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ABSTRACT

In this paper, we present a way to model long-term rever-
beration effects in under-determined source separation al-
gorithms based on a non-negative decomposition frame-
work. A general model for the sources affected by rever-
beration is introduced and update rules for the estimation
of the parameters are presented. Combined with a well-
known source-filter model for singing voice, an applica-
tion to the extraction of reverberated vocal tracks from
polyphonic music signals is proposed. Finally, an objec-
tive evaluation of this application is described. Perfor-
mance improvements are obtained compared to the same
model without reverberation modeling, in particular by
significantly reducing the amount of interference between
sources.

1. INTRODUCTION

Under-determined audio source separation has been a key
topic in audio signal processing for the last two decades.
It consists in isolating different meaningful ‘parts’ of the
sound, such as for instance the lead vocal from the ac-
companiment in a song, or the dialog from the background
music and effects in a movie soundtrack. Non-negative
decompositions such as Non-negative Matrix Factoriza-
tion [5] and its derivative have been very popular in this
research area for the last decade and have achieved state-
of-the art performances [3, 9, 12].

In music recordings, the vocal track generally contains
reverberation that is either naturally present due to the
recording environment or artificially added during the mix-
ing process. For source separation algorithms, the effects
of reverberation are usually not explicitly modeled and
thus not properly extracted with the corresponding sources.
Some studies [1, 2] introduce a model for the effect of
spatial diffusion caused by the reverberation for a multi-
channel source separation application. In [7] a model for
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the dereverberation of spectrograms is presented for the
case of long reverberations, i.e. when the reverberation
time is longer than the length of the analysis window.

We propose in this paper to extend the model of re-
verberation proposed in [7] to a source separation appli-
cation that allows extracting the reverberation of a spe-
cific source together with its dry signal. The reverbera-
tion model is introduced first in a general framework for
which no assumption is made about the spectrogram of the
dry sources. At this state, and as often in demixing appli-
cation, the estimation problem is ill-posed (optimization
of a non-convex cost function with local minima, result
highly dependent on the initialization, ...) and requires the
incorporation of some knowledge about the source signals.
In [7], this issue is dealt with a sparsity prior on the un-
reverberated spectrogram model. Alternatively, the spec-
trogram sources can be structured by using models of non-
negative decompositions with constraints (e.g. harmonic
structure of the source’s tones, sparsity of the activations)
and/or by guiding the estimation process with prior infor-
mation (e.g. source activation, multi-pitch transcription).
Thus in this paper we propose to combine the generic re-
verberation model with a well-known source/filter model
of singing voice [3]. A modified version of the original
voice extraction algorithm is described and evaluated on an
application to the extraction of reverberated vocal melodies
from polyphonic music signals.

Note that unlike usual application of reverberation mod-
eling, we do not aim at extracting dereverbated sources but
we try to extract accurately both the dry signal and the re-
verberation within the same track. Thus, the designation
source separation is not completely in accordance with our
application which targets more precisely stem separation.

The rest of the paper is organized as follows: Section 2
presents the general model for a reverberated source and
Section 3 introduces the update rule used for its estima-
tion. In Section 4, a practical implementation for which
the reverberation model is combined with a source/filter
model is presented. Then, Section 5 presents experimental
results that demonstrate the ability of our algorithm to
extract properly vocals affected by reverberation. Finally,
conclusions are drawn in Section 6.
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Notation
• Matrices are denoted by bold capital letters: M. The

coefficients at row f and column t of matrix M is
denoted by Mf,t.

• Vectors are denoted by bold lower case letters: v.
• Matrix or vector sizes are denoted by capital letters:
T , whereas indexes are denoted with lower case let-
ters: t.

• Scalars are denoted by italic lower case letters: s.
• � stands for element-wise matrix multiplication

(Hadamard product) and M�λ stands for element-
wise exponentiation of matrix M with exponent λ.

2. GENERAL MODEL

For the sake of clarity, we will present the signal model for
mono signals only although it can be easily generalized to
multichannel signals as in [6]. In the experimental Section
5, a stereo signal model is actually used.

2.1 Non-negative Decomposition

Most source separation algorithms based on a non-negative
decomposition assume that the non-negative mixture spec-
trogram V (usually the modulus or the squared modulus
of a time-frequency representation such as the Short Time
Fourier Transform (STFT)) which is a F ×T non-negative
matrix, can be approximated as the sum ofK source model
spectrograms V̂k, which are also non-negative:

V ≈ V̂ =

K∑

k=1

V̂k (1)

Various structured matrix decomposition have been pro-
posed for the source models V̂k, such as, to name a few,
standard NMF [8], source/filter modeling [3] or harmonic
source modeling [10].

2.2 Reverberation Model

In the time-domain, a time-invariant reverberation can be
accurately modeled using a convolution with a filter and
thus be written as:

y = h ∗ x, (2)

where x is the dry signal, h is the impulse response of the
reverberation filter and y is the reverberated signal.

For short-term convolution, this expression can be ap-
proximated by a multiplication in the frequency domain
such as proposed in [6] :

yt = h� xt, (3)

where xt (respectively yt) is the modulus of the t-th frame
of the STFT of x (respectively y) and h is the modulus of
the Fourier transform of h.

For long-term convolution, this approximation does not
hold. The support of typical reverberation filters are gener-
ally greater than half a second which is way too long for a
STFT analysis window in this kind of application. In this

case, as suggested in [7], we can use an other approxima-
tion which is a convolution in each frequency channel :

yf = h
f ∗ xf , (4)

Where yf , h
f

and xf are the f -th frequency channel of
the STFT of respectively y, h and x.

Then, starting from a dry spectrogram model V̂dry,k of
a source with index k, the reverberated model of the same
source is obtained using the following non-negative ap-
proximation:

V̂rev,k
f,t =

Tk∑

τ=1

V̂dry,k
f,t−τ+1R

k
f,τ (5)

where Rk is the F ×Tk non-negative reverberation matrix
of model k to be estimated.

The model of Equation (5) makes it possible to take
long-term effects of reverberation into account and gen-
eralizes short-term convolution models as proposed in [6]
since when Tk = 1, the model corresponds to the short-
term convolution approximation.

3. ALGORITHM

3.1 Non-negative decomposition algorithms

The approximation of Equation (1) is generally quantified
using a divergence (a measure of dissimilarity) between V
and V̂ to be minimized with respect to the set of parame-
ters Λ of all the models:

C(Λ) = D(V|V̂(Λ)) (6)

A commonly used class of divergence is the element-
wise β-divergence which encompasses the Itakura-Saito
divergence (β = 0), the Kullback-Leibler divergence (β =
1) and the squared Frobenius distance (β = 2) [4]. The
global cost then writes:

C(Λ) =
∑

f,t

dβ(Vf,t|V̂f,t(Λ)). (7)

The problem being not convex, the minimization is gener-
ally done using alternating update rules on each parame-
ters of Λ. The update rule for a parameter Θ is commonly
obtained using an heuristic consisting in decomposing the
gradient of the cost-function with respect to this parameter
as a difference of two positive terms, such as

∇ΘC = PΘ −MΘ, PΘ ≥ 0, MΘ ≥ 0, (8)

and then by updating the parameter according to:

Θ← Θ� MΘ

PΘ
. (9)

This kind of update rule ensures that the parameter re-
mains non-negative. Moreover the parameter is updated in
a direction descent or remains constant if the partial deriva-
tive is zero. In some cases (including the update rules
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we will present), it is possible to prove using a Majorize-
Minimization (MM) approach [4] that the multiplicative
update rules actually lead to a decrease of the cost func-
tion.

Using such an approach, the update rules for a standard
NMF model V̂ = WH can be expressed as:

H← H�
WT

(
V̂�β−2 �V

)

WT V̂�β−1
, (10)

W←W �

(
V̂�β−2 �V

)
HT

V̂�β−1HT
. (11)

3.2 Estimation of the reverberation matrix

When dry models V̂dry,k are fixed, the reverberation matrix
can be estimated using the following update rule applied
successively on each reverberation matrix:

Rk ← Rk �

(
V̂�β−2 �V

)
∗t V̂dry,k

V̂�β−1 ∗t V̂dry,k
(12)

where ∗t stands for time-convolution:

[
V̂�β−1 ∗t V̂dry,k

]
f,τ

=
T∑

τ=t

V̂�β−1
f,τ V̂dry,k

f,τ−t+1. (13)

The update rule (12) obtained using the procedure de-
scribed in Section 3.1 ensures the non-negativity of Rk.
This update can be obtained using the MM approach which
ensures that the cost-function will not increase.

3.3 Estimation with other free model

A general drawback of source separation models that do
not explicitly account for reverberation effects is that the
reverberation affecting a given source is usually spread
among all separated sources. However, this issue can still
arise with a proper model of reverberation if the dry model
of the reverberated source is not constrained enough. In-
deed using the generic reverberation model of Equation
(5), the reverberation of a source can still be incorrectly
modeled during the optimization by other source models
having more degrees of freedom. A possible solution for
enforcing a correct optimization of the reverberated model
is to further constrain the structure of the dry model spec-
trogram, e.g. through the inclusion of sparsity or pitch ac-
tivation constraints, and potentially to adopt a sequential
estimation scheme. For instance, first discarding the re-
verberation model, a first rough estimate of the dry source
may be produced. Second, considering the reverberation
model, the dry model previously estimated can be refined
while estimating at the same time the reverberation matrix.
Such an approach is described in the following section for
a practical implementation of the algorithm to the problem
of lead vocal extraction from polyphonic music signals.

4. APPLICATION TO VOICE EXTRACTION

In this section we propose an implementation of our rever-
beration model in a practical case: we use Durrieu’s algo-

rithm [3] for lead vocal isolation and add the reverberation
model over the voice model.

4.1 Base voice extraction algorithm

Durrieu’s algorithm for lead vocal isolation in a song is
based on a source/filter model for the voice.

4.1.1 Model

The non-negative mixture spectrogram model consists
in the sum of a voice spectrogram model based on a
source/filter model and a music spectrogram model based
on a standard NMF:

V ≈ V̂ = V̂voice + V̂music. (14)

The voice model is based on a source/filter speech pro-
duction model:

V̂voice = (WF0HF0)� (WKHK). (15)

The first factor (WF0HF0) is the source part correspond-
ing to the excitation of the vocal folds: WF0 is a matrix
of fixed harmonic atoms and HF0 is the activation of these
atoms over time. The second factor (WKHK) is the filter
part corresponding to the resonance of the vocal tract: WK

is a matrix of smooth filter atoms and HK is the activation
of these atoms over time.

The background music model is a generic NMF:

V̂music = WRHR. (16)

4.1.2 Algorithm

Matrices HF0, WK, HK, WR and HR are estimated mini-
mizing the element-wise Itakura-Saito divergence between
the original mixture power spectrogram and the mixture
model:

C(HF0,WK,HK,WR,HR) =
∑

f,t

dIS(Vf,t|V̂f,t), (17)

where dIS(x, y) = x
y − log(xy ) − 1. The minimization is

achieved using multiplicative update rules.

The estimation is done in three steps:

1. A first step of parameter estimation is done using
iteratively the multiplicative update rules.

2. The matrix HF0 is processed using a Viterbi decod-
ing for tracking the main melody and is then thresh-
olded so that coefficients too far from the melody are
set to zero.

3. Parameters are re-estimated as in the first step but
using the thresholded version of HF0 for the initial-
ization.
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4.2 Inclusion of the reverberation model

As stated in Section 3, the dry spectrogram model (i.e. the
spectrogram model for the source without reverberation)
has to be sufficiently constrained in order to accurately es-
timate the reverberation part. This constraint is here ob-
tained through the use of a fixed harmonic dictionary WF0

and mostly, by the thresholding of the matrix HF0 that en-
forces the sparsity of the activations.

We thus introduce the reverberation model after the step
of thresholding of the matrix HF0. The two first steps then
remains the same as presented in Section 4.1.2. In the third
step, the dry voice model of Equation (15) is replaced by a
reverberated voice model following Equation (5):

V̂rev. voice
f,t =

T∑

τ=1

V̂voice
f,t−τ+1Rf,τ . (18)

For the parameter re-estimation of step 3, the multi-
plicative update rule of R is given by Equation (12). For
the other parameters of the voice model, the update rules
from [3] are modified to take the reverberation model into
account:

HF0 ← HF0 �
WT

F0

(
(WKHK)�

(
R ∗t (V̂�β−2 �V)

))

WT
F0

(
(WKHK)�

(
R ∗t V̂�β−1

))

(19)

HK ← HK �
WT

K

(
(WF0HF0)�

(
R ∗t (V̂�β−2 �V)

))

WT
K

(
(WF0HF0)�

(
R ∗t V̂�β−1

))

(20)

WK ←WK �

(
(WF0HF0)�

(
R ∗t (V̂�β−2 �V)

))
HT

K(
(WF0HF0)�

(
R ∗t V̂�β−1

))
HT

K

(21)

The update rules for the parameters of the music model
(HR and WR), are unchanged and thus identical to those
given in Equations (10) and (11).

5. EXPERIMENTAL RESULTS

5.1 Experimental setup

We tested the reverberation model that we proposed with
the algorithm presented in Section 4 on a task of lead vocal
extraction in a song. In order to assess the improvement of
our model over the existing one, we ran the separation with
and without reverberation modeling.

We used a database composed of 9 song excerpts of
professionally produced music. The total duration of all
excerpts was about 10 minutes. As the use of rever-
beration modeling only makes sense if there is a signifi-
cant amount of it, all the selected excerpts contains a fair
amount of reverberation. This reverberation was already
present in the separated tracks and was not added artifi-
cially by ourselves. On some excerpts, the reverberation

is time-variant: active on some parts and inactive on other,
ducking echo effect . . . Some short excerpts, as well as the
separation results, can be played on the companion web-
site 1 .

Spectrograms were computed as the squared modulus
of the STFT of the signal sampled at 44100 Hz, with 4096-
sample (92.9 ms) long Hamming window with 75% over-
lap. The length T of the reverberation matrix was arbitrar-
ily fixed to 52 frames (which corresponds to about 1.2 s)
in order to be sufficient for long reverberations.

5.2 Results

In order to quantify the results we use standard metrics of
source separation as described in [11]: Signal to Distorsion
Ratio (SDR), Signal to Artefact Ratio (SAR) and Signal to
Interference Ratio (SIR).

The results are presented in Figure 1 for the evaluation
of the extracted voice signals and in Figure 2 for the ex-
tracted music signals. The oracle performance, obtained
using the actual spectrograms of the sources to compute
the separation masks, are also reported. As we can see,
adding the reverberation modeling increases all these met-
rics. The SIR is particularly increased in Figure 1 (more
than 5dB): this is mainly because without the reverbera-
tion model, a large part of the reverberation of the voice
leaks in the music model. This is a phenomenon which is
also clearly audible in excerpts with strong reverberation:
using the reverberation model, the long reverberation tail is
mainly heard within the separated voice and is almost not
audible within the separated music. In return, extracted
vocals with the reverberation model tend to have more au-
dible interferences. This result is in part due to the fact
that the pre-estimation of the dry model (step 1 and 2 of
the base algorithm) is not interference-free, so that apply-
ing the reverberation model increases the energy of these
interferences.

Figure 1. Experimental separation results for the voice
stem.

1 http://romain-hennequin.fr/En/demo/reverb_
separation/reverb.html
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Figure 2. Experimental separation results for the music
stem.

6. CONCLUSION

In this paper we proposed a method to model long-term ef-
fects of reverberation in a source separation application for
which a constrained model of the dry source is available.
Future work should focus on speeding up the algorithm
since, multiple convolutions at each iteration can be time-
consuming. Developing methods to estimate the reverber-
ation duration (of a specific source within a mix) would
also make it possible to automate the whole process. It
could also be interesting to add spatial modeling for multi-
channel processing using full rank spatial variance matrix
and multichannel reverberation matrices.
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