uses the loops subset of the ISMIR 2004 dataset
and reports its accuracy separated form other datasets is by
Oliveira et. al. [14]. The authors report lower estimation
accuracies when evaluating with the loops dataset and at-
tribute this to the fact that loops are typically shorter than
the other audio signals (in many cases shorter than 5 sec-
onds).

Surprisingly enough, there has not been much research
on confidence measures for tempo estimation algorithms.
Except for the work by Zapata et al. [22] in which a con-
fidence measure that can be used for tempo estimation is
described (see below), we are not aware of other works di-
rectly targeted at this issue. Among these few, Grosche
and Miiller [11] describe a confidence measure for their
tempo estimation algorithm based on the amplitude of a
predominant local pulse curve. By analysing tempo esti-
mation accuracy and disregarding the regions of the analy-
sis with bad confidence, the overall accuracy significantly
increases. Alternatively, Percival and Tzanetakis [15] sug-
gest that beat strength [18] can be used to derive confidence
for tempo candidates, but no further experiments are car-
ried out to asses its impact on the accuracy of tempo esti-
mation. Finally, a very recent work by Quinton et. al. [16]
proposes the use of rhythmogram entropy as a measure of
reliability for a number of rhythm features, and report a

! https://github.com/ffont/ismir2016
2 http://mtg.upf.edu/ismir2004/contest/tempoContest

statistical correlation between measured entropy and the
resulting accuracies for different tasks.

3. CONFIDENCE MEASURE

Assuming that we obtain a BPM estimate for a given au-
dio signal, the confidence measure that we propose is based
on comparing the duration of the whole audio signal with a
multiple of the duration of a single beat according to the es-
timated BPM. If the actual duration of the signal is close to
a multiple of the duration of a single beat, we hypothesise
that the BPM estimation is reliable. The first thing we do to
compute the confidence measure is to round the estimated
tempo value to its nearest integer. The reasoning behind
this is that it is very unlikely that loops are created with
less than 1 BPM resolution tempo (see Sec. 4.1), and thus
we consider the best BPM estimate of a tempo estimation
algorithm to be its nearest integer. Given the sample rate
SR of an audio signal and its estimated tempo BP M€, we
can estimate the duration (or length) of an individual beat
in number of samples I° as

j_ 60-SR
~ BPM*

Then, potential durations for the audio signal can be com-
puted as multiples of the individual beat duration, L[n] =
n -1, where n € Z*. In our computation, we restrict n
to the range 1 < m < 128. This is decided so that the
range can include loops that last from only 1 beat to 128
beats, which would correspond to a maximum of 32 bars
in 4/4 meter. In practice, what we need here is a number
big enough such that we won’t find loops longer than it.
Given L, what we need to see at this point is if any of its
elements closely matches the actual length of the original
audio signal. To do that, we take the actual length of the
audio signal [* (in number of samples), compare it with all
elements of L and keep the minimum difference found:

Al = min{|L[n] — 1] : n < 128}.

A value of Al near 0 means that there is a close match
between one of the potential lengths and the actual length
of the audio signal. Having computed Al, we finally define
our confidence measure as

if Al > A

. b
Al otherwise

confidence(L,1*) = {O
)

where A is a parameter set to half the duration of a single
beat (A\ = 0.5 - [%). In this way, if I exactly matches one
of the multiples of 1°, the confidence will be 1. If Al is
as long as half the duration between beats, the confidence
will be 0 (see Fig. 1, top).

The reasoning behind this simple confidence measure is
that it is very unlikely that, only by chance, an audio sig-
nal has a duration which closely matches a multiple of the
beat duration for a given estimated BPM. This means that
we assume that there is a relation between the duration of
the signal and its BPM, and therefore our proposed confi-
dence will fail if the audio signal contains silence (either at
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Figure 1. Visualisation of confidence computation output according to BPM estimation and signal duration (green curves).
The top figure shows a loop whose annotated tempo is 140 BPM but the predicted tempo is 119 BPM. The duration of the
signal [* does not closely match any multiple of I® (dashed vertical lines), and the output confidence is 0.59 (i.e., 1 — %).
The figure at the bottom shows a loop that contains silence at the beginning and at the end, and for which tempo has
been correctly estimated as being 91 BPM. The yellow curve represents its envelope and the vertical dashed red lines the
estimated effective start and end points. Note that [ closely matches a multiple of 1°, resulting in a confidence of 0.97. The
output confidence computed with [¢, [§ and [ produces lower values.

the beginning or at the end) which is not part of the loop
itself (i.e., the loop is not accurately cut). To account for
this potential problem, we estimate the duration that the
audio signal would have if we removed silence at the be-
ginning, at the end, or both at the beginning and at the end.
We take the envelope of the original audio® and consider
the effective starting point of the loop as being the point in
time ¢s where the envelope amplitude raises above 5% of
the maximum. Similarly, we consider the effective end ¢,
at the last point where the envelope goes below the 5% of
the maximum amplitude (or at the end of the audio signal if
envelope is still above 5%). Taking t, ., and [® (the orig-
inal signal length), we can then compute three alternative
estimates for the duration of the loop (I§, {{ and [3) by i)
disregarding silence at the beginning (I§ = [* —1), ii) dis-
regarding silence at the end (I{ = ¢.), and iii) disregarding
silence both at the beginning and at the end (1§ = t. — ¢5).
Then, we repeat the previously described confidence com-
putation with the three extra duration estimates [, [{ and
1$. Note that these will produce meaningful results in cases
where the original loop contains silence which is not rele-
vant from a musical point of view, but they will not result in
meaningful confidence values if the loop contains silence
at the beginning or at the end which is in fact part of the
loop (i.e., which is needed for it seamless repetition). Our
final confidence value is taken as the maximum confidence
obtained when using any of [, [§, [{ and [§ estimated sig-
nal durations (see Fig. 1, bottom).

Because the confidence measure that we propose only
relies on a BPM estimate and the duration of the audio sig-
nal, it can be used in combination with any existing tempo
estimation algorithm. Also, it is computationally cheap to
compute as the most complex operation it requires is the
envelope computation. However, this confidence measure

3 We use the Envelope algorithm from the open-source audio analysis
library Essentia [2], which applies a non-symmetric lowpass filter and
rectifies the signal.

should not be applied to content other than music loops as
it only produces meaningful results under the assumption
that tempo is completely steady across the whole signal.

4. EVALUATION
4.1 Datasets

Our evaluation is conducted using 4 different datasets col-
lected from different sources and containing a total of more
than 35k loops. Table 1 shows basic statistics of each
dataset. We now briefly describe each of the datasets:

e FSL4: This dataset contains user-contributed loops
uploaded to Freesound [7]. It has been built in-
house by searching Freesound for sounds with the
query terms loop and bpm, and then automatically
parsing the returned sound filenames, tags and tex-
tual descriptions to identify tempo annotations made
by users. For example, a sound containing the tag
120bpm is considered to have a ground truth of 120
BPM. Detailed instructions on how this dataset was
created and on how can be reproduced are found in
the source code repository (see Sec. 1).

e APPL: This dataset is composed of the audio loops
bundled in Apple’s Logic Pro* music production
software. We parsed the metadata embedded in the
audio files using source code available in a public
repository >, and extracted in this way tempo anno-
tations for all the loops.

e MIXL: This dataset contains all the loops bundled
with Acoustica’s Mixcraft 7 music production soft-
ware 8. Tempo annotations are provided in its loop

4 http://apple.com/logic-pro
3 http://github.com/jhorology/apple-loops-meta-reader
6 http://acoustica.com/mixcraft
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Dataset N instances Total duration Mean loop duration Duration range Tempo range Source

FSL4 3,949 8h 22m 7.63s 0.15s - 30.00s 32-300 Freesound
APPL 4,611 %h 34m 7.47s 1.32s - 40.05s 53-140 Logic Pro
MIXL 5,451 14h 11m 9.37s 0.32s - 110.77s 55-220 Mixcraft 7
LOOP 21,226 50h 30m 8.57s 0.26s - 129.02s 40 - 300 Looperman

Table 1. Basic statistics about the datasets used for evaluation. Additional information and plots can be found in the paper’s

source code repository (see Sec. 1).

browser and can be easily exported into a machine-
readable format.

e LOOP: This dataset is composed of loops down-
loaded from Looperman’, an online loop sharing
community. It was previously used for research pur-
poses in [17]. Tempo annotations are available as
metadata provided by the site.

Because of the nature of how the datasets were col-
lected, we found that some of the loops do not have a BPM
annotation that we can use as ground truth or have a BPM
annotation which is outside what could be intuitively con-
sidered a reasonable tempo range. To avoid inconsistencies
with the annotations, we clean the datasets by removing
instances with no BPM annotation or with a BPM anno-
tation outside a range of [25,300]. Interestingly, we see
that all the loops in our datasets are annotated with inte-
ger tempo values, meaning that it is not common for music
loops to be produced with tempo values with less than 1
BPM resolution. For analysis purposes, all audio content
from the dataset is converted to linear PCM mono signals
with 44100 Hz sampling frequency and 16 bit resolution.

4.2 Tempo estimation algorithms

In our evaluation we compare six existing tempo estima-
tion algorithms. These have been chosen based on their
availability and to represent different approaches to the
tempo estimation task. We now briefly describe each of
the algorithms, further details on how the algorithms work
can be found in corresponding papers.

o Gkiokas12: Gkiokas et. al. [9] propose a tempo
estimation algorithm based on the separation of the
audio signal into its percussive and harmonic com-
ponents. Periodicity analysis is carried out by con-
volving extracted features (filterbank energies for
the percussive component and chroma features for
the harmonic component) with a bank of resonators.
Output tempo value is computed by applying heuris-
tics based on metrical relations knowledge (meter,
tactus, tatum) to the periodicity vector. We use a
Matlab implementation of the algorithm kindly pro-
vided to us by the authors.

e Degaral2: Degara et. al. [4] describe a probabilis-
tic approach for beat tracking based on inter-onset-
interval times and a salience measure for individual

7 http://looperman.com

beat estimates. This method builds from previous
probabilistic beat tracking methods such as Klapuri
et. al. [12]. We use the implementation provided in
Essentia, where final estimated tempo is given based
on the mean of estimated beat intervals (see Rhyth-
mExtractor2013 algorithm 8 ).

Zapatal4: Zapata et. al. [20] propose a beat track-
ing algorithm which estimates beat positions based
on computing the agreement of alternative outputs of
a single model for beat tracking using different sets
of input features (i.e., using a number of onset de-
tection functions based on different audio features).
Again, we use the implementation provided in Es-
sentia, which outputs a single BPM estimate based
on estimated beat intervals.

Percivall4: Percival and Tzanetakis [15] describe a
tempo estimation algorithm optimised for low com-
putational complexity that combines several ideas
from existing tempo estimation algorithms and sim-
plifies their steps. The algorithm computes an onset
strength function based on filtered spectral flux from
which tempo lag candidates are estimated using au-
tocorrelation. The most prominent tempo lag is se-
lected and a simple decision tree algorithm is used
to chose the octave of the final BPM output. We use
a Python implementation of the algorithm provided
by the authors in their original paper® .

Bock15: Bock et. al. [1] propose a novel tempo es-
timation algorithm based on a recurrent neural net-
work that learn an intermediate beat-level represen-
tation of the audio signal which is then feed to a bank
of resonating comb filters to estimate the dominant
tempo. This algorithm got the highest score in IS-
MIR 2015 Audio Tempo Estimation task. An im-
plementation by the authors is included in the open-
source Madmom audio signal processing library 1 .

RekBox: We also include an algorithm from a com-
mercial DJ software, Rekordbox ! . Details on how
the algorithm works are not revealed, but a freely
downloadable application is provided that can anal-
yse a music collection and export the results in a
machine-readable format.

8 http://essentia.upf.edu/documentation/algorithms_reference.html
9 http://opihi.cs.uvic.ca/tempo

10 hitp://github.com/CPJKU/madmom

W http://rekordbox.com
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Figure 2. Overall accuracy for the six tempo estimation algorithms tested against the four datasets.

4.3 Methodology

For testing the above algorithms against the four collected
datasets we follow standard practice and adopt the method-
ology described by Gouyon et al. [10]. In addition to the
standard Accuracy 1 and Accuracy 2 measures 12, we add
an extra measure that we call Accuracy Ie and that repre-
sents the percentage of instances whose estimated BPM is
exactly the same as the ground truth after rounding the esti-
mated BPM to the nearest integer. Accuracy le is therefore
more strict than Accuracy 1. The reason why we added this
extra accuracy measure is that, imagining a music creation
context where loops can be queried in a database, it is of
special relevance to get returned instances whose BPM ex-
actly matches that specified as target.

Besides the overall accuracy measurements, we are
also interested in observing how accuracy varies accord-
ing to the confidence values that we estimate (Sec. 3). We
can intuitively imagine that if we remove instances from
our datasets whose estimated BPM confidence is below
a certain threshold, the overall accuracy results will in-
crease. However, the higher we set the minimum confi-
dence threshold, the smaller the size of filtered dataset will
be. Hence, we want to quantify the relation between the
overall accuracy and the total number of music loops that
remain in a dataset after filtering by minimum confidence.
To do that, given one of the aforementioned accuracy mea-
sures, we can define a minimum confidence threshold «y
and a function A(~) that represents overall BPM estima-
tion accuracy when only evaluating loop instances whose
estimated confidence value is above v for a given dataset
and tempo estimation algorithm. Similarly, we can de-
fine another function N () which returns the percentage
of instances remaining in a dataset after filtering out those
whose estimated confidence value (for a given tempo esti-
mation method) is below . A(y) and N(7y) can be under-
stood as standard precision and recall curves, and therefore
we can define a combined score measure S(y) doing the
analogy with an f-measure computation:

12 Accuracy 1 is the percentage of instances whose estimated BPM is
within 4% of the annotated ground truth. Accuracy 2 is the percentage of
instances whose estimated BPM is within a 4% of %, % 1, 2, or 3 times
the ground truth BPM.

~A(y) - N(v)
A() +N()

An overall score for a given dataset, tempo estimation
algorithm and accuracy measure can thus be given by tak-

ing the mean of S(v), S.

S(v)=2

5. RESULTS
5.1 Overall accuracy

Overall accuracy results show that Percivall4 obtains the
highest accuracy scores for all accuracy measures and all
datasets except for the LOOP dataset, in which highest
score for Accuracy 1 is obtained by Zapatal4 (Fig. 2).
Considering the data from all datasets at once, mean accu-
racy values for Percivall4 range from 47% (Accuracy le)
to 73% (Accuracy 2), with an average increase of 7% accu-
racy when compared with the second best-scored method.
With a few exceptions, pairwise accuracy differences be-
tween Percivall4 and the second best-scored method in
all datasets and accuracy measures are statistically signif-
icant using McNemar’s test and a significance value of
a = 0.01 (i.e.,, p < 0.01). We also observe that accu-
racies for the APPL dataset tend to be higher than for other
datasets. This can be explained by the fact that APPL con-
tains professionally created and curated loops, while the
other datasets contain user contributed content, not neces-
sarily created by professionals (Mixcraft’s loop library also
contains content gathered from online repositories).

5.2 Accuracy vs confidence measure

Fig. 3 shows the accuracy of the three best-scoring tempo
estimation algorithms and the number of instances remain-
ing in the dataset when filtering by different values of a
confidence threshold v (Sec. 4.3). As we expected, we
can see how accuracy increases with v but the number
of instances decreases. Interestingly, we observe that the
number of instances decays later for estimations performed
with Percivall4 algorithm than for the other algorithms.
This reflects the fact that Percivall4 produces better BPM
estimates. Filtering by the confidence measure, a potential
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Figure 3. Accuracy vs confidence measure for FSL4
dataset. Lower bounds of the filled areas correspond to
Accuracy le, while upper bounds correspond to Accuracy
2. Solid lines represent the number of instances remaining
in the dataset.

user searching for loops in a dataset could define a mini-
mum threshold to get more accurate results at the expense
of getting less loops returned. For instance, if we set a hard
confidence threshold of v = 0.95 (vertical line in Fig. 3),
we find that the accuracies for Percivall4 method range,
on average, from 67% (Accuracy le) to 92% (Accuracy 2)
while preserving an average of 52% of the instances. In-
terestingly enough, we observe that when setting that hard
threshold, reported RekBox accuracies outperform these of
Percivall4 in all datasets, with an average increase ranging
from 2% for Accuracy 2 to 14% for Accuracy le (all sta-
tistically significant with p < 0.01). We attribute this to
the fact that RekBox seems to have a built-in confidence
measure thresholding step in which the algorithm outputs
0 BPM when the analysis does not meet certain confidence
requirements. Therefore, once filtering the datasets by «
(even with small values), all those instances whose BPM
estimation is 0 BPM get discarded. Nevertheless, it is
also important to note that filtering with the hard threshold,
RekBox only preserves an average of 31% of the instances
(lower than the 52% reported above by Percivall4).

If we look at the combined accuracy and confidence
measure S described in Sec. 4.3, we again find that Perci-
vall4 obtains the best score in all datasets and for all accu-
racy measures (i.e. for A(y) computed with Accuracy le,
Accuracy 1 or Accuracy 2). This means that Percival14 of-
fers the overall best balance between estimation accuracy
and number of preserved instances in the dataset when fil-
tering by a minimum confidence threshold.

5.3 Comparison of confidence measures

Zapata et. al. [22] propose a confidence measure that can
be used for tempo estimation and that is based on comput-
ing the mutual agreement between an ensemble of tempo
estimation algorithms. To make this confidence measure
numerically comparable to the one we propose, we nor-
malise the confidence output of Zapata et. al. to take val-
ues from O to 1. Similarly to Fig. 3, we plot the estimation
accuracy and the number of remaining instances as a func-
tion of a minimum confidence threshold  (Fig. 4). We ob-

2400

Accuracy (%)

1600

Number of instances

800

—— Zapata14 - Our confidence measure
Zapata14 - Original confidence measure

0.0 0.2 0.4 0.6 0.8 1.0

Figure 4. Comparison of our proposed confidence mea-
sure with the confidence measure proposed in [22] for
FSL4 dataset and Zapatal4 tempo estimation algorithm.

serve that Zapata’s confidence measure allows to achieve
accuracies which are around 15% higher than when us-
ing our confidence. However, the number of remaining
instances in the dataset is drastically reduced, and accu-
racy values for v > (.75 become inconsistent. Looking at
the S score, we find that Zapatal4 in combination with our
confidence measure gets better results than when using the
original measure, with an average S increase of 17%, 29%
and 31% (for the three accuracy measures respectively).
This indicates that our confidence measure is able to better
maximise accuracy and number of remaining instances.

6. CONCLUSION

In this paper paper we have compared several tempo esti-
mation algorithms using four datasets of music loops. We
also described a simple confidence measure for tempo es-
timation algorithms and proposed a methodology for eval-
uating the relation between estimation accuracy and con-
fidence measure. This methodology can also be applied
to other MIR tasks, and we believe it encourages future
research to put more emphasis on confidence measures.
We found that by setting a high enough minimum confi-
dence threshold, we can obtain reasonably high tempo es-
timation accuracies while preserving half of the instances
in a dataset. However, these results are still far from be-
ing optimal: if we only consider exact BPM estimations
(Accuracy le), the maximum accuracies we obtain are still
generally lower than 70%. We foresee two complementary
ways of improving these results by i) adapting tempo esti-
mation algorithms to the case of music loops (e.g. taking
better advantage of tempo steadiness and expected signal
duration), and ii) developing more advanced confidence
measures that take into account other properties of loops
such as the beat strength or the rate of onsets. Overall, the
work we present here contributes to the improvement of
the reusability of unstructured music loop repositories.
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