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ABSTRACT

The goal of this study is to explore which aspects of
people’s analytical decision making are affected when ex-
posed to music. To this end, we apply a stochastic sequen-
tial model of simple decisions, the drift-diffusion model
(DDM), to understand risky decision behavior. Numerous
studies have demonstrated that mood can affect emotional
and cognitive processing, but the exact nature of the impact
music has on decision making in quantitative tasks has not
been sufficiently studied. In our experiment, participants
decided whether to accept or reject multiple bets with dif-
ferent risk vs. reward ratios while listening to music that
was chosen to induce positive or negative mood. Our re-
sults indicate that music indeed alters people’s behavior in
a surprising way - happy music made people make bet-
ter choices. In other words, it made people more likely
to accept good bets and reject bad bets. The DDM de-
composition indicated the effect focused primarily on both
the caution and the information processing aspects of de-
cision making. To further understand the correspondence
between auditory features and decision making, we stud-
ied how individual aspects of music affect response pat-
terns. Our results are particularly interesting when com-
pared with recent results regarding the impact of music
on emotional processing, as they illustrate that music af-
fects analytical decision making in a fundamentally differ-
ent way, hinting at a different psychological mechanism
that music impacts.

1. INTRODUCTION

There is plentiful evidence that one’s mood can affect how
one processes information. When the information being
processed has emotional content (words, for instance), this
phenomenon is referred to as mood-congruent processing,
or bias, and it’s been found that positive mood induces a
relative preference for positive emotional content and vice
versa [2,7]. However, what effect does music have on non-
emotional decision making? This study focuses on the im-
pact of music on risky decision behavior which requires
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quantitative reasoning. To this end, we design an experi-
ment in which participants decide whether to accept or re-
ject gambles with different win-loss ratios (meaning they
have different expected payoff).

Previous work in this area shows robust effects of loss
aversion, whereby participants put more weight on poten-
tial losses than potential gains. Loss aversion in this con-
text manifests as subjects being unwilling to accept gam-
bles unless the potential gain significantly outweighs the
potential loss (e.g., only accepting the gamble if the gain
is twice as large as the loss [12, 13]). The present study
focuses on whether and how emotional music influences
such risky decision behavior.

Not much work has studied the direct connection be-
tween music and risky decision making. Some previous
work has studied the general connection between gambling
behavior and ambiance factors including music [1, 3, 11]
in an unconstrained casino environment. Additionally,
Noseworthy and Finlay have studied the effects of music-
induced dissociation and time perception in gambling es-
tablishments [6]. In this paper, we take a deeper and more
controlled look at how music impacts decision making in
this type of risk-based analytical decision making. To this
effect, we use a popular model of simple decisions, the
drift-diffusion model (DDM; [8]), to explore how music-
induced mood affects the different components of the de-
cision process in such tasks. Our results indicate that mu-
sic indeed has a nontrivial and unexpected effect, and that
certain types of music led to better decision making than
others.

The structure of the paper is as follows. In Section 2
we outline the characteristics of the drift-diffusion model,
which we use in this study. In Section 3 we discuss our
experimental design and how data was collected from par-
ticipants. In Section 4 we present and analyze the results
of our behavioral study. In Section 5 we analyze how indi-
vidual auditory components correlate with the behavioral
patterns observed in our human study. In Section 6 we re-
cap our results and discuss them in a broader context.

2. THE DRIFT-DIFFUSION MODEL

This study employs the Drift Diffusion Model (DDM)
of simple decisions to decompose the observed decision
behavior into its underlying decision components. The
DDM, shown in Figure 1, belongs to a family of evi-
dence accumulation models which frame simple decisions
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in terms of gradual sequential accumulation of noisy evi-
dence until a decision criterion is met. In the model, the
decision process starts between the two boundaries that
correspond to the response alternatives. Evidence is ac-
cumulated over time to drive the process toward one of
the boundaries. Once a boundary is reached, it marks the
choice of a specific response. The time taken to reach
the boundary represents the decision time. The overall
response time is the sum of the time it takes to make a
decision plus the time required for processes outside the
decision process like encoding and motor execution. The
model includes a parameter for this nondecision time (Ter),
to account for the duration of these processes.

The primary components of the decision process in the
DDM are the boundary separation, the starting point, and
the drift rate. Boundary separation represents response
caution or the speed vs. accuracy tradeoff exhibited by the
participant. Wide boundaries indicate a cautious response
style where more evidence needs to be accumulated before
a decision is reached. The need for more evidence makes
the decision process slower, but also more accurate, since it
is less likely to reach the wrong boundary by mistake. The
starting point of the diffusion process (z) reflects response
expectancy. If z is closer to the top boundary, for instance,
it means less evidence is required to reach that boundary,
so “positive” responses will be faster and more probable
than “negative” responses. Finally, the drift rate (v) rep-
resents the processing of evidence from stimulus which
drives the accumulation process. Positive values indicate
evidence for the top boundary, and negative values for the
bottom boundary. Furthermore, the absolute value of the
drift rate represents the strength of the stimulus evidence,
with larger values indicating strong evidence and leading
to fast and accurate responses.

In the framework of the DDM, there are two mecha-
nisms that can drive behavioral bias. Changes in the start-
ing point (z) reflect a response expectancy bias, whereby
there is an a-priori preference for one response even before
the stimulus is shown [5,14]. Experimentally, response ex-
pectancy bias is observed when participants have an expec-
tation that one response is more likely to be correct and/or
rewarded than the other. In contrast, changes in the drift
rate (v) reflect a stimulus evaluation bias, whereby there is
a shift in how the stimulus is evaluated to extract the de-
cision evidence. Experimentally, stimulus evaluation bias
is observed when there is a shift in the stimulus strength
and/or the criterion value used to classify the stimuli. Thus
response expectancy bias, reflected by the starting point in
the DDM, indicates a shift in how much evidence is re-
quired for one response relative to the other, whereas stim-
ulus evaluation bias, reflected by a shift in the drift rates in
the DDM, indicates a shift in what evidence is extracted by
the stimulus under consideration. Importantly, both mech-
anisms can produce behavioral bias (faster and more prob-
able responses for one choice [14]), but they differentially
affect the distribution of response times. In brief, response
expectancy bias only affects fast responses, whereas stim-
ulus evaluation bias affects both fast and slow responses

Figure 1. An Illustration of the Drift-Diffusion Model.

(see [14]). It is this differential effect on the response time
(abbreviated RT) distributions that allows the DDM to be
fitted to behavioral data to estimate which of the two com-
ponents, starting point or drift rates, is driving the bias
observed in the RTs and choice probabilities. The DDM
has been shown to successfully differentiate these two bias
mechanisms from behavioral data in both perceptual and
recognition memory tasks [14].

This study used the DDM approach described above to
investigate how music-induced mood affects the different
decision components when performing a quantitative task.
Participants listened to happy or sad music while deciding
whether to bet or fold as bets with different win-loss ra-
tios were proposed to them. The DDM was then fitted to
each participant’s behavioral data to determine whether the
mood induction affected response expectancy bias, stimu-
lus evaluation bias, or both.

3. METHODS

Participants were presented with simple binary gambles
and were asked whether to accept (bet) or reject them
(fold). Each gamble had a 50%-50% chance of success,
with varying win to loss ratio, reflecting how much was
to be gained vs. lost. For example, a 15:5 win-loss ratio
reflect a 50% chance to win 15 points and a 50% chance
of losing 5 points. After a fixation cue was shown for 500
ms, each gamble was presented in the center of the screen
and remained on screen until a response was given. If no
response was given after 3.5 seconds, the trial ended as a
“no response” trial. Responses were indicated with the “z”
and “/” keys, and mapping between the key and response
was counterbalanced across participants.

The gamble stimuli were partitioned to very negative
(win-loss ratio in range [0.33, 0.66)), negative (win-loss
ratio in range [0.66, 1)), positive (win-loss ratio in range
[1, 2)), and very positive (win-loss ratio in range [2, 3]).
The actual values of the bets were randomized in the
range of [3, 60]. Each experiment comprised 20 batches
of 20 gambles, such that in each batch each stimuli condi-
tion was repeated 5 times (gamble order was randomized).
Subjects were not shown the outcome of their gambles im-
mediately as that would be distracting. Instead, between
each batch subjects were shown the overall score they ac-
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crued for the previous batch (whereas each batch score
starts as 0). To encourage competitive behavior, they were
also shown the expected score for that batch. A different
song was played during each block of 5 batches, alternat-
ing from positive to negative music across blocks. The or-
der of the songs was counterbalanced across subjects. The
entire experiment lasted less than 30 minutes. To ensure
that the results were not specific to the particular choice
of songs, the entire experiment was repeated with a large
sample of participants (N = 84), and two separate sets of
songs to assess result reliability.

The music used for this experiment is the same as that
used in [4]. It is a collection of 8 publicly available songs
which was surveyed to isolate two clear types - music that
is characterized by slow tempo, minor keys and somber
tones, typical to traditionally “sad” music, and music that
has upbeat tempo, major scales and colorful tones, which
are traditionally considered to be typical to “happy” music.
The principal concern in selecting these musical stimuli,
rather than their semantic categorization as either happy or
sad, was to curate two separate “pools” of music sequences
that were broadly characterized by a similar temperament
(described above), and show they produced consistent re-
sponse patterns. In [4], it has been shown experimentally
that the selected music was effective for inducing the ap-
propriate mood. This was done by selecting a separate pool
of 40 participants and having them rate each song on a 7-
point Likert scale, with 1 indicating negative mood and 7
indicating positive mood. It was then shown that the songs
designated as positive received meaningfully and statisti-
cally significantly higher scores than those denoted as sad.

The DDM was fitted to each participant’s data, sepa-
rately for positive and negative music blocks, to estimate
the values of the decision components. The data entered
into the fitting routine were the choice probabilities and
RT distributions (summarized by the .1, .3, .5, .7, and .9
quantiles) for each response option and stimulus condi-
tion. The parameters of the DDM were adjusted in the
fitting routine to minimize the χ2 value, which is based
on the misfit between the model predictions and the ob-
served data (see [9]). For each participant’s data set, the
model estimated a value of boundary separation, nondeci-
sion time, starting point, and a separate drift rate for each
stimulus condition. Because of the relatively low number
of observations used in the fitting routine, the variability
parameters of the full DDM were not estimated (see [8]).
This resulted in two sets of DDM parameters for each par-
ticipant, one for the positive music blocks and one for the
negative music blocks.

4. EXPERIMENTAL RESULTS

The response times and choice probabilities shown in Fig-
ure 2 indicate that the mood-induction successfully af-
fected the decision making behavior observed across par-
ticipants. The left column shows the response proportions,
the center column shows normalized response times for
betting decisions, and the right panel shows normalized
response times for the folding decisions. The betting pro-

portions and response time (or RT) measures for the two
conditions - the happy songs and the sad songs - indicate a
clear difference between the conditions. Generally speak-
ing, happy music led to more “correct” behavior - partici-
pants were more likely to accept good bets and reject bad
bets under the happy song condition than the sad song con-
dition. These trends are evident across all gamble propor-
tions and bet-fold decisions, but were only shown to be
statistically significant for some of the settings; the differ-
ence in betting proportions is shown to be significant for
very negative, positive and very positive gambles, whereas
the difference in response times is only shown to be signif-
icant for folding decisions in very positive gambles. Sig-
nificance was evaluated using a paired t-test with p ≤ 0.05.

Figure 3 shows the DDM parameters fitted for the ex-
periment. Although the two bias-related measures (start-
ing point and drift rates) are of primary interest, all of the
DDM parameters were compared across music conditions.
It is possible that the different music conditions could af-
fect response caution and nondecision time. For example,
the slower tempo of the sad songs could lead participants
to become more cautious and have slower motor execu-
tion time. Thus all parameters were investigated. As the
top-left and top-center panels of Figure 3 show, the music
conditions did not differentially affect response caution or
encoding/motor time, as neither boundary separation nor
nondecision time differed between happy and sad music
blocks. Of primary interest were the starting point and
drift rate parameters, which provide indices of response
expectancy and stimulus evaluation bias, respectively. In-
terestingly, as apparent in the top-right and bottom-right
panels of Figure 3, overall, we did not observe any stimu-
lus (evidence processing) bias nor starting point (response
expectancy) bias in the two music conditions. However,
the key difference lied in the drift rates themselves. Fitting
parameters for the drift rates for the four gamble types indi-
cate an overall change in evidence processing in the happy
vs. the sad music conditions, which is statistically signifi-
cant for all gamble proportions. This outcome is shown in
the bottom-left panel of Figure 3. In other words, people
were faster to process the evidence and make betting deci-
sions for good gambles and folding decisions for bad gam-
bles in happy vs. sad music. This difference is summarized
in the bottom-center panel of Figure 3, which presents the
discriminability factor in the happy vs. the sad condition.
Discriminability is defined as the sum of the drift rates for
good bets minus the sum of the drift rates for the bad bets,
(dpositive + dvery−positive − dnegative − dvery−negative).
This measure represents the “processing gap” between
good evidence (good bets) and bad evidence (bad bets).
The discriminability was dramatically higher for happy
songs compared to sad songs.

The DDM results show that the music-based manipula-
tion of mood affected the overall processing of information
in the quantitative task of deciding when to bet and when
to fold, rather than any single bias component. There were
no effects of music on response caution, nondecision time,
or response or stimulus bias, meaning that people weren’t
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Figure 2. Response patterns in terms of response times and bet-fold proportions for the behavioral experiment. A statis-
tically significant difference between the happy song and the sad song conditions is evident for betting proportions given
the four clusters of betting ratios (very negative, negative, positive and very positive). There is also a large statistically
significant difference between response times for folding in the two different conditions. Error bars reflect 95% confidence
intervals. * = p < .05; ** = p < .01; *** = p < .001.

more likely to accept bets or reject them in one condition
or the other, but rather the change impacted the entire de-
cision process. In other words, the mood change induced
by music neither affected the a-priori inclination of people
to bet or to fold, nor has it led to a relative difference in
processing one type of bet vs. the other, but rather simply
made people make better decisions (more likely to accept
good bets and reject bad ones).

5. CORRELATING RESPONSES AND MUSICAL
FEATURES

The partition between “positive” and “negative” mood-
inducing songs is easy to understand intuitively, and in it-
self is enough to induce the different behavioral patterns
discussed in the previous section. However, similarly to
the analysis performed in [4], we are interested in find-
ing a deeper connection between the behavior observed
in the experiment and the different characteristics of mu-
sic. More exactly, we are interested in finding the corre-
spondence between various musical features, which also
happen to determine how likely a song is to be perceived
as happy or sad, and the gambling behavior manifested
by participants. To this end, we considered the 8 songs
used in this experiment, extracted key characterizing fea-
tures which we assume are relevant to their mood classifi-
cation, and examined how they correlate with the subject
gambling behavior we observed.

5.1 Extracting Raw Auditory Features

We focused on three major auditory features: a) overall
tempo; b) overall “major” vs. “minor” harmonic character;
c) average amplitude, representing loudness. Features (a)
and (c) were computed using the Librosa library [10]. To
compute feature (b), we implemented the following proce-
dure, similar to that described in [4]. For each snippet of

20 beats an overall spectrum was computed and individual
pitches were extracted. Then, for that snippet, according
to the amplitude intensity of each extracted pitch, we iden-
tified whether the dominant harmonic was major or minor.
The major/minor score was defined to be the proportion of
major snippets out of the overall song sequence. Analy-
sis done in [4] confirms these three features were indeed
associated with our identification as “positive” vs. “nega-
tive”. Having labeled “positive” and “negative” as 1 and
0 respectively, a Pearson correlation of 0.7 − 0.8 with p-
values ≤ 0.05 was observed between these features and
the label. Significance was further confirmed by applying
an unpaired t-test for each feature for positive vs. negative
songs (p-values < .05).

5.2 Processing Observed Gambling Behavior

Given the complexity of the behavioral experiment dis-
cussed in this paper, several behavioral breakdowns of
participant behavior were extracted. Normalizing the re-
sponse times (RTs) for each participant, we separately con-
sidered the average response times for betting and for fold-
ing for all four gamble types and songs (64 values overall).
Subsequently, we aggregated these average response times
per decision (bet or fold), per gamble type (very negative,
negative, positive and very positive), per song (4 happy
songs, 4 sad songs overall), to obtain 64 average response
times and response time variance per 〈decision, gamble
type, song〉 configuration. Then we could correlate these
values per 〈decision, gamble type〉 setting with the features
extracted for each song. Similarly, we extracted the aver-
age bet-fold ratio and bet-fold variance across all partic-
ipants for each 〈decision, gamble type, song〉 configura-
tion as well. As a result we were also able to examine the
relationship between bet-fold ratios per 〈decision, gamble
type〉 setting with the features extracted for the songs.
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Figure 3. Drift-Diffusion Model parameters fitted for the behavioral experiment. A statistically significant difference
between the happy song and the sad song conditions is evident for betting proportions given the four clusters of betting
ratios (very negative, negative, positive and very positive). There is also a large statistically significant difference between
response times for folding in the two different conditions. Error bars reflect 95% confidence intervals. * = p < .05; **
= p < .01; *** = p < .001.

Decision Gamble RT Avg RT Var. Avg. p-val Var. p-val
bet v. negative -0.73 -0.61 0.03 0.1
bet negative -0.65 0.48 0.07 0.22
bet positive -0.77 -0.64 0.02 0.07
bet v. positive -0.78 -0.59 0.02 0.11
fold v. negative -0.81 -0.65 0.01 0.07
fold negative -0.78 -0.56 0.02 0.14
fold positive -0.45 -0.45 0.25 0.25
fold v. positive -0.77 0.76 0.02 0.02

Table 1. Correlation values between tempo and response
times (average and variance). Results with p-value ≤ 0.1
are marked in bold.

5.3 Observed Correlations

In this section we discuss how the auditory features corre-
sponded with the normalized response time and bet-fold
ratio information extracted from the behavioral experi-
ment. We proceed to analyze the more exact correspon-
dence between the DDM parameters as extracted per song
individually and the auditory features of the songs. We
note that since we are correlating continuous scalar aggre-
gates across users with continuous auditory features, using
the assumptions implicit in a standard Pearson correlation
is reasonable.

5.3.1 Correlation with RTs and Bet-Fold Ratio

Examining the relationship between the features extracted
per song and the response time and bet-fold ratio data dis-
cussed in 5.2 reveals a compound and interesting picture.

Tempo was consistently and in most cases statistically
significantly inversely correlated with response times. This
was true for all gamble types and decision combinations.
Tempo also tended to be inversely proportional to the ob-
served response time variance. Again, this result was con-
sistent across all gamble type and decision combinations.
In other words, generally speaking, not only people re-
sponded faster (lower response times) the faster the music
was, the variance in response times also tended to be re-
duced. The observed Pearson correlations for average nor-
malized response times and response time variances across
the 8 gamble type and decision combinations is provided
in Table 1.

Tempo was also inversely correlated with the average
bet-fold ratio for very negative gambles (r = −0.74, p =
0.03). This also manifested in the correlation with the bet-
fold variance (r = −0.66, p = 0.06). However, it was lin-
early correlated with the bet-fold ratio in the very positive
gambles case (r = +0.71, p = 0.04). Furthermore, in the
very positive gambles case, the variance was still reduced,
leading to a negative correlation (r = −0.71, p = 0.04).
In other words, the faster the music, the more people are
likely to bet on very good bets, and more consistently (re-
ducing variance). Furthermore, the faster the music, the
more likely people are to fold on bad bets, and more con-
sistently (reducing variance). This is a strong signal for
how tempo improves the quality of decision making in
quantitative tasks.

There is evidence that the major dominance feature (de-
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termining the major to minor chord proportion in each
song) is inversely correlated to the average bet-fold ra-
tio and the bet-fold ratio variance in the very negative
gambles case (average: r = −0.6, p = 0.11, variance:
r = −0.61, p = 0.10). Similarly, there is some evidence
that major dominance is linearly correlated with the aver-
age bet-fold ratio and inversely correlated to the bet-fold
variance in the strong-positive case, but this result wasn’t
as convincing (average: r = +0.42, p = 0.29, variance:
r = −0.58, p = 0.14). This result, though inconclusive,
hints at the possibility that the more major chords there
are in a song, the better the analytical decision making that
subjects manifest.

Interestingly, the major dominance feature (determining
the major to minor chord proportion in each song) was in-
versely proportional to the variance in response times when
folding on a very positive bet (r = −0.71, p = 0.04).
Major dominance was also inversely proportional to vari-
ance in response times betting on a very negative bet
(r = −0.65, p = 0.07). In other words, the more major
chords appeared in a song, the less variability people dis-
played in the time it took them to make a poor decision.
This could be a side effect of people making fewer such
mistakes in these gamble - decision combinations, as was
documented in previous sections.

The average amplitude was inversely correlated to the
average bet-fold ratio and the bet-fold ratio variance for
negative and very negative gambles. These observations
seem borderline significant (average: r = −0.59, p = 0.12
for negative, r = −0.53, p = 0.17 for very negative, vari-
ance: r = −0.58, p = 0.13 for negative, r = −0.7, p =
0.05 for very negative). This would imply that the louder
the music, the less likely people are to make betting deci-
sions on bad gambles, and variance is also reduced.

5.3.2 Correlation with DDM Decomposition

Finally, we were also interested in examining how the in-
dividual DDM parameters fitted for each song separately
corresponded with the song features. Comparing the DDM
parameters per song with the tempo, major dominance and
amplitude data, we observed a statistically significant cor-
relation between the tempo and the drift rate for very pos-
itive gambles (Figure 4(a), r = −0.72, p = 0.04), tempo
and very negative gambles (Figure 4(b), r = +0.79, p =
0.01), and, interestingly, between the mean amplitude and
the response caution, a connection that was also suggested
in [4] (Figure 4(c), r = −0.67, p = 0.06). These obser-
vations corroborate both the observations in Section 5.3.1,
and in Section 4.

6. SUMMARY & DISCUSSION

In this paper, we study how music-induced mood affects
decision making in risky quantitative tasks. Subjects were
presented with gambles and needed to decide whether to
accept or reject these gambles as different types of music
were played to them. Our results show that while there is
no evidence for music-induced bias in the decision making
process, music does have a differential effect on decision

Figure 4. (a) Correlation between tempo and the drift rate
for very negative gambles. (b) Correlation between tempo
and the drift rate for very positive gambles. (c) Correlation
between mean amplitude and the overall response caution
(boundary separation).

making behavior. Participants who listened to music cate-
gorized as happy were faster to make decisions than people
who listened to music categorized as sad. Moreover, the
decisions participants made while listening to happy mu-
sic were consistently better than those made while listening
to sad music, implying increased discriminabilty. Further
analysis indicates there is a correlation between tempo and
the speed and quality of decision making in this setting. In-
terestingly, previous work on gambling behavior has found
a connection between the tempo and the speed of decision
making, but was unable to isolate further impact on the
quality of decision making, due to a fundamentally differ-
ent design and different research questions [1].

Of particular note is the comparison between the results
of a recent paper studying the connection between music-
induced mood and mood-congruent bias [4]. In that pa-
per, participants were requested to classify words as happy
or sad as music categorized as happy or sad was played.
Results indicated a clear expectancy bias, meaning mu-
sic affected people’s a-priori tendency to classify words as
happy or sad. This paper, which uses the exact same set of
songs, has reported no such bias effect, or any bias effect,
for that matter. This difference suggests the psychological
mechanisms involved in emotional classification and risky
analytical decision making are inherently different.

This paper is a meaningful step towards a better under-
standing of the impact music has on commonplace cogni-
tive processes which involve quantitative reasoning and de-
cision making. In future work, additional tasks and other
music stimuli should be studied to better understand the
relationship between music and this type of cognitive pro-
cessing.
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