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Preface 
 

It is our great pleasure to welcome you to the 18th International Society for Music               
Information Retrieval Conference (ISMIR 2017). The annual ISMIR conference is the           
world’s leading research forum on processing, analyzing, searching, organizing, and          
accessing music-related data. This year’s conference takes place at the National University of             
Singapore Research Institute (NUSRI) in Suzhou, China, from October 23-27, 2017. It is             
organized   by   National   University   of   Singapore. 

Music Information Retrieval (Music-IR) is a highly interdisciplinary field, incorporating          
elements from the disciplines of signal processing, machine learning, psychology,          
musicology, electrical engineering, computer science, music librarianship, and many more.          
This conference aims to cover the broad range of Music-IR topics, enabling researchers,             
developers, students, educators, and other professionals to exchange ideas, share results, and            
gain new perspectives from each other. The conference in turn provides opportunities to             
foster   collaborations   and   encourage   new   developments   in   the   field. 

The present volume contains the complete manuscripts of all peer-reviewed papers presented            
at ISMIR 2017. A total of 226 submissions were received before the deadline, of which 190                
complete and well-formatted papers entered the review process. Special care was taken to             
assemble an experienced and interdisciplinary review panel comprising people from many           
different academic and industrial institutions worldwide. As in previous years, reviews were            
double-blinded (i.e., both the authors and the reviewers were anonymous) with a two-tier             
review model involving a pool of 275 reviewers, including a program committee (PC) of 63               
members. Each paper was assigned to a PC member and three reviewers. Reviewer             
assignments were based on topic preferences, bidding on papers, and PC member            
assignments. Following the review phase, PC members and reviewers entered a discussion            
phase   aiming   to   homogenize   acceptance   versus   rejection   decisions.  

Handling four submissions on average, each PC member was asked to adopt an active role in                
the review process by conducting an intensive discussion phase with the other reviewers and              
providing a detailed meta-review. Final acceptance decisions were based on 758 reviews and             
meta-reviews. Of the 190 reviewed papers, 97 were accepted, resulting in an acceptance rate              
of 51.0%. The table shown on the next page summarizes the ISMIR publication statistics over               
the   history   of   the   conference. 
 
The mode of presentation of the accepted papers was determined after the accept/reject             
decisions and has no relation to the quality of the papers or to the number of pages allotted in                   
the proceedings. From the 97 accepted contributions, 24 papers were chosen for oral             
presentation to achieve a broad coverage of Music-IR topics, while the other 73 were chosen               
for poster presentation. Each oral presentation has a 20-minute slot (including setup and             
questions/answers from the audience) and each poster presentation takes place over two            
sessions   on   a   given   day,   during   lunch   and   in   the   afternoon,   for   a   total   of   3   hours. 
 
The ISMIR 2017 conference runs for a 5-day period. Accepted papers are presented over a               
period of 3.5 days, preceded by a day of tutorials and followed by a half day of                 
Late-Breaking & Demo (LBD) and Unconference sessions. The main academic program also            

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 xiii



includes the  Women in Music-IR (WiMIR) annual meeting,  keynote talks, panel sessions, and             
social   events.  
 
In addition, ISMIR 2017 provides a musical program. This program includes a diverse             
selection of music, from western classical standards to traditional music of the Suzhou area,              
and also focuses on music incorporating aspects of Music-IR. In this way we hope to               
encourage the use of such techniques in the creation of new music, as well as to explore                 
music   which   can   lead   to   novel   research   ideas   in   the   field. 
 
ISMIR 2017 also features four major social events, including the Welcome Reception, a             
Grand Canal cruise, a concert at the Master of Nets Garden, and the ISMIR 2017 Banquet                
with   music   performances   from   our   community. 
 
Finally, ISMIR 2017 offers three satellite events before and after the main conference:             
Hacking Audio and Music Research (HAMR), the China Conference on Sound and Music             
Technology   (CSMT),   and   the   Digital   Libraries   for   Musicology   (DLfM)   workshop. 
 
We believe this is an exciting and engaging program reflecting the breadth and depth of               
activities   across   our   community.  
 
 

Year Location Oral Poster Total 
Papers 

Total 
Pages 

Total 
Authors 

Unique 
Authors 

Pages/ 
Paper 

Authors/ 
Paper 

Unique 
Authors/ 

Paper 
2000 Plymouth 19 16 35 155 68 63 4.4 1.9 1.8 
2001 Indiana 25 16 41 222 100 86 5.4 2.4 2.1 
2002 Paris 35 22 57 300 129 117 5.3 2.3 2.1 
2003 Baltimore 26 24 50 209 132 111 4.2 2.6 2.2 
2004 Barcelona 61 44 105 582 252 214 5.5 2.4 2 
2005 London 57 57 114 697 316 233 6.1 2.8 2 
2006 Victoria 59 36 95 397 246 198 4.2 2.6 2.1 
2007 Vienna 62 65 127 486 361 267 3.8 2.8 2.1 
2008 Philadelphia 24 105 105 630 296 253 6 2.8 2.4 
2009 Kobe 38 85 123 729 375 292 5.9 3 2.4 
2010 Utrecht 24 86 110 656 314 263 6 2. 2.4 
2011 Miami 36 97 133 792 395 322 6 3 2.4 
2012 Porto 36 65 101 606 324 264 6 3.2 2.6 
2013 Curitiba 31 67 98 587 395 236 5.9 3 2.4 
2014 Taipei 33 73 106 635 343 271 6 3.2 2.6 
2015 Málaga 24 90 114 792 370 296 7 3.2 2.6 
2016 New   York 25 88 113 781 341 270 6.9 3.0 2.4 
2017 Suzhou 24 73 97 716 324 248 7.4 3.3 2.6 
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Tutorials 
 
Five tutorials take place on Monday, providing a balance between culture and technology.             
Two 3‐hour tutorials are presented in parallel on Monday morning, and three 3-hour tutorials              
are   presented   in   parallel   on   Monday   afternoon. 
 

Morning   Sessions: 
 

Tutorial   1:   Bayes   and   Markov   Listen   to   Music  
George   Tzanetakis,   University   of   Victoria,   Canada 
 

Tutorial   2:   Leveraging   MIDI   Files   for   Music   Information   Retrieval 
Colin   Raffel,   Google   Brain,   USA 
 

Afternoon   Sessions: 
 

Tutorial   3:   A   Basic   Introduction   to   Audio-Related   Music   Information   Retrieval  
Meinard   Müller,      International   Audio   Laboratories   Erlangen,   Germany 
Stefan   Balke,      International   Audio   Laboratories   Erlangen,   Germany 
Christof   Weiss,      International   Audio   Laboratories   Erlangen,   Germany 
 

Tutorial   4:   So   You   Want   to   Conduct   a   User   Study   in   MIR?  
Andrew   Demetriou,   Delft   University   of   Technology,   Netherlands 
Audrey   Laplante,   Université   de   Montréal,   Canada 
Sally   Jo   Cunningham,   University   of   Waikato,   New   Zealand 
Cynthia   Liem,   Delft   University   of   Technology,   Netherlands 
 

Tutorial   5:   Machine-Learning   for   Symbolic   Music   Generation  
François   Pachet,   SONY   CSL,   France 
Jean-Pierre   Briot,   Paris   VI   -   SONY   CSL,   France 

 
  

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 xv



Keynote   Speakers 
 
We   are   honored   to   have   three   distinguished   keynote   speakers: 
 
Structures:   Performed,   Perceived   and   Constructed 
Prof.   Elaine   Chew 
Professor   of   Digital   Media,   School   of   Electronic   Engineering   and   Computer   Science,   Queen 
Mary   University   of   London,   UK 

From   Stanford   to   Smule:   Reflections   on   the   Nine-Year   Journey   of   a   Music   Start-Up 
Dr.   Jeffrey   C.   Smith 
Co-founder,   Chairman,   and   CEO,   Smule,   Inc.,   USA 

Does   MIR   Stop   at   Retrieval? 
Prof.   Roger   B.   Dannenberg 
Professor   of   Computer   Science,   Art   &   Music,   Carnegie   Mellon   University,   USA 

 

WiMIR   Annual   Meeting 
 
Women in Music-IR (WiMIR) is a group of people in the Music-IR community dedicated to               
promoting the role of, and increasing opportunities for, women in the field. Participants meet              
to network, share information, and discuss in an informal setting the goal of building a               
community   that   supports   women   –   and   more   broadly,   diversity   –   in   the   field   of   Music-IR. 
 
WiMIR has held annual meetings at the ISMIR conference since 2012, garnering a high              
turnout of both female and male attendees. For the first time in 2016, WiMIR has organized a                 
mentoring program connecting female students, postdocs, and early-stage researchers to more           
senior females and male allies in the field, and has also received substantial financial support               
which   enables   more   female   researchers   to   attend   the   ISMIR   conference. 
 
This year’s WiMIR session is hosted by Preeti Rao (Indian Institute of Technology Bombay,              
India) and Zhongzhe Xiao (Soochow University, Mainland China). Apart from a presentation            
on the ongoing diversity initiatives, the WiMIR session at ISMIR 2017 features a talk by               
Shawn Carney, Head of Global IT at Spotify on promoting diversity, with the competitive              
edge   it   provides   in   an   increasingly   interdependent   and   interconnected   world. 
 

Bye   Bye   Bias:   Promoting   Diverse   Teams 
Shawn   Carney 
Head   of   Global   IT   at   Spotify,   USA 
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Panels 
 
ISMIR 2017 features two panels: the ISMIR Industry Panel, and the Future of Music-IR              
Research   panel.  

 
Industry   Panel 
The Industry Panel is moderated by Blair Kaneshiro (Stanford University, USA). The panel             
brings together five distinguished members of industry for a discussion of current topics as              
well   as   Q&A   with   the   audience: 

● Junqi   Deng,   KuGou,   Mainland   China 
● Anssi   Klapuri,   Yousician,   Finland 
● Matthew   McCallum,   Gracenote,   USA 
● John   Neuharth,   Microsoft,   USA 
● Avery   Wang,   Shazam,   USA 

 
Future   of   Music-IR   Research   Panel 
The Future of Music-IR Research panel focuses on novel and creative research directions             
(e.g., neuroscience, deep learning, Music-IR & health, Music-IR & education). It is            
moderated by the ISMIR 2017 General Chair, Ye Wang (National University of Singapore,             
Singapore). The panel features young researchers who have already made an impact on our              
community:  

● Kat   Agres,   Agency   for   Science,   Technology   &   Research   (A*STAR),   Singapore 
● Cynthia   Liem,   Delft   University   of   Technology,   Netherlands 
● Brian   McFee,   New   York   University,   USA 
● Gus   (Guangyu)   Xia,   NYU   Shanghai,   Mainland   China 

 
 
 

Late-Breaking/Demo   &   Unconference 
 
Friday afternoon is dedicated to late-breaking papers and Music-IR system demonstrations.           
Abstracts for these presentations are available online. Moreover, as in previous years, we             
have a special “unconference” session in which participants break up into smaller groups to              
discuss Music-IR issues of particular interest. This is an informal and informative opportunity             
to   get   to   know   peers   and   colleagues   from   around   the   world. 
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Music   Program   and   Community   Performance 
 
On Wednesday, there is a special concert night in the Master of Nets Garden (网师园).               
Conference participants enjoy Chinese traditional music and performances in one of the finest             
gardens in China, and a UNESCO heritage site, along with a docent-led tour of the garden.                
The program includes Kun opera (昆曲), Pingtan – storytelling and ballad singing in Suzhou              
dialect (苏州评弹), traditional dances, and instrumental performances such as Qin (古琴),           
Zheng   (古筝),   Pipa   (琵琶),   Di   (笛子),   and   Erhu   (二胡). 

On Thursday, there is a community performance night following the banquet dinner. The             
program includes both submitted and invited pieces, including original work that intersects            
Music-IR technology, traditional Chinese music, and music ensemble with sensors. This           
includes   seven   music   pieces:  

1. Etudes-Tableaux   No.   1,   by   Dr.   Jeffrey   C.   Smith. 
2. Ancient   Pipa   Solo   Piece   “Ambush   from   Ten   Sides”,   by   Shuqi   Dai. 
3. Fibonacci-sequence based composition: Carnatic Classical performance, by Venkata        

Subramanian   Viraraghavan. 
4. A   Trip   to   Suzhou,   by   Roger   B.   Dannenberg,   Gus   Xia,   and   Shuqi   Dai. 
5. Informatics   Philharmonic   Concert,   by   Christopher   Raphael. 
6. Liuyang   River,   by   Zhengshan   Shi. 
7. Motion Initiated Music Ensemble with Sensors (MIMES), by the NUS Sound and            

Music   Computing   Lab. 

 
 

Social   Events 
 
In addition to the academic focus of ISMIR, we have aimed to provide a number of unique                 
social events. The social program provides participants with an opportunity to relax after             
meetings, to experience Suzhou City, and to network with other ISMIR participants. The             
social   program   includes: 
 

Welcome   Reception 
Welcome   reception   happens   at   the   NUSRI   cafe   on   Monday,   October   23,   from   6pm   to   8pm. 
Hors   d’oeuvres   and   drinks   are   provided. 
 

WiMIR/Diversity   Reception 
Amazon   Music   presents   a   reception   at   the   NUSRI   cafe   on   Tuesday,   October   24,   from   6pm   to 
7:30pm   to   recognize   WiMIR   and   the   diversity   initiatives   of   the   ISMIR   2017   conference.   All 
registered   conference   attendees   are   welcome.   Hors   d’oeuvres   and   drinks   are   provided. 
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Grand   Canal   Cruise 
On Wednesday, October 25, from 7pm to 8pm, conference participants take a cruise on the               
Suzhou Ancient Grand Canal (苏州古运河). The Grand Canal is the oldest and longest             
man-made waterway in the world. Parts of this canal between Hangzhou and Beijing date              
back more than 2000 years. The canal starts from Beijing in the north and ends at Hangzhou                 
in   the   south.   The   Grand   Canal   measures   1700   kilometers   in   length.  

Garden   Concert 
After the Grand Canal Cruise, from 9pm to 10pm on Wednesday, October 25, conference              
participants visit the Master of Nets Garden (网师园) and  enjoy Chinese traditional music             
and performances. Details of the concert can be found in the “Music Program and              
Community   Performance”   section   above. 

ISMIR   Banquet   +   Community   Performance 
The Annual ISMIR Banquet takes place at  Songhe Lou Culture and Arts Center Restaurant              
(松鹤楼科文中心饭店).  There is a ISMIR community performance. The program comprises          
a selection of submitted and invited pieces, as detailed in the “Music Program and              
Community   Performance”   above. 

 

Satellite   Events 
 
ISMIR 2017 has expanded its offering of satellite events to three, emphasizing two very              
important   themes:   the   bridge   between   academia   and   industry   and   diversity   in   our   community. 
 
 
Hacking Audio and Music Research (HAMR) is an event series which applies the             
hackathon model to the development of new techniques for analyzing, processing, and            
synthesizing audio and music signals. This is in contrast to traditional hackathons and hack              
days, which generally emphasize prototyping commercial applications, but have proven to be            
an effective way for entrepreneurs and hobbyists to spend a concentrated period of time doing               
preliminary   work   on   a   new   project.  
 
The  China Conference on Sound and Music Technology  (CSMT) has the aim of promoting              
the research of Chinese traditional music in the field of sound and music technology, and the                
use of computational methods in Chinese traditional music research, as well as creating a              
space for dialog and debate among engineers, musicologists, and musicians who have interest             
in   this   music   tradition. 
 
The  Digital Libraries for Musicology (DLfM) workshop presents a venue specifically for            
those working on, and with, Digital Library systems and content in the domain of music and                
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musicology. This includes bibliographic and metadata for music, intersections with music           
Linked Data, and the challenges of working with the multiple representations of music across              
large-scale   digital   collections   such   as   the   Internet   Archive   and   HathiTrust. 

Host   City 
 

Suzhou has a rich history of over 2500 years. The city’s old village canals, stone bridges,                
pagodas, and meticulously designed UNESCO World Heritage gardens draw millions of           
domestic and overseas tourists each year. Suzhou’s culture is famous across China and             
beyond;   Marco   Polo   himself   once   described   Suzhou   as   the   “Venice   of   the   East”. 

The conference venues are all close to the National University of Singapore Research             
Institute (NUSRI) in Suzhou, which is the first oversea research institute of NUS. NUSRI is               
located at the Suzhou Industrial Park (SIP) within the Higher Education Town (HET) with              
many campuses from local and oversea universities which is rich with dining options. It              
offers convenient public transportation (e.g., subway) to many tourist attractions in the            
ancient   Suzhou   city. 
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Keynote Talk 1  

 

Structures: Performed, Perceived and Constructed 
 

Prof. Elaine Chew 

Professor of Digital Media 

School of Electronic Engineering and Computer Science 

Queen Mary University of London 

 

Abstract 

Conventional understanding of music structure in musicology as well as music information 

research limits its definition to musical form and sectional structures. But structure is more 

than sonata form or ABA structure. Structure refers to all manners of musical coherence as 

generated by surface features and deeper ones, musical entities and boundaries, movements 

and arrivals. Thus, long-term modulation of intensity or tension creates a form of structure 

(coherence), as does local weighting of notes to indicate an upbeat or downbeat, or subtle 

changes of color (for example, vibrato and timbral) amidst a sustained note. The human mind 

is wired to perceive, use, and crave structure. Grappling with ways to construct coherence is 

central to the work of music making, and imagining new and convincing ways to formulate 

musical coherence lies at the heart of musical innovation. By considering music structures as 

emerging from musical sense making, we open up new ways to explore and understand the 

manifold forms of music structure. 

 

With this broad definition of music structure in mind, I shall survey some of our recent work* 

in the scientific and computational modeling and analysis of music structure as performed, 

music structure as perceived, and music structure as applied to composition. Structures as 

perceived or communicated through prosody serve to shape the meaning of the musical text; 

when perceived or communicated structures serve as the given information rather than the 

end goal in an algorithm, this dual (reverse) approach leads to interesting insights into 

musical sense making; when perceived or communicated structures further serve as sources 

for crafting new compositions, they provide important seed material for generating coherence. 

In addition, the musical mind imputes structure on music information. Harking back to the 

medieval concept of music internal to the human body (musica humana), the presentation 

will conclude with applications of music structure extracted from arrhythmic heartbeats. 

 

* The presentation includes joint work with Dorien Herremans, Isaac Schankler, Jordan 

Smith, Luwei Yang, Ashwin Krishna, Daniel Soberanes, and Matthew Ybarra. 

 

Biography 

Elaine Chew is Professor of Digital Media at Queen Mary University of London’s School of 

Electronic Engineering and Computer Science, where she is affiliated with the Centre for 

Digital Music. Her research centers on mathematical modeling of musical prosody, structure, 

cognition, and interaction. She was previously Associate Professor at the University of 

Southern California’s Viterbi School of Engineering and Thornton School of Music, where 

she founded the Music Computation and Cognition research laboratory. Her work has 

received recognition through the NSF CAREER/PECASE awards, and fellowships at the 

Radcliffe Institute for Advanced Study at Harvard. She earned Ph.D. and S.M. degrees in 

Operations Research from MIT, and a B.A.S. in Mathematical and Computational Sciences 

(honors) and in Music Performance (distinction) from Stanford. She holds Fellowship and 
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Licentiate diplomas in piano performance from Trinity College London. As a pianist, she has 

performed internationally as soloist and chamber musician, and she frequently collaborates 

with composers to commission, create, present, and record new music. Her work has been 

featured on Los Angeles Philharmonic’s Inside the Music series, and in an exhibit on 

Beautiful Science at the Huntington Library in California. She has served as a member of the 

MIT Music and Theater Arts Visiting Committee and the Georgia Institute of Technology 

School of Music External Review Committee. She is on the advisory/editorial boards of the 

Computer Music Journal, the Journal of Music and Mathematics, Music Theory Spectrum, 

and ACM Computers in Entertainment. This year, she is also a jury member of the Guthman 

Musical Instrument Competition and the Falling Walls Lab. 
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Keynote Talk 2  

 

From Stanford to Smule: Reflections on the Nine-Year 

Journey of a Music Start-Up 
 

Dr. Jeffrey C. Smith  
Co-founder, Chairman, and CEO 

Smule, Inc. 

 

Abstract 

Smule, a music start-up based in San Francisco, began as a conversation between Jeffrey 

Smith, a PhD student at Stanford’s CCRMA, and Ge Wang, a newly hired professor. Nine 

years later, Smule has emerged as the leading platform for music discovery and collaboration. 

Smule’s global community of 50 million people create 7 billion recordings each year, and 

upload over 36 terabytes of their music to the Smule network each day. The Smule catalog of 

2 million songs, which doubled in size in the past six months, represents one of the largest 

corpuses of structured musical content on the Internet. This catalog includes musical backing 

tracks in MIDI and MP4 formats, lyrics, pitch data, timing, and musical structure. Smule 

generated $101M in sales in ‘16 and has 1.8 million paying subscribers to their service. 

 

Tracing the nine-year arch of Smule from a student concept to a market leader, what can we 

learn about the potential symbiotic relationship between academic research and commercial 

innovation? What was the genesis of Smule? What was the role of students, research, 

Stanford, venture capital, and more broadly, Silicon Valley? What were the formative 

challenges the company confronted as it scaled from tens of thousands of users “blowing” air 

through their iPhone microphones with Smule’s Ocarina (a flute-like instrument designed for 

the original iPhone) in ‘08 to today, where an active community sings and plays 20M songs 

each day on their mobile phones, often together in collaboration? How is a musical social 

graph different than a social graph built around other forms of media, such as photos, video, 

or text? Finally, what role did MIR play in the development of the Smule business model and 

technology stack? 

 

Biography 

Dr. Jeffrey C. Smith, PhD, is the co-founder, Chairman, and CEO of Smule. Jeff has a BS in 

Computer Science from Stanford University and a PhD in computer-based music theory and 

acoustics (“Correlation Analyses of Encoded Music Performance”) from Stanford’s CCRMA. 

Jeff has taught introductory computer science courses at Stanford in addition to serving as a 

teaching assistant in music theory and computer science. More recently, Jeff periodically 

teaches Music 264 at Stanford, a seminar with lab that analyzes large-scale industry data 

sources (including Stanford DAMP) to develop insights into musical engagement. Early in 

his career, Jeff worked as a software engineer at Hewlett-Packard’s language lab and IBM’s 

Scientific Research Center in Palo Alto. For the past twenty-five years, Jeff has served as a 

leader in businesses he co-founded, including Envoy (acquired by Novell ’95), Tumbleweed 

(NASDAQ listing in ’99), Simplify Media (acquired by Google in ’10), and for the past nine 

years, Smule. Jeff is the co-author of twenty-seven patents in the fields of computer music 

and email security. Jeff enjoys writing and playing classical piano music – he is currently 

immersed in Brahms Op. 9 & Op. 10. 
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Keynote Talk 3  
 

Does MIR Stop at Retrieval? 
 

Prof. Roger B. Dannenberg 
Professor of Computer Science, Art & Music 

Carnegie Mellon University 

 

Abstract 

The Music Information Retrieval community that formed around this conference has moved 

swiftly from a narrow set of concerns and problems to a much wider exploration that I have 

long characterized as “Music Understanding.” Music Understanding explores methods to find 

pattern and structure in music, ranging from low-level features, such as pitch and onsets, to 

high-level properties such as keys, transcriptions, and yes, even genre. I believe that “Music 

Understanding” and the MIR community must broaden their scope even further, turning to 

music composition, improvisation, and production, for at least three reasons. First, attempts to 

automate music generation have had very limited success, so music generation is a good 

measure of the gap between music formalisms and our human understanding of music. Second, 

music generation research might lead to a better understanding of creativity, learning, and the 

brain. Finally, music generation has practical applications, and I will discuss one: music 

generation for music therapy. I will also summarize the history of computer-assisted 

composition, describe the state-of-the-art, and provide a critique intended to spur new research. 

 

Biography 

Dr. Roger B. Dannenberg, PhD, is currently a Professor of Computer Science at Carnegie 

Mellon University with courtesy appointments in the Schools of Art and Music. Dr. 

Dannenberg studied at Rice University and Case-Western Reserve University before receiving 

a Ph.D. in Computer Science from Carnegie Mellon University. He also worked for Steve Jobs 

at NeXT as a member of the music group, MakeMusic’s commercialization of Dannenberg’s 

computer accompaniment research, and with Music Prodigy, an award-winning MIR-based 

music education start-up. 

 

Dr. Dannenberg is an international leader in computer music and is well known especially for 

programming language design and real-time interactive systems including computer 

accompaniment. He and his students have introduced a number of innovations to the field: 

functional programming for sound synthesis and real-time interactive systems, spectral 

interpolation synthesis, score-following using dynamic programming, probabilistic 

formulations of score alignment, machine learning for style classification, score alignment 

using chromagrams, and bootstrap learning for onset detection. Dannenberg is also the co-

creator of Audacity, an open-source audio editor used by millions. 

 

Dr. Dannenberg is an active trumpet player and composer. His trumpet playing includes 

orchestral, jazz, and experimental music with electronics, and his opera, La Mare dels Peixos, 

co-composed with Jorge Sastre, premiered in Valencia, Spain in December 2016. 
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WiMIR Talk  

 

Bye Bye Bias: Promoting Diverse Teams 
 
Shawn Carney 

Head of Global IT 

Spotify 
 

Abstract 

Globalization is leading to an increasingly interdependent, interconnected world and diversity 

is both a means of differentiation within that complex system as well as a competitive 

advantage. Bye Bye Bias: Promoting Diverse Teams examines the role of intersectional 

diversity and inclusion in the process of recruiting and retaining successful teams. Starting 

with explaining foundational concepts, such as a shared lexicon and the benefits of diversity, 

and then progressing to operational tips for busting bias, building diverse recruiting processes, 

and retaining inclusive teams, this talk will provide tactical tools towards building and 

maintaining high-performing teams. 
 

Biography 

Shawn Carney has been a leader in the music and technology field since 1993. Originally 

based in Washington DC, she went on to join technology teams at major music labels in LA 

and NY. Shawn has a passion for building diverse, inclusive teams that solve problems in 

creative ways. When she isn’t working, she spends time bicycling, playing video games, 

illustrating, and documenting the antics of her two dogs (a Corgi and a Chihuahua) and her 

two cats (a Siamese and a Scottish Fold). Shawn now leads the IT organization for Spotify 

and lives in New York City. 
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Tutorial 1 

 

Bayes and Markov Listen to Music 
 

George Tzanetakis 
 

Abstract 

Music is a very complex signal with information spread across different hierarchical levels 

and temporal scales. In the last 15 years in the field of Music Information Retrieval (MIR) 

and Music Signal Processing there has been solid progress in developing algorithms for 

understanding music signals with applications such as music recommendation, classification, 

transcription and visualization. Probabilities and probabilistic modeling play an important 

role in many of these algorithms. The goal of this tutorial is to explore how probabilistic 

reasoning is used in the analysis of music signals. 

 

The target audience is researchers and students interested in MIR but the tutorial would also 

be of interest to participants from other areas of signal processing as the techniques described 

have a wide variety of applications. More specifically the tutorial will cover how basic 

discrete probabilities can be used for symbolic music generation and analysis, followed by 

how classification can be cast as a probability density function estimation problem through 

Bayes theorem. Automatic chord detection and structure segmentation will be used as a 

motivating problems for probabilistic reasoning over time and Hidden Markov Models more 

specifically. Kalman and particle filtering will be described through real-time beat tracking 

and score following. More complex models such as Bayesian Networks and Conditional 

Random Fields and how the can be applied for music analysis will also be presented. Finally 

the tutorial will end with Markov Logic Networks a formalism that subsumes all previous 

models. Through the tutorial the central concepts of Bays Theorem, Markov assumptions and 

maximum likelihood estimation and expectation maximization will be described. 

 

George Tzanetakis is a Professor in the Department of Computer Science with cross-listed 

appointments in ECE and Music at the University of Victoria, Canada. He is Canada 

Research Chair (Tier II) in the Computer Analysis and Audio and Music and received the 

Craigdaroch research award in artistic expression at the University of Victoria in 2012. In 

2011 he was Visiting Faculty at Google Research. He received his PhD in Computer Science 

at Princeton University in 2002 and was a Post-Doctoral fellow at Carnegie Mellon 

University in 2002-2003. His research spans all stages of audio content analysis such as 

feature extraction, segmentation, classification with specific emphasis on music information 

retrieval. He is also the primary designer and developer of Marsyas an open source 

framework for audio processing with specific emphasis on music information retrieval 

applications. His pioneering work on musical genre classification received a IEEE signal 

processing society young author award and is frequently cited. He has given several tutorials 

in well known international conferences such as ICASSP, ACM Multimedia and ISMIR. 

More recently he has been exploring new interfaces for musical expression, music robotics, 

computational ethnomusicology, and computer-assisted music instrument tutoring. These 

interdisciplinary activities combine ideas from signal processing, perception, machine 

learning, sensors, actuators and human-computer interaction with the connecting theme of 

making computers better understand music to create more effective interactions with 

musicians and listeners. More details can be found http://www.cs.uvic.ca/gtzan.  
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Tutorial 2 

 

Leveraging MIDI Files for Music Information Retrieval 
 

Colin Raffel 
 

Abstract 

MIDI files are a widely-available digital score format which contain a bounty of valuable 

information about a given piece of music. A MIDI file which has been matched to a 

corresponding audio recording can provide a transcription, key and meter annotations, and 

occasionally lyrics for the recording. They are also useful in very large-scale metadata-

agnostic corpus studies of popular music. Despite their potential utility, they remain 

underused in the music information retrieval community. The purpose of this tutorial is to 

expose attendees to the promise of leveraging MIDI files in MIR tasks. 

 

The motivation for having this tutorial now is the release of the Lakh MIDI Dataset (LMD), a 

collection of 178,561 MIDI files of which many have been matched and aligned to 

corresponding entries in the Million Song Dataset. The tutorial will therefore include a mix of 

explanatory sessions on research involving MIDI files and hands-on demonstrations of 

utilizing the LMD. Attendees will leave the tutorial with a strong awareness of what MIDI 

files are, what sort of information we can extract from them, what steps are necessary for 

leveraging this information, practical knowledge of how to utilize MIDI files, and an idea of 

tantalizing prospects for future research. 

 

Colin Raffel is a researcher focused on machine learning methods for sequences, with a 

particular interest in music data. He is currently a Research Scientist at Google Brain. In 2016, 

he completed a PhD in Electrical Engineering at Columbia University in LabROSA, 

supervised by Dan Ellis. His thesis focused on learning- based methods for comparing 

sequences, with the particular application of matching MIDI files to corresponding audio 

recordings. Prior to his PhD, he completed a Master’s at the Center for Computer Research in 

Music and Acoustics and a Bachelor’s at Oberlin College. 
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Tutorial 3 
 

A Basic Introduction to Audio-Related Music Information 

Retrieval 
 

Meinard Müller, Stefan Balke, and Christof Weiß 
 

Abstract 

The main goal of this tutorial is to give an introduction to Music Information Retrieval with a 

particular focus on audio-related analysis and retrieval tasks. Well-established topics in MIR 

are selected to serve as motivating application scenarios. Within these scenarios, fundamental 

techniques and algorithms that are applicable to a wide range of analysis and retrieval 

problems are presented in depth. Including numerous figures and sound examples, this 

tutorial is intended to suite for a wide and interdisciplinary audience with no particular 

background in MIR or audio processing. This tutorial consists of eight parts, each lasting 

between 20 and 25 minutes. The first two parts cover fundamental material on music 

representations and the Fourier transform—concepts that are required throughout the tutorial. 

In the subsequent parts, concrete MIR tasks serve as starting points for our investigations. 

Each part starts with a general description of the MIR scenario at hand and integrates the 

topic into a wider context. Motivated by a concrete scenario, each part discusses important 

techniques and algorithms that are generally applicable to a wide range of analysis, 

classification, and retrieval problems. 

 

Meinard Müller studied mathematics (Diploma) and computer science (Ph.D.) at the 

University of Bonn, Germany. In 2002/2003, he conducted postdoctoral research in 

combinatorics at the Mathematical Department of Keio University, Japan. In 2007, he 

finished his Habilitation at Bonn University in the field of multimedia retrieval. From 2007 to 

2012, he was a member of the Saarland University and the Max-Planck Institut fur Informatik. 

Since September 2012, Meinard Müller holds a professorship for Semantic Audio Processing 

at the International Audio Laboratories Erlangen, which is a joint institution of the Friedrich-

Alexander-Universitat Erlangen-Nürnberg (FAU) and the Fraunhofer-Institut fur Integrierte 

Schal̈tungen IIS. His recent research interests include music processing, music information 

retrieval, audio signal processing, and motion processing. Meinard Muller has been a member 

of the IEEE Audio and Acoustic Signal Processing Technical Committee from 2010 to 2015 

and is a member of the Board of Directors of the International Society for Music Information 

Retrieval (ISMIR) since 2009. He has co-authored more than 100 peer-reviewed scientific 

papers, wrote a monograph titled Information Retrieval for Music and Motion (Springer, 

2007) as well as a textbook titled Fundamentals of Music Processing (Springer, 2015, 

www.music-processing.de). 

 

Stefan Balke studied electrical engineering (Diplom) at the Leibniz Universitat Hannover, 

Germany. Since 2014, he has been working towards his Ph.D. degree in the Semantic Audio 

Processing Group headed by Prof. Meinard Muller at the International Audio Laboratories 

Erlangen. His research interests include music information retrieval, deep learning, and web-

based multimedia retrieval. In summer 2016, he supported Martin Pfleiderer and Klaus 

Frieler as a teacher at the International Summer School on Computational Musicology in 

Weimar, Germany. The goal of this summer school was to provide a comprehensive 

introduction into methods, applications, and potentials of computational musicology and 
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music information retrieval especially for jazz music. Together with the Nuremberg 

University of Music, he developed a web-based interface for jazz-piano education. He is an 

active contributor in several open-source projects (e. g. librosa), mainly dealing with audio 

signal processing with Python. In his spare time, he plays trumpet in several local jazz bands 

and projects. 

 

Christof Weiß studied physics (Diplom) at the Julius-Maximilians-Universitat Wurzburg as 

well as composition (Diplom-Musik) at the Hochschule fur Musik Wurzburg, Germany. 

From 2012–2015, he worked as a Ph.D. student in the Semantic Music Technologies Group 

at the Fraunhofer Institute fur Digitale Medientechnologie (IDMT) Ilmenau, Germany. His 

Ph.D. thesis deals with computational methods for tonality and style analysis in music 

recordings and was supervised by Prof. Karlheinz Brandenburg. In 2014, he visited the 

Centre for Digital Music at the Queen Mary University of London for two extended research 

stays. Since 2015, Christof Weiß has been a member of the Semantic Audio Processing 

Group headed by Prof. Meinard Muller at the International Audio Laboratories Erlangen. He 

conducts research in a project on Wagner’s “Ring” cycle, which is a collaboration with the 

musicology department of the Universitat des Saarlandes, Saarbrucken. His work as a 

composer encompasses pieces for orchestra, ensemble, and choir, as well as chamber music. 

In 2013, he was awarded a second prize in the competition “Pablo Casals” in Prades, France. 

He was commissioned by the Mozartfest Wurzburg and the festival “Young Euro Classics” 

Berlin. In 2012, he received the Youth Cultural Advancement Award of the city of Amberg, 

Germany. From 2007–2015, Christof Weiß was a fellow of the Foundation of German 

Business in the study and the Ph.D. scholarship program. 
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Tutorial 4 
 

So You Want to Conduct a User Study in MIR? 
 

Andrew Demetriou, Audrey Laplante, Sally Jo Cunningham, and Cynthia 

Liem 
 

Abstract 

This tutorial will consist of three main parts. In the first one, we will provide an overview of 

the user studies in the ISMIR community as well as in other domains such as psychology, 

music sociology, musicology, library and information science, and HCI, highlighting the 

important scholars and summarizing the major themes. In the second part, we will present an 

overview of the different user research methods. We will cover the commonly used methods 

in social science research (e.g., interviews, surveys, focus groups, written/audio journals, 

task-based experiments, tracking biological data, etc.), discuss the suitability of each method 

for different research projects, and the strengths and weaknesses of each method. 

 

The third part will consist of an interactive session during which the participants will be 

invited to brainstorm research questions that are relevant to their own MIR research projects 

and could be answered by conducting an interdisciplinary user study. Individual participants 

or group of participants will present their ideas and they will receive feedback from the 

presenters as well as from other participants. 

 

Andrew Demetriou is a research assistant in the Multimedia Computing research group at 

TU Delft. He completed a research masters in social psychology at VU Amsterdam (2015), 

with a focus on biological data collection methods, and mate choice/romantic attraction. His 

research has been published in Letters on Evolutionary Behavioral Science, Journal of Crime 

and Delinquency, Proceedings of ISMIR 2016, and Proceedings of 10th ACM Conference on 

Recommender Systems. His research interests include social and romantic bonding, optimal 

mental/physiological states (e.g. “flow”, mindfulness), and how music, along with biological 

and sensor data, can be used to study these phenomena. 

 

Audrey Laplante is an associate professor at the Université de Montréal’s Library and 

Information Science School. She is a member of the Centre for Interdisciplinary Research in 

Music Media and Technology (CIRMMT). She received a PhD (2008) and a Master’s (2001) 

in information science from McGill University and Université de Montréal, respectively. Her 

research interests focus primarily on the information-seeking behaviour of music researchers 

and amateurs, and on systems for music information retrieval and discovery. Her research has 

been published in a variety of outlets, including Library & Information Science Research, the 

Proceedings of the ISMIR, Journal of Documentation, and the collective book New 

Directions in Children’s and Adolescents’ Information Behavior Research (Emerald Group 

Publishing, 2014). 

 

Sally Jo Cunningham is an associate professor of Computer Science at the University of 

Waikato (Te Whare Wānanga o Waikato), in Hamilton, New Zealand. Her research focuses 

on everyday, authentic information behavior over a range of media (text, music, images, and 

video). Sally Jo was advised by her flute instructor to choose a major other than music as an 

undergraduate; now she enjoys experiencing music through the experiences of other people 
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with her MIR research. She is active in the digital libraries and human-computer interaction 

research communities—a member of the steering committee for JCDL; program co-chair for 

ICADL 2008, JCDL 2014, DL 2015, ISMIR 2017; general chair for ICADL 2017; chair of 

the IEEE/CS TCDL (2016-2017)—and has over 120 refereed research publications in digital 

libraries, music information retrieval, human-computer interaction, and machine learning.  

 

Cynthia Liem is an Assistant Professor in Computer Science in the Multimedia Computing 

Group of Delft University of Technology, and pianist of the Magma Duo. She initiated and 

co-coordinated the European research project PHENICX (2013-2016), focusing on 

technological enrichment of symphonic concert recordings with partners such as the Royal 

Concertgebouw Orchestra. Her research interests consider music and multimedia search and 

recommendation, and increasingly shift towards making people discover new interests and 

content which would not trivially be retrieved. Beyond her academic activities, Cynthia 

gained industrial experience at Bell Labs Netherlands, Philips Research and Google. She was 

a recipient of the Lucent Global Science and Google Anita Borg Europe Memorial 

scholarships, the Google European Doctoral Fellowship 2010 in Multimedia, and a finalist of 

the New Scientist Science Talent Award 2016 for young scientists committed to public 

outreach. She will serve as general co-chair of ISMIR 2018, to be hosted in Delft, The 

Netherlands. 
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Tutorial 5 
 

Machine-Learning for Symbolic Music Generation 
 

François Pachet and Jean-Pierre Briot   
 

Abstract 

The goal of this tutorial is to present in a comprehensive way the challenges and techniques 

of using computers for generating musical content. Various kind of techniques will be 

considered from Markov models to deep learning models, with the goal of presenting both 

the state of the art and the current limitations and open problems. The tutorial will cover 

essentially symbolic music generation, with an emphasis on leadsheets, seen as the primary 

form of mainstream music, as well as polyvocal music. 

 

We will cover two classes of models: Markov models, and in particular Markov Constraints 

models, which have been particularly successful at modeling monophonic material as well as 

leadsheets. We’ll describe the underlying models that can be learned efficiently, and will 

illustrate them with many examples of generated music in various styles. 

 

We will also cover deep learning models and application to polyvocal music. After reviewing 

the basic components of deep architectures (neural layers, autoencoders, recurrent 

networks…), we will describe how they can be used in a direct way, e.g., to produce musical 

accompaniment, or in a more indirect way (by controlling sampling or unit selection and 

aggregation, etc.) for a finer control of generation. Various examples of architectures, 

experiments and approaches will be analyzed and compared. 

 

François Pachet was trained in engineering, computer science and artificial intelligence 

(University of Paris 6) and is also a jazz musician. His research addresses issues in music 

interaction and production. In 2012 He obtained an ERC Advanced Grant to develop a new 

generation of music and text generation tools called Flow Machines. He was also trained in 

classical guitar, Baroque harmony and jazz. He plays jazz guitar and composes jazz and pop 

music, and published two albums. He initiated the series “Why X is interesting” at ISMIR, 

which was instantiated for many music genres. 

 

Jean-Pierre Briot is a computer scientist trained in mathematics and computer science at 

Université Pierre et Marie Curie (Paris 6). He has a long interest in music and computer 

science, since his PhD conducted at IRCAM and Paris 6 in 1984. He is a CNRS Research 

Director at Laboratoire d’Informatique de Paris 6 (LIP6), research consultant for the Flow 

Machines Project at Sony CSL and permanent visiting researcher at PUC-Rio University in 

Brazil. He is also a regular musician (jazz and Brazilian music). 
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Oral Session 1 

Musicology 

  





MULTI-LABEL MUSIC GENRE CLASSIFICATION FROM AUDIO, TEXT,
AND IMAGES USING DEEP FEATURES

Sergio Oramas1, Oriol Nieto2, Francesco Barbieri3, Xavier Serra1

1Music Technology Group, Universitat Pompeu Fabra
2Pandora Media Inc.

3TALN Group, Universitat Pompeu Fabra
{sergio.oramas, francesco.barbieri, xavier.serra}@upf.edu, onieto@pandora.com

ABSTRACT

Music genres allow to categorize musical items that share
common characteristics. Although these categories are not
mutually exclusive, most related research is traditionally
focused on classifying tracks into a single class. Further-
more, these categories (e.g., Pop, Rock) tend to be too
broad for certain applications. In this work we aim to ex-
pand this task by categorizing musical items into multiple
and fine-grained labels, using three different data modal-
ities: audio, text, and images. To this end we present
MuMu, a new dataset of more than 31k albums classified
into 250 genre classes. For every album we have collected
the cover image, text reviews, and audio tracks. Addition-
ally, we propose an approach for multi-label genre classi-
fication based on the combination of feature embeddings
learned with state-of-the-art deep learning methodologies.
Experiments show major differences between modalities,
which not only introduce new baselines for multi-label
genre classification, but also suggest that combining them
yields improved results.

1. INTRODUCTION

Music genres are useful labels to classify musical items
into broader categories that share similar musical, regional,
or temporal characteristics. Dealing with large collections
of music poses numerous challenges when retrieving and
classifying information [3]. Music streaming services tend
to offer catalogs of tens of millions of tracks, for which
tasks such as music classification are of utmost importance.
Music genre classification is a widely studied problem in
the Music Information Research (MIR) community [40].
However, almost all related work is concentrated in multi-
class classification of music items into broad genres (e.g.,
Pop, Rock), assigning a single label per item. This is prob-
lematic since there may be hundreds of more specific mu-
sic genres [33], and these may not be necessarily mutually
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exclusive (i.e., a song could be Pop, and at the same time
have elements from Deep House and a Reggae grove). In
this work we aim to advance the field of music classifi-
cation by framing it as multi-label genre classification of
fine-grained genres.

To this end, we present MuMu, a new large-scale mul-
timodal dataset for multi-label music genre classification.
MuMu contains information of roughly 31k albums clas-
sified into one or more 250 genre classes. For every al-
bum we analyze the cover image, text reviews, and audio
tracks, with a total number of approximately 147k audio
tracks and 447k album reviews. Furthermore, we exploit
this dataset with a novel deep learning approach to learn
multiple genre labels for every album using different data
modalities (i.e., audio, text, and image). In addition, we
combine these modalities to study how the different com-
binations behave.

Results show how feature learning using deep neu-
ral networks substantially surpasses traditional approaches
based on handcrafted features, reducing the gap between
text-based and audio-based classification [29]. Moreover,
an extensive comparative of different deep learning archi-
tectures for audio classification is provided, including the
usage of a dimensionality reduction approach that yields
improved results. Finally, we show how the late fusion of
feature vectors learned from different modalities achieves
better scores than each of them individually.

2. RELATED WORK

Most published music genre classification approaches rely
on audio sources [2, 40]. Traditional techniques typically
use handcrafted audio features, such as Mel Frequency
Cepstral Coecients (MFCCs) [20], as input of a machine
learning classifier (e.g., SVM) [39, 44]. More recent deep
learning approaches take advantage of visual representa-
tions of the audio signal in form of spectrograms. These
visual representations are used as input to Convolutional
Neural Networks (CNNs) [5, 6, 8, 9, 34], following ap-
proaches similar to those used for image classification.

Text-based approaches have also been explored for this
task. For instance, in [13, 29] album customer reviews
are used as input for the classification, whereas in [4, 22]
song lyrics are employed. By contrast, there are a limited
number of papers dealing with image-based genre classi-

23



fication [18]. Most multimodal approaches for this task
found in the literature combine audio and song lyrics as
text [16, 27]. Moreover, the combination of audio and
video has also been explored [37]. However, the authors
are not aware of published multimodal approaches for mu-
sic genre classification that involve deep learning.

Multi-label classification is a widely studied problem
[14, 43]. Despite the scarcity in terms of approaches for
multi-label classification of music genres [36, 46], there is
a long tradition in MIR for tag classification, which is a
multi-label problem [5, 46].

3. MULTIMODAL DATASET

To the best of our knowledge, there are no publicly avail-
able large-scale datasets that encompass audio, images,
text, and multi-label annotations. Therefore, we present
MuMu, a new Multimodal Music dataset with multi-
label genre annotations that combines information from
the Amazon Reviews dataset [23] and the Million Song
Dataset (MSD) [1]. The former contains millions of al-
bum customer reviews and album metadata gathered from
Amazon.com. The latter is a collection of metadata and
precomputed audio features for a million songs.

To map the information from both datasets we use Mu-
sicBrainz 1 . For every album in the Amazon dataset, we
query MusicBrainz with the album title and artist name to
find the best possible match. Matching is performed using
the same methodology described in [30], following a pair-
wise entity resolution approach based on string similarity.
Following this approach, we were able to map 60% of the
Amazon dataset. For all the matched albums, we obtain the
MusicBrainz recording ids of their songs. With these, we
use an available mapping from MSD to MusicBrainz 2 to
obtain the subset of recordings present in the MSD. From
the mapped recordings, we only keep those associated with
a unique album. This process yields the final set of 147,295
songs, which belong to 31,471 albums.

The song features provided by the MSD are not gener-
ally suitable for deep learning [45], so we instead use in our
experiments audio previews between 15 and 30 seconds re-
trieved from 7digital.com. For the mapped set of al-
bums, there are 447,583 customer reviews in the Amazon
Dataset. In addition, the Amazon Dataset provides further
information about each album, such as genre annotations,
average rating, selling rank, similar products, cover image
url, etc. We employ the provided image url to gather the
cover art of all selected albums. The mapping between the
three datasets (Amazon, MusicBrainz, and MSD), genre
annotations, data splits, text reviews, and links to images
are released as the MuMu dataset 3 . Images and audio files
can not be released due to copyright issues.

1 https://musicbrainz.org/
2 http://labs.acousticbrainz.org/million-song-dataset-echonest-archive
3 https://www.upf.edu/web/mtg/mumu

3.1 Genre Labels

Amazon has its own hierarchical taxonomy of music gen-
res, which is up to four levels in depth. In the first level
there are 27 genres, and almost 500 genres overall. In our
dataset, we keep the 250 genres that satisfy the condition
of having been annotated in at least 12 albums. Every al-
bum in Amazon is annotated with one or more genres from
different levels of the taxonomy. The Amazon Dataset con-
tains complete information about the specific branch from
the taxonomy used to classify each album. For instance, an
album annotated as Traditional Pop comes with the com-
plete branch information Pop / Oldies / Traditional Pop. To
exploit either the taxonomic and the co-occurrence infor-
mation, we provide every item with the labels of all their
branches. For example, an album classified as Jazz / Vocal
Jazz and Pop / Vocal Pop is annotated in MuMu with the
four labels: Jazz, Vocal Jazz, Pop, and Vocal Pop. There
are in average 5.97 labels for each song (3.13 standard de-
viation).

Table 1. Top-10 most and least represented genres
Genre % of albums Genre % of albums

Pop 84.38 Tributes 0.10
Rock 55.29 Harmonica Blues 0.10
Alternative Rock 27.69 Concertos 0.10
World Music 19.31 Bass 0.06
Jazz 14.73 European Jazz 0.06
Dance & Electronic 12.23 Piano Blues 0.06
Metal 11.50 Norway 0.06
Indie & Lo-Fi 10.45 Slide Guitar 0.06
R&B 10.10 East Coast Blues 0.06
Folk 9.69 Girl Groups 0.06

The labels in the dataset are highly unbalanced, follow-
ing a distribution which might align well with those found
in real world scenarios. In Table 1 we see the top 10 most
and least represented genres and the percentage of albums
annotated with each label. The unbalanced character of the
genre annotations poses an interesting challenge for music
classification that we also aim to exploit. Among the mul-
tiple possibilities that this dataset may offer to the MIR
community, we focus our work on the multi-label classifi-
cation problem, described next.

4. MULTI-LABEL CLASSIFICATION

In multi-label classification, multiple target labels may be
assigned to each classifiable instance. More formally:
given a set of n labels L = {l1, l2, . . . , ln}, and a set of
m items I = {i1, i2, . . . , im}, we aim to model a function
f able to associate a set of c labels to every item in I , where
c ∈ [1, n] varies for every item.

Deep learning approaches are well-suited for this prob-
lem, as these architectures allow to have multiple outputs
in their final layer. The usual architecture for large multi-
label classification using deep learning ends with a logistic
regression layer with sigmoid activations evaluated with
the cross-entropy loss, where target labels are encoded as
high-dimensional sparse binary vectors [42]. This method,
which we refer as LOGISTIC, implies the assumption that
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the classes are statistically independent (which is not the
case in music genres).

A more recent approach [7], relies on matrix factor-
ization to reduce the dimensionality of the target labels.
This method makes use of the interrelation between labels,
embedding the high-dimensional sparse labels onto lower-
dimensional vectors. In this case, the target of the network
is a dense lower-dimensional vector which can be learned
using the cosine proximity loss, as these vectors tend to be
l2-normalized. We denote this technique as COSINE, and
we provide a more formal definition next.

4.1 Labels Factorization

Let M be the binary matrix of items I and labels L where
mij = 1 if ii is annotated with label lj and mij = 0 oth-
erwise. Using M , we calculate the matrix X of Positive
Pointwise Mutual Information (PPMI) for the set of labels
L. Given Li as the set of items annotated with label li, the
PPMI between two labels is defined as:

X(li, lj) = max

(
0, log

P (Li, Lj)

P (Li)P (Lj)

)
(1)

where P (Li, Lj) = |Li∩Lj |/|I| and P (Li) = |Li|/|I|.
The PPMI matrix X is then factorized using Singular

Value Decomposition (SVD) such that X ≈ UΣV , where
U and V are unitary matrices, and Σ is a diagonal matrix
of singular values. Let Σd be the diagonal matrix formed
from the top d singular values, and let Ud be the matrix
produced by selecting the corresponding columns from U ,
the matrix Cd = Ud ·

√
Σd contains the label factors of d

dimensions. Finally, we obtain the matrix of item factors
Fd as Fd = Cd·MT . Further information on this technique
may be found in [17].

Factors present in matrices Cd and Fd are embedded in
the same space. Thus, a distance metric such as cosine
distance can be used to obtain distance measures between
items and labels. Similar labels are grouped in the space,
and at the same time, items with similar sets of labels are
near each other. These properties can be exploited in the
label prediction problem.

4.2 Evaluation Metrics

The evaluation of multi-label classification is not necessar-
ily straightforward. Evaluation measures vary according to
the output of the system. In this work we are interested
in measures that deal with probabilistic outputs, instead
of binary. The Receiver Operating Characteristic (ROC)
curve is a graphical plot that illustrates the performance of
a binary classifier system as its discrimination threshold is
varied. Thus, the area under the ROC curve (AUC) is often
taken as an evaluation measure to compare such systems.
We selected this metric to compare the performance of the
different approaches as it has been widely used for genre
and tag classification problems [5, 9].

The output of a multi-label classifier is a label-item ma-
trix. Thus, it can be evaluated either from the labels or
the items perspective. We can measure how accurate the
classification is for every label, or how well the labels are

ranked for every item. In this work, the former point of
view is evaluated with the AUC measure, which is com-
puted for every label and then averaged. We are interested
in classification models that strengthen the diversity of la-
bel assignments. As the taxonomy is composed of broad
genres which are over-represented in the dataset (see Ta-
ble 1), and more specific subgenres (e.g., Vocal Jazz, Brit-
pop), we want to measure whether the classifier is focusing
only on over-represented genres, or on more fine-grained
ones. To this end, catalog coverage (also known as aggre-
gated diversity) is an evaluation measure used in the ex-
treme multi-label classification [14] and the recommender
systems [32] communities. Coverage@k measures the per-
centage of normalized unique labels present in the top k
predictions made by an algorithm across all test items. Val-
ues of k = 1, 3, 5 are typically employed in multi-label
classification.

5. ALBUM GENRE CLASSIFICATION

In this section we exploit the multimodal nature of the
MuMu dataset to address the multi-label classification task.
More specifically, and since each modality on this set (i.e.,
cover image, text reviews, and audio tracks) is associated
with a music album, our task focuses on album classifica-
tion.

5.1 Audio-based Approach

A music album is composed by a series of audio tracks,
each of which may be associated with different genres. In
order to learn the album genre from a set of audio tracks we
split the problem into three steps: (1) track feature vectors
are learned while trying to predict the genre labels of the
album from every track in a deep neural network. (2) Track
vectors of each album are averaged to obtain album feature
vectors. (3) Album genres are predicted from the album
feature vectors in a shallow network where the input layer
is directly connected to the output layer.

It is common in MIR to make use of CNNs to learn
higher-level features from spectrograms. These represen-
tations are typically contained in RF×N matrices with F
frequency bins and N time frames. In this work we com-
pute 96 frequency bin, log-compressed constant-Q trans-
forms (CQT) [38] for all the tracks in our dataset using
librosa [24] with the following parameters: audio sam-
pling rate at 22050 Hz, hop length of 1024 samples, Hann
analysis window, and 12 bins per octave. In addition, log-
amplitude scaling is applied to the CQT spectrograms. Fol-
lowing a similar approach to [45], we address the vari-
ability of the length N across songs by sampling one 15-
seconds long patch from each track, resulting in the fixed-
size input to the CNN.

To learn the genre labels we design a CNN with four
convolutional layers and experiment with different number
of filters, filter sizes, and output configurations (see Sec-
tion 6.1).
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5.2 Text-based Approach

In the presented dataset, each album has a variable num-
ber of customer reviews. We use an approach similar
to [13, 29] for genre classification from text, where all re-
views from the same album are aggregated into a single
text. The aggregated result is truncated at 1000 characters,
thus balancing the amount of text per album, as more pop-
ular artists tend to have a higher number of reviews. Then
we apply a Vector Space Model approach (VSM) with tf-
idf weighting [47] to create a feature vector for each album.
Although word embeddings [25] with CNNs are state-of-
the-art in many text classification tasks [15], a traditional
VSM approach is used instead, as it seems to perform bet-
ter when dealing with large texts [31]. The vocabulary size
is limited to 10k as it was a good balance of network com-
plexity and accuracy.

Furthermore, a second approach is proposed based on
the addition of semantic information, similarly to the
method described in [29]. To semantically enrich the al-
bum texts, we adopted Babelfy, a state-of-the-art tool for
entity linking [26], a task to associate, for a given textual
fragment candidate, the most suitable entry in a reference
KB. Babelfy maps words from a given text to Wikipedia 4 .
In Wikipedia, categories are used to organize resources.
We take all the Wikipedia categories of entities identified
by Babelfy in each document and add them at the end of
the text as new words. Then a VSM with tf-idf weight-
ing is applied to the semantically enriched texts, where the
vocabulary is also limited to 10k terms. Note that either
words or categories may be part of this vocabulary.

From this representation, a feed forward network with
two dense layers of 2048 neurons and a Rectified Linear
Unit (ReLU) after each layer is trained to predict the genre
labels in both LOGISTIC and COSINE configurations.

5.3 Image-based Approach

Every album in the dataset has an associated cover art im-
age. To perform music genre classification from these
images, we use Deep Residual Networks (ResNets) [11].
They are the state-of-the-art in various image classification
tasks like Imagnet [35] and Microsoft COCO [19]. ResNet
is a common feed-forward CNN with residual learning,
which consists on bypassing two or more convolution lay-
ers. We employ a slightly modified version of the original
ResNet 5 : the scaling and aspect ratio augmentation are
obtained from [41], the photometric distortions from [12],
and weight decay is applied to all weights and biases.
The network we use is composed of 101 layers (ResNet-
101), initialized with pretrained parameters learned on Im-
ageNet. This is our starting point to finetune the network
on the genre classification task. Our ResNet implementa-
tion has a logistic regression final layer with sigmoid acti-
vations and uses the binary cross entropy loss.

4 http://wikipedia.org
5 https://github.com/facebook/fb.resnet.torch/

5.4 Multimodal approach

We aim to combine all of these different types of data
into a single model. There are several works claiming
that learning data representations from different modali-
ties simultaneously outperforms systems that learn them
separately [10, 28]. However, recent work in multimodal
learning with audio and text in the context of music rec-
ommendation [31] reflects the contrary. We have observed
that deep networks are able to find an optimal minimum
very fast from text data. However, the complexity of the
audio signal can significantly slow down the training pro-
cess. Simultaneous learning may under-explore one of the
modalities, as the stronger modality may dominate quickly.
Thus, learning each modality separately warrants that the
variability of the input data is fully represented in each of
the feature vectors.

Therefore, from each modality network described
above, we separately obtain an internal feature represen-
tation for every album after training them on the genre
classification task. Concretely, the input to the last fully
connected layer of each network becomes feature vector
for its respective modality. Given a set of feature vectors,
l2-regularization is applied on each of them. They are then
concatenated into a single feature vector, which becomes
the input to a simple Multi Layer Perceptron (MLP), where
the input layer is directly connected to the output layer.
The output layer may have either a LOGISTIC or a COSINE

configuration.

6. EXPERIMENTS

We apply the architectures defined in the previous section
to the MuMu dataset. The dataset is divided as follows:
80% for training, 10% for validation, and 10% for test.
We first evaluate every modality in isolation in the multi-
label genre classification task. Then, from each modality,
a deep feature vector is obtained for the best performing
approach in terms of AUC. Finally, the three modality vec-
tors are combined in a multimodal network. All results
are reported in Table 2. Performance of the classification
is reported in terms of AUC score and Coverage@k with
k = 1, 3, 5. The training speed per epoch and number
of network hyperparameters are also reported. All source
code and data splits used in our experiments are available
on-line 6 .

The matrix of album genre annotations of the training
and validation sets is factorized using the approach de-
scribed in Section 4.1, with a value of d = 50 dimensions.
From the set of album factors, those annotated with a sin-
gle label from the top level of the taxonomy are plotted in
Figure 1 using t-SNE dimensionality reduction [21]. It can
be seen how the different albums are properly clustered in
the factor space according to their genre.

6.1 Audio Classification

We explore three network design parameters: convolu-
tion filter size, number of filters per convolutional layer,

6 https://github.com/sergiooramas/tartarus
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Table 2. Results for Multi-label Music Genre Classification of Albums
Modality Target Settings Params Time AUC C@1 C@3 C@5

AUDIO LOGISTIC TIMBRE-MLP 0.01M 1s 0.792 0.04 0.14 0.22
AUDIO LOGISTIC LOW-3X3 0.5M 390s 0.859 0.14 0.34 0.54
AUDIO LOGISTIC HIGH-3X3 16.5M 2280s 0.840 0.20 0.43 0.69
AUDIO LOGISTIC LOW-4X96 0.2M 140s 0.851 0.14 0.32 0.48
AUDIO LOGISTIC HIGH-4X96 5M 260s 0.862 0.12 0.33 0.48
AUDIO LOGISTIC LOW-4X70 0.35M 200s 0.871 0.05 0.16 0.34
AUDIO LOGISTIC HIGH-4X70 7.5M 600s 0.849 0.08 0.23 0.38
AUDIO COSINE LOW-3X3 0.33M 400s 0.864 0.26 0.47 0.65
AUDIO COSINE HIGH-3X3 15.5M 2200s 0.881 0.30 0.54 0.69
AUDIO COSINE LOW-4X96 0.15M 135s 0.860 0.19 0.40 0.52
AUDIO COSINE HIGH-4X96 4M 250s 0.884 0.35 0.59 0.75
AUDIO COSINE LOW-4X70 0.3M 190s 0.868 0.26 0.51 0.68
AUDIO (A) COSINE HIGH-4X70 6.5M 590s 0.888 0.35 0.60 0.74

TEXT LOGISTIC VSM 25M 11s 0.905 0.08 0.20 0.37
TEXT LOGISTIC VSM+SEM 25M 11s 0.916 0.10 0.25 0.44
TEXT COSINE VSM 25M 11s 0.901 0.53 0.44 0.90
TEXT (T) COSINE VSM+SEM 25M 11s 0.917 0.42 0.70 0.85

IMAGE (I) LOGISTIC RESNET 1.7M 4009s 0.743 0.06 0.15 0.27

A + T LOGISTIC MLP 1.5M 2s 0.923 0.10 0.40 0.64
A + I LOGISTIC MLP 1.5M 2s 0.900 0.10 0.38 0.66
T + I LOGISTIC MLP 1.5M 2s 0.921 0.10 0.37 0.63
A + T + I LOGISTIC MLP 2M 2s 0.936 0.11 0.39 0.66
A + T COSINE MLP 0.3M 2s 0.930 0.43 0.74 0.86
A + I COSINE MLP 0.3M 2s 0.896 0.32 0.57 0.76
T + I COSINE MLP 0.3M 2s 0.919 0.43 0.74 0.85
A + T + I COSINE MLP 0.4M 2s 0.931 0.42 0.72 0.86

Number of network hyperparameters, epoch training time, AUC-ROC, and catalog
coverage at k = 1, 3, 5 for different settings and modalities.

Figure 1. t-SNE of album factors.

and target layer. For the filter size we compare three ap-
proaches: square 3x3 filters as in [5], a filter of 4x96 that
convolves only in time [45], and a musically motivated fil-
ter of 4x70, which is able to slightly convolve in the fre-
quency domain [34]. To study the width of the convolu-
tional layers we try with two different settings: HIGH with
256, 512, 1024, and 1024 in each layer respectively, and
LOW with 64, 128, 128, 64 filters. Max-pooling is applied
after each convolutional layer. Finally, we use the two dif-
ferent network targets defined in Section 4, LOGISTIC and
COSINE. We empirically observed that dropout regulariza-
tion only helps in the HIGH plus COSINE configurations.
Therefore we applied dropout with a factor of 0.5 to these
configurations, and no dropout to the others.

Apart from these configurations, a baseline approach is
added. This approach consists in a traditional audio-based

approach for genre classification based on the audio de-
scriptors present in the MSD [1]. More specifically, for
each song we aggregate four different statistics of the 12
timbre coefficient matrices: mean, max, variance, and l2-
norm. The obtained 48 dimensional feature vectors are fed
into a feed forward network as the one described in Sec-
tion 5.4 with LOGISTIC output. This approach is denoted
as TIMBRE-MLP.

The results show that CNNs applied over audio spec-
trograms clearly outperform traditional approaches based
on handcrafted features. We observe that the TIMBRE-
MLP approach achieves 0.792 of AUC, contrasting with the
0.888 from the best CNN approach. We note that the LO-
GISTIC configuration obtains better results when using a
lower number of filters per convolution (LOW). Configu-
rations with fewer filters have less parameters to optimize,
and their training processes are faster. On the other hand, in
COSINE configurations we observe that the use of a higher
number of filters tends to achieve better performance. It
seems that the fine-grained regression of the factors bene-
fits from wider convolutions. Moreover, we observe that
3x3 square filter settings have lower performance, need
more time to train, and have a higher number of param-
eters to optimize. By contrast, networks using time con-
volutions only (4X96) have a lower number of parameters,
are faster to train, and achieve comparable performance.
Furthermore, networks that slightly convolve across the
frequency bins (4X70) achieve better results with only a
slightly higher number of parameters and training time.
Finally, we observe that the COSINE regression approach
achieves better AUC scores in most configurations, and
also their results are more diverse in terms of catalog cov-
erage.
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Figure 2. Particular of the t-SNE of randomly selected
image vectors from five of the most frequent genres.

6.2 Text Classification

For text classification, we obtain two feature vectors as
described in Section 5.2: one built from the texts VSM,
and another built from the semantically enriched texts
VSM+SEM. Both feature vectors are trained in the multi-
label genre classification task using the two output config-
urations LOGISTIC and COSINE.

Results show that the semantic enrichment of texts
clearly yields better results in terms of AUC and diver-
sity. Furthermore, we observe that the COSINE configura-
tion slightly outperforms LOGISTIC in terms of AUC, and
greatly in terms of catalog coverage. The text-based results
are overall slightly superior to the audio-based ones.

We also studied the information gain of words in the
different genres. We observed that genre labels present in
the texts have important information gain values. How-
ever, it is remarkable that band is a very informative word
for Rock, song for Pop, and dope, rhymes, and beats are
discriminative features for Rap albums. Place names have
also important weights, as Jamaica for Reggae, Nashvile
for Country, or Chicago for Blues.

6.3 Image Classification

Results show that genre classification from images has
lower performance in terms of AUC and catalog coverage
compared to the other modalities. Due to the use of an al-
ready pre-trained network with a logistic output (ImageNet
[35]) as initialization of the network, it is not straightfor-
ward to apply the COSINE configuration. Therefore, we
only report results for the LOGISTIC configuration.

In Figure 2 a set of cover images of five of the most fre-
quent genres in the dataset is shown using t-SNE over the
obtained image feature vectors. In the left top corner the
ResNet recognizes women faces on the foreground, which
seems to be common in Country albums (red). The jazz
albums (green) on the right are all clustered together prob-
ably thanks to the uniform type of clothing worn by the
people of their covers. Therefore, the visual style of the

cover seems to be informative when recognizing the album
genre. For instance, many classical music albums include
an instrument in the cover, and Dance & Electronics covers
are often abstract images with bright colors, rarely includ-
ing human faces.

6.4 Multimodal Classification

From the best performing approaches in terms of AUC
of each modality (i.e., AUDIO / COSINE / HIGH-4X70,
TEXT / COSINE / VSM+SEM and IMAGE / LOGISTIC /
RESNET), a feature vector is obtained as described in Sec-
tion 5.4. Then, these three feature vectors are aggregated
in all possible combinations, and genre labels are predicted
using the MLP network described in Section 5.4. Both out-
put configurations LOGISTIC and COSINE are used in the
learning phase, and dropout of 0.7 is applied in the CO-
SINE configuration.

Results suggest that the combination of modalities out-
performs single modality approaches. As image features
are learned using a LOGISTIC configuration, they seem to
improve multimodal approaches with LOGISTIC configu-
ration only. Multimodal approaches that include text fea-
tures tend to improve the results. Nevertheless, the best
approaches are those that exploit the three modalities of
MuMu. COSINE approaches have similar AUC than LO-
GISTIC approaches but a much better catalog coverage,
thanks to the spatial properties of the factor space.

7. CONCLUSIONS

An approach for multi-label music genre classification us-
ing deep learning architectures has been proposed. The
approach was applied to audio, text, image data, and their
combination. For its assessment, MuMu, a new multi-
modal music dataset with over 31k albums and 135k songs
has been gathered. We showed how representation learn-
ing approaches for audio classification outperform tradi-
tional handcrafted feature based approaches. Moreover,
we compared the effect of different design parameters of
CNNs in audio classification. Text-based approaches seem
to outperform other modalities, and benefit from the se-
mantic enrichment of texts via entity linking. While the
image-based classification yielded the lowest performance,
it helped to improve the results when combined with other
modalities. Multimodal approaches appear to outperform
single modality approaches, and the aggregation of the
three modalities achieved the best results. Furtheremore,
the dimensionality reduction of target labels led to better
results, not only in terms of accuracy, but also in terms of
catalog coverage.

This paper is an initial attempt to study the multi-label
classification problem of music genres from different per-
spectives and using different data modalities. In addition,
the release of the MuMu dataset opens up a number of un-
explored research possibilities. In the near future we aim
to modify the ResNet to be able to learn latent factors from
images as we did in other modalities and apply the same
multimodal approach to other MIR tasks.
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ABSTRACT

Previous research has demonstrated that similarity
judgements are context specific, as they are shaped by
cultural exposure, familiarity, and the musical aesthetic
of the content being compared. Although such research
suggests that the criterion for similarity judgement varies
with respect to the musical style of the content being com-
pared, the specific musical factors which shape this cri-
terion are unknown. Since dimensional complexity dif-
ferentiates musical genres, and has been shown to affect
similarity judgements following lifelong exposure, this ex-
periment investigates the short-term influence of dimen-
sional complexity on similarity judgements. Rhythmic and
pitch sequences with two levels of complexity were facto-
rially combined to create four distinct types of prototype
melodies. 51 participants rated the similarity of each type
of prototype melody (M) to two variations, one in which
the pitch content was modified (M̄p), and another in which
the rhythmic content was modified (M̄r). The results in-
dicate that rhythm and pitch complexity both play a sig-
nificant role, influencing the perceived similarity of M̄p,
and M̄r. The dimension bearing low complexity informa-
tion was found to be the predominant factor in similarity
judgements, as participants found modifications to this di-
mension to significantly decrease perceived similarity.

1. INTRODUCTION

Similarity directly informs our experience of music, en-
abling the perception of cohesion within a musical work,
and the categorization of musical works. Consequently,
developing models that encapsulate the manner in which
similarity is perceived, is of critical importance within the
areas of Musicology, Music Cognition and Music The-
ory [30]. In particular, the search for robust and flexi-
ble similarity measures has dominated research in the Mu-
sic Information Retrieval (MIR) domain, as large digital
databases of music information necessitate content-based
querying and retrieval, and classification. Although there

c© Jeff Ens, Bernhard E. Riecke, Philippe Pasquier. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Jeff Ens, Bernhard E. Riecke, Philippe
Pasquier. “The Significance of the Low Complexity Dimension in Music
Similarity Judgements”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

is a large body of research that explores similarity percep-
tion within music, many aspects of similarity perception
are not yet fully understood. The current study corrobo-
rates previous evidence that similarity criterion vary with
respect to the musical content being compared [9], demon-
strating that the complexity of pitch and rhythmic content
influence similarity perception.

Since pitch and rhythm are the two most prominent mu-
sical dimensions in the context of symbolic notation, the
current study will manipulate complexity along these di-
mensions and observe the effects on similarity perception.
Although no musical dimensions are completely orthogo-
nal, as a modification in a particular dimension may affect
the perception of other dimensions, the complexity of pitch
and rhythmic content can be measured independently, and
there is evidence that these dimensions are processed sep-
arately in cognition [13, 27]. Therefore, pitch and rhythm
complexity were considered to be independent for the pur-
poses of this study. Pitch content refers to the sequence
of pitches encapsulated in a particular melody, and rhythm
content refers to the sequence of durations. Dimensional
complexity refers to the absolute level of complexity along
a particular musical dimension. In this study we measure
the dimensional complexity of pitch and rhythm content.

2. RELATED WORK

Previous work examining the perception of musical simi-
larity, has focused on establishing a hierarchy of musical
dimensions, ranking their observed contributions to simi-
larity perception. On a whole, most research claims that
rhythmic information is the most important. Halpern [7]
constructed 16 melodies — a factorial combination of two
pitch sequences, two rhythmic sequences, two tonal struc-
tures and forward and reversed versions — and found that
rhythm was the most important distinguishing factor, fol-
lowed by pitch, direction and tonal structure. Similarly,
Rosner and Meyer [19] found rhythm to be the strongest
determinant of melodic similarity. Despite the general
consensus that rhythm plays a dominant role in similarity
judgements, pitch still plays a considerable role. Dowl-
ing [2] demonstrated that a modified imitation of a proto-
type melody is often misidentified as the prototype when it
has a similar pitch contour.

Given the multidimensional nature of music, many re-
searchers have found it useful to make the distinction
between surface-level and structural features. In gen-
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eral, surface-level attributes include contour, loudness and
tempo while structural attributes denote aspects of form,
thematic development and patterns. In short term contexts,
where participants are unfamiliar with the musical material
being compared, surface-level features are a strong predic-
tor of both melodic [15,19,22] and polyphonic [9] similar-
ity. Prince [15] found that rhythm was the dominant aspect
informing perceived melodic similarity, followed by con-
tour, meter, and tonal structure.

However, there is increasing evidence which questions
the generality of these results, as contextual factors includ-
ing familiarity, cultural exposure, and the aesthetic of the
musical content being compared, have been shown to have
a considerable effect on similarity perception. Pollard-Gott
found that with repeated listening, surface level features
became less influential and thematic material became more
important [14]. Similarly, the long term analysis of a col-
lection of folk melodies by a panel of experts, placed em-
phasis on thematic and motivic similarity above all other
factors [31]. Schubert and Stevens [22] found that contour
is more important than harmonic structure for making sim-
ilarity comparisons, but with musical expertise, harmonic
structure also has an effect.

Other research has shown that cultural exposure affects
similarity perception. Hannon and Trehub [8] found the
metrical bias of North American adults to be the result
of an enculturation processes, with no evidence of a nat-
ural predisposition for the simple meters which character-
ize much of western music. Goldstone [6] suggests that
humans learn by focusing on perceptual features that are
more informative, at the cost of decreased attention to-
wards other dimensions. This phenomenon has been ob-
served in a musical context, where the voice that consists
of immediate and exact repetitions of a short musical frag-
ment tends to perceptually decrease in salience for the lis-
tener over time [24]. Instead, the listener is naturally drawn
to focus on the high complexity voice. Since distinct rhyth-
mic durations occur at a relatively higher frequency than
distinct pitches in western music, they demand less atten-
tion than pitch content. After years of exposure, this likely
results in an increased sensitivity to the pitch content in
a melody [17]. Notably, Eerola et al. [3] demonstrated
that musical complexity perceptions are shaped by expo-
sure to different musical culture, which likely results from
the mechanisms described above.

In addition to the factors mentioned above, music aes-
thetic has been shown to influence how similarity is per-
ceived. Lamont and Dibben [9] examined similarity rela-
tionships in two contrasting musical styles, requiring par-
ticipants to rate the similarity of extracts from a Beethoven
sonata (op. 10, no. 1, first movement) and a dodecaphonic
work composed by Schoenberg (Klavierstück op. 33a).
Nine polyphonic excerpts were selected from each piece,
each approximately eight measures long, and the similar-
ity of each possible combination was rated by participants,
resulting in 36 similarity ratings for each piece. Notably,
both pieces are composed for solo piano, and have more
than one theme which is developed throughout the duration

of each work. They found that similarity judgements were
primarily based on surface level features, however, the sim-
ilarity judgements for each piece were predominantly in-
fluenced by different surface features. These results sug-
gested that each piece establishes a different similarity cri-
terion within which listeners make appropriate similarity
judgements. Although Lamont and Dibben demonstrated
that the criterion for similarity judgements varies with re-
spect to the musical aesthetic of the stimuli being com-
pared, the specific musical factors which caused this phe-
nomenon are still unknown, directly motivating our exper-
iment.

3. MOTIVATION

As evidenced by the brief overview in section 2, nu-
merous studies have demonstrated the prevalent influence
of contextual factors on musical similarity judgements
[8, 9, 14, 17, 31], directly motivating further study in this
area. Since contextual factors like cultural exposure and
familiarity are difficult to integrate into a similarity mea-
sure, this study examines the third contextual factor, the
role of the musical content itself in shaping a criterion for
similarity judgements. The phenomenon that Lamont and
Dibben [9] observed, provides evidence that musical con-
tent influences the manner in which music is compared,
as participants used different musical dimensions to make
comparisons depending on the nature of the musical con-
tent. In light of this evidence, it is worthwhile to examine
how specific musical characteristics of the content being
compared shape similarity judgements, which does not ap-
pear to have been examined previously. Due to the fact that
dimensional complexity differentiates musical genres [3],
and affects similarity judgements following lifelong ex-
posure [8], this experiment investigates the short-term in-
fluence of dimensional complexity on melodic similarity
judgements. More specifically, this study investigates the
role of dimensional complexity in shaping awareness to
modifications in that particular dimension, effectively es-
tablishing a criterion for melodic similarity judgements.

Previous research has shown that limitations on the hu-
man capacity for musical memory, have an effect on mu-
sical perception. Participants found it more difficult to
retain melodies with complex contours, which were de-
void of any repetition, and were often unable to distin-
guish them from another complex contour [18]. Moreover,
complexity was one of four variables which collectively
predicted the recognizability of melodies when presented
a second time [20]. In these cases, it seems likely that
working memory limitations make it difficult to encapsu-
late all aspects of a complex melody on first exposure. In
summarizing recent research on working memory limita-
tions, Cowan [1] proposes that there is a capacity of three
to five chunks in working memory for young adults. Ac-
cording to these findings, modifications to the musical di-
mension bearing the least complex musical material should
be the easiest to detect, which suggests that this musical
dimension would have a predominant influence on simi-
larity judgements. Collectively, this research supports the
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following hypothesis: modifications to the musical dimen-
sion bearing low complexity information will result in a
significant decrease in similarity, in comparison to similar
modifications to the musical dimension bearing high com-
plexity information.

4. METHODOLOGY

4.1 Participants

The participants were recruited online using the Crowd-
flower 1 crowdsourcing platform, and required to pass a
test before participating in the experiment. Participants
were paid $0.02 USD for each question they answered,
in accordance with the typical compensation offered to
Crowdflower users. Of the 96 participants who took the
test, 76 passed (79.2%) and 63 completed the experiment.
12 participants responses were deemed ineligible based on
the inconsistent responses to an identical question. In total,
51 participants came from 25 different countries.

4.2 Stimuli

4.2.1 Measuring Complexity

Given the multifaceted nature of complexity, it is necessary
to make the distinction between the entropy based com-
plexity measures proposed by Eerola et al. [3], and the no-
tion of complexity which grounds the current study. Shan-
non Entropy quantifies the disorder or uncertainty inherent
in an information source based on a representative proba-
bility distribution [23]. Eerola et al. calculate entropy us-
ing the marginal probability of each symbol in a sequence.
This type of complexity will be referred to as entropym.
Although entropym has been shown to correlate with the
percieved complexity of musical sequences [16], this mea-
surement of complexity does not provide the necessary res-
olution to make comparisons between many musical se-
quences. For an explicit example, consider the follow-
ing pitch sequences, s1 = {c, d, e, f, c, d, e, f}, and s2 =
{c, f, e, d, e, c, d, f}. Even though s1 exhibits less com-
plexity than s2, both s1 and s2 have the same entropym,
as this measurement does not take the repetition of longer
phrases into consideration. Clearly, it is necessary to take
the repetition of phrases into consideration when measur-
ing complexity.

Admittedly, this can be accomplished by calculating the
entropy rate of an n-th order markov chain derived from
the musical sequence being measured, however there are
still issues with this approach. In contrast to the manner in
which humans percieve musical content, and by extension
musical complexity, the entropy rate is not designed to dis-
tiguish between repetition which occurs within the prevail-
ing metric structure, and repetition which spans metrical
boundaries. Research suggests that humans perceive mu-
sic by breaking it into a series of chunks [5], and have a
natural tendency to project metre onto sequences of sound,
despite the absence of acoustic cues for metric organiza-
tion [4]. In addition, when listening to music, humans

1 https://www.crowdflower.com/

naturally extract motivic patterns [32], and larger formal
structures [12]. Since humans segment music in accor-
dance with metrical boundaries, it is likely that humans
are less sensitive to repetition which is obscured by these
boundaries. Consequently, a true measure of musical com-
plexity must take this distinction into account.

Furthermore, an entropy based model of complexity is
not capable of taking similarity into consideration, as en-
tropy is based on the lossless encoding of an information
source [23]. This becomes more of an issue when entropy
is being measured with respect to larger subsequences, as
is the case when measuring the n-th order entropy rate.
This formulation of complexity cannot make the distinc-
tion between a collection of subsequences which share the
same contour, and a collection that does not. As a result,
it seems most reasonable to take the collective dissimilar-
ity of subsequences segmented with respect to the prevail-
ing metric structure, as a measure of complexity. Conse-
quently, a homogenous collection of segments would be
perceived as having a low complexity, while a diverse col-
lection of segments would be perceived as having a high
complexity. We use the term redundancy to refer to this
type of complexity throughout the paper.

In order to quantify redundancy, two different measures
were used. Thul’s [28] adaptation of Tanguiane’s [25, 26]
algorithm, measures redundancy by counting the number
of root patterns, at several hierarchical levels. This will
be referred to as Tanguiane’s Rhythmic Complexity (TRC).
The other measure of redudancy is calculated using Eqn
(1), where (S) is a set of subsequences, derived by seg-
menting a sequence of symbols into measures. Notably,
Eqn (1) also requires a distance metric (D). Chrono-
tonic distance [29] is used to measure Rhythmic Sequence
Complexity (RSC), and a similarity measure proposed by
Maidı́n [10] is used to measure Pitch Sequence Complexity
(PSC). Admittedly, segmenting a pitch sequence accord-
ing to metre means that PSC is dependant on the rhythmic
content, however, within-measure rhythmic patterns have
no bearing on PSC in this paradigm, and the metric struc-
ture is not being manipulated in this study. Although PSC
does not account for the complexity of invidual segments,
section 4.2.2 describes how complexity is restricted in this
experiment, effectively mitigating the variance of segment
complexity in the current study.

f(S) =
1

|S|

|S|∑
i=1

min{D(Si, Sj) : j 6= i; 1 ≤ j ≤ |S|}

(1)

4.2.2 Prototype Melodies

In this experiment, there were four types of melodies;
rhythms-pitchs, rhythms-pitchc, rhythmc-pitchs, and
rhythmc-pitchc, where s denotes a simple or low complex-
ity sequence, and c denotes a complex sequence 2 . In
addition, eight versions of each melody type were con-
structed, resulting in 32 (4×8) prototype melodies of equal

2 The melodies used in this experiment can be found at
https://mlab%2Dexperiments.iat.sfu.ca/ismir2017/audio.
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Figure 1. A melody with complex rhythm and simple pitch, using letters to show the form of each dimension.

length (three measures). As mentioned in section 4.2.1,
redundancy quantifies the degree to which an information
source is self similar and contains periodic repetition in
conjunction with the prevailing metrical structure. In light
of this aim, melodies were comprised of three measure-
length phrases, with phrase repetition varied to create two
distinct levels of complexity. Low complexity sequences
had a formal pattern AAB, where a pattern is repeated in
the first two measures, and a new pattern is introduced in
the last measure. High complexity sequences had a formal
pattern ABC, where each measure is dissimilar. This con-
struction process is demonstrated in Figure 1, which shows
a high complexity rhythm sequence and a low complexity
pitch sequence.

Care was taken to restrict the variability of entropym
based complexity, using measures proposed by Eerola et
al. [3]. Since the pitch sequences were constructed from
scales consisting of five distinct pitch classes, Entropy
of pitch class distribution and Entropy of interval distri-
bution did not vary significantly. Similarly, rhythm se-
quences were constructed from four distinct durations, lim-
iting the variance of Entropy of note duration distribution
and Rhythmic variability. Notably, it seemed reasonable to
have fewer distinct durations than pitch classes, as research
has demonstrated that most listeners are able to perceive
pitch diversity more readily [17]. A One-Way Analysis of
Variance (ANOVA) across all four prototype melody types
demonstrated that none of these entropym based complex-
ity measures were a significant source of variance, while
PSC, RSC and TRC varied significantly. Furthermore, the
entropy rate – calculated using a first order markov chain
– did not vary significantly across melody type. This ver-
ified that our experiment measured the effect of variations
in redundancy in relative isolation.

In order to restrict the variance of segment complexity,
Mean interval size and Note density were restricted, which
Eerola et al. [3] found to be a significant source of com-
plexity. Each melody was constrained to an octave range,
restricting the Mean interval size. The Note density, was
invariant for each constructed melody, as each melody had
four notes per measure, and was three measures long.

4.2.3 Modified Melodies

For each prototype melody (M), two modified versions
were constructed for the main experiment: a version in
which the pitch is modified (M̄p), and a version in which
the rhythm is modified (M̄r). This process involved re-
versing the order of the measures in the dimension which

is to be modified. As a result, regardless of the nature of the
prototype melody, the first and last measures of the mod-
ified melody were different. Since test questions required
a ground truth answer, three additional types of modified
melodies were constructed: a melody in which the pattern
form ofM was transformed from AAB to ABA in the pitch
dimension (M̄rp̄), a melody in which the pattern form of
M was transformed from AAB to ABA in the rhythm di-
mension (M̄pr̄), and a melody in which both dimensions
were modified (M̄b).

4.3 Experimental Design

The experiment consisted of two independent variables,
rhythm and pitch content complexity. Both rhythm and
pitch complexity had two levels, low and high. This re-
sulted in a 2 × 2 repeated measures experimental design,
with four distinct types of prototype melodies. Partici-
pants were presented with a series of questions, consist-
ing of a prototype melody (M) and two modified melodies
(melody A, melody B). There were two types of test ques-
tions, which were developed using the modified melodies
described above. The first type of question, compared ei-
ther M̄rp̄ and M against the prototype M , or M̄pr̄ and M
against M . This had an indisputable answer, as one of the
modified melodies was in fact an exact replica of the pro-
totype. The second type of question, compared M̄p and
M̄b to the prototype, or compared M̄r and M̄b to the pro-
totype. Given the manner in which these melodies were
constructed, M̄p and M̄r are more similar to the prototype,
as they are identical to the prototype along a single dimen-
sion, while M̄b is dissimilar in both dimensions.

For the actual experiment itself, there was a single
type of question, in which M̄r and M̄p were compared
against the prototype. Irregardless of the type of ques-
tion, the two modified melodies were randomly assigned
to be melody A or melody B. For each question, partici-
pants rated the similarity of melody A to M , and melody
B to M , on a Likert scale from 1 to 20, where 20 indi-
cates maximal similarity. In the analysis below, the dif-
ference (D = S(M, M̄r) − S(M, M̄p)) between the per-
ceived similarity of M̄r to M (S(M,M̄r)), and the per-
ceived similarity of M̄p to M (S(M,M̄p)), is taken as the
dependent variable. As a result, a positive value of D indi-
cates that modifications to the rhythm dimension have less
of an effect on similarity than modifications to the pitch
dimension, while a negative value of D indicates the op-
posite.
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4.4 Procedure

Before participating in the experiment, participants were
required to complete 10 test questions with a minimum
accuracy of 80%. The test questions served two pur-
poses, eliminating those who were not taking the task se-
riously, and familiarizing participants with the similarity
domain within which they were being asked to make com-
parisons. Once the test was successfully completed, par-
ticipants were presented with 10 randomly ordered ques-
tions, consisting of eight different experiment questions
(representing each of the eight different types of prototype
melodies), a test question, and a repeated experiment ques-
tion. The repeated experiment question was used to deter-
mine if participants were answering the questions consis-
tently. For each question, the prototype melody was se-
lected randomly from a collection of eight versions, and
the key was randomly transposed so that the content var-
ied from question to question. After listening to all three
melodies, participants were asked to indicate which of the
two modified versions was more similar to the prototype,
and rate the similarity of melody A and melody B on a Lik-
ert scale from 1 to 20.

5. RESULTS

Since the ANOVA is relatively robust to violations of
normality [21], the 2-Way ANOVA was conducted with-
out transforming the data, despite the violation of the as-
sumption of normality. A 2-Way ANOVA revealed the
main effect of rhythm complexity (F (50) = 9.17, p =
.004, η2

p = .155) and pitch complexity (F (50) =
5.31, p = .025, η2

p = .096), while the interaction between
rhythm complexity and pitch complexity was insignificant
(p = .657). To be thorough, an Aligned Rank Transform
was performed on the data, correcting for the effects of
the non-normal distributions of the data [33]. Using the
transformed data, a 2-Way ANOVA revealed main effect of
rhythm complexity (F (50) = 9.82, p = .003, η2

p = .164)
and pitch complexity (F (50) = 6.26, p = .016, η2

p =
.111), while the interaction between rhythm complexity
and pitch complexity was insignificant (p = .601). These
results corroborate the analysis of the untransformed data,
indicating that 16.4% of the variability in similarity rat-
ings were explained by changes in rhythm complexity, and
11.1% of the variability was explained by changes in pitch
complexity.

As predicted, there was a main effect of rhythm com-
plexity and pitch complexity, both shown in Figure 2b.
Melodies containing low complexity rhythmic content
(M = 0.451, SD = 5.26) were significantly lower
than those containing high complexity rhythmic content
(M = 2.49, SD = 5.81), which indicates that partic-
ipants were more sensitive to pitch modifications when
pitch sequences were less complex. This effect was pro-
nounced in cases where the rhythmic sequence was more
complex, as participants found pitch modified melodies
(M̄p) to be significantly less similar to rhythmc-pitchs pro-
totype melodies than rhythm modified melodies (M̄r).

Conversely, melodies containing low complexity pitch
content (M = 2.26, SD = 5.43) were significantly
higher than those containing high complexity pitch con-
tent (M = 0.676, SD = 5.73), which indicates that par-
ticipants were more sensitive to rhythmic modifications
when rhythmic sequences were less complex. Similarly,
this effect was pronounced in cases where the pitch se-
quence was more complex, as participants found rhythm
modified melodies (M̄r) to be significantly less similar
to rhythms-pitchc prototype melodies than pitch modified
melodies (M̄p). Therefore, the dimension bearing low
complexity musical content was found to play a signifi-
cant role in similarity judgements, as modifications to that
dimension significantly decreased perceived similarity.

An analysis of the individual prototype melody con-
ditions revealed that the rhythms-pitchc condition (M =
−0.235, SD = 5.21) was significantly less than the
rhythmc-pitchs condition (M = 3.39, SD = 5.39),
as pitch modified melodies were the most similar to
rhythms-pitchc prototypes, and rhythm modified melodies
were the most similar to rhythmc-pitchs prototypes. The
rhythms-pitchs condition (M = 1.14, SD = 5.27) and the
rhythmc-pitchc condition (M = 1.59, SD = 6.12) were
roughly equivalent, and participants did not find a partic-
ular type of modified melody to be more similar, relative
to the two other conditions. Collectively, these results in-
dicate that melodies which are modified in the dimension
bearing low complexity information are perceived as sig-
nificantly less similar than melodies which are modified in
the dimension bearing high complexity information.

6. DISCUSSION

As evidenced by the results presented above, modifica-
tions to the dimension bearing low complexity informa-
tion result in a significant decrease in perceived similarity,
demonstrating that the dimension bearing low complex-
ity information plays a more significant role in melodic
similarity judgments. On a whole, the values for all four
conditions were positively skewed (Figure 2a), indicating
that modifications to the pitch content of a melody had a
greater influence on perceived similarity. Since there is
no benchmark with which to compare rhythmic sequence
complexity and pitch sequence complexity, it was not pos-
sible to equate the complexity across dimensions. Conse-
quently, some skew in either direction was expected. The
positive skew may indicate that the rhythmic content of the
melodies in this experiment was on average more complex,
and participants had difficulty noticing modifications in the
rhythm dimension. Alternatively, due to the enculturation
process that Hannon and Trehub [8] observed, participants
may have paid more attention to the pitch content, resulting
in the slight positive skew. When these factors are consid-
ered, it is arguably most meaningful to interpret the con-
ditions in relation to each other, as some skew in either
direction was inevitable. Viewed from this perspective, the
hypothesis is directly corroborated, as the rhythms-pitchc
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Figure 2. (a) The difference between the perceived similarity of the modified rhythm melody and the perceived similarity
of the modified pitch version for each prototype melody complexity category, with 95% confidence intervals. (b) The main
effects of pitch and rhythm complexity with 95% confidence intervals

condition is the lowest, the rhythmc-pitchs is the highest,
and the rhythms-pitchs and rhythmc-pitchc conditions are
in the middle.

Further analysis reveals that previous experiments are
likely a special case of the generalized theory proposed
in this paper. Monahan et al. [11] and Halpern [7] both
make the claim that rhythm contributes more significantly
to similarity perception, however, the rhythmic component
of their stimuli is predominantly low complexity, and the
pitch component of their stimuli is relatively higher on av-
erage. Notably, this was measured using PSC, RSC, and
TRC. Although Halpern and Monahan et al. attribute their
results to an inherent bias towards rhythm, the results of
this experiment suggest that the relative complexity of the
rhythm and pitch content provides a more robust explana-
tion.

Admittedly, there are several limitations to the gener-
alization of the results of this study. First and foremost,
the observed relationship between dimensional complexity
and similarity judgements may manifest itself quite differ-
ently when working with longer melodies, or polyphonic
music. Secondly, due to the fact that musical complexity
is multifaceted and far from understood, determining the
relatively low complexity dimension may be quite difficult
in some contexts. Despite the aforementioned limitations,
the limited variance of Eerola et al.’s entropy based com-
plexity measures provides substantial support for the gen-
eralization of these findings, as most western music makes
use of the same limited collection of distinct note durations
and pitch classes [16]. As a result, although this form of
entropy based complexity is the source of some variability
within the musical cannon, redundancy arguably accounts
for more of this variation. Consequently, the results of this
study are not restricted to a particular genre, and are rele-
vant across musical genres.

7. CONCLUSION

Similarity is shaped by several factors, including familiar-
ity, and cultural conditioning. This study asserts the sig-
nificance of another factor – the nature of the musical con-
tent which is being compared – by examining the effects
of dimensional complexity on similarity judgements. The
general notion that characteristics of the musical content
being compared have some bearing on the criterion used
to make similarity judgements, is not new, and has been
observed in past experiments [9]. However, the manner in
which musical content establishes a criterion for similarity
judgements has not been explored previously. The results
of this study provide evidence that pitch and rhythmic com-
plexity are factors which shape the criterion used in simi-
larity judgements, as the dimension bearing relatively low
complexity information has a greater influence on similar-
ity perception. Furthermore, the results of this experiment
are corroborated by previous experiments [7, 11], offering
a general explanation for these previous findings.

Developing robust and flexible similarity measures con-
tinues to be a dominant area of research in the MIR do-
main, as large digital databases of music information ne-
cessitate accurate methods for comparison and categoriza-
tion. As a result, adapting existing similarity measures
to take dimensional complexity into account, is a possi-
ble application of the findings of this study. Future re-
search is also necessary to investigate the role of complex-
ity along other dimensions, including dynamics, articula-
tion and timbre. Furthermore, the manner in which com-
plexity is percieved along a single dimension is in need of
continued exploration, as several issues with pre–existing
methods for measuring complexity have been discussed in
section 4.2.1. Clearly, musical similarity is a complex phe-
nomenon which is deserving of continued exploration, as
the results of this experiment have explicitly demonstrated
that similarity judgements are dependant on another con-
textual factor, the complexity of pitch and rhythm content
in the musical material being compared.
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ABSTRACT

Raga performance allows for considerable flexibility in
interpretation of the raga grammar in order to incorporate
elements of creativity via improvisation. It is therefore of
much interest in pedagogy to understand what ungrammat-
icality might mean in the context of a given raga, and pos-
sibly develop means to detect this in an audio recording
of the raga performance. One prominent notion is that un-
grammaticality is considered to occur only when the per-
former “treads” on another, possibly allied, raga in a lis-
tener’s perception. With this view, we consider modeling
the technical boundary of a raga as that which separates
it from another raga that is closest to it in its distinctive
features. We wish to find computational models that can
indicate ungrammaticality using a data-driven estimation
of the model parameters; i.e. the raga performances of
great artists are used to obtain representations that discrim-
inate most between same and different raga performances.
We choose a well-known pair of allied ragas (Deshkar and
Bhupali in north Indian classical music) for an empirical
study of computational representations for the distinctive
attributes of tonal hierarchy and melodic shape of a chosen
common descending phrase.

1. INTRODUCTION

The melodic framework in Indian art music is governed by
the system of ragas. A raga can be viewed as falling some-
where between a scale and a tune in terms of its defining
grammar which includes the tonal material, tonal hierar-
chy, and characteristic melodic phrases [26, 31]. Descrip-
tion of the raga grammar, as found in text resources or
as verbalized in pedagogy, typically comprises of a list-
ing of the allowed notes (svara) of the 12-tone scale, as-
cending and descending svara patterns, the mention of the
most important svaras and a list of common phrases (svara
sequences). While the texts do not explicitly describe
the precise svara intonations or the actual melodic shapes

c© Kaustuv Kanti Ganguli and Preeti Rao. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Kaustuv Kanti Ganguli and Preeti Rao. “Towards
Computational Modeling of the Ungrammatical in a Raga Performance”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

of the phrases in terms of the transitions between svaras,
the audio analyses of raga performances has demonstrated
what is well-known to practitioners, i.e. the shape of the
continuous pitch contour corresponding to the phrase is
characteristic of the raga and therefore relatively invariant
across performances in a given raga [28, 29].

The raga grammar can be viewed as a set of constraints
within which creativity is given a free hand to realise what-
ever is aesthetically pleasing in the all-important melodic
improvisation component, so characteristic of the genre. It
is therefore of interest to understand, and possibly model,
the technical boundary of a raga in terms of what might
constitute ungrammaticalilty in a performance. The tech-
nical boundary would be specified in terms of the defining
attributes such as tonal material and hierarchy, and phrase
shapes. Such an exercise could lead to the development of
computational tools for assessing performance accuracy in
pedagogy together with the complementary aspect of cre-
ative skill. A popular notion of grammaticality in perfor-
mance occurs around the notion of preserving a raga’s es-
sential distinctiveness in terms of the knowledgeable lis-
tener’s perception [1–3, 5, 9, 24, 27, 30]. Thus, a perfor-
mance with possibly many creative elements can still be
considered not to transgress the raga grammar as long as
it does not “tread on another raga” [24, 27, 35]. The tech-
nical boundary of a raga should therefore ideally be speci-
fied in terms of limits on the defining attributes where it is
expected that the limit depends on the proximity of other
ragas with respected to the selected attribute.

The computational modeling of the distinctive attributes
of a raga has been the subject of previous research mo-
tivated by the task of raga recognition from audio given
a large training dataset of performances across several ra-
gas. The tonal material has been represented by a vari-
ety of first order pitch distributions and experimental out-
comes based on recognition performance have been used to
comment on the relative superiority of a given representa-
tion [4, 6–8, 11, 17, 22]. Motivated by the pitch-continuous
nature of the melody, finely-binned histograms of octave-
folded instantaneous pitch values have been used as tem-
plates in raga recognition tasks [8, 22]. Alternately, 12-bin
distributions of pitch values within detected stable svara
regions have been used to represent a raga’s tonal con-
tent [7, 11]. Melodic shape invariance of phrases, on the
other hand, has been used in the modeling of similarity
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measures for the task of melodic motif detection within
and across performances of a given raga [12,19–21,28,29].
Pitch contour shape is typically represented by a tonic-
normalized time-series or reduced to a symbol string of
the raga notes [14, 16].

In this work, we consider the computational modeling
of tonal hierarchy and phrase shape based on maximiz-
ing the discrimination of ‘close’ ragas with respect to the
given attribute. Such an approach has not been used in
previous work. The notion of “allied ragas” is helpful
here where we consider ragas that share the same gram-
mar in major attributes while differing in a few. For ex-
ample, the pentatonic ragas Deshkar and Bhupali have the
same set of svaras (S,R,G,P,D corresponding to 0, 200,
400, 700, and 900 cents respectively) and common phrases
in terms of svara sequences, e.g. the descending phrase
GRS. Learners are typically introduced to the two ragas
together and warned against confusing them [24, 30, 34].
Recently, subjective experiments on perceived similarity
by musicians of synthetically manipulated raga phrases
clearly demonstrated the existence of a sharp boundary be-
tween valid variants of a given raga phrase from variants
of the same phrase (i.e. in terms of svara sequence) from
an allied raga [15].

In the present work, we consider the pair of allied ragas,
Deshkar and Bhupali, and use the performances of eminent
Hindustani vocalists as proxy for creatively expressed, but
grammatically accurate, examples of the stated raga. The
performances in the allied raga are likewise considered to
be examples of the corresponding ungrammatical render-
ings. We evaluate known, as well as some new, represen-
tations in terms of the achieved discrimination on a dataset
of performances across the two ragas. Although the scope
of the experiments is restricted to the given pair of ragas
and chosen attributes, we expect our outcomes to be gen-
eralizable.

In the next section, we introduce our dataset along with
the necessary musicological background, and describe the
audio processing required to obtain the continuous pitch
track that forms the basis for the computational representa-
tions under study. This is followed by sections that discuss
potential representations for tonal hierarchy and phrase
shape with associated distance measures. We next present
an experimental study of the discrimination performance
followed by our conclusions.

2. DATASET AND AUDIO PROCESSING

Table 1 presents a comparison of the melodic attributes
corresponding to the grammars of the allied ragas as com-
piled from musicology texts. These cover the aspects
of duration and intonation of the tonal material that in-
cludes ascending (Ar) and descending (Av) scales, domi-
nant (Vadi) and subdominant (Samvadi), and characteristic
phrases. ‘Natural shruti’ (last row) refers to the Just In-
tonation tuning, but there is no quantification of the term
‘higher’. Also, there is some indication of a duration con-
straint on R (as a short or passing svara relative to its neigh-
bours) in the form of braces (e.g. G(R)S in raga Deshkar).

2.1 Dataset and Annotation

The audio recordings used in this study are drawn from
the Hindustani music corpus from ‘Dunya’ 1 compiled
as a representative set of the vocal performances in the
genre [33]. The editorial metadata for each audio record-
ing is publicly available on the metadata repository Mu-
sicBrainz 2 . The Dunya corpus for raga Deshkar com-
prises 5 concerts of which 4 are selected for the current
study, omitting the drut (fast tempo) concert due to the dis-
tinctly different style of realising phrases associated with
such tempi [24]. Similarly, we selected 5 concerts for the
Bhupali test set. We augmented the overall dataset, as de-
scribed in Table 2, by additional concerts from personal
collections.

Next, we annotate the occurrences of the chosen phrase,
GRS. As discussed earlier, the GRS phrase is common
to the two ragas and a frequently used descending motif.
The GRS phrases are distributed across three octaves (up-
per, middle, and lower octaves), although lower octave in-
stances are fewer. The segmentation of the phrases from
the alap and vistar (i.e. improvised sections of the concert)
is carried out semi-automatically as follows. A musician
indicated the coarse location of each instance of the cho-
sen phrase; this was then refined to obtain segmentation
boundaries by automatic onset and offset detection meth-
ods described later. A count of the phrases used in this
study is presented per concert in Table 2. The phrase-level
annotation of the remaining concerts is underway for fu-
ture work.

2.2 Pitch Time-series Extraction from Audio

Predominant-F0 detection is implemented by an algorithm
proposed by [32] that exploits the spectral properties of the
voice with temporal smoothness constraints on the pitch
contour. The pitch is detected at 10 ms intervals with zero
pitch assigned to the detected purely instrumental regions.
The pitch values in Hz are converted to the cents scale by
normalizing with respect the concert tonic determined au-
tomatically using a multi-pitch approach [18]. The final
pre-processing step is to interpolate short silence regions

1 https://dunya.compmusic.upf.edu/Hindustani
2 https://musicbrainz.org/

Deshkar Bhupali

Tonal material: SRGPD Tonal material: SRGPD

Ar: SGPD,SPDS
Av: S,PDGP,DPG(R)S

Ar: SRG,PDS
Av: SDP,GDP,GRS

Vadi: D, Samvadi: G Vadi: G, Samvadi: D

Phrases: SG,G(P)DPD,
P(D)SP,DGP,DPG(R)S

Phrases: RDS,RPG,
PDS,SDP,GDP,GRS

Higher shrutis of R,G,D Natural shrutis of R,G,D

Table 1. Specification of raga grammar for the two allied
ragas of the present study [1, 5, 25, 30]
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Raga # Concerts
Duration
(hours)

# Artists
# GRS
phrases

Deshkar 6 2:16:50 5 52
Bhupali 6 3:22:00 5 107

Table 2. Description of the test dataset.

below a threshold (250 ms which is empirically chosen as
proposed by [13]) indicating musically irrelevant breath
pauses or unvoiced consonants, by cubic spline interpo-
lation, to ensure the integrity of the melodic shape. A me-
dian filtering with a 50 ms window is performed to get rid
of spurious pitch excursions. Eventually, we obtain a con-
tinuous time-series of pitch values representing the melody
line throughout the vocal regions of the concert.

3. MELODIC REPRESENTATIONS

Our goal is to propose computational representations that
robustly capture particular melodic characteristics of the
raga in a performance while being sensitive enough to the
differences between allied ragas. Given that tonal material
and hierarchy of svaras are an important component of the
raga grammar, we consider representations of tonal hierar-
chy computable from the melody extracted from the audio
recording of the performance. We also consider the repre-
sentation of the melodic shape of a selected characteristic
phrase.

3.1 Representation of Tonal Hierarchy

Tonal hierarchies, manifested in the relative frequencies
and durations with which the tones are sounded in a musi-
cal piece, have been linked to key identification in Western
art music. In a widely known work, Krumhansl [23] used
a 12-element vector to code the total duration (in terms of
number of beats) of each note of the chromatic scale in a
piece and correlated it with each of 24 templates represent-
ing the major and minor keys to obtain accurate predictions
of key. It is therefore logical to consider the same represen-
tation for raga discrimination. However, given the pitch-
continuous nature of the music, we are faced with multiple
competing options in the definition of a tonal representa-
tion. Closest to the tonal hierarchy vector of Krumhansl
is the 12-element histogram of the total duration of each
of the “stable notes” detected from the melodic contour.
Considering the importance of the transitions connecting
stable notes as well as microtonal differences in intona-
tion between the same svara in different ragas, a histogram
derived from all the pitch values in the melodic contour
would seem more suitable. The bin width for such a pitch
continuous distribution is also a design choice we must
make. Finally, we need a distance measure computable
between the histogram representations that correlates well
with closeness of the compared performances in terms of
raga identity.

3.1.1 Pitch Salience Histogram

The input to the system is tonic normalized pitch contour
(cents vs time). The pitch values are octave-folded (0 -
1200 cents) and quantized to p bins of equal width (the bin
resolution is 1200

p ). The bin centres are arithmetic mean of
the adjacent bin edges. The salience of each bin is propor-
tional to the accumulated duration of the pitch value cor-
responding to that bin. The normalization is to construct a
probability distribution fuction (pdf) where the area under
the histogram sums to unity. Given the number of bins, the
histogram is computed as:

Hk =

N∑
n=1

1[ck≤F (n)≤ck+1] (1)

where Hk is the salience of the kth bin, F (n) is the ar-
ray of pitch values, (ck, ck+1) are the bounds of the kth bin
and 1 is an indicator random variable 3 . Figure 1 shows
the pitch salience histogram for p = 1200 (1 cent bin res-
olution). For a bin resolution of 100 cents, the representa-
tion is equivalent to the conventional pitch class distribu-
tion (PCD) [7].

Figure 1. Pitch salience histograms (octave folded, 1 cent
bin resolution) of 6 concerts each in ragas Deshkar (left)
and Bhupali (right).

3.1.2 Svara Salience Histogram

The svara salience histogram is not equivalent to the PCD.
The input to the system is segmented stable svaras which is
a subset of the pitch contour. We use a previously proposed
algorithm [16] that obtains a simple melodic transcription
retaining only the stable svara regions of a pitch contour
while discarding the transitory pitch regions. The stable
svara regions are segmented by identifying the fragments
of pitch contour that are within Ttol (35 cents) of the svara
frequencies that are located via the peaks of a continuous
pitch histogram. Next, the svara fragments that are smaller
than Tdur (250 ms) in duration are filtered out, as they are
too short to be considered as perceptually meaningful held
svaras [28]. This leaves a string of fragments each labeled
by a svara. Fragments with the same svara value that are
separated by gaps less than 100 ms are merged. The svara
salience histogram is obtained as:

3 A random variable that has the value 1 or 0, according to whether a
specified event occurs or not is called an indicator random variable for
that event.
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Hk =
N∑

n=1

1[F (n)∈Sk,k∈(1,2,··· ,12)] (2)

where Hk is the salience of the kth bin, F (n) is the ar-
ray of pitch values, and Sk is the kth svara of the octave.
Hk is always a 12-element vector. Figure 2 shows the tonal
hierarchy in the form of svara salience histogram. One ma-
jor difference between pitch salience histogram and svara
salience histogram is that the precise intonation informa-
tion is lost in the latter.

Figure 2. Svara salience histograms (octave folded) of 6
concerts each in ragas Deshkar (left) and Bhupali (right).

3.2 Representation of Phrase Shape

The phrase is a sequence of svara whose melodic realiza-
tion includes specific intonations and transitions to/from
neighboring svaras [24]. While computational models for
measuring melodic similarity between phrases have em-
ployed distance measures between time-series of pitch val-
ues of the phrase segments, we might expect that a more
discriminative representation is possible by explicitly in-
corporating features that contrast the two ragas.

Figure 3 shows a representative GRS phrase from each
of the ragas. Distinctive features suggested by the compar-
ison are: (i) durations of each of the stable svara regions,
(ii) the durations of the glides connecting the svaras, and
(iii) the pitch interval of the svara G. The implementa-
tion of these features would involve decisions on segmen-
tation of stable svaras, and determining the pitch interval
value from the pitch continuum in the region. Further, it
is important to figure out the kind of normalization that is
needed to reduce possible variability due to the tempo of
the performance.

We describe a phrase as a sequence of melodic ‘events’
that can each be described by the chosen features. For the
GRS phrase in question, we consider the following five
events, i.e. svaras G,R,S, and the G− R and R− S tran-
sitions. The selected features are: (i) Start time : on-
set of an event, (ii) End time : offset of an event, (iii)
Duration : difference of the two, (iv) Intonation : pre-
cise pitch interval location of a stable svara in the octave
obtained as the median pitch value over the duration of the
svara, and (v) Slope : gradient between the mean of last
20% and the first 20% pitch samples of a stable svara seg-
ment.

Figure 3. Two representative GRS phrases from ra-
gas Deshkar (left) and Bhupali (right). The tuple cor-
responding to each svara denotes the extracted features
(Intonation, Duration, Slope) for that event.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We present experiments that help us identify the aspects
of optimal representation, for each of tonal hierarchy and
phrase shape, that discriminate the two ragas maximally
based on our labeled dataset of 12 concerts across two ra-
gas. Our common approach for both attributes is to use
unsupervised clustering (k-means with k=2) of the feature
vectors and optimise the separation between the clusters
over the considered choices for feature implementation.
Performance in unsupervised clustering can be measured
via the ‘cluster purity’ which is obtained by assigning each
obtained cluster to the underlying class that is most fre-
quent in that cluster, and computing the resulting classifi-
cation accuracy.

We also use the receiver operated characteristic (ROC)
curve, with respect to detecting similarity within a raga
pair given the feature vectors and distance measure, to
evaluate the tuning parameters of tonal hierarchy. An ob-
jective function to compare ROCs across configurations is
the area under curve (AUC) measure. Closer the AUC
value to 1, better is the performance. For the evaluation
of phrase shape, we additionally use ‘feature selection’ to
estimate the most significant features.

4.1 Tonal Hierarchy

There are three main aspects of tonal hierarchy that need to
be addressed in order to maximize the separation between
the two clusters, these are: (i) representation, (ii) distance
measure, and (iii) time-scale of analyses. The experiments
apply to both pitch salience and svara salience histograms.
We describe them in order with discussions on the insights
obtained.

4.1.1 Optimal Representation

Our base representation is the octave folded pitch salience
histogram normalized to be a pdf. We try different bin res-
olutions ranging from 1 to 100 cents, with a denser sam-
pling between 20 and 40 cents, motivated from a previous
study by Datta et al. [10]. We perform an unsupervised
clustering (euclidean distance) to obtain labels for each el-
ement in the 2 classes. Figure 4 shows the cluster purity
values, where we note that no degradation in the evaluation
measure is observed for 1 through 30 cents bin resolution.
Each value on the curve is obtained by an average of 5 runs
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of the clustering algorithm to nullify the effect of any lo-
cal minima. For the case of svara salience histograms, the
average cluster purity value is obtained as 0.96.

Figure 4. Cluster purity values obtained for different val-
ues of bin resolution for the pitch salience histograms.

4.1.2 Comparison of Distance Measures

In order to determine a suitable distance metric between
the histograms representing raga tonal hierarchy, we test
different metrics on the 25 cent binned pitch salience his-
togram (given that no degradation was observed at this
resolution in the previous experiment) and on the svara
salience histogram. As the distribution is a pdf, a natural
distance measure suggested in the literature is the (sym-
metric) KL divergence [22]. We also try Cityblock (L-1
norm), Euclidean (L-2 norm), and Correlation distances.
The last one is strongly motivated by the cognitive model
of Krumhansl [23]. We present ROC curves (and AUC)
for four distance measures in Figure 5. We find that the
best performing distance measure is the KL divergence for
svara salience histograms. The performance of cityblock
distance is observed to be comparable to that of correla-
tion distance for pitch salience histograms. We use the lat-
ter in the following experiments since it is more favored in
previous work [6, 23].

Figure 5. ROCs obtained for four different distance mea-
sures from pitch salience (left) and svara salience (right)
histograms.

4.1.3 Time-scale for a Stable Tonal Hierarchy

It is of interest to determine at what time-scale, the mea-
sured tonal hierarchy qualifies as a stable representation.
We therefore carry out the previous discrimination exper-
iments on segmented concerts. We divide each concert to
its
(
1
n

)th
(n = 1, · · · , 5) portion and construct a distance

matrix with each
(
1
n

)th
part. The goal is to find out the

minimum proportion of the full concert that is necessary to
robustly discriminate between the two classes. The ROC
obtained from

(
1
4

)th
(and below this) of a concert results

in an AUC < 0.5 which indicates that the time-scale is
too small to constitute a stable tonal hierarchy. We aug-
ment our test dataset by considering each half and

(
1
3

)rd
of each concert, making the dataset size 24 and 36 respec-
tively. Figure 6 shows a comparison of best performing
systems for the full (n=1) and partial (n=2,3) concerts.
We additionally investigate if a finer binned pitch salience
histogram shows improvement. A finer bin resolution of
12.5 cents (p=96) is observed to perform better that the 25
cent binned pitch salience histogram (p=48). This suggests
that the microtonal differences in intonation become more
important when the concert segment duration is not long
enough to capture 12-tone hierarchy in a stable manner.
While the improvement (in terms of AUC value) might
seem rather small, it was observed to be consistent with
each distance measure under test. Moreover with full-
concerts (n=1) for p=96, the maximum true positive rate
for zero false positive rate is higher (≈ 0.95) than that for
p=48 (≈ 0.75) indicating an improved performance. We
also separately observed that considering only the begin-
ning segments in the

(
1
n

)th
portions shows better perfor-

mance compared to other locations. The first few minutes
of each concert spans the alap and bandish (composition)
that play a crucial role in raga delineation thus adhering
closely to raga grammar.

4.2 Phrase Shape

We use the svara segmentation method outlined
in Section 3.1.2 to obtain the components of the phrase
shape corresponding to the sequence of stable svaras as
well as the transient regions. In this section we present
a statistical description of the features corresponding
to the different events. We also compare the discrimi-
nation powers of the different features via a clustering
experiment.

4.2.1 Distribution of Event Durations

Given the Duration values of each event in the GRS
phrases (52 instances in raga Deshkar and 107 instances
in raga Bhupali), we present the distributions in Figure 7
of the event Durations in the form of boxplots of the
raw measurements in seconds. We observe distinctions be-
tween the two ragas in nearly all the duration parameters,
most notably in the R Durations. That the R duration is
small and constrained in raga Deshkar is supported by the
raga grammar specification in Table 1 which indicates R
in parantheses, suggesting a “weak note that is never sus-
tained” [30]. Overall, the dispersion in the parameters is
smaller in the phrase in raga Deshkar compared with Bhu-
pali, consistent with the fact that it is a grammatically more
constrained raga [1, 5, 30]. An exception is the realisation
of the S svara with several outlying values of duration due
to its location at phrase end, where a number of contextual
considerations influence the note offset.
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Figure 6. Comparison of ROCs obtained with correlation distance (for pitch salience histograms) and KL divergence (for
svara salience histogram) for different time-scales (n=1,2,3) of the concerts.

Figure 7. Distributions of event Durations across the
GRS phrase instances in the two ragas.

4.2.2 Feature Selection and Evaluation

To compare the predictive powers of the measured acous-
tic features, we perform ‘Feature Selection’ using Weka 4

datamining tool. We use the “InfoGainAttributeEval” as
the attribute selector that evaluates the value of an at-
tribute by measuring the information gain with respect to
the class, in conjunction with the “Ranker” search method
that ranks attributes by their individual performances. We
construct a feature vector for each instance of the GRS
phrase with 5 Duration features, one for each event, and
Intonation and Slope features corresponding to each of
the three stable svaras as implemented in Section 3.2. Of
these 11 features, we obtained the most significant fea-
tures in terms of predictive power as the following: (i) R
Duration, and (ii) G Intonation, with the third feature
in the list placed considerably lower. This outcome is con-
sistent with the raga grammars where these two aspects are
considered distinctive properties of raga Deshkar.

Next, we perform an unsupervized clustering of the 159
phrases into two classes using the Euclidean distance be-
tween the 2-element vectors of the two selected features.
The achieved cluster purity value is 0.99 (i.e. only 2 in-
stances of the 159 are misclassified). As a next step, we in-
vestigate whether duration normalization is helpful. Given
that overall phrase duration is correlated with tempo [34],
it is natural to expect that the variability of phrase event
durations may be reduced by normalization by the over-
all phrase duration. However, it turned out the the clus-

4 http://www.cs.waikato.ac.nz/ml/weka/

ter purity with the duration-normalized Duration (of R
svara) feature coupled with the previous Intonation (of G
svara) feature reduced to 0.95 (i.e. 8 instances were mis-
classified). This indicates that musicians interpret the raga
grammar in terms of raw durations rather than relative to
the tempo.

5. CONCLUSION AND FUTURE WORK

Based on the notion of grammaticality in raga per-
formance, we examined computational representations
for some of the key attributes of raga grammar based
on discriminating allied ragas. In particular, both the
pitch salience histograms and the stable-note based svara
salience histograms were considered for tonal hierarchy
with a variety of distance measures to derive a combina-
tion of histogram parameters and distance metric that best
separated same-raga pairs from the allied-raga pairs. It
was found that svara salience histograms worked best at
the time-scale of full concerts whereas finer bin-widths
of pitch salience histograms were superior for segmented
concerts. Overall, full concerts with KL divergence as
distance measure between 12-tone svara histograms per-
formed best. A phrase level representation that considered
only the discriminating elements of the same-phrase vari-
ants across the ragas in terms of absolute duration and pitch
interval of key events (i.e. for R and G svaras respectively)
was able to achieve a high degree of separation between the
two allied ragas. Our results suggest that a pedagogy tool
that measures ungrammaticality can indeed be designed
based on modeling the raga attributes for any raga with the
methodology presented here. Future work involves: (i) val-
idation on other allied raga sets, (ii) correlating predicted
ungrammaticality with perceived ungrammaticality by ex-
pert listeners, and (iii) determining the relative weighting
of the different raga attributes for an overall rating, possi-
bly at different time-scales, based on the expert judgments.

6. ACKNOWLEDGEMENT

This work received partial funding from the European
Research Council under the European Union’s Sev-
enth Framework Programme (FP7/2007-2013)/ERC grant
agreement 267583 (CompMusic).

44 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



7. REFERENCES
[1] Music in Motion: The automated transcription for In-

dian music (AUTRIM) project by NCPA and UvA.
url: https://autrimncpa.wordpress.com/. Last accessed:
April 26, 2017.
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ABSTRACT

The MIR research on jingju (also known as Beijing or
Peking opera) music has taken audio as the main source
of information. Music scores are an important resource for
the musicological research of this tradition, but no machine
readable ones have been available for computational analy-
sis. In order to explore the potential of symbolic score data
for jingju music research, we have expanded the Comp-
Music Jingju Music Corpus, which contains mostly audio,
with a collection of 92 machine readable scores, for a to-
tal of 897 melodic lines. Since our purpose is the study of
jingju singing in terms of its musical system elements, we
have selected the arias used as examples in reference jingju
music textbooks. The collection is accompanied by scores
metadata, curated annotations per score and melodic line,
and a set of software tools for extracting statistical infor-
mation from it. All the gathered data and developed soft-
ware are available for research purposes. In this paper we
first discuss the culture specific concepts that are needed
for understanding the contents of the collection, followed
by a detailed description of it. We then present a series of
computational analyses performed on the scores and dis-
cuss some musicological findings.

1. INTRODUCTION

In recent years, jingju (also known as Beijing or Peking
opera) music received an increasing attention from MIR re-
searchers for tasks such as mood recognition [7], pitch con-
tour analysis [8, 12, 13, 21–23], lyrics to audio alignment
[10], timbre analysis [11, 17], percussion analysis [16, 19],
and structural segmentation [18], all of them taking audio
as the main source of information. In order to carry out
these tasks, several corpora for jingju music research were
gathered. The Jingju Music Corpus gathered in the Comp-
Music project [14] contains a collection of commercial au-
dio recordings and their metadata, as well as some datasets
for specific tasks. 1 The corpus built in [18] also consists of

1 http://compmusic.upf.edu/corpora

c© Rafael Caro Repetto, Xavier Serra. Licensed under a
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Attribution: Rafael Caro Repetto, Xavier Serra. “A collection of music
scores for corpus based jingju singing research”, 18th International Soci-
ety for Music Information Retrieval Conference, Suzhou, China, 2017.

commercial recordings, annotated for structural segmenta-
tion analysis. Only the corpus created in [7] 2 contains a
cappella recordings made by its authors, as well as annota-
tions for the task of mood recognition.

The core component of jingju music is singing. In order
to study the musical system developed in this tradition (see
Section 1.1) it is therefore essential to analyse the sung
melodic line. However, extracting its pitch contour from
commercial recordings did not produce fully satisfactory
results [13]. On the other hand, the a cappella recordings
contained in the corpus gathered in [7] do not cover the
whole jingju musical system and are not annotated for this
goal, since it was created for a different purpose. Music
scores are a meaningful alternative to audio recordings.
The lack of MIR research based on jingju scores could
be possibly motivated for two reasons: the secondary role
that music scores play in this tradition (see Sections 1.1
and 1.2), and the lack of music scores in machine readable
format available for computational analysis.

The goal of the Jingju Music Scores Collection (JMSC)
presented in this paper is to offer a comprehensive and
complete resource for the study of jingju singing in terms
of its musical system. That is to say, jingju singing, as op-
posed to instrumental accompaniment, is taken as our re-
search object with the aim of understanding not its acoustic
or intonation characteristics, but the elements that build the
jingju musical system.

1.1 Jingju Musical System

When talking about music in jingju, there are two im-
portant general considerations to take into account. First,
jingju is a theatrical genre, in which the main structural
element is the dramatic plot. Music, as the rest of the dis-
ciplines that integrate this comprehensive art form, is at the
service of this dramatic goal, which implies that lyrics de-
termine the music structure. Secondly, jingju music origi-
nated as folk music, 3 a fact that carries two implications.
This music was not traditionally created by a composer,
but arranged by the actors and musicians from a reposi-
tory of folk tunes to fit the lyrics of new plays. Secondly,
it has been orally transmitted, and even nowadays written
material takes a secondary role.

In order to convey the expressive needs of the dra-
matic plot, music in jingju has been deeply convention-

2 http://isophonics.net/SingingVoiceDataset
3 During the 20th century it evolved into composed music.
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Figure 1. Example of a couplet opening line and its corresponding melodic line, both in its original jianpu notation (b) and
the transnotated version (a) in JMSC. The three sections of the line are marked.

alised according to three elements that form its musical
system, namely shengqiang, banshi, and role type. Each of
the original folk tunes upon which jingju music was built
evolved into a melodic framework called shengqiang, and
it was associated to a specific emotional atmosphere. Al-
though jingju uses many of them, xipi and erhuang are the
ones that give this genre its musical identity.

More precise expressive functions are achieved by
rhythmic transformations of the shengqiang’s melodic
framework. Each of these transformations is codified in a
pattern called banshi. There are about 12 commonly used
ones, although no fixed number is agreed in the literature.
The banshi in which the melody is conceived as the closest
form to the shengqiang’s original tune, in medium tempo
and 2/4 metre, is called yuanban. Manban is conceived
as the transformation of yuanban’s melody to the slow-
est tempo range and 4/4 metre, kuaiban is conceived as
its transformation to the fastest tempo range and 1/4 metre,
and each intermediate tempo range forms a different ban-
shi. Besides, there is a set of banshi in which the melody
is rendered in different forms of free metre.

The third element is the role type (that can be under-
stood as an acting profile), which the singing character be-
longs to. There are four broad categories of role types, with
different degrees of subdivision. In terms of the musical
system however, all of them can be classified in either the
male or female styles of singing, represented respectively
by the role types laosheng and dan.

A last important factor to consider is the lyrics structure,
which determines the musical structure of the arias. 4 The
lyrics of jingju arias are arranged in couplets, and each of
the two lines of the couplet is usually subdivided in three
sections. The melodic unit in jingju corresponds to the line
of lyrics, so that each shengqiang defines a melodic line
for the opening line of the couplet, and another one for the
closing line, both of them subdivided into three melodic
sections corresponding to the poetic ones (see Figure 1).
One single aria is usually set to only one shengqiang, but
according to its expressive content, it can contain different
banshi. When dialogues are set to music, characters of the

4 Although translating the original term changduan as aria might
cause some misconceptions, for the sake of clarity we will use this term
throughout the paper to refer to sung sections in a jingju play.

same or different role types can sing in the same aria. 5

1.2 The Concepts of Work and Score in Jingju

Before describing the collection, two more considerations
are needed to be taken in order to completely understand
its usability and representativeness of the repertory. As
stated in Section 1.1, jingju music was originally created
and transmitted orally. Professional performers rarely rely
on music scores, but try to convey what they learnt from
their teachers, although inevitable changes occur in this
transmission line. Therefore, music scores are notations
of preexisting music, either for documentation purposes,
or as learning material for amateurs. Most scores do not
reference a source, what might indicate that the author is
notating what he or she recalls as a standard version. Con-
sequently, different score editions of the same work present
noticeable discrepancies, and very rarely any of them per-
fectly matches a commercial audio recording of that work,
although the melodic core generally is common to all.

The final remark has to do with the very concept of
work. 6 The plots of jingju plays are rarely original, they
are taken from well-known historical events, literary works
or legends. Hence, a jingju play is just a passage from
a greater encompassing story already known by the audi-
ence. Furthermore, since jingju plays did not have an au-
thor, but were adapted from these preexisting stories, per-
formers have the possibility of adapting those passages to
the needs of a specific performance. As a consequence, the
title of a play always refers to the same plot, characters and
usually the same set of arias, but specific performances can
omit, extend or modify certain elements.

In a similar way, arias are sung passages of greater en-
compassing dramatic plots. Although most of them have
musical signals indicating their start and end, they are usu-
ally intermingled with acting and reciting sections, what
blurs their limits. When recorded or notated for commer-
cial releases, the arias are named after its first line, but dif-
ferent performers or transcribers might have different cri-
teria for deciding how to delimit the aria or how to deal

5 For a more detailed description in English of the jingju musical sys-
tem, please refer to [20].

6 We take the term work from MusicBrainz’s terminology as “a distinct
intellectual or artistic creation” (https://musicbrainz.org/doc/Work).
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with non musical interpolations. For example, an aria set
to more than one banshi can be recorded or transcribed in
one release as a unit, whilst in another release each ban-
shi can be listed separately. All these considerations pose
important challenges for organizing our collection and in-
tegrating it in our Jingju Music Corpus (see Section 2.3).

The remaining of the paper is structured as follows. In
the next section the jingju music scores collection is de-
scribed in detail. In Section 3 we present computational
analyses performed on it, and some musicological findings
are discussed in Section 4. In the last section we present
some concluding remarks and point out future work.

2. DESCRIPTION OF THE COLLECTION

2.1 Sources and Generation Process

In order to ensure the representativity of the selected
scores, we have taken as sources three jingju music text-
books [3–5]. These textbooks have been suggested as ref-
erence works for the study of the jingju musical system
by professors from the National Academy of Chinese The-
atre Arts (NACTA), where the first author did field work.
In these textbooks, the explanations of the music elements
presented in Section 1.1 are illustrated with specific arias.
In [5] and [3], the scores were given directly in the text-
book. In the case of [4], some scores were given, while
others were referenced by title.

laosheng dan laosheng+dan total
erhuang 20 17 1 38

xipi 24 27 3 54
total 44 44 4 92

Table 1. Content of JMSC, according to role type and
shengqiang

To build JMSC, we have taken the arias used to illus-
trate the main metred banshi, namely yuanban, manban,
and kuaiban (see Section 1.1), as they are used in the two
main shengqiang, that is, xipi and erhuang, for the two
main role types, laosheng and dan. When other related
banshi are explained together with these, their sample arias
have been also included in our collection. Those only ref-
erenced by title in [4] have been looked for in two printed
scores collections that accompany our Jingju Music Cor-
pus [1, 2]. Only eight have not been found. If different
scores for the same aria occur, all versions have been in-
cluded. As a result, JMSC contains 92 scores covering
80 arias. Table 1 shows the distribution of scores per role
type and shengqiang. Banshi is not included here because
some arias contain more than one. However, since the main
melodic unit is the line, the information in Table 2 is a bet-
ter representation of JMSC’s potential for the study of the
jingju musical system elements. All the arias have been
included in its full original form, resulting in some sam-
ples of other instances of the musical system elements also
being present in the collection, as shown in Table 2.

The original sources use a style of cypher notation
called jianpu (see Figure 1.b). We transtonated them man-

daeh daxp lseh lsxp total ldeh
manban 72 50 66 17 205
sanyan 12 17 29 2

zhongsanyan 6 6
kuaisanyan 14 26 6 46

yuanban 54 55 112* 47 268
erliu 12 12

liushui 121 78 199
kuaiban 47 85 132

total 146 285 216 250 897
daoban 1
sanban 2 2 3
yaoban 1 1 8
*kutou 4

Table 2. Content of JMSC per melodic line, according
to role type, shengqiang (columns), and banshi (rows). On
the upper heading, da stands for dan, ls for laosheng, ld for
laodan, eh for erhuang and xp for xipi. Gray background
indicates samples of instances not considered as focus of
our research.

ually using MuseScore 2.1 7 to staff notation, and exported
them to MusicXML format. Since both notation systems
are based in the same principles, the transnotation was
straightforward. The main decision taken was the key, not
given in the sources. 8 We unified all the scores in E major,
a common key for the two role types considered, as stated
in the reference textbooks.

Jingju singing is accompanied by an instrumental en-
semble in heterophony. Therefore, in order to represent the
instrumental accompaniment it is customary to only notate
the lead instrument in the ensemble, namely the jinghu, in
an independent staff. In these cases, both the voice and
the instrumental lines are notated in different staves in our
transnotation. In other cases, since the voice and the in-
strumental ensemble conceptually play the same melody,
the original jianpu notation represent both in one single
staff with the instrumental sections in brackets, as shown
in Figure 1.b. In those cases, our transnotation divides the
original single staff into two, one for the voice and one
for the accompaniment, as shown in Figure 1.a. Of the 92
scores, 53 (57.61 %) of them contain full accompaniment.

2.2 Coverage, Completeness and Reusability

Serra proposes in [15] five criteria for building research
corpora which we followed for creating JMSC. Among
them, purpose has been described in detail in Section 1,
and we argue that the quality of the scores is assured inso-
far as our transnotation, as described in Section 2.1, main-
tains all the information contained in the original sources.
Therefore, we discuss here the remaining criteria.

In terms of coverage, the collection includes the two
main shengqiang, xipi and erhuang, and the two main role
types, laosheng and dan. In order to evaluate their rele-
vance for jingju music research, we have measured their
occurrence in the recordings collection of the CompMu-
sic Jingju Music Corpus, as published in [14]. Xipi and

7 https://musescore.org/
8 The specific tuning is chosen, within a certain range, according to the

performer’s needs.
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erhuang stand for 80.25 % of the shengqiang present in
the recordings collection, and laosheng and dan stand for
73.66 % of the role types. The whole range of metred ban-
shi is represented in the collection, with special focus on
yuanban, manban, liushui and kuaiban (see Table 2), as the
most relevant ones (see Section 1.1). There are two main
reasons for excluding the non-metred ones: metred ban-
shi present more direct relations between them, what fa-
cilitates the study of the transformation processes. On the
other hand, we are still looking for a satisfactory method
to process non metred melodies. There also exist a few
auxiliary banshi, whose occurrence is very occasional, and
therefore no representative of the norm.

Considering completeness, the collection contains the
metadata of the scores and annotations both at the score
and the line level, organised in separate spreadsheets. For
the scores, the metadata contain the title of the work in
Chinese, role type, shengqiang, banshi, whether it contains
full accompaniment (see Section 2.1), the reference of the
original score, and if existing, the list of the MusicBrainz
IDs of the recordings in our Jingju Music Corpus corre-
sponding to the same work as the score. As for the lines,
each of them is annotated with the role type, shengqiang,
banshi, line type, that is, opening—which in the case of er-
huang is divided in two types—or closing, the lyrics for the
whole line and for each of its sections, the linguistic tones
of the lyrics, and the starting and ending offsets of the line
and each of its sections. Annotations have been done by the
first author, linguistic tones have been extracted automat-
ically 9 and corrected manually by the first author and by
a Chinese native speaker knowledgeable about jingju, and
specific doubts about line segmentation have been solved
by two professors in NACTA.

Regarding reusability, all the scores, including meta-
data and annotations, are available for research purposes.
Due to copyright issues, they are only available on demand,
by contacting the authors.

2.3 Integration in the Jingju Music Corpus

JMSC was gathered as part of the Jingju Music Corpus
from the CompMusic project, also created with the pur-
pose of studying jingju singing in terms of its musical sys-
tem elements. To exclude the influence of academic com-
positional techniques applied to jingju during the 20th cen-
tury, only plays from the traditional repertoire were con-
sidered for the corpus, including JMSC. Consequently, two
samples of revolutionary plays from [5] were discarded.

The scores are integrated in the corpus via the work they
represent. If a particular recording in the corpus contains
a performance of a work to which a particular score is re-
lated, due to the circumstances described in Section 1.2, it
can not be assumed that the recording contains a perfor-
mance of the score. Consequently, scores and recordings
are indirectly related through works. Taking this into ac-
count, 63 of the 92 scores (68.48 %) are related to works
associated to one or more audio recordings.

9 The software used for extracting the linguistic tones can be obtained
here: https://github.com/zangsir/Native-to-Pinyin

2.4 Potential of the Collection

JMSC has great potential for the computational research of
jingju singing in terms of its musical system elements. In
the following section we present statistical analyses with
that aim. However, it is also suitable for other research
tasks. Since the variety of melodic material is conceived
as transformations of original tunes, these scores offer an
excellent opportunity for pattern discovery and similarity
analysis. These tasks can benefit from the accompanying
annotations to develop culture specific heuristics. The an-
notated linguistic tones for the lyrics allow the research of
their relationship with melody using symbolic data, whilst
such studies have been carried out so far using only au-
dio [22, 23]. Since the scores contain full or partial nota-
tion of the accompaniment, they are a good resource for
the analysis of the relationship between the singing and in-
strumental lines. Finally, although scores and recordings
are not directly related, the similarity between those which
share a common work still allows combined analyses.

3. ANALYSES PERFORMED ON THE JINGJU
MUSIC SCORES COLLECTION

In order to take advantage of JMSC, we have extracted sta-
tistical information with the aim of testing musicological
claims made in the reviewed literature [3–6, 20]. To pro-
cess the scores we have used the music21 toolkit [9], and
the developed code is openly available. 10 We introduce
now the four types of features considered for analysis, to-
gether with their musicological motivations:

Pitch histograms. Jingju music is based on an an-
hemitonic pentatonic scale, each of whose degrees can be
the finalis of a mode (diao), a defining characteristic of
each shengqiang. Hence, xipi is associated to the gong
mode, which has the first degree as finalis, and erhuang to
the shang mode, whose finalis is the second degree. The
4th and 7th degrees, usually omitted, can be used as expres-
sive notes. Male and female styles of singing, represented
by the laosheng and dan role types are defined by different
pitch registers. Pitch histograms can help to gain a deeper
understanding of pitch distributions for each shengqiang
and pitch register for each role type, as well as to evaluate
the role of the expressive notes.

Interval histograms. One of the melodic features given
in the literature for distinguishing xipi from erhuang is that
it uses larger intervals. Analysing intervals through his-
tograms will shed light upon this claim.

Cadential notes. One of the more common character-
istics given in the literature when comparing xipi and er-
huang, and closely related to their modal associations, is
a schema of cadential notes (laoyin) for each line of the
couplet and each of their three sections.

Melodic density. Understood as the proportion of notes
per syllable, this feature is used for characterizing banshi,
arguing that the slower the banshi is, the more notes are
used for singing each syllable.

10 https://github.com/MTG/Jingju-Scores-Analysis/releases/tag/v1.0
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Our code computes the aforementioned features for any
combination of role type, shengqiang, banshi and line
type. Histograms show blue bars for laosheng and orange
ones for dan, whilst shengqiang is indicated by the hatch,
\for xipi and / for erhuang (see Tables 3, 4, and 5). A solid
red line marks the first degree (E4) in pitch histograms, and
a dashed one its higher octave (see Tables 3, and 4). Inter-
val analysis can consider interval direction or not. Caden-
tial notes are computed for each section of the line, distin-
guishing opening and closing lines (see Table 6). Melodic
density box plots show results for individual scores and for
the average of all of them (see Table 7).

For this paper we computed the four aforementioned
features for the whole collection considering all the com-
binations of role type, shengqiang, and banshi. For
a first approach to the results, we grouped the banshi
in three groups: yuanban and erliu, in 2/4 metre and
medium tempo ranges; manban, sanyan, zhongsanyan and
kuaisanyan, in 4/4 metre and slower tempo ranges than the
previous group; and kuaiban and liushui, in 1/4 metre and
faster tempo ranges than the first group. To ease readabil-
ity, each group is referred to in the next section by the first
banshi of the group. All the resulting plots are available. 10

4. DISCUSSION OF THE RESULTS

From the results of the aforementioned analyses we have
obtained the following musicological findings. Pitch his-
tograms in Table 3 show that the role types laosheng and
dan are well defined in terms of pitch range. The predom-
inance of the 5th and 6th degrees for dan (B4 and C#4) is
explained in the literature as a transposition of the modal
center a fifth higher. In terms of pitch distribution, it can be
observed that the finalis of each of the modes associated to
each shengqiang, namely 1st (E4) for xipi and 2nd (F#4) for
erhuang, or their transpositions a fifth higher for dan, are
in fact the most predominant pitches, but not very far from
other degrees. The exception is laosheng erhuang, whose
most predominant pitch is the lower 6th degree (C#3), and
that can be characterised by a relatively major importance

xipi erhuang

la
os

he
ng

da
n

Table 3. Pitch histograms for the role types laosheng and
dan, and the shengqiang xipi and erhuang. All banshi in-
cluded

manban yuanban

la
os

he
ng

xi
pi

la
os

he
ng

er
hu

an
g

Table 4. Pitch histograms for the role type laosheng, com-
paring the banshi groups manban and yuanban for the
shengqiang xipi and erhuang

of the lower region of its register. The use of the 7th de-
gree (D#4) is also remarkable, specially prominent for dan,
what can be explained by the transportation of the modal
center, resulting in that this pitch acts as a 3rd degree. The
4th degree (A4) appears, but very rarely, and also its sharp-
ened version (A#4). The appearance of these two versions
could be due to the fact that its absolute tuning differs from
the equal temperament [8], and transcribers use different
approaches to notate this pitch.

We have also found that pitch histograms are useful for
characterizing different banshi. In Table 4 it can be ob-
served how slow banshi (manban group) explore lower
pitch regions than the ones closer to the original tune
(yuanban group). That is especially relevant in xipi. It can
also be observed how the former make a more frequent use
of the expressive tone D#4, the 7th degree.

xipi manban erhuang manban

la
os

he
ng

da
n

Table 5. Interval histogram for the role types laosheng and
dan and the shengqiang xipi and erhuang, considering only
the banshi group manban

Our findings on interval distributions support the mu-
sicological claims stated previously, but also help to ob-
serve some nuances. Table 5 shows that, in the case of
laosheng, diatonic steps are more frequent than minor third
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erhuang manban xipi manban
la

os
he

ng
da

n

Table 6. Cadential notes in the banshi group manban for
the role types laosheng and dan and the shengqiang er-
huang and xipi, for opening (Op.) and closing (Cl.) lines
in each of their three sections (S1, S2, and S3)

steps in erhuang than in xipi. However, in the case of
dan, the results do not support the claim. In all cases, it
can be observed that intervals larger than the minor 3rd are
rare in both shengqiang, with the exception of the perfect
4th, whose distribution is similar in the four cases. Conse-
quently, the major use of large intervals in xipi as compared
with erhuang can be nuanced in light of these plots.

It is an agreement in jingju music literature to define
laosheng xipi as cadencing in the 2nd degree for the open-
ing line of the couplet, and in the 1st degree for the closing
line, and erhuang as the opposite, 1st degree for the open-
ing line and 2nd degree for the closing line. In the case
of dan, cadences will be 6th and 5th degrees for opening
and closing lines in xipi, and higher octave 1st and 5th de-
grees for erhuang. Different sources refer with different
degrees of precision to cadential notes for each section of
the line and to exceptions to these general rules. Focusing
now only in line cadential notes, that is, those for section
3 (S3), Table 6 shows that only closing lines in laosheng
xipi manban completely match the rules given previously,
presenting the 1st degree (E4) as cadential note in all cases.
As for laosheng erhuang manban, the cadential notes es-
tablished in theory occupy a very small percentage, espe-
cially noticeable in opening line 1. That is also the case for
dan erhuang, which presents a more varied range of possi-
bilities for cadential notes than dan xipi, and where those
established in the literature stand only for a minimum per-
centage in opening lines.

Finally, Table 7 shows how different banshi groups can
be characterized in terms of melodic density. The duration
unit for measuring a syllable length is the crotchet. Two
aspects are interesting in these plots. The median for each
group shows, as expected, that sung syllables are longer
as the tempo decreases, and compared with laosheng, the
dan role type shows slightly higher median values in yuan-
ban. But the outliers also provide meaningful information.
These correspond to a singing feature known as tuoqiang,

laosheng xipi dan xipi

m
an

ba
n

yu
an

ba
n

ku
ai

ba
n

Table 7. Melodic density for the banshi groups manban,
yuanban, and kuaiban and the role types laosheng and dan
in the shengqiang xipi

literally “dragged tune”, by which the melody of a syllable,
usually at the end of a line or a line section, is extended by
a long melisma. Table 7 shows how much more frequently
this phenomenon occurs in manban than in yuanban, and
how it is almost non-existing in kuaiban. However, when
it appears in this banshi, it can be longer than in yuanban.

5. CONCLUSIONS AND FUTURE WORK

In this paper we presented the first collection of machine
readable scores for the study of jingju singing in terms of
its musical system elements. It includes 92 scores covering
897 melodic lines, and is accompanied by their metadata
and curated annotations per score and melodic line. The
collection is part of the corpus gathered in the CompMusic
project for jingju music research. Its potential for jingju
singing analysis has been tested by a series of statistical
analyses, and some musicological findings have been dis-
cussed. The whole collection, together with the metadata,
the annotations, and the developed code are available for
research purposes.

In future work, it is expected to expand the collection by
including other instances of the musical system elements
that are not currently present, especially non metred ban-
shi. At the same time, the collection’s potential, as pointed
out in Section 2.4, will be exploited for different research
tasks. Among them, pattern discovery is a promising topic,
since the accompanying structural annotations can be used
to design heuristics to incorporate to state of the art ap-
proaches, as well as the analysis of the relationship be-
tween linguistic tones and melody. Most importantly, we
hope that JMSC contributes to open up a new range of pos-
sibilities for MIR research on jingju music.
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ABSTRACT

Score information has been shown to improve music
source separation when included into non-negative matrix
factorization (NMF) frameworks. Recently, deep learning
approaches have outperformed NMF methods in terms of
separation quality and processing time, and there is scope
to extend them with score information. In this paper, we
propose a score-informed separation system for classical
music that is based on deep learning. We propose a method
to derive training features from audio files and the corre-
sponding coarsely aligned scores for a set of classical mu-
sic pieces. Additionally, we introduce a convolutional neu-
ral network architecture (CNN) with the goal of estimating
time-frequency masks for source separation. Our system is
trained with synthetic renditions derived from the original
scores and can be used to separate real-life performances
based on the same scores, provided a coarse audio-to-score
alignment. The proposed system achieves better perfor-
mance (SDR and SIR) and is less computationally inten-
sive than a score-informed NMF system on a dataset com-
prising Bach chorales.

1. INTRODUCTION

As a special case of audio source separation, music source
separation has gained significant attention during the past
years. Recovering the sources corresponding to the instru-
ments from an audio mixture allows for interesting appli-
cations such as music upmixing [9] or virtual-reality con-
certs [16], and it is useful in music information retrieval
tasks [11, 30].

In contrast to speech separation, music source separa-
tion poses different challenges due to the variety of sources
which are correlated in time and frequency [7]. Because of
the multitude of harmonic instruments, often related tim-
bres, variations in dynamics, Western classical music is
a challenging case [21]. On the other hand, results can
improve if prior knowledge about the nature of sources
[5, 29] and their timbre [2] informs the separation frame-
work. Considerable improvements are obtained in the case

c© Marius Miron, Jordi Janer, Emilia Gómez. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Marius Miron, Jordi Janer, Emilia Gómez. “Monau-
ral score-informed source separation for classical music using convolu-
tional neural networks”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

of parametric models, such as NMF, which are restricted
using coarsely aligned scores [4, 7, 10, 14].

Recently, neural network approaches have outper-
formed NMF in audio source separation challenges [18].
Deep learning systems estimate soft masks for specific in-
strument classes [3, 13, 15] or computing the instrument
spectra directly [27]. In contrast to NMF methods, a deep
learning framework is less computationally expensive [3]
at the separation stage, as estimating the sources involves
a single feed forward pass through the network rather than
an iterative procedure. Thus, it can be used in a low la-
tency scenario. Furthermore, recurrent [15] and convolu-
tional [3, 13] networks have the advantage of modeling a
larger time context.

Novel deep learning source separation systems propose
specialized models which propose building an NMF logic
into an autoenconder [26] or cluster components over large
time spans [19]. Including score information into the deep
learning separation frameworks can yield further improve-
ments [8].

In this paper we introduce a monaural score-informed
source separation framework for Western classical music
using convolutional neural networks (CNN). We assume
that for a given classical music piece the instruments are
known and the score is available. Thus, for a set of given
scores we generate renditions which are used to train a
CNN. The trained model is used to separate real-life per-
formances based on these scores [22].

A global alignment of the score with the audio of a per-
formance can be obtained by a score following system [4].
Then, the resulting coarsely aligned score, with errors up
to 0.2 seconds, is used to derive score-based soft masks for
each of the sources. From these masks we generate score-
filtered spectrograms as input features for the CNN.

Training neural networks for source separation requires
isolated audio tracks which are difficult to obtain. There-
fore, we use the data generation method in [22]. Accord-
ingly, we synthesize renditions of original scores with vari-
ations in timbre, dynamics and local timing deviations.

The remainder of the paper is structured as follows. In
Section 2 we state our contributions in relation with the
previous work. In Section 3 we introduce the proposed
method including the feature computation, the architecture
of the network and the training procedure. In Section 4 we
discuss the evaluation of the proposed method. We present
our conclusions in Section 5.
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2. RELATION TO PREVIOUS WORK

Score-informed constraints [7,10] are imposed to the NMF
framework through restricting the activations of the note
templates. In a similar manner, we use the score to gener-
ate sparse training features which are used as input to the
CNN. Furthermore, since score following errors influence
the quality of separation [4, 20], we compensate for local
misalignments in a similar manner to [7, 10], by allowing
a tolerance window around note onsets and offsets while
computing our training features. For our experiments and
the dataset we used the size of this window is 0.2 seconds.

Deep learning systems can become more robust to real-
life cases by increasing the size and variability of the train-
ing dataset through data generation [22] or augmentation
[24, 25]. In this sense, the difference in performance be-
tween two similar deep learning methods can be largely ex-
plained by the difference between training datasets rather
than new features or methods [1]. We are motivated by re-
cent advance in deep learning which go beyond the black-
box model and try to integrate musically meaningful fea-
tures [19,26]. Thus, we aim at improving source separation
for classical music with a context-driven method which in-
cludes score information.

The CNN architecture in this paper is adapted from the
convolutional autoencoder proposed in [3, 22]. In com-
parison to [3] our CNN architecture has different filter
and layer sizes. Moreover, the original scores from which
training data is generated are further used to derive score-
informed features which are given as input to the CNN in a
representation analogous to multi-channel images. To that
extent, our approach contrasts with [8] which uses score
restrictions inside the deep learning framework. Further-
more, to our best knowledge, deep learning audio process-
ing methods do not use a multi-channel input as in im-
age processing applications. Thus, we analyze whether
the convolutional autoencoder introduced in [3,22] learns a
better representation from a multi-channel input than from
a single channel input, given that the feature maps are
shared between all channels. In addition, we use bootstrap-
ping with replacement to train such an architecture when
working with big datasets.

3. METHOD

The diagram of the separation framework with the two
stages, training and separation, can be seen in Figure 1.
For the training stage, we start from the original scores
from which we derive synthetic audio renditions with the
method in [22]. The same scores are used to derive fea-
tures for training the CNN in form of score-based soft
masks, explained in Section 3.1.1, and score-filtered spec-
trograms, explained in Section 3.1.2. For the separation
stage, our framework takes as input an audio mixture and
the corresponding coarsely aligned score. Similar to the
training stage, we compute the score-based soft masks and
the score-filtered spectrograms which are feed-forwarded
through the CNN model to obtain the magnitude spectro-
grams of the separated sources.

Figure 1. The overview of the separation system compris-
ing the two stages: training and separation

3.1 Feature computation

The goal of computing score-based soft masks is to de-
rive additional sparse score-filtered spectrograms which
are used as an input to the CNN.

3.1.1 Score-based soft masks

A score gives the note onsets and offsets time and the MIDI
note numbers. Assuming that the source is harmonic and
we know the tuning frequency, fq , the MIDI note associ-
ated with A4, mA4, we can compute the fundamental fre-
quency f0 = fq · 2

1
12 ·(m−mA4), where m is the MIDI note

number.
Score information yields the time-frequency zones

where the notes are played. Correspondingly, for a given
note n that plays between the time frames tb and te we can
define the time range as:

Un(t) = u(t− tb − tw)− u(t− te − tw) (1)

where u is the unit step function, and tw is tolerance
window set around onset tb and offset te which compen-
sates for local misalignments in score-following, similarly
to [4,7,10,14]. The tolerance window is applied at training
and separation.

Furthermore, if we consider the fundamental frequency
f0 of the note n we define the frequency range as:

V n(f) =
H∑

h=1

u(f − hf0/fi)− u(f − hf0fi) (2)

where h = 1 : H are the harmonic partials, and fi =
2fc/1200 is the allowed frequency interval below and above
each harmonic partials, with fc being the allowed interval
in cents, and 1200 is the number of cents per octave.

For each source j = 1 : J and all its notes n = 1 : Nj

we can compute score-based binary matrices Kj(t, f) as a
sum of outer products:

Kj(t, f) =

Nj∑
n=1

Un(t)⊗ V n(f) (3)
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Figure 2. Feature computation for the first 4 seconds and
frequencies between 0-6500Hz, for the piece Ach Gottund
Herr of Bach10 dataset [4] comprising four instruments.

An example of Kj for a classical music piece comprising
four harmonic sources is shown in the first column of Fig-
ure 2.

The score-based soft masks for each source, j = 1 : J ,
are given by the equation:

Rj(f, t) =
|Kj |∑J

j=1 |Kj |+ ε
(4)

where ε = 1−10 is a constant to handle division by zero.
We illustrate a set of Rj matrices in the second column of
Figure 2.

In this paper we consider solely combinations between
harmonic sources, which are reflected in the initialization
of V n using a series of harmonic partials, as seen in Equa-
tion 2. However, the proposed solution can be easily ex-
tended to model non-harmonic sources by initializing the
vector V n(f) = 1 along all the frequency range, resulting
in a less sparse score-filtered spectrogram which is solely
informed by onsets and offsets times through Un(t).

3.1.2 Score-filtered spectrograms

We calculate the STFT magnitude spectrogram of the au-
dio mixture as X(f, t). Then, we derive score-filtered
spectrograms for each of the sources j = 1 : J , by com-
puting the element-wise product between the spectrogram
of the mixture, X , and the score-based soft masks, Rj :

Xj(f, t) = X ·Rj (5)

conv1
f(1,30)
s(1,4)

conv2
f(20,1)
s(1,1)

dense1
256

inverse
conv2

inverse
conv1

(J,T,F)

(J,T,F)

(30,T,F)1 (30,T,F)11(30,T,F)1(30,T,F)1 1

dense2
  30xTxF1 1

=
with

(J,T,F) (J,T,F)

(T,F)

Figure 3. The CNN architecture used in the separation
framework for J = 4 sources

3.2 Convolutional Neural Network architecture

The convolutional autoencoder architecture can be seen in
Figure 3. It comprises a convolution stage with two convo-
lution layers, two dense layers, and a deconvolution stage.
The sources are reconstructed using the filters learned at
the convolution stage. In addition, we have two determin-
istic layers to compute the spectrograms of the sources.

In contrast to the CNN architectures in [3, 13, 22], our
CNN takes as input J score-filtered spectrograms for a
time context T and a number of frequency bins F , rather
than a single spectrogram of the mixture. The J score-
filtered spectrograms share the same feature maps, in a
similar way to image processing deep learning methods
that use color RGB channels [1]. Our assumption is that
this additional information can better guide the separation
between the sources. Furthermore, as shown in Figure 2,
the score-filtered spectrograms are sparser versions of the
original spectrogram, offering a better representation for
source separation [23].

The first layer conv1 is a convolution layer with filter
shape (1, 30), hence the convolution only happens in fre-
quency. For this layer we have a stride 1 of (1, 4), which
reduces dimensionality by keeping into account the spar-
sity of the input.

This layer outputs feature maps of size (30, T, F1),
where F1 = (F − 30)/4 + 1, where 30 is the length of
the filter and 4 is the stride. The second layer conv2 is
a convolution layer with filter shape (20, 1), which learns
temporal patterns. The output of this layer has the size
(30, T1, F1), where T1 = (T − 20) + 1 with 20 being the
length of the filter. This layer has a stride of (1, 1), since
we are interested in maintaining a good temporal resolu-
tion at the reconstruction. Note that the convolution layers
have a linear activation function.

We use a dense bottleneck layer as in [3] with 256 units
and a rectifier linear unit activation function [1], denoted
as dense1. The limited number of units and the activa-
tion function have been proven to better guide the param-
eter learning and prevent overfitting in the case of timbre-
informed source separation [3].

To match dimensions necessary for the deconvolution
(30, T1, F1) for each of the J sources, we introduce a layer

1 The stride controls how much a filter is shifted on the input.
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dense2 comprising J dense layers of shape 30 ·T1 ·F1. For
each of these J layers we perform the inverse operations
of conv2 and conv1 and we obtain a set of estimations Ej

for each of the separated sources j = 1 : J .
Following [3, 15], we integrate the computation of the

soft masks into the architecture of the network as an ad-
ditional deterministic layer. Thus, the soft masks Mj , for
each source j = 1 : J , are computed from the output of
the previous layer, Ej , as:

Mj =
|Ej |∑J

j=1 |Ej |+ ε
(6)

where ε = 1−10 is a constant to handle division by zero.
The magnitude spectrogram corresponding to the sources,
X̂j , are given by the element-wise multiplication between
input spectrogram and the soft-masks X̂j = Mj ·X . The
soft masks Mj are not to be confounded with the score-
based soft-masks Rj introduced in Section 3.1.1 and used
to derive input features for the CNN.

3.3 Training procedure

The network is trained according to the mean-squared
error between the magnitude spectrograms of the tar-
get sources, X̂j , and the magnitude spectrograms of
the sources yielded by the network, Xj , as: Loss =∑J

j=1 ‖X̂j −Xj‖2.
The parameters of the CNN are updated using mini-

batch Stochastic Gradient Descent with the AdaDelta al-
gorithm [31].

With the method in [22] we can generate a high num-
ber of renditions, covering a high number of possibilities,
which makes the framework more robust to real-life data.
However, training on big datasets is an expensive proce-
dure and we experimented with a faster training method
summarized in the Algorithm 1. In this case, we sam-
ple a limited number data points before each epoch rather
than having a fixed dataset at the beginning of training. In
statistics, this procedure is known as bootstrapping with re-
placement [17]. Note that, for this training procedure, the
concept of epoch (a single pass through the entire training
set) does not hold anymore.

Algorithm 1 Bootstrapping with replacement
1 repeat
2 randomly sample a number of data points from the dataset
3 for each training batch do
4 compute weights and bias gradients for the current

batch
5 accumulate the gradients
6 end for
7 adjust weights and bias using accumulated gradients
8 until total number of stages is reached

3.4 Separated source estimation

We assume that the individual sources yj(t), j = 1 : J ,
that compose the audio mixture x(t) are linearly mixed,

so that x(t) =
J∑

j=1

yj(t). Therefore, from the estimated

magnitude spectrograms Xj and using the original phase
of the audio mixture we can obtain the signals associated to
the sources, yj(t), with an inverse overlap-add STFT [10].

The neural network yields estimations of shape (T, F )
for each of the J sources. Considering an audio mixture of
variable time shape, the estimation is done for overlapping
segments of shape (T, F ), with the algorithm described in
[22].

4. EVALUATION

4.1 Datasets

For evaluation purposes we use ten Bach chorales from the
Bach10 dataset [4], played by bassoon, clarinet, tenor sax-
ophone, and violin. The mean duration of a piece is ≈ 30
seconds. In addition, each piece is accompanied by the
score aligned with the audio, the original score, and an au-
tomatic alignment obtained with the algorithm in [4]. This
dataset has been widely used in tasks as source separation,
alignment, and transcription.

4.2 Generating training data

We generate training data with the method in [22] which
uses sample-based synthesis with samples from the RWC
instrument sound database [12]. The method synthesizes
original scores at different tempos, dynamics, considering
local timing deviations, and using different timbres to gen-
erate a wide variety of renditions of given pieces.

In this case, we have three different timbres and three
level of dynamics. In addition, to account for local
timing variations, we circular-shift the audio with s =
{0, 0.1, 0.2} seconds. An analogous transformation needs
to be applied to the associated score by adding s seconds
to the note onsets and offsets.

Considering the variations of the factors above (3 · 3 ·
3 = 27) for the four instruments, we can generate a total
number of 274 = 531441 renditions for a single piece.
Because it is not feasible to generate such a high number of
audio files, we randomly choose 400 renditions to build our
training dataset. Samples are uniformly distributed across
the dataset. Since we are training a CNN model for all the
10 pieces in Bach10 dataset, we have a total number of
4000 renditions.

4.3 Evaluation setup

We used the evaluation framework and the metrics de-
scribed in [28] and [6] : Source to Distortion Ratio (SDR),
Source to Interference Ratio (SIR), and Source to Artifacts
Ratio (SAR).

The STFT is computed using a Blackman-Harris win-
dow of length 4096 samples, which at a sampling rate of
44.1 KHz corresponds to 93 milliseconds (ms), and a hop
size of 512 samples (11ms).

When computing the soft-masks from the score, as de-
scribed in Section 3.1.1, we consider the tuning frequency,
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fq = 440Hz, the MIDI note associated with A4, mA4 =
69, and we allow fc = 40 cents above and below each
harmonic partials to account for vibrato. Additionally, be-
cause we want to train our score-informed system to ac-
count for errors in score following, we set the tolerance
window to be tw = 0.2 seconds around onsets and offsets.

The time context modeled by the CNN is T = 30
frames. Furthermore, a more robust system is achieved by
taking consecutive T -sized frames with an overlap of 25
frames with the algorithm described in [22].

The number of epochs is variable for each training ex-
periment. The size of a mini-batch is set to 32.

This paper follows the principles of research repro-
ducibility 2 . The code used in this paper is made available
online 3 . It is built on top of Lasagne, a framework for neu-
ral networks using Theano 4 . We ran the experiments on a
Ubuntu 16.04 PC with GeForce GTX TITAN X GPU, In-
tel Core i7-5820K 3.3GHz 6-Core Processor, X99 gaming
5 x99 ATX DDR44 motherboard.

4.4 Experiments

In a first experiment, we compare the proposed framework
with an NMF counterpart on the Bach10 dataset. We train
our CNN framework on the synthetic dataset we described
in Section 4.2 (10 × 400 renditions) and the correspond-
ing scores. Because we want the model to learn to deal
with errors in alignment we set a tolerance window around
notes’ onsets and offsets. Then, we test the resulting model
on real-life performances in Bach10 dataset and the scores
yielded by the score-following system in [4].

Because we want to isolate the influence of the score-
following system, we test our system on the score perfectly
aligned (PA) with the audio. For this case, denoted as CNN
PA, the tolerance window is not needed, neither for train-
ing nor testing. Furthermore, to assess the influence of the
proposed features, we train the CNN architecture without
any score information, having as input the magnitude spec-
trogram of the mixture, similarly to the system in [22]. We
denote this experiment as CNN T.

We compare our score-informed system to a state of the
art NMF counterpart [20]. The note templates are trained
on the RWC dataset and are kept fixed during the factor-
ization. Score-information is introduced through the acti-
vation matrix by setting to zero the activations correspond-
ing to notes which are not played. The activations which
are set to zero will remain this way during factorization,
allowing the energy to be distributed between the active
templates.

For the NMF system we use as input the score aligned
with [4] with a tolerance window of 0.2 seconds, and the
perfectly aligned score, as two separate cases, denoted as
NMF and NMF PA. Furthermore, for the NMF we kept
the default parameters presented in the paper [20]: 50 it-
erations for the factorization, beta-divergence distortion

2 http://soundsoftware.ac.uk/resources/
3 https://github.com/MTG/DeepConvSep
4 http://lasagne.readthedocs.io/en/latest/Lasagne

and http://deeplearning.net/software/theano/Theano

β = 1.3, STFT window size 93ms, and hop size 11ms.
For this first experiment we do not test the bootstrapping

with replacement procedure. To that extent, we train the
CNN with all the 4000 renditions for a maximum number
of 20 epochs and we stop training if the loss between two
epochs drops below 0.2.

In a second experiment, we test the effectiveness of the
training procedure based on bootstrapping with replace-
ment, described in Algorithm 1 and compare it with the
standard training procedure which maintains the same data
points during training. Furthermore, since we want to de-
termine the optimal value for the number of renditions used
at each epoch or stage, we train the CNN successively with
the two procedures using different numbers of renditions.
For this experiment we train for a number of 50 epochs or
stages.

4.5 Results

The SDR, SIR, and SAR for our system (CNN and CNN
PA), the timbre informed version CNN T, and the NMF
framework are presented in the Figure 4. Error bars are
drawn for a confidence interval of 95%.

We observe that the proposed score-informed frame-
work performs better than NMF when working with
coarsely aligned scores: 6dB vs 5dB in SDR. Hence, with
our framework we are able to compensate for local mis-
alignment errors around 0.2 seconds. This results in less
interference, since the CNN method has 2dB more in SIR
than the NMF, and can be due to the fact that the CNN
models temporal patterns in the conv2 layer and to the non-
linearities in the bottleneck dense1 layer.

Figure 4. Results in terms of SDR, SIR, SAR for the pro-
posed CNN framework and the NMF framework [20]

Having score-filtered spectrograms as input (CNN) im-
proved 2dB in SDR in comparison to giving the magnitude
spectrograms as input (CNN T), which proves the effec-
tiveness of the features derived from score.

When the score is perfectly aligned with the audio, there
is no significant difference in SDR between the CNN PA
and NMF PA. However, the proposed method has 1dB
higher SIR and similar SAR values to the NMF PA. Note
that CNN PA is trained on the original scores and it is not
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targeted for special case. To that extent, as the CNN and
CNN PA achieve similar results, we believe that having a
perfect alignment does not improve results for this particu-
lar type of CNN architecture. This is in line with the results
obtained in [22].

Figure 5. Results for each instrument in terms of SDR for
the considered approaches: CNN and NMF [20]

We present the results in terms of SDR for each instru-
ment in Figure 5. The CNN framework performs signif-
icantly better than the NMF for all the instruments, with
the exception of bassoon. While experimenting with dif-
ferent STFT window sizes, we observed that the quality
of the separation for bassoon improved considerably with
the increase in the window size, while remaining the same
for the other instruments. However, a larger window size
means a higher feature dimensionality, hence more weights
to be trained and a larger model.

We observe that the proposed framework effectively
compensates for errors in alignment across all instruments,
especially for clarinet.

The audio examples for the CNN framework and the
computed metrics for CNN,CNN PA, CNN T, NMF, and
NMF PA as .mat files can be accessed online 5 .

In the second experiment we are interested in testing
the bootstrapping with replacement training procedure and
the standard procedure. The results for various number of
renditions can be seen in Figure 6.

bootstrapping
standard

Figure 6. Results in terms of SDR,SIR,SAR when training
the proposed CNN with stardard training method vs boot-
strapping with replacement with various number of train-
ing samples

We observe that bootstrapping with replacement always

5 http://doi.org/10.5281/zenodo.821128

improves over the standard training procedure, particu-
larly for a small number of training renditions. How-
ever, a lower than 50 number of renditions, decreases the
performance for both of the training methods. In some
cases (50,60,100), using the proposed training procedure
with fewer samples is slightly better than training with the
whole dataset, as it prevents overfitting, in a similar way to
early stopping [1]. The optimum number of renditions for
our experimental scenario is 50 samples.

5. CONCLUSION

We proposed a score-informed source separation frame-
work targeted at Western classical music. Our framework
is based on the assumption that classical music pieces are
accompanied by scores and this information can be lever-
aged. Thus, we proposed a framework which is trained
with generated renditions synthesized from the original
scores. Provided an accurate automatic audio-to-score
alignment can be obtained by a score-following system,
our framework separates with low latency any real-life per-
formances based on those scores, accompanied by a coarse
alignment.

We presented a novel method to derive training fea-
tures in the form of score-filtered spectrograms, which can
easily be integrated with CNN architectures. In particu-
lar, these sorts of homogeneous features are well suited to
learning convolutional filters which are shared between the
input channels of the CNN.

The proposed system has better SDR and SIR than a
state of the art score-informed NMF framework, particu-
larly when working with coarsely aligned score, as it is
the case of the output of score-following systems. Further-
more, we tested a faster training procedure, bootstrapping
with replacement, which preserves the performance and in
some cases prevents overfitting. As future work, we plan
on extending this framework to multi-microphone orches-
tral music which is a more complex scenario due to in-
creased number of instruments. Moreover, reiterating the
method, by inputting the output of the network to another
similar network, could improve results [27].
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train convolutional neural networks for classical music
source separation. In Proceedings of the 14th Sound
and Music Computing Conference, pages 227–233,
2017.

[23] M.D. Plumbley, T. Blumensath, L. Daudet, R. Gribon-
val, and M.E. Davies. Sparse representations in audio
and music: from coding to source separation. Proceed-
ings of the IEEE, 98(6):995–1005, 2010.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 61



[24] J. Salamon and J.P. Bello. Deep convolutional neu-
ral networks and data augmentation for environmental
sound classification. IEEE Signal Processing Letters,
24(3):279–283, 2017.
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ABSTRACT

Estimating fundamental frequencies in polyphonic music
remains a notoriously difficult task in Music Information
Retrieval. While other tasks, such as beat tracking and
chord recognition have seen improvement with the appli-
cation of deep learning models, little work has been done
to apply deep learning methods to fundamental frequency
related tasks including multi-f0 and melody tracking, pri-
marily due to the scarce availability of labeled data. In this
work, we describe a fully convolutional neural network for
learning salience representations for estimating fundamen-
tal frequencies, trained using a large, semi-automatically
generated f0 dataset. We demonstrate the effectiveness of
our model for learning salience representations for both
multi-f0 and melody tracking in polyphonic audio, and
show that our models achieve state-of-the-art performance
on several multi-f0 and melody datasets. We conclude
with directions for future research.

1. INTRODUCTION

Estimating fundamental frequencies in polyphonic music
remains an unsolved problem in Music Information Re-
trieval (MIR). Specific cases of this problem include multi-
f0 tracking, melody extraction, bass tracking, and piano
transcription among others. Percussion, overlapping har-
monics, high degrees of polyphony, and masking make
these tasks notoriously difficult. Furthermore, training and
benchmarking is difficult due to the limited amount of
human-labeled f0 data available.

Historically, most algorithms for estimating fundamen-
tal frequencies in polyphonic music have been built on
heuristics. In melody extraction, two algorithms that have
retained the best performance are based on pitch contour
tracking and characterization [8,27]. Algorithms for multi-
f0 tracking and transcription have been based on heuris-
tics such as enforcing spectral smoothness and emphasiz-
ing harmonic content [17], comparing properties of co-
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occurring spectral peaks/non-peaks [11], and combining
time and frequency-domain periodicities [29]. Other ap-
proaches to multi-f0 tracking are data-driven and require
labeled training data, e.g. methods based on supervised
NMF [32], PLCA [3], and multi-label discriminative clas-
sification [23]. For melody extraction, machine learning
has been used to predict the frequency bin of an STFT
containing the melody [22], and to predict the likelihood
an extracted frequency trajectory is part of the melody [4].

There are a handful of datasets with fully-annotated
continuous-f0 labels. The Bach10 dataset [11] contains
ten 30-second recordings of a quartet performing Bach
chorales. The Su dataset [30] contains piano roll annota-
tions for 10 excerpts of real-world classical recordings, in-
cluding examples of piano solos, piano quintets, and violin
sonatas. For melody tracking, the MedleyDB dataset [5]
contains melody annotations for 108 full length tracks that
are varied in musical style.

More recently, deep learning approaches have been ap-
plied to melody and bass tracking in specific musical sce-
narios, including a BLSTM model for singing voice track-
ing [25] and fully connected networks for melody [2] and
bass tracking [1] in jazz music. In multi-f0 tracking, deep
learning has also been applied to solo piano transcription
[7,28], but nothing has been proposed that uses deep learn-
ing for multi-f0 tracking in a more general musical con-
text. In speech, deep learning has been applied to both
pitch tracking [14] and multiple pitch tracking [18], how-
ever there is much more labeled data for spoken voice, and
the space of pitch and spectrum variations is quite different
than what is found in music.

The primary contribution of this work is a model for
learning pitch salience representations using a fully convo-
lutional neural network architecture, which is trained using
a large, semi-automatically annotated dataset. Addition-
ally, we present experiments that demonstrate the useful-
ness of the learned salience representations for both multi-
f0 and melody extraction, outperforming state-of-the-art
approaches in both tasks. All code used in this paper, in-
cluding trained models, is made publicly available. 1

2. SALIENCE REPRESENTATIONS

Pitch salience representations are time-frequency represen-
tations that aim to measure the saliency (i.e. perceived am-

1 github.com/rabitt/ismir2017-deepsalience
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plitude/energy) of frequencies over time. They typically
rely on the assumption that sounds humans perceive as
having a pitch have some kind of harmonic structure. The
ideal salience function is zero everywhere where there is
no perceptible pitch, and a positive value that reflects the
pitches’ perceived loudness at the fundamental frequency.
Salience representations are core components of a number
of algorithms for melody [8, 12, 27] and multi-f0 track-
ing [17,26]. Computations of salience representations usu-
ally perform two functions: (1) de-emphasize un-pitched
or noise content (2) emphasize content that has harmonic
structure.

The de-emphasis stage can be performed in a variety
of ways, including harmonic-percussive source separation
(HPSS), re-weighting frequency bands (e.g. using an equal
loudness filter or a high pass filter), peak picking, or sup-
pressing low amplitude or noise content [8, 12, 17, 26, 27].
In practice most salience functions also end up emphasiz-
ing harmonics and subharmonics because they are difficult
to untangle from the fundamental, especially in complex
polyphonies. The many parameters of these filtering and
smoothing steps are typically set manually.

Harmonic content is most commonly emphasized via
harmonic summation, which re-weights the input repre-
sentation across frequency, where frequency bins in the
salience representation are a weighted sum of harmoni-
cally related bins in the input representation [17, 27]. The
weights in this summation vary from method to method,
and are usually chosen heuristically based on assumptions
about the data. In another variant, the input represen-
tation is modeled using non-negative least squares to a
manually constructed set of ideal harmonic templates [19].
The Fan Chirp transform [9] uses harmonic information in
the transform itself, thus directly performing the harmonic
“weighting”.

In melody extraction, the salience representation has
been found to be a bottleneck in algorithmic perfor-
mance [4], often because large portions of the melody are
not emphasized. In particular, the salience representation
used in Melodia [27] was found to emphasize vocal content
well, but often miss instrumental content.

The combination of HPSS, equalization, and harmonic
summation to emphasize pitched content and suppress the
rest can be naturally extended in the context of deep learn-
ing architectures. For example, a simple version of HPSS
performs median filtering with one kernel in time and fre-
quency, and assigns bins to the harmonic or percussive
component by a max filtering operation [13]. The har-
monic and percussive decompositions can be cascaded to
compute, for example, the harmonic component of the per-
cussive signal as in [10, 25] to recover content that is not
strongly activated by vertical or horizontal median filters
such as singing voice. This cascade of median filtering
can be naturally extended to a convolutional neural net-
work setting, where instead of using only two manually set
kernels, any number of kernels can be learned and their
outputs combined in order to generalize to many types of
musical sounds. Similarly, the parameters of harmonic

summation can be implicitly learned by using an input
representation that aligns harmonically related content—
namely we introduce the harmonic CQT which we de-
scribe in Section 3.1. Furthermore, with a convolutional
architecture, the parameters of the de-noising stage and the
harmonic emphasis stage can be learned jointly.

3. METHOD

We frame our approach as a de-noising problem as de-
picted in Figure 1: given a time-frequency representation
(e.g. a CQT), learn a series of convolutional filters that will
produce a salience representation with the same shape in
time and frequency. We constrain the target salience rep-
resentation to have values between 0 and 1, where large
values should occur in time-frequency bins where funda-
mental frequencies are present.

3.1 Input Representation

In order to better capture harmonic relationships, we use a
harmonic constant-Q transform (HCQT) as our input rep-
resentation. The HCQT is a 3-dimensional array indexed
by harmonic, frequency, and time: H[h, t, f ], measures
the hth harmonic of frequency f at time t. The harmonic
h = 1 refers to the fundamental, and we introduce the no-
tationH[h] to denote harmonic h of the “base” CQTH[1].
For any harmonic h > 0, H[h] is computed as a standard
CQT where the minimum frequency is scaled by the har-
monic: h · fmin, and the same frequency resolution and
number of octaves is shared across all harmonics. The re-
sulting representationH is similar to a color image, where
the h dimension is the depth.

In a standard CQT representation, the kth frequency
bin measures frequency fk = fmin · 2k/B for B bins per
octave. As a result, harmonics h · fk can only be di-
rectly measured for h = 2n (for integer n), making it
difficult to capture odd harmonics. The HCQT represen-
tation, however, conveniently aligns harmonics across the
first dimension, so that the kth bin of H[h] has frequency
fk = h · fmin · 2k/B , which is exactly the hth harmonic
of the kth bin of H[1]. By aligning harmonics in this way,
the HCQT is amenable to modeling with two-dimensional
convolutional neural networks, which can now efficiently
exploit locality in time, frequency, and harmonic.

In this work, we compute HCQTs with h ∈
{0.5, 1, 2, 3, 4, 5}: one subharmonic below the fundamen-
tal (0.5), the fundamental (1), and up to 4 harmonics above
the fundamental. Our hop size is ≈11 ms in time, and
we compute 6 octaves in frequency at 60 bins per octave
(20 cents per bin) with minimum frequency at h = 1 of
fmin = 32.7 Hz (i.e. C1). We include a subharmonic in ad-
dition to harmonics to help disambiguate between the fun-
damental frequency and the first harmonic, whose patterns
of upper harmonics are often similar – for the fundamen-
tal, the first subharmonic should have low energy, where
for the first harmonic, a subharmonic below it will have
energy. Our implementation is based on the CQT imple-
mentation in librosa [21].
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Figure 1. Input HCQT (left) and target salience function
(right).

3.2 Output Representation

The target outputs we use to train the model are time-
frequency representations with the same shape as H[1].
Ground truth fundamental frequency values are quantized
to the nearest time-frequency bin, and given magnitude
= 1 in the target representation. The targets are Gaus-
sian blurred in frequency such that the energy surrounding
a ground truth frequency decays to zero within a quarter-
tone, in order to soften the penalty for near-correct pre-
dictions during training. Additionally, since the data is
human labeled it may not be accurate to 20 cents, so
we do not necessarily want to label nearby frequencies
as “wrong”. Similar training label “blurring” techniques
have been shown to help the performance of models for
beat/downbeat tracking [6] and structural boundary detec-
tion [31].

3.3 Model

Our model uses a fully convolutional architecture, with 5
convolutional layers of varying dimensionality, as illus-
trated in Figure 2. The first two layers have 128 and 64
(5 x 5) filters respectively, which cover approximately 1
semitone in frequency and 50 ms in time. The following
two layers each have 64 (3 x 3) filters, and the final layer
has 8 (70 x 3) filters, covering 14 semitones in frequency
to capture relationships between frequency content within
an octave. At each layer, the convolutions are zero padded
such that the input shape is equal to the output shape in
the time-frequency dimension. The input to each layer is
batch normalized [15], and the outputs are passed through
rectified linear units. The final layer uses logistic activa-
tion, mapping each bin’s output to the range [0, 1]. The
predicted saliency map can be interpreted as a likelihood
score of each time-frequency bin belonging to an f0 con-
tour. Note that we do not include pooling layers, since
we do not want to be invariant to small shifts in time fre-
quency.

The model is trained to minimize cross entropy:

L(y, ŷ) = −y log(ŷ)− (1− y) log(1− ŷ) (1)

where both y and ŷ are continuous values between 0 and 1.
We fit our model using the Adam [16] optimizer.
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Figure 2. CNN architecture. The input to each layer
is batch-normalized. The output of each layer is passed
through a rectified linear unit activation function except the
last layer which is passed through a sigmoid.

4. MULTIPLE-F0 TRACKING EXPERIMENTS

We first explore the usefulness of our model when trained
to produce a multi-f0 salience representation.

4.1 Data Generation

Because there is no large human-labeled dataset to use for
training, we generate a dataset from a combination of hu-
man and machine generated f0 annotations by leveraging
multitrack data. Our total dataset contains 240 tracks from
a combination of the 108 MedleyDB multitrack dataset [5]
and a set of 132 pop music multitracks. The pop multi-
track set consists of western popular music from the 1980s
through today, and were obtained from a variety of sources
and are not available for redistribution—because of this we
only use these examples during training. The tracks are
split into train, validate, and test groups using an artist-
conditional randomized split (i.e. tracks belonging to the
same artist must all belong to the same group). The test
set is constrained to contain only tracks from MedleyDB,
and contains 28 full-length tracks. The training and valida-
tion sets contain 184 and 28 full-length tracks respectively,
totaling to about 10 hours of training data and 2 hours of
validation data.

Each multitrack in the dataset contains mixes and iso-
lated stems, and a subset of these stems contain human-
labeled f0 annotations. To have a mix where all pitched
content is annotated, we re-create partial mixes by com-
bining any stems with human annotations, all stems with
monophonic instruments (e.g. electric bass), and all per-
cussive stems, effectively creating mixes that are similar
to the originals, but with all “unknown” pitch content re-
moved. The stems are linearly mixed with weights esti-
mated from the original mixes using a least squares fit.
The human-labeled f0 annotations are directly added to
the ground truth labels. Annotations for monophonic in-
strument stems without human labels are created by run-
ning pYIN [20] and using the output as a proxy for ground
truth.

4.2 Results

To generate multi-f0 output, we need to explicitly select a
set of fundamental frequency values for each time frame
from our salience representation. A natural way to do this
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would be to threshold the representation at 0.5, however
since the model is trained to reproduce Gaussian-blurred
frequencies, the values surrounding a high energy bin are
usually above 0.5 as well, creating multiple estimates very
close to one another. Instead, we perform peak picking
on the learned representation and select a minimum ampli-
tude threshold by choosing the threshold that maximizes
the multi-f0 accuracy on the validation set.

We evaluate the model on three datasets: the Bach10
and Su datasets, and the test split of the MedleyDB
data described in Section 4.1, and compare to well-
performing baseline multi-f0 algorithms by Benetos [3]
and Duan [11].

Figure 3 shows the results for each algorithm on the
three datasets. We see that our CNN model under-performs
on Bach10 compared to Benetos’ and Duan’s models by
about 10 percentage points, but outperforms both algo-
rithms on the Su and MedleyDB datasets. We attribute the
difference in performance across these datasets to the way
each model was trained. Both Benetos’ and Duan’s meth-
ods were in some sense developed with the Bach10 dataset
in mind simply because it has been one of the few avail-
able test sets when the algorithms were developed. On the
other hand, our model was trained on data most similar to
the MedleyDB test set, so it is unsurprising that it performs
better on this set. The Bach10 dataset is homogeneous (as
can be seen by the small variance in performance across
all methods), and while our model performs obtains higher
scores on the Bach10 dataset than the other two used for
evaluation, this dataset only measures how well an algo-
rithm performs on simple 4-part harmony classical record-
ings. Indeed, we found that on the MedleyDB test set, both
Benetos’ and Duan’s models perform best (50% and 48%
accuracy respectively) on the example that is most similar
to the Bach10 data (a string quartet), and our approach per-
forms similarly on that track to the overall performance on
the Bach10 set with 59% accuracy.

To get a better sense of the track level performance, Fig-
ure 4 displays the difference between the CNN accuracy
and the best accuracy of Benetos and Duan’s model per
track. In addition to having a better score on average for
MedleyDB (from Figure 3), we see that the CNN model
outperforms the other two models on every track on Med-
leyDB by quite a large margin. We see a similar result for
the Su dataset, though on one track (Beethoven’s Moon-
light sonata) we have a lower score than Benetos. A qual-
itative analysis of this track showed that our algorithm re-
trieves the melody and the bass line, but fails to emphasize
several notes that are part of the harmony line. Unsurpris-
ingly, on the Bach10 dataset, the other two algorithms out-
perform our approach for every track.

To further explain this negative result, we explore how
our model will perform in an oracle scenario by constrain-
ing the maximum polyphony to 4 (the maximum for the
Bach10 dataset) and look at the accuracy when we vary the
detection threshold. Figure 5 shows the CNN’s average ac-
curacy on the Bach10 dataset as a function of the detection
thresholds. The solid dotted line shows the threshold auto-

matically estimated from the validation set. For the Bach10
dataset, the optimal threshold is much lower (0.05 vs. 0.3),
and the best performance (63% accuracy) gets closer to
that of the other two datasets (68% for Duan and 76% for
Benetos). Even in this ideal scenario, the difference in per-
formance is due to recall – similarly to the Su example, our
algorithm is good at retrieving the melody and bass lines
in the Bach10 dataset, but often misses notes that occur
in between. This is likely a result of the characteristics of
the artificial mixes in our training set: the majority of au-
tomatically annotated (monophonic) stems are either bass
or vocals, and there are few examples with simultaneous
harmonically related pitch content.

Overall, our model has good precision, even on the
Bach10 dataset (where the scores are hurt by recall), which
suggests that the learned salience function does a good job
of de-emphasizing non-pitched content. However, the low
recall on the Bach10 and Su datasets suggests that there is
still room for the model to improve on emphasizing har-
monic content. Compared to the other two algorithms,
the CNN makes fewer octave mistakes (3% of mistakes
on MedleyDB compared with 5% and 7% of mistakes for
Benetos and Duan respectively), reflected in the difference
between the accuracy and chroma accuracy.

While the algorithm improves on the state of the art on
two datasets, the overall performance still has a lot of room
to improve, with the highest score on the Su dataset reach-
ing only 41% accuracy on average. To explore this further,
in Figure 6 we plot the outputs on excerpts of tracks from
each of the three datasets. In each of the excerpts, the out-
puts look reasonably accurate. The top row shows an ex-
cerpt from Bach10, and while our model sometimes misses
portions of notes, the salient content (e.g. melody and bass)
is emphasized. Overall, we observe that the CNN model is
good at identifying bass and melody patterns even when
higher polyphonies are present, while the other two mod-
els try to identify chords, even when only melody and bass
are present.

4.3 Model Analysis

The output of the CNN for an unseen track from the Su
dataset is shown in Figure 7. H[1] is plotted in the left
plot, and we can see that it contains a complex polyphonic
mixture with many overlapping harmonics. Qualitatively,
we see that the CNN was able to de-noise the input repre-
sentation and successfully emphasize harmonic content.

To better understand what the model learned, we plot
the 8 feature maps from the penultimate layer in Figure 8.
The red-colored activations have positive weights and the
blue-colored have negative weights in the output filter. Ac-
tivations (a) and (b) seem to emphasize harmonic content,
including some upper harmonics. Interestingly, activation
(e) deemphasizes the octave mistake from activation (a),
as does activation (d). Similarly, activations (f) and (g) act
as a “cut out” for activations (a) and (b), deemphasizing
the broadband noise component. Activation (h) appears to
deemphasize low-frequency noise.
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Figure 3. A subset of the standard multiple-f0 metrics on the Bach10, Su, and MedleyDB test sets for the proposed
CNN-based method, Duan [11], and Benetos [3].
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Figure 5. CNN accuracy on the Bach10 dataset as a func-
tion of the detection threshold, and when constraining the
maximum polyphony to 4. The vertical dotted line shows
the value of the threshold chosen on the validation set.

5. MELODY ESTIMATION EXPERIMENTS

To further explore the usefulness of the proposed model
for melody extraction, we train a CNN with identical an
architecture on melody data.

5.1 Data Generation

Instead of training on HCQTs computed from partial mixes
and semi-automatic targets (as described in Section 4.1),
we use HCQTs from the original full mixes from Med-
leyDB, as well as targets generated from the human-
labeled melody annotations. The ground truth salience
functions contain only melody labels, using the “Melody
2” definition from MedleyDB (i.e. one melody pitch per
unit time coming from multiple instrumental sources). We
estimate the melody line from the learned salience repre-
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Figure 6. Multi-f0 output for each of the 3 algorithms for
an example track from the Bach10 dataset (top), the Su
dataset (middle), and the MedleyDB test set (bottom)

sentation by choosing the frequency with the maximum
salience at every time frame. The voicing decision is deter-
mined by a fixed threshold chosen on the validation set. In
this work we did not explore more sophisticated decoding
methods.

5.2 Results

We compare the output of our CNN-based melody track-
ing system with two strong, salience-based baseline al-
gorithms: “Salamon” [27] and “Bosch” [8]. The for-
mer is a heuristic algorithm that long held the state of
the art in melody extraction. The latter recently reached
state-of-the-art performance by combining a source-filter
based salience function and heuristic rules for contour
selection—this model is the current best performing base-
line. Figure 9 shows the results of the three methods on the
MedleyDB test split described in Section 4.1.

On average, the CNN-based melody extraction outper-
forms both Bosch and Salamon in terms of Overall (+ 5 and
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Figure 7. (left) Input H[1], (middle) predicted output,
(right) ground truth annotation for an unseen track in the
Su dataset.
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Figure 8. Activations from the final convolutional layer
with octave height filters for the example given in Figure 7.
Activations (a)–(c) have positive coefficients in the output
layer, while the others have negative coefficients.
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Figure 9. Melody metrics – Overall Accuracy (OA), Raw
Pitch Accuracy (RPA), Raw Chroma Accuracy (RCA),
Voicing Recall (VR) and Voicing False Alarm (VFA) –
on the MedleyDB test set for the proposed CNN-based
method, Salamon [27], and Bosch [8].

13 percentage points), Raw Pitch (+15 and 22 percentage
points), and Raw Chroma Accuracy (+6 and 14 percentage
points). The CNN approach is also considerably more var-
ied in performance than the other two algorithms, with a
wide range in performance across tracks.

Because we choose the frequency with maximum am-
plitude in our approach, the Raw Pitch Accuracy measures
effectiveness of the salience representation: in an ideal
salience representation for melody, the melody should have
the highest amplitude in the salience function over time.
In our learned salience function, ≈ 62% of the time the
melody has the largest amplitude. A qualitative analysis
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Figure 10. CNN output on a track beginning with a pi-
ano melody (0 - 10 seconds) and continuing with a clarinet
melody (10 - 25 seconds). (left) CNN model melody out-
put in red against the ground truth in back. (right) CNN
melody salience output.

of the mistakes made by the CNN method revealed that
the vast majority incorrect melody estimates occurred for
melodies played by under-represented melody instrument
classes in the training set, such as piano and guitar. For
example, Figure 10 shows the output of the CNN model
for an excerpt beginning with a piano melody and contin-
uing with a clarinet melody. Clarinet is well represented
in our training set and the model is able to retrieve most
of the clarinet melody, while virtually none of the piano
melody is retrieved. Looking at the salience output (Fig-
ure 10 right), there is very little energy in the early region
where the piano melody is active. This could be a result
of the model not being exposed to enough examples of the
piano timbre to activate in those regions. Alternatively, in
melody salience scenario, the model is trained to suppress
“accompaniment” and emphasize melody. Piano is often
playing accompaniment in the training set, and the model
may not have enough information to untangle when a pi-
ano timbre should be emphasized as part of the melody and
when it should be suppressed as accompaniment. We note
that while in this qualitative example the errors could be
attributed to the pitch height, we observed that this was not
a consistent factor in other examples.

6. CONCLUSIONS

In this paper we presented a model for learning a salience
representation for multi-f0 tracking and melody extraction
using a fully convolutional neural network. We demon-
strated that simple decoding of both of these salience repre-
sentations yields state-of-the art results for multi-f0 track-
ing and melody extraction. Given a sufficient amount of
training data, this architecture would also be useful for re-
lated tasks including bass, piano, and guitar transcription.

In order to further improve the performance of our sys-
tem, data augmentation can be used to both diversify our
training set and to balance the class distribution (e.g. in-
clude more piano and guitar). The training set could fur-
ther be augmented by training on a large set of weakly-
labeled data such as the Lakh-midi dataset [24]. In addition
to augmentation, there is a wide space of model architec-
tures that can be explored to add more temporal informa-
tion, such as recurrent neural networks.
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ABSTRACT

Generating continuous f0 annotations for tasks such as
melody extraction and multiple f0 estimation typically in-
volves running a monophonic pitch tracker on each track
of a multitrack recording and manually correcting any es-
timation errors. This process is labor intensive and time
consuming, and consequently existing annotated datasets
are very limited in size. In this paper we propose a frame-
work for automatically generating continuous f0 annota-
tions without requiring manual refinement: the estimate
of a pitch tracker is used to drive an analysis/synthesis
pipeline which produces a synthesized version of the track.
Any estimation errors are now reflected in the synthesized
audio, meaning the tracker’s output represents an accu-
rate annotation. Analysis is performed using a wide-band
harmonic sinusoidal modeling algorithm which estimates
the frequency, amplitude and phase of every harmonic,
meaning the synthesized track closely resembles the orig-
inal in terms of timbre and dynamics. Finally the synthe-
sized track is automatically mixed back into the multitrack.
The framework can be used to annotate multitrack datasets
for training learning-based algorithms. Furthermore, we
show that algorithms evaluated on the automatically gen-
erated/annotated mixes produce results that are statistically
indistinguishable from those they produce on the original,
manually annotated, mixes. We release a software library
implementing the proposed framework, along with new
datasets for melody, bass and multiple f0 estimation.

1. INTRODUCTION

Research on Music Information Retrieval (MIR) tasks such
as melody extraction and multiple f0 estimation requires
audio datasets annotated with precise, continuous, some-
times multiple, f0 values at time-scales on the order of
milliseconds. Generating such annotations manually is

c© Justin Salamon1∗, Rachel M. Bittner1, Jordi Bonada2,
Juan J. Bosch2, Emilia Gómez2. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Justin
Salamon1∗, Rachel M. Bittner1, Jordi Bonada2, Juan J. Bosch2, Emilia
Gómez2. “An Analysis/Synthesis Framework for Automatic F0 Annota-
tion of Multitrack Datasets”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

very time consuming and labor intensive, and thus insuffi-
cient to sustain current research efforts. This is aggravated
by the lack of educational or other intrinsic motivations
for performing f0 annotations, limiting the applicability
of gamification and other crowdsourcing strategies to this
problem. Alternative solutions for f0 annotation include
the use of instruments outfitted with sensors that are able
to simultaneously generate audio and annotations [18], or
of MIDI-controlled instruments to support annotation by
playing [39]. Such approaches are limited either in the type
of sources that they can use, e.g. piano, or in the annota-
tions they can generate, e.g. notes instead of continuous f0.
Other approaches rely on audio to MIDI alignment [19],
but are limited both by the robustness of the alignment and,
to a lesser extent, the availability of good quality MIDI
data. Perhaps the most common methodology for annotat-
ing f0 is to use automatic f0 estimation methods on mono-
phonic stems of existing multitracks [7, 16, 29]. However,
the limited accuracy of the estimation has the potential
to create discrepancies between the audio and the anno-
tation [16], and correcting such discrepancies is in itself
very laborious. For example, manual corrections for Med-
leyDB (108 songs, most 3–5 minutes long) required ap-
proximately 50 hours of effort across annotators [7,29]. As
a result, existing datasets for f0 estimation in polyphonic
music (whether for melody, bass, or multiple f0) are ex-
tremely small: most such datasets are on the order of tens
of recordings with a total duration of less than an hour.
Even MedleyDB is but a fraction of the size of datasets
used in other MIR tasks [4], speech recognition [12] or im-
age recognition [14]. This is particularly problematic for
developing data-driven solutions to f0 estimation, which
require large amounts of annotated audio data.

To tackle this problem, the MIR community, and the
machine learning (ML) community in general, have pro-
posed solutions based on data augmentation and data syn-
thesis. Augmentation involves the transformation of ex-
isting data, and has been shown to improve the generaliz-
ability of ML models across domains [25, 31]. However,
if the initial dataset is very small there is a limit to the
benefits of augmentation, and thus researchers have also
explored data synthesis approaches, e.g. for chord recogni-
tion [27], monophonic pitch tracking [30] or environmen-
tal sound analysis [26]. The earliest dataset for melody
extraction, ADC2004 [10], contains some synthesized vo-
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Figure 1. Block diagram of the proposed framework.

cal tracks and is still in use for melody extraction evalu-
ation in MIREX [15] today. Synthesized data is not only
useful for model training, it can also be used for model
evaluation [26]. As the authors of that study note, while
evaluation on synthesized data might not always represent
model performance on real-world data, it allows for a de-
tailed and controlled comparative evaluation using signif-
icantly larger amounts of data, which can provide invalu-
able insight into the comparative performance of different
models under different, controlled, audio conditions.

Building on these ideas, in this paper we present a
method for continuous f0 annotation that is fully auto-
matic. The key concept is the use of multitrack record-
ings in combination with an analysis/synthesis framework:
starting with a multitrack recording, we select a mono-
phonic instrument track that we are interested in annotat-
ing, and run a monophonic pitch tracker to obtain its f0
curve. Since the f0 estimate is likely to contain (albeit a
small amount of) errors, it would be methodologically un-
sound to treat it as a reference annotation for either training
or evaluation. Instead, we use it as the input to a wide-
band harmonic modelling algorithm that estimates not just
the frequency of the f0, but the frequency, amplitude and
phase of every harmonic in the signal. We use this infor-
mation to re-synthesize the monophonic recording, result-
ing in an audio signal that perfectly matches the f0 curve
produced by the pitch tracker. Thanks to the wide-band
harmonic modelling, the synthesized track is very similar
to the original recording in pitch, timbre and dynamics 1 .
Finally, we mix the synthesized track back with the rest
of the instruments in the multitrack recording, resulting in
a polyphonic music mixture for which we have an accu-
rate, fully automatic annotation of the synthesized track.
A block diagram of the proposed framework is displayed
in Figure 1. The methodology can be used to automati-
cally generate annotations for working on melody extrac-
tion, bass line extraction and multiple f0 estimation, and
essentially any model designed to extract f0 content from
polyphonic music mixtures.

The proposed framework can be readily used to gen-
erate training data. The question remains whether using
the synthesized mixes as evaluation data produces a repre-
sentative measure of model performance. To answer this
question, after describing the framework we present a se-
ries of experiments designed to explore whether the syn-
thesized mixes result in performance scores that are rep-

1 For examples of synthesized tracks (solo and mixed with the multi-
track) see: http://synthdatasets.weebly.com/examples

resentative of the scores algorithms obtain on the original
mixes. As a final contribution of this work, we release a
software library implementing the proposed framework 2 ,
as well as new datasets for melody, bass, and multiple f0
estimation 3 .

2. METHOD

2.1 Pitch Track Analysis/Synthesis

2.1.1 Pitch Tracking

We use a monophonic pitch tracker to get an initial f0 es-
timate of the stem we would like to annotate. We tested
SAC [21] and YIN [13] and compared both to the manu-
ally corrected f0 annotations provided in MedleyDB [7].
Based on this comparison we decided to use SAC for our
experiments, see Section 3.2 for further details. The out-
put of SAC is automatically cleaned by filling short gaps
(<50 ms), removing short voiced segments (<50 ms),
and smoothing the voiced segments. Note that we do not
use pYIN [30], a state-of-the-art pitch tracking algorithm,
since the manually corrected annotations in MedleyDB are
based on the output of this algorithm and so using it for
this stage could bias our experimental results. Still, it is
important to note that the methodology is independent of
the specific pitch tracker used, and the software library we
release supports multiple monophonic pitch trackers, in-
cluding pYIN.

2.1.2 Sinusoidal Modelling

We use the wide-band harmonic sinusoidal modelling al-
gorithm [8] for estimating the harmonic parameters (fre-
quency, amplitude and phase) at every signal period. The
algorithm first segments the signal into periods corre-
sponding to the fundamental frequency. Then each period
is analyzed with a certain windowing configuration that has
the property that the Fourier transform of the window has
the zeros located at multiples of the f0. This property re-
duces the interference between harmonics, and allows the
estimation of harmonic parameters using a temporal reso-
lution close to one period of the signal. For details see [8].

2.1.3 Synthesis

The synthesis is performed with a bank of oscillators. The
harmonics’ parameters previously estimated are linearly
interpolated at the synthesis sampling rate. Frequencies
are set to exact multiples of the f0. Phases are arbitrarily
initialized at each voiced segment with a non-flat shape to
avoid producing signals that are too peaky:

Φh = π +
π

2
sin

(
h

20π
+ π

)
(1)

where h corresponds to the harmonic index, and Φ is the
harmonic phase. Phases are incremented at each sample
using the interpolated frequency value. At voiced seg-
ment boundaries harmonic amplitudes are faded out to zero
within one signal period. Unvoiced segments are muted.

2 https://github.com/marl/massage
3 http://synthdatasets.weebly.com/
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2.2 Remixing

The final step is to recreate a mix of the song that is as
close as possible to the original. Even when using the orig-
inal stems as source material, a simple unweighted sum of
the stems will not necessarily be a good approximation: the
stems may not be the same volume as they occur in the mix,
and the final mix may have mastering effects such as com-
pression or equalization. To estimate the mixing weights,
we model the (time-domain) mix y[n] as a weighted linear
combination 4 of the original stems x1, x2, . . . , xM :

y[n] ≈
M∑
i=1

aixi[n] (2)

where xi[n] is the audio signal at sample n for stem i and
M is the total number of stems. Let N be the total number
of samples in each audio signal. We then estimate the mix-
ing weights ai by minimizing a non-negative least squares
objective ||Xa − Y ||2 over a for ai > 0, where X is the
N × M matrix of the absolute values of the stem audio
signals |x[n]|, a is the M × 1 vector of mixing weights ai,
and Y the N × 1 is the absolute value of the mixture au-
dio signal |y[n]|. We use the computed weights a to create
a (linear) remix ỹ[n], substituting the melody track(s) (or
bass track or multiple instrument tracks) x̃1, . . . , x̃I with
the synthesized stems:

ỹ[n] =
I∑

i=1

aix̃i[n] +
M∑

i=I+1

aixi[n] (3)

3. EXPERIMENTS

As noted above, the proposed framework can be readily
used for generating training data. However, and perhaps
precisely due to the problem of data scarcity, current state-
of-the-art algorithms for melody extraction (e.g., [9, 17,
35]) and multiple f0 estimation (e.g., [3, 16, 24]) are either
fully or partially based on heuristic DSP pipelines, mean-
ing it is not possible to demonstrate an improvement due
to additional training data, as these systems do not have a
learning stage (or the learning happens towards the end of
the pipeline and the main source of errors is the heuristic
front-end [6]). We are actively working on f0 estimation
algorithms based on deep models that operate on a low-
level representation of the signal [5], and plan to evaluate
their performance when trained on synthesized data as part
of our future work.

Instead, we explore the representativeness of the syn-
thesized mixes for the purpose of model evaluation. To this
end, we run a series of evaluation experiments, once us-
ing the original mixes and annotations and a second time
using the synthesized mixes and automatically generated
annotations. The experiments involve evaluating several
melody extraction and multiple f0 estimation algorithms.
Ideally, we would like the scores obtained by each algo-
rithm to remain unchanged between the original and syn-
thesized mixes, as this would indicate that the synthesized

4 Recreating mastering effects is left for future work.

(automatically annotated) mixes can be used to obtain real-
istic estimates of model performance, opening the door to
the generation of significantly larger datasets not only for
model training, but also for model evaluation.

3.1 Data

We use the MedleyDB dataset [7] to evaluate the pro-
posed methodology for melody f0 annotation. Of the 108
tracks containing melodies, we need to filter out tracks that
are not completely monophonic such as those containing
recording bleed from other instruments and melody tracks
played by polyphonic instruments such as the piano and
guitar. After filtering we end up with 65 songs, for which
we generate new mixes and melody f0 annotations follow-
ing the methodology described in Section 2. The remixing
is performed using the medleydb python module 5 . We
call the resulting dataset MDB-melody-synth.

For multiple f0 estimation we use the Bach10 dataset
[16]. The dataset contains ten pieces of four-part (soprano,
alto, tenor, bass) J.S. Bach chorales performed by the vi-
olin, clarinet, saxophone and bassoon, respectively. The
synthesized dataset including new mixes and automatically
generated multiple f0 annotations, Bach10-mf0-synth, was
created following the methodology described in Section 2,
the only difference being that since the original mixes are
just unweighted sums of the stems, the synthesized mixes
are also unweighted.

Finally, we use the proposed methodology to create a
synthesized version of MedleyDB with multiple f0 an-
notations, MDB-mf0-synth, and another version in which
only the bass track is synthesized (for bass line extraction),
MDB-bass-synth. For MDB-mf0-synth, we need to filter
out stems that are not monophonic. For instance, if the
original mix contains drums, bass, piano, guitar, trumpet
and singing voice, the new mix will contain drums, bass,
trumpet and voice. We must also discard tracks that are
left with only percussive instruments after removing all
non-monophonic stems. After filtering we are left with
85 songs, for which we generate new mixes and multi-
ple f0 annotations as per Section 2. Most of the mixes
in the resulting dataset have a polyphony between 1 and
4, but there are also songs with higher polyphonies, up
to 16. Overall, the mixes in the new dataset include
25 different instruments (not counting percussive instru-
ments) which are combined to produce 29 unique instru-
mentations (not counting percussive instruments). For
MDB-bass-synth we can use all tracks that contain a bass
line with no recording bleed, resulting in a dataset of 71
songs. To the best of our knowledge this is the largest
publicly available dataset with continuous bass f0 anno-
tations. Note that due to space constraints we do not use
this dataset in the experiments reported in this paper. All
four new datasets, MDB-melody-synth, MDB-mf0-synth,
MDB-bass-synth and Bach10-mf0-synth are made freely
available online (cf. footnote 3).

5 https://github.com/marl/medleydb
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Figure 2. f0 tracking scores for SAC and YIN evaluated
against the MedleyDB manually corrected f0 annotations.

3.2 Monophonic Pitch Tracking

We start by evaluating the pitch tracking accuracy of the
SAC and YIN algorithms on the 65 monophonic melody
stems from MedleyDB, presented in Figure 2. We use
mir eval [33] to compute the standard five evaluation
metrics used in MIREX: Voicing Recall (VR), Voicing
False Alarm (VFA), Raw Pitch Accuracy (RPA), Raw
Chroma Accuracy (RCA) and Overall Accuracy (OA). For
details about the metrics see [36]. We see that SAC pro-
duces a more accurate f0 estimate compared to YIN for
these data, with a mean raw pitch accuracy of 0.9. The
overall accuracy is slightly lower due to voicing false pos-
itives, but these frames will turn into voiced frames in the
synthesized mixes thus accurately matching the annota-
tion. This is the key advantage of the proposed approach:
pitch tracking errors do not cause a mismatch between the
audio and the annotation and require no manual correction.
Since 90% of the f0 values in MDB-melody-synth match
those in MedleyDB, we can also safely say the synthesized
dataset is representative of the original in terms of contin-
uous pitch values. Finally, since SAC makes practically no
octave errors (the difference between the RPA and RCA is
below 0.02), there is little to no risk of a perceptual mis-
match between the estimated f0 and the synthesized audio.

3.3 Melody Extraction

To evaluate the representativeness of MDB-melody-synth
compared to MedleyDB, we evaluate the performance of
three melody extraction algorithms: Melodia [35], the
source-separation-based algorithm by Durrieu [17], and
the recently proposed algorithm by Bosch [9] which uses a
salience function based on Durrieu’s model in combination
with the contour characterization employed in Melodia for
voicing detection and melody selection.

In Figure 3(a) we plot the results obtained by the Melo-
dia algorithm, where for each metric we plot the result for
the original mixes and the MDB-melody-synth mixes side-
by-side. We see that while the results are not identical,
the distribution of scores for each metric remains stable.
A two-sided Kolmogorov-Smirnov test confirms that for
all 5 metrics the differences in the score distributions be-
tween the original and synthesized datasets are not statis-
tically significant (p-values of 0.39, 0.05, 0.68, 0.28 and
0.82 for VR, VFA, RPA, RCA and OA respectively). We
repeat the same experiment for the algorithms by Durrieu
and Bosch, displayed in Figure 3 subplots (b) and (c) re-
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Figure 3. Melody extraction evaluation scores for 65
songs: (blue) original MedleyDB mixes and (green) MDB-
melody-synth mixes. (a) Melodia, (b) Durrieu, (c) Bosch.

spectively. As before, the score distributions for all metrics
remain stable and the difference between them is not statis-
tically significant. The only exception is the OA score for
Durrieu’s algorithm: this is an artefact of the algorithm’s
tendency to report most frames as voiced, which leads to a
small increase in OA given that MDB-melody-synth con-
tains slightly more voiced frames compared to MedleyDB.
Still, reporting most frames as voiced also heavily penal-
izes the algorithm (on both datasets), and despite the in-
crease in OA the algorithm remains consistently ranked
below Melodia and Bosch’s algorithm in terms of OA. In-
deed, the relative ranking of all three algorithms in terms
of pitch and overall accuracy remains unchanged between
MedleyDB and MDB-melody-synth, as shown in Figure 4.

3.4 Multiple f0 Estimation

As noted earlier, we use the Bach10 dataset [16] to evalu-
ate the representativeness of the synthesized mixes result-
ing from our proposed methodology for multiple f0 esti-
mation. For this task 14 different metrics are computed
in MIREX. It suffices to know that the first six measure
“goodness” and go from 0 (worst) to 1 (best): Precision,
Recall, Accuracy, and a chroma version (ignoring octave
errors) for each, which we indicate with a “C ” prefix in
our plots. The latter eight measure four different types of
errors and their chroma counterparts, where 0 is the best
score and greater values mean more errors. The reader is
referred to [2,32] for a detailed description of each metric.
As before, all metrics are computed with mir eval.
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Figure 4. Evaluation scores for the three melody extrac-
tion algorithms on 65 MedleyDB and MDB-melody-synth
mixes: (a) Raw Pitch Accuracy and (b) Overall Accuracy.

We use two multiple f0 estimation algorithms for our
evaluation: those by Benetos [3] and Duan [16]. The re-
sults are presented in Figure 5. For Benetos’s method there
is no statistically significant difference between Bach10
and Bach10-mf0-synth for any of the 14 metrics, and for
Duan’s there is no statistically significant difference for 10
of the 14 including the most important metrics such as Re-
call, Precision, Accuracy, and E tot. The relative ranking
of the two algorithms remains unchanged for all 14 met-
rics, as shown in Figure 6 subplots (a), (b), and (c) for
Precision, Recall, and Accuracy respectively.

Since MedleyDB does not include multiple f0 annota-
tions, we cannot compare the performance of Benetos’s
and Duan’s algorithms on MDB-mf0-synth to the origi-
nal dataset as we did for MDB-melody-synth and Bach10-
mf0-synth. In essence, MDB-mf0-synth is a completely
new dataset for evaluating multiple f0 estimation algo-
rithms. The results obtained by Benetos’s and Duan’s al-
gorithms for this new dataset are presented in Figure 7.
We see that the performance of both algorithms drops con-
siderably compared to the results they obtain on Bach10
(note the change in y-axis range), indicating that this new
dataset is more challenging. The difference in performance
between the two algorithms is smaller, and both seem to
make an increased number of octave errors compared to
Bach10, as indicated by the greater difference between the
metrics and their chroma counterparts. The false alarm
rate (E fa) for both algorithms is also greater, which could
be due to the greater proportion of tracks in MDB-mf0-
synth with low polyphonies compared to Bach10, or due
to the presence of percussive sources which are completely
absent from the latter. Another interesting result is the
significantly higher variance of all the metrics on MDB-
mf0-synth compared to Bach10, which is likely due to the
considerably greater variety in MDB-mf0-synth in terms
of musical genre, instrumentation and polyphony. As an
example of the performance analysis that can be done us-
ing MDB-mf0-synth, in Figure 8 we present the accuracy
scores for the two algorithms broken down by polyphony.
While it is beyond the scope of this paper, similar break-
downs could be performed by genre, instrumentation, vo-
cal/instrumental, the presence/absence of percussion, etc.

4. DISCUSSION

We have proposed a methodology for the automatic f0
annotation of polyphonic music by means of multitrack
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Figure 5. Multiple f0 estimation scores on the Bach10
dataset, original mixes (blue) and synthesized mixes
(green): (a) Benetos (b) Duan (c) Benetos errors (d) Duan
errors. The chroma versions of each metric are indicated
by a “C ” prefix.

datasets and an analysis/synthesis framework. We applied
this methodology to create automatic f0 annotations for
melody extraction, bass line extraction and multiple f0 es-
timation using the MedleyDB and Bach10 datasets. As
noted in the introduction, these datasets can be used to train
learning based f0 estimation algorithms, as well as conduct
controlled evaluation experiments. Furthermore, by means
of a comparative evaluation we have shown that algorithms
evaluated against the synthesized mixes and automatically
generated f0 annotations produce results that are, in almost
all cases, equivalent (up to statistical significance) to those
they produce for the original mixes. This suggests that in
addition to providing insight from large-scale evaluation
and facilitating multiple controlled evaluation breakdowns,
the results are in fact quite representative (in terms of ab-
solute scores) of the results we would have obtained by
manually annotating the original mixes.

Since the proposed methodology is scalable and fully
automatic, it can be readily applied to other existing mul-
titrack datasets [1, 20, 22, 28, 37, 41], most of which were
originally intended for source separation or automatic mix-
ing evaluation. It can also be applied to datasets that pro-
vide separate melody and accompaniment tracks [11, 23].
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Figure 6. Multiple f0 estimation scores for Duan’s and
Benetos’s algorithms on Bach10 (B10:orig) and Bach10-
mf0-synth: (a) Precision, (b) Recall and (c) Accuracy.
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Figure 7. Evaluation scores for the multiple f0 estimation
algorithms by Benetos and Duan on the new MDB-mf0-
synth dataset: (a) score metrics, (b) error metrics.

An important limitation of our methodology is that it
can only be applied to monophonic stems, meaning it can-
not be used to annotate polyphonic instruments such as
the piano and the guitar. To address this, we are currently
working on expanding the proposed framework by incor-
porating polyphonic transcription algorithms that can be
applied in place of the monophonic pitch tracker for exe-
cuting the first stage of the proposed framework on poly-
phonic stems. It can also be argued that since our ap-
proach requires generating new mixes (with a subset of the
tracks replaced by synthesized versions), the resulting au-
dio data do not reflect real-world data as reliably as the
original mixes. While this is true, the results of our ex-
periments suggest that the scores obtained using the syn-
thesized datasets are in fact to a great extent representa-
tive of those one would obtain on the original mixes. Fur-
thermore, since existing datasets for f0 estimation in poly-
phonic music are so small, it is unlikely for the results ob-
tained on these datasets to generalize to significantly larger
audio collections, regardless of how they were annotated.
We believe that the benefits of training and evaluating f0
estimation algorithms on large-scale datasets with signifi-
cantly greater variety in terms of audio content, enabled by
our proposed framework, outweigh its limitations and have
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Figure 8. Accuracy scores for the algorithms by Benetos
and Duan on MDB-mf0-synth, by polyphony.

the potential to lead to new insights and novel models for
f0 estimation in polyphonic music.

As research on analysis/synthesis algorithms and au-
tomatic mixing [34, 37, 38] advances, we can expect our
framework to produce mixes that are increasingly authen-
tic and true to the original mixes. The synthesis used in
this study is purely harmonic, which affects the quality of
the synthesis and could potentially affect the perception of
note onsets (e.g., vocals with fricatives). We are currently
expanding the framework to support harmonic+noise syn-
thesis, and updated versions of the released datasets will be
made available on the companion website. Still, it is im-
portant to highlight that the key contribution of this work
is the proposed methodology itself, and our experimental
results showing the representativeness of the mixes and an-
notations it produces. The value of this framework is pre-
cisely in the fact that we can use analysis and synthesis al-
gorithms which, despite not being perfect, produce data of
sufficient quality to be of value for MIR research. It means
we can generate datasets whose size is only constrained by
our (ever growing) access to multitrack recordings.

In a recent study [39], Su and Yang define four criteria
for assessing the “goodness” of a dataset and its annota-
tions for evaluating automatic music transcription (AMT)
algorithms, which we summarize here: (1) Generality:
the form, genre and instrumentation of the music excerpts
should be representative of the music universe to which we
expect the algorithm to generalize 6 ; (2) Efficiency: the an-
notation process should be fast and scalable; (3) Cost: the
cost of building the dataset, in terms of money and human
resources, should be minimized. (4) Quality: the annota-
tions should be accurate enough to facilitate correct eval-
uation of AMT algorithms. The methodology proposed in
this paper satisfies these criteria to a great extent: since the
generation of annotations only depends on the availability
of multitrack data, it is relatively independent of (1) and
can be applied to most musical genres. With regards to
criteria (2), (3), and (4): since our methodology generates
annotations completely automatically, one could argue that
it is as efficient as any annotation technique could possibly
be. For the same reason, it is also very cost efficient, since
creating annotations is essentially free. Finally, the qual-
ity of the annotations is guaranteed since the synthesized
tracks match the annotations perfectly.

6 For a detailed discussion of these considerations see [40].
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[35] J. Salamon and E. Gómez. Melody extraction from
polyphonic music signals using pitch contour charac-
teristics. IEEE Transactions on Audio, Speech, and
Language Processing, 20(6):1759–1770, Aug. 2012.
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ABSTRACT

We explore the task of generating an accompaniment track
for a musician playing the solo part of a known piece. Un-
like previous work in real-time accompaniment, we focus
on generating the accompaniment track in an off-line fash-
ion by adapting a full-mix recording (e.g. a professional
CD recording or Youtube video) to match the user’s tempo
preferences. The input to the system is a set of recorded
passages of a solo part played by the user (e.g. solo part
in a violin concerto). These recordings are contiguous seg-
ments of music where the soloist part is active. Based on
this input, the system identifies the corresponding passages
within a full-mix recording of the same piece (i.e. contains
both solo and accompaniment parts), and these passages
are temporally warped to run synchronously to the solo-
only recordings. The warped passages can serve as accom-
paniment tracks for the user to play along with at a tempo
that matches his or her ability or desired interpretation. As
the main technical contribution, we introduce a segmen-
tal dynamic time warping algorithm that simultaneously
solves both the passage identification and alignment prob-
lems. We demonstrate the effectiveness of the proposed
system on a pilot data set for classical violin.

1. INTRODUCTION

Ima Amateur loves her recording of Itzhak Perlman per-
forming the Tchaikovsky violin concerto with the Lon-
don Symphony Orchestra. She has been learning how to
play the first movement herself, and she would love to play
along with the recording. Unfortunately, there are parts of
the recording that are simply too fast for her to play along
with. She finds an app that can slow down the parts of the
Perlman recording that are difficult. All she has to do is up-
load several solo recordings of herself performing sections
of the concerto, along with the original full-mix recording
that she would like to play along with. The app analyzes

c© TJ Tsai, Steven K. Tjoa, Meinard Müller. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: TJ Tsai, Steven K. Tjoa, Meinard Müller. “Make
Your Own Accompaniment: Adapting full-mix recordings to match solo-
only user recordings”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

her playing and generates a modified version of the Perl-
man recording that runs in sync with her solo recordings.

This paper explores the technical feasibility of such an
application. In technical terms, the problem is this: given a
full-mix recording and an ordered set of solo-only record-
ings that each contain a contiguous segment of music
where the soloist is active, design a system that can time-
scale modify the full-mix recording to run synchronously
with the solo recordings. 1

There are three main technical challenges underlying
this scenario. The first challenge is to identify the passages
in the full-mix recording that correspond to the solo-only
recordings. The second challenge is to temporally align
the corresponding passages in the full-mix and solo record-
ings. The third challenge is to time-scale modify the full-
mix recording to follow the calculated alignment without
changing the pitch of the original recording. This paper fo-
cuses primarily on the first two challenges, and it assesses
the technical feasibility of solving these problems on a pi-
lot data set. The main technical contribution of this work
is to propose a segmental dynamic time warping (DTW)
algorithm that simultaneously solves the passage identifi-
cation and temporal alignment problems. We will simply
adopt an out-the-box approach to solve the third challenge.

The idea of generating accompaniment for amateur mu-
sicians has been explored in two different directions. On
one end of the spectrum, companies have explored fixed
accompaniment tracks. Some examples include the popu-
lar Aebersold Play-A-Long recordings for jazz improvisa-
tion and Music Minus One for classical music. The ben-
efit of fixed accompaniment tracks is their simplicity – all
you need is a device that can play audio. The drawback
of fixed accompaniment tracks is their lack of adaptivity
– they do not respond or adapt to the user’s playing in
any way. On the other end of the spectrum, academics
have explored real-time accompaniment (e.g. see work by
Raphael [23] [24] and Cont [3]). These are complex sys-
tems that can track a musician’s (or group’s) playing and
generate accompaniment in real-time. The benefit of real-
time accompaniment is the adaptivity of the system. The
drawbacks of real-time accompaniment systems are that
they are not easy to use for the general population (e.g. re-
quire software packages on a laptop) and may not be very

1 Without changing the pitch, of course!
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expressive (e.g. sound like MIDI). Also, for the purposes
of academic study, another drawback is the difficulty of
evaluating such a system in an objective way. Because the
user and the accompaniment system influence each other in
real-time, it is difficult to decouple the effect of one from
the other. When there are errors, for example, it is diffi-
cult to say whether the error is because the accompaniment
system failed, the user failed to respond appropriately, or
some combination of both.

This work explores the realm in between these two ex-
tremes. Like fixed accompaniment tracks, the proposed
system has the benefit of simplicity – the user does not
need any specialized software or hardware, but simply re-
ceives an audio track that can be played on any audio de-
vice. Like real-time accompaniment, the proposed sys-
tem has the benefit of (partial) adaptivity – the system tai-
lors the accompaniment track to the user’s playing in an
off-line manner. This middle realm has several additional
benefits. Because the user and the accompaniment are no
longer coupled in real-time, we can measure how well the
accompaniment system “follows” the user’s playing with
objective metrics. Another benefit is that the off-line nature
of this system makes it suitable for a client-server model,
which is ideal for the envisioned app. Lastly, by approach-
ing this problem through adapting an existing recording,
we can also potentially get the benefit of a very musical
and expressive accompaniment track (assuming we don’t
introduce too many artifacts from time-scale modification).

The two challenges we will focus on – passage identifi-
cation and temporal alignment – are closely related to pre-
vious work in audio matching and music synchronization.
The passage identification problem has strong similarities
to audio matching, where the goal is to identify a given
passage in other performances of the same (usually clas-
sical) work. Previous work has introduced robust features
for this task [20] and efficient ways to handle global tempo
variations such as using multiple versions of a query that
have been tempo-adjusted [19]. Subsequent work has ex-
plored the use of indexing techniques to scale the system to
large data sets [14] [2]. The temporal alignment problem
has strong similarities to music synchronization, where the
goal is to temporally align two performances of the same
piece. The bread-and-butter approach is to apply DTW
with suitably designed features [12] [4] [10]. One problem
with this approach is that the memory and computation re-
quirements increase quadratically as the feature sequences
increase in length. Many variants have been proposed to
mitigate this issue, including limiting the search space to
a band [25] or parallelogram [13] around the cost matrix
diagonal, doing the time-warping in an online fashion [5]
[15], or adopting a multiscale approach that estimates the
alignment at different granularities [26] [21] [9]. Other
variants tackle issues like handling repeats [11], identify-
ing partial alignments between recordings [17] [18], deal-
ing with memory constraints [22], and taking advantage of
multiple recordings [27] [1].

Though similar, the proposed scenario differs from
most previous work in three important ways. First, we are

matching solo-only recordings to full-mix recordings (i.e.
solo and accompaniment). Most work in audio matching
and music synchronization assumes that the recordings of
interest are different performances of the same piece, and
therefore have the same audio sources. One could think
of the current scenario as audio matching with very high
levels of additive noise (i.e. the accompaniment). Sec-
ond, the task is off-line but there are still stringent runtime
constraints. In music synchronization, the best approach
is the one with the highest alignment precision, and we
are willing to accept significant runtimes since the task
is off-line. In the current scenario, however, the runtime
is a very important factor because the application is user-
facing. A user will not be willing to wait 30 seconds for
the accompaniment track to be generated. For this rea-
son, in this paper we will not consider any approaches to
these two challenges that require more than 5-6 seconds of
runtime. Third, the current scenario deals with consumer-
produced recordings. Much previous work focuses on al-
bum tracks from professional CDs and professional mu-
sicians. In contrast to this, amateur musicians will play
wrong notes, count incorrectly, rush, and play out of tune.
These issues will be important factors affecting system per-
formance.

This paper is structured around our main goal: to as-
sess the technical feasibility of solving the passage identi-
fication and temporal alignment problems in a robust and
efficient manner. Section 2 describes our system, includ-
ing an explanation of the proposed segmental DTW algo-
rithm. Section 3 discusses the experimental setup. Section
4 presents empirical results of our experiments on the pilot
data set. Section 5 investigates several questions of interest
to gain more intuition into system performance. Section 6
concludes the work.

2. SYSTEM DESCRIPTION

We describe the proposed system in three parts: the seg-
mental DTW algorithm, the features, and the time-scale
modification.

2.1 Segmental DTW Algorithm

There are four main steps in the segmental DTW algo-
rithm, each explained below.

Step 1: Frame-level cost matrices. The first step is
to compute a subsequence DTW cumulative cost matrix
for each solo segment. Subsequence DTW is a variant of
the regular DTW algorithm in which one of the record-
ings (the query) is assumed to only match a section of the
other recording (the reference), rather than matching the
entire recording from beginning to end. This can be ac-
complished by allowing the query to begin matching any-
where in the reference without penalty, and allowing the
query to end matching anywhere in the reference with-
out penalty. We allow the following (query, reference)
steps in the dynamic programming stage: (1, 1), (1, 2), and
(2, 1). These steps have weights of 1, 1, and 2, respec-
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Figure 1. A graphical overview of the segmental DTW
algorithm for aligning an ordered set of solo record-
ings against a full-mix recording. Rows correspond to
solo recording frames and columns correspond to full-mix
recording frames. Time increases from bottom to top and
left to right. In this example, N = 4.

tively. 2 This set of steps assumes that the instantaneous
tempo in the query and reference will differ at most by a
factor of 2. For more details about subsequence DTW, see
chapter 7 in [16]. In the case of our proposed algorithm, we
compute the subsequence DTW cumulative cost matrix but
refrain from backtracing until step 4. Rather than backtrac-
ing from the local optimum in each cumulative cost matrix,
we will instead backtrace from the element on the globally
optimum path. This globally optimum path will be deter-
mined in steps 2 and 3.

Step 2: Segment-level cost matrix. The second step is
to compute a cumulative cost matrix of global path scores
across all solo segments. This can be done in two sub-
steps. The first sub-step is to create a matrix that con-
tains the last row of each subsequence cumulative cost ma-
trix from step 1. 3 This matrix will have N rows and K
columns, where N is the number of solo segments and K
is the number of frames in the reference (i.e. full-mix)
recording. Note that this matrix is analogous to a pairwise
cost matrix, where instead of pairwise frame-level costs
we have segment-level subsequence path costs. The sec-
ond sub-step is to compute a (segment-level) cumulative
cost matrix on this (segment-level) pairwise cost matrix by
doing dynamic programming. This dynamic programming
step differs from regular DTW dynamic programming in
one important way. Unlike most scenarios where the set
of possible transitions is fixed regardless of position in the
cost matrix, here the possible transition steps changes from
row to row. Specifically, for an element in row n, the two
possible transitions are (0, 1) and (1, Ln+1

2 ), where Ln+1

is the length (in frames) of the (n + 1)th solo segment.
The weights on these two transitions are 0 and 1, respec-
tively. In words, we are looking for the N elements in the
segment-level pairwise cost matrix (one per row) that have
the minimum total path score under two constraints: (1)

2 Note that the (2, 1) step should be weighted double to prevent de-
generate matchings to very short sections.

3 Here, we assume that rows correspond to different query frames, and
columns correspond to different reference frames.

they are consistent with the given ordering (i.e. segment n
comes before segment n+1), and (2) elements in adjacent
rows must be separated by a minimum distance, which is
determined by the length of the solo segment and the max-
imum tempo difference in the subsequence DTW step (in
this case, a factor of 2).

Step 3: Segment-level backtrace. The third step is to
backtrace through the segment-level cumulative cost ma-
trix. We start at the last element of the matrix (i.e. the
upper right hand corner) and backtrace until we reach the
first element of the matrix (i.e. the lower left hand corner).
Note that the (0, 1) steps with 0 weight allow for skipping
portions of the full-mix recording without penalty. The
(1, Ln+1

2 ) transitions in the backtraced path indicate the el-
ement in each row that contributes to the globally optimal
path.

Step 4: Frame-level backtrace. The final step is to
backtrace through each subsequence DTW cumulative cost
matrix from step 1, where we begin the backtracing at the
elements selected in step 3. These elements have been
selected to optimize a global path score across all solo
segments, rather than a local path score across a single
solo segment. After performing this frame-level backtrace
step, we have achieved our desired goal: identifying both
segment-level and frame-level alignments for each solo
segment.

Figure 1 shows a graphical summary of the segmental
DTW algorithm. In this figure, rows correspond to differ-
ent solo segment frames and columns correspond to dif-
ferent full-mix frames. Time increases from bottom to top
and from left to right. The four rectangles in the lower left
are the frame-level cumulative cost matrices for each solo
recording. The segment-level cost matrix (top left) is con-
structed by aggregating the last row from each frame-level
cumulative cost matrix (highlighted in dark gray). We then
backtrace at the segment level, and use the predicted seg-
ment ending points to backtrace at the frame level. The
final predicted alignments are shown in the lower right.
Note that the proposed system only indicates how the full-
mix recording should be warped during the segments of the
piece when the soloist is playing. One could interpolate the
tempo for the other segments.

2.2 Features

The segmental DTW algorithm is compatible with any
frame-based feature and cost metric. For the experiments
in this paper, we computed L2-normalized chroma features
every 22 ms and used a cosine distance metric. This com-
bination was selected for two practical reasons. First, we
wanted to demonstrate the segmental DTW algorithm with
a standard feature, so as not to conflate the performance
benefits of both a new matching algorithm and a novel (or
less widely used) feature. Second, this combination al-
lows the subsequence DTW cost matrices to be computed
very efficiently with simple matrix multiplication. Given
the constraints on runtime of this consumer-facing applica-
tion, efficiency is an important consideration. We selected
the feature rate to ensure that the average time required to
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Composition full solo avgLen segs
Seitz concerto no2, mv3 5 5 187 s 5
Bach double concerto, mv1 5 5 250 s 5
Vivaldi concerto in a, mv1 5 5 229 s 5
Veracini sonata in d, mv4 3 4 223 s 4

Table 1. Summary of the pilot data set. Each row indicates
the number of full-mix and solo recordings, the average
length, and the number of segments in the composition.

align a single query (i.e. multiple solo recordings against
a full-mix recording) was under 6 seconds. This thresh-
old could be set arbitrarily depending on how long we are
willing to make the user wait. In the discussion section,
we will compare our main results with a system that uses
more state-of-the-art features, which were developed in an
off-line context where runtime is not a significant consid-
eration. These latter features can provide a lower bound on
error rate when we ignore runtime constraints.

2.3 Time-Scale Modification

The goal of the time-scale modification (TSM) step is to
stretch or compress the duration of a given audio signal
while preserving properties like pitch and timbre. Typi-
cally, TSM approaches stretch or compress an audio signal
in a linear fashion by a constant stretching factor. In our
scenario, we need to stretch the full-mix recording accord-
ing to the solo-mix alignment, which leads to a non-linear
time-stretch function. To deal with non-linear stretches,
we apply the strategy described in [8], where the positions
of the TSM analysis frames are specified according to the
time-stretch function instead of a constant analysis hop-
size.

To attenuate artifacts and to improve the quality of
the time-scale modified signal, we use a recent TSM ap-
proach [7] that involves harmonic-percussive separation
and combines the advantages of a phase-vocoder TSM
approach (preserving the perceptual quality of harmonic
signal components) and a time-domain TSM approach
(preserving transient-like percussive signal components).
An overview of different TSM procedures can be found
in [6, 8].

3. EXPERIMENTAL SETUP

The experimental setup will be described in three parts:
the data collection, the data preparation, and the evaluation
metric.

3.1 Data Collection

Our data collection process was dictated by practicality. In
order to evaluate the proposed system, we need two dif-
ferent types of audio data: full-mix recordings and solo
recordings. Clearly, the full-mix recordings are in abun-
dant supply and can be selected from any professional CD
recording or Youtube video. The solo recordings, how-
ever, are much more difficult to find, as musicians typically

do not record performances that are missing the accompa-
niment part. Our solution to this problem was to focus
data collection efforts on a small subset of pieces from the
highly popular Suzuki violin method. The Suzuki method
prescribes a specific sequence of violin works in order to
develop a violinist’s mastery of the instrument. Because
of the popularity of the Suzuki method, we were able to
find Youtube videos of violinists performing the solo parts
(in isolation) from several works. Some of these record-
ings are violin teachers demonstrating how to perform a
piece. Some recordings are young adults wishing to doc-
ument their progress on the violin. Other recordings are
doting parents trying to show off their talented children.

Table 1 shows a summary of the audio recordings. The
data set contains four violin pieces or movements selected
from Suzuki books five and six. For each piece, we col-
lected multiple full-mix recordings and solo recordings
from Youtube. By focusing on annotating multiple record-
ings of the same piece, we can make the most of the limited
amount of (annotated) data by considering different combi-
nations of full-mix and solo recordings. At the same time,
we wanted several pieces of music from different com-
posers and periods, so as to avoid a composer-specific bias.
The recordings range in length from 161 to 325 seconds,
and they range in quality from cell phone videos to pro-
fessionally recorded performances. All audio tracks were
converted to mono wav format with 22050 Hz sampling
rate. In total, there is approximately 2 hours and 20 min-
utes of annotated audio data.

3.2 Data Preparation

Once the audio data was collected, there were two addi-
tional steps needed to prepare the data for use in our exper-
iments.

The first preparation step was to generate beat-level an-
notations. The annotations were done in SonicVisualizer 4

by three different individuals with extensive training in
classical piano. We kept only those beats that had two or
more independent annotations, and we use the mean anno-
tated time as the ground truth.

The second data preparation step was to divide the solo
recordings into segments. Recall that the input to the sys-
tem is a set of contiguous segments of music where the
soloist is active. Each segment is specified by a pair of
unique identifiers (e.g. start at measure 5 beat 1 and end at
measure 37 beat 4), and the segments are non-overlapping.
For each composition, we manually selected segments by
identifying natural breakpoints where a violinist would
likely end a segment, such as section boundaries or the
start/end of a long rest.

We can summarize the prepared data set as follows.
Each query in the benchmark is a pairing of a full-mix
recording and a solo recording (i.e. the 4-5 segments from
a solo recording). There are thus a total of 87 queries in
the benchmark. This is clearly not a large data set. It is
meant to serve as a pilot data set to assess the feasibility of
the proposed system.

4 http://www.sonicvisualiser.org/
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tolerance global subseq segmental
1s 40.2% 8.4% 2.2%
2s 20.2% 6.1% 0.0%
5s 14.9% 6.1% 0.0%
10s 9.3% 6.1% 0.0%

Table 2. Boundary prediction error rates for global, subse-
quence, and segmental DTW algorithms. Each entry indi-
cates the percentage of predicted boundary points that are
incorrect at a specified allowable error tolerance.

3.3 Evaluation Metric

In this paper, we will focus only on the aspects of the
system that can be evaluated objectively: the segment
boundaries and frame-level alignments. To evaluate seg-
ment boundary predictions, we compare the predicted and
ground truth boundary points for each solo segment, and
then determine what fraction of predicted boundary points
are correct (or incorrect) for a given allowable error toler-
ance. To evaluate frame-level alignments, we compare pre-
dicted and ground truth timestamps in the full-mix record-
ing that correspond to the annotated beat locations in the
solo segments. 5 We then determine what fraction of align-
ments are correct (or incorrect) for a given allowable error
tolerance. By considering a range of different error toler-
ances, we can determine an error tolerance curve. Note that
the error tolerances for the segment boundary metric are
much larger than the error tolerances for frame alignment,
since the former is measuring retrieval at the segment level.

4. RESULTS

To assess the effectiveness of the proposed segmental
DTW algorithm, we compared its performance against two
other baseline systems. The first baseline system is to sim-
ply concatenate all of the solo audio segments and perform
a single global DTW against the full-mix recording. For
this baseline system, we use transition steps (0, 1), (1, 0),
and (1, 1) in order to handle the discontinuities between
solo segments. All steps are given equal weight. The sec-
ond baseline system is to perform subsequence DTW on
each solo segment independently, where the best locally
optimal path in each cost matrix is taken as the predicted
segment-level and frame-level alignment. In order to make
the comparison between systems fair, all three systems use
the same chroma features. Any differences in performance
should thus reflect the effectiveness of the matching algo-
rithm.

Table 2 compares the performance of the three systems
on passage identification. The rows in the table show the
percentage of predicted boundary points that are incor-
rect at four different error tolerances. The three rightmost
columns compare the performance of the global DTW
baseline (‘global’), the subsequence DTW baseline (‘sub-

5 Since the annotated beat locations generally fall between frames, we
use simple linear interpolation between the nearest predicted alignments.

Figure 2. Error tolerance curves for the global, subse-
quence, and segmental DTW algorithms. Each point on
a curve indicates the percentage of predicted beat align-
ments that are incorrect for a given error tolerance. An
additional curve is shown for an oracle system, which pro-
vides a lower bound on performance.

seq’), and the proposed segmental DTW algorithm (‘seg-
mental’).

There are three things to notice about Table 2. First, the
error rates clearly decrease from left to right. Thus, the rel-
ative performance of the three algorithms is clear: global
DTW performs worst, subsequence DTW performs better,
and segmental DTW performs best. Second, subsequence
DTW reaches an asymptotic error rate of 6.1%. These er-
rors are passages that the subsequence DTW algorithm is
matching incorrectly because it fails to take into account
the temporal ordering of the solo segments. For example,
it incorrectly matches the main theme to the recapitulation
or matches repeated segments to the wrong repetition. Bet-
ter features are unlikely to fix these errors. Third, the seg-
mental DTW algorithm has perfect performance for error
tolerances of 2 seconds and above. This suggests that the
2.2% of errors at a 1 second error tolerance are an indica-
tion of poor alignments but correctly identified passages.
We will investigate these errors in the discussion section.

Figure 2 compares the performance of the three systems
on temporal alignments. The figure shows the error toler-
ance curves for error tolerances ranging from 0 to 250 ms.
Each point on a curve indicates the percentage of predicted
beat timestamps that are incorrect at a given error toler-
ance. There is also a curve for an oracle system, which
will be explained in section 5.2.

There are three things to notice about Figure 2. First,
the curves are identical for error tolerances < 25 ms. This
indicates that when an algorithm is “locked onto” a sig-
nal, the limit to its precision is the same for all three algo-
rithms. This is what we expect, since all three algorithms
are based on the same fundamental dynamic programming
approach and use the same features. This is a realm where
the segmental DTW algorithm does not help, but where
better features are needed to improve performance. Sec-
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ond, the curves begin to diverge significantly for error tol-
erances > 50 ms. This is a realm where the segmental
DTW algorithm provides significant benefit to system per-
formance. For example, at 100 ms error tolerance, the seg-
mental DTW algorithm improves the error rate from 22.6%
and 17.1% to 12.4%. Third, the curves do not intersect. In
other words, the segmental DTW algorithm provides uni-
lateral benefit across all error tolerances.

5. DISCUSSION

In this section, we investigate three questions of interest
that will give deeper insight into system performance.

5.1 Investigation of Boundary Errors

The first question of interest is: “What is causing the seg-
ment boundary errors?” We saw from Table 2 that 2.2% of
predicted segment boundaries are incorrect at an error tol-
erance of 1 second. We investigated all of these errors to
determine the root cause of the problem.

There are three main observations we can make from
our investigations of segment boundary errors. First, most
segment boundary errors are a result of a mistake on the
part of the musician. In one instance, the violin player
messes up and stops playing for 3-4 beats at the end of
a phrase. In another instance, the group is very out of sync
on the last note. These two specific mistakes caused more
than 50% of the segment boundary errors, since a single
mistake will cause errors on all of the queries that con-
tain the recording. Second, the maximum tempo ratio of
2x imposed by the DTW step sizes causes errors when the
instantaneous tempo difference is extreme. For example,
one recording has a very pronounced rubato at the end of
the piece, which causes problems when the recording is
paired with a performance that has very little rubato at the
end. Third, all of the segment boundary errors were pre-
dictions of the end of a segment. The DTW algorithm (and
its variants) do well in smoothing out errors in the begin-
ning and middle of segments, but it often fails at the end of
a segment because there is no signal “on the other side” to
smooth out the prediction.

5.2 Lower Bound on Error Rate

The second question of interest is: “What is the lower
bound on error rate?” In other words, what is the best
error rate that we could hope to achieve given a current
state-of-the-art alignment system? In order to answer this
question, we ran an experiment with two major changes.
The first change is that we assume this system is an oracle
and knows the ground truth segment boundaries for each
solo segment. The second change is that we use an align-
ment system [22] that was designed to maximize alignment
precision in an off-line context. Note that this oracle sys-
tem requires more than 45 sec on average to align each
query (i.e. align multiple solo recordings against a full-mix
recording), so it would not be suitable given the runtime
constraints of our user-facing application. (In contrast, our
proposed system required an average of 5.20 sec.) Thus,

we can interpret the performance of the oracle system as
a lower bound on error rate when runtime constraints are
ignored.

The performance of this oracle system is shown in
Figure 2 (overlaid on the same figure from the results sec-
tion). There are two things to point out about this lower
bound curve. First, the proposed system approximately
achieves the lower bound for error tolerances > 175 ms.
Second, the lower bound shows the most room for im-
provement in the 50 to 100 ms error tolerance range. For a
75 ms error tolerance, the proposed system and oracle sys-
tem achieve error rates of 17.8% and 14.0%, respectively.

5.3 Listening to the Accompaniment Track

The third question of interest is: “How does the time-scale
modified accompaniment track actually sound?” One use-
ful way we can get a sense of how well the accompaniment
is “following” the solo recordings is to create a stereo track
in which one channel contains the unchanged solo record-
ing and the other channel contains the time-stretched ac-
companiment track. By listening to both tracks simulta-
neously, we can gain an intuitive sense of how well the
system is doing. We have posted several samples of these
stereo recordings for interested readers. 6

There are three qualitative observations we can make
regarding these informal listening tests. First, the system
performs much more erratically when the solo part is not
dominant. This was particularly a problem for the Bach
double violin concerto since there are two equally impor-
tant violin parts. When the 2nd violin part is dominant, the
accompaniment track has significantly more time-warping
artifacts. Second, the system handles rapid notes very well
and prolonged notes very poorly. When the solo part is
holding a single long note, the accompaniment track would
sometimes have very severe temporal distortion artifacts.
Third, the time-stretched accompaniment track often has
a “jerky” tempo, especially when the solo part has a pro-
longed note. The accompaniment track is clearly tracking
the solo recordings, but it often has short, sudden bursts of
tempo speedups and slowdowns. One way to address this
issue would be to do some type of temporal smoothing of
the predicted alignment.

6. CONCLUSION

We have described a system that time-scale modifies an
existing full-mix recording to run synchronously to an or-
dered set of solo-only user recordings of the same piece.
We propose a segmental DTW algorithm that simultane-
ously solves the passage identification and temporal align-
ment problems, and we demonstrate the benefit of this al-
gorithm over two other baseline systems on a pilot data set
of classical violin music. Areas of future work include ex-
panding the pilot data set, exploring features that are both
computationally efficient and well-suited to the asymmet-
ric nature of the scenario, and investigating pre-processing
steps for solo detection and separation.

6 http://pages.hmc.edu/ttsai
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ABSTRACT

While a vast amount of editorial metadata is being actively
gathered and used by music collectors and enthusiasts, it
is often neglected by music information retrieval and mu-
sicology researchers. In this paper we propose to explore
Discogs, one of the largest databases of such data available
in the public domain. Our main goal is to show how large-
scale analysis of its editorial metadata can raise questions
and serve as a tool for musicological research on a number
of example studies. The metadata that we use describes
music releases, such as albums or EPs. It includes infor-
mation about artists, tracks and their durations, genre and
style, format (such as vinyl, CD, or digital files), year and
country of each release. Using this data we study correla-
tions between different genre and style labels, assess their
specificity and analyze typical track durations. We esti-
mate trends in prevalence of different genres, styles, and
formats across different time periods. In our analysis of
styles we use electronic music as an example. Our contri-
bution also includes the tools we developed for our analy-
sis and the generated datasets that can be re-used by MIR
researchers and musicologists.

1. INTRODUCTION

In this paper we propose to explore the editorial meta-
data available in the Discogs 1 database and show how its
analysis can be used as a potential tool to support musico-
logical studies and research in music information retrieval
(MIR). Discogs is one of the largest online databases of
editorial metadata 2 used by music collectors and enthusi-
asts. It hosts all metadata under Public Domain license and
provides complete monthly data dumps 3 which makes it
very easy to access and re-use the data.

1 https://discogs.com
2 Discogs mission statement is “to build the biggest and most compre-

hensive music database and marketplace”.
3 https://data.discogs.com/

c© Dmitry Bogdanov, Xavier Serra. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Dmitry Bogdanov, Xavier Serra. “Quantifying music trends
and facts using editorial metadata from the Discogs database”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

Discogs metadata contains information about music re-
leases (such as albums or EPs) including artists name, track
list including track durations, genre and style, format (e.g.,
vinyl or CD), year and country of release. It also con-
tains information about artist roles and relations as well
as recording companies and labels. The quality of the data
in Discogs is considered to be high among music collec-
tors because of its strict guidelines, moderation system and
a large community of involved enthusiasts. The database
contains contributions by more than 347,000 people. It
contains 8.4 million releases by 5 million artists covering a
wide range of genres and styles (although the database was
initially focused on Electronic music).

Remarkably, it is the largest open database containing
explicit crowd-sourced genre annotations. Discogs im-
plements a two-level genre hierarchy including top-level
broad genres and more specific sub-genres called styles. 4

This taxonomy is determined by the community modera-
tors and there are guidelines for annotation. Genre/style
labels are non-exclusive, meaning that a release can be an-
notated by multiple genres and styles. Releases almost
always contain both genre- and style-level annotations as
both are required by the submission system of the database.

To our surprise, little is known about Discogs metadata
among the MIR community and there is a lack of musi-
cological studies using this data. We identified two MIR
studies, using this data in the past. One study used it for
music recommendation by building and comparing artist
tag-cloud profiles including genres, styles, record labels,
years, and countries associated with each artist [3]. An-
other study analyzes graphs of artist collaborations in or-
der to identify music clusters that can then be associated
with genres [5].

There has been done some MIR research in the context
of mining genre annotations using other music databases,
including AllMusic [14], Wikipedia [16] and Last.fm [15],
however, all these studies are limited in their scope and
their use-cases of the data. Furthermore, the employed
data sources are either ill-structured (Wikipedia, Last.fm),
miss explicit genre information (Last.fm), or contain pro-
prietary data (AllMusic) which cannot be reused on the
large scale. In order to address these issues we are cur-
rently creating a new genre metadata corpus for MIR tasks,
including Discogs metadata [10].

4 https://reference.discogslabs.com/wiki/
Style-Guide

89



In this paper we propose new ways of how editorial
metadata can be used in MIR, specifically in the context
of studies directed to assist musicological research. To
this end, we present a number of example studies using the
data available in Discogs in which we identify and quantify
some music trends and facts, some of which were previ-
ously documented by musicologists and music journalists.
In these examples we consider overall trends across broad
genres together with a more specific analysis for the case of
electronic music which commonly lacks attention of the re-
search community. 5 Our analysis is exploratory and is not
aimed at concrete musicological conclusions. Instead we
present how data can be used to identify interesting facts
and raise questions for further research. Importantly, our
study is focused exclusively on music recorded and pub-
lished on physical or digital media in form of collectable
artifacts. We share the tools we developed for the analysis,
preprocessed datasets and the complete results for future
use by the MIR community and musicologists. 5

2. DISCOGS DATASET

We downloaded the data dump of music releases dated
April 2017. Each release contains the information about
a specific album, single, EP, or compilation. 6 For our ex-
ploratory study we are interested in artist name, tracklist
including track durations, genre and style, format, year and
country of each release.

As we wanted to perform per-year analysis of the data,
we decided to discard all releases from the ongoing year
2017 to avoid any bias due to incompleteness of data. 7

We extracted the desired data from the dump. The result-
ing dataset includes 7,954,870 releases by 1,290,943 artists
with the total of 67,895,500 released tracks. All releases
are annotated by 11 genres and 442 styles. 8 Approxi-
mately half of the releases (52%) are annotated with track
durations, the 11% of releases are annotated as compila-
tions, and around 1% are marked as mixed.

We estimated the overall genre coverage in terms of
percentage of releases, and tracks and artists associated
with those releases, out of their total number in the dataset
(Figure 1). The rationale behind counting track numbers is
that many releases in the databases are vinyl EPs and sin-
gles with a smaller number of tracks than albums or compi-
lations. The number of artists provides an alternative use-
ful estimate, as artists may vary in their “release produc-
tivity”. Our inspection revealed the predominance of the
Rock, Electronic, and Pop genre categories in the database,

5 We refer the reader to the additional materials online including
code and the detailed analysis results: https://github.com/
dbogdanov/ismir2017-discogs

6 See an example of a release page: https://www.discogs.
com/LFO-Frequencies/release/3649

7 We can also suspect that the database is still missing some releases
for 2016 as there was possibly not enough time to gather contributions
from the Discogs community. Still, we decided to keep those releases.

8 For simplicity, we ignored Brass & Military, Children’s, Non-Music,
and Stage & Screen genre categories present in the Discogs taxonomy due
to being less represented and/or not being strictly related to music. See the
complete genre taxonomy at https://github.com/dbogdanov/
ismir2017-discogs/tree/master/taxonomy.

Figure 1: Genre coverage (%).

Figure 2: Number of releases per country by year.

with the largest styles being Pop Rock and House. Still,
even the least represented genres (such as Blues) have al-
most 200,000 releases. Around 90% and 74% of styles
have more than 1000 and 10,000 releases, respectively.

Inspecting country distribution for releases, we can see
an overall predominance of music from western countries
in the dataset. Top countries included US, UK, Germany,
France, Italy, Japan and Netherlands. Figure 2 presents an
example of total number of releases published in various
countries by year. Our observations lead us to an open
question of whether the disbalance in the distribution rep-
resents the actual evolution of the recording industry in
each country, or that the Discogs database has insufficient
coverage of music from some countries/cultures. While
both reasons are plausible, we suppose that our data is still
valid for research focused on western countries and music.

3. EXAMPLE STUDIES

3.1 Average Track Duration

In our first example study we analyzed the distribution of
the duration of tracks 9 across different genres and styles
and its evolution in time. To this end, we discarded all
mixed compilations that contain only fragments of tracks
instead of full recordings. As there are music releases an-
notated by multiple genres, we computed tracks duration
statistics twice: first, including all releases annotated by a
particular genre, and second, excluding releases that were
also annotated by other genres.

Figure 3 presents box plots with the obtained results.
In both cases, Classical, Electronic, and Jazz music has
the largest median durations and the largest variability, ac-

9 Note that we are considering duration of tracks on a recording
medium, not of the original music pieces. The former can be seen as
a proxy for the latter, at least for some of the music styles.
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(a) all releases

(b) releases annotated by a single genre

Figure 3: Boxplot of track durations (mins.) for each
genre. Number of computed tracks is given in brackets.
Whiskers are set at 5% and 95%.

cording to the interquartile range. We observed similar re-
sults when including and excluding releases with multiple
genre annotations. Still there are some variations in me-
dian values, quartiles and whiskers positions, most notably
for Classical, Electronic and Jazz. This suggests that music
annotated by these genres on the crossover with other gen-
res tends to be shorter. The duration of some music tracks
by these genres reached over 8 minutes in contrast to other
genres that were far shorter. 10

Similarly, we analyzed all styles present in the Discogs
taxonomy. 11 Overall comparison suggests that the median
duration for the majority of styles is below 10 minutes, the
shortest starting at 2 to 2.5 minutes (e.g., Grindcore, Crust,
Surf, Doo Wop, Beat and Rockabilly). We can observe
that some styles can be associated with higher variability
in the duration of tracks, while others have durations con-
densed around a common value. For example, in the case
of Electronic music, we can identify a cluster of styles with
a large variability (including Harsh Noise Wall, Drone,
Noise, Musique-Concrete, Berlin-School, and Dark Am-
bient) with the duration of tracks surpassing 15 minutes.
All these styles share a unconventional, or experimental,
approach to sound and music composition. In contrast, the
Electronic styles with the lowest variability (such as Euro-
dance, Jumpstyle, or Grime, among many others) are com-
monly related to dance/club music.

As a next step, we checked whether there is a global
trend in change of average track duration across years. We
computed per-genre distributions of track durations across
years, some of them shown in Figure 4. 12 We observe ex-
istence of a time period with a clear tendency of increase in
almost all genre categories: Blues (early 60s to early 70s),
Folk, World & Country (mid-60s to 00s), Funk/Soul (early
60s to late 70s), Jazz (late 60s to late 70s), Latin (mid-60s
to mid-00s), Pop (mid-60s to mid-80s), Rock (dramatic in-
crease in mid-60s to early 70s) and Electronic (early 70s
to 2010 with a consequent decrease). It appears that all

10 Of course, this only suggests a general trend excluding outliers.
11 See results for all styles grouped per genre in additional materials.
12 In the case of Electronic and Classical, large value jumps in early

years may be associated to small amount of tracks annotated by duration.

(a) Pop (b) Electronic

(c) Hip Hop (d) Classical

Figure 4: Evolution of duration of Rock, Electronic, Hip
Hop, and Classical tracks (mins.) by year.

these genres have reached a plateau in median track dura-
tion after a period of stable increase. We can also see an
increment in variability of durations with time.

The increase in duration may be associated with the
change of record formats, which we propose to assess in
future studies. Interestingly no such tendency was found
for Classical music. In contrast, while median duration re-
mains constant, we can observe a decrease in variation with
the longer half of the tracks getting shorter. Furthermore,
Hip Hop tracks are steadily decreasing in duration since
the origin of the genre in the late 70s. All these findings
can raise questions for further musicological research.

3.2 Release Formats

There is a large number of release formats registered in the
Discogs database. 13 In our next example study we quan-
tify the evolution of the most common formats of the past
half-century: vinyl, cassettes, CD/CDr, and files. 14 We
compare the amount of music released on each of these for-
mats from the 1960s to nowadays. To this end, we count
the overall number of releases and tracks recorded on a
particular medium. We can then compute the percentage
of music released on each format each year. Track and re-
lease percentages can vary significantly due to the capac-
ity of each medium: typically CD releases contain a larger
number of tracks then vinyl. Figures 5a, 5b and 5c present
track statistics for all music in the dataset, and for Blues
and Electronic genres in particular. 15

Overall, our analysis corroborates existing RIAA sales
reports [12]. We can evidence the commonly known rapid
growth of CD format from the mid-80s to the late 90s, fol-
lowed by a plateau period till the mid-00s. The following
decline of CD can be clearly associated with the growth
of digital file formats. Remarkably, vinyl, following its de-

13 https://www.discogs.com/help/formatslist
14 Note that we cannot be confident in estimations for the file format as

digital releases may be under-represented in the Discogs database.
15 See additional materials for complete results.
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(a) All music (b) Blues

(c) Electronic (d) Synth-pop (Electronic)

(e) Experimental (Electronic) (f) Deep House (Electronic)

Figure 5: Percentage of released tracks per format by year
(%).

cline since the mid-80s, is now growing since the early 10s,
which corroborates recent observations of the new “vinyl
boom” [2].

Cassette releases appear to be always below vinyl or
CD releases through the history of the format, descend-
ing to its supposed death in the mid-00s. However, since
then, we can observe the second growth of cassettes, which
confirms observations of the growing “cassette culture” by
some music journalists and musicologists [8,7,6]. Interest-
ingly, there is a considerable amount of music released on
a CDr format, which appeared in the late 90s and achieved
its maximum at the time of the death of cassettes. We
can suppose that the observed CDr and cassette trends are
linked to the DIY culture of independent music distribu-
tion [18].

Analyzing particular genres, we identified Blues, Rock,
Reggae, and Funk/Soul to have the highest percentage of
tracks released on vinyl in the recent years, surpassing
30%. Remarkably, these genres can be nowadays consid-
ered somewhat “old-school”, and therefore of a potentially
higher interest among vinyl music collectors. We hypoth-
esize that many of new vinyl releases are reissues.

Finally, we ran per-style analysis of data, on the exam-
ple of Electronic music, in order to identify peculiarities
of music distribution within certain styles. Figures 5d, 5e
and 5f demonstrate differences in formats on the example
of Synth-pop, Ambient and Deep House. From our results
we can evidence a transition to the predominance of CDs
for all considered styles with the turning points 16 start-

16 The year of an equal number of tracks released on both formats.

ing since 1988. The styles that moved to CD first were
Ambient, Synth-pop and Experimental, with their turning
points in transition between 1988 and 1991. We specu-
late that early transition to CD was at least partially moti-
vated by the demand of home consumers, meanwhile other
styles, supported by DJs, had a technical demand for vinyl.
Such styles had their transition point to CD later between
1993 (e.g. House, Techno) to 1996-97 (Drum n Bass, Deep
House). Remarkably, we identified the existence of styles
with the absolute predominance of digital formats (CD,
CDr and file). In the case of Glitch, this fact may be linked
to musical characteristics of the style, which make releases
on vinyl/cassettes aesthetically or technically unfeasible.

In 2016 the digital file format is leading in almost all
styles. The turning point towards its predominance ap-
peared between 2007 and 2011. Still, we can observe a
trend in growth of vinyl in the recent 6 years. Moreover we
can also see the growth of cassettes since 2005, with the
most significant example being Experimental electronic
music (reaching almost 20% of tracks being released on
cassettes in 2016). Interestingly, almost 30% of released
Ambient tracks in the early-to-late 80s, and similarly over
40% of Experimental from the early 80s to the early 90s,
were released on cassettes (which again supports the exis-
tence of the DIY cassette scene in experimental music of
the 80s) [17].

3.3 Genre and Style Trends

In this section we present another use-case example: an
analysis of genre and style trends across time periods. We
consider overall trends in genres and exemplify style anal-
ysis on Electronic music. Again, we quantified the amount
of music in terms of number of releases, tracks and artists
associated with those releases. Their absolute values (the
amount of music in year N by genre G) and proportions
(the percentage of music from year N by genre G) allow us
to suggest possible trends. Figure 6 presents results of the
analysis. 17 Below we summarize our observations on the
tracks level.

Rock appears to be the major genre since the late 60s
covering more then 40% of released tracks since the late
70s and reaching 50% nowadays. It is currently followed
by Electronic music that reached its peak at 38% in 2011.
Pop music is in a steady decline since its short dominance
in the mid-60s, falling below Electronic since the early 90s.
We can also see the decline of Jazz after its huge 50% peak
in the mid-50s, being a predominant genre at that time, the
rise and fall of Funk/Soul, and the growth of Hip Hop being
the 4th leading genre in the 2000s. A valley in the Rock
plot in the mid-70s corresponds to the peak of Funk/Soul
(including “the disco boom” [9]). 18

We then repeated the analysis for styles of Elec-
tronic music. Again, we used absolute and relative re-
lease/track/artist counts. The relative values represent the

17 Note that the percentage values do not sum up to 100 because releases
can be annotated by multiple genres.

18 This is especially well seen on the release and artist-level plots, with
the number of Funk/Soul artists being temporarily higher than for Rock.
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(a) Tracks (all genres) (b) Releases (all genres) (c) Tracks (Electronic)

Figure 6: Percentage of released music per genre and style by year (%).

percentage of music within a style out of the total amount
of Electronic music released each year. Out of 110 Elec-
tronic styles, we identified the most important ones in
terms of their overall presence: we computed their rela-
tive share in all Electronic music across years from 1970
to 2016. We then summed these values for each style and
identified the styles with the highest values. Figure 6c
presents track-level results for those styles. 19

According to our data, we can see how electronic Disco
peaked in the late 70s followed by the Synth-pop peak in
the mid-80s, both being the predominant styles of their
time. The decline of Synth-pop in the late 80s/early 90s
met the peak of House (1990) and the first peak of Techno
(1992). Later, growing styles included Trance (peaked in
2000), and Electro (having its second peak in the late 00s,
the first one in 1984). We can also guess the period of birth
of each genre using our data (e.g., house in the mid-80s,
techno in the late 80s, and trance in the early 90s). All of
these observations seem to be well-aligned with the exist-
ing literature on the history of electronic music [11].

Interestingly, after the year 2010 we observe lower per-
centage values for all styles. This suggests the diversifica-
tion of electronic music: more styles are taking a share in
the amount of music released each year. Finally, it is worth
noting that similar analyses can be run on per-country ba-
sis. This can be useful for identifying potential regional
trends or analyzing the following of a particular style in
various countries. 20

3.4 Genre and Style Co-occurrences

In this section, we consider another use-case for edito-
rial metadata with genre/style annotations and study co-
occurrences between different genre and style labels. We
also attempt to assess the specificity of labels: while top-
level genre categories are very broad, styles may vary a lot
in their specificity and coverage.

Given that releases can be annotated by multiple
genre/style labels within the Discogs taxonomy, we com-
puted a genre (and style) co-occurrences matrix in order
to identify possible relations. For each pair of genres (or
styles) X and Y we counted the number times both appear
on the same release across all releases in the dataset. The

19 See additional materials for full results.
20 For example, we could observe that Hardcore, Breakbeat and Drum

n Bass styles, well-represented in UK in the early-to-mid 90s, were never
prevailing in Germany.

Figure 7: Genre co-occurrences (%).

Figure 8: Electronic styles co-occurrences (%).

resulting matrix is asymmetric and its values represent the
percentage of music by genre (style) X (on the x-axis) also
being annotated by genre (style) Y (on the y-axis).

Figure 7 presents the resulting genre co-occurrences
matrix computed using all our data. We can conclude from
it that Classical, Electronic, and Reggae seem to be the
genres that are well isolated from others, that is, the mu-
sic under these genre labels is self-contained and all co-
occurrences with other genres are relatively small (below
11%). On the contrary, the most interconnected genres are
Blues (46% of it is also Rock), Pop (33% is Rock) and
Hip-Hop (24% is Electronic). We can also observe how
Pop and Rock, and Electronic appear to be commonly co-
occurring genres for many genres, probably, due to being
the most popular ones.
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Figure 9: Percentage of House releases also annotated by
other styles by year (%).

We proceeded with style co-occurrences in a similar
manner. The resulting matrix is huge and here we analyze
a portion, again, for the case of Electronic music. 21 To
give an idea, Figure 8 provides an overview of this matrix
containing 110 Electronic styles. As we can see, there are
a number of traceable vertical lines corresponding to par-
ticular styles that often co-occur with many other styles.
Those include Techno, House, Experimental, Synth-pop
and Ambient — all being among the most frequent styles
within Electronic music in our dataset. Less predominant,
but still traceable vertical lines include Electro and Down-
tempo. We can suppose that these style labels are wide in
coverage or generic enough to embrace some other styles.
In contrast, we can also see styles that typically do not co-
occur with others (e.g., Speed Garage or New Beat), which
might indicate their high specificity or “nicheness”.

Summing all row values for a column we can get a
“genericness-vs-nicheness” score. According to it, some
examples of niche styles are Beatdown, Neo Trance,
Skweee, New Disco, and Italo House, while the most
generic styles include Downtempo, Synth-pop, Electro,
Ambient, Techno, Experimental, and House. On the other
side, co-occurrence values above 50% might indicate a
subgenre-to-genre relation and give us a degree of potential
“sub-styleness”, or “derivativeness”. For example, 86% of
Gabber is also annotated as Hardcore, 75% of Hardbeat as
New Beat, and 68% of Power Electronics as Noise. After
identifying all such examples in the matrix, we were able
to corroborate this hypothesis.

Interestingly, it is also possible to compute co-
occurrences for particular time epochs. Figure 9 illustrates
the idea of evolution of style co-occurrences in time on
the example of House. We can see how Disco, Synth-pop,
Funk and Soul potentially had an influence on the style at
the time of its origin (indeed these styles are often cited
as such [11]), followed by a peak of Acid-House and then,
later, Electro and Tech-House.

The co-occurrence matrices demonstrate the intrinsic
variability in genre annotations and we believe that such
data can be very useful for the MIR community in the
context of evaluating music genre classifiers and for other
tasks. Indeed, some studies on audio-based genre classi-
fication (such as [13, 1, 4]) reveal similar patterns in mis-
classifications, and they can be supported by our data.

21 See additional materials for full results.

4. DISCUSSION

Naturally, the presented data analysis is limited by the cov-
erage of the Discogs database, with a possible bias towards
Western music and collectable music items, and other so-
ciocultural factors. Digital releases are possibly underrep-
resented since the new online distribution models allow
artists to instantly share their work and the concept of “re-
lease” might be changing. We are far more confident in the
data for the former time period of predominance of phys-
ical releases. Assessment of coverage of editorial music
databases is an open question for future research.

Our analysis is essentially grounded on the statistics of
music production, not consumption. No analysis of music
trends in terms of popularity among listeners is addressed.
Instead, we deliberately focused on another aspect: what
music artists tend to produce, including in the long tail.
A release of 100 copies is treated equally to a release of
thousands in our analysis.

We are also aware of the problem of release-level
genre/style annotations: labels do not necessarily apply to
all tracks. Still, we suppose a certain congruency between
tracks on a release. Interestingly, our data reveals that even
releases with a single track have multiple labels (1.2 genres
and styles on average). This suggests that a genre annota-
tion problem is inherently multi-label. Finally, in our anal-
ysis we are limited to the Discogs’ genre taxonomy. Their
broad genre categories might not be appropriate for some
research tasks, but we can be much more confident in style
annotations, at least for some genres.

Many music releases actually correspond to the same
conceptual items (e.g., album CD version, CD version in
another country, vinyl version, reissue). Discogs provides
information about their groupings, and it should be con-
sidered depending on a task at hand. For simplicity, in our
example studies we treat such releases as if they were in-
dependent. Such releases are often released in various for-
mats, countries, years, and can have different track lengths,
bringing additional information to our analysis.

5. CONCLUSIONS

In this paper we propose to take a closer look on the ed-
itorial metadata in the Discogs database. We believe that
analysis of this data can be a valuable tool for researchers.
It can help to identify and analyze various musical phe-
nomena and raise different musicological questions. Im-
portantly, Discogs is one of the largest sources for such
data in the public domain which allows to address potential
research questions on a very large scale. We demonstrated
the use of this data in a number of example studies in which
we attempted to quantify a number of music trends and
facts, some previously documented by musicologists and
music journalists. Our examples are far from being com-
plete and of course there are more potential questions to be
raised and addressed using this data. We share the analy-
sis tools we developed, our preprocessed datasets and the
complete results for our example studies for further re-use
by MIR and musicology researchers.
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ABSTRACT

We introduce the Music Listening Histories Dataset
(MLHD), a large-scale collection of music listening events
assembled from more than 27 billion time-stamped logs
extracted from Last.fm. The logs are organized in the
form of listening histories per user, and have been con-
veniently preprocessed and cleaned. Attractive features
of the MLHD are the self-declared metadata provided by
users at the moment of registration whose identities have
been anonymized, MusicBrainz identifiers for the music
entities in each of the logs that allows for an easy linkage
to other existing resources, and a set of user profiling fea-
tures designed to describe aspects of their music listening
behavior and activity. We describe the process of assem-
bling the dataset, its content, its demographic characteris-
tics, and discuss about the possible uses of this collection,
which, currently, is the largest research dataset of this kind
in the field.

1. INTRODUCTION

The modeling of users for multimedia information retrieval
systems has been a research topic since the first Inter-
national Symposium on Music Information Retrieval (IS-
MIR) in 2000. In that meeting, it was observed that to
create modern, more efficient, and personalized music in-
formation retrieval systems, the modeling of users would
be necessary because many features of multimedia content
delivery are perceptual and user-dependent [6].

Sixteen years after the first ISMIR meeting, the land-
scape of music consumption has changed enormously. The
rise and fall of peer-to-peer networking led to the reinven-
tion of the music industry: the paradigmatic music product
was no longer a full album in a physical format, but indi-
vidual music files available in online digital music stores.
Thanks to the miniaturization of portable media players
and also to almost ubiquitous Internet access, a change of
paradigm in music consumption has happened again, and
people seem to not want to pay for individual tracks. In-
stead, they are willing to pay for services that allow them to

c© Gabriel Vigliensoni and Ichiro Fujinaga. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Gabriel Vigliensoni and Ichiro Fujinaga. “The music
listening histories dataset”, 18th International Society for Music Informa-
tion Retrieval Conference, Suzhou, China, 2017.

access, search, and discover music items—artists, albums,
or tracks—within large repositories [23].

On-demand digital music streaming services are cur-
rently the fastest growing sector of the global music in-
dustry [11]. In fact, in 2015 the digital revenues that these
systems generated overtook the income from physical mu-
sic goods for the first time in music industry history [12].
As a result, the on-demand music streaming landscape
these days seems to be a lucrative battlefield, and one on
which many companies want to compete. However, since
the majority of the listeners’ accounts in music streaming
services use the “free” or “freemium” business model—
advertisement-supported basic streaming services—a large
share of the income of music and media streaming com-
panies comes from targeting ads more precisely at listen-
ers [18]. It seems that the streaming model is like modern
advertising.

In this model, people are no longer passive observers
but direct participants in the battlefield that is the digi-
tal media and music streaming landscape. In fact, the
traded goods in this business are individual profiles and
psycographic traits (e.g., interests, lifestyle, personality,
values) which are extracted from correlating people’s lis-
tening habits with their sociographic characteristics [17].
As a result, listeners are the source of information, but they
also are the final target for all the advertising these compa-
nies are making money from.

As music information researchers, our community has
to be able to observe, investigate, and to gather insights
from the listening behavior of people in order to develop
better, personalized music retrieval systems. Yet, since
most media streaming companies know that the data they
collect from their customers is very valuable, they usually
do not share their datasets. A honorable mention goes to
Netflix, company that challenged the recommendation re-
search community in 2006 with a large dataset of ratings
of users on movies. Insights and techniques developed for
that competition are still being used widely today.

2. PREVIOUSLY AVAILABLE DATASETS

A number of datasets for music listening research have
been collected and released by research groups. These
datasets provide information relating the interaction of a
large number of listeners and music items.

Celma assembled the Last.fm Dataset-360K, a dataset
of playcounts with listeners’ demographic data for 360K
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Dataset name Type Source Size Demographics Linkage Other

Last.fm Dataset 360-K [5] Playcounts Last.fm 18M logs,
360K users

Yes Yes Only includes most frequently listened artists

Last.fm Dataset 1-K [5] Listening
histories

Last.fm 19M logs,
1K users

Yes Yes Full music listening histories

Yahoo! Music Dataset [7] Ratings Yahoo!
Music
Radio

262M logs,
1M users

No No Hierarchical structure of music items

HetRec2011-last.fm.2k [4] Playcount Last.fm 2K users No No Bidirectional users’ relations and artist tags

Echo Nest Taste Profile subset [13] Playcounts Undisclosed 48M logs,
1.2M users

No Yes Linked to Million Song Dataset

EMI Million Interview Dataset [8] Interviews Individual
interviews

1M users Yes Unknown Partial information available

MusicMicro 11.11-09.12 [19] Listening
histories

Twitter 600K logs,
137K users

Geolocalized
logs

No Precise geolocation data of each log

Million Musical Tweets Dataset [9] Listening
histories

Twitter 1M logs,
215K users

Geolocalized
logs

Yes Many users have only a few listening events

#nowplaying Music Dataset [24] Listening
histories

Twitter 50M logs,
4.2M users

No Yes Many users have only a few listening events

LFM-1B [20] Listening
histories

Last.fm 1B logs,
120K users

Yes No Comes with a set of features describing music con-
sumption behavior. The music listening histories are
shifted according to the time zone of listeners, and so
they are not directly comparable.

MLHD Listening
histories

Last.fm 27B logs,
583K users

Yes Yes Comes with MBIDs, estimation of listeners’ time
zone, and users’ activity features.

Table 1. Comparison of freely available datasets of music listening events.

listeners, and the Last.fm Dataset-1K, a set of full listen-
ing histories with time-stamped logs [5]. Though richer,
the latter dataset included logs for only 1K listeners. Fol-
lowing the Netflix prize, Dror, Koenigstein, and Koren re-
leased the Yahoo! Music Dataset, a collection of 1M peo-
ple’s aggregated ratings on music items [7]. Later on, Can-
tador, Brusilovsky, and Kuflik presented the HetRec2011-
Last.fm-2K, another dataset with song playcounts for the
50 most listened artists of 2K listeners [4]. McFee et al.
introduced The Echo Nest Taste Profile subset, a dataset
of song playcounts of 1M listeners collected from undis-
closed services [13]. Neither of these two datasets, how-
ever, provided timestamps of the music logs or demo-
graphic information about the listeners. The EMI Group
Limited promised a dataset of 1M interviews about peo-
ple’s music appreciation, behavior, and attitudes [8], but
only partial information was made available. None of the
aforementioned datasets simultaneously provided individ-
ual music listening logs as well as demographic data for a
large amount of listeners.

More recently, music listening logs have been collected
from the social networking service Twitter. Schedl re-
leased MusicMicro 11.11-09.12, a dataset of about 600K
music-related tweets with temporal and spatial data [19].
Hauger et al. released the Million Musical Tweets Dataset
[9], a collection of 1M music-related geolocalized micro-
blog posts with partial linkages to other services. Zangerle
et al. introduced the #nowplaying Music Dataset, a col-
lection of 50M music-related posts linked to MusicBrainz
[24]. In these collections, however, there were a large num-

ber of listeners with only one or two logs, and so, in many
cases, the datasets provided a few listening events for many
users instead of listening histories.

Finally, Schedl introduced LFM-1B, a very large dataset
of more than 1B logs collected from Last.fm user inter-
actions [20]. Each log includes artist, album, and track
names, the timestamp of the log, as well as each user’s
Last.fm identifier. The dataset also comes with users’ de-
mographic information as well as a set of features that
describe music consumption behavior per user. However,
the dataset does not provide common identifiers with other
music databases, and so the only way to link the music
items is by string matching.

In Table 1 we provide a summary of available databases
of music listening logs. We can see that among all the
datasets reviewed, the only one that provides full music lis-
tening histories, listeners’ self-declared demographic data,
as well as identifiers easily linkable to other databases of
music information is the Last.fm Dataset-1K. However, the
size of the dataset is very small to perform a large-scale
analysis with global reach. In order to ameliorate this sit-
uation, we decided to collect our own dataset considering
all the aforementioned characteristics.

3. THE MUSIC LISTENING HISTORIES DATASET

In this section we will describe the creation of the Mu-
sic Listening Histories Dataset (MLHD), a large dataset of
full music listening histories. We will review the concept
of music listening history and will present the criteria for
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the data collection and cleaning of the data. We will also
provide insights about the demographic characteristics of
users in the dataset and will explain the need of providing
a value for normalizing the time zone of the logs.

3.1 Music Listening Histories and Last.fm

Listening histories are a timeline of listening events. An-
alyzing them in a linear fashion is interesting because we
can observe when people consume music, and what music
they enjoy or do not enjoy over time. However, since peo-
ple seem to follow periodic listening cycles [10], the aggre-
gation of these listening histories by collapsing them into
different periods of time can provide extra layers of infor-
mation that can be used to infer people’s listening patterns
and preferences.

Last.fm is an online digital music service available since
2002. It was originally conceived as a web-based radio
station. Immediately after its launch, the company incor-
porated the tracking of music listening logs as a core part
of its service. However, Last.fm stands out from most mu-
sic streaming services that collect user data because it not
only gathers listening logs (known as scrobbles) from the
interaction of its users withing the system’s ecosystem, but
also from the interaction between users and a wide range
of third-party music and media players by means of the
scrobbler service.

Last.fm offers free access to the listening data they col-
lect from listeners, as well as music metadata, biographies,
pictures, charts, tags, ranking data by country, and other
information by means of a well-documented API. At the
moment of registration, every user must accept the Last.fm
Terms of Use and the Last.fm Privacy Policy. 1 These terms
establish that their listening habit data will be available
to third parties via their API for commercial and/or non-
commercial purposes. The users are also asked to provide
basic demographic information such as their date of birth,
country, and gender.

All aforementioned characteristics, added to the fact
that the Last.fm API Terms of Service establish that
Last.fm offers a “limited terminable licence to copy and
use the Last.fm Data” that is free of charge “for non-
commercial purposes” 2 persuaded us to choose Last.fm
as the data source to assemble the MLHD.

3.2 Data Collection

In order to retrieve full music listening histories and to ob-
tain even data across aggregated periods of time, we fol-
lowed previous research [1] and searched only for listeners
with a minimum of two years of activity since they started
to submit music logs to Last.fm. Also, in order to prevent
collecting data from casual users that registered for a ser-
vice, tried it, but never used it again, we collected data only
from listeners which had an arbitrary average of, at least,
ten scrobbles per day. The two constraints forced all lis-

1 Privacy Policy available at http://www.last.fm/legal/
privacy

2 Terms of Service available at http://www.last.fm/api/tos

teners in our dataset to have a minimum of 7,300 (i.e., 365
× 2 × 10) music logs submitted to the Last.fm database.

Differently to all other datasets with Last.fm data,
we collected listening data by using an undocumented
(but deprecated) method that allowed us to not need
actual usernames for calling the Last.fm Web services
[21]. Instead, we simply passed Last.fm users’ inter-
nal identifiers as arguments of the API requests. Since
these IDs are sequential, this approach permitted us to
sample users randomly across the entire database in-
stead of sampling users based on their friends or on an
artist’s top fans, which are methods probably more bi-
ased. We aimed to collect full listening histories, and so
we fetched people’s listening logs by using the Last.fm’s
API method user.getRecentTracks(), and paginated it-
eratively throughout the chosen listeners’ full music listen-
ing histories.

3.3 Data Cleaning, Sanitization, and Organization

Within each music listening history, we organized each
of the logs in quadruples with the form of <timestamp,

artist-MBID, release-MBID, track-MBID>, where
timestamp is a global coordinated universal time (UTC)
stamp, and MBID stands for MusicBrainz identifier.
MBIDs are 36-character universally unique identifiers
(UUID) that are permanently assigned to entities within
the MusicBrainz database to ensure a reliable and unam-
biguous form of identification. Since Last.fm exposes
MBIDs as public identifiers of music entities in their
database, we collected them directly for each artist,
release, and track. These three entities are hereafter de-
nominated “music entities.” Finally, all data per user was
stored within a single file, with the logs sorted sequentially
by their timestamp.

After close inspection of the data, we realized that there
were two issues in some of the listening histories: (i)
there were duplicated music logs (i.e., same timestamp and
MBIDs); and (ii) some logs were too close in time (i.e., less
than 30 seconds apart, which is the minimum that Last.fm
requires to consider a played track as a valid log). We hy-
pothesized that these issues were artifacts produced by the
interaction of the Last.fm servers and some scrobblers. As
a result, we decided to perform a cleaning process before
storing the data, and so we filtered out all logs with the
same MBID and timestamp, and we also filtered out all
scrobbles that were less than 30 seconds apart in time. All
in all, the average percentage of duplicated logs removed
for each user was eight percent, and one percent for those
logs that were too close.

It is worth mentioning that sometimes the metadata pro-
vided by the scrobbler is not enough to produce a full
match for artist, release, or track. In cases like this, the
music listening log returned by the Last.fm API will have
only partial information. As a result, not all logs in the
MLHD have a full set of MBIDs.

In Figure 1 we show the percentage of all combinations
of MBIDs across all music logs in the dataset. It can be
seen that about 58 percent of all music logs in the MLHD

98 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



000 6.1
001 0.6
010 0.2
011 0.5
100 10.3
101 18.8
110 5.4
111 58.1

0 25 50 75 100

000 001 010 011 100 101 110 111

Artist Release Recording
MBID MBID MBID
X Y Z

�1

Figure 1. Percentage of music logs with combination of
MBIDs. 0 stands for no presence of the corresponding
MBID in the scrobble and 1 for its existence.

have full data (i.e., MBIDs for the three music entities),
and 93 percent of the logs have, at least, the artist MBID.

3.4 Data Exploration

We computed from the music listening histories’ UTC
timestamps a series of features that aggregated the num-
ber of scrobbles of each listening history into several time
spans. These low-dimensional representations of a user ac-
tivity may facilitate the creation of plots and their visual in-
spection in order to gain insights or detect anomalies from
single listener or groups of them. These per-user features
are: hourly activity, hourly activity by week hour, weekly
activity, monthly activity, yearly activity, weekday activity,
Saturday activity, and Sunday activity.

3.5 Demographics

The MLHD currently consists of more than 27 billion mu-
sic logs taken from the listening histories of 583K people
that have linked their digital music players to Last.fm. In
this massive repository, we counted more than 555K differ-
ent artists, 900K albums, and seven million tracks. Table 2
summarizes the number of logs, unique listeners, and mu-
sic entities in the dataset.

Dataset Logs Listeners Artists Albums Tracks

27MM 583K 555K 900K 7M

Table 2. Music listening histories dataset summary.

The distribution of the average number of daily submit-
ted music logs per listener is shown in Figure 2. Axes in
the plot are in log scale. The curve exhibits a close to
power law characteristic. As expected, due to the con-
straints we set for collecting listeners’ listening histories,
the minimum average daily number of music logs per user
was ten. Listeners with an average of eleven logs were the
largest group, with about 30K listeners. The median num-
ber of submitted logs per user was 35K. The median age of
the listening histories was 4.5 years.

Now we will describe the nature of the users in the
dataset according to their self-declared age, gender, and
country. This information is asked to the users at the mo-
ment of registration.
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Figure 2. Distribution of the average number of daily
scrobbles per listener.

3.5.1 Age

In terms of age, 71 percent of the listeners in the dataset de-
clared their date of birth, which is much higher than similar
datasets [5, 20]. Among them, 98 percent of the users had
a self-declared age within 15 and 54 years old. In spite of
the small magnitude of the probably deceiving information
found in the two percent out of this age range, we decided
to filter them out from the dataset. The mean age of lis-
teners in the dataset is 25.4 years old, the median is 24,
and the mode is 22. Since these are values similar to the
ones found in similar datasets, this skew in the distribution
indicates a bias in our dataset—and probably in Last.fm
users—towards youth and young adults. We show the age
distribution of listeners of the MLHD in Figure 3.
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Figure 3. Age distribution of MLHD listeners within the
[15, 54] years old range.

3.5.2 Gender

In terms of gender, about 82 percent of the people in the
dataset declared a gender at the moment of their registra-
tion or afterwards. In Figure 4 we show the self-declared
gender distribution among these users.

a c e g m
age country exploratoryness gender mainstreamness

data observations users artists
full week 53,783,017 59,183 424,221

weekdays 47,689,829 59,183 411,619 Pearson correlation between users (Resnick et al 1994) However, recommenderlab formula is different!
weekend 30,689,680 59,137 370,857 gabriel antonia santiago vito

antonia 0.88
santiago 0.67 NA

vito 0.50 1.00 NA
justina 0.50 1.00 0.50 0.97

Dataset Listeners Logs Artists Albums Tracks
594K 27MM 555K 900K 7M

Listener’s Min 1st Quartile Median Mean 3rd Quartile Max
Age (years) 0 21 24 25.4 27 113

Number of logs 7K 24K 37K 49K 60K 998K
Logs lifetime (days) 731 1192 1653 1721 2188 3929

Gender Declared Non-declared Female Male
(%) 81.6 18.4 28.70 71.30 Cosine similarity (Lee 08) However, recommenderlab formula is different!

User type Alumni Moderator Staff Subscriber User OBS: This method does not consider user ratings' average!
(number and %) 70 (~0%) 21 (~0%) 33 (~0%) 14K (2.4%) 580K (97.6%) gabriel antonia santiago vito

antonia 0.66
santiago 0.54 0.42

vito 0.61 0.43 0.49
Dataset Logs Listeners Artists Albums Tracks justina 0.72 0.55 0.64 0.84

27MM 594K 555K 900K 7M

Listener’s Min 1st Quartile Mean 3rd Quartile Max
Age (years) 0 21 25.4 27 113

Number of logs 7K 24K 49K 60K 998K
Logs lifetime (days) 731 1192 1721 2188 3929

Wiki Same results with recommenderlab
Declared Non-declared

Age 70.5 29.5
Country 81.8 18.2 side feature value linear_terms factor 1 factor 2
Gender 81.6 18.4 age o 0.3615 -0.3872 -0.1737

age y -0.4056 0.1648 0.4031
gender m -0.1834 0.3986 -0.1552

Age groups 15—24 25—34 35—44 45—54 gender f -0.2302 -0.3539 0.1451
0.575 0.358 0.055 0.012

17 18 19 20 AVG
Logs 27MM Demographic % Age groups %

Listeners 594K Age 70.5 15—24 57.5 64.0
Artists 555K Country 81.8 25—34 35.8 58.8

Albums 900K Gender 81.6 35—44 5.5 43.6
Tracks 7M 45—54 1.2 1.2

Items No. Demographic % Age groups %
Logs 27MM Age 70.5 15—24 57.5

Listeners 594K Country 81.8 25—34 35.8
Artists 555K Gender 81.6 35—44 5.5

Albums 900K 45—54 1.2
Tracks 7M

PEARSON
Items No. Demographic % Age groups % user u1 u2 u3 u4

Logs 27MM Age 70.5 15—24 57.5 u2 0.93
Listeners 594K Country 81.8 25—34 35.8 u3 0.52 0.20

Artists 555K Gender 81.6 35—44 5.5 u4 -0.39 0.96 -0.51
Albums 900K 45—54 1.2 u5 -0.06 1.00 -0.30 0.94
Tracks 7M
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Figure 4. Percentage of listeners’ self-declared gender.

It can be seen that there is a bias towards male listeners
in the MLHD. Since this bias is also observed in similar
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dataset, this can be an indication that Last.fm has more
male than female users.

We compared the age within each self-declared gender
with balanced groups. The total number of listeners with-
out self-declared gender was slightly more than 100K, and
so we sampled 100K listeners from each group. The mean
of the Not declared (µ = 25.67) and Male (µ = 25.60)
groups did not differ greatly (p = .400), perhaps indicat-
ing that the first group may have a large proportion of male
users. On the other hand, users self-declared as Female
(µ = 22.99) had a different lower mean age than the Male
group (p < .001). In other words, users in our dataset self-
declared as Female are younger than the ones declared as
Male.

3.5.3 Country

In terms of location, 82 percent of users in the MLHD self-
reported a country. These users belong to 239 different
countries or territories as defined in the ISO 3166-1 In-
ternational Standard for country codes. Among these ter-
ritories, 19 countries had at least one percent of the total
amount of listeners in the dataset. These “top countries”
combined accounted for more than 85 percent of the total
number of listeners in the dataset.

In order to determine how countries were relatively rep-
resented in the MLHD, we divided the percentage of users
per country by the actual country population. 3 This metric
gave us a better description about how different countries’
populations were represented in our dataset. In Figure 5
we show a map that presents the relative number of listen-
ers per country normalized by the corresponding number
of inhabitants in each country.

1 2020
Last.fm penetration per country vigintiles

1 

Figure 5. Relative number of listeners per country, nor-
malized by the number of inhabitants in each country.

The color palette of the plot was based on vigintiles
(20 quantiles) of the data, with red indicating the high-
est vigintile, and blue the lowest one. If our dataset has
similar distinctive qualities in comparison with the overall
Last.fm data, this map can be interpreted as the Last.fm
market penetration by country. By looking at the higher
vigintiles we can see that listeners from most zones are
represented in the MLHD. In particular, Northern Euro-
pean, North American, and Australasian countries have

3 Population data for the year 2012 taken from the World Bank
Open Data repository, available at http://data.worldbank.org/
indicator/SP.POP.TOTL

the largest proportion of listeners submitting music logs
to Last.fm. Also, some countries in South America show
similar penetration levels to some Mediterranean countries
in Europe. People from Africa, South Asia, and Far East
Asia are not extensively represented in our dataset.

Finally, pair-wise mean age comparison using balanced
groups of listeners per country (N= 4.5K) showed signif-
icant differences between listeners from some of the top
countries. For example, Brazilian listeners are younger on
average (µ = 22.6) than all other top countries (p < .001),
except for Poland, Russia, and Ukraine. On the other hand,
Japanese listeners are older on average (µ = 29.0) than
users from all the other top countries (p < .001), except
for Spain and France.

3.6 Time Zone Normalization

Last.fm collects scrobbles using the Unix time stamp for-
mat no matter where the logs were generated. Therefore,
all music logs within the Last.fm database have the same
temporal point of reference. Beyond the timestamp and the
MBID for the three music entities, the logs do not store any
additional geographical information such as city, country,
or the time zone where they were generated.

The lack of information about where the logs were ac-
tually generated can be a problem. If the researcher wants
to find trends in people’s daily, weekly, and monthly music
listening behavior, it is necessary to aggregate their mu-
sic listening histories over time. However, the aggregated
listening patterns from people in different time zones is
shifted depending on where they are. As a result, it would
be misleading to directly compare their patterns. The coun-
try information could be used to estimate a listener’s time
zone, but many countries span their territories over several
time zones.

In previous studies with similar data, the researchers
have hand-picked listeners within the same time zone
[2, 3, 16] or are just compared their daily listening patterns
directly [20]. However, a research dataset to perform stud-
ies at the global level must provide this information in or-
der to properly compare the music listening histories.

We followed an approach for time zone normalization
based on the assumption that people share hours of sleep at
night [21], and computed the time shift of the listening his-
tories in the MLHD. In Figure 6 we show the estimated dis-
tribution of the time zones of all listeners in the dataset. We
can observe a peak in the estimated time zone from where
people submitted music logs at time zone GMT +0, with
about 17 percent of the dataset users. Additionally, a large
proportion of the listeners were estimated to be within time
zones corresponding to Western Europe, but also spread
out throughout the different time zones in America.

4. CONCLUSION

All in all, the MLHD provides three sources of data for
each user: (i) demographic metadata, (ii) sanitized full
music listening histories, and (iii) low-dimensional fea-
ture vectors describing the full listening histories in terms
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Figure 6. Distribution of the time zones for all users in the
dataset (N = 583K).

of user activity. As a result, the full music listening
histories compiled in the MLHD dataset offer a large
amount of information. On top of having a very fine
time granularity—providing second-accurate data about
the music item played back in a media player by a specific
user—their aggregation into different spans of time may
provide clues about the people’s listening behavior charac-
teristics and their listening trends over time.

A big advantage of the MLHD dataset over other
datasets for listening behavioral research is that it is based
on MusicBrainz identifiers (MBID). This feature allows
the easy linkage of each log to, for example, all ser-
vices of the MetaBrainz Foundation ecosystem (i.e., Mu-
sicBrainz, AcousticBrainz, ListenBrainz, and Critique-
Brainz) and to other services that provide additional data
accessible through these IDs (e.g., Last.fm provides folk-
sonomy tags for artists, albums, and tracks, and DBPedia
links Wikipedia open music data to MusicBrainz by means
of MBIDs). Therefore, music listening histories can be
linked to resources from other repositories, thus enabling
the aggregation, linkage, and expansion of the data and the
knowledge about people’s music listening behavior.

In terms of possible uses of the dataset, data aggrega-
tions extracted from the MLHD have already been used in
combination with other sources of data. In particular, it
has been used as part of the datasets for “Sound and music
recommendation with knowledge graphs” [15]. In these
datasets, a subset of music listening histories from the
MLHD were aggregated into playcounts and used in com-
bination with additional song data collected from Song-
facts.com to enable the study of hybrid music recommen-
dation models using additional user-provided factual infor-
mation describing songs and artists [14]. Additionally, it
has been used to find listening behavioral patterns in four
different age groups and to evaluate the improvement of a
music recommendation model by using demographic, pro-
filing, and contextual features [22].

We plan to expand the MLHD by collecting more lis-
tening data. This is a good idea in the eventual case that
Last.fm stops providing this data or a full shutdown of the

service. Also, the data collected may be added to the Lis-
tenBrainz project, an initiative of the MetaBrainz Founda-
tion with the goal of allowing listeners to preserve their
existing music listening histories in Last.fm.

Although we aimed to collect data from a large group
of listeners of varied demographics—thus helping to over-
come biases from previous user-driven and data-driven
research—the listening data we collected may be also bi-
ased. For example, the age distribution of listeners show
that the dataset is skewed towards late adolescent and early
adult listeners. However, since this group will be older in a
few years from now, and younger generations are already
born into a digital era, we suppose that this trend may be
different in a few years, and the large skew towards listen-
ers in their early twenties may be less significant. In any
case, the MLHD has a much larger amount of data than any
of the studies of the datasets reviewed in Section 2, and so
it allows for the undertaking of studies with balanced pop-
ulations of listeners of each age.

We also acknowledge that a limitation of conducting
data-centric studies using data collected from listening in-
teractions with media players and music streaming services
is the fact that it is hard to know if listeners actually chose
the music item they were exposed to, or it was the recom-
mendation engine or shuffle algorithm of a music stream-
ing service the one that suggested the music item. As a
result, it is hard to say if a specific scrobble reflected the
actual preference of a listener, or if it registered what was
recommended by a recommendation or shuffle algorithm.
However, Wikström [23] pointed out that ubiquitous ac-
cess to music services with recommendation algorithms is
how the majority of people are actually experiencing music
in the new music economy. Hence, the study of music pref-
erence nowadays cannot separate self-chosen music from
algorithmically generated playlists and suggestions. These
two approaches are occurring at the same time, and so both
have to be considered in order to obtain insights about
listening behaviors and music preferences. We hope the
dataset we introduced will be useful for doing large-scale
research on user modeling, music preference, and recom-
mendation.

The MLHD can be accessed and downloaded at
http://ddmal.music.mcgill.ca/research/
musiclisteninghistoriesdataset.
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ABSTRACT

Users in different countries may have different music pref-
erences, possibly due to geographical, economic, linguis-
tic, and cultural factors. Revealing the relationship be-
tween music preference and cultural socio-economic dif-
ferences across countries is of great importance for music
information retrieval in a cross-country or cross-cultural
context. Existing works are usually based on small sam-
ples in one or several countries or take only one or two
socio-economic aspects into account. To bridge the gap,
this study makes use of a large-scale music listening
dataset, LFM-1b with more than one billion music listen-
ing logs, to explore possible associations between a variety
of cultural and socio-economic measurements and artist
preferences in 20 countries. From a big data perspective,
the results reveal: 1) there is a highly uneven distribution
of preferred artists across countries; 2) the linguistic differ-
ences among these countries are positively associated with
the distances in artist preferences; 3) country differences
in three of the six cultural dimensions considered in this
study have positive influences on the difference of artist
preferences among the countries; and 4) geographical and
economic distances among the countries have no signifi-
cant relationship with their artist preferences.

1. INTRODUCTION

Probing the relationship between cultural and socio-
economic difference and the cross-country difference in
music preferences not only matters in music information
retrieval (MIR), but also brings important cues to under-
stand the difference in cultural and socio-economic aspects
among countries. Against the background of the world’s
diversity in many cultural and socio-economic aspects, re-
search aiming to uncover cross-country differences in the
field of music recommendation and retrieval is seeing in-
creasing attention [22, 30]. It is widely acknowledged
that music information behavior is inherently a kind of
cultural behavior, shaped by the culture and other socio-
economic factors [32, 56]. A growing body of literature

c© Meijun Liu, Xiao Hu, Markus Schedl. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Meijun Liu, Xiao Hu, Markus Schedl. “Artist Preferences
and Cultural, Socio-economic Distances across Countries: A Big Data
Perspective”, 18th International Society for Music Information Retrieval
Conference, Suzhou, China, 2017.

demonstrated that different cultures or different countries
have disparity in music information behaviors, e.g. music
retrieval, management and consumption, and music mood
judgment [30, 39, 44]. This is also true in music prefer-
ences [25, 56]. In this case, a question naturally arises:
which kind of cultural and socio-economic background
might possibly be responsible for the difference of mu-
sic preferences among countries? It is thus necessary to
have an in-depth understanding of the differences in mu-
sic preferences across different countries and of how these
differences are mirrored by cultural and socio-economic
factors. Answers to these questions can facilitate con-
structing cross-cultural MIR systems, and promoting mu-
sic recommendation and retrieval results by taking into ac-
count cultural and the socio-economic background of users
[56]. Furthermore, this paper also contributes to improv-
ing the knowledge of the differences in customs, traditions,
cultural values, and other socio-economic factors among
countries.

Existing literature provides little evidence of the exact
relationships between the cross-country differences in a va-
riety of cultural and socio-economic factors and those in
artist preference. Furthermore, limited literature investi-
gated which cultural dimension reflects the inter-country
difference in artist preferences. Even fewer previous stud-
ies were based on large-scale user-generated datasets. This
situation calls for more studies in this regard. Therefore,
we investigate in this paper the following research ques-
tions:

RQ1: How do artist preferences differ across countries?

RQ2: Does the inter-country difference in artist prefer-
ences depend on the geographic, economic, linguistic, and
cultural distances among countries?

RQ3: Which cultural dimension can reflect the differ-
ence in artist preferences across countries?

Inspired by this research gap and the scientific impor-
tance, this paper seeks to probe whether the differences
among countries in music taste rely on any factors in the
cultural and socio-economic dimensions, through applying
descriptive analysis, Kruskal-Wallis variance analysis and
Quadratic Assignment Procedure (QAP) on a large dataset
with more than one billion listening records, the LFM-1b
dataset [49]. To our knowledge, this is a first work that
explores relationship between the inter-country difference
in artist preferences and a variety of cultural and socio-
economic differences among countries.
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2. RELATED WORK

Related work can be categorized into research that investi-
gates the connection between music preferences and socio-
economic factors, and that between music preferences and
cultural dimensions. A recent study analyzed the country-
specific music preferences. However, it did not investigate
the influential factors of music preferences [50].

In recent years, due to the availability of large-scale mu-
sic listening data, users geospatial context for music rec-
ommendation has received increasing attention [53]. How-
ever, there is limited literature on directly exploring the re-
lationship between music preferences and geographic lo-
cations. Before large-scale music listening datasets have
been published, several works involved location-related in-
formation. Researchers proposed a mobile music recom-
mender system, Lifetrack, that enables a playlist based on
the location and other information in the users environ-
ment [47]. More recently, researchers found that draw-
ing on the information of listeners geographic location help
promote music recommendation [43, 52]. Although some
works have been done, the authors suggested that combing
cultural regions with geographical distances may better ex-
plain differences in music taste [53].

Economic status seems to have a potential influence on
musical preferences. Cultural consumption is closely re-
lated to individuals social status that in turn is directly in-
terrelated with the amount of income. According to Bour-
dieu’s class theory, high-status groups have more cultural
capital which is defined as knowledge and appreciation of
highbrow culture, and the possession of high or low in-
come in people’s childhood tend to shape their taste [7].
Empirical evidence showed that the cultural taste of the
high-status group is distinct from people in other classes.
For example, people belonging to the high-status group
frequently visit museums, classical concerts, the theater
and so forth [15, 31, 33]. In the field of music research,
there exist some evidence that support the connection be-
tween income and music preferences as well. Cutler found
that preference for classical music tended to grow with
income [13]. Duncan, Herrington and Capella also sug-
gested that the music taste of upper-income individuals is
different from their counterparts with low income or/and
with only high school education [18]. It has been found
that high socio-economic status positively impacts musi-
cal openness that is related to the acceptance for diverse
music [57].

Culture is a well-discussed factor in music informa-
tion research, compared to other socio-economic aspects.
From the perspectives of sociology, psychology and behav-
ior science, researchers believe that general behaviors and
preferences are shaped by culture [32]. In the field of MIR,
retrieval methods that consider cultural differences in mu-
sic perception and consumption are highly desirable [39].
In recent years, taking cultural factors into account has be-
come a frequently-used strategy in MIR research to explore
users music need at the country level [23]. Researchers
found that preference for music mood altered significantly
between countries, implying that utilizing geographic in-

formation of users could facilitate further studies [48].
More recently, it has been suggested that the country-based
diversity pattern of music listening is associated with some
cultural dimensions presented in Hofstede’s theory on cul-
tural dimensions [23]. Specifically, researchers found that
users in countries with high scores in the culture dimen-
sion of power distance tended to show less diversity in the
artists and genres they listened to. Oppositely, individu-
alism dimension was negatively correlated with music di-
versity. Furthermore, the correlation between long-term
orientation and artist diversity was considered negative.

Based on small-sample data obtained from surveys, pre-
vious studies provided more direct evidence to show the
influence of language on listeners reactions to and com-
ments on music. Empirical results presented that there
was a significantly positive correlation between familiar-
ity with a language and attitude toward the language in
songs [1]. Specifically, it was reported that some children
responded to foreign-language music with negative judg-
ment [38]. In a study which focused on language in the
context of songs, it was observed that English-speaking
students preferred pop songs performed in English to those
with Spanish or Chinese lyrics [2]. By examining under-
graduate non-music majors world music preferences, re-
searchers found that the breadth and length of studying
foreign languages were related to a high degree of world
music preferences [26].

In a nutshell, the cultural and socio-economic variables
we selected are thought of as potentially correlative factors
of music preferences. However, the exact relationship be-
tween these factors and music preferences under a cross-
country context still remains unclear. First, current stud-
ies are limited to small samples collected from surveys or
questionnaires. Besides, such self-reported responses can
be subjective. In other words, there is scarce literature that
investigates this research question using objective datasets
in a large scale. Second, most existing studies simply in-
clude one or two socio-economic factors, leaving many po-
tentially relevant aspects unexplored. Third, extant studies
ignored the discussion of the association between socio-
economic factors and music taste in a context of multiple
countries or multiple cultures, since a majority of them
paid attention to individuals in a single cultural environ-
ment. Fourth, among the few studies on relationship be-
tween music preferences and socio-economic factors (e.g.
geographical location), the conclusions are often ambigu-
ous and indecisive. To bridge the gaps, this study aims
to uncover the relationship between music preferences and
cultural and socio-economic factors at the country level us-
ing a large-scale and user-generated dataset.

3. DATA AND METHODOLOGY

3.1 LFM-1b Dataset

This study uses the open dataset LFM-1b 1 [49]. This
dataset includes more than one billion music listening

1 www.cp.jku.at/datasets/LFM-1b. The period during which the data
was collected ranges from January 2013 to August 2014.
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Figure 1: Number of users in the 20 sample countries
(top) and the continents where countries are located (bot-
tom).(Country code: US: United States, RU: Russia, DE:
Germany, UK: United Kingdom, PL:Poland, BR: Brazil,
FI: Finland, NL: Netherlands, ES: Spain, SE: Sweden, UA:
Ukraine, CA: Canada, FR: France, AU: Australia, IT: Italy,
JP: Japan, NO: Norway, MX: Mexico, CZ: Czech Repub-
lish, BY: Belarus)

events created by 120,322 users and enables us to con-
duct a large-scale analysis in music listening behaviors.
It is noteworthy that only 54.13% of users in the LFM-
1b dataset provide information on their nationality and the
distribution of users across countries is very unbalanced.
To avoid possible negative effects on our analysis, we elim-
inate countries with less than 1% of users in LFM-1b and
only use the remaining 20 countries in this study. Fi-
nally, we obtained a dataset including 46,619 users with
678,640,512 listening events that cover 2,259,103 unique
artists.

The distribution of users in the sampling countries and
which continent these countries belong to are shown in
Figure 1. It indicates that most of them are located in
Europe and America, with one country in Asia, Oceania,
and South America respectively.

3.2 Modeling Country-specific Diversity in Artist
Preferences

In this study, we used the coefficient of variation (CV) and
Gini coefficient to measure and compare the diversity of
artist preferences across the countries. Coefficient of vari-
ation is a standardized measure of dispersion of the fre-
quency distribution, which is defined as the ratio of the
standard deviation to the average of a variable [20]. CV has
been frequently used for comparing diversity or inequality
in groups [3, 5]. The Gini index enables us to examine
the inequality of artist listening frequency in each coun-
try [46, 60]. We adapt the definition of the Gini coefficient
for a country c to our task and calculate it as shown in

Equation 1,

Gc =

∣∣∣∣∣1 + 1

N
− 2

m×N2

∑
i

(N −Oi + 1) · yi

∣∣∣∣∣ (1)

where N is the number of artists listened to by users in
country c; yi is the listening count of artist i in country
c; Oi is the inverse rank of yi when sorting the values yi
for all artists i in country c, and m is arithmetic mean of
listening counts across the N artists.

We adopted the Kruskal-Wallis (KW) non-parametric
analysis of variance as the primary tool to probe whether
there is a significant difference among countries in the fre-
quency of artist listening. After performing the Shapiro-
Wilk test, it was observed that the data exhibited non-
normal distribution, and thus non-parametric analysis of
variance was adopted [19]. A follow-up test was carried
out to find out which pairs of countries have significant dif-
ferences [9, 29, 54].

To avoid possible bias caused by the disequilibrium of
listening counts across countries, we also normalized the
listening frequency of each artist in a country against the
total listening count of that country. In other words, we
look into not only the raw listening counts but also the nor-
malized listening count of each artist.

3.3 Modeling Country Distances in terms of Artist
Preferences, Cultural and Socio-economic Dimensions

The distance of artist preference among countries is the de-
pendent variable in this study. Based on the data of listen-
ing events in LFM-1b, we calculated the cosine distance
of artist preferences among countries. Specifically, each
country is represented by a vector of artists, with each di-
mension of the vector being the number of times the cor-
responding artist was listened to by users in this country.
Then, the cosine distance between each pair of vectors was
calculated. The results are shown in Figure 2. Notably, the
distances between Japan and all other countries are sub-
stantially higher (> 0.5) than those between other pairs of
countries, making Japan an outlier, which is in line with
previous studies [51].

In this study, the cultural and socio-economic distance
between countries is measured by the following aspects:
geographic, economic, linguistic, and cultural distance.
Geographic distance is the geodetic distance between the
capital cities calculated by Vincenty’s equations and on the
basis of the latitude and longitude, i.e., the length of the
shortest curve between two points along the surface of the
Earth [58]. We define economic distance as the difference
of gross domestic product (GDP) per capita between coun-
tries, calculated based on the data obtained from World
Bank 2 . For linguistic distance between countries, we re-
gard the language used by the largest population in a coun-
try as the main language in that country. On the website of
the Central Intelligence Agency (CIA), 3 the language and

2 http://databank.worldbank.org/data/home.aspx
3 https://www.cia.gov/library/publications/

the-world-factbook/fields/2098.html
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Figure 2: Heat map of cosine distances among countries based on artist listening frequency

the size of its speakers in a country are obtained to identify
the main language in each of the sampling countries. Eth-
nologue 4 provides the information of the global language
family tree, based on which we calculated the linguistic
distance between two countries. Consistent with existing
literature [21, 37], the linguistic distance between two lan-
guages i and j is defined in Equation 2,

Dij = 1−
(
|Ni ∩NJ |

1
2 · (Ni +Nj)

)β
(2)

where Ni denotes the number of nodes in country i’s lan-
guage tree, Nj analogously. The relative distance between
languages which are both included in the same family
hinges on the value of β. According to the experience in
other studies [21, 37], we set β = 0.5. For example, in
the language family tree, English belongs to the follow-
ing branch: Indo-European > Germanic > West > En-
glish while Swedish is classified into this branch: Indo-
European > Germanic > North Germanic > East Scan-
dinavian > Continental Scandinavian > Swedish. The
distance between these two languages is approximately
0.368 in that they have four and six nodes separately, shar-
ing two common nodes. In order to quantify the cultural
distance between countries, we calculate the distance of
scores between countries in each of Hofstede’s cultural di-
mensions 5 [28]: Power distance index (PDI) refers to
the extent to which the less powerful members accept and
expect that power is distributed unequally; Individualism
(IDV) defines the degree of preference for a loosely-knit or
tightly-knit social framework; Masculinity (MAS) refers
to the degree of preference for achievement, heroism, as-
sertiveness, and material rewards for success; Uncertainty
avoidance (UAI) expresses the attitude of individuals to-
wards uncertainty and ambiguity; Long-term orientation

4 https://www.ethnologue.com/
5 https://geert-hofstede.com/national-culture.

html

(LTO) describes to which degree a society ties the past with
the present and future actions or challenges; Indulgence
(IND) measures the happiness of a society.

3.4 Quadratic Assignment Procedure

In this study, we applied the Quadratic Assignment Proce-
dure (QAP) [36, 55] via Double Dekker Semi-partialling
[4, 14] to examine the relationship between distance of
artist preference across countries, and geographic, eco-
nomic, linguistic and cultural proximities across countries.
In other words, we explore whether the difference among
countries in artist listening has a relationship with their dif-
ferences in the aspects of geographic location, economy,
languages and culture. The primary reason for using QAP
in this study is to avoid biases caused by autocorrelation of
error in the dyadic dataset [55]. In this study, each obser-
vation is a pair of countries (i.e., a dyad in network analysis
terminologies). Dyads are non-independent because each
node in a dyad is connected to other dyads. Therefore, re-
gression methods that assume independent distribution of
data such as ordinary least squares (OLS) regression would
lead to biased estimators [4, 6, 41]. In contrast, QAP ex-
plicitly takes into account dependence between dyads as
well as autocorrelation of errors in the dyadic dataset. It
is frequently used in regression analyses on network and
relationship datasets [8, 10, 11, 16, 36]. The independent
variables are the six matrices of the between-country dis-
tances in the six cultural dimensions, whereas the depen-
dent variable is the matrix of inter-country distance on the
artist preferences. We control the geographical distance
(GEO), economic distance (ECO) and linguistic distance
(LAN) among the countries. Besides, we calculated the
mean variance inflation factor score (1.79), which is far
lower than critical point 10, implying that multicolinearity
can be ignored in this study.
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4. RESULTS

4.1 Differences among Countries in terms of Artist
Preferences

Table 1 presents statistics of the artist listening histories
across countries, including the average number of listening
events to an artist, the standard deviation (SD), coefficient
of variation (CV), the number of unique artists (Uniq.#)
listened to by listeners in each country and Gini coefficient
(Gini).

As can be seen from Table 1, users from the US and
Russia listen to a large number of unique artists, far ex-
ceeding other countries. Furthermore, the high CV val-
ues for US, BR, RU, PL and UK imply that listeners from
these countries listen to a wider range of artists, compared
to users from other countries.

Country Mean SD CV Uniq.# Gini
US 182.16 2930.63 16.09 747004 96.44%
RU 114.46 1795.28 15.69 632460 96.38%
DE 134.46 1746.64 12.99 474874 96.35%
UK 127.68 1709.56 13.39 456456 95.39%
PL 209.95 3280.39 15.62 362155 95.21%
BR 203.11 3263.22 16.07 267186 95.15%
NL 83.57 833.97 9.98 256895 94.53%
UA 68.38 743.48 10.87 249287 93.98%
SE 102.94 1095.51 10.64 229714 93.38%
FI 114.41 1230.23 10.75 213645 93.10%
FR 71.79 595.26 8.29 207878 93.05%
CA 93.83 817 8.71 191728 92.97%
ES 82.3 717.39 8.72 190671 92.96%
JP 63.44 548.04 8.64 185128 92.95%
BY 51.78 469.26 9.06 166465 92.74%
NO 78.52 669.54 8.53 165663 92.66%
AU 89.02 759.82 8.54 164145 92.52%
IT 81.28 783.94 9.64 156599 92.03%
MX 73.17 753.87 10.3 144930 91.51%
CZ 87.8 743.38 8.47 127726 91.15%
Mean 105.70 1274.32 11.05 279530 93.72%

Table 1: Statistics of artist listening frequency across sam-
ple countries ranked by the number of unique artists

In general, Gini indices are high for all countries, mean-
ing users’ preferences for an artist varied a lot. In partic-
ular, the inequality of artist listening is most noticeable in
the US, Brazil, Poland, and the UK, which is consistent
with the CV results.

When comparing frequency of artist listening across
countries, the result of the Kruskal-Wallis test shows a
statistically significant difference (p < 0.01) among the
sampling countries. After conducting a follow-up pairwise
comparison, we find that significant differences on artist
preferences exist between all 190 country pairs, except for
BR and AU, CZ and AU, CZ and BR, JP and CZ, MX and
FR, PL and CA, RU and NO, SE and FI, SE and FR.

4.2 QAP Correlation and Regression Results

We run two models to test the relationship between artist
preference (as represented by artist listening frequencies)
distance among countries, and the geographical, economic,

linguistic, and cultural distances among them. The QAP
correlation coefficients among the variables are reported in
Table 2, and the regression results are in Table 3. For com-
parison, only the control variables are included in model 1
and we added the independent variables to model 2. The
adjusted R2 in the two models are significant: 0.594 and
0.643 in model 1 and 2, respectively. In other words, nearly
59.4% of the variance in the matrix of the artist preference
distances among countries can be explained by their dis-
tances in the geographic, economic and linguistic aspects;
and 64.3% of the variance can be explained in model 2
with the addition of cultural distances.

The distance among countries in term of main lan-
guages is positively associated with their distance in artist
preferences (r = 0.745 in Table 2). In model 2, the coef-
ficient of linguistic distance among countries is significant
and positive (β = 0.68; p < 0.001). Furthermore, three
dimensions of cultural distance among countries have pos-
itive effects on their artist preference distance: masculin-
ity (β = 0.13; p < 0.05), long-term orientation (β=0.12;
p < 0.01), and indulgence (β=0.14; p < 0.05).

Besides, the regression results in both model 1 and
model 2 reveal that economic distance has no significant
impact on the artist preference distance on the country
level. Geographic distance has a significant impact on the
dependent variable in model 1, but becomes insignificant
when cultural distances are included in model 2.

5. DISCUSSION

We summarize our main findings in the following. The
distribution of music listening behavior across artists is
highly uneven. In particular, substantial inequality of artist
preferences is found in the US, Brazil, Poland, Russia, and
the UK. In comparing across the countries, there are signif-
icant distinctions in artist preferences within most of coun-
try pairs.

The distance between the main languages used in coun-
tries is positively associated with the distance in their artist
preferences. This result could be attributed to the fact
that familiarity is a key factor that influences music prefer-
ence [17, 27]. Familiarity not only refers to having heard a
music piece somewhere before, but can also be reflected by
the degree of familiarity with the language in the songs [1].
Listeners may be less familiar with music sung in lan-
guages they know little about, and thus they may be less
likely to listen to that kind of music.

Among the six cultural dimensions, masculinity, long-
term orientation, and indulgence distances between coun-
tries have positive correlations with their distances in
artist preferences. First, masculinity indicates the degree
to which a culture delineates gender roles, and a mascu-
line culture clearly differentiates the social expectations on
males and females [42]. Previous literature pointed out that
a huge gender difference in both the expression and percep-
tion of mood could be found in cultures high in masculin-
ity. Other researchers also demonstrated that masculinity
can explain the gender difference in personality traits [12].
It is generally agreed that music listening behavior and
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ARTIST GEO ECO LAN PDI IDV MAS UAI LTO
ARTIST 1
GEO 0.248 1
ECO 0.122 -0.017 1
LAN 0.745*** 0.066 0.118 1
PDI 0.149 -0.034 0.516*** 0.211 1
IDV 0.215 0.354* 0.37** 0.136 0.458** 1
MAS 0.34* -0.056 0.102 0.317* 0.005 -0.106 1
UAI 0.144 -0.101 0.352** 0.241* 0.566** 0.266* 0.12 1
LTO 0.267** 0.266** 0.016 0.081 0.019 0.112 0.01 0.025 1
IND 0.269* 0.112 0.334** 0.14 0.416** 0.326** -0.037 0.398** 0.346** 1

Table 2: QAP correlation coefficients (Note: significance levels: *: p < 0.05; **: p < 0.01; ***: p < 0.001)

Variable Model 1 Model 2
GEO 0.200* 0.133
ECO 0.040 0.003
LAN 0.727*** 0.683***
PDI -0.035
IDV 0.063
MAS 0.131*
UAI -0.074
LTO 0.122**
IND 0.140*
Adjusted R2 0.594 *** 0.642***
N of Obs 380 380

Table 3: The QAP regression result. (Note that all coeffi-
cients presented are standardized coefficients. Significance
levels: ***p < 0.001,**p < 0.01, *p < 0.05)

emotion strongly interact with each other [34, 35]. More-
over, the correlation between personality and music behav-
ior is documented in empirical studies [24, 45]. Conse-
quently, it is possible that on the country level, the music
preference difference and the cultural difference in mas-
culinity interacted through the gender differences in terms
of emotion and personality traits.

Second, prior studies offer evidence that people in coun-
tries scoring low in long-term orientation have a lower
preference for listening to diverse artists since they value
steadfastness and believe that traditions are to be honored
and kept [23]. In other words, people in short-term ori-
ented cultures may prefer to listen to more traditional mu-
sic, and their music listening behavior is possibly more
conservative. Furthermore, it is recently found that indi-
viduals in countries with long-term orientation tend to be
more patient [59]. This characteristics may not only influ-
ence business activities, but also generate different listen-
ing behaviors across countries. For instance, in long-term
oriented countries, people may be more likely to have the
patience to listen to slow and long music. Future studies
can further explore and test these hypotheses.

Third, in countries scoring high on indulgence, people
tend to have more freedom in controlling their daily lives
and in choosing the way to enjoy life. Given that listening
to music is often regarded as an important entertainment

activity, the cultural difference in the dimension of indul-
gence can possibly affect people’s choices of music, and
thus bringing about the differences in music preferences
across countries.

In the final regression model (model 2 in Table 3), there
is no significant association between geographical and eco-
nomic distance on the music preference distance across
countries. Perhaps geographical distance is no longer
a barrier for people to access various music in today’s
highly connected information society. Therefore geoloca-
tion plays a less significant role in music preference com-
pared to linguistic and cultural differences among coun-
tries. In terms of economic distance, although on the indi-
vidual level, it is confirmed in the literature [40] that mu-
sic preferences vary by the income level, this seems ques-
tionable on the country level. This discrepancy might be
related to the correlation between people’s cultural behav-
iors and social status [40]. On an individual level, income
is related to social status which in turn can influence one’s
music preference. However, on the country level, people’s
social status ranges a lot in any single country and has vir-
tually no relationship with the GDP per capita of a country.
Consequently, economic distance among countries cannot
explain differences in music preferences.

6. CONCLUSION AND FUTURE WORK

In this study, we applied descriptive statistical analysis,
Krusal-Wallis variance analysis, and Quadratic Assign-
ment Procedure on the LFM-1b dataset, to reveal the as-
sociation between the distance of a variety of cultural and
socio-economic aspects among countries, and the cross-
country difference in artist preference.

Findings of this study contribute to the literature of mu-
sic listening behaviors and preferences, particularly from
the cross-country perspective. By analyzing one of the
largest datasets in the field, we aim to draw conclusions
that are representative and generalizable. Multiple factors
in the cultural, linguistic, geographic, and economic as-
pects were analyzed, and the results can potentially help
design new strategies of MIR systems in the cross-country
and cross-cultural context. Future studies can compare
cross-country differences on other facets of music such as
genre and mood.
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ABSTRACT

This work addresses the problem of matching short ex-
cerpts of audio with their respective counterparts in sheet
music images. We show how to employ neural network-
based cross-modality embedding spaces for solving the
following two sheet music-related tasks: retrieving the cor-
rect piece of sheet music from a database when given a mu-
sic audio as a search query; and aligning an audio record-
ing of a piece with the corresponding images of sheet mu-
sic. We demonstrate the feasibility of this in experiments
on classical piano music by five different composers (Bach,
Haydn, Mozart, Beethoven and Chopin), and additionally
provide a discussion on why we expect multi-modal neural
networks to be a fruitful paradigm for dealing with sheet
music and audio at the same time.

1. INTRODUCTION

Traditionally, automatic methods for linking audio and
sheet music data are based on a common mid-level rep-
resentation that allows for comparison (i.e., computation
of distances or similarities) of time points in the audio
and positions in the sheet music. Examples of mid-level
representations are symbolic descriptions, which involve
the error-prone steps of automatic music transcription on
the audio side [2, 4, 12, 20] and optical music recognition
(OMR) on the sheet music side [3, 9, 19, 24], or spectral
features like pitch class profiles (chroma features), which
avoid the explicit audio transcription step but still depend
on variants of OMR. For examples of the latter approach
see, e.g., [8, 11, 15].

In this paper we present a methodology to directly learn
correspondences between complex audio data and images
of the sheet music, circumventing the problematic defi-
nition of a mid-level representation. Given short snip-
pets of audio and their respective sheet music images, a
cross-modal neural network is trained to learn an embed-
ding space in which both modalities are represented as 32-
dimensional vectors. which can then be compared, e.g., via

c© Matthias Dorfer, Andreas Arzt, Gerhard Widmer. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Matthias Dorfer, Andreas Arzt, Gerhard
Widmer. “Learning Audio – Sheet Music Correspondences
for Score Identification and Offline Alignment”, 18th International Soci-
ety for Music Information Retrieval Conference, Suzhou, China, 2017.

their cosine distance. Essentially, the neural network re-
places the complete feature computation process (on both
sides) by learning a transformation of data from the audio
and from the sheet music to a common vector space.

The idea of matching sheet music and audio with neu-
ral networks was recently proposed in [6]. The approach
presented here goes beyond that in several respects. First,
the network in [6] requires both sheet music and audio
as input at the same time to predict which location in the
sheet image best matches the current audio excerpt. We ad-
dress a more general scenario where both input modalities
are required only at training time, for learning the relation
between score and audio. This requires a different net-
work architecture that can learn two separate projections,
one for embedding the sheet music and one for embedding
the audio. These can then be used independently of each
other. For example, we can first embed a reference col-
lection of sheet music images using the image embedding
part of the network, then embed a query audio and search
for its nearest sheet music neighbours in the joint embed-
ding space. This general scenario is referred to as cross-
modality retrieval and supports different applications (two
of which are demonstrated in this paper). The second as-
pect in which we go beyond [6] is the sheer complexity
of the musical material: while [6] was restricted to simple
monophonic melodies, we will demonstrate the power of
our method on real, complex pieces of classical music.

We demonstrate the utility of our approach via prelim-
inary results on two real-world tasks. The first is piece
identification: given an audio rendering of a piece, the cor-
responding sheet music is identified via cross-modal re-
trieval. (We should note here that for practical reasons, in
our experiments the audio data is synthesized from MIDI –
see below). The second task is audio-to-sheet-music align-
ment. Here, the trained network acts as a complex distance
function for given pairs of audio and sheet music snippets,
which in turn is used by a dynamic time warping algorithm
to compute an optimal sequence alignment.

Our main contributions, then, are (1) a methodology for
learning cross-modal embedding spaces for relating audio
data and sheet music data; (2) data augmentation strate-
gies which allow for training the neural network for this
complex task even with a limited amount of data; and (3)
first results on two important MIR tasks, using this new
approach.
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2. Annotation of individual note heads 

3. Relate note heads and onset times

Image of Sheet Music

1. Detect systems
by bounding box

Figure 1. Work flow for preparing the training data (correspondences between sheet music images and the respective music
audio). Given the relation between the note heads in the sheet music image and their corresponding onset times in the audio
signal we sample audio-sheet-music pairs for training our networks. Figure 2 shows four examples of such training pairs.

2. DESCRIPTION OF DATA

Our approach is built around a neural network designed for
learning the relationship between two different data modal-
ities. The network learns its behaviour solely from the ex-
amples shown for training. As the presented data is crucial
to make this class of models work, we dedicate this section
to describing the underlying data as well as the necessary
preparation steps needed to generate training examples for
optimizing our networks.

2.1 Sheet-Music-Audio Annotation

As already mentioned, we want to address two tasks: (1)
sheet music (piece) identification from audio queries and
(2) offline alignment of a given audio with its correspond-
ing sheet music image. Both are multi-modal problems in-
volving sheet music images and audio. We therefore start
by describing the process of producing the ground truth
for learning correspondences between a given score and its
respective audio. Figure 1 summarizes the process.

Step one is the localization of staff systems in the sheet
music images. In particular, we annotate bounding boxes
around the individual systems. Given the bounding boxes
we detect the positions of the note heads within each of the
systems 1 . The next step is then to relate the note heads to
their corresponding onset times in the audio.

Once these relations are established, we know for each
note head its location (in pixel coordinates) in the image,
and its onset time in the audio. Based on this relationship
we cut out corresponding snippets of sheet music images
(in our case 180 × 200 pixels) and short excerpts of au-
dio represented by log-frequency spectrograms (92 bins ×
42 frames). Figure 2 shows four examples of such sheet-
music-audio correspondences; these are the pairs presented
to our multi-modal networks for training.

1 We of course do not annotate all of the systems and note heads by
hand but use a note head and staff detector to support this tasks (again a
neural network trained for this purpose).

Figure 2. Sheet-music audio correspondences presented to
the network for retrieval embedding space learning.

2.2 Composers, Sheet Music and Audio

For our experiments we use classical piano music by
five different composers: Mozart (14 pieces), Bach (16),
Beethoven (5), Haydn (4) and Chopin (1). To give an
impression of the complexity of the music, we have, for
instance, Mozart piano sonatas (K.545 1st mvt., K.331
3rd) and symphony transcriptions for piano (Symphony
40 K.550 1st), preludes and fugues from Bach’s WTC,
Beethoven piano sonata movements and Chopin’s Noc-
turne Op.9 No.1. In terms of experimental setup we will
use only the 13 pieces of Mozart for training, Mozart’s
K.545 mvt.1 for validation, and all remaining pieces for
testing. This results in 18,432 correspondences for train-
ing, 989 for validating, and 11,821 for testing. Our sheet
music is collected from Musescore 2 where we selected
only scores having a ‘realistic’ layout close to the type-
setting of professional publishers 3 . The reason for using
Musescore for initial experiments is that along with the
sheet music (as pdf or image files) Musescore also pro-
vides the corresponding midi files. This allows us to syn-
thesize the music for each piece of sheet music and to com-

2 https://musescore.com
3 This is an example of a typical score we used for the experi-

ment (Beethoven Sonata Op.2 No.1): https://musescore.com/
classicman/scores/55331
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pute the exact note onset times from the midis, and thus to
establish the required sheet-music audio correspondences.

In terms of audio preparation we compute log-
frequency spectrograms of the audios, with a sample rate
of 22.05kHz, a FFT window size of 2048 samples, and
a computation rate of 20 frames per second. For dimen-
sionality reduction we apply a normalized 16-band loga-
rithmic filterbank allowing only frequencies from 30Hz to
16kHz, which results in 92 frequency bins.

2.3 Data Augmentation

To improve the generalization ability of the resulting net-
works, we propose several data augmentation strategies
specialized to score images and audio. In machine learn-
ing, data augmentation refers to the application of (realis-
tic) data transformations in order to synthetically increase
the effective size of the training set. We already emphasize
at this point that data augmentation is a crucial component
for learning cross-modality representations that generalize
to unseen music, especially when little data is available.

200 pxl

1
8

0
 p

x
l

spectrogram

Figure 3. Overview of image augmentation strategies.
The size of the sliding image window remains constant
(180 × 200 pixels) but its content changes depending on
the augmentations applied. The spectrogram remains the
same for the augmented image versions.

For sheet image augmentation we apply three differ-
ent transformations, summarized in Figure 3. The first is
image scaling where we resize the image between 95 and
105% of its original size. This should make the model ro-
bust to changes in the overall dimension of the scores. Sec-
ondly, in ∆y system translation we slightly shift the system
in the vertical direction by ∆y ∈ [−5, 5] pixels. We do this
as the system detector will not detect each system in ex-
actly the same way and we want our model to be invariant
to such translations. In particular, it should not be the abso-
lute location of a note head in the image that determines its
meaning (pitch) but its relative position with respect to the
staff. Finally, we apply ∆x note translation, meaning that
we slightly shift the corresponding sheet image window by
∆x ∈ [−5, 5] pixels in the horizontal direction.

In terms of audio augmentation we render the train-
ing pieces with three different sound fonts and addition-
ally vary the tempo between 100 and 130 beats per minute
(bpm). The test pieces are all rendered at a rate of 120 bpm
using an additional unseen sound font. The test set is kept
fixed to reveal the impact of the different data augmenta-
tion strategies.

3. AUDIO - SHEET MUSIC CORRESPONDENCE
LEARNING

This section describes the underlying learning methodol-
ogy. As mentioned above, the core of our approach is a
cross-modality retrieval neural network capable of learning
relations between short snippets of audio and sheet music
images. In particular, we aim at learning a joint embedding
space of the two modalities in which to perform nearest-
neighbour search. One method for learning such a space,
which has already proven to be effective in other domains
such as text-to-image retrieval, is based on the optimiza-
tion of a pairwise ranking loss [14, 22]. Before explaining
this optimization target, we first introduce the general ar-
chitecture of our correspondence learning network.

Embedding Layer

Ranking Loss

View 1 View 2

Figure 4. Architecture of correspondence learning net-
work. The network is trained to optimize the similarity (in
embedding space) between corresponding audio and sheet
image snippets by minimizing a pair-wise ranking loss.

As shown in Figure 4 the network consists of two sepa-
rate pathways f and g taking two inputs at the same time.
Input one is a sheet image snippet i and input two is an
audio excerpt a. This means in particular that network f is
responsible for processing the image part of an input pair
and network g is responsible for processing the audio. The
output of both networks (represented by the Embedding
Layer in Figure 4) is a k-dimensional vector representa-
tion encoding the respective inputs. In our case the dimen-
sionality of this representation is 32. We denote these hid-
den representations by x = f(i,Θf ) for the sheet image
and y = g(a,Θg) for the audio spectrogram, respectively,
where Θf and Θg are the parameters of the two networks.

Given this network design, we now explain the pairwise
ranking objective. Following [14] we first introduce a scor-
ing function s(x,y) as the cosine similarity x · y between
the two hidden representations (x and y are scaled to have
unit norm). Based on this scoring function we optimize the
following pairwise ranking objective (‘hinge loss’):

Lrank =
∑
x

∑
k

max{0, α− s(x,y) + s(x,yk)} (1)

In our application x is an embedded sample of a sheet im-
age snippet, y is the embedding of the matching audio ex-
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cerpt and yk are the embeddings of the contrastive (mis-
matching) audio excerpts (in practice all remaining sam-
ples of the current training batch). The intuition behind this
loss function is to encourage an embedding space where
the distance between matching samples is lower than the
distance between mismatching samples. If this condition
is roughly satisfied, we can then perform cross-modality
retrieval by simple nearest neighbour search in the embed-
ding space. This will be explained in detail in Section 4.

The network itself is implemented as a VGG- style con-
volution network [21] consisting of 3×3 convolutions fol-
lowed by 2×2 max-pooling as outlined in detail in Table 1.
The final convolution layer computes 32 feature maps and
is subsequently processed with a global average pooling
layer [16] that produces a 32-dimensional vector for each
input image and spectrogram, respectively. This is exactly
the dimension of our retrieval embedding space. At the top
of the network we put a canonically correlated embedding
layer [7] combined with the ranking loss described above.
In terms of optimization we use the adam update rule [13]
with an initial learning rate of 0.002. We watch the per-
formance of the network on the validation set and halve
the learning rate if there is no improvement for 30 epochs.
This procedure is repeated ten times to finetune the model.

Table 1. Audio-sheet-music model. BN: Batch Normaliza-
tion [10], ELU: Exponential Linear Unit [5], MP: Max Pool-
ing, Conv(3, pad-1)-16: 3 × 3 convolution, 16 feature maps and
padding 1.

Sheet-Image 180 × 200 Audio (Spectrogram) 92 × 42
2×Conv(3, pad-1)-12 2× Conv(3, pad-1)-12

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-24 2× Conv(3, pad-1)-24

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-48 2× Conv(3, pad-1)-48

BN-ELU + MP(2) BN-ELU + MP(2)
2×Conv(3, pad-1)-48 2× Conv(3, pad-1)-48

BN-ELU + MP(2) BN-ELU + MP(2)
Conv(1, pad-0)-32-BN-LINEAR Conv(1, pad-0)-32-BN-LINEAR

GlobalAveragePooling GlobalAveragePooling
Embedding Layer + Ranking Loss

4. EVALUATION OF AUDIO - SHEET
CORRESPONDENCE LEARNING

In this section we evaluate the ability of our model to re-
trieve the correct counterpart when given an instance of
the other modality as a search query. This first set of ex-
periments is carried out on the lowest possible granularity,
namely, on sheet image snippets and spectrogram excerpts
such as shown in Figure 2. For easier explanation we de-
scribe the retrieval procedure from an audio query point
of view but stress that the opposite direction works in ex-
actly the same fashion. Given a spectrogram excerpt a as
a search query we want to retrieve the corresponding sheet
image snippet i. For retrieval preparation we first embed
all candidate image snippets ij by computing xj = f(ij)
as the output of the image network. In the present case,
these candidate snippets originate from the 26 unseen test
pieces by Bach, Haydn, Beethoven and Chopin. In a sec-
ond step we embed the given query audio as y = g(a) us-
ing the audio pathway g of the network. Finally, we select

Cross-modality retrieval
by cosine distance

AudioSheet

query

result

Figure 5. Sketch of sheet-music-from-audio retrieval. The
blue dots represent the embedded candidate sheet music
snippets. The red dot is the embedding of an audio query.
The larger blue dot highlights the closest sheet music snip-
pet candidate selected as retrieval result.

the audio’s nearest neighbour xj from the set of embedded
image snippets as

xj = arg min
xi

(
1.0− xi · y

||xi|| ||y||

)
(2)

based on their pairwise cosine distance. Figure 5 shows a
sketch of this retrieval procedure.

In terms of experimental setup we use the 13 pieces of
Mozart for training the network, and the pieces of the re-
maining composers for testing. As evaluation measures we
compute the Recall@k (R@k) as well as the Median Rank
(MR). The R@k rate (high is better) is the percentage of
queries which have the correct corresponding counterpart
in the first k retrieval results. The MR (low is better) is the
median position of the target in a cosine-similarity-ordered
list of available candidates.

Table 2 summarizes the results for the different data
augmentation strategies described in Section 2.3. The un-
seen synthesizer and the tempo for the test set remain fixed
for all settings. This allows us to directly investigate the
influence of the different augmentation strategies. The re-
sults are grouped into audio augmentation, sheet augmen-
tation, and applying all or no data augmentation at all.
On first sight the retrieval performance appears to be very
poor. In particular the MR seems hopelessly high in view
of our target applications. However, we must remember
that our query length is only 42 spectrogram frames (≈
2 seconds of audio) per excerpt and we select from a set
of 11, 821 available candidate snippets. And we will see
in the following sections that this retrieval performance is
still sufficient to perform tasks such as piece identification.
Taking the performance of no augmentation as a baseline
we observe that all data augmentation strategies help im-
prove the retrieval performance. In terms of audio aug-
mentation we observe that training the model with differ-
ent synthesizers and varying the tempo works best. From
the set of image augmentations, the ∆y system translation
has the highest impact on retrieval performance. Overall
we get the best retrieval model when applying all augmen-
tation strategies. Note also the large gap between no aug-
mentation and full augmentation. The median rank, for ex-
ample, drops from 1042 in case of no augmentation to 168
for full augmentation, which is a substantial improvement.
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Audio Augmentation R@1 R@10 R@25 MR

1 Synth, 100-130bpm 0.37 3.73 7.05 771
3 Synth, 120bpm 0.75 6.26 11.52 559

3 Synth, 100-130bpm 0.87 8.23 15.29 332

Sheet Augmentation

image scaling 0.75 5.60 10.14 524
∆y system translation 0.91 6.57 12.21 449

∆x note translation 0.44 3.66 7.19 808
full sheet augmentation 0.70 5.72 11.03 496

no augmentation 0.33 2.88 5.71 1042
full augmentation 1.70 11.67 21.17 168

random baseline 0.00 0.03 0.21 5923

Table 2. Influence of data augmentation on audio-to-sheet
retrieval. For the audio augmentation experiments no sheet
augmentation is applied and vice versa. no augmentation
represents 1 Synth, 120bpm without sheet augmentation.

A final note: for space reasons we only present results
on audio-to-sheet music retrieval, but that the opposite di-
rection using image snippets as search query works analo-
gously and shows similar performance.

5. PIECE IDENTIFICATION

Given the above model that learns to express similarities
between sheet music snippets and audio excerpts, we now
describe how to use this to solve our first targeted task:
identifying the respective piece of sheet music when given
an entire audio recording as a query (despite the relatively
poor recall and MR for individual queries).

5.1 Description of Approach

We start by preparing a sheet music retrieval database as
follows. Given a set of sheet music images along with their
annotated systems we cut each piece of sheet music j into
a set of image snippets {iji} analogously to the snippets
presented to our network for training. For each snippet
we store its originating piece j. We then embed all can-
didate image snippets into the retrieval embedding space
by passing them through the image part f of the multi-
modal network. This yields, for each image snippet, a 32-
dimensional embedding coordinate vector xji = f(iji).

Sheet snippet retrieval from audio: Given a whole
audio recording as a search query we aim at identifying
the corresponding piece of sheet music in our database. As
with the sheet image we start by cutting the audio (spectro-
gram) into a set of excerpts {a1, ...,aK} again exhibiting
the same dimensions as the spectrograms used for training,
and embed all query spectrogram excerpts ak with the au-
dio network g. Then we proceed as described in Section 4
and select for each audio its nearest neighbour from the set
of all embedded image snippets.

Augmentation R1 R2 R3 >R3

no augmentation 4 7 1 14
full augmentation 24 2 0 0

Table 3. Influence of data augmentation on piece retrieval.

Piece selection: Since we know for each of the image
snippets its originating piece j, we can now have the re-
trieval image snippets xji vote for the piece. The piece
achieving the highest count of votes is our final retrieval
result. In our experiments we consider for each query ex-
cerpt its top 25 retrieval results for piece voting.

5.2 Evaluation of Approach

Table 3 summarizes the piece identification results on
our test set of Bach, Haydn, Beethoven and Chopin (26
pieces). Again, we investigate the influence of data aug-
mentation and observe that the trend of the experiments in
Section 4 is directly reflected in the piece retrieval results.
As evaluation measure we compute Rk as the number of
pieces ranked at position k when sorting the result list by
the number of votes. Without data augmentation only four
of the 26 pieces are ranked first in the retrieval lists of
the respective full audio recording queries. When making
use of data augmentation during training, this number in-
creases substantially and we are able to recognize 24 pieces
at position one; the remaining two are ranked at position
two. Although this is not the most sophisticated way of
employing our network for piece retrieval, it clearly shows
the usefulness of our model and its learned audio and sheet
music representations for such tasks.

6. AUDIO-TO-SHEET-MUSIC ALIGNMENT

As a second usage scenario for our approach we present the
task of audio-to-sheet-music alignment. Here, the goal is
to align a performance (given as an audio file) to its respec-
tive score (as images of the sheet music), i.e., computing
the corresponding location in the sheet music for each time
point in the performance, and vice versa.

6.1 Description of Approach

For computing the actual alignments we rely on Dynamic
Time Warping (DTW), which is a standard method for se-
quence alignment [18], and is routinely used in the con-
text of music processing [17]. Generally, DTW takes two
sequences as input and computes an optimal non-linear
alignment between them, with the help of a local cost mea-
sure that relates points of the two sequences to each other.

For our task the two sequences to be aligned are the
sequence of snippets from the sheet music image and the
sequence of audio (spectrogram) excerpts, as described in
Section 2.2. The neural network presented in Section 3
is then used to derive a local cost measure by computing
the pairwise cosine distances between the embedded sheet
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Figure 6. Sketch of audio-to-sheet-music alignment by
DTW on a similarity matrix computed on the embedding
representation learned by the multi-modal matching net-
work. The white line highlights the path of minimum costs
through the sheet music given the audio.

snippets and audio excerpts (see Equation 2). The result-
ing cost matrix that relates all points of both sequences to
each other is shown in Figure 6, for a short excerpt from
a simple Bach minuet. Then, the standard DTW algorithm
is used to obtain the optimal alignment path.

6.2 Evaluation of Approach

For the evaluation we rely on the same dataset and setup as
described above: learning the embedding only on Mozart,
then aligning test pieces by Bach, Haydn, Beethoven,
Chopin. As evaluation measure we compute the absolute
alignment error (distance in pixels) of the estimated align-
ment to its ground truth alignment for each of the sliding
window positions. We further normalize the errors by di-
viding them by the sheet image width to be independent of
image resolution. As a naive baseline we compute a lin-
ear interpolation alignment which would correspond to a
straight line diagonal in the distance matrix in Figure 6.
We consider this as a valid reference as we do not consider
repetitions for our experiments, yet (in which case things
would become somewhat more complicated). We further
emphasize that the purpose of this experiment is to provide
a proof of concept for this class of models in the context of
sheet music alignment tasks, not to compete with existing
specialized algorithms for music alignment.

The results are summarized by the boxplots in Figure 7.
The median alignment error for the linear baseline is 0.213
normalized image widths (≈ 45 mm in a printed page of
sheet music). When computing a DTW path through the
distance matrix inferred by our mutimodal audio-sheet-
music network this error decreases to 0.041 (≈ 9 mm).
Note that values above 1.0 normalized page widths are pos-
sible as we handle a piece of sheet music as one single un-
rolled (concatenated) staff.
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Figure 7. Absolute alignment errors normalized by the
sheet image width. We compare the linear baseline with a
DTW on the cross-modality distance matrix computed on
the embedded audio snippets and spectrogram excerpts.

7. DISCUSSION AND CONCLUSION

We have presented a method for matching short excerpts
of audio to their respective counterparts in sheet music im-
ages, via a multi-modal neural network that learns relation-
ships between the two modalities, and have shown how
to utilize it for two MIR tasks: score identification from
audio queries and offline audio-to-sheet-music alignment.
Our results provide a proof of concept for the proposed
learning-retrieval paradigm and lead to the following con-
clusions: First, even though little training data is available,
it is still possible to use powerful state of the art image and
audio models by designing appropriate (task specific) data
augmentation strategies. Second, as the best regularizer in
machine learning is still a large amount of training data,
our results strongly suggest that annotating a truly large
dataset will allow us to train general audio-sheet-music-
matching models. Recall that for this study we trained on
only 13 Mozart pieces, and our model already started to
generalize to unseen scores by other composers.

Another aspect of our method is that it works by project-
ing observations from different modalities into a very low-
dimensional joint embedding space. This compact repre-
sentation is of particular relevance for the task of piece
identification as our scoring function – the cosine distance
– is a metric that permits efficient search in large reference
databases [23]. This identification-by-retrieval approach
permits us to circumvent solving a large number of local
DTW problems for piece identification as done, e.g., in [8].

For now, we have demonstrated the approach on sheet
music of realistic complexity, but with synthesized audio
(this was necessary to establish the ground truth). The
next challenge will be to deal with real audio and real per-
formances, with challenges such as asynchronous onsets,
pedal, and varying dynamics.

Finally, we want to stress that our claim is by no means
that our proposal in its current stage is competitive with
engineered approaches [8, 11, 15] or methods relying on
symbolic music or reference performances. These meth-
ods have already proven to be useful in real world scenar-
ios, with real performances [1]. However, considering the
progress that has been made in terms of score complexity
(compared for example to the simple monophonic music
used in [6]) we believe it is a promising line of research.
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[11] Özgür İzmirli and Gyanendra Sharma. Bridging
printed music and audio through alignment using a
mid-level score representation. In Proceedings of the
International Society for Music Information Retrieval
Conference (ISMIR), 2012.

[12] Rainer Kelz, Matthias Dorfer, Filip Korzeniowski, Se-
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ABSTRACT

In music performance, vibrato is an important artistic ef-
fect, where slight variations in pitch are introduced to add
expressiveness and warmth. Automatic vibrato detection
and analysis, although well studied for monophonic mu-
sic, has rarely been explored for polyphonic music, be-
cause of the challenge in multi-pitch analysis. We propose
a video-based approach for detecting and analyzing vibrato
in polyphonic string music. Specifically, we capture the
fine motion of the left hand of string players through opti-
cal flow analysis of video frames. We explore two meth-
ods. The first uses a feature extraction and SVM classifica-
tion pipeline, and the second is an unsupervised technique
based on autocorrelation analysis of the principal motion
component. The proposed methods are compared with
audio-only methods applied to individual instrument tracks
separated from original audio mixture using the score. Ex-
periments show that the proposed video-based methods
achieve a significantly higher vibrato detection accuracy
than the audio-based methods especially in high polyphony
cases. Further experiments also demonstrate the utility of
the approach in vibrato rate and extent analysis.

1. INTRODUCTION

Vibrato is an important artistic effect in musical perfor-
mance. Instrument players use vibrato to color a tone and
express emotions. Physically, vibrato is generated by pitch
modulation of a note in a periodic fashion [23]. Important
characteristics of vibrato include rate and extent of this pe-
riodic modulation [8]. These characteristics vary signif-
icantly across instruments, cultures, and personal styles.
Compared to woodwind and brass instruments, vibrato is
more pronounced in strings.

Automatic vibrato detection and analysis is an impor-
tant topic in music information retrieval (MIR) with broad
impacts. It is useful in musicological studies to compare
different articulation styles of different performers and in-
struments [2]. It is critical in expressive performance ped-
agogy for singing [19] and violin [28]. It also facilitates

c© Bochen Li, Karthik Dinesh, Gaurav Sharma, Zhiyao
Duan. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Bochen Li, Karthik Dinesh, Gaurav
Sharma, Zhiyao Duan. “Video-based vibrato detection and analysis for
polyphonic string music”, 18th International Society for Music Informa-
tion Retrieval Conference, Suzhou, China, 2017.
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Figure 1. The proposed method tackles the challenging
problem of vibrato analysis for polyphonic music by ex-
ploiting information from the video to augment audio anal-
ysis. (a) The ground-truth pitch contour of a cello vibrato
note in a violin-cello duet performance showing a clear
vibrato pattern, (b) The estimated pitch contour of this
note from the audio mixture using a state-of-the-art score-
informed pitch detection method showing corruption due
to the interference from the other source, (c) The left hand
motion along the fingerboard of the cello player extracted
from video analysis is clean and well correlated with the
ground-truth pitch contour. The hand motion profile ex-
tracted from video is used for vibrato analysis in this paper.

other MIR tasks such as singing voice extraction [12],
harmonic-percussive decomposition [21], and audio-visual
source association [16]. Vibrato analysis also provides
the statistical basis for vibrato synthesis of musical instru-
ments [13], singing voices [11], and bird songs [4], through
which the synthesized sounds are more realistic and ex-
pressive.

Most of the existing methods for automatic vibrato de-
tection and analysis are audio-based with a focus on mono-
phonic sources, where vibrato can be easily characterized
from the pitch trajectory estimated through a monophonic
pitch detection algorithm. Methods include thresholding
the pitch drift within each note [3], calculating the median
distance of the neighboring peaks/troughs of the pitch con-
tour [9], analyzing the spectral peak after a Fourier trans-
form of the pitch contour [25], cross-correlation analysis
of frequency/amplitude modulation [26], and a nonlinear
sinusoidal decomposition method [27].

Few approaches have focused on polyphonic music, and
when they do, they only characterize vibrato of a single
source (usually the solo instrument) in the mixture. This
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is mainly due to the difficulty of reliably estimating simul-
taneous pitches in polyphonic music [5]. Abeßer et al. [1]
proposed a score-informed approach to first estimate the
pitch contour of the solo instrument from the audio mix-
ture and then perform vibrato detection and analysis on the
pitch contour through autocorrelation. The performance of
this approach, however, depends heavily on the pitch esti-
mation performance. Spectrogram-based approaches such
as harmonic partial tracking [12] and template convolu-
tion [6] reduce the dependency on pitch estimation. How-
ever, these operations are still error-prone when harmonics
of different sources overlap. To our best knowledge, there
is no existing approach for vibrato detection and analysis
of multiple simultaneous sources of a polyphonic music
mixture, such as a string ensemble. Existing polyphonic
audio analysis techniques are not yet sufficient.

Figure 1 shows the limitation of audio-based analy-
sis and motivates the video-based analysis proposed in
this paper. In Figure 1 (a), the ground-truth pitch con-
tour of a cello vibrato note in a violin-cello duet perfor-
mance is shown. This pitch contour is estimated using
a monophonic pitch detection algorithm [17] on the iso-
lated (ground truth) signal of the cello note prior to mix-
ing. Vibrato characteristics are clearly observable in this
pitch contour. Figure 1 (b) shows the estimated pitch
contour of this cello note obtained from a state-of-the-art
score-informed source separation and pitch estimation al-
gorithm [7]. Due to the interference from the violin, the es-
timated pitch contour is corrupted and the vibrato patterns
are obscured, especially toward the later time instants rep-
resented on the right side of the plot. Note that this exam-
ple is just a duet of instruments with distinct pitch ranges.
For music with higher polyphony using instruments with
similar pitch ranges, the estimated pitch contours are fur-
ther corrupted, making audio-based vibrato detection and
analysis unsatisfactory.

For some instruments such as strings, vibrato is often
visible from the left hand motion, and this visual infor-
mation does not degrade as audio information does when
polyphony increases. This motivates our proposed ap-
proach of vibrato detection and analysis through video-
based analysis of the fine motion of the left hand. Figure
1 (c) shows the left hand rolling motion along the prin-
cipal motion direction (i.e., the fingerboard) of the cello
player playing the note. We can see that this motion curve
is smooth and it aligns with the ground-truth pitch contour
in Figure 1 (a) very well.

The overview of our proposed approach is illustrated in
Figure 2. This approach integrates audio, visual and score
information, and assumes that the players in the video are
well associated with score tracks. Our previous work has
addressed the association problem accurately [14]. For
each string player, we track the left hand, and then esti-
mate optical flow motion vectors at the pixel level around
the left hand. We use audio-score alignment to identify the
onset and offset of each note, and perform vibrato detec-
tion and analysis on each note from the motion vectors. We
develop two approaches for vibrato detection. One uses
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Figure 2. System overview of the proposed video-based
vibrato detection and analysis framework.

a Support Vector Machine (SVM) to classify motion fea-
tures extracted from the pixel-level motion vectors, and the
other is based on autocorrelation analysis of the left hand
motion along the principal direction (i.e., fingerboard). We
further propose a framework to analyze vibrato character-
istics: rate and extent. The vibrato rate is estimated from
the period of the hand motion curve, and the vibrato extent
is estimated from the amplitude of the motion curve after it
is scaled to match the estimated noisy pitch contour from
score-informed audio analysis.

Experiments are carried on 19 pieces of polyphonic
string music from an audio-visual music performance
dataset, and the proposed video-based approach is com-
pared with two audio-based baseline methods for vibrato
detection. Results show a significant improvement for
video-based vibrato detection over the audio-based meth-
ods. Further analysis reveals that video-based vibrato de-
tection is robust irrespective of polyphony and instrument
types. We further show that the video-based approach is
able to estimate the vibrato rate and extent with a deviation
from the ground-truth smaller than 1 Hz and 10 musical
cents for 90% of the notes, respectively.

2. AUDIO-BASED METHOD

In this section, we introduce an audio-based framework
to detect vibrato in polyphonic music to serve as a base-
line method. Vibrato can be detected from the pitch con-
tour of each source using either autocorrelation or Fourier
transform. However, estimating the pitch contour of each
source from the audio mixture is challenging. Inspired
by [1], score information can be utilized to alleviate the
difficulty of pitch estimation and its assignment to sources.

2.1 Score-informed Pitch Estimation
To utilize the score information for pitch estimation of
each source, robust audio-score alignment is required to
guarantee the temporal synchronization between the score
events and audio articulations. We apply the Dynamic
Time Warping (DTW) framework with chroma feature to
represent audio and score, as described in [14]. Then the
audio mixture is separated using harmonic masking as de-
scribed in [7]: Pitches of each source are first estimated
within two semitones around the quantized score-notated
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Figure 3. Audio-based vibrato detection. Detected vibrato
notes are marked with green rectangles in the pitch trajec-
tories estimated by score-informed pitch estimation.

pitches; Sound sources are then separated by harmonic
masking of the pitches in each frame, where the soft masks
take into account the harmonic indexes when distributing
the mixture signal’s energy to overlapping harmonics.

We then re-estimate the pitch contour of each source
from its separated signal for vibrato analysis. We again ap-
ply the above-mentioned score-informed pitch refinement
step to further reduce interference from other sources. The
output pitch contour is segmented into notes using the on-
set/offset information provided by the aligned score. Note
that although we can refine the pitches directly from the au-
dio mixture without source separation, it is reported in [16]
that the result is more robust on the separated sources. Be-
sides, the availability of separated audio sources is advan-
tageous for other vibrato detection methods that do not rely
on pitch contours.

2.2 Vibrato Detection from the Pitch Contour

After obtaining the pitch contour, vibrato detection can be
achieved by analyzing the periodic pattern for each note.
The pitch contour is analyzed in the MIDI scale, and its DC
component is removed by subtracting the average value
over the contour. Then we implement two methods to de-
tect the fluctuation rate of the pitch contour: autocorrela-
tion [1] and spectral analysis [25]. For the autocorrelation
method, prominent peaks are detected from the autocorre-
lation function, and the median value of all the neighboring
peak distance is used to calculate the fluctuation rate. If the
rate is within the range of 3-9 Hz (considering a typical vi-
brato rate range of [4, 7.5] Hz for strings [10]), the note is
detected as vibrato. For the spectral analysis method, we
first calculate the magnitude spectrum of the pitch contour
of a note through Fourier transform. We then check if the
frequency of the maximum peak lies in the rang of 3-9 Hz.
Quadratic interpolation is applied in both methods to get a
more precise peak location estimation.

The audio-based methods are simple, yet sufficient to
detect vibrato in the score-informed fashion. Figure 3 re-
views this process and illustrated the detected vibrato notes
in green boxes. This approach achieves high detection ac-
curacy in low polyphony settings, but the performance de-
grades rapidly with increasing polyphony.

3. PROPOSED METHOD

Motivated by the fact that the motion features from the
video are correlated with the pitch fluctuations, we propose
a video-based vibrato detection and analysis framework.
A string instrument player exhibits three kinds of motions:
bowing motion to articulate notes, fingering motion to con-
trol pitches, and the whole body motion to express musical
intentions. Fine periodic fingering motion on the left hand
along the fingerboard which changes the length and tension
of the string results in vibrato articulations. In this section,
we will present the method to extract this fine motion for
vibrato detection and analysis.

3.1 Motion Capture

y

x

-1.0										-0.5											0 0.5											1.0

1.0

0.5

0
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Figure 4. Motion capture results from left hand tracking
(left), color encoded pixel velocities (middle), and scatter
plot of frame-wise refined motion velocities (right).

The first step is to detect and track the left hand for
each player, where the vibrato motions come from. The
hand tracking is based on the Kanade-Lucas-Tomasi (KLT)
tracker [24] and implemented using the same parameters
as presented in [16]. The KLT tracker results in a dy-
namic region of tracked hand location where we apply the
optical flow estimation [22] to obtain the raw motion ve-
locities for each pixel in x and y directions within that
region. The motion velocities are spatially averaged as
u(t) = [ux(t), uy(t)], where ux and uy represents the
mean motion velocities in x and y directions respectively,
and t is the time index. Notice that the motion velocities in
the hand region contain not only the player’s fine motion
corresponding to vibrato playing, but also his/her large-
scale body motions during the performance. In order to
eliminate the body movement and obtain a refined motion
velocities for vibrato observation, we subtract a moving
average of the signal u(t) from itself, to obtain

v(t) = u(t)− ū(t), (1)

where ū(t) is the moving average of u(t) over a 10 frame
window. Figure 4 illustrates the original video frame with
the tracked hand position, the raw motion velocities from
optical flow estimation, and the refined motion velocities
v(t) across all the frames.

3.2 Vibrato Detection from Motion Features
The proposed vibrato detection methods are score in-
formed, where the note onset/offset information from the
score is utilized to temporally segment the refined mean
motion velocities into vi(t), where i is the note index.
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To achieve this, each score track needs to be temporally
aligned with the video frames, and spatially associated
with the players. The first issue is resolved using audio-
score alignment, assuming video and audio frames are nat-
urally synchronized. The second issue is addressed as
in [14], where player locations are segmented and asso-
ciated with the score tracks by correlating the bow mo-
tions with note events. By utilizing the mean motion ve-
locities and the extracted features, we introduce two meth-
ods for vibrato detection. The first method is based on a
SVM framework, where each vi(t) is classified as vibrato
or non-vibrato. The second method is analogous to the
audio-based technique, where we perform auto-correlation
on the extracted 1-D motion curve along the fingerboard
after principal component analysis.

3.2.1 SVM
We train a Support Vector Machine (SVM) as a classifi-
cation framework for vibrato/non-vibrato detection. We
utilize the refined motion velocity segments vi(t) =
[vix(t), viy(t)] obtained from the procedure explained in
Section 3.1. From each vi(t), we have velocity compo-
nents in x and y directions from which 8 dimensional fea-
tures are extracted. The features are
(a) Zero crossing rate (4-D): Vibrato has inherent peri-
odicity when compared to non-vibrato regions. Hence we
utilize the zero crossing rate, which is the ratio of total zero
crossings to total frame length for vix(t), viy(t) and their
auto-correlations, respectively.
(b) Frequency (2-D): Vibrato has a typical frequency in
the range of 3-9 Hz. Hence we calculate the sum of the ab-
solute value of Fourier coefficients in the 3-9 Hz frequency
range for vix(t) and viy(t).
(c) Auto-correlation peaks (2-D): Auto-correlation of
vix(t) and viy(t) is calculated within a fixed lag of 10 video
frames, where total number of local maximum values is
utilized as one of the features.

The SVM is trained on tracks which are distinct from
the test set using the leave-one-out training strategy. The
ground truth vibrato/non-vibrato labels are obtained from
ground-truth audio tracks and associated with the corre-
sponding player. For the SVM training algorithm we set
the kernel function and scale parameters as radial basis
function and automatic scaling, respectively.

3.2.2 PCA
We also propose an unsupervised framework for vibrato
detection. From Figure 4, we find that the distribution
of the refined motion velocities for vibrato motions are
along the fingerboard. So we perform Principal Compo-
nent Analysis (PCA) on v(t) across all frames to identify
this principal motion direction, and project the motion ve-
locity vectors to this principal direction to obtain a 1-D
motion velocity curve V (t) as

V (t) =
v(t)T ṽ

‖ṽ‖
, (2)

where ṽ is the eigenvector corresponding to the largest
eigenvalue of the PCA of v(t). We then perform an inte-

gration of the motion velocity curve over time to calculate
a motion displacement curve as

X(t) =

∫ t

0

V (τ)dτ. (3)

This displacement curve corresponds to the fluctuation of
the vibrating length of the string and hence the pitch fluctu-
ation of the note. Figure 1 (c) shows the motion displace-
ment curve for one vibrato note, which is matched with
the ground-truth pitch contour. Similar to the audio-based
approach, vibrato is detected through peak picking on the
autocorrelation function of the motion displacement curve.
Note that different thresholds on the peak picking will af-
fect the sensitivity of the vibrato detection, and we use the
uniform threshold for all the notes which yields the best
overall results.

3.3 Vibrato Analysis

The video-based method also enables new techniques for
analyzing the vibrato features, i.e., vibrato rate and vibrato
extent, which describe the speed and the amount by which
the pitch is varied. Here extent is defined as the dynamic
range of the pitch contour, i.e., the peak-trough difference.
Vibrato rate can be directly extracted from video by ob-
serving how fast the left hand is rolling along the finger-
board. Again this is solved by analyzing the autocorrela-
tion on the motion displacement curve X(t). Quadratic
interpolation is required for peak picking due to the low
frame rate of videos. Vibrato extent, however, cannot be
estimated by capturing the motion extent, which varies
upon different camera distance and angles. Besides, to
generate the same vibrato extent, the extent of motion also
depends on the vibrato articulation style, the hand position
on the fingerboard, and the instrument type. Therefore, we
combine the audio analysis together with the extracted mo-
tion displacement curve for vibrato extent estimation.

We first estimate the vibration extent of the motion dis-
placement curve as ŵe by calculating the median of the
distance between all the peaks and troughs within each
note. We then scale the displacement curve to fit the pitch
contour, and the vibrato extent can be calculated from the
scaling factor. Specifically, assuming F (t) is the estimated
pitch contour (in MIDI number) of the detected vibrato
note from audio analysis after subtracting the DC compo-
nent of itself, the vibrato extent ve (in musical cents) is
estimated as v̂e as:

v̂e = arg min
ve

toff∑
t=ton

∣∣∣∣100 · F (t)− ve
X(t)

ŵe

∣∣∣∣2 . (4)

where 100 · F (t) is the pitch contour measured in musi-
cal cents; X(t)

ŵe
is the normalized hand displacement curve.

SinceX(t) is calculated from the video modality, temporal
interpolation is applied beforehand to guarantee the same
frame rate as the audio, i.e., the hop size for Short-Time
Fourier Transform. Note that temporal shift may be ap-
plied to X(t) to maximize the cross correlation between
X(t) and F (t) to compensate the slight asynchrony be-
tween the two modalities (usually within 20ms).
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4. EXPERIMENTS

4.1 Dataset and Evaluation Measures
The vibrato detection and analysis system is tested on the
URMP dataset [15]. The dataset contains individually
recorded audio-visual tracks of various instruments, which
are synchronized and assembled to form 44 classical en-
semble pieces ranging from duets to quintets. Ground-
truth audio tracks and pitch/note annotations are provided
in the dataset. The ground-truth annotation of the vibrato
rate/extent is acquired by the autocorrelation method as
described in Section 2.2 on ground-truth individual audio
tracks, and the presence of vibrato is manually examined.
For our experiments, we use the 19 ensemble pieces that
contains at most one non-string instrument, including 5
duets, 4 trios, 7 quartets, and 3 quintets. Audio is sam-
pled at 48 KHz, and processed with a frame length of 42.7
ms and a hop size of 10 ms for the STFT. Video resolution
is 1080P, and the frame rate is 29.97 frames per second.

In the experiments, we evaluate the two proposed video-
based methods, i.e., the classification method using SVM
framework (Vid-SVM) and autocorrelation analysis on the
principal motion component (Vid-PCA). Two audio-based
methods described in Section 2.2 are also compared as
baseline methods, i.e., peak-picking of the autocorrela-
tion (Aud-AC), and Fourier transform of the pitch contour
(Aud-FT). Since the vibrato detection can be viewed as a
retrieval task, we compute the note-level precision (P), re-
call (R), and F-measure (F) using the number of true posi-
tives, false positives and false negatives on each track. For
the two audio-based methods and the Vid-PCA method, we
adjust the peak-picking threshold for a balanced value of
precision and recall and fix it for all the tracks. For vibrato
rate and extent estimation, we calculate the error between
the estimated and ground-truth values on the true positive
detections from the Vid-PCA method.

4.2 Results
4.2.1 Overall Evaluation on Vibrato Detection

We first evaluate the vibrato detection results using preci-
sion, recall and F-measure for the four methods on all of
the 57 tracks from the 19 pieces excluding non-string in-
strument ones, as plotted in Figure 5. Each bar is the aver-
age of the 57 tracks. We find that in polyphonic music,
both audio-based methods achieve limited performance;
lower than 75% for the F-measure. Video-based meth-
ods can get a pronounced improvement on the F-measure,
which is as high as 90%. The supervised classification
method based on SVM further outperforms the unsuper-
vised method, because of the richer features.

4.2.2 Vibrato Detection Evaluation on Different Cases

We further investigate how the vibrato detection per-
formance changes along with polyphony and instrument
types. Figure 6 illustrates the scatter plot of the vibrato
detection F-measure for the four methods (with different
colors) in four different polyphony levels corresponding
to duets, trios, quartets, and quintets. Each sample point
represents the evaluation on one track, and the average

73.1 73.3 92.0 89.0

Aud-AC Aud-FT Vid-SVM Vid-PCA
60

65

70

75

80

85

90

95

Ac
cu

ra
cy

 (%
)

Precision
Recall
F-measure

Figure 5. Overall vibrato detection results showing the
precision, recall, and F-measure (shown on top) accuracies
for 2 audio-based methods and 2 video-based methods.

value in each subset is marked as the red line. We see that
the two audio-based methods can reach performance com-
parable with the video-based methods in low-polyphony
pieces, but their performance drops when polyphony in-
creases. This is because of the decreased quality of the
pitch contour that is extracted from high-polyphony audio.
However, polyphony does not affect the vibrato detection
performance for the two video-based methods, since the
left hands are always directly observable from visual scene
in this dataset. Note that there are several extremely low
F-measure values for video-based methods. These come
from tracks with plucking-vibrato articulations, where the
vibrato is captured from hand motion but is not annotated
in the ground truth as its duration and extent are different
from the bowing-vibrato articulations.

2 3 4 5

Aud-AC

Aud-FT

Vid-SVM

Vid-PCA

Polyphony	

Number

F
-m

e
a
su
re
	(
%
)

20 

30 

40 

50 

60 

70 

80 

90 

100

Figure 6. Vibrato detection performance decreases as
polyphony increases for audio-based methods, while it
stays the same for video-based methods.

Figure 7 further reveals how the vibrato detection re-
sults vary for different instruments: violin, viola, cello,
and double bass. Again, the audio-based methods are sen-
sitive to instrument types while video-based methods are
not. The reason is that the separated track of the low-
pitch instrument (such as double bass) is likely to get con-
taminated by other higher-pitch voices using the harmonic
mask method for source separation. In contrast, the vibrato
motions for the four different instruments have similar pat-
terns, thus easy to capture by our proposed methods.

4.2.3 Evaluation of Vibrato Characteristics

Due to the unsatisfactory performance of audio-based vi-
brato detection, we evaluate the accuracy of vibrato rate
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Figure 8. Distribution of vibrato rate and extent estimation
error on all notes of all tracks.

and extent estimation only based on the video modality.
We conduct this analysis on the true positive detections
from the Vid-PCA method, totaling 2290 vibrato notes
from the 57 tracks. We calculate the absolute deviation
of the estimated value from the ground-truth value for all
the notes, and get an average vibrato rate estimation er-
ror of 0.38 Hz and median of 0.23 Hz. For vibrato extent,
we have an average estimation error of 3.47 cents and a
median of 2.29 cents. Figure 8 plots the vibrato rate and
extent error distribution for all the notes. We find that for
90% of the vibrato notes, the proposed approach estimates
the vibrato rate and extent within an error of 1 Hz and 10
cents, respectively.
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Figure 9. Distributions of vibrato rate and extent for dif-
ferent instruments.

In order to further demonstrate the potential applica-
tions of our approach in musicology studies, we analyze
how the vibrato rate and extent vary on different instru-
ments and players in this dataset. Figure 9 plots the distri-
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Figure 10. Distributions of vibrato rate and extent of four
different violin players.

butions of rate and extent for the four string instruments,
where each sample point represents one track. Similar vi-
brato rate and extent can be observed for violin and vi-
ola whereas, in contrast, we observe a significant drop for
the double bass, where a slower rate and subtler extent
is inferred. This was explained in [18]; to produce audi-
ble pitch fluctuations on the thicker and longer strings on
double bass requires more effort to overcome the strength,
flexibility, and coordination than other string instruments.
Thus vibrato rates of double bass players (4-5 Hz [20]) are
typically slower than other string instrumentalists.

We also analyze the vibrato patterns of the four different
violinists among the 31 violin tracks, as plotted in Figure
10. Vibrato rate is more dispersed among players than vi-
brato extent, and both rate and extent show a similar trend
among the players. For example, the second player ex-
hibits a slower vibrato rate with a subtler vibrato extent,
while the forth player exhibits a faster vibrato rate with a
pronounced vibrato extent. This may be because of differ-
ent players’ articulation styles, or different characteristics
of the pieces. Detailed discussion is not included in this pa-
per, but our proposed system can provide a powerful tool
for further analyses on the musicology side.

5. CONCLUSION

We proposed a video-based vibrato detection and analy-
sis framework for polyphonic string music. Specifically,
we developed two methods that utilize the motion features
from the video for vibrato detection based on the observed
correlation between the motion vibrations and the vibrato
pitch fluctuations. We also extended the framework to
estimate the vibrato rate and extent. Experiments show
that the proposed method is successful and offers much
better performance than audio-based methods, particularly
on pieces with high polyphony, where the strong interfer-
ence between sources severely degrades the performance
of audio-based methods. In future work, it would be help-
ful to develop a non-score-informed framework for vibrato
detection and analysis.
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ABSTRACT

Music Information Retrieval (MIR) has been dominated
by computational approaches. The possibility of lever-
aging neural systems via brain-computer interfaces is an
alternative approach to annotating music. Here we test
this idea by measuring correlations between musical fea-
tures and brain responses in a statistically optimal fash-
ion. Using an extensive dataset of electroencephalographic
(EEG) responses to a variety of natural music stimuli, we
employed Canonical Correlation Analysis to identify spa-
tial EEG components that track temporal stimulus compo-
nents. We found multiple statistically significant dimen-
sions of stimulus-response correlation (SRC) for all songs
studied. The temporal filters that maximize correlation
with the neural response highlight harmonics and subhar-
monics of that song’s beat frequency, with different har-
monics emphasized by different components. The most
stimulus-driven component of the EEG has an anatomi-
cally plausible, symmetric frontocentral topography that is
preserved across stimuli. Our results suggest that differ-
ent neural circuits encode different temporal hierarchies of
natural music. Moreover, as techniques for decoding EEG
advance, it may be possible to automatically label music
via brain-computer interfaces that capture neural responses
that are then translated into stimulus annotations.

1. INTRODUCTION

Computationally extracted audio features have been used
in Music Information Retrieval (MIR) research to model
the perceptual attributes of music. Music-specific features
were first introduced by Tzanetakis & Cook for genre clas-
sification [43]. These and other features have been used
in subsequent work for further study of genre [14, 21]
and other music-tagging applications including emotion
and mood classification [25, 35, 41] and artist identifica-
tion [26].

By contrast, the music neuroscience community has
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historically focused primarily on experimental stimuli con-
sisting of simple tones or short, synthesized instrumental
melodies. This controlled paradigm allows for precise ex-
perimental manipulations, with the goal of investigating
specific musical parameters; it also permits event-related
averaging of responses over repeated trials. However, these
stimuli lack the complexity and ecological validity of mu-
sic that is consumed in real life, and preclude the study of
global music processing [20].

In recent years, however, this field has increasingly
utilized “naturalistic” music stimuli, including complete,
real-world musical works. Here, the computationally ex-
tracted features developed for MIR research have found
direct application as they provide objective, time-varying
stimulus representations for which neural correlates can be
investigated. To date, this approach has been successfully
applied to a variety of brain imaging modalities includ-
ing functional magnetic resonance imaging (fMRI) [1, 2,
40, 42], electroencephalography (EEG) [6, 22, 30, 38], and
electrocorticography (ECoG) [31, 32, 37]. Both encoding
(predicting neural activations from stimulus features) and
decoding (predicting stimulus features from neural activa-
tions) approaches have been explored [2, 27, 40].

While neuroscience is not yet an established subfield
of MIR, the approaches and insights of each field are ar-
guably complementary [3, 16]. In the present study, we
extend this interdisciplinary approach and investigate the
relationship between time-varying features of naturalis-
tic music and their EEG responses. We employ a hy-
brid encoding-decoding model to derive features and brain
signals that maximally covary. The model temporally
filters musical features while spatially filtering the EEG
to learn a multidimensional mapping between stimulus
and response, implemented here by Canonical Correlation
Analysis. We uncover multiple statistically significant di-
mensions of stimulus-response correlation, with the first
dimension showing a consistent EEG filter across differ-
ent songs. Moreover, the temporal filters that maximize
SRC emphasize harmonics and subharmonics of the beat
frequency, with different harmonics selected by different
dimensions of SRC. Our findings suggest that musical fea-
tures can potentially be annotated by processing neural re-
sponses, opening up an entirely novel approach to MIR.
Finally, all data and code will be made publicly available.

The remainder of the paper is organized as follows. In
Section 2, we describe the EEG dataset, audio stimulus
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feature extraction, and analysis procedures. We present the
results of our analyses in Section 3, and conclude with a
discussion in Section 4.

2. METHODS

All analyses were performed using Matlab. 1

2.1 EEG Dataset

Seeking ready-to-use EEG data reflecting natural music
listening and for which we could obtain the stimuli, we
used the publicly available NMED-H dataset [18]. This
dataset contains EEG responses to intact and scrambled
versions of full-length “Bollywood” songs, each approx-
imately 4.5 minutes long. We used the responses to intact
songs only, which comprise data from 48 unique partici-
pants (12 per song), who each heard their song twice—a
total of 24 EEG trials per song. The data frames have been
filtered and cleaned of ocular and noise artifacts, and con-
tain recordings from 125 electrodes at a sampling rate of
125 Hz with average reference. Full details of data acquisi-
tion and preprocessing are given in Kaneshiro (2016) [15].
As the downloaded data contained missing values, we im-
puted missing data using a spatial average from neighbor-
ing electrodes before proceeding with analysis.

2.2 Stimulus Feature Extraction

The NMED-H documentation provides links to purchase
the songs from iTunes, and instructions for converting
them to the intact versions of the experimental stimuli [18].
After following those procedures, we extracted acoustical
features using the MIR Toolbox, Version 1.5 [19]. We ex-
tracted the same collection of 20 short-term features that
were used in a recent fMRI study by Alluri et al. [1]:
Zero crossing rate, spectral centroid, high/low energy ra-
tio, spectral spread, spectral rolloff, spectral entropy, spec-
tral flatness, roughness, RMS energy, broadband spectral
flux, and spectral flux for 10 octave-wide subbands. Fea-
tures were extracted in 25-msec analysis windows with
a 50% overlap between frames (standard parameters for
short-term features [1, 43]), yielding a feature sampling
frequency of 80 Hz. As in the Alluri study, we also or-
thogonalized the features using PCA, providing a lower-
dimensional stimulus representation that contains contri-
butions of all features under consideration [1]. We per-
formed all subsequent analyses using PC1, as well as two
individual features. RMS and spectral flux were chosen as
they reflect amplitude envelope and timbre, respectively,
and have been used in previous studies mapping music
stimulus features to brain responses [1, 2, 30, 42].

As a reference for interpreting results, we extracted
beat and tempo information from the stimulus audio files
using a publicly available Matlab implementation [8]. 2

From the global tempo estimates, we computed frequen-
cies relevant to processing hierarchical timescales in mu-

1
https://www.mathworks.com/

2
https://labrosa.ee.columbia.edu/projects/

beattrack/

sic, namely those corresponding to the beat (quarter note),
as well as one fourth (whole note), half (half note), twice
(eighth note), and four times (sixteenth note) the beat fre-
quency. Previous studies have investigated contributions
of beat frequencies to stimulus amplitude envelopes [28];
here we have taken a similar approach, visualizing low-
frequency magnitude spectra of the three features used for
analysis.

The audio waveforms, spectrograms, low-frequency
magnitude spectra, and PC1 loadings of the four stimuli
are shown in Fig. 1. By visual inspection, it is apparent
that the four songs have different structures, and a variety
of tempos. Furthermore, the feature FFTs show spectral
peaks at both beat-relevant frequencies and other frequen-
cies not occurring at multiples of the beat. Interestingly,
PC1 loadings computed across the full set of 20 features
are mostly consistent from song to song.

2.3 Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) involves projecting
two data sets onto subspaces such that the projections are
maximally correlated across time [9, 10, 13]. It has been
used extensively in neuroscience, most recently as a tech-
nique for investigating links between visual stimuli and
their EEG responses [7]. This approach may be thought of
“hybrid encoding-decoding”, in that the stimulus is tem-
porally filtered (encoded) and the neural response spatially
filtered (decoded), with the filtering optimized by CCA.
The result is a multidimensional measure of the stimulus-
response correlation (SRC), where each dimension empha-
sizes a different temporal component of the stimulus and a
different spatial component of the EEG.

The inputs to the CCA are two matrices. For the present
application, X 2 RL⇥T is a convolution matrix of the
stimulus feature where the row dimension spans time de-
lays (“lags”) and the column dimension spans time. In this
construction, temporal filtering of the stimulus feature is
achieved by multiplication with X . Matrix Y 2 RD⇥T is
the EEG data, where the row dimension spans electrodes
and the column dimension spans time. CCA on X and Y
produces a matrix of temporal filters H 2 RL⇥K and a
corresponding matrix of spatial filters W 2 RD⇥K that
extract temporal and spatial components from the stimulus
and EEG, respectively, where K is the number of compo-
nents. Therefore we obtain U = HTX and V = WTY ,
where U is a matrix of temporally filtered stimulus compo-
nents, and V is a matrix of spatially filtered EEG compo-
nents. The filters H and W are computed to maximize the
correlation among corresponding rows of U and V (i.e.,
the components), under the constraint that the rows of U
and V are temporally uncorrelated. The components are
sorted in descending order of correlation, such that the first
component pair (first rows of U and V ) are most strongly
correlated.

On a per-song basis, we pooled the data across trials to
learn the model parameters. As the input sampling rates
of the EEG and acoustical feature were not identical, we
resampled the EEG to the sampling rate of the acoustical
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(a) Song 1: “Ainvayi Ainvayi”. (b) Song 2: “Daaru Desi”.

(c) Song 3: “Haule Haule”. (d) Song 4: “Malang”.

Figure 1: Features of the songs used here as stimuli. From top left to bottom left in each pane are the waveform, spectro-
gram, and low frequency spectrum of each individual feature used (PC1, RMS energy, and spectral flux). On the right is
the loading vector for the first PC computed across the 20 short-term features for that song.

features (80 Hz) beforehand. We performed separate CCA
computations for each acoustical feature for each song,
considering samplewise shifts up to 2 seconds in the con-
struction of the feature input matrix X .

In sum, the CCA procedure outputs a delay-by-
component stimulus filter matrix H , an electrodes-by-
component response filter W , as well as the time samples-
by-component filtered data outputs V and U . The Matlab
code used to perform these analyses is made publicly avail-
able through GitHub. 3

2.4 Visualizing the CCA Filters

While the columns of W provide the spatial filter weights,
a “forward model” is recommended for visualizing com-
ponent topographies on the scalp [12]. Thus, we used
the EEG covariance matrix R = Y Y T to compute the
forward-model projection A = RW (WTRW )�1 [29].
The columns of A represent the projection of the compo-
nent onto the scalp and are visualized topographically.

For the temporal filters, we are interested primarily in
their spectral characteristics, particularly at musically rel-
evant (beat-related) frequencies. Therefore, we computed
the FFT of each temporal filter and plotted its magnitude
spectrum.

3
http://jd-lab.org/resources/

2.5 Stimulus-to-Response Correlations

The CCA procedure described above outputs U and V ma-
trices containing the filtered data on a per-song, per-feature
basis. We computed SRC for the first 5 components on
a per-trial basis across the full duration of the trial. We
report the mean correlation coefficient across trials, on a
per-component, per-feature, per-song basis.

Due to autocorrelation characteristics of the stimulus
and response data [37], we assessed statistical significance
using a permutation test approach [39]. This was done by
implementing the following procedure for each CCA com-
putation performed above: First, we disrupted the tem-
poral structure of individual trials of input EEG (while
preserving aggregate spectral content) by phase scram-
bling the data from each electrode. Following that, the
CCA and SRC computations were performed using the
phase-scrambled EEG and intact acoustical feature as in-
puts. This procedure was repeated 500 times. We com-
pared the SRC from intact data to the distribution of SRC
across permutation iterations for computation of p-values.
We corrected for multiple comparisons using False Dis-
covery Rate (FDR) [4]. Reported statistical significance
(p < 0.05) and marginal significance (0.05  p < 0.1)
reflect FDR correction.
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Figure 2: CCA filters. The spatial and temporal filters comprising each CCA pair are visualized for all songs and input
features. Shown are the component topographies (spatial filters), as well as the frequency-domain representations of the
temporal filters. The first 3 CCs are plotted. In each spectrum, vertical lines denote one fourth the beat frequency (blue),
half the beat (orange), beat (green), twice the beat (red), and four times the beat (purple).

3. RESULTS

3.1 Spatial and Temporal Filters

We first probed the spatial topographies of the EEG com-
ponents that best represented the musical features. Fig. 2
shows that the topography of component 1 is common
across songs and features, up to a sign ambiguity inher-
ent to CCA. The symmetric frontocentral topography of
CC1 matches various past results involving spatial decom-
position of brain responses during natural music listening
[17,33,38]. Unlike the first CC, the second and third com-
ponents tend to vary with the stimulus, but possess smooth
and broad topographies consistent with the projections of
cortical sources onto the scalp.

Interestingly, the temporal filters of each component are
focused on harmonics and subharmonics of the song’s beat
frequency. In the case of CC1, the frequency responses
of these filters tend to show peaks at higher beat-related
frequencies (eighth and sixteenth notes). Subsequent CCs
tend to show peaks at lower beat related frequencies (whole
and half notes). Two exceptions to this are the filters for
PC1 and spectral flux in Song 1. In both cases CC3 heavily
emphasizes the sixteenth note frequency.

While some temporal filters within a single song and
feature show similar frequency responses, these compo-
nents can be differentiated by their phase. For example,
Fig. 3 shows the time-domain representation of the tem-
poral filters output for Song 1 RMS and Song 2 RMS. In

Figure 3: Time-domain examples of temporal filters with
similar spectra but different phasing. Left: CC2 and CC3
for Song 1 RMS. Right: CC2 and CC3 for Song 2 RMS.

both cases, the second and third filters emphasize whole
note frequencies, but with a different phase. In general, all
temporal filters show far more energy in beat-related fre-
quencies than elsewhere.

3.2 Stimulus-to-EEG Correlations

The results of our CCA procedure show multiple dimen-
sions of significant correlation between the stimulus and
brain response. As shown in Table 1, CC1 produces statis-
tically significant SRC (p < 0.05 after FDR) for all songs
and stimulus features. For the remaining components, the
coefficients vary in strength across songs and features, but
multiple dimensions of significance and marginal signifi-
cance (0.05  p < 0.1) are observed. We note that there
is not a universal correspondence between correlation co-
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Comp. PC1 Flux RMS

So
ng

1
CC1 0.0652** 0.0690** 0.0630**
CC2 0.0280** 0.0242** 0.0275*
CC3 0.0212** 0.0179** 0.0153
CC4 0.0177** 0.0179** 0.0123
CC5 0.0135** 0.0102** 0.0115

So
ng

2

CC1 0.0522** 0.0573** 0.0524**
CC2 0.0301** 0.0244** 0.0268**
CC3 0.0183* 0.0177** 0.0203**
CC4 0.0158** 0.0109** 0.0137*
CC5 0.0119** 0.0062 0.0104**

So
ng

3

CC1 0.0460** 0.0530** 0.0437**
CC2 0.0225 0.0306** 0.0254**
CC3 0.0171* 0.0213** 0.0254**
CC4 0.0139** 0.0119 0.0110
CC5 0.0099* 0.0084 0.0074

So
ng

4

CC1 0.0536** 0.0511** 0.0475**
CC2 0.0248 0.0324** 0.0261*
CC3 0.0194* 0.0192** 0.0203**
CC4 0.0170** 0.0178** 0.0135
CC5 0.0114** 0.0102* 0.0089

Table 1: Multidimensional stimulus-response correlations
captured by CCA. ‘**’ denotes statistical significance (p <
0.05) and ‘*’ denotes marginal significance (0.05  p <
0.1) after correcting for FDR.

efficients and statistical significance. For example, in CC5
of Song 1, the correlation coefficient of ⇢ = 0.0102 for
Flux is significant, while the slightly larger ⇢ = 0.0115 for
RMS is not. This is due to the fact that separate permuta-
tion tests were performed, and surrogate EEG data gener-
ated, for each song and audio feature.

4. DISCUSSION

The technique outlined here provides a way to study mu-
sic processing by direct comparison of an auditory stim-
ulus and its corresponding brain response. Using CCA,
matching spatial and temporal filters emerge that maxi-
mally correlate the stimulus and response in time. We
found multiple dimensions of statistically significant cor-
relation between stimulus and response. While the magni-
tudes of these correlations are small, the fact that they are
not confined to a single dimension suggests that multiple
brain areas process distinct portions of the stimulus. Such
a multidimensional correlation could not be detected using
sensor-space processing.

In past CCA studies using audio-visual stimuli [7],
analysis of temporal filter resonances lacked clear relation-
ships to the stimuli. However, the music studied here is
organized by a hierarchy of beat- and measure-related pe-
riodicities, providing direct references with which to com-
pare the temporal filter frequency responses. Here we
found that the temporal filters that extract neurally rele-
vant musical features are focused at harmonics of the beat
frequency, independent of the song or feature.

Each CCA dimension emphasizes different brain
sources (e.g., spatial topographies) and different combina-
tions of harmonics. These results thus suggest that dif-

Figure 4: Total stimulus-response correlation for the first
3 CCs of each song and feature. The stacked bar graphs
depict the proportion of stimuls-response correlation con-
tributed by each CCA dimension.

ferent temporal hierarchies of music are processed by dis-
tinct neural circuits. The topographical consistency of
the strongest component, CC1, across all songs suggests
a common mechanism for natural music listening. This
consistency across songs is especially intriguing since the
EEG data reflect disjoint sets of listeners for each song.

From the analysis of SRC significance, PC1 does not
appear to outperform other input features. In fact, spectral
flux is the only feature that produces at least three signifi-
cant components in each of the four songs. This may seem
counterintuitive, but there is no guarantee that a feature ex-
plaining the most variance in the audio data will do the
same for brain data. Indeed, the objective of CCA is to
maximize covariance between the two data sets.

The correlations between musical features and EEG
responses found here, while statistically significant, are
fairly low (< 0.1). The low signal-to-noise ratio (SNR) of
EEG severely limits the magnitudes of stimulus-response
correlations, particularly with linear techniques as were
used here. Moreover, the EEG recorded during music lis-
tening is driven mostly by sources unrelated to the au-
ditory stimulus. The response to the stimulus comprises
only a fractional component of the overall neural activ-
ity. Even with more sophisticated imaging modalities such
as fMRI, correlation coefficients on the order of 0.1 are
typically observed [11]. In order to increase the correla-
tions between stimulus features and brain responses, non-
linear techniques such as deep neural networks could be
employed in order to account for higher-order correlations
and complex relationships not captured by linear CCA.

In research combining acoustical feature extraction and
brain responses, it is important to consider the relative
time scales on which stimuli and corresponding brain re-
sponses are sampled. Acoustical features are broadly sep-
arated into short- and long-term features. Past research has
used the short-term features described above, as well as
long-term “texture windows” with temporal resolution of
around 1 Hz (e.g., 3-sec window with 33% overlap) [43].
Recording modalities for cortical responses can similarly
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be grouped by their temporal resolution. For example,
EEG provides high temporal resolution (typically up to
1000 Hz for cortical responses), while fMRI offers a sam-
pling frequency of only around 0.5 Hz [1]. Thus, in terms
of time scales, EEG is amenable to short-term features and
fMRI to long-term. Interestingly, however, many studies
to date seem mismatched in this regard. There exist both
fMRI studies utilizing short-term features [1, 42] and EEG
studies utilizing long-term features [6,22,44], meaning sig-
nificant upsampling or downsampling was needed to com-
pare stimulus features with responses. The present study is
the first to our knowledge to non-invasively examine stim-
ulus to response mapping in natural listening using exclu-
sively matching timescales.

When choosing brain response recording modalities for
this type of research, it is important to understand the trade-
offs in temporal and spatial resolution. Unlike hemody-
namic signals of fMRI, the electrical signals recorded by
EEG have been refracted through the skull and scalp; thus,
observed topographies represent signals at specific elec-
trodes, but not necessarily activations of specific underly-
ing brain regions. ECoG methods solve this problem by
placing electrodes directly on the cortex, but require inva-
sive procedures and generally record from a smaller num-
ber of electrodes over a small region of the brain.

The present study correlated time-domain representa-
tions of both the acoustical features and EEG responses.
The CCA approach could also be applied to transforms of
either input. Past EEG and ECoG studies have examined
time-frequency representations [6, 22, 31, 32, 37] and com-
pared audio features with oscillatory band power in brain
responses. Alternative stimulus input representations can
also be considered. Time frequency transforms of the au-
dio such as the Constant-Q Transform or other filterbank
decompositions could be used as long- or short-term input
features depending on the temporal resolution of interest.
Using predetermined and hand-engineered features, as we
did here, can also be limiting. The features used here are
well represented in past research, but it could be beneficial
for a system to learn the audio features themselves with
the goal of improving the output of the optimization—for
example with deep neural network approaches that have
been applied to learn features for music tagging and signal
processing systems [5, 34].

Here we have chosen to average SRC coefficients for
each song and feature across the full duration of the stimu-
lus, producing a global correlation measure for each set of
components. It is also possible to compute a time-varying
measure of SRC and further investigate the musical events
corresponding to moments of especially high or low SRC.
Past research has even linked time-varying SRC to the at-
tentional state of participants [7], pointing to application
as a surrogate measure of listener attention. This approach
could prove useful in an MIR context, providing a con-
tinuous, objective (brain-based) measure of attention to a
real-world musical work.

While public access to naturalistic listening data re-
mains limited, additional options exist. Given the limita-

tions of the NMED-H dataset, it would be helpful to test
this method on EEG datasets that reflect a wider range of
musical genres [36] and tempos [23, 24].

Future research may also consider differing stimuli
across participants. Here, each CCA computation oper-
ated over concatenated EEG responses to a shared stimu-
lus (e.g., all responses to Song 1). However, CCA has also
been used to derive correlated components for unique per-
ceptual experiences such as video game play [7]. MIR ap-
plications of this approach could involve pooling responses
to different performances of the same song, or allowing
participants to choose personal favorites. In addition, it
will be interesting to investigate further the composition of
the temporal stimulus filters, which for the present analy-
ses are tightly coupled to beat frequencies, when songs of
various tempos are analyzed together.
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ABSTRACT

In this paper, we present a transfer learning approach for
music classification and regression tasks. We propose to
use a pre-trained convnet feature, a concatenated feature
vector using the activations of feature maps of multiple lay-
ers in a trained convolutional network. We show how this
convnet feature can serve as general-purpose music repre-
sentation. In the experiments, a convnet is trained for mu-
sic tagging and then transferred to other music-related clas-
sification and regression tasks. The convnet feature out-
performs the baseline MFCC feature in all the considered
tasks and several previous approaches that are aggregating
MFCCs as well as low- and high-level music features.

1. INTRODUCTION

In the field of machine learning, transfer learning is of-
ten defined as re-using parameters that are trained on a
source task for a target task, aiming to transfer knowledge
between the domains. A common motivation for transfer
learning is the lack of sufficient training data in the target
task. When using a neural network, by transferring pre-
trained weights, the number of trainable parameters in the
target-task model can be significantly reduced, enabling ef-
fective learning with a smaller dataset.

A popular example of transfer learning is semantic im-
age segmentation in computer vision, where the network
utilises rich information, such as basic shapes or prototyp-
ical templates of objects, that were captured when trained
for image classification [37]. Another example is pre-
trained word embeddings in natural language processing.
Word embedding, a vector representation of a word, can
be trained on large datasets such as Wikipedia [35] and
adopted to other tasks such as sentiment analysis [27].
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There have been several works on transfer learn-
ing in Music Information Retrieval (MIR). Hamel et al.
proposed to directly learn music features using linear
embedding [57] of mel-spectrogram representations and
genre/similarity/tag labels [20]. Oord et al. outlines a
large-scale transfer learning approach, where a multi-layer
perceptron is combined with the spherical K-means algo-
rithm [16] trained on tags and play-count data [54]. After
training, the weights are transferred to perform genre clas-
sification and auto-tagging with smaller datasets. In music
recommendation, Choi et al. used the weights of a con-
volutional neural network for feature extraction in playlist
generation [10], while Liang et al. used a multi-layer per-
ceptron for feature extraction of content-aware collabora-
tive filtering [29].

2. TRANSFER LEARNING FOR MUSIC
In this section, our proposed transfer learning approach is
described. A convolutional neural network (convnet) is de-
signed and trained for a source task, and then, the network
with trained weights is used as a feature extractor for tar-
get tasks. The schematic of the proposed approach is illus-
trated in Figure 1.

2.1 Convolutional Neural Networks for Music Tagging
We choose music tagging as a source task because i) large
training data is available and ii) its rich label set covers
various aspects of music, e.g., genre, mood, era, and in-
strumentations. In the source task, a mel-spectrogram (X),
a two-dimensional representation of music signal, is used
as the input to the convnet. The mel-spectrogram is se-
lected since it is psychologically relevant and computation-
ally efficient. It provides a mel-scaled frequency represen-
tation which is an effective approximation of human au-
ditory perception [36] and typically involves compressing
the frequency axis of short-time Fourier transform repre-
sentation (e.g., 257/513/1025 frequency bins to 64/96/128
Mel-frequency bins). In our study, the number of mel-
bins is set to 96 and the magnitude of mel-spectrogram is
mapped to decibel scale (log10 X), following [8] since it is
also shown to be crucial in [7].

In the proposed system, there are five layers of convolu-
tional and sub-sampling in the convnet as shown in Figure
1. This convnet structure with 2-dimensional 3×3 kernels
and 2-dimensional convolution, which is often called Vg-
gnet [44], is expected to learn hierarchical time-frequency
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Figure 1: A block diagram of the training and feature extraction
procedures. Exponential linear unit (ELU) is used as an activation
function in all convolutional layers [15]. Max-pooling of (2, 4),
(4, 4), (4, 5), (2, 4), (4, 4) is applied after every convolutional
layer respectively. In all the convolutional layers, the kernel sizes
are (3, 3), numbers of channels N is 32, and Batch normalisation
is used [24]. The input has a single channel, 96-mel bins, and
1360 temporal frames. After training, the feature maps from 1st–
4th layers are subsampled using average pooling while the feature
map of 5th layer is used as it is, since it is already scalar (size
1 × 1). Those 32-dimensional features are concatenated to form
a convnet feature.

patterns. This structure was originally proposed for visual
image classification and has been found to be effective and
efficient in music classification 1 [11].

2.2 Representation Transfer

In this section, we explain how features are extracted from
a pre-trained convolutional network. In the remainder of
the paper, this feature is referred to as pre-trained convnet
feature, or simply convnet feature.

It is already well understood how deep convnets learn
hierarchical features in visual image classification [58].
By convolution operations in the forward path, lower-level
features are used to construct higher-level features. Sub-
sampling layers reduce the size of the feature maps while
adding local invariance. In a deeper layer, as a result, the
features become more invariant to (scaling/location) dis-
tortions and more relevant to the target task.

This type of hierarchy also exists when a convnet is
trained for a music-related task. Visualisation and soni-
fication of convnet features for music genre classification
has shown the different levels of hierarchy in convolutional
layers [13], [9].

Such a hierarchy serves as a motivation for the pro-
posed transfer learning. Relying solely on the last hidden
layer may not maximally extract the knowledge from a pre-
trained network. For example, low-level information such
as tempo, pitch, (local) harmony or envelop can be cap-
tured in early layers, but may not be preserved in deeper
layers due to the constraints that are introduced by the net-
work structure: aggregating local information by discard-
ing less-relevant information in subsampling. For the same
reason, deep scattering networks [6] and a convnet for mu-

1 For more recent information on kernel shapes for music classifica-
tion, please see [40].

sic tagging introduced in [28] use multi-layer representa-
tions.

Based on this insight, we propose to use not only the
activations of the final hidden layer but also the activations
of (up to) all intermediate layers to find the most effective
representation for each task. The final feature is generated
by concatenating these features as demonstrated in Figure
1, where all the five layers are concatenated to serve as an
example.

Given five layers, there are
∑5

n=1 5Cn = 31 strate-
gies of layer-wise combination. In our experiment, we
perform a nearly exhaustive search and report all results.
We designate each strategy by the indices of layers em-
ployed. For example, a strategy named ‘135’ refers to
using a 32 × 3 = 96-dimensional feature vector that con-
catenates the first, third, and fifth layer convnet features.

During the transfer, average-pooling is used for the 1st–
4th layers to reduce the size of feature maps to 1×1 as
illustrated in Figure 1. Averaging is chosen instead of max
pooling because it is more suitable for summarising the
global statistics of large regions, as done in the last layer
in [30]. Max-pooling is often more suitable for capturing
the existence of certain patterns, usually in small and local
regions 2 .

Lastly, there have been works suggesting random-
weights (deep) neural networks including deep convnet can
work well as a feature extractor [22] [59] (Not identical,
but a similar approach is transferring knowledge from an
irrelevant domain, e.g., visual image recognition, to mu-
sic task [19].) We report these results from random con-
vnet features and denote it as random convnet feature. As-
sessing performances of random convnet feature will help
to clarify the contributions of the pre-trained knowledge
transfer versus the contributions of the convnet structure
and nonlinear high-dimensional transformation.

2.3 Classifiers and Regressors of Target Tasks
Variants of support vector machines (SVMs) [45, 50] are
used as a classifier and regressor. SVMs work efficiently
in target tasks with small training sets, and outperformed
K-nearest neighbours in our work for all the tasks in a pre-
liminary experiment. Since there are many works that use
hand-written features and SVMs, using SVMs enables us
to focus on comparing the performances of features.

3. PREPARATION

3.1 Source Task: Music Tagging

In the source task, 244,224 preview clips of the Mil-
lion Song Dataset [5] are used (201,680/12,605/25,940
for training/validation/test sets respectively) with top-50
last.fm tags including genres, eras, instrumentations, and
moods. Mel-spectrograms are extracted from music sig-
nals in real-time on the GPU using Kapre [12]. Binary
cross-entropy is used as the loss function during training.

2 Since the average is affected by zero-padding which is applied to sig-
nals that are shorter than 29 seconds, those signals are repeated to create
29-second signals. This only happens in Task 5 and 6 in the experiment.
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Task Dataset name #clips Metric #classes
T1. Ballroom dance genre classification Extended ballroom [32] 4,180 Accuracy 13
T2. Genre classification Gtzan genre [53] 1,000 Accuracy 10
T3. Speech/music classification Gtzan speech/music [52] 128 Accuracy 2

T4. Emotion prediction EmoMusic (45-second) [46] 744
Coefficient of
determination (r2)

N/A
(2-dimensional)

T5. Vocal/non-vocal classification Jamendo [41] 4,086 Accuracy 2
T6. Audio event classification Urbansound8K [42] 8,732 Accuracy 10

Table 1: The details of the six tasks and datasets used in our transfer learning evaluation.

The ADAM optimisation algorithm [25] is used for accel-
erating stochastic gradient descent. The convnet achieves
0.849 AUC-ROC score (Area Under Curve - Receiver Op-
erating Characteristic) on the test set. We use the Keras
[14] and Theano [51] frameworks in our implementation.

3.2 Target Tasks

Six datasets are selected to be used in six target tasks. They
are summarised in Table 1.
• Task 1: The Extended ballroom dataset consists of spe-

cific Ballroom dance sub-genres.

• Task 2: The Gtzan genre dataset has been extremely
popular, although some flaws have been found [48].

• Task 3: The dataset size is smaller than the others by an
order of magnitude.

• Task 4: Emotion predition on the arousal-valence plane.
We evaluate arousal and valence separately. We trim and
use the first 29-second from the 45-second signals.

• Task 5. Excerpts are subsegments from tracks with bi-
nary labels (‘vocal’ and ‘non-vocal’). Many of them are
shorter than 29s. This dataset is provided for bench-
marking frame-based vocal detection while we use it as
a pre-segmented classification task, which may be easier
than the original task.

• Task 6: This is a non-musical task. For example, the
classes include air conditioner, car horn, and dog bark.
All excerpts are shorter than 4 seconds.

3.3 Baseline Feature and Random Convnet Feature
As a baseline feature, the means and standard deviations
of 20 Mel-Frequency Cepstral Coefficients (MFCCs), and
their first and second-order derivatives are used. In this pa-
per, this baseline feature is called MFCCs or MFCC vec-
tors. MFCC is chosen since it has been adopted in many
music information retrieval tasks and is known to provide
a robust representation. Librosa [34] is used for MFCC
extraction and audio processing.

The random convnet feature is extracted using the iden-
tical convnet structure of the source task and after random
weights initialisation with a normal distribution [21] but
without a training.

4. EXPERIMENTS

4.1 Configurations

For Tasks 1-4, the experiments are done with 10-fold cross-
validation using stratified splits. For Task 5, pre-defined
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Figure 2: Summary of performances of the convnet feature
(blue), MFCCs (purple), and state-of-the-art (red) for Task 1-6
(State-of-the-art of Task 5 does not exist).

training/validation/test sets are used. The experiment on
Task 6 is done with 10-fold cross-validation without re-
placement to prevent using the sub-segments from the
same recordings in training and validation. The SVM pa-
rameters are optimised using grid-search based on the vali-
dation results. Kernel type/bandwidth of radial basis func-
tion and the penalty parameter are selected from the ranges
below:

• Kernel type: [linear, radial]

– Bandwidth γ in radial basis function :
[1/23, 1/25, 1/27, 1/29, 1/211, 1/213, 1/Nf ]

• Penalty parameter C : [0.1, 2.0, 8.0, 32.0]

A radial basis function is exp(−γ|x− x′|2), and γ and Nf

refer to the radial kernel bandwidth and the dimensionality
of feature vector respectively. With larger C, the penalty
parameter or regularisation parameter, the loss function
gives more penalty to misclassified items and vice versa.
We use Scikit-learn [38] for these target tasks. The code
for the data preparation, experiment, and visualisation are
available on GitHub 3 .

4.2 Results and Discussion
Figure 2 shows a summary of the results. The scores of
the i) best performing convnet feature, ii) concatenating
‘12345’ 4 convnet feature and MFCCs, iii) MFCC fea-
ture, and iv) state-of-the-art algorithms for all the tasks.

In all the six tasks, the majority of convnet features
outperforms the baseline feature. Concatenating MFCCs

3 https://github.com/keunwoochoi/transfer_
learning_music

4 Again, ‘12345’ refers to the convnet feature that is concatenated
from 1st–5th layers. For another example, ‘135’ means concatenating
the features from first, third, and fifth layers.
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with ‘12345’ convnet feature usually does not show im-
provement over a pure convnet feature except in Task 6,
audio event classification. Although the reported state-of-
the art is typically better, almost all methods rely on musi-
cal knowledge and hand-crafted features, yet our features
perform competitively. An in-depth look at each task is
therefore useful to provide insight.

In the following subsections, the details of each task are
discussed with more results presented from (almost) ex-
haustive combinations of convnet features as well as ran-
dom convnet features at all layers. For example, in Fig-
ure 3, the scores of 28 different convnet feature combina-
tions are shown with blue bars. The narrow, grey bars next
to the blue bars indicate the scores of random convnet fea-
tures. The other three bars on the right represent the scores
of the concatenation of ‘12345’ + MFCC feature, MFCC
feature, and the reported state-of-the-art methods respec-
tively. The rankings within the convnet feature combina-
tions are also shown in the bars where top-7 and lower-7
are highlighted.

We only briefly discuss the results of random convnet
features here. The best performing random convnet fea-
tures do not outperform the best-performing convnet fea-
tures in any task. In most of the combinations, convnet
features outperformed the corresponding random convnet
features, although there are few exceptions. However, ran-
dom convnet features also achieved comparable or even
better scores than MFCCs, indicating i) a significant part
of the strength of convnet features comes from the network
structure itself, and ii) random convnet features can be use-
ful especially if there is not a suitable source task.

4.2.1 Task 1. Ballroom Genre Classification

Figure 3 shows the performances of different features
for Ballroom dance classification. The highest score is
achieved using the convnet feature ‘123’ with 86.7% of
accuracy. The convnet feature shows good performances,
even outperforming some previous works that explicitly
use rhythmic features.

The result clearly shows that low-level features are cru-
cial in this task. All of the top-7 strategies of convnet fea-
ture include the second layer, and 6/7 of them include the
first layer. On the other hand, the lower-7 are [‘5’, ‘4’,
‘3’, ‘45’, ‘35’, ‘2’, ‘25’], none of which includes the
first layer. Even ‘1’ achieves a reasonable performance
(73.8%).

The importance of low-level features is also supported
by known properties of this task. The ballroom genre la-
bels are closely related to rhythmic patterns and tempo [32]
[49]. However, there is no label directly related to tempo
in the source task. Moreover, deep layers in the proposed
structure are conjectured to be mostly invariant to tempo.
As a result, high-level features from the fourth and fifth
layers poorly contribute to the task relative to those from
the first, second, and third layers.

The state-of-the-art algorithm which is also the only al-
gorithm that used the same dataset due to its recent re-
lease uses 2D scale transform, an alternative representa-
tion of music signals for rhythm-related tasks [33], and
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sification of convnet features (with random convnet features in
grey), MFCCs, and the reported state-of-the-art method. (Note
the exception that the SoTA is reported in weighted average re-
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Figure 4: Performances of Task 2 - Gtzan music genre classifi-
cation of convnet features (with random convnet features in grey),
MFCCs, and the reported state-of-the-art method.

reports 94.9% of weighted average recall. For additional
comparisons, there are several works that use the Ball-
room dataset [18]. This has 8 classes and it is smaller
in size than the Extended Ballroom dataset (13 classes).
Laykartsis and Lerch [31] combines beat histogram and
timbre features to achieve 76.7%. Periodicity analysis with
SVM classifier in Gkiokas et al. [17] respectively shows
88.9%/85.6 - 90.7%, before and after feature selection.

4.2.2 Task 2. Gtzan Music Genre Classification

Figure 4 shows the performances on Gtzan music genre
classification. The convnet feature shows 89.8% while the
concatenated feature and MFCCs respectively show only
78.1% and 66.0% of accuracy. Although there are meth-
ods that report accuracies higher than 94.5%, we set 94.5%
as the state-of-the-art score following the dataset analysis
in [48], which shows that the perfect score cannot surpass
94.5% considering the noise in the Gtzan dataset.

Among a significant number of works that use the Gtzan
music genre dataset, we describe four methods in more
detail. Three of them use an SVM classifier, which en-
ables us to focus on the comparison with our feature.
Arabi and Lu [1] is most similar to the proposed convnet
features in a way that it combines low-level and high-level
features and shows a similar performance. Beniya et al. [4]
and Huang et al. [23] report the performances with many
low-level features before and after applying feature selec-
tion algorithms. Only the latter outperforms the proposed
method and only after feature selection.

• Arabi and Lu [1] uses not only low-level features such as
{spectral centroid/flatness/roll-off/flux}, but also high-
level musical features such as {beat, chord distribution
and chord progressions}. The best combination of the
features shows 90.79% of accuracy.

• Beniya et al. [4] uses a particularly rich set of statistics
such as {mean, standard deviation, skewness, kurtosis,
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Figure 5: Comparison of per-label results of two convnet fea-
ture strategies, ‘12345’ and ‘5’ for Gtzan music genre classifi-
cation. Numbers denote the differences of scores.
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Figure 6: Performances of Task 3 - Speech/music classifica-
tion of convnet features (with random convnet features in grey),
MFCCs, and the reported state-of-the-art method. All scores of
convnet features and SoTA are 1.0 and omitted in the plot.

covariance} of many low-level features including {RMS
energy, attack, tempo, spectral features, zero-crossing,
MFCC, dMFCC, ddMFCC, chromagram peak and cen-
troid}. The feature vector dimensionality is reduced
by MRMR (max-relevance and min-redundancy) [39] to
obtain the highest classification accuracy of 87.9%.

• Huang et al. [23] adopts another feature selection algo-
rithm, self-adaptive harmony search [55]. The method
uses statistics such as {mean, standard deviation} of
many features including {energy , pitch, and timbral
features} and their derivatives. The original 256-
dimensional feature achieved 84.3% of accuracy which
increases to 92.2% and 97.2% after feature selection.

• Reusing AlexNet [26], a pre-trained convnet for visual
image recognition achieved 78% of accuracy [19].
In summary, the convnet feature achieves better perfor-

mance than many approaches which use extensive music
feature sets without feature selection as well as some of the
approaches with feature selection. For this task, it turns out
that combining features from all layers is the best strategy.
In the results, ‘12345’, ‘2345’, and ‘1234’ are three best
configurations, and all of the top-7 scores are from those
strategies that use more than three layers. On the contrary,
all lower-7 scores are from those with only 1 or 2 layers.
This is interesting since the majority (7/10) of the target
labels already exists in source task labels, by which it is
reasonable to assume that the necessary information can
be provided only with the last layer for those labels. Even
in such a situation, however, low-level features contribute
to improving the genre classification performance 5 .

Among the classes of target task, classical and disco,
reggae do not exist in the source task classes. Based on
this, we consider two hypotheses, i) the performances of
those three classes may be lower than the others, ii) low-
level features may play an important role to classify them
since high-level feature from the last layer may be biased
to the other 7 classes which exist in the source task. How-
ever, both hypotheses are rebutted by comparing the per-
formances for each genres with convnet feature ‘5’ and

5 On the contrary, in Task 5 - music emotion classification, high-level
feature plays a dominant role (see Section 4.2.4).
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Figure 7: Performances of Task 4a (arousal) and 4v (valence) -
Music emotion prediction of convnet features (with random con-
vnet features in grey), MFCCs, and the reported state-of-the-art
method.

‘12345’ as in Figure 5. First, with ‘5’ convnet feature,
classical shows the highest accuracy while both disco and
reggae show accuracies around the average accuracy re-
ported over the classes. Second, aggregating early-layer
features affects all the classes rather than the three omit-
ted classes. This suggests that the convnet features are not
strongly biased towards the genres that are included in the
source task and can be used generally for target tasks with
music different from those genres.

4.2.3 Task 3. Gtzan Speech/music Classification

Figure 6 shows the accuracies of convnet features, base-
line feature, and state-of-the-art [47] with low-level fea-
tures including MFCCs and sparse dictionary learning for
Gtzan music/speech classification. A majority of the con-
vnet feature combinations achieve 100% accuracy. MFCC
features achieve 99.2%, but the error rate is trivial (0.8% is
one sample out of 128 excerpts).

Although the source task is only about music tags, the
pre-trained feature in any layer easily solved the task, sug-
gesting that the nature of music and speech signals in the
dataset is highly distinctive.

4.2.4 Task 4. Music Emotion Prediction

Figure 7 shows the results for music emotion prediction
(Task 4). The best performing convnet features achieve
0.633 and 0.415 r2 scores on arousal and valence axes re-
spectively.

On the other hand, the state-of-the-art algorithm reports
0.704 and 0.500 r2 scores using music features with a re-
current neural network as a classifier [56] that uses 4,777
audio features including many functionals (such as quan-
tiles, standard deviation, mean, inter peak distances) of
12 chroma features, loudness, RMS Energy, zero crossing
rate, 14 MFCCs, spectral energy, spectral roll-off, etc.

For the prediction of arousal, there is a strong depen-
dency on the last layer feature. All top-7 performances are
from the feature vectors that include the fifth layer. The
first layer feature also seems important, since all of the top-
5 strategies include the first and fifth layer features. For
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Figure 8: Performances of Task 5 - Vocal detection of convnet
features (with random convnet features in grey) and MFCCs.
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Figure 9: Performances of Task 6 - Acoustic event detection of
convnet features (with random convnet features in grey), MFCCs,
and the reported state-of-the-art method.

valence prediction, the third layer feature seems to be the
most important one. The third layer is included in all of
the top-6 strategies. Moreover, ‘3’ strategy was found to
be best performing among strategies with single layer fea-
ture.

To summarise the results, the predictions of arousal and
valence rely on different layers, for which they should be
optimised separately. In order to remove the effect of the
choice of a classifier and assess solely the effect of fea-
tures, we compare our approach to the baseline method
of [56] which is based on the same 4,777 features with
SVM, not a recurrent neural network. The baseline method
achieves .541 and .320 r2 scores respectively on arousal
and valence, both of which are lower than those achieved
by using the proposed convnet feature. This further con-
firms the effectiveness of the proposed convnet features.

4.2.5 Task 5. Vocal/non-vocal Classification
Figure 8 presents the performances on vocal/non-vocal
classification using the Jamendo dataset [41]. There is
no known state-of-the-art result, as the dataset is usually
used for frame-based vocal detection/segmentation. Pre-
segmented Excerpt classification is the task we formulate
in this paper. For this dataset, the fourth layer plays the
most important role. All the 14 combinations that include
the fourth layer outperformed the other 14 strategies with-
out the fourth layer.

4.2.6 Task 6. Acoustic Event Detection

Figure 9 shows the results on acoustic event classifica-
tion using Urbansound8K dataset [42]. Since this is not
a music-related task, there are no common tags between
the source and target tasks, and therefore the final-layer
feature is not expected to be useful for the target task.

The strategy of concatenating ‘12345’ convnet fea-
tures and MFCCs yields the best performance. Among
convnet features, ‘2345’, ‘12345’, ‘123’, and ‘234’
achieve good accuracies. In contrast, those with only one

or two layers do not perform well. We were not able to
observe any particular dependency on a certain layer.

Since the convnet features are trained on music, they
do not outperform a dedicated convnet trained for the tar-
get task. The state-of-the-art method is based on a deep
convolutional neural network with data augmentation [43].
Without augmenting the training data, the accuracy of con-
vnet in the same work is reported to be 74%, which is still
higher than our best result (71.4%). 6

The convnet feature still shows better results than con-
ventional audio features, demonstrating its versatility even
for non-musical tasks. The method in [42] with {minimum,
maximum, median, mean, variance, skewness, kurtosis} of
25 MFCCs and {mean and variance} of the first and sec-
ond MFCC derivatives (225-dimensional feature) achieved
only 68% accuracy using the SVM classifier. This is worse
than the performance of the best performing convnet fea-
ture.

It is notable again that unlike in the other tasks, concate-
nating convnet feature and MFCCs results in an improve-
ment over either a convnet feature or MFCCs (71.4%).
This suggests that they are complementary to each other
in this task.

5. CONCLUSIONS

We proposed a transfer learning approach using deep learn-
ing and evaluated it on six music information retrieval
and audio-related tasks. The pre-trained convnet was first
trained to predict music tags and then aggregated features
from the layers were transferred to solve genre classifi-
cation, vocal/non-vocal classification, emotion prediction,
speech/music classification, and acoustic event classifica-
tion problems. Unlike the common approach in transfer
learning, we proposed to use the features from every con-
volutional layers after applying an average-pooling to re-
duce their feature map sizes.

In the experiments, the pre-trained convnet feature
showed good performance overall. It outperformed the
baseline MFCC feature for all the six tasks, a feature that
is very popular in music information retrieval tasks be-
cause it gives reasonable baseline performance in many
tasks. It also outperformed the random-weights convnet
features for all the six tasks, demonstrating the improve-
ment by pre-training on a source task. Somewhat surpris-
ingly, the performance of the convnet feature is also very
competitive with state-of-the-art methods designed specif-
ically for each task. The most important layer turns out
to differ from task to task, but concatenating features from
all the layers generally worked well. For all the five music
tasks, concatenating MFCC feature onto convnet features
did not improve the performance, indicating the music in-
formation in MFCC feature is already included in the con-
vnet feature. We believe that transfer learning can alleviate
the data sparsity problem in MIR and can be used for a
large number of different tasks.

6 Transfer learning targeting audio event classification was recently in-
troduced in [2, 3] and achieved a state-of-the-art performance.
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[2] Relja Arandjelović and Andrew Zisserman. Look, lis-
ten and learn. arXiv preprint arXiv:1705.08168, 2017.

[3] Yusuf Aytar, Carl Vondrick, and Antonio Torralba.
Soundnet: Learning sound representations from unla-
beled video. In Advances in Neural Information Pro-
cessing Systems, pages 892–900, 2016.

[4] Babu Kaji Baniya, Joonwhoan Lee, and Ze-Nian Li.
Audio feature reduction and analysis for automatic mu-
sic genre classification. In Systems, Man and Cyber-
netics (SMC), 2014 IEEE International Conference on,
pages 457–462. IEEE, 2014.

[5] Thierry Bertin-Mahieux, Daniel PW Ellis, Brian Whit-
man, and Paul Lamere. The million song dataset. In
Proceedings of the 12th International Society for Mu-
sic Information Retrieval Conference, October 24-28,
2011, Miami, Florida, pages 591–596. University of
Miami, 2011.
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ABSTRACT

Existing systems for automatic transcription of drum
tracks from polyphonic music focus on detecting drum in-
strument onsets but lack consideration of additional meta
information like bar boundaries, tempo, and meter. We ad-
dress this limitation by proposing a system which has the
capability to detect drum instrument onsets along with the
corresponding beats and downbeats. In this design, the sys-
tem has the means to utilize information on the rhythmical
structure of a song which is closely related to the desired
drum transcript. To this end, we introduce and compare
different architectures for this task, i.e., recurrent, convo-
lutional, and recurrent-convolutional neural networks. We
evaluate our systems on two well-known data sets and an
additional new data set containing both drum and beat
annotations. We show that convolutional and recurrent-
convolutional neural networks perform better than state-of-
the-art methods and that learning beats jointly with drums
can be beneficial for the task of drum detection.

1. INTRODUCTION

The automatic creation of symbolic transcripts from music
in audio files is an important high-level task in music infor-
mation retrieval. Automatic music transcription systems
(AMT) aim at solving this task and have been proposed in
the past (cf. [1]), but there is yet no general solution to this
problem. The transcription of the drum instruments from
an audio file of a song is a sub-task of automatic music
transcription, called automatic drum transcription (ADT).
Usually, such ADT systems focus solely on the detection
of drum instrument note onsets. While this is the necessary
first step, for a full transcript of the drum track more in-
formation is required. Sheet music for drums—equally to
sheet music for other instruments—contains additional in-
formation required by a musician to perform a piece. This
information comprises (but is not limited to): meter, over-
all tempo, indicators for bar boundaries, indications for lo-
cal changes in tempo, dynamics, and playing style of the

c© Richard Vogl, Matthias Dorfer, Gerhard Widmer, Peter
Knees. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Richard Vogl, Matthias Dorfer, Ger-
hard Widmer, Peter Knees. “Drum Transcription via Joint Beat and Drum
Modeling using Convolutional Recurrent Neural Networks”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

piece. To obtain some of this information, beat and down-
beat detection methods can be utilized. While beats pro-
vide tempo information, downbeats add bar boundaries,
and the combination of both provides indication for the
meter within the bars.

In this work, neural networks for joint beat and drum
detection are trained in a multi-task learning fashion.
While it is possible to extract drums and beats separately
using existing work and combine the results afterwards,
we show that it is beneficial to train for both tasks together,
allowing a joint model to leverage commonalities of the
two problems. Additionally, recurrent (RNN), convolu-
tional (CNN) and convolutional-recurrent neural network
(CRNN) models for drum transcription and joint beat and
drum detection are evaluated on two well-known, as well
as a new data set.

The remainder of this work is structured as follows. In
the next section, we discuss related work. In sec. 3, we
describe the implemented drum transcription pipeline used
to evaluate the network architectures, followed by a sec-
tion discussing the different network architectures (sec. 4).
In sec. 5, we explain the experimental setup to evaluate the
joint learning approach. After that, a discussion of the re-
sults follows in sec. 6 before we draw conclusions in sec. 7.

2. RELATED WORK

While in the past many different approaches for ADT have
been proposed [11,13,15,16,22,24,25,34,38], recent work
focuses on end-to-end approaches calculating activation
functions for each drum instrument. These methods uti-
lize non-negative matrix factorization (NMF, e.g. adaptive-
NMF in Dittmar et al. [7] and partially fixed NMF in Wu
et al. [37]) as well as RNNs (RNNs with label time-shift
in Vogl et al. [35, 36] and bidirectional RNNs in Southall
et al. [31]) to extract the activation functions from spec-
trograms of the audio signal. Such activation-function-
based end-to-end ADT systems circumvent certain issues
associated with other architectures. Methods which first
segment the song (e.g. using onset detection) and subse-
quently classify these segments [22, 23, 38] suffer from a
loss of information after the segmentation step—i.e. when-
ever the system fails to detect a segment, this information
is lost. Such systems heavily depend on the accuracies of
the single components, and can never perform better than
the weakest component in the pipeline. Additionally, infor-
mation of the input signal which is discarded after a pro-
cessing step might still be of value for later steps.
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Since RNNs, especially long short-term memory
(LSTM) [17] and gated recurrent unit (GRU) [5] networks,
are designed to model long term relationships, one might
suspect that systems based on RNNs [31,35,36] can lever-
age the repetitive structure of the drum tracks and make
use of this information. Contrary to this intuition this is
not the case for RNN-based systems proposed so far. Both
the works of Vogl et al. [35, 36] and Southall et al. [31]
use snippets with length of only about one second to train
the RNNs. This prohibits learning long-term structures
of drum rhythms which are typically in the magnitude of
two or more seconds. In [35], it has been shown that
RNNs with time-shift perform equally well as bidirectional
RNNs, and that backward directional RNNs perform better
than forward directional RNNs. Combining these findings
indicates that the learned models actually mostly consider
local features. Therefore, RNNs trained in such a manner
seem to learn only an acoustic, but not a structural model
for drum transcription.

Many works on joint beat and downbeat tracking have
been published in recent years [2, 9, 10, 19–21, 26]. A dis-
cussion of all the different techniques would go beyond the
scope of this work. One of the most successful methods by
Böck et al. [2] is a joint beat and downbeat tracking sys-
tem using bidirectional LSTM networks. This approach
achieves top results in the 2016 MIREX task for beat de-
tection and can be considered the current state of the art. 1

In this work, a multi-task learning strategy is used to
address the discussed issues of current drum transcription
systems, cf. [4]. The use of a model jointly trained on
drum and beat annotations, combined with longer train-
ing snippets, allows the model to learn long-term relations
of the drum patterns in combination with beats and down-
beats. Furthermore, learning multiple related tasks simul-
taneously at once can improve results for the single tasks.
To this end, different architectures of RNNs, CNNs, and
a combination of both, convolutional-recurrent neural net-
works (CRNNs) [8, 27, 39], are evaluated.

The rationale behind selecting these three methods for
comparison is as follows. RNNs have proven to be well-
suited for both drum and beat detection, as well as learning
long-term dependencies for music language models [30].
CNNs are among the best performing methods for many
image processing and other machine learning tasks, and
have been used on spectrograms of music signals in the
past. For instance, Schlüter and Böck [28] use CNNs to
improve onset detection results, while Gajhede et al. [12]
use CNNs to successfully classify samples of three drum
sound classes on a non-public data set. CRNNs should re-
sult in a model, in which the convolutional layers focus on
acoustic modeling of the events, while the recurrent layers
learn temporal structures of the features.

3. DRUM TRANSCRIPTION PIPELINE

The implemented method is an ADT system using a similar
pipeline as presented in [31] and [36]. Fig. 1 visualizes

1 http://www.music-ir.org/mirex/wiki/2016:
MIREX2016_Results

Figure 1. System overview of the implemented drum tran-
scription pipeline used to evaluate the different neural net-
work architectures.

the overall structure of the system. The next subsections
discuss the single blocks of the system in more detail.

3.1 Feature Extraction

First, a logarithmic magnitude spectrogram is calculated
using a 2048-samples window size and a resulting frame
rate of 100Hz from a 44.1kHz 16bit mono audio signal
input. Then, the frequency bins are transformed to a loga-
rithmic scale using triangular filters (twelve per octave) in
a frequency range from 20 to 20,000 Hz. Finally, the posi-
tive first-order-differential over time of this spectrogram is
calculated and concatenated. This results in feature vectors
with a length of 168 values (2x84 frequency bins).

3.2 Activation Function Calculation

The central block in fig. 1 represents the activation func-
tion calculation step. This task is performed using a neu-
ral network (NN) trained on appropriate training data (see
sec. 4). As in most of the related work, we only consider
three drum instruments: bass- or kick drum, snare drum,
and hi-hat.

While the architectures of the single NNs are different,
they share certain commonalities: i. all NNs are trained
using the same input features; ii. the RNN architectures
are implemented as bidirectional RNNs (BRNN) [29]; iii.
the output layers consist of three or five sigmoid units, rep-
resenting three drum instruments under observation (drum
only) or three drum instruments plus beat and downbeat
(drum and beats), respectively; and iv. the NNs are all
trained using the RMSprop optimization algorithm pro-
posed by Tieleman et al. [33], using mini-batches of size
eight. For training, we follow a three-fold cross validation
strategy on all data sets. Two splits are used for training,
15% of the training data is separated and used for valida-
tion after each epoch, while testing/evaluation is done on
the third split. The NNs are trained using a fixed learn-
ing rate with additional refinement if no improvement on
the validation set is achieved for 10 epochs. During refine-
ment the learning rate is reduced and training continues
using the parameters of the best performing model so far.

More details on the individual NN architectures are pro-
vided in sec. 4.
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Figure 2. Comparison of mode of operation of RNNs, CNNs, and CRNNs on spectrograms of audio signals. RNNs process
the input in a sequential manner. Usually, during training, only sub-sequences of the input signal are used to reduce the
memory footprint of the networks. CNNs process the signal frame by frame without being aware of sequences. Because
of this, a certain spectral context is added for each input frame. CRNNs, like RNNs, process the input sequentially, but
additionally, a spectral context is added to every frame on which convolution is performed by the convolutional layers.

3.3 Preparation of Target Functions

For training the NNs, target functions of the desired out-
put are required besides the input features. These target
functions are generated by setting frames of a signal with
the same frame rate as the input features to 1 whenever an
annotation is present and to 0 otherwise. A separate target
function is created for each drum instrument as well as for
beats and downbeats.

3.4 Peak Picking

In the last step of our pipeline (rightmost block of fig. 1),
the drum instrument onsets (and beats if applicable) are
identified using a simple peak picking method introduced
for onset detection in [3]: A point n in the activation func-
tion fa(n) is considered a peak if these terms are fulfilled:

1. fa(n) = max(fa(n−m), · · · , fa(n)),

2. fa(n) ≥ mean(fa(n− a), · · · , fa(n)) + δ,

3. n− nlp > w,

where δ is a variable threshold. A peak must be the
maximum value within a window of size m + 1, and ex-
ceeding the mean value plus a threshold within a window
of size a + 1. Additionally, a peak must have at least a
distance of w + 1 to the last detected peak (nlp). Values
for the parameters were tuned on a development data set to
be: m = a = w = 2.

The threshold for peak picking is determined on the
validation set. Since the activation functions produced by
the NN contain little noise and are quite spiky, rather low
thresholds (0.1− 0.2) give best results.

4. NEURAL NETWORK MODELS

In this section, we explore the properties of the neural net-
work models considered more closely. Of the NN cat-
egories mentioned before, we investigate three different
types: bidirectional recurrent networks (BRNN), convolu-
tional networks (CNN), and convolutional bidirectional re-
current networks (CBRNN). For every class of networks,

two different architectures are implemented: i. a smaller
network, with less capacity, trained on shorter subse-
quences (with focus only on acoustic modeling), and ii.
a larger network, trained on longer subsequences (with ad-
ditional focus on pattern modeling).

Even though we previously showed that RNNs with la-
bel time-shift achieve similar performance as BRNNs [35,
36], in this work, we will not use time-shift for target la-
bels. This is due to three reasons: i. the focus of this work
is not real-time transcription but a comparison of NN ar-
chitectures and training paradigms, therefore using a bidi-
rectional architecture has no downsides; ii. it is unclear
how label time-shift would affect CNNs; iii. in [2], the
effectiveness of BRNNs (BLSTMs) for beat and down-
beat tracking is shown. Thus, in the context of this work,
using BRNNs facilitates combining state-of-the-art drum
and beat detection methods while allowing us to compare
CNNs and RNNs in a fair manner.

4.1 Bidirectional Recurrent Neural Network

Gated recurrent units (GRUs [5]) are similar to LSTMs in
the sense that both are gated RNN-cell types that facilitate
learning of long-term relations in the data. While LSTMs
feature forget, input, and output gates, GRUs only exhibit
two gates: update and output. This makes the GRU less
complex in terms of number of parameters. It has been
shown that both are equally powerful [6], with the differ-
ence that more GRUs are needed in an NN layer to achieve
the same model capacity as with LSTMs, resulting in more
or less equal number of total parameters. An advantage of
using GRUs is that hyperparameter optimization for train-
ing is usually easier compared to LSTMs.

In this work, two bidirectional GRU (BGRU) architec-
tures are used. The small model (BGRU-a) features two
layers of 50 nodes each, and is trained on sequences of
100 frames; the larger model (BGRU-b) consists of three
layers of 30 nodes each, and is trained on sequences of
400 frames. For training an initial learning rate of 0.007 is
used.
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Frames Context Conv. Layers Rec. Layers Dense Layers
BGRU-a 100 — — 2 x 50 GRU —
BGRU-b 400 — — 3 x 30 GRU —
CNN-a — 9 1xA + 1xB — 2 x 256
CNN-b — 25 1xA + 1xB — 2 x 256
CBGRU-a 100 9 1xA + 1xB 2 x 50 GRU —
CBGRU-b 400 13 1xA + 1xB 3 x 60 GRU —

Table 1. Overview of used neural network model architectures and parameters. Every network additionally contains a
dense sigmoid output layer. Conv. block A consists of 2 layers with 32 3x3 filters and 3x3 max-pooling; conv. block B
consists of 2 layers with 64 3x3 filters and 3x3 max-pooling; both use batch normalization.

4.2 Convolutional Neural Network

Convolutional neural networks have been successfully ap-
plied not only in image processing, but also many other
machine learning tasks. The convolutional layers are con-
structed using two different building blocks: block A con-
sists of two layers with 32 3x3 filters and block B consists
of two layers with 64 3x3 filters; both in combination with
batch normalization [18], and each followed by a 3x3 max
pooling layer and a drop-out layer (λ = 0.3) [32].

For both CNN models, block A is used as input, fol-
lowed by block B, and two fully connected layers of size
256. The only difference between the small (CNN-a) and
the large (CNN-b) model is the context used to classify a
frame: 9 and 25 frames are used for CNN-a and CNN-b re-
spectively. While plain CNNs do not feature any memory,
the spectral context allows the CNN to access surround-
ing information during training and classification. How-
ever, a context of 25 frames (250ms) is not enough to find
repetitive structures in the rhythm patterns. Therefore, the
CNN can only rely on acoustic, i.e., spectral features of the
signal. Nevertheless, with advanced training methods like
batch normalization, as well as the advantage that CNNs
can easily learn pitch invariant kernels, CNNs are well-
equipped to learn a task adequate acoustic model. For
training an initial learning rate of 0.001 is used.

4.3 Convolutional Bidirectional RNN

Convolutional recurrent neural networks (CRNN) repre-
sent a combination of CNNs and RNNs. They feature con-
volutional layers as well as recurrent layers. Different im-
plementations are possible. In this work, the convolutional
layers directly process the input features, i.e. spectrogram
representations, meant to learn an acoustic model (cf. 2D
image processing tasks). The recurrent layers are placed
after the convolutional layers and are supposed to serve as
a means for the network to learn structural patterns.

For this class of NN, the two versions differ in the fol-
lowing aspects: CBGRU-a features 2 recurrent layers with
30 GRUs each, uses a spectral context of 9 frames for con-
volution, and is trained on sequences of length 100; while
CBGRU-b features 3 recurrent layers with 60 GRUs each,
uses a spectral context of 13 frames, and is trained on se-
quences of length 400. For training an initial learning rate
of 0.0005 is used.

Table 1 recaps the information of the previous sections
in a more compact form. Figure 2 visualizes the modes
of operation of the different NN architectures on the input
spectrograms.

5. EVALUATION

For evaluation of the introduced NN architectures, the dif-
ferent models are individually trained on single data sets in
a three-fold cross-validation manner. For data sets which
comprise beat annotations, three different experiments are
performed (explained in more detail in section 5.2); using
data sets only providing drum annotations, just the drum
detection task is performed.

5.1 Data Sets

In this work, the different methods are evaluated using
three different data sets, consisting of two well-known and
a newly introduced set.

5.1.1 IDMT-SMT-Drums v.1 (SMT)

Published along with [7], the IDMT-SMT-Drums 2 data
set comprises tracks containing three different drum-set
types. These are: i. real-world, acoustic drum sets (ti-
tled RealDrum), ii. drum synthesizers (TechnoDrum), and
iii. drum sample libraries (WaveDrum). It consists of 95
simple drum tracks containing bass drum, snare drum and
hi-hat only. The tracks have an average length of 15s and
a total length of 24m. Also included are additional 285
shorter, single-instrument training tracks as well as 180
single instrument tracks for 60 of the 95 mixture tracks
(from the WaveDrum02 subset)—intended to be used for
source separation experiments. These additional single in-
strument tracks are used as additional training samples (to-
gether with their corresponding split) but not for evalua-
tion.

5.1.2 ENST Drums (ENST)

The ENST-Drums set [14] contains real drum recordings
of three different drummers performing on different drum
kits. 3 Audio files for separate solo instrument tracks

2 https://www.idmt.fraunhofer.de/en/business_
units/m2d/smt/drums.html

3 http://perso.telecom-paristech.fr/˜grichard/
ENST-drums/
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Input Features Target Functions
Spectrogram Beats Drums Beats

DT 3 3

BF 3 3 3

MT 3 3 3

Table 2. Overview of experimental setup. Rows repre-
sent individual tasks and show their input feature and target
function combinations.

as well as for two mixtures are included. Additionally,
accompaniment tracks are available for a subset of the
recordings—the so called minus-one tracks. In this work,
the wet mixes (contains standard post-processing like com-
pression and equalizing) of the minus-one tracks were
used. They make up 64 tracks of 61s average length and a
total length of 1h.

Evaluation was performed on the drum-only tracks
(ENST solo) as well as the mixes with their accompani-
ment tracks (ENST acc.). Since the ENST-Drums data set
contains more than the three instruments under observa-
tion, only the snare, bass, and hi-hat annotations were used.

5.1.3 RBMA Various Assets 2013 (RBMA13)

This new data set consists of the 30 tracks of the freely
available 2013 Red Bull Music Academy Various As-
sets sampler. 4 The sampler covers a variety of elec-
tronically produced music, which encompasses electronic
dance music (EDM) but also singer-songwriter tracks and
even fusion-jazz styled music. Three tracks on the sampler
do not contain any drums and are therefore ignored. An-
notations for drums, beats, and downbeats were manually
created. Tracks in this set have an average length of 3m
50s. The total length of the data set is 1h 43m.

This data set is different from the other two data sets in
three aspects: i. it contains quite diverse drum sounds, ii.
the drum patterns are arranged in the usual song-structure
within a full length track, and iii. most of the tracks contain
singing voice, which showed to be a challenge for systems
solely trained on music without singing voice. The annota-
tions for drums and beats have been manually created and
are publicly available for download. 5

5.2 Experimental Setup

To compare the different NN architectures, and evaluate
them in the context of ADT using joint learning of beat
and drum activations, the following experiments were per-
formed.

5.2.1 Drum Detection (DT)

In this set of experiments, the features as explained in
sec. 3.1 and target functions generated from the drum an-
notations described in sec. 3.3 are used for NN training.

4 https://rbma.bandcamp.com/album/various-
assets-not-for-sale-red-bull-music-academy-
new-york-2013

5 http://ifs.tuwien.ac.at/˜vogl/datasets/

SMT ENST RBMA13
solo acc. DT BF MT

GRUts [36] 92.5 83.3 75.0 - - -
BGRU-a 93.0 80.9 70.1 59.8 63.6 64.6
BGRU-b 93.3 82.9 72.3 61.8 64.5 64.3
CNN-a 87.6 78.6 70.8 66.2 66.7 63.3
CNN-b 93.4 85.0 78.3 66.8 65.2 64.8
CBGRU-a 95.2 84.6 76.4 65.2 66.1 66.9
CBGRU-b 93.8 83.9 78.4 67.3 68.4 67.2

Table 3. F-measure results for the evaluated models on
different data sets. The columns DT, BF, and MT show
results for models trained only for drum detection, trained
using oracle beats as additional input features, and simul-
taneously trained on drums and beats, respectively. Bold
values represent the best performance for an experiment
across models. The baseline can be found in the first row.

These experiments are comparable to the ones in the re-
lated work, since we use a similar setup. As baseline, the
results in [36] are used. The results of this set of experi-
ments allow to compare the performance of different NN
architectures for drum detection.

5.2.2 Drum Detection with Oracle Beat Features (BF)

For this set of experiments, in addition to the input features
explained in sec. 3.1, the annotated beats, represented as
the target functions for beats and downbeats, are included
as input features. As targets for NN training only the drum
target functions are utilized. Since beat annotations are re-
quired for this experiment, only data sets comprising beat
annotations can be used. Using the results of these experi-
ments, it can be investigated if the prior knowledge of beat
and downbeat positions is beneficial for drum detection.

5.2.3 Joint Drum and Beat Detection (MT)

This set of experiments represents the multi-task learning
investigation. As input for training, again, only the spec-
trogram features are used. Targets for training of the NNs
comprise, in this case, drum and beat activation functions.
As discussed in the introduction, in some cases it can be
beneficial to train related properties simultaneously. Beats
and drums are closely related, because usually drum pat-
tern are repetitive on a bar-level (separated by downbeats)
and drum onsets often correlate with beats.

The insight which can be drawn from these experi-
ments is whether simultaneous training of drums, beats,
and downbeats is beneficial. It is of interest if the result-
ing performance is higher than the one achieved for DT;
and also if it is below, comparable, or even surpasses the
results in the BF experiment series.

Table 2 gives an overview of the properties of the ex-
periments and the used feature/target combination.

5.3 Evaluation Method

To evaluate the performance of the different architectures
and training methods, the well-known metrics precision,
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Figure 3. Results for RBMA13 data set, highlighting the
influence of oracle beat features (BF) and multi-task learn-
ing (MT). While recurrent models (left and right) benefit,
convolutional models (center) do not.

recall, and F-measure are used. These are calculated for
drum instrument onsets as well as beat positions. True pos-
itive, false positive, and false negative onset and beat po-
sitions are identified by using a 20ms tolerance window.
This is in line with the evaluation in [36] which is used as
baseline for the experiments of this work. Note that other
work, e.g. [7, 25, 31], uses less strict tolerance windows of
30ms or 50ms for evaluation.

6. RESULTS AND DISCUSSION

Table 3 shows the F-measure results for the individual NN
architectures on the data sets used for evaluation. The re-
sults for BGRU-a and BGRU-b on the ENST data set are
lower than for the baseline, although the models should be
comparable. This is due to the fact that in [36] data aug-
mentation is applied. This is especially helpful in the case
of the ENST data set, since e.g. the pitches of the base
drums vary greatly over the different drum kits. The re-
sults for CNN-a are lower than the state of the art, which
implies that the context of 9 frames is too small to detect
drum events using a CNN. All other results on the ENST
and SMT data sets represent an improvement over the state
of the art. This shows that CNN with a large enough spec-
tral context (25 frames in this work) can detect drum events
better than RNNs. A part of the large increase for the ENST
data set can be attributed to the fact that CNNs can model
pitch invariance easier than RNNs.

The results for the MT experiments show the follow-
ing tendencies: For the BGRU-a and BGRU-b models, an
improvement can be observed when applying multi-task
learning. Compared to using oracle beats (BF) for train-
ing, the improvement is higher for BGRU-a and similar in
the case of BGRU-b. This result is interesting for two rea-
sons: i. although BGRU-a is trained on short sequences, an
improvement can be observed, and ii. the improvement is
comparable to that when using oracle beats (BF) although
the beat tracking results are low. This could imply that
multi-task learning is also beneficial for the acoustic model
of the system. As expected, the CNNs (CNN-a, CNN-
b) can not improve when using multi-task learning, but
rather the results deteriorate. In case of the convolutional-

BLSTM [2] 85.6
BGRU-a 46.4
BGRU-b 46.2
CNN-a 44.9
CNN-b 46.9
CBGRU-a 47.6
CBGRU-b 48.8

Table 4. F-measure results for beat detection for the multi-
task learning experiments compared to a state-of-the-art
approach (first row) on the RBMA13 set.

recurrent models, the result for CBGRU-a is similar to
BGRU-a. In case of CBGRU-b no improvement of drum
detection performance using multi-task learning can be ob-
served, although it is the case using oracle beats (BF). We
attribute this to the fact that CBGRU-b has enough capacity
for good acoustic modeling, while the low beat detection
results limit the effects of multi-task learning on this level.

Table 4 shows the F-measure results for beat and down-
beat tracking. The results are all below the state-of-the-art
beat tracker used as baseline [2]. This is due to several
factors. In [2], i. much larger training sets for beat and
downbeat tracking are used, ii. the LSTMs are trained on
full sequences of the input data, giving the model more
context, and iii. an additional music language model in the
form of a dynamic Bayesian network (DBN) is used.

The results for CNNs and CRNNs show that convolu-
tional feature processing is beneficial for drum detection.
The finding considering drum detection results for multi-
task learning are also promising. The low results of beat
and downbeat tracking are certainly a limiting factor and
probably the reason for the lack of improvement for MT
over DT in the case of BGRU-b. As a next step, to better
leverage multi-task learning effects, beat detection results
must be improved using similar techniques as in [2].

7. CONCLUSIONS

In this work, convolutional and convolutional-recurrent
NN models for drum transcription were introduced and
compared to the state of the art of recurrent models. The
evaluation shows that the new models are able to outper-
form this state of the art. Furthermore, an investigation
whether i. beat and downbeat input features are benefi-
cial for drum detection, and ii. this benefit is also achiev-
able using multi-task learning of drums, beats, and down-
beats, was conducted. The results show that this is the
case, although the low beat and downbeat detection results
achieved with the implemented architectures is a limiting
factor. While the goal of this work was not to improve
the capabilities of beat and downbeat tracking per se, fu-
ture work will focus on improving these aspects, as we be-
lieve this will have an overall positive impact on the per-
formance of the joint model. The newly created data set
consisting of freely available music and annotations for
drums, beats and downbeats will be an asset for this line
of research to the community.
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[14] Olivier Gillet and Gaël Richard. Enst-drums: an exten-
sive audio-visual database for drum signals processing.
In Proc. 7th Intl Conf on Music Information Retrieval
(ISMIR), 2006.
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ABSTRACT

Multiple performances of the same piece share similari-
ties, but also show relevant dissimilarities. With regard to
the latter, analyzing and quantifying variations in collec-
tions of performances is useful to understand how a mu-
sical piece is typically performed, how naturally sounding
new interpretations could be rendered, or what is peculiar
about a particular performance. However, as there is no
formal ground truth as to what these variations should look
like, it is a challenge to provide and validate analysis meth-
ods for this. In this paper, we focus on relative local tempo
variations in collections of performances. We propose a
way to formally represent relative local tempo variations,
as encoded in warping paths of aligned performances, in
a vector space. This enables using statistics for analyzing
tempo variations in collections of performances. We elab-
orate the computation and interpretation of the mean vari-
ation and the principal modes of variation. To validate our
analysis method despite the absence of a ground truth, we
present results on artificially generated data, representing
several categories of local tempo variations. Finally, we
show how our method can be used for analyzing to real-
world data and discuss potential applications.

1. INTRODUCTION

When performing music that is written down in a score,
musicians produce sound that subtly differs from what is
written. For example, to create emphasis, they can vary
the time between notes, the dynamics, or other instrument-
specific parameters, such as which strings to use on a violin
or how to apply the pedals on a piano. In this paper, we fo-
cus on variations in timing, contributing a method to detect
local tempo variations in a collection of performances.

Solving this problem is made difficult by the fact that it
is not clear what we are trying to find: there is generally
no ground truth that tells us what salient variations there
are for a given piece. Furthermore, it is difficult to discern
whether a given performance is ‘common’ or ‘uncommon’.

c© Jeroen Peperkamp, Klaus Hildebrandt, Cynthia C. S.
Liem. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Jeroen Peperkamp, Klaus Hilde-
brandt, Cynthia C. S. Liem. “A formalization of relative local tempo
variations in collections of performances”, 18th International Society for
Music Information Retrieval Conference, Suzhou, China, 2017.

To overcome this, we propose an approach for statistical
analysis of relative local tempo variations among perfor-
mances in a collection. To this end, we elaborate the com-
putation of the mean variation and the principal modes of
variation. The basis of the approach is the insight that after
normalization, the set of possible tempo variations, repre-
sented by temporal warping paths, forms a convex subset
of a vector space. We test our approach on artificially gen-
erated data (with controllable variations in a collection),
and on recorded real performances. We discuss two appli-
cations: analysis of tempo variations and example-guided
synthesis of performances.

2. RELATED WORK

2.1 Performance Analysis

Most closely related to the present work are the works
in [9, 11] and [21, 22], focusing on statistical comparison
of performances, targeting local tempo variations without
ground truth. [9, 11] focus especially on temporal warping
paths with respect to a reference performance. Further-
more, [10] analyzes main modes of variation in compara-
tive analysis of orchestral recordings. We differ from these
works in offering a more formalized perspective on varia-
tion, a more thorough and controlled validation procedure
on artificially generated data, and ways to perform analyses
with respect to a full collection of performances, beyond a
single reference performance.

Further work in comparative performance analysis con-
sidered features such as dynamics [6]: here, it was shown
that dynamic indications in a score do not lead to absolute
realizations of loudness levels. [8] and [1] provide compar-
ative analyses on many expressive features, although the
latter work also finds that musicians find it difficult to think
about the aspects of their performance in the quantitative
fashion that is common in the MIR literature.

The absence of a clear-cut ground truth also poses
challenges when automatically creating a natural-sounding
rendition of a piece of music, as noted in [3] as well as [26].
Indeed, the system in the latter work explicitly relies “on
a ‘correct’ or ‘appropriate’ phrase structure analysis”, sug-
gesting it is not trivial to get such an analysis.

Quite some work has also gone into the task of structure
analysis, e.g. [12, 14–16, 18, 19, 23]. It turns out, however,
that for some genres, the structure may be perceived am-
biguously, as observed with professional annotators [23],
performers [17] and listeners [24].
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2.2 Dynamic Time Warping

For obtaining temporal warping paths between perfor-
mances, we use Dynamic Time Warping (DTW). In a nut-
shell, DTW matches points from one time series to points
from another time series such that the cumulative distance
between the matched points is as small as possible, for
some suitable distance function; the matching can then be
interpreted as a warping path. A thorough overview of
DTW is given in [13].

3. FORMAL ANALYSIS FRAMEWORK

We start with a formalization of tempo variations and then
describe the proposed statistical analysis. The tempo vari-
ations we consider can be described by warping paths,
which can be obtained from recordings of performances
by using DTW.

3.1 Formal Properties

We wish to compare tempo variations between different
performances of a piece. In this section, we consider an
idealized setting in which only the local tempo is varied.
In the next section, we will discuss how this can be used
for analyzing variations in actual performances.

For our formal framework, we first need a representa-
tion of a performance. We will call the reference perfor-
mance g : [0, lg] → Rd, with lg the length of the perfor-
mance and d the dimensionality of some suitable feature
space in which the performance can be represented. Other
performances in a collection, displaying tempo variations
with respect to the reference performance, can be defined
as follows:

Definition 1. A performance of g with varied tempo is a
function f = g ◦ψ : [0, lf ]→ Rd, with lf and d defined as
above, and ψ : [0, lf ]→ [0, lg] a function with nonnegative
derivative, i.e., ψ̇ ≥ 0. We call ψ a tempo variation.

For the analysis of tempo variations between f and g,
we distinguish between average and relative tempo varia-
tion. The average tempo variation can be observed by look-
ing at the length of the interval over which the functions are
parametrized; it is simply the difference in average overall
tempo of each performance. Clearly, the longer the in-
terval, the slower the performance is on average. There
is more structure in the details, of course, which is what
the relative variations attempt to capture. Specifically, this
refers to an analysis of tempo variations given that the per-
formances are parametrized over an interval of the same
length, for instance, the unit interval.

Now, to implement the concept of relative tempo varia-
tions, we first reparametrize the performances over the unit
interval. Given f : [0, lf ] → Rd, we consider the nor-
malized performance f∗ = f ◦ ρ : [0, 1] → Rd, where
ρ : [0, 1] → [0, lf ] is given by ρ(t) = lf t. Now we can go
into more detail about these relative tempo variations.

3.1.1 Structure of the Set of Relative Tempo Variations

Relative tempo variations can be described by reparame-
trizations that relate the performances in question. Due to
the normalization of the performances, the reparametriz-
ations map the unit interval to itself. The relative tempo
variations ϕ and their derivatives ϕ̇ are characterized by
the following two properties:

Property 1. ϕ(0) = 0, ϕ(1) = 1.

Property 2. ϕ̇(n) ≥ 0 for any n ∈ [0, 1].

Examples of such relative tempo variations are shown
in Figure 1 (left), along with insets to see what happens
when one zooms in. When working with the normalized
performances, every performance with varied tempo f∗ of
a reference performance g∗ has the form f∗ = g∗ ◦ ϕ.

The benefit of splitting average and relative variation is
that the set of relative variations has a geometric structure:
the following lemma shows that it is a convex set in an
vector space. This enables us to use classical methods from
statistical analysis to analyze the relative tempo variations,
as explained in Section 3.2.

Lemma 1. Convex combinations of relative tempo varia-
tions are relative tempo variations.

Proof. Let α = (α1, . . . , αm) be a vector of nonnegative
numbers, αi ≥ 0, with unit `1 norm,

∑m
i=1 αi = 1, and

let ϕi : [0, 1] 7→ [0, 1] be relative tempo variations (1 ≤
i ≤ m). We show that ϕ =

∑m
i=1 αiϕi is a relative tempo

variation. As a sum of functions on the unit interval, ϕ is
also a function on the unit interval. Since the αi sum to 1,∑m

i=1 αiϕi(0) = 0 and
∑m

i=1 αiϕi(1) = 1, which means
that Property 1 holds. Finally, since all αi are nonnegative,
ϕ̇ ≥ 0 is also maintained.

3.2 Analysis of Prominent Variations

In the following, we consider a set of performances (with
varied tempo) and show how our approach allows us to
compute statistics on the set. Explicitly, we take the mean
and perform principal component analysis (PCA). As a
first step, we reparametrize the performances over the unit
interval [0, 1], as described above. We distinguish two
settings for our analysis. First, we describe a setting in
which we consider one reference performance. An exam-
ple of such a reference performance in practice is a ren-
dered MIDI, which has a linear timing to which we relate
the actual performances in the set. In the second setting,
we avoid the use of a reference performance by incorpo-
rating all pairwise comparisons between performances.

3.2.1 Comparing to the Reference Performance

Comparing a set of performances {f1, f2, . . . , fn} to a ref-
erence g∗ means obtaining for each normalized perfor-
mance f∗i the corresponding relative tempo variation ϕi,
such that f∗i = g∗ ◦ ϕi. Lemma 1 shows that we can build
a continuous set of relative tempo variations by building
convex combinations. Geometrically speaking, we con-
sider the simplex spanned by the ϕi. Though not needed
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Figure 1. Several reparametrizations ϕ relating professional human performances of Chopin’s Mazurka op. 30 no. 2 to a
deadpan MIDI version. Original ϕ with zoomed insets (left) and their derivatives ϕ̇ (right).

for our analysis, extrapolation out of the simplex is possi-
ble, as long as Property 2 is satisfied.

A particularly interesting convex combination for our
purposes is the mean of the set of performances. The mean
relative tempo variation ϕ̄ can be computed by setting all
the αi to the same value in Lemma 1 above. The mean
of the normalized performances {f∗i } is given as g∗ ◦ ϕ̄.
To obtain the mean of the performances, g∗ ◦ ϕ̄ is lin-
early rescaled to the average length of the performances
fi. The mean ϕ̄ gives information about which local tempo
variations away from g∗ are the most prevalent among the
performances under analysis. Of course, the mean does
not capture the variance in the set, for example, deviations
in opposite directions, as when some performers speed up
and others slow down, which would be evened out.

The variance in a set can be analyzed using PCA. To
perform a PCA on the set ϕi, we need a scalar product
on the space of relative tempo variations. Since these are
functions on the unit interval, any scalar product on this
function space can be used. For our experiments, we used
the L2-scalar product of the derivatives of the functions
(in other words the Sobolev H1

0 -scalar product). The rea-
son for using a scalar product of the derivatives, rather
than the function values, is that the derivatives describe
the variations in tempo, and the function values encode
the alignment of the performance. See Figure 1 (right) for
an example of how this brings out the variation. Once a
scalar product is chosen, we construct the covariance ma-
trix, whose entries are the mutual scalar products of the
functions ϕi − ϕ̄ (the distance of the tempo variations to
the mean). The eigenvectors of the covariance matrix yield
the principal modes of variation in the set ϕi. These ex-
press the main variations away from the mean in the set
and the eigenvalues indicate how much variance there is
in the set of performances by how much of the variance
is explained by the corresponding modes. The modes ex-
press the tendency of performers to speed up or slow down
observed in the set of performances.

3.2.2 Incorporating All Pairwise Comparisons

When using a reference performance, one has to choose
which performance to use as g∗, or to produce an artifi-
cial performance for g∗ (as we do in Section 4). This way,
the comparison becomes dependent on the choice of g∗,
which may not be desirable, as there may be ‘outlier’ per-
formances that would not necessarily be the best choice
for a reference performance (though other things can be
learned from them [17]).

To avoid the need to choose g∗, we propose an alterna-
tive analysis using all pairwise comparisons. This means
obtaining reparametrizations ϕ for every pair of perfor-
mances f∗ and g∗ such that f∗ = g∗ ◦ ϕ. This makes
sense, as it is not guaranteed that for three normalized per-
formances f∗, g∗ and h∗ and reparametrizations ϕi and ϕj

such that g∗ = f∗ ◦ ϕi and h∗ = g∗ ◦ ϕj , we would get
h∗ = f∗ ◦ϕi ◦ϕj . In other words, reparametrizations may
violate the triangle inequality, so we obtain more informa-
tion by taking into account all possible reparametrizations.

The same techniques can be applied once we have the
(extended) set of reparametrizations ϕ. That is, we can
take the mean of all the ϕ or perform a PCA on them. Em-
pirically, it turns out there tends to be repeated information
in the reparametrizations, which results in a certain amount
of natural smoothing when taking the mean; this effect can
be seen in Figure 3.

4. EXPERIMENTAL VALIDATION

In Section 3, we considered a collection of performances
with tempo variations as compared to a reference perfor-
mance. To perform the analyses described, we take the
following steps. First, we map the audio into some suitable
feature space; we take the chroma features implemented in
the MIRtoolbox [7] to obtain sequences of chroma vectors.
We then normalize these sequences to functions over the
unit interval. Finally, we use DTW to compute the relative
tempo variations ϕ that best align the performances.

Explicitly, let f∗, g∗ : [0, 1] → Rd be sequences of
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chroma vectors (in our case, d = 12, as analysis at the
semitone resolution suffices). Then DTW finds the func-
tion ϕ that satisfies Properties 1 and 2 and minimizes
‖f∗ − (g∗ ◦ ϕ)‖2, i.e., the L2 norm of the difference be-
tween f∗ and the reparametrized g∗. We generate ϕ in this
way for all performances in the collection.

Our goal is to analyze variations between performances.
Local tempo variation should be reflected in ϕ, provided
there is not too much noise and the same event sequence is
followed (e.g. no inconsistent repeats). The way we bring
out the local tempo variation is by taking the derivative ϕ̇
(cf. Section 3.2). A derivative larger/smaller than 1 indi-
cates that the tempo decreases/increases relative to the ref-
erence performance. Since the tempo variations are given
as a discrete functions, we need to approximate the deriva-
tives. We do this by fitting a spline to the discrete data and
analytically computing the spline’s derivative.

To avoid the ground truth issue mentioned in Section 2,
we devise several classes of artificial data, representing dif-
ferent types of performance variations for which we want
to verify the behavior of our analysis. We verify whether
the analysis is robust to noise and uniform variation in the
overall tempo (the scalar value mentioned in Section 3).
Furthermore, we consider different types of local tempo
variations, which, without loss of generalization, are in-
spired by variations typically expected in classical music
performances.

In the previous section, we mentioned two possible
analysis strategies: considering alignments to a reference
performance or between all possible pairs of performances.
Since the artificial data are generated not to have outliers,
it is difficult to apply the analysis that uses all possible
pairs to the artificial data. We therefore focus on the case
of using a single reference performance, although we will
briefly return to the possibility of using all pairs in Section
5.

4.1 Generating Data

The data were generated as follows. We start with a se-
quence g ∈ R12×m of m 12-dimensional Gaussian noise
vectors. Specifically, for each vector gi, each element gi,j
is drawn from the standard normal distribution N(0, 1).
We then generate a collection C of ‘performances’ based
on g, for seven different variation classes. We normalize
the vectors in C such that each element is between 0 and 1,
as it would be in natural chroma vectors. The classes are
defined as follows:

Class 1: Simulate minor noise corruption. A new sequence
c is generated by adding a sequence h ∈ R12×m of 12-
dimensional vectors, where each element hi,j ∼ N(0, 14 ),
so c = g + h. We expect this does not lead to any signifi-
cant alignment difficulty, so the derivative of the resulting
ϕ̄ (which we will call ˙̄ϕ) will be mostly flat.

Class 2: Simulate linear scaling of the overall tempo by
stretching the time. Use spline interpolation to increase the
number of samples in g, to simulate playing identically, but
with varying overall tempo. If there are n sequences gen-

erated, vary the number of samples from m− n
2 to m+ n

2 .
Since this only changes ‘performances’ on a global scale,
this should give no local irregularities in the resulting ˙̄ϕ.

Class 3: Simulate playing slower for a specific section
of the performance, with sudden tempo decreases towards
a fixed lower tempo at the boundaries, mimicking com-
mon tempo changes in an A-B-A song structure. Interpo-
late the sequence to have 1.2 times as many samples be-
tween indices l = 1

3m −
1
2X and h = 2

3m + 1
2X , where

X ∼ U(0, m
10 ) (the same randomly drawn X is used in

both indices). We expect ˙̄ϕ to be larger in the B part than
in A parts. Since in different samples, the tempo change
will occur at different times, transitions are expected to be
observed at the tempo change intervals.

Class 4: A variation on class 3. Simulate a disagreement
about whether to play part of the middle section slower.
Let k = h− l. With a probability of 0.5, do not interpolate
the section from l + k

3 to h− k
3 . We expect similar results

as for class 3 with the difference that in the middle of the
B part, we expect an additional jump in ˙̄ϕ. In the B part, ˙̄ϕ
will jump to a lower value, which should still be larger than
the value in the A part since only half of the performances
decrease the tempo.

Class 5: Simulate a similar A-B-A tempo structure as
in class 3, but change the tempo gradually instead of in-
stantly over intervals of size roughly 1

6m. From index
l1 = 1

4m −
1
2X to l2 = 5

12m + 1
2X , gradually slow

down to 120% of the original tempo by interpolating over
a quadratic query interval 1 , then gradually speed up again
the same way between indices h1 = 7

12m −
1
2X and

h2 = 3
4m + 1

2X . Here, X ∼ U(0, 1
18m) and is drawn

only once. Here again, we expect to see smaller values
of ˙̄ϕ in the A parts and a higher value in the B part. Due
to the gradual change in tempo, we expect a more gradual
transition between A-B and B-A.

Class 6: A variation on class 5. Instead of varying the
interval using X , vary the tempo. First speed up the
tempo by a factor 1.3 + Y times the starting value (with
Y ∼ U(− 1

10 ,
1
10 )), then gradually slow down to a lower

tempo and again speed up before the regular tempo of A
is reached again. Here we expect to see a peak in ˙̄ϕ at the
transition from A to B, before the lower value in the B part
is reached and again a peak in the transition from B to A.

Class 7: Another variation on class 5: disagreement about
speeding up or slowing down. Toss a fair coin (p = 0.5);
on heads, gradually increase the tempo between l1 and l2
to 1.2+Y times the starting value and decrease it again be-
tween h1 and h2 as in class 5. On tails, decrease the tempo
to 0.8+Y times the starting value between l1 and l2 and in-
crease it again between h1 and h2, with Y ∼ U(− 1

10 ,
1
10 ).

We expect this to give much more noisy alignment, though
there may be a more stable area in ˙̄ϕ where the tempos do
not change, even though they are different.

1 Normal linear interpolation corresponds to a constant tempo curve,
but if the tempo curve changes linearly, the query interval for interpola-
tion becomes quadratic.
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Figure 2. On the left: ˙̄ϕ for class 1–4. In the middle, ˙̄ϕ for class 5–7. On the right: the first three PCA modes for class 4.

When running our analysis on the classes of artificial
data thus generated, we always took m = 500 and gen-
erated 100 sequences for each class. We used Matlab to
generate the data, using 2017 as the seed for the (default)
random number generator. A GitHub repository has been
made containing the code for the analysis and for gener-
ating the test data 2 . The experiment was run 100 times,
resulting in 100 ϕ̄s and 100 sets of PCA modes; we took
the mean for both and show the results in figures: Figure 2
(left and middle) show the derivatives when taking the
mean (each time) as described in Section 3, while Figure 2
(right) shows what happens when taking the PCA, as also
described in Section 3. We show the first three modes
because these empirically turn out to cover most (around
90%) of the variance.

4.2 Discussion

We now briefly discuss what the analyses on artificial data
tell us. First of all, the observed outcomes match our ex-
pectations outlined above. This demonstrates that our anal-
ysis can indeed detect the relative tempo variations that we
know are present in performances of music.

We want to note that Figure 2 shows the derivatives of
the relative tempo variation. For example, for class 3, all
performances are shorter than the reference; therefore, they
are stretched during the normalization. Consequently, the
˙̄ϕ in part A in the normalized performance is smaller than

1. This effect could be compensated by taking the length
of the performances into account.

The PCA modes provide information about the varia-
tion in the set of performances. Figure 2 shows the first
three modes found in Class 4. These three modes are the
most dominant and explain more than 90% of the varia-
tion. The first mode has a large value in the middle part of
the B section. This follows our expectation as only 50% of
the performances slow down in this part, hence we expect
much variation in this part. In addition, there are small
values in the other parts of the B section. This is due to
the fact that the performances do not speed up at the same
time, so we expect some variation in these parts. Note that
the principal modes are linear subspaces, hence sign and
scale of the plotted function are arbitrary. An effect of this

2 https://github.com/asharkinasuit/
ismir2017paper.

is that the modes cannot distinguish between speeding up
the tempo or slowing it down. Since the first mode cap-
tures the main variation in the middle part of the B section,
in the second mode the transitions between A and B are
more emphasized. The third mode emphasizes the transi-
tions too.

Finally, we note that it becomes possible to zoom in on
a particular time window of a performance, in case one
wants to do a detailed analysis. A hint of this is shown in
Figure 1, left, where zoomed versions of ϕ are shown in
insets. We have defaulted in our experiments to analyz-
ing performances at the global level, and consider it future
work to explore what information will be revealed when
looking at the warping paths up close.

5. APPLICATIONS

Now that we have validated our approach, we describe sev-
eral applications in which our method can be employed.

5.1 Analyzing Actual Performances

As mentioned in Section 3, we can analyze relative dif-
ferences between a chosen reference performance and the
other performances, or between all possible pairs of per-
formances. We have access to the Mazurka dataset con-
sisting of recordings of 49 of Chopin’s mazurkas, partially
annotated by Sapp [21]. Note that our analysis can handle
any collection of performances and does not require anno-
tations. Since we have no ground truth, it is difficult to
make quantitative statements, but in this and the following
subsection, we will discuss several illustrative qualitative
examples.

In Figure 3, we show ˙̄ϕ for Mazurka op. 30 no. 2 for
both approaches. Taking all pairs into consideration results
in lower absolute values, as well as an apparent lag. For
both approaches, it turns out the most important structural
boundaries generally show up as the highest peaks. An-
other feature that stands out in both plots is the presence of
peaks at the beginning and end. These can be interpreted
as boundary effects, but we believe the final peak also is
influenced by intentional slowing down by the musicians
in a final retard [25].

Another example of applying the analysis on all pairs of
performances is given in Figure 4. Here, we see two more
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Figure 3. Sample showing ˙̄ϕ for Mazurka op. 30 no. 2,
comparing warping to a deadpan MIDI and warping ev-
erything to everything. Note the smoothing effect in the
latter case. Salient structural parts are indicated with verti-
cal lines: repeats (dotted) and structural boundaries (solid).

interesting features of the analysis. Firstly, it tends to hint
at the musicians’ interpretation of the structure of the piece
(as also in Figure 3); the start of the melody is indicated
with the vertical dashed line. Most performers emphasize
this structural transition by slowing down slightly before it.
However, the time at which they slow down varies slightly
(compare this to e.g. class 3 and 5 of our artificial data).
This will show in ϕ, and consequently in ˙̄ϕ . Secondly, we
note that ornaments tend not to vary tempo as much: the
thin section in the figure is closer to 1 than the peak near
the start of the melody. This helps corroborate Honing’s
results, e.g. [2, 5].

5.2 Guiding Synthesis

For the performances in question, we know the piece that is
performed and we have a score available. A direct acous-
tic rending of the score (via MIDI) would sound unnatu-
ral. Now, reparametrizations and their means are just func-
tions, which we can apply to any other suitably defined
function. Following the suggestion in [20] that a generated
‘average’ performance may be more aesthetically pleasing,
we can now use these functions for this: by applying the ϕ̄
derived from a set of performances to a MIDI rendition, a
more natural-sounding result will indeed be obtained. As
an example, we ran our analysis on Chopin’s mazurka op.
24 no. 2 with the MIDI rendition as reference performance
and applied the resulting reparametrization to the MIDI 3 .
Note that, as in Figure 3, the tempo naturally decreases to-
wards the end.

Applying ϕ̄ directly to audio is not the only thing that
we can do. One possibility is exaggeration of tempo varia-
tion. To amplify sections that show major tempo variation,
we can modify the ϕ by squaring it. Alternatively, to better
display the tempo variations in an individual performance,
we can rescale the function ϕ− ϕ̄, capturing the difference
of the actual performance to the mean in a performance

3 See https://github.com/asharkinasuit/
ismir2017paper, which includes the original for comparison.
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Figure 4. ˙̄ϕ of the start of mazurka op. 17 no. 4. The start
of the melody is marked with a vertical dashed bar, while
the delicatissimo section is drawn in a thinner line.

collection. Such modifications offer useful analysis tools
for bringing out more clearly the sometimes subtle effects
employed by professional musicians.

Another possibility is to take ϕ from various sources,
e.g., by generating ϕ for several different reference perfor-
mances, and applying them to a MIDI rendition with vari-
ous coefficients to achieve a kind of mixing effect. Finally,
the principal modes of variation in the set can be used to
modify the tempo in which the MIDI is rendered. Exam-
ple audio files are available on request for any of these dif-
ferent ways of rendering musical scores using information
from actual performances.

6. CONCLUSIONS AND FUTURE WORK

We have presented a formal framework for analyzing rel-
ative local tempo variations in collections of musical per-
formances, which enables taking the mean and computing
a PCA of these variations. This can be used to analyze a
performed piece, or synthesize new versions of it.

Some challenges may be addressed in the future. One
would be to give a more rigorous interpretation to the case
of taking all pairwise comparisons into account. Further-
more, quantification of variation still presently is used in
a relative fashion; our analysis indicates some amount of
variation, but further interpretation of this amount would
be useful. One might also substitute other DTW variants
that can e.g. deal more intuitively with repeat sections [4].

Furthermore, while the studied variation classes were
inspired by local tempo variations in classical music per-
formances, it should be noted that our framework allows
for generalization, being applicable to any collection of
alignable time series data. Therefore, in future work, it
will be interesting to investigate applications of our pro-
posed method on other types of data, such as motion track-
ing data.
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ABSTRACT

Recently, machine-learning techniques have been success-
fully used for the generation of complex artifacts such as
music or text. However, these techniques are still unable to
capture and generate artifacts that are convincingly struc-
tured. In particular, musical sequences do not exhibit pat-
tern structure, as typically found in human composed mu-
sic. We present an approach to generate structured se-
quences, based on a mechanism for sampling efficiently
variations of musical sequences. Given an input sequence
and a statistical model, this mechanism uses belief propa-
gation to sample a set of sequences whose distance to the
input sequence is approximately within specified bounds.
This mechanism uses local fields to bias the generation.
We show experimentally that sampled sequences are in-
deed closely correlated to the standard musical similarity
function defined by Mongeau and Sankoff. We then show
how this mechanism can be used to implement composi-
tion strategies that enforce arbitrary structure on a musical
lead sheet generation problem. We illustrate our approach
with a convincingly structured generated lead sheet in the
style of the Beatles.

1. INTRODUCTION 1

Recent advances in machine learning, especially deep re-
current networks such as LSTMs, led to major improve-
ments in the quality of music generation [7, 10]. They
achieve spectacular performance for short musical frag-
ments. However, musical structure typically exceeds the
scope of statistical models. As Waite recently wrote, the
music produced by recurrent models tend to lack a sense
of direction and becomes boring after a short while [15].
Pionneering works on music composition with LSTMs al-
ready showed how some structure, such as chord struc-
ture [6] or metrical structure [5] can be spontaneously cap-

1 Authors are listed alphabetically: Pachet originated the general problem and contributed
musical examples; Papadopoulos developed and implemented the technical solution especially
the integration with the regular belief propagation model, devised and performed the evaluation
procedure; Roy brought the original idea and the technical solution, developed the first prototype
and the structured lead sheet generation procedures.

c© François Pachet, Alexandre Papadopoulos, Pierre Roy.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: François Pachet, Alexandre Pa-
padopoulos, Pierre Roy. “Sampling Variations of Sequences for Struc-
tured Music Generation”, 18th International Society for Music Informa-
tion Retrieval Conference, Suzhou, China, 2017.

tured, but the general problem of generating music with
repetitive long-term structure remains open. In this paper,
we propose a method to explicitly enforce such structure in
a controlled way, in a “templagiarism” fashion [2, p. 49].

Musical structure is the overall organisation of a compo-
sition into sections, phrases, and patterns, very much like
the organisation of a text. The structure of musical pieces
is scarcely, if ever, linear as it essentially relies on the
repetition of these elements, possibly altered. For exam-
ple, songs are decomposed into repeating sections, called
verses and choruses, and each section is constructed with
repeating patterns. It has been shown that the listeners’
emotional arousal responses to music is correlated with the
degree of similarity between musical fragments (high for
repetitions, moderate for variations, and least for contrast-
ing segments) [9]. In fact, the striking speech to song il-
lusion discovered by [4] shows that repetition truly creates
music, for instance by turning speech into music. This is
further confirmed by [11] who observed that inserting arbi-
trary repetition in non-repetitive music improves listeners
rating and confidence that the music was written by a hu-
man composer.

Figure 1. The last eight bars of “Strangers in the Night”.

Variations are a specific type of repetition, in which the
original melody is altered in its rhythm, pitch sequence,
and/or harmony. Variations are used to create diversity and
surprise by subtle, unexpected changes in a repetition. The
song “Strangers in the Night” is a typical 32-bar form with
an AABA structure consisting of four 8-bar sections. The
three A sections are variations of each other. The last A
section, shown in Figure 1, consists of a two-bar cell which
is repeated three times. Each occurrence is a subtle vari-
ation of the preceding one. The second occurrence (bars
3-4) is a mere transposition of the original pattern by one
descending tone. The third instance (bars 5-6) is also trans-
posed, but with a slight modification in the melody, which
creates a surprise and concludes the song. Bars 5-6 are
both a variation of the original pattern in bars 1-2. Cur-
rent models for music generation fail to reproduce such
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long-range similarities between musical patterns. In this
example, it is statistically unlikely that bars 5-6 be almost
identical to bars 1-2.

Our goal is to generate such structured musical pieces
from statistical models. Our approach is to impose a prede-
fined musical structure that specifies explicitly repetitions
and variations of patterns and sections, and use a statistical
model to generate music that “instantiates” this structure.
In this approach, musical structure is viewed as a procedu-
ral process, external to the statistical model.

Our approach subsumes previous attempts at generating
music with an imposed long-term structure with Markov
models such as [1]. Their approach lacks both a variation
mechanism and a constrained Markov model. As a result,
it is limited to strict repetitions of patterns. Furthermore,
the use of ad hoc joining techniques to glue copied frag-
ments, violates the Markov model, resulting in unnatural
transitions.

An essential ingredient to implementing our approach
is a mechanism to generate variations of a given musical
pattern from a statistical model. Although it is impossi-
ble to characterise formally the notion of variation, it was
shown that some measures of melodic similarity are effi-
cient at detecting variations of a theme [12]. We propose
to use such a similarity measure in a generative context to
sample from a Markov model, patterns that are similar to a
given pattern. This method is related to work on stochas-
tic edit distances [3, 14], but is integrated as a constraint
in a more general model for the generation of musical se-
quences [13]. Moreover, our approach relies on an exist-
ing similarity measure rather than on labeled data (pairs of
themes and related variations), which is not available. Sim-
ilar approaches exist in the context of text generation. For
example, [8] propose a model using a technique based on
skip vectors. They train a model that learns the similarity
between sentences. Using this model, they can predict the
semantic relatedness of two sentences, a standard similar-
ity measure for text, but they can also generate sentences
similar to an existing sentence.

We remind the Mongeau & Sankoff similarity mea-
sure [12] between melodies, and then, we describe our
model for sampling melodic variations based on this simi-
larity, which we validate experimentally, Finally, we show
examples of variations of a melody, and a longer, struc-
tured musical piece generated with an imposed structure.

2. MELODIC SIMILARITY

The traditional string edit distance considers three editing
operations: substitution, deletion, and insertion of a char-
acter. Mongeau and Sankoff [12] add two operations mo-
tivated by the specificities of musical sequences, and in-
spired by the time compression and expansion operations
considered in time warping. The first operation, called
fragmentation, involves the replacement of one note by
several, shorter notes. Similarly, the consolidation opera-
tion, is the replacement of several notes by a single, longer
note. Mongeau and Sankoff proposed an algorithm to com-
pute the similarity between melodies in polynomial time.

Considering melodies as sequences of notes, the algorithm,
based on dynamic programming, computes MGD(A,B),
the measure of similarity between the sequences of notes
A and B. Note that this is not a distance, in particular
MGD(A,B) is not necessarily equal to MGD(B,A).

The Mongeau & Sankoff measure is well-adapted to the
detection of variations, but has a minor weakness: there is
no penalty associated with fragmenting a long note into
several shorter notes of same pitch and same total dura-
tion. The same applies to consolidation. This is not suited
to a generative context, as fragmentation or consolidation
change the resulting melody.

In the dynamic programming recurrence equation given
in their paper [12], Mongeau and Sankoff introduce var-
ious weight functions, denoting predefined local weights
associated with the basic editing operations (substitution,
deletion, insertion, fragmentation and consolidation). We
modify the original measure by adding a penalty p to the
weights of the consolidation and fragmentation operations.

The weight associated with a fragmentation of a note ai
into a sequence of notes bj−k+1, . . . , bj is:

wfrag(ai, bj−k+1, . . . , bj) = wpitch(ai, bj−k+1, . . . , bj)

+ k1n(ai, bj−k+1, . . . , bj) + p

For consolidation, a similar extra-weight is added. The
consolidation weight is defined by:

wcons(ai, bj−k+1, . . . , bj) = wpitch(ai, bj−k+1, . . . , bj)

+ k1n(ai, bj−k+1, . . . , bj) + p.

3. A MODEL FOR THE GENERATION OF
MELODIC VARIATIONS

Given an original theme, i.e. a melodic fragment, we gen-
erate variations of this theme by sampling a specific graph-
ical model. This graphical model is a modified version of
the general model of lead sheets introduced by [13]. We
now briefly describe this general model and explain how
we bias it to produce only melodies at a controlled Mon-
geau & Sankoff distance from the theme, the core technical
contribution of this paper. For full explanations and imple-
mentation details, we refer the reader to [13].

3.1 The Model of Lead Sheets

The overall model comprises two graphical models, one
for chord sequences, one for melodies. Both models are
based on a factor graph that combines a Markov model
with a finite state automaton. The Markov model, trained
on a corpus of lead sheets, provides the stylistic model.
The automaton represents hard temporal constraints that
the generated sequences should satisfy, such as metrical
properties (e.g., an imposed total duration) or user imposed
temporal constraints.

Each factor graph is made of a sequence of variables,
represented with circles, encoding the sequence of ele-
ments, related to unary and binary factors, represented by
squares. In this model, a variable is not associated with
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Figure 2. The two-voice model for lead sheet generation

a specific temporal position in the sequence, but the val-
ues it takes specifies its temporal position. Each value is
a chord or a note e, with a fixed duration d(e) along with
its temporal position t in the sequence. This is a very pow-
erful property of this model. It allows us to specify unary
temporal constraints, e.g., the second bar should start with
a rest. It also allows us to specify harmonic relations be-
tween the chord sequence and the melody, e.g., the note
at time t should be compatible with the chord at time t.
Crucially, we will exploit this property to implement our
variation mechanism.

A binary factor is a conditional probability
f ((e, t)|(e′, t′)) on transitions between elements. In [13],
the authors use binary factors to combine the Markov
transition probabilities with the finite-state automaton
transitions. Harmonic relationship between chords and
notes are also specified by binary factors.

The graphical model defines a distribution
p(e1, . . . , en) over the sequence of variables defined
by the product of all unary and binary factors. A belief
propagation-based procedure samples successively the two
models by taking into account partially filled fragments
and propagating their effect to all empty sections.

3.2 Generating Variations of a Theme

We introduce an extra binary factor β(e|t, e′): the proba-
bility of placing element e at time t and preceded by ele-
ment e′. We will use β to implement the variation mech-
anism. In practice, this additional binary factor is simply
multiplied with the existing binary factors, without affect-
ing the structure of the model on Figure 2. The probability
p′ of a sequence in the resulting model becomes:

p′(e1, . . . , en) = p(e1, . . . , en)
n∏

i=2

β(ei|t, ei−1).

We set the value of β(e|t, e′) according to a “localised”
similarity measure between the sequence [e′, e] and the
fragment of the theme between t − d(e′) and t + d(e).
Biases are set so that a bias of 1 does not modify the prob-
ability of putting element e at time t after e′, and a bias less
than 1 decreases this probability.

The lead sheet in Figure 3 shows the first four bars of
“Solar” by Miles Davis. Suppose we train a lead sheet
model on a corpus of all songs by Miles Davis. Sampling

Figure 3. The first four bars of “Solar”, by Miles Davis.

this model produces new lead sheets in the style of Miles
Davis, but not necessarily similar to Solar specifically. To
favour sequences with the same notes as the theme is to set
the β factors so that:

• β(n|t, n′) = 1 if the melodic fragment consisting of
note n′ followed by note n at position t appears in
the theme, e.g., we set β(C5|t = 1.5, rest) = 1 for
note C5 dotted quarter note;

• β(n|t, n′) < 1 otherwise, and the value of β(n|t, n′)
will be set to very small values (close to zero), if the
melodic fragment made by n′ and n at time t is very
different, musically, from the corresponding melodic
fragment in the theme, e.g.,β(F44|t = 1.5,G25) �
1. On the contrary, if the two fragments are very
similar, musically, the value of β(n|t, n′) will be set
to a value closer to 1, e.g.,β(C5|t = 1.5, rest)� 0
for note C5 quarter note.

More precisely, we evaluate the similarity between each
possible note n at a given position t, preceded by note n′ in
the generated sequence, and the notes in the theme around
position t. We then set each bias β(n|t, n′) based on this
similarity measure.

Technically, for every candidate note n, we consider
all potential temporal positions t and all potential prede-
cessors n′. We compute MGD([n′, n], t), the Mongeau
& Sankoff similarity between the two-note melody [n′, n]
and the melodic fragment of the theme between time
t − d(n′) and t + d(n), where d(n) is the duration of the
note n, i.e. the melodic fragment that would be replaced by
placing the melody [n′, n] at time t − d(n′). The notes of
the theme that overlap the time interval [t−d(n′), t+d(n)]
are trimmed so that the extracted melody has the same du-
ration as the candidate notes. Similarly MGD([n′], t) de-
notes the similarity of the one-note sequence [n′] starting
at t− d(n′). We call those similarities localised Mongeau
& Sankoff similarity measures. The idea is that the simi-
larity measure obtained by summing those localised mea-
sures over a complete sequence approximates the actual
Mongeau & Sankoff similarity. This will be confirmed ex-
perimentally in the next section.

To convert the similarity measure into a weight between
0 and 1, we rescale those values to the [0, 1] interval, and
then invert their order, so that a value of 1 is the closest
to the theme, and 0 the furthest away. Finally, we expo-
nentiate the result, so that the logarithm of the product of
the biases achieved by the model is proportional to the ap-
proximated Mongeau & Sankoff similarity. Formally, we
define β(n|t, n′) as follows, where MGDmax is the maxi-
mal value of localised Mongeau & Sankoff similarities:

β(n|t, n′) = exp

(
1− MGD([n′, n], t)−MGD([n′], t)

MGDmax

)
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3.3 Controlling the Similarity

We define an additional mechanism to control the inten-
sity of the variation mechanism, i.e. the extent to which
the generated melodies should be similar to the imposed
theme. We introduce a parameter α, which is used to ad-
just the values of the biases β to new values β′, defined as
β′(n|t, n′) = max(0, (1−α).β(n|t, n′)+α). In theory, α
ranges from−∞ to 1: a very small value will cause almost
all adjusted biases β′ to be equal to 0, except when β was
very close to 1, leading to melodies highly similar to the
theme. Conversely, when α is 1, all adjusted biases β′ are
equal to 1, and have no effect. The interesting, non-trivial,
behaviour is obtained with in-between values, which can
be chosen by the user of the variation mechanism. How-
ever, the range of values where the non-trivial behaviour is
observed depends on a particular corpus and a given theme.
This means that a specific value of α has no general se-
mantics, which hinders usability. As a result, we calibrate
the range of α, by estimating the values for which the non-
trivial behaviour occurs, given a specific corpus and theme.
We estimate the values α− and α+ such that the average
value of all adjusted biases β′ is a given value close to 0
or close to 1, respectively. We estimate those values with a
simple binary search. Given those two values, the user of
the system then sets a parameter σ ∈ [0, 1], the strictness
of the variation mechanism, and the actual value α is de-
duced by setting α = σ(α+ − α−) + α−. We evaluate the
effect of σ in practice in the next section.

4. EXPERIMENTAL RESULTS

Our approach relies on the intuition that local similarities,
favoured by the biased model, will result in a global sim-
ilarity between the generated melodies and the theme. In
this section, we evaluate how the choice of the value for the
parameter σ influences the Mongeau & Sankoff similarity
between the generated melodies and the original theme.
In particular, we show that the biased model favours se-
quences closer to the theme and penalises sequences less
similar to the theme. We then explain the result more ana-
lytically, for σ = 0. We first show that applying the bias to
the model approximates the localised Mongeau & Sankoff
similarity, and then we show that this localised Mongeau
& Sankoff similarity is a good approximation of the actual,
global Mongeau & Sankoff similarity.

In the experiments below, the theme is the melody in
the first four bars of “Solar” (Miles Davis, Figure 3). The
training corpus contains 29 lead sheets by Miles Davis. In
each experimental setup, we build a general model of 4-bar
lead sheets in the style of Miles Davis, called the unbiased
model, and then, we bias the model to favour the theme
with some value for σ. Actual examples of variations at
various distances are shown in Section 5.1.

4.1 Correlation between the Biases and the Mongeau
& Sankoff Distance

For one value of σ, we generate 10 000 variations of the
original theme (first four bars of “Solar”). For each se-

quence, we compute its probability po in the unbiased
model and its probability pb in the biased model, and then
consider the ratio pb/po. This probability ratio shows
by how much the sequence has been favoured, for values
greater than 1, or conversely penalised, for values less than
1, in the biased model. On Figure 4, points in blue are se-
quences generated with the most biased model, i.e.σ = 0.
For each sequence, we plot its probability ratio, on a log
scale, against its Mongeau & Sankoff similarity with the
theme. We observe that the logarithm of the probability
ratio tends to decrease linearly as the Mongeau & Sankoff
distance with the theme increases. Sequences at a distance
less than 75 from the theme are boosted while sequences
at a distance more than 75 from the theme are hindered.
Points in black are sequences generated with σ = 0.95, i.e.
almost no bias at all. We observe that most sequences have
a probability ratio of 1, i.e. that the biased model hardly af-
fects the probability of sequences. Only sequences very far
from the theme have their probability slightly decreased.
Points in the red are generated with σ = 0.5. They display
an intermediate behaviour as expected.
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Figure 4. Sequence probability ratio (log) against Mon-
geau & Sankoff similarity to theme. Sequences in blue, red
and black have been generated with σ = 0, σ = 0.5, σ =
0.95, respectively.

4.2 Explaining the Correlation

We explain the correlation observed by the application of
two successive approximations. We concentrate on the
case where σ = 0, but similar results are obtained with
other values. We can break our analysis in three steps.

First, we note that for a given sequence, its probabil-
ity ratio is equal, by definition of the biased model, to the
product of all the local biases applied to each element of
the sequence, up to a normalisation factor. We verified
this experimentally too: for each generated sequence, we
computed the local bias of each of the elements of the se-
quence, and computed the product of those local biases.
We observed that this product is perfectly correlated with
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the ratio of probabilities of the sequence. Second, we show
how the probability ratio compares with the approximated
Mongeau & Sankoff similarity measure obtained by sum-
ming the localised Mongeau & Sankoff similarity mea-
sures. For each sequence, we sum, over all its elements,
the localised Mongeau & Sankoff that was used when com-
puting the biases, as explained in Section 3.2. Then, we
compare this sum to the product of the local biases, equal
to the probability ratio. We plot the result on Figure 5. We
observe that the approximated Mongeau & Sankoff simi-
larity measure is tightly correlated with the logarithm of
the product of the local biases, i.e., the logarithm of the
product of the local biases approximates closely enough
the sum of the localised Mongeau & Sankoff distances.
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Figure 5. The sum of localised Mongeau & Sankoff sim-
ilarity measures against the product of local biases (log),
for σ = 0

Finally, we show that this approximated Mongeau &
Sankoff similarity measure approximates the actual Mon-
geau & Sankoff similarity measure. On Figure 6, we plot
for each sequence, the approximate versus the actual simi-
larity measure. We observe that, although the actual mea-
sure is a global, dynamic programming-based measure, it
is adequately approximated by summing the localised ver-
sions. This is probably because the localised measure cap-
tures sufficiently the effect of a note on the global similar-
ity measure.

5. GENERATING STRUCTURED LEAD SHEETS

We show examples of melodic variations produced with
our techniques, to give a concrete illustration of the varia-
tion mechanism. Then, we use the variation mechanism as
the key building block to generate structured lead sheets 2 .

5.1 Melodic Variations

Figure 7 shows six melodic variations of the first four bars
of “Solar”, by Miles Davis. These variations were created

2 All examples are available on http://www.flow-machines.
com/ismir-examples/
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Figure 6. The sum of localised Mongeau & Sankoff sim-
ilarity measures against the actual Mongeau & Sankoff
measure, for σ = 0

using a model trained on 29 songs by Miles Davis (Sec-
tion 4). The variations are presented in increasing order of
Mongeau & Sankoff distance with the original theme (Fig-
ure 3). Note that the variations are increasingly different
from the theme, both rhythmically and melodically.

(a) Mongeau & Sankoff distance 12: highly similar to the theme

(b) Distance 86, minor enrichments in bars 1 and 3

(c) Distance 87, minor enrichments in bars 1 and 3

(d) Distance 224, with major differences in bars 2 and 3

(e) Distance 285, interesting triplet rhythm in bar 1

(f) Dist. 295, large initial interval (octave) and end of bar 3 differs
from other variations

(g) Dist. 906, first bar uses a rhythm similar that of “Miles Ahead”
(Miles Davis), and bar 3 is introduces a new rhythm, similar to that
of the original theme, except with dotted quarter notes

Figure 7. Several variations of the first four bars of “So-
lar”, by increasing Mongeau & Sankoff distance.
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5.2 Enforcing Structure

We describe our strategy for automatic composition of
structured lead sheets. We use the structure of “In a Senti-
mental Mood” (Duke Ellington, Figure 8). This song has a
classical AABA 32-bar structure preceded by a pickup bar:

• Sections: Pickup: bar 1; A1: bars 2 to 9, A2: bars 2
to 8 and bar 10, B: bars 11 to 18; A3: bars 19 to 26.

• Bar 12 is a transposed variation of bar 11;

• Bars 15-16 are exact copies of bars 11-12;

• The last bar 26 is a variation of bar 10, the ending of
Section A2.

Figure 8. “In a Sentimental Mood” by Duke Ellington.
Red boxes correspond to the basic blocks induced by the
structure of the piece.

We illustrate our approach with an automatically gener-
ated lead sheet that conforms to this structure. This struc-
ture induces a segmentation of the lead sheet into contigu-
ous blocks of music. We transform the description of the
structure into a procedure that executes it. The first occur-
rence of each block is generated using the general model
of lead sheets. Subsequent occurrences, if any, are copied
from the first occurrence. If specified by the structure de-
scription, we use the variation mechanism to obtain a vari-
ation instead of an exact copy, with a strictness that may be
specified by the structure description.

Each block may appear in several places, but has been
generated only once, without taking into account all possi-
ble contexts. This may have the adverse effect of creating
awkward transitions that the model would not have created.
In these situations, we systematically apply the variation
mechanism to ensure seamless transitions between blocks.
Since these variations are not specified by the structure, we
impose a very strict variation to ensure minimal differences
with the structure description.

The chords are generated by the general model of lead
sheets, either before the melody or after. In fact, there is
often structure in the chord sequence too. For example,
bars 4-5 of “In a Sentimental Mood” are a transposition of
bars 2-3. We can apply the same approach, with a different
notion of distance on chords.

Figure 9 shows a lead sheet with this structure and gen-
erated from a stylistic model of the Beatles (trained from

Figure 9. A lead sheet with the structure of “In a Senti-
mental Mood” but in the style of the Beatles. Note that
bar 12 is a transposed variation of bar 11, as in the origi-
nal song. The ending is also a variation of the ending of
Section A1.

a corpus with 201 lead sheets by the Beatles). The music
does not sound similar to “In a Sentimental Mood” at all,
but its structure, with multiple occurrences of similar pat-
terns, make it feel like it was composed with some inten-
tions. This is never the case of structureless 32-bar songs
composed from the general model. Each part of the lead
sheet has a strong internal coherence. The melody in the
A parts use mostly small steps and fast sixteenth notes,
many occurrence of a rhythmic pattern combining a six-
teenth note with a dotted eighth note. The B part uses
many leaps (thirds, fourth and fifth) and a regular eighth
note rhythm. This internal coherence is a product of the
imposed structure. For instance, in the B part, four out
of eight bars come from a single original cell, consisting
of bar 11. The fact that the A and B parts contrast with
one another is also a nice feature of this lead sheet. This
contrast simply results from the default behaviour of the
general model of lead sheets.

6. CONCLUSION

We have presented a model for sampling variations of
melodies from a graphical model. This model is based on
the melodic similarity measure proposed by [12]. Techni-
cally, we use an approximated version of the Mongeau &
Sankoff similarity measure to bias a more general model
for the generation of music. Experimental evaluation
shows that this approximation allows us to bias the model
towards the generation of melodies that are similar to the
imposed theme. Moreover, the intensity of the bias may be
adjusted to control the similarity between the theme and
the variations. This makes this approach a powerful tool
for the creation of pieces complying with an imposed mu-
sical structure. We have illustrated our method with the
generation of a long structured lead sheet. A pop music
album is currently being produced using this method.
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ABSTRACT

Rāgas in Indian Art Music have a florid dynamism asso-
ciated with them. Owing to their inherent structural intri-
cacies, the endeavor of mapping melodic contours to mu-
sical notation becomes cumbersome. We explore the po-
tential of mapping, through quantization of melodic con-
tours and listening test of synthesized music, to capture the
nuances of rāgas. We address both Hindustani and Car-
natic music forms of Indian Art Music. Two quantization
schemes are examined using stochastic models of melodic
pitch. We attempt to quantify the salience of rāga per-
ception from reconstructed melodic contours. Perception
experiments verify that much of the rāga nuances inclu-
sive of the gamaka (subtle ornamentation) structures can
be retained by sampling and quantizing critical points of
melodic contours. Further, we show application of this re-
sult to automatically transcribe melody of Indian Art Mu-
sic.

1. INTRODUCTION

Melody contours are often perceived as continuous func-
tions though generated from notes which assume discrete
pitch values. The rendition of a rāga, the melodic frame-
work of Indian Art Music (IAM), is a florid movement
across notes, embellished with suitable ornamentations
(gamakas). Several engineering approaches to analyse
and/or model pitch contours rely on ‘stable’ notes [5, 12];
yet, it contradicts the perceptions and claims of musicians
in both Carnatic and Hindustani forms of music and also
that of detailed experiments which assert that it is actu-
ally the manner of approaching notes that characterizes a
rāga [1, 6]. Algorithms to automatically align note tran-
scription to melodic contours show promise more at a
rhythm cycle level rather than at a note level [21], lead-
ing to a hypothesis that it is necessary to study the role of
pitch in rendering notes rather than finding / transcribing

c© Ranjani, H. G., Deepak Paramashivan, Thippur V.
Sreenivas. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Ranjani, H. G., Deepak
Paramashivan, Thippur V. Sreenivas. “Quantized melodic contours in
Indian Art Music Perception: Application to transcription”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.
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Figure 1. [Color Online] Contour of a vocal melodic clip
(rendition by Vid. Deepak Paramashivan) in Thodi rāga of
Carnatic music form (tonic frequency at 146.83 Hz). The
transcribed notes correspond to ‘MaPaGa’. The presence
of ornamentations pose difficulty for transcription.

notes from pitch contours [11]. The difficulty involved in
identifying notes from a rendered melodic contour can be
seen in Figure 1.

In this work, we analyze pitch contours in an attempt to
understand (i) how musicians possibly assess a correctly
rendered note (ii) how they approach subsequent note(s) in
a rāga. We explore the possibility to incorporate this un-
derstanding to engineer an automated framework to repre-
sent a rāga in terms of note sequences. A perceptual study
of the effects of two quantization schemes on rāga char-
acteristics (rāga-bhava) is explored. For a more detailed
exposition of rāgas in Indian Art Music, interested readers
can refer to [19, 20].

1.1 Complexity of Pitch Contours in Indian Art Music

A rāga contains 3 structures of information : (i) Pitch po-
sitions of notes (swarasthāna ) (ii) Ornamentation of notes
(Gamaka) (iii) Note movement (swarasanchāra). All the
three structures are coupled in a rāga rendition. The note
position is embellished with gamakas, and is also depen-
dent on the note transitions themselves.

In [13], different notes and their transitions are stud-
ied and classified as ‘inflected intervals’, ‘transient notes’
and ‘transient inflexions’, while acknowledging that musi-
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cal insight and knowledge is necessary to distinguish be-
tween different transitions.

From an engineering perspective, in a rāga, we observe
that inspite of all such note transitions detected at both finer
and coarser levels, the peaks, valleys and stable regions
correspond to discrete pitch values with an error factor. It
is also logical that a musician perceives these points to as-
sess if the intended note has been reached 1 . The salience
of peaks, valleys and stable regions is utilized for motif
spotting in Carnatic music in [10]. However, not all peaks,
valley regions can correspond to notes as per conventional
transcriptions [15]. As an engineering approach, we pro-
pose to discretize or quantize the pitch contours at these
critical points using a semi-continuous Gaussian mixture
model (SC-GMM) proposed in [18] (Section 2) and thus
map continuous pitch contours to discrete note sequences.
We believe such a mapping brings us closer to understand-
ing the structures of rāgas in accordance with the theory
that discrete elements carry the structural information of
musical forms while expressions are realized in continu-
ous variations [14].

While analysing contours w.r.t. discrete pitch values,
we often encounter scenarios in which pitch values can ei-
ther overshoot or undershoot the intended values as can be
seen in Figure 1; this is also reported in literature [13, 15].
The following reasons can be attributed to such detours
w.r.t. discrete pitch values - (i) Performers’ intent to gener-
ate certain perceived effect in the listener (ii) Possible de-
viations during learning/ fast renditions (iii) Creative free-
dom and margin of error allowed in rendering a rāga as an
art form. Any deviation which does not bring about the re-
quired perceptual effect can cause a connoisseur/musician
to not appreciate the rendition in its totality.

In this work, we assume the deviations to be due to any
of above reasons and hence is part of errors in quantizing
pitch contours. If the quantization process has disregarded
the musically intended overshooting and undershooting of
pitch values, it only implies that the effect of the rāga is
not captured completely in the quantized sample. In or-
der to analyze the importance of limits of quantization,
we reconstruct the melody from quantized sequences and
conduct perception experiments on these melodies (Sec-
tion 3.3). Further, we propose a framework by using these
quantized notes to transcribe a contour (Section 4.1).

2. QUANTIZATION MODEL

Given pitch contours, y(t) estimated from audio record-
ings, it is possible to identify the tonic frequency fT as
shown in [7, 18]. The pitch contours are tonic normal-
ized and mapped to a common tonic, fU ; let yn(t) =
y(t) ∗ fU/fT denote pitch contours mapped to common
tonic frequency 2 . This helps to analyze different rendi-

1 This also explains the fact that music listeners do not perceive in-
termediate notes during note transitions which are greater than a semi-
tone; for example, when a musician glides from Sa (tonic) to Pa (fifth)
in a rāga, we do not perceive all the intermediatary semi-tones which the
glide passes through.

2 In this work, fU is chosen as 146.83 Hz corresponding to D3 note
of Western scale.

tions of same rāga. Let τ = { t | ∇yn(t) = 0 } be the set
of critical points and x = { yn(τ) } be the corresponding
critical pitch values. The tuple X = (x, τ) are the critical
points of yn(t). Mathematically, critical points can be ob-
tained only if a function is differentiable. We estimate X
from the zero crossings of numerical gradient of yn(t).

2.1 Semi-Continuous Gaussian Mixture Model

Consider the Semi-Continuous Gaussian Mixture Model
(SC-GMM) [18] with K number of components whose
means, µk∀k ∈ {1, 2, . . . ,K}within an octave are fixed in
accordance to the note ratios used in IAM, as shown in Ta-
ble 1. The distribution of pitch values in yn and the critical
pitch values x can be modeled using SC-GMM as:

p(y) =
K∑
k=1

αk,yN (yn;µk, σk,y) (1)

p(x) =
K∑
k=1

αk,xN (x;µk, σk,x) (2)

For a fixed K components, the set of parameters estimated
from distribution of pitch are {αy,σy} and {αx,σx}. µ
parameters are not estimated since they are fixed and are
same in both cases.

2.2 Quantization using SC-GMM

We use the above model to quantize pitch contours. Each
pitch sample of yn(t) can be quantized to a nearest com-
ponent of SC-GMM which maximizes its probability:

k∗y(t) = argmax
k∈{1,2,...,K}

αk,yN (yn(t);µk, σk,y) (3)

Similarly, every critical pitch of x can be quantized as:

k∗x(τ) = argmax
k∈{1,2,...,K}

αk,xN (x(τ);µk, σk,x) (4)

Thus, both yn and x are now quantized and correspond
to a sequence of notes; their temporal information (corre-
sponding to {t} and {τ}) are retained.

3. SYNTHESIS FROM QUANTIZED SEQUENCE
OF NOTES

To check if this mapping process captures the essence of
rāgas and to assess the effect of quantization on rāga per-
ception, we conduct perception experiments. Audio clips
are synthesized for perception. In order to synthesize audio
from quantized note sequences, we first synthesize melody
contours, and use the same to synthesize audio clips.

3.1 Quantized Pitch Contour

The un-quantized yn(t), the quantized k∗y(t) and k∗x(τ) are
interpolated to obtain a contour sampled at Fs, the sam-
pling frequency of the discrete-time audio signal 3 . Piece-
wise cubic hermite interpolating polynomial is used with

3 yn(t) also requires interpolation as it is estimated at frame rate
coarser than Fs.
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(t, yn(t)), (t, µk∗y (t)) and (τ, µk∗x(τ)) being knots for each
of the interpolation. These result in 3 different pitch con-
tours for signal synthesis. The pitch contour obtained from
interpolating (t, yn(t)) can be considered (for all practi-
cal purposes) as a reference pitch contour. A compari-
son of pitch contours obtained by interpolating (τ, k∗x) and
(t, k∗y(t)) are shown in Figure 2.

Figure 2. [Color Online] Pitch contours obtained by inter-
polation of (a) yn(t) (b) k∗y(t) and (c) k∗x(τ) (Sāveri rāga).
fU = 146.83 Hz for all 3 contours. Red dots are knots of
interpolation; solid blue lines are the interpolated contours.
Arrows highlight local distortions in interpolated contours.

We see from Figure 2(b) that quantizing every pitch
sample (k∗y(t)) can potentially lead to introducing addi-
tional stable notes (which are not perceived in the origi-
nal contour). This may result in an unfavorable shape of
the contour and hence dynamics of notes may be altered
during interpolation. The advantage of quantized critical
pitch samples (k∗x(τ)) is that, on interpolation, the dynam-
ics around a note are more likely to be retained as seen in
Figure 2(c). Some subtle gamakas, in-spite of being cap-
tured, could be quantized onto single note due to statistical
weight of an adjacent note, resulting in synthesizing a flat
region. In this work, pitch values at critical points are per-
turbed while the critical points themselves are unaffected;
hence slopes might be perturbed in a different manner in
various sections of the pitch contours and hence percep-
tual effect of the same is not simple to predict.

3.2 Synthesizing Audio

The audio signal for perception can be synthesized from
the interpolated pitch contours (sampled at Fs) using the
time-varying sinusoidal synthesis model. The model can
be expressed as:

ŝf (t) = a(t) ∗

(
H∑
i=1

sin

(
2πh

Fs

∫ t

0

f(t)dt

))
(5)

where a(t) represents the vocal-tract shaping filter, ∗
is the convolution operation, H denotes the number of

harmonics, Fs is the sampling frequency, f(t) repre-
sents the pitch contour which is to be synthesized (ex-
plained in Section 3.1) and

∫ t
0

is approximated as cu-
mulative sum for discrete implementation. The vocal-
tract shaping filter is chosen to be time-invariant and is
that of vowel /ā/. An all-pole model is used to synthe-
size the transfer function using formant frequencies and
bandwidth of /ā/ as (730, 1090, 2440, 3781, 4200) Hz and
(60, 50, 102, 309.34, 368) Hz respectively [17]. A drone
signal is added to the synthesized audio so that reference
tonic is present in it.

3.3 Perception Test Experiments

Let ŝref (t) be the audio signal synthesized from interpo-
lated (t, yn(t)), ŝy(t) be the audio synthesized from inter-
polated (t, k∗y(t)) and ŝx(t) synthesized from interpolated
(τ, k∗x(t)). We quantize using both 22-note and 12-note in-
tervals to study the effect of number of quantization levels
on rāga perception i.e., ŝy22(t) and ŝx22

(t) are the audio
signals synthesized using (3) and (4) with K = 22 ∗ 3
(covering 3 octaves), while ŝy12(t) and ŝx12(t) correspond
to K = 12 ∗ 3 levels. The means within an octave of the
SC-GMM are as chosen according to Table 1.

We choose certain rāgas along with the correspond-
ing pitch features from the publicly available Carnatic and
Hindustani music database used in [8, 9]; in this database,
pitch has been estimated every 4.44ms using Essentia [3].

3.3.1 Comparison of ŝy(t) and ŝx(t)

As argued earlier, we hypothesize ŝx(t) to be a closer rep-
resentative of ŝref (t) than ŝy(t). To verify which among
ŝx(t) is indeed perceptually closer to ŝref (t), a MUSHRA
(MUltiple Stimuli with Hidden Reference and Anchor)
kind of experiment is performed. We select K = 12∗3 for
quantization levels. 6 musically trained listeners are tasked
with three experiments - different reference clips (average
7 s duration) from Nattai rāga of Carnatic music are pre-
sented in each experiment. Within each experiment - (i)
ŝy12(t) (ii) ŝx12

(t) (iii) hidden ŝref (t) - form 3 audio stim-
uli presented to listeners in randomized order along with
an explicit reference clip ŝref (t). Listeners are asked to
rate the closeness of each to the reference signal on a scale
of 1-100 (100 implies the stimuli is indistinguishable from
the reference). We refer to this as perception test 1 (PT-1).

From the results, ŝy12(t) is consistently rated least by all
the listeners. These audio clips are perceived to be ‘elec-
tronic’, with temporal distortion clearly heard. Listeners
have rated ŝx12

(t) at an average of 88.88% close to ex-
plicit reference, while the hidden reference ŝref (t) is rated
at an average of 96.5% closeness to explicit ŝref (t); this
is because ŝx12(t) is confused with the hidden ŝref (t) in
38.8% cases by the subjects. ŝy12(t) is rated at an average
56.27% close to explicit reference. The bane of synthesiz-
ing melody with k∗y(t) sequence is easily perceivable by all
trained listeners. This validates our hypothesis that ŝx(t)
is closer to ŝref (t) than ŝy(t).
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3.4 Rāga Perception Experiment

With ŝx(t) being a close model of ŝref (t), we hypothesize
much of gamaka structures in a rāga rendition is retained;
also, micro-tonal dynamics of rāga might be better cap-
tured with K = 22 ∗ 3 levels than K = 12 ∗ 3.

Note name 22 Notes (Position) Pitch Ratio 12 Notes(Position)

Sa S (1) 1 S(1)

Ri

R11 (2) 256/243

R12 (3) 16/15 R1(2)

R21 (4) 10/9

R22 (5) 9/8 R2/G1(3)

Ga

G11 (6) 32/27

G12 (7) 6/5 R3/G2(4)

G21 (8) 5/4 G3(5)

G22 (9) 81/64

Ma

M11 (10) 4/3 M1(6)

M12 (11) 27/20

M21 (12) 45/32 M2(7)

M22 (13) 729/512

Pa P (14) 3/2 P (8)

Da

D11 (15) 128/81

D12 (16) 8/5 D1(9)

D21 (17) 5/3

D22 (18) 27/16 D2/N1(10)

Ni

N11 (19) 16/9

N12 (20) 9/5 D3/N2(11)

N21 (21) 15/8 N3(12)

N22 (22) 243/128

Sa′ S(next octave)(23) 2/1 S (upper octave)(13)

Table 1. Pitch ratios in an octave for 22-note system of
Indian Art Music. The ratios used in 12-note system are in
bold face.

3.4.1 Experimental Setup

We choose some rāgas (shown in Table 2) which are con-
sidered by experts to be musically challenging to render
as they contain lot of gamakas and micro-tonal structures.
For each listener, two different renditions (by different
singers) are presented for every rāga. The singer identity
is masked as a result of time-invariant /ā/, the shaping filter
for the pitch contour; hence any bias factor due to singer in
the listening experiments is reduced.

Carnatic music Hindustani music

1. Begada Bhairav

2. Bhairavi Darbari

3. Saveri Marwa

4. Sahana Puriya Dhanashree

5. Sindhu Bhairavi Yaman

6. Thodi

Table 2. Rāgas chosen for perception experiment.

To verify if ŝx(t) captures the rāga nuances along with
the gamakas in its entirety as represented in ŝref (t), in
each experiment, we present a 1 min duration clip of

ŝref (t) and its corresponding (i) ŝx22(t) and (ii) ŝx12(t)
(synthesized) audio clips 4 .

We first present to music experts, ŝref (t) as the refer-
ence and ask them to rate on a scale of 1-10 for rāga char-
acteristics present in ŝref (t). The same listener is now
presented with ŝx22(t) and ŝx12(t) (not necessarily in that
order) and asked to rate closeness of each with respect to
rāga nuances of ŝref (t) on the scale of 1-10. Lower rating
implies rāga nuances are compromised due to quantiza-
tion. Thus, each listener for Hindustani music form par-
ticipates in 10 (5 rāgas with 2 different renditions) such
experiments; and, 12 experiments are presented for each
Carnatic expert listener. This is perception test 2 (PT-2).

3.4.2 PT-2 Results and Analysis

5 performing Carnatic musicians were selected for the
perception test in Carnatic music; similarly, 5 musicians
trained in Hindustani music were considered for the Hin-
dustani music perception tests.

The average ratings of ŝx12
(t) and ŝx22

(t) w.r.t. refer-
ence ŝy(t) for each rāga considered in Carnatic and Hin-
dustani music is as shown in Figure 3 (a) and (b) respec-
tively.

Begada Bhairavi Sahana Saveri Sindhu Bhairavi Thodi
0

1

2

3

4

5

6

7

8

9

10
Reference

K=12

K=22

Bhairav Darbari Marwa Puriya Dhanashree Yaman
0

1

2

3

4

5

6

7

8

9

10
Reference
K=12
K=22

Figure 3. [Color Online] Perception rating for rāga char-
acteristics for ŝy(t), ŝx12(t) and ŝx22(t) for (a) Carnatic
music averaged over 5 listeners (b) Hindustani music aver-
aged over 5 listeners.

The ŝref (t) ratings absorbs anomalies such as sudden
breaks and octave errors which commonly occur in pitch

4 The clip is a part of the starting portion of the original rendition but
between the region 30 s to 90 s. While the rāga characterizing phrases
will be brought about initially, we hypothesize that rāga nuances must be
showcased at any chunk of time.
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estimation algorithms, as well as errors committed by the
artist in the rendition. In both Carnatic and Hindustani mu-
sic clips, ŝx12

(t) and ŝx22
(t) are reported to be quite close

to ŝref (t) and requires more careful inspection by repeated
contrasts against ŝref (t) as described ahead.

In order to pin-point distortions perceived, expert lis-
teners had to intently re-listen the ŝref (t) multiple times to
confirm if perceived foreign/distorted notes are present in
ŝx12(t) or ŝx22(t) clips and not in ŝref (t) clip itself. Some
of the commonly observed distortions are: gamakas be-
ing flattened, a foreign note perceived in ŝref (t) clip being
corrected and note shift at micro-tonal level. A Hindus-
tani music performer after multiple listenings, could report
∼ 13 perceivable distortions (in each ŝx12

(t) and ŝx22
(t))

with respect to total 10 reference clips.
In the perception experiment in Hindustani music, at

K = 12 ∗ 3 and K = 22 ∗ 3 quantization levels, given
ŝref (t), expert listeners have given equal rating to both
ŝx12

(t) and ŝx22
(t) for 42% of the test cases; and, for

∼ 32% of the cases, the listeners have rated ŝx22
(t) to be

closer to reference than ŝx12
(t). Also, the overall average

rating for ŝx12
(t) is very close to ŝx22

(t) for most of the lis-
teners. This is perhaps due to the inherent predisposition
of performers of Hindustani music to elaborate individual
notes, thereby minimizing the transitions between the 22
note positions.

Similar analysis on perception of Carnatic music shows
that in 36% cases, ratings for ŝx12(t) and ŝx22(t) were the
same. In ∼ 40% cases, ŝx22

(t) was found to be closer to
reference than ŝx12(t).

In order to obtain measure of overall inter-listener
agreement, we first categorize the ratings in each exper-
iment into 3 categories - (i)ŝx22

(t) closer to ŝref (t) (ii)
ŝx12

(t) closer to ŝref (t) (iii) equal ratings to both ŝx22
(t)

and ŝx12(t). For an ith experiment, the agreement among
the L number of listeners can be defined as [4]:

Pi =
1

L(L− 1)

3∑
j=1

n2ij − L (6)

where, nij is the number of raters who have assigned jth

category in ith experiment.
In PT-2 perception test of Hindustani music, the average

inter-listener agreement per experiment is found to be 0.37
while for Carnatic music, the average is 0.34.

From PT-1, we could infer that quantization at every
pitch sample results in perceivable loss of rāga structure.
The results of PT-2 shows that it is possible to quantize
at critical points while retaining the rāga structure. There
could be a few note omissions and distortions at micro-
tonal levels which are not perceivable in one listening, im-
plying rāga structure is well retained. This also implies
that quantizing critical pitch values keeps much of the
gamaka structure (which has been indefinable till now)
intact. Expert musicians show sensitivity to 22-note posi-
tions; in some clips, musicians appreciate the approach to
a note as interpolated by ŝx22

(t) more than ŝref (t) 5 . We
5 Sometimes, ŝx12 (t) is also reported to interpolate transitions better

than ŝref (t)

infer that both K = 12 ∗ 3 and K = 22 ∗ 3, depict close
scores and retain rāga structure well.

3.5 Relation to Waveform Quantizers

The model corresponding to Equation (3) is a waveform
quantizer. While an uniform quantizer assumes yn(t)
to have uniform distribution, the model corresponding to
Equation (1) and (3) is a non-uniform, parameterized,
stochastic waveform quantizer. The stochastic SC-GMM
incorporates shape of the pdf through its parameters to
derive rendition-specific and/or rāga-specific quantization
thresholds. While a well-designed optimum waveform
quantizer with sufficient bit-depth can result in hi-fidelity
audio, we have shown, from results of perception experi-
ment PT-1, that non-uniform, parameterized pitch ‘wave-
form’ quantization unsettles the rāga-bhava even within a
small 7 s melodic phrase. Increasing bit-depth without cor-
relating to essential pitch-ratios (within an octave) will be
of limited utility.

From model defined by Equation (2) and (4), we have
seen from results of PT-2 that sub-sampling (at criti-
cal points) and then using a non-uniform, parameterized,
stochastic quantizer results in melodic contours which can
reconstruct rāga-bhava with less distortions. Increasing
bit-depth (from K = 12 ∗ 3 to K = 22 ∗ 3) need not
always result in lesser ‘perceptual’ distortions in melody
signals which are inherently structured.

4. APPLICATIONS OF QUANTIZED PITCH
CONTOUR

4.1 Note Transcription

A direct application of discretizing melody contours is in
note transcription. While attempts have been made to cap-
ture regions corresponding to discrete notes, we now theo-
rize that discrete notes can occur as points and/or regions in
the melodic-temporal domain; elongated notes result in re-
gions, while other-wise they can be essentially considered
as points.

4.1.1 Experimental Setup

We have recorded a total of close to 50 phrases each
in Hindustani and Carnatic music forms; the phrases are
spread across 5 rāgas (as listed in Table 3) and is a mod-
est database to quantify accuracy of note transcription.
These phrases contain rāga specific gamakas such that
their conventional transcription differs from their rendi-
tions. The Hindustani database is rendered with Sārangi
instrument, while the Carnatic database contains vocally
rendered phrases. Each phrase is associated with 2 note
sequences - (i) note sequences as transcribed by musicians
(referred as TA transcription) (ii) note sequences as musi-
cians render it with the associated gamakas, but now ex-
plicitly notated (referred to as TB transcription). Figure 4
is a sample depicting the differences between TA and TB.
The transcription notation used here consider only the note
sequences and do not include duration information.
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Pitch is extracted using Praat [2] every 8 ms. A SC-
GMM model is built for each rāga by combining all
phrases; note sequences are obtained as per Equation 4.

4.1.2 Results and Analysis of transcribed sequences

The performance of automatic note transcription task is
measured using TA and TB transcriptions as ground truths.
The automatically obtained note sequence is aligned with
TA (or TB) using Needleman Wunsch global alignment al-
gorithm [16] with gap penalty set to zero. Performance is
reported in terms of recall accuracy and insertion rate. Ta-
ble 3 summarizes the performance of automatic transcrip-
tion using k∗y12 and k∗x12

note sequences in both Carnatic
and Hindustani music.

Transcription using k∗y12 sequences always shows high
recall results (as expected) and also results in high inser-
tion rate; as every pitch sample is quantized, there is less
likelihood of missing any note but more chances of false
alarms.

With TA transcription as ground truth, recall rates using
k∗x12

sequences is comparable to that using k∗y12 in Hin-
dustani music; for Carnatic music, recall rate performance
of k∗x12

sequence is seen to have decreased. Due to dy-
namic nature of Carnatic music, some notes in TA are not
representative of the rendition. For example in rāga Thodi,
though TA contains noteGa, it is rendered asMa−Ri (cf.
Figure 1). Also, frequent notes or stable notes have domi-
nant presence as Gaussian component (reflected asα); any
critical pitch value in the vicinity of a dominant note can
be assigned a higher probability in-spite of its distance to
another adjacent but not-frequent note. This can cause in-
correct pitch-to-note mapping.

Drastic reduction in transcription insertion rate can be
attributed to k∗x12

sequences being estimated from sub-
sampled version of yn(t). Thus, not all points are tran-
scribed.

With TB transcription as ground truth, insertion rate
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time (s) !

100

110

120

130

140

150

160

Pi
tc

h 
(H

z)
 !

Pa

Da
1

Ri
1

Sa

Ni
3

Figure 4. [Color Online] The blue contour corre-
sponds to a phrase of rāga Keervani (Carnatic). Red
lines indicate the pitch values of notes used in the
rāga, while black lines denote pitch of notes that are
not used. This phrase is transcribed as ‘SaNiPaDa’
(TA). Considering the gamakas involved, it is rendered as
‘SaNiRiSaPaDaPaDaPaDaPaDa’ (TB).

is reduced for both k∗y12 and k∗x12
sequences. This is at-

tributed to TB version of ground truth being a more elab-
orate explanation of a rendition. A sample depiction of
the same can be seen in Figure 5. The number of false
note assignment is reduced with transcription using k∗x12

as against k∗y12 .

------------SN-----RS----------PDPDPD----PD

                 ||       ||              || || ||      ||

SRSNSGRSNSRSRSMPDPDPDPDPDPMPDS

---SNR---SPDPDPDPD--

     |||      | || || |||  

SNSNRPDPDPDPDPDM

a)

b)

d)

c)

Figure 5. Melodic notes for pitch contour of Figure 4,
corresponding to (a) Ground truth, TB (b) Transcription
obtained using k∗y12 (c) Ground truth, TB (d) Transcription
obtained using k∗x12

(a) Hindustani
TA TB

k∗y12
(t) k∗x12

(t) k∗y12
(t) k∗x12

(t)

Rāga Rec Ins Rec Ins Rec Ins Rec Ins
Bihag 1 3.65 1 1.55 0.93 1.39 0.88 0.39
Goud Sarang 1 4 1 2 0.88 1.97 0.83 0.88
Keervani 0.97 4.59 0.95 2.06 0.88 1.69 0.8 0.6
Madhuvanti 1 3.93 0.96 1.77 0.98 1.97 0.96 0.67
Marwa 1 7.18 0.97 3.36 0.96 2.4 0.88 0.90

(b) Carnatic
TA TB

k∗y12
(t) k∗x12

(τ) k∗y12
(t) k∗x12

(τ)

Rāga Rec Ins Rec Ins Rec Ins Rec Ins
Begada 1 8.58 0.85 1.91 0.98 2.93 0.80 0.32
Bhairavi 1 7.75 0.92 2.17 0.81 2.32 0.54 0.57
Hamsadvani 1 7.15 0.87 2 0.97 2.61 0.82 0.45
Hindola 1 10.8 1 3 0.9 3.03 0.86 0.46
Keervani 0.98 7.27 0.90 2.45 0.81 2.25 0.70 0.54
Thodi 1 10 0.88 2.55 0.92 3.04 0.88 0.36

Table 3. Performance of k∗y12 and k∗x12
sequences for au-

tomatic transcription in terms of average recall rate (Rec)
and insertion rate (Ins) w.r.t. TA and TB ground truth tran-
scription of phrases in (a) Hindustani (b) Carnatic music.

5. CONCLUSIONS

We have explored two different quantization techniques us-
ing stochastic models for mapping continuous melody con-
tours to discrete pitch values; perception experiments show
that rāga-bhava can be preserved by quantizing the pitch
contour at critical points instead a waveform-quantization
type of approach. The stochastic, parameterized SC-GMM
assimilates information in pitch pdf to derive quantiza-
tion thresholds. Applying results of perception experi-
ments to automatic transcription task results in a detailed
description of a melodic piece; such a detailed transcrip-
tion can inherently aid in mapping rāga dynamics and
gamakas into musical notation.
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ABSTRACT

Chord sequences are an essential source of information in
a number of MIR tasks. However, beyond the sequen-
tial nature of musical content, relations and dependencies
within a music segment can be more efficiently modeled as
a graph.

Polytopic Graphs have been recently introduced to
model music structure so as to account for multiscale rela-
tionships between events located at metrically homologous
instants.

In this paper, we focus on the description of chord se-
quences and we study a specific set of graph configura-
tions, called Primer Preserving Permutations (PPP). For
sequences of 16 chords, PPPs account for 6 different la-
tent systems of relations, corresponding to 6 main struc-
tural patterns (Prototypical Carrier Sequences or PCS).
Observed chord sequences can be viewed as distorted ver-
sions of these PCS and the corresponding optimal PPP is
estimated by minimizing a description cost over the latent
relations.

After presenting the main concepts of this approach,
the article provides a detailed study of PPPs across a cor-
pus of 727 chord sequences annotated from the RWC POP
database (100 pop songs). Our results illustrate both qual-
itatively and quantitatively the potential of the proposed
model for capturing long-term multiscale structure in mu-
sical data, which remains a challenge in computational mu-
sic modeling and in Music Information Retrieval.

1. INTRODUCTION

One of the essential properties of music structure is the
multiscale nature of the inner organization of musical seg-
ments, i.e. the existence of relationships between musical
elements at different time-scales simultaneously.

Given its important role in supporting the local har-
monic ground-plan of the music in a significant number of
music genres, chord sequences are commonly considered
as an essential source of information in a variety of MIR
tasks (see for instance [13, 17, 22]).

c© Corentin Louboutin, Frédéric Bimbot. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Corentin Louboutin, Frédéric Bimbot. “Modeling the Mul-
tiscale Structure of Chord Sequences Using Polytopic Graphs”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

Figure 1. A chord sequence represented on a tesseract.

However, beyond the sequential order of chords along
the timeline, relations and dependencies between chords
within a music segment tend to be more efficiently mod-
eled as a graph.

Polytopic Graphs of Latent Relations (PGLR) [11] have
been recently introduced to model music structure, so as
to account for multiscale relationships between events lo-
cated at metrically homologous instants, by means of an
oriented graph supported by a n-dimensional polytope.

This class of models is assumed to be particularly well
suited for strongly ”patterned” music, such as pop music,
where recurrence and regularity tend to play a central part
in the structure of the musical content.

PGLR also relax the adjacency hypothesis of the GTTM
model [10], by which the grouping of elements into higher
level objects is strictly limited to neighbouring units. This
is particularly useful to account for period-like abac pat-
terns, where the similarity relationship between the two a
segments spans above (and irrespective of) the b segment.

In this paper, we focus on the description of metric-
synchronous chord sequences of 16 elements, resting on
regular phrasal structures or carrures. In that case, the sup-
porting polytope is a tesseract (i.e. a 4-cube) as illustrated
by Fig. 1, and the graph description lives on this tesseract
(as represented on Fig. 4).

After providing, in Section 2, the main concepts and
formalisms related to the approach, we study in detail a
particular variant of the model, where the graph structure
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is restricted to a set of 6 configurations, called Primer Pre-
serving Permutations (PPP). We show in Section 3.1 that
PPPs relate to prototypical multi-scale structural patterns
which we call Prototypical Carrier Sequences (PCS) and
we explain how observed chord sequences can be viewed
as distorted versions of these prototypical patterns. In the
last part of the article (Section 4), we provide an exper-
imental study of PPPs across a corpus of 727 chord se-
quences annotated from the RWC POP database (100 pop
songs) with qualitative and quantitative results illustrating
the potential of the model. We conclude with perspectives
outlined by the proposed approached.

2. CONCEPTS AND FORMALISM

2.1 The PGLR Framework

As mentioned in the introduction, the PGLR approach
views a sequence of musical elements within a structural
segment as exhibiting privileged relationships with other
elements located at similar metrical positions across dif-
ferent timescales.

For metrically regular segments of 2n events, the cor-
responding PGLR conveniently lives on an n-dimensional
cube (square, cube, tesseract, etc...) 1 , n being the num-
ber of scales considered simultaneously in the multiscale
model. Each vertex in the polytope corresponds to a musi-
cal element of the lowest scale, each edge represents a la-
tent relationship between two vertices and each face forms
an elementary system of relationships between (typically)
4 elements. In addition, the proposed model views the last
vertex in each elementary system as the denied realization
of a (virtual) expected element, itself resulting from the
implication triggered by the combination of former rela-
tionships within the system (see Section 2.3).

For a given support polytope, the estimated PGLR
structure results from the joint estimation of (i) the configu-
ration of an oriented graph resting on the polytope, with the
constraint that it reflects causal time-order preserving de-
pendencies and interactions between the elements within
the musical segment, and (ii) the inference of the corre-
sponding relations between the nodes of the graph, these
relations being termed as latent, as they are not explicitly
observed (and may even not be uniquely defined).

2.2 Chord Representation and Relations

Strictly speaking, a chord is defined as any harmonic set of
pitches that are heard as if sounding simultaneously. How-
ever, in tonal western music, chords are more specifically
understood as sets of pitch classes which play a strong role
in the accompaniment of the melody (in particular, in pop
songs).

A number of formalisms exist for describing chord rela-
tions, either in the context of classical musicology or in the
framework of more recent theories, for instance, the neo-
Riemannian theory and voice-leading models [5,6,20], or
computational criteria such as Minimal Transport [10].

1 and more generally speaking, on an n-polytope

Figure 2. Circles of thirds (inner) and phase-shifts (outer).

While chords may contain combinations of four pitch
classes or even more, they are frequently reduced to triads
(i.e. sets of three pitch classes), with a predominance of
major and minor triads. A minimal representation of triads
boils down to 24 distinct triads (12 major and 12 minor).
In the rest of this article, we restrict ourselves to this case,
in spite of its simplified nature.

In order to model relations between triads, we consider
triadic circles, i.e. circular arrangements of chords aimed
at reflecting some proximity relationship between triads
along their circumference.

The circle of thirds is formed by alternating major and
minor triads with neighbouring triads sharing two common
pitch classes, which is a way to model some kind of prox-
imity between chords. In particular, chords belonging to a
given key lie in a same sector of the circle of thirds. As
an alternative, we also consider the circle of phase-shifts,
which consists of a chord progression resulting from a min-
imal displacement on the 3-5 phase torus of triads as de-
fined in [1]. Both circles are shown together on Fig. 2.

Each circle provides a way to express (in a unique way),
the relationship between two triads, as the angular dis-
placement along the circle. Note that a ”chromatic” circle
(... Bm B Cm C Db

m Db ...) could also be considered, but
it is not represented on Fig. 2, for reasons explained later.

2.3 Systemic Organization

Based on the hypothesis that the relations between musi-
cal elements form a system of projective implications, the
System & Contrast (S&C) model [2] has been recently for-
malized [3] as a generalization and an extension of Nar-
mour’s Implication-Realization model [16]. Its applicabil-
ity to various music genres for multidimensional and mul-
tiscale music analysis has been explored in [7] and algo-
rithmically implemented in an early version as ”Minimal
Transport Graphs” [10].

The S&C model primarily assumes that relations be-
tween 4 elements in a musical segment x0 x1 x2 x3 can be
viewed as based on a two-scale system of relations rooted
on the first element x0 (the primer), which thus plays the
role of a common antecedent to all other elements in the
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Figure 3. Tesseract where vertices at a same depth (or
geodesic distance) from vertex #0 are aligned vertically.
The resulting partial order between vertices is causal.

system. This is the basic principle that enables the joint
modeling of several timescales simultaneously.

In the S&C approach, it is further assumed that latent
systemic relations x1 = f(x0) and x2 = g(x0) trigger a
process of projective implication:

x0 f(x0) g(x0)
implies
=⇒ g(f(x0)) = x̂3 (1)

The virtual element x̂3 may then be more or less strongly
denied by a contrast: x3 = γ(x̂3) 6= x̂3, which creates
some sense of closure to the segment.

In this work, the S&C model is used as the basic scheme
to describe systems of music elements forming the faces of
the tesseract.

3. GRAPH-BASED DESCRIPTION

3.1 Nested Systems

Elementary systems of four elements, as introduced in Sec-
tion 2.3, can be used to describe longer sequences of mu-
sical events. In particular, sequences of 2n elements ar-
ranged on an n-cube, provide a layout of the data where
each face potentially forms a S&C, involving time instants
that share specific relationships in the metrical grid.

As opposed to the sequential viewpoint which assumes
a total order of elements along the timeline, the systemic
organization on the tesseract leads to a partial order (il-
lustrated on Fig. 3), where elements of the same depth are
aligned vertically and where, in the framework of the S&C,
the fourth element of each face can be defined in reference
to the virtual element resulting from the projective impli-
cation of the three others. In the most general case, valid
systemic organizations can be characterized by a graph of
nested systems, the flow of which respects the partial or-
dering of Fig. 3. Note however that there is a possible
conflict between three implications systems for elements
7, 11, 13 and 14 (each possible implication corresponding
to a face of the tesseract 2 ), and six for element 15.

2 for instance, node 7 can be viewed as resulting from 3 implication
systems: [1, 3, 5, 7], [2, 3, 6, 7] and [4, 5, 6, 7].

P0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
A A A A B B B B C C C C D D D D

P1
0 1 4 5 2 3 6 7 8 9 12 13 10 11 14 15
A A B B A A B B C C D D C C D D

P2
0 2 4 6 1 3 5 7 8 10 12 14 9 11 13 15
A B A B A B A B C D C D C D C D

P3
0 1 8 9 2 3 10 11 4 5 12 13 6 7 14 15
A A B B C C D D A A B B C C D D

P4
0 2 8 10 1 3 9 11 4 6 12 14 5 7 13 15
A B A B C D C D A B A B C D C D

P5
0 4 8 12 1 5 9 13 2 6 10 14 3 7 11 15
A B C D A B C D A B C D A B C D

Table 1. List of the 6 PPPs, together with their correspond-
ing Prototypical Carrier Sequences (PCS).

3.2 Primer Preserving Permutations (PPP)

One way to handle these conflicts is to constrain the graph
to preserve systemic properties at higher scales. This can
be achieved by forcing lower-scale systems to be supported
by parallel faces on the tesseract, while the first elements
of each of the 4 lower-scale systems are used to form an
upper-scale system. This approach drastically brings down
the number of possible graphs to 6, which corresponds to
specific permutations of the initial index sequence (see Ta-
ble 1), termed here as PPP (Primer Preserving Permuta-
tions).

To illustrate a PPP, let’s consider the subdivision of a
sequence of 16 chords into four sub-sequences of four suc-
cessive chords. Each sub-sequence can be described as
a separate Lower-Scale S&C (LS): [0, 1, 2, 3], [4, 5, 6, 7],
[8, 9, 10, 11] and [12, 13, 14, 15]. Then, these four S&Cs
can be related to one another by forming the Upper-Scale
S&C (US) [0, 4, 8, 12], linking the four primers of the 4 LS.
This configuration (P0) turns out to be particularly eco-
nomical for describing chord sequences such as SEQ1:
Cm Cm CmBb Ab Ab Ab Gm F F F F Cm CmBb Bb

as most similarities develop between neighbouring ele-
ments.

If we now consider the following example (SEQ2):
BmBmA A G EmBmBm BmBmA A G EmBm Bm

a different configuration appears to be more efficient to
explain this sequence. In fact, grouping chords into the
following 4 LS: [0, 1, 8, 9], [2, 3, 10, 11], [4, 5, 12, 13] and
[6, 7, 14, 15], and then relating these four faces of the
tesseract by a US [0, 2, 4, 6] (configuration P3) leads to a
less complex (and therefore more economical) description
of the relations between the data within the segment. Fig. 4
illustrates these two configurations.

3.3 Prototypical Carrier Sequences (PCS)

Each of the 6 PPPs can be related to a prototypical struc-
tural pattern which turns out to be the one that is the most
concisely described in the framework of this particular
configuration. These 6 patterns, identified in Table 1, can
be interpreted as ”Prototypical Carrier Sequences” (PCS)
over which the actual chord sequence appears as partially
”modulated” information.
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Figure 4. Representations of two PPP-based PGLRs on a tesseract: P0 (left), P3 (right). In blue, the Upper-Scale S&C – in
black, the 4 Lower-Scale (LS) S&Cs. Dotted nodes indicate the virtual elements (x̂) in the implication scheme (Section 2.3).

For instance, SEQ1 appears merely as a sequence of
type P0, which has been altered in positions 3, 7, 14 and
15 from the following carrier system:
Cm Cm Cm Cm Ab Ab Ab Ab F F F F Cm Cm Cm Cm

Conversely, SEQ2 exhibits a pattern that strongly relates
to P3, with scattered deviations from:
BmBmA A G G BmBm BmBm A A G G BmBm

located in positions 5 and 13.
Inferring the PCS shows interesting analogies with a de-

modulation operation and/or an error correcting code pro-
cess, by concentrating the redundancy on the carrier se-
quence. It can of course happen that a sequence has several
possible descriptions of equivalent plausibility, i.e. mul-
tiple coexisting interpretations w.r.t. its prototypical PPP
structure.

In summary, PPP provide a limited set of baseline mul-
tiscale structural patterns which can be used to characterize
actual chord sequences, via a minimum deviation criterion.

3.4 Algorithmical Considerations

In practice, given a (chord) sequence, X = x0 . . . xl−1, its
optimal description (DX ) within a class of PGLRs, can be
obtained by minimizing a criterion F written as:

DX = [ΨX , RX ] = argmin[Ψ,R] F(Ψ, R|X) (2)

where Ψ is a PGLR and R is a set of latent relations com-
patible with the connections of Ψ.

In the general case, both quantities are optimized
jointly, considering all possible relations between each set
of elements associated to each possible Ψ, and minimizing
the cost over the whole sequence X .

Assuming that F is measuring the complexity of the
sequence structure, DX can be defined as the shortest de-
scription of the sequence. Therefore, searching forDX can
be seen as a Minimum Description Length (MDL) prob-
lem [21] and F can be understood as a function that eval-
uates the size of the ”shortest” program needed to recon-
struct the data [9]. This is strongly related to the concept
of Kolmogorov complexity, which has received increasing
interest in the music computing community over the past
years [12, 14, 15, 19].

In the general case, the above optimization problem
may turn out to be of a relatively high combinatorial com-
plexity (see [10, 11]). But when considering triads over a
circular arrangement, and limiting the set of possible Ψ to
6 PPPs, the optimization ofD becomes easily tractable: all
six PPPs can be tested exhaustively and for each of them,
the setR comprises 16 relations (15 displacements over the
triadic circle + the initialization of x0) which are uniquely
defined. Therefore, each cost can be readily computed as
the sum of 16 terms, and the minimal PPP is easily found.

4. EXPERIMENTS

In order to study the ability of the PGLR model to capture
structural information in chord sequences, we have carried
out a set of experiments on the RWC POP dataset [8] on
a corpus of 727 × 16 beat-synchronous chords sequences
annotated manually as triads 3 .

As there exists no ground truth as of the actual struc-
ture of a chord sequence, we compare different models
as regards their ability to predict and compress chord se-
quences: in other words, how much side information is
brought by the structure model, that saves information
needed to describe of the content.

4.1 Distribution of PPPs

For each chord sequence X , the polytopic S&C graph PX ,
corresponding to the PPP with minimal cost can be esti-
mated by the optimization algorithm of Section 3.4. This
yields the histogram depicted on Figure 5 4 .

Permutation P3 appears as the dominant one (≈ 33%)
and this may be related to the fact that its prototypical car-
rier sequence corresponds to a rather common ”antecedent-
consequent” form in music (especially, in pop music).
Conversely, the least frequent PPP (P2), displays a fre-
quency of occurrence below 5%. Somewhere in between,
the 4 other permutations see their frequencies ranging
loosely within 10% to 20%).

3 Data are available on musicdata.gforge.inria.fr/RWCAnnotations.html
4 About 2/3 of test sequences correspond to a unique optimal PPP

but when k > 1 permutations provide equally optimal solutions, each of
them is counted as 1/k.
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Figure 5. Histogram of PPPs across the test data.

4.2 Prediction and Compression

In order to compare the prediction and compression capa-
bilities provided by multiscale polytopic graphs, we con-
sider 4 structure models:

• S, a purely sequential graph where each element is
related to its immediate predecessor 5 ,

• P0, the polytopic S&C graph corresponding to PPP
P0 for all sequences,

• P3, the polytopic S&C graph corresponding to PPP
P3 for all sequences,

• PX , the polytopic S&C graph corresponding to the
PPP with minimal cost optimised a posteriori for
each 16-chord sequence, as described in section 3.4.

All models are first-order models, in the sense that any
given element within the sequence is related to a single
antecedent (its time predecessor for the sequential graph, a
primer or a virtual element, in the case of the S&C model).

Performance for each model is obtained by calculating
a perplexity [4] B∗, derived from the entropy H∗.

Given a model M , the computation of perplexity re-
quires the definition of a probability density function
(pdf) for all observable events which underlie the model.
In our case, this means assigning a probability value
PM (xi|Φ(xi)) to any pair (xi,Φ(xi)), where Φ(xi) is
the antecedent of xi in the graph. This is equivalent to
defining PM (r(Φ(xi), xi)), where r(Φ(xi), xi) is the re-
lation which turns Φ(xi) into xi. Considering a simple
rotation angle θ(x2|x1) = θ2 − θ1 on the triadic circle,
PM (r(x1, x2)) is a pdf that takes z = 24 distinct values.

The entropy of model M can be computed as:

H∗(M) = −
z∑

k=0

PM (rk) log2 PM (rk) (3)

B∗ = 2H
∗

can be interpreted as a branching factor, that
is the equivalent number of distinct relations between two
chords, if these relations were equiprobable. It measures
the compression capacity of the model and is smaller for
models which capture more information in the data.

5 This corresponds to a sequential bi-gram model, a very common ap-
proach in MIR [18].

Triad Circle
Third Phase Random

B(S) 8.00 7.67 9.32

B(P0) 6.68 6.77 7.84
B(P3) 5.35 5.35 6.02
B(PX) 4.63 4.63 5.21
Btot(PX) 5.18 5.18 5.83

Table 2. Average cross-perplexity obtained for the vari-
ous models on RWC-Pop data with 2-fold cross-validation
(training on even songs + testing on odd songs and vice-versa).

In this work, we consider specifically the cross-
perplexity B derived from the negative log likeli-
hood (NLL) Ĥ , computed on a test-set (of L observations).
In that case, the capacity of the model to catch relevant in-
formation from an unseen musical segment is measured by
means of a cross-entropy score, which quantifies the ability
of the model to predict unknown sequences from a similar
(yet different) population.

For a given model M , Ĥ is defined as:

Ĥ(M) = − 1

L

L−1∑
i=0

log2 PM (xi|Φ(xi)) (4)

with the convention P (x0|Φ(x0)) = 1/24.
In that context, the cross-perplexity B = 2H can be

understood as an estimation of the (per symbol) average
branching factor in predicting the sequence knowing its
structure, on the basis of probabilities learnt on other se-
quences, assumed to be of the same sort.

Additionnally, for model PX , we also compute the to-
tal entropy Ĥtot(PX) = Ĥ(PX) + Q, which includes the
number of bits needed to encode the optimal configuration
of the PPP (1 among 6) for each sequence of 16 chords,
namely:

Q = log2(6)/16 ≈ 0.16 bits/symbol, (5)

this term being equal to 0 for the other models.
The first column in Table 2 compares cross-perplexity

figures obtained with the 4 structure models and consid-
ering the circle of thirds for modeling relations between
chords. These results show that all tested polytopic models
outperform the sequential model, with an additional advan-
tage for the PX approach, even when taking into account
the overhead cost required for PPP configuration encoding.

4.3 Impact of the Triadic Circle

In the rest of Table 2, cross-perplexity values are provided
for two other circles of triads: the circle of phase-shifts as
defined on Fig. 2 and a randomized circle, where triads are
positioned at random. Results show that the phase circle
performs quite the same as the circle of thirds, whereas the
randomized circle clearly performs less well. All outper-
form their counterpart in the sequential model, as for all
polytopic models, the identity relation is of zero cost and
higher probability. We do not report perplexities on the
chromatic circle, given that it is congruent to the circle of
thirds, thus yielding strictly identical results.
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US LS1 LS2 LS3 LS4

44.4 % 8.0 % 15.7 % 19.7 % 22.4 %

Table 3. Proportion of sequences with contrastive US
(Upper-Scale system) and LSk (kth Lower-Scale system).

Figure 6. Proportion of contrastive systems within US sys-
tems (left) and the 4 LS systems (right)

4.4 Distribution and Density of Contrasts

To study the specific relationship between the virtual and
the contrastive element in the PX scheme, we investigated
on the location and the number of contrastive vs. non-
contrastive elements in potentially contrastive positions
defined by the PPP framework.

Table 3 presents the distribution of actual contrasts for
the Upper-Scale (US) and the 4 Lower-Scale (LS) in con-
trastive positions. While 44.4% of Upper-Scale Systems
are contrastive, it can also be noted that the frequency of
LS contrasts (or, so to speak, the occurrence of surprises
at the lower-scale span) increases with the index of the LS
system (i.e., its depth in the tesseract).

Figure 6 depicts the proportion of sequences as a func-
tion of the number of actual contrasts observed in different
contrastive positions. It can be observed that the number
of contrastive Lower-Scale systems decays (roughly ex-
ponentially) from over 60.4% of sequences with no con-
trastive Lower-Scale system down to only 2.3% with all 4
LS systems being contrastive.

It would surely be interesting to compare these profiles
across different music genres and a variety of musical di-
mensions, in order to study possible correlations.

4.5 Contrast Intensity

Table 4 reports the perplexity obtained when considering
separately the systemic positions and the contrastive posi-
tions. Keeping in mind that they may be specific to the cor-
pus, results show nevertheless two very interesting trends.

Perplexity is higher in systemic positions (5.6) as op-
posed to constrastive positions (3.5), implying that the ac-
tual observations in contrastive positions often correspond
(or are close) to the projective implication. This can be re-
lated to the results observed in the previous section, w.r.t.
the relatively low density of actual contrasts.

However, when different from identity (column Diff),
these relations show a lower perplexity for systemic re-
lations (14.6 vs 18.7) indicating that, when a relation is
not identity, the contrast is more unpredictable and/or more

All Diff
Systemic position 5.6 14.6

Contrastive position 3.5 18.7

Table 4. Perplexity of relations for systemic relations and
contrastive relations, including (All) or excluding (Diff)
the identity relation.

Figure 7. Proportion of chord sequences showing n distor-
tions relative to their Prototypical Carrier Sequence (PCS).

distant on the circle of thirds, than it is for systemic rela-
tions.

In summary, strictly contrastive relations tend to be less
frequent but more intense than systemic relations. This cer-
tainly relates to the presumed role of contrasts as carrying
a strong quantity of surprise. These observations may be
a motivation for a different treatment of systemic relations
vs. contrastive ones.

4.6 Distortion of Prototypical Carrier Sequences

Ultimately, we considered the distribution of the number
of distortions between observed chord sequences and their
PCS, as defined in section 3.3. Figure 7 shows a domi-
nance of 4 deviations, with an overall prevalence of even
values, suggesting that modelling systems of relations (i.e.
edges) within the tesseract could be useful to further im-
prove the compression capabilities of the PGLR model.

5. CONCLUSIONS

Both from the conceptual and experimental viewpoints, the
polytopic approach presented in this article appears as an
efficient way to model multiscale relations in chord se-
quences.

While still at an early stage of development, the PGLR
model provides a potentially useful and powerful frame-
work for a number of tasks in MIR, as well as interesting
tracks for music analysis and generation. Indeed, the core
principles of the PGLR scheme are not specific to chord
sequences: its application to other types of musical ob-
jects, such as melodic motives and rhythmic patterns are
currently being explored.

Ongoing work also includes the extension of the poly-
topic model to a wider range of timescales, and the han-
dling of segments of irregular size.
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ABSTRACT

Automatic chord recognition systems operating in the
large-vocabulary regime must overcome data scarcity: cer-
tain classes occur much less frequently than others, and
this presents a significant challenge when estimating model
parameters. While most systems model the chord recog-
nition task as a (multi-class) classification problem, few
attempts have been made to directly exploit the intrinsic
structural similarities between chord classes.

In this work, we develop a deep convolutional-recurrent
model for automatic chord recognition over a vocabulary
of 170 classes. To exploit structural relationships between
chord classes, the model is trained to produce both the
time-varying chord label sequence as well as binary en-
codings of chord roots and qualities. This binary encod-
ing directly exposes similarities between related classes,
allowing the model to learn a more coherent representa-
tion of simultaneous pitch content. Evaluations on a cor-
pus of 1217 annotated recordings demonstrate substantial
improvements compared to previous models.

1. INTRODUCTION

Automatic chord recognition has been an active area of re-
search within music informatics for nearly two decades [8].
Chord recognition systems take as input an audio signal,
and produce a time-varying symbolic representation of the
signal in terms of chord labels, which encode simultaneous
pitch class content, such as C:maj or G:hdim7. Many
systems focus on simplified versions of this task, by pre-
dicting only the root note and major or minor qualities,
or no-chord (N). Recently, interest has shifted toward the
large-vocabulary regime, where a broader class of chord
qualities must be estimated, such as triads, sixths, sevenths,
and suspended chords.

Typical chord recognition systems model the task as a
time-varying multi-class classification problem. This ap-
proach may be reasonable for the small-vocabulary regime,
where the classes are sufficiently distinct to be modeled

c© Brian McFee1,2, Juan Pablo Bello2. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Brian McFee1,2, Juan Pablo Bello2. “Structured training
for large-vocabulary chord recognition”, 18th International Society for
Music Information Retrieval Conference, Suzhou, China, 2017.

as unrelated, and each class may be observed with ap-
proximately uniform probability. However, in the large-
vocabulary setting, the multi-class formulation ignores the
structural similarity between related chords, such as the
shared notes between C:min and C:min7. Moreover,
the distribution of classes becomes highly skewed, thereby
making it difficult to model these relationships from purely
symbolic representations with no additional structure. We
hypothesize that leveraging known relationships between
chord classes in terms of common roots and shared pitch
classes can help mitigate the problem of observation bias,
resulting in more accurate models of rare classes.

1.1 Our Contributions

We address the problem of large-vocabulary chord recog-
nition by introducing a structured representation of chord
qualities, which decouples the problem of detecting roots
and pitch classes from the problem of mapping these prop-
erties onto symbolic labels. We integrate this represen-
tation with deep, convolutional-recurrent neural networks,
which are trained end-to-end to predict time-varying chord
sequences from spectral audio representations. The pro-
posed models achieve substantially higher accuracy than
previous models based on convolutional networks and hid-
den Markov models, resulting in absolute gains of 4–5% in
the most difficult categories (sevenths and tetrads).

2. RELATED WORK

Chord recognition has received a substantial amount of
attention in the MIR literature, and a comprehensive sur-
vey of existing methods is beyond the scope of this paper.
Here, we highlight the work that is most closely related to
the proposed methods in this paper.

Hidden Markov models (HMMs) have been a popular
method for designing chord recognition systems, and pro-
vide a flexible framework in which to integrate musical
domain knowledge. The general HMM approach models
chord identities as latent state variables to be inferred from
observed time-series features (e.g., chroma vectors). Sys-
tems like Chordino [17] and HPA [20] extend this idea by
introducing additional latent variables to model key, bass,
and metrical position. In these systems, bass is modeled
by weighting or partitioning the frequency range to pro-
duce distinct bass and treble chroma observations. The K-
stream HMM takes this idea a step further by modeling K
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distinct frequency sub-bands, though it does not explicitly
infer bass [5]. The structured representation we describe
in Section 3 differs in that root, bass, and chord quality are
jointly inferred from the entire spectrum, and it makes no
assumptions about absolute height. Weller et al. [23] also
adapted structured training techniques for chord recogni-
tion, but at the level of dynamics rather than the chord vo-
cabulary.

In recent years, deep learning methods have been in-
creasingly popular for chord recognition. The majority of
existing systems are trained in two stages. First, a model
is built first to encode short patches of audio, e.g., as an
idealized chroma vector [2, 16] or likelihood distribution
over chord categories [7, 11, 22, 24]. Second, a dynamics
model integrates the time-series of learned representations
to produce a sequence of predicted labels, e.g., using an
HMM [11, 24], recurrent neural network (RNN) [2, 22],
or simple point-wise prediction [16]. The models pro-
posed here differ in that they are jointly trained end-to-end
from spectral features, and learn the internal representation
along with the dynamics using multiple recurrent layers.

Regardless of the model architecture, it is common to
exploit some structural properties of chords, e.g., by ty-
ing model parameters for the same chord quality across
roots [11], or rotating chroma vectors through all possible
root positions during training [5]. Although the methods
we propose do not model quality independent of root, they
do model active pitch class sets independently. Chroma
rotation can be viewed as a form of data augmentation,
and the models we develop benefit substantially from a
slightly more general form of augmentation described in
Section 3.4. To the best of our knowledge, the proposed
method is the first to exploit similarities between chords
by jointly modeling labels and structured encodings.

3. METHODS

This section outlines the data preparation, architectures,
and training strategies for the models under comparison.
We consider three independent design choices: convolu-
tional or recurrent decoding, the inclusion of structured
output training, and the use of data augmentation. This
results in eight model configurations.

3.1 Encoder-decoder models

The models we investigate fall under the umbrella of
encoder-decoder architectures [3]. The encoder compo-
nent maps time-varying input (audio) into a latent feature
space, while the decoder component maps from the latent
feature space to the output space (chord labels).

3.1.1 The encoder architecture

The encoder, and depicted in Figure 1, is common to all
models considered in this paper. Input audio is represented
as a T × F time-series of log-power constant-Q transform
(CQT) spectra (for T frames and F frequency bands). Af-
ter batch normalization [13], the first convolutional layer
consists of a single two-dimensional 5 × 5 filter, followed

Conv2D
5x5 [1]
ReLU

Conv1D
1 [36]
ReLU

Bi-GRU

Batch-
norm

Figure 1. The encoder module uses a convolutional-
recurrent network architecture to map the input (CQT
frames) to a sequence of hidden state vectors h(t) ∈ RD.

by a bank of 36 single-frame, one-dimensional convolu-
tional filters, resulting in a T × 36 feature map. Both lay-
ers use rectified linear (ReLU) activations. The first layer
can be interpreted as a harmonic saliency enhancer, as it
tends to learn to suppress transients and vibrato while em-
phasizing sustained tones. The second layer summarizes
the pitch content of each frame, and can be interpreted as
a local feature extractor.

Finally, the local features are encoded by a bi-
directional gated recurrent unit (GRU) model [4]. The
GRU model is similar to the long-short-term memory
(LSTM) model [10], but has fewer parameters and per-
forms comparably in practice [14]. For a sequence of d-
dimensional input vectors x(t) ∈ Rd, a GRU layer pro-
duces a sequence of D-dimensional hidden state vectors
h(t) ∈ [−1,+1]

D as follows:

r(t) = σ (Wrx(t) + Trh(t− 1) + br) (1)

u(t) = σ (Wux(t) + Tuh(t− 1) + bu) (2)

ĥ(t) = ρ (Whx(t) + Th (r(t)� h(t− 1)) + bh) (3)

h(t) = u(t)� h(t− 1) + (1− u(t))� ĥ(t), (4)

where r(t), u(t) ∈ [0, 1]
D are the reset and update vec-

tors, each of which are controlled by RNN dynamics
depending on the input x(t) and previous hidden state
h(t − 1), σ(x) = (1 + e−x)

−1 denotes the logistic func-
tion, and ρ = tanh. The parameters are the input map-
pings W∗ ∈ RD×d, transition operators T∗ ∈ RD×D, and
bias vectors b∗ ∈ RD.

When an element j of the update vector uj(t) ≈ 1,
the corresponding element of the previous hidden state is
copied directly to the current state hj(t) ← hj(t− 1).
Otherwise, if r(t) ≈ 1, then h(t) evolves according to stan-
dard RNN dynamics. However, when both u(t), r(t) ≈ 0,
the h term in (3) goes to 0 and the update resets, depend-
ing only on the input x(t). This allows the GRU model
to persist a hidden state across arbitrarily long spans of
time, and capture variable-length temporal dependencies.
These properties make the GRU model appealing for chord
recognition, where dependencies may span long ranges
(compared to frames), and are subject to sudden changes
rather than gradual evolution.

The bi-directional variant consists of two independent
GRUs, one running in each temporal direction, whose
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hidden state vectors are concatenated to produce the bi-
directional hidden state vector h(t). This layer integrates
over the entire input signal, and provides temporal smooth-
ing and context for the encoded feature representation.

3.1.2 Decoder architectures

We investigate two models, depicted in Figure 3, for de-
coding h(t) to the sequence of chord labels ŷ(t). The first
model, denoted CR1, decodes each frame independently:

ŷ(t) := softmax (Wyh(t) + by) , (5)

where the soft-max operates over the chord vocabulary V ,
producing a likelihood vector ŷ(t) ∈ [0, 1]

|V |. For the CR1
architecture, we set the dimensionality of the hidden state
vector to 512 (256 for each temporal direction).

The second model, denoted CR2, uses a bi-GRU layer
to map h(t) to an intermediate representation h2(t) prior
to frame-wise decoding by eq. (5). To keep the number
of parameters roughly comparable between CR1 and CR2,
we set the dimensionality CR2’s recurrent layers to 256.

For each configuration, all model parameters Θ are
jointly trained to maximize the empirical log-likelihood:

argmax
Θ

∑
t

∑
c∈V

yc(t) log ŷc(t), (6)

where the reference labels are one-hot encoded vectors
y(t) ∈ {0, 1}|V |. While both architectures have access
to the entire observation sequence, CR2 may be better at
capturing long-range interactions. This should allow the
encoder to focus on short-term smoothing and local con-
text, while the decoder can model chord progressions and
global context. In the CR1 model, the encoder is responsi-
ble for both short- and long-range interactions.

At test time, the maximum likelihood label is selected
for each frame, and the series of chord labels is run-length
encoded to form the estimated annotation for the track.

3.2 Chord vocabulary simplification

To formulate chord recognition as a classification task, we
define a mapping of all valid chord descriptions to a finite
vocabulary V . 1 First, inversions and suppressed or addi-
tional notes are discarded, e.g.:

D[:maj(9)/3 7→ D[:maj/3 7→ D[:maj.

Next, labels are decomposed into root and pitch classes
(relative to the root) using mir eval [21]:

D[:maj 7→

{
1 root
(0, 4, 7) pitch classes

.

The set of active pitch classes is matched against 14
templates: min, maj, dim, aug, min6, maj6,
min7, minmaj7, maj7, 7, dim7, hdim7,
sus2, sus4. The root and matched template are

1 A valid chord is any string belonging to the formal language of
Harte et al. [9], or the extended grammar implemented by JAMS [12].

combined, and mapped to a canonical form to resolve
enharmonic equivalences:

(1, (0, 4, 7)) 7→ C]:maj.

If the pitch class set does not match one of the templates,
it is mapped to the unknown chord symbol X; the no-chord
symbol is represented distinctly as N. The final vocabulary
contains 170 classes: 2 special symbols (N, X), and 12×
14 = 168 combinations of root and quality.

3.3 Structured training

The CR models described above map each hidden state
vector h(t) to a fixed vocabulary produced described in
Section 3.2. They can be optimized in the usual way to
maximize (6), but this approach has some clear drawbacks.

First, it does not leverage the inherent structure of the
space of chords. If the model predicts B:maj instead of
B:7, it is penalized just as badly as if it had predicted
C:maj. This is at odds with evaluation, where predictions
are evaluated along multiple dimensions, such as capturing
the root, third, or fifth. More generally, some mistakes are
simply more severe than others, and this is not reflected in
a 1-of-K classification formulation.

Second, the chord simplification strategy is lossy in that
it discards information such as suppressed or additional
notes. This can render certain chords ambiguous, and can
introduce discrepancies between the (simplified) annota-
tion and the corresponding acoustic content. Continuing
the D[:maj(9)/3 example, the simplification C]:maj
implies the absence of D], although it was explicitly in-
cluded in the original annotation and should be expected
in the signal. This introduces label noise to the model, and
may negatively impact accuracy.

Third, out-of-gamut chords all map to a common class
X, despite having disparate roots and tonal content. This
class provides little useful information to the model while
training. At test time, it would be beneficial if the model
could predict “nearby” chords, but multi-class training pro-
vides little incentive to learn this behavior.

To counteract these effects, we introduce a structured
representation, depicted in Figure 2. This is inspired by the
standard evaluation criteria for chord recognition, which
operate over a decomposed representation of (root, pitch
classes, bass) [21]. This representation can be computed
for any valid chord label, and provided as supervision
to the model, thereby helping it learn common features
shared by similar chords. At prediction time, the struc-
tured representation is used as an intermediate representa-
tion which contributes to the chord label prediction, which
can now be interpreted as a human-readable decoding of
the structured representation.

The structured models (denoted as CR1/2+S), depicted
in Figure 3, predict for each frame t the root pitch class
(C–B, plus N for no-root), the bass pitch class, and the ac-
tive pitch classes from the hidden state vector h(t). Root
and bass estimation are modeled as a multi-class predic-
tion with a soft-max non-linearity. Pitch class prediction

190 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



Db:maj(9)/3 C#:maj
C D E F G A B N

Simplification

Encoding

root

bass

pitches

Figure 2. Target chords are represented in both simplified
canonical form (Section 3.2), and as binary vectors encod-
ing the root, bass, and pitch classes (Section 3.3). The spe-
cial symbols N,X map to an extra root/bass class N, and
the all-zeros pitch vector.

Chords

Root

Pitches
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Bi-GRU
[256]

Encoder
[256]

Input

Chords

Root
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Encoder
[512]

Input

ChordsBi-GRU
[256]

Encoder
[256]

Input

ChordsEncoder
[512]

Input

CR1

CR2

CR1+S

CR2+S

Figure 3. Block diagrams of all architectures described in
Section 3. The encoder block is depicted in Figure 1.

is modeled as a multi-label prediction, and uses a logis-
tic (sigmoid) non-linearity. This results in an idealized
chroma representation similar to that of Korzeniowski and
Widmer [16], but estimated from the full input observation
rather than a fixed spectrogram patch. An illustrative ex-
ample of this predicted encoding is provided in Figure 4.

It is generally non-trivial to invert the root-pitch-bass
representation to a unique chord label. Therefore, these
three layers are concatenated, along with the hidden state
h(t), to produce the structured representation from which
the chord label is predicted. During training, the struc-
tured models learn to minimize the sum of losses across
all outputs: root, pitches, bass, and label ŷ(t). Minimizing
the root and pitches losses corresponds to maximizing the
root and tetrads recall scores during training, while eq. (6)
learns the decoding into the human-readable chord vocab-
ulary. This formulation effectively decouples the problems
of root and pitch class identification from chord annotation,
which is known to be subjective [11].

3.4 Data augmentation

To increase training set variability, we apply pitch-shifting
data augmentation using MUDA [18]. For each training
example, 12 deformations are generated by shifting up or
down by between 1–6 semitones. Because each observa-
tion exists in all twelve root classes, this provides a brute-
force, approximate root invariance to the model. Models
trained with data augmentation are denoted by +A.

10 15 20 25 30
Time

A#:maj
A#:min
C:maj

F:7
F:maj

G#:maj
G:maj
G:min

N
A#:min6

C:7
D#:maj

F:min
G:7

G:min7

Chords

Reference
Estimate

Figure 4. The predicted chord encodings and labels for
The Beatles — Hold Me Tight by model CR2+S+A.

4. EVALUATION

For evaluation, we used the dataset provided by Humphrey
and Bello [11], which includes 1217 tracks from the Iso-
phonics, Billboard, RWC Pop, and MARL collections. To
facilitate comparison with previous work, we retain the
same 5-fold cross-validation splits, and randomly hold out
1/4 of each training set for validation. We compare to two
strong baselines: a deep convolutional network [11] (de-
noted DNN), and the K-stream HMM [5] (KHMM). 2

4.1 Pre-processing

Feature extraction was performed with librosa 0.5.0 [19].
Each track was represented as a log-power constant-Q
spectrogram with 36 bins per octave, spanning 6 octaves
starting at C1, and clipped at 80dB below the peak. Signals
were analyzed at 44.1KHz with a hop length of 4096 sam-
ples, resulting in a frame rate of approximately 10.8Hz.

4.2 Training

All models are trained on 8-second patches (86 frames),
though they readily support input of arbitrary length. For
tracks with multiple reference annotations, the output is
selected uniformly at random from all references for the
patch, which reduces sampling bias toward specific anno-
tators. Models are trained using mini-batches of 32 patches
per batch, and 512 batches per epoch. We use the ADAM
optimizer [15], and reduce the learning rate if there is no
improvement in validation score after 10 epochs. Train-
ing is stopped early if there is no improvement in valida-
tion score after 20 epochs, and limited to a maximum of
100 epochs total. For all models, validation score is deter-
mined solely by label likelihood (eq. (6)). All models were
implemented with Keras 2.0 and Tensorflow 1.0 [1, 6]. 3

4.3 Results

The main results of the evaluation are listed in Fig-
ure 5, which illustrates the median weighted recall scores
achieved by each model. 4 Each subplot reports the recall

2 Comparisons were facilitated using the pre-computed outputs pro-
vided at https://github.com/ejhumphrey/ace-lessons.

3 Our implementation is available at https://github.com/
bmcfee/ismir2017_chords.

4 The trends for the mean scores are qualitatively similar, but the scores
are lower for all models. We report the median here to reduce the in-
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Figure 5. Weighted recall scores for all methods under comparison. Each dot represents the median score across all test
points, with error bars covering the 95% confidence interval estimated by bootstrap sampling. KHMM denotes the K-stream
HMM of Cho [5]; DNN denotes the convolutional network of Humphrey and Bello [11].

scores computed by mir eval: 1. root; 2. thirds: root
and third; 3. triads: root, third, and fifth; 4. sevenths: root,
third, fifth, and seventh; 5. tetrads: all intervals; 6. ma-
j-min: 12 major, 12 minor, and N class; and 7. MIREX: at
least three correct notes.

From Figure 5, several trends can be observed. First,
data augmentation (+A variants) provides a consistent and
substantial improvement for all models. This is to be ex-
pected, since the CR models do not separate root from
quality. Note that DNN models these independently, and
KHMM was trained with chroma-rotation data augmenta-
tion, so it is unsurprising that augmentation is necessary to
match performance of these methods.

Second, structured training (+S variants) provides a
modest, but consistent improvement, for both the shallow
CR1 and deep CR2 decoder models. The difference is most
pronounced in the root evaluation, which is expected due
to the explicit objective to correctly identify the root.

Third, the deep decoder models CR2 provide another
small, but consistent improvement over the shallow de-
coders CR1. The aggregate scores are reported in Table 1;
for brevity, only the models with data augmentation are in-
cluded. The combined effect of structured training, deep
decoder, and data augmentation (CR2+S+A) results in the
highest scoring model across all metrics.

4.4 Error analysis

To get some more insight about the mistakes made by the
model at test time, we illustrate the frame-wise, within-

fluence of the erroneous or otherwise spurious reference annotations re-
ported by Humphrey and Bello [11].
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Figure 6. Within-root, frame-wise quality confusions for
the best performing model CR2+S+A. The value at row i,
column j corresponds to the fraction of frames labeled as
class i but predicted as class j.

root quality confusion matrix for the CR2+S+A model in
Figure 6. For each frame of a test track, its (simplified)
reference label is compared to the label estimated by the
model if they match at the root. Results are then aggre-
gated across all test tracks, and normalized by (reference
quality) frequency to produce the confusion matrix. Under
this evaluation, the CR2+S+A achieves 63.6% accuracy of
correctly identifying the simplified chord label (root and
quality) at the frame level.
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Method Root Thirds Triads Sevenths Tetrads Maj-Min MIREX

CR2+S+A 0.861 0.836 0.812 0.729 0.671 0.855 0.852
CR2+A 0.850 0.828 0.801 0.719 0.659 0.845 0.837
CR1+S+A 0.850 0.824 0.801 0.716 0.648 0.842 0.832
CR1+A 0.841 0.815 0.791 0.702 0.647 0.834 0.829

KHMM [5] 0.849 0.822 0.785 0.674 0.629 0.817 0.827
DNN [11] 0.838 0.809 0.766 0.654 0.605 0.803 0.812

Table 1. Median weighted recall scores for methods under comparison.
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Figure 7. The difference between confusion matrices for
CR2+S+A and the unstructured CR2+A (best viewed in
color). Positive values along the diagonal indicate in-
creased accuracy for CR2+S+A.

In Figure 6, the first obvious trend is a bias to-
ward min and maj, in accordance with the natural bias
in the training set (13.6% and 52.5% of the data, re-
spectively, by duration). Note, however, that the con-
fusions are generally understandable as simplifications:
e.g., (min7,minmaj7)→min and (maj7,7)→maj. The
model still appears to struggle with 6th and suspended
chords, which account for 1.5% and 2.5% of the data, re-
spectively. The bottom row corresponds to out-of-gamut
X-chords, which map overwhelmingly to maj and min.
This can be explained by examining which labels map to
X during simplification. There are 4557 instances of such
chords in the corpus (2.2% of the data), and of these, 2091
are 1-chords (only the root) and 2365 are power chords
(root+fifth), neither of which map unambiguously onto the
simplified vocabulary. The model appears to resolve these
toward the more commonly used min and maj qualities.

To understand the influence of structured training, Fig-
ure 7 illustrates the difference between the confusion ma-
trices of the structured model CR2+S+A and the unstruc-
tured model CR2+A. Positive values (red) along the diago-
nal indicate increased accuracy for the structured model,
while negative values along the diagonal (blue) indicate
decreased accuracy. The net effect is positive, increasing
accuracy by +0.8% over CR2+A (62.8%).

Despite a slight degradation for maj7, there are sub-

stantial improvements for aug, dim7, hdim7, and mod-
est improvement for sus4. Moreover, the negative values
in the second column reveal a consistent reduction of con-
fusions to maj. This indicates that the structured model is
more robust to quality bias in the training set. Compared
to the unstructured model, the structured model reduces
confusions from aug to (maj, 7), and dim7 to (min, 7,
N). The CR2+S+A still performs poorly on the rarest class
minmaj7 (0.03% of the data), but compared to CR2+A, it
resolves toward min more often and min7 less often. The
structured model appears to be better at abstaining from
predicting a seventh if it appears unlikely, rather than pre-
dict the wrong seventh.

5. CONCLUSION

This work developed deep architectures and a structured
training framework for chord recognition in large vocab-
ularies. Although the proposed models improve over the
baseline methods, there are clear directions forward in ex-
tending the ideas presented here. First, although the pro-
posed model predicts the bass note, this feature is only
used for establishing context in decoding, and the model
does not predict inversions. Supporting inversion predic-
tion would be a simple extension of the method described
here, and would not require creating special vocabulary en-
tries for each potential inversion. Second, the structured
representation facilitates modeling infrequently observed,
complex chords, and could readily be extended to support
extended chords by using a multi-octave pitch class repre-
sentation. However, doing so effectively—and evaluating
the resulting predictions—would require larger annotated
corpora for these classes than are presently available.
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ABSTRACT

Reproducing piano rolls are among the early music storage
mediums, preserving fine details of a piano or organ per-
formance on a continuous roll of paper with holes punched
onto them. While early acoustic recordings suffer from
poor quality sound, reproducing piano rolls benefit from
the fidelity of a live piano for playback, and capture all
features of a performance in what amounts to an early dig-
ital data format. However, due to limited availability of
well maintained playback instruments and the condition
of fragile paper, rolls have remained elusive and generally
inaccessible for study. This paper proposes methods for
modeling and digitizing reproducing piano rolls. Starting
with an optical scan, we convert the raw image data into the
MIDI file format by applying histogram-based image pro-
cessing and building computational models of the musical
expressions encoded on the rolls. Our evaluations show
that MIDI emulations from our computational models are
accurate on note level and proximate the musical expres-
sions when compared with original playback recordings.

1. INTRODUCTION AND MOTIVATION

The invention of acoustic recordings in the late nineteenth
century is widely accepted as a watershed moment in the
history of music. However, piano rolls, which were in
widespread use from approximately 1905 to 1940, are mis-
takenly treated as a footnote. Researchers studying early
acoustic recordings have significant challenges with tran-
scribing the nuances of a performance due to the poor
sound fidelity, high noise artifacts, and limited recording
length. Piano rolls did not share these shortcomings and
were praised for their faithfulness and accuracy, providing
a virtual transcription of a performance by punching holes
on a paper scroll. Many important musicians who recorded
on piano rolls never made acoustic recordings and were
among the oldest generation to be recorded. These include
composers like Claude Debussy, Scott Joplin, and Carl
Reinecke, among others [13]. Modern digital audio work-
stations were inspired by this old music storage format and

c© Zhengshan Shi, Kumaran Arul, Julius O. Smith. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Zhengshan Shi, Kumaran Arul, Julius O.
Smith. “Modeling and Digitizing Reproducing Piano Rolls”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

provide graphical display of MIDI (Music Instrument Dig-
ital Interface) files in what usually refers to a piano-roll
editor. Thus, it can be claimed that piano rolls are among
the most significant early commercial recordings and data
storage media.

Playing and recording original rolls has been difficult
due to the fragile paper and cumbersome demands of main-
taining original instruments. Some recent efforts have pur-
sued an alternative approach to accessing rolls by design-
ing dedicated roll scanners to create image files of the rolls.
This serves the purpose of archival preservation but does
not allow piano rolls to be heard as the musical documents
they were originally intended to be.

In this paper, we present a method for faithful automatic
playback of reproducing piano rolls from image scans. Our
research aims to digitize the data captured through analysis
of notes, timings, and dynamics. The latter involves decod-
ing proprietary expression mechanisms controlled through
holes on the sides of the rolls. We evaluate our accuracy by
comparing the digital file with acoustic recordings of rolls
played on original player instruments.

2. RELATED WORK

There has been limited work on digitizing piano rolls by in-
stitutional researchers and independent hobbyists. Wayne
Stahnke [14] is one of the first to scan piano rolls and
convert them into a digital format. Stahnke transferred
image information derived from a self-built roll scanner
into a proprietary data format preserving the details of the
punched holes. Colmenares et al [2] converted Stahnke’s
pre-processed data for piano rolls into MIDI information
by using sparse matrices. A few researchers such as
Trimpin [7], Trachtman [15], and Malosio et al [9] have
worked on the emulation of piano rolls. Other individuals
such as Anthony Robinson [12] developed scanning ma-
chines and software that allows manual adjustment of the
punch holes for refinement and error correction in the pro-
cess of MIDI generation. These pioneering efforts remain
however largely inaccessible, as key algorithms are not re-
vealed or evaluated and are unavailable for consideration
and review. They also typically require intensive manual
labor in the transfer process and are usually limited to one
format of roll.

Our work aims to fill this gap by proposing tech-
niques to digitize and model reproducing piano rolls in-
cluding novel methods of transcribing the musical expres-
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Figure 1. Excerpt from a Welte-Mignon piano roll image scan, consisting of the left marker, channels 1 to 98, and the right
marker.

sion markings on those piano rolls. We evaluate our system
by comparing the resultant MIDI emulation to the actual
acoustic playback of the reproducing piano roll on a player
piano.

3. REPRODUCING PIANO ROLLS FORMATS

A piano roll is a continuous roll of paper with perforations
that store musical note data. It captured in real time the
notes and rhythms of a pianist playing a special recording
instrument. Music recorded on rolls are often performed
by a player piano, a pneumatic machine that can decode
the music data on the perforations and operate the piano
action. Reproducing piano rolls are standard piano rolls
with expression (dynamic and pedal) capabilities that can
also be automatically executed by player piano. Expres-
sions were captured in variable ways but were usually tran-
scribed in shorthand and then coded onto the roll for bass
and treble respectively. The complex process allowed for
detailed editing of notes, rhythms and expressions.

The competitive environment of the early roll business
created multiple different reproducing-piano systems, with
variations in the size of rolls, configuration of holes, and
pneumatic player designs. Although industry efforts at
standardization eventually created some overlap, a thor-
ough inventory of historical roll systems would number
over two dozen. Most reproducing rolls of value to schol-
ars are found in the catalogs of a handful of primary play-
ers, including Welte-Mignon (the first reproducing roll
maker), Ampico, Duo-Art, and Hupfeld. Playing any re-
producing roll requires a suitable player piano manufac-
tured specifically for that format of roll. In some cases, as
formats evolved over time, multiple players are needed to
play back a manufacturer’s rolls (early Red, T-100 Welte
rolls do not play on later Green, T-98 Welte players, for

example).
In this paper, we focus on the Welte-Mignon Licensee

format (the third Welte format, a derivation of the T-98
rolls). A typical Welte-Mignon Licensee roll is 11 1/4
inches in width and holes spaced 9 per inch across [5], con-
sisting of 98 channels 1 of punched holes [11]. As shown
in Figure 1, channels 9 through 88 represent notes span-
ning from C1 to G7, with note F#4 as the splitting note for
bass and treble. Channels 1 through 6 control bass (left-
hand) expression, and channels 93 through 98 indicate tre-
ble (right-hand) expression. The pedal information is in-
cluded in channel 7 and 8 (soft pedal) as well as channel
91 and 92 (sustain pedal). The expression channels com-
bine to determine the dynamics of the piano performance.

4. ALGORITHM FOR DIGITIZING
REPRODUCING PIANO ROLLS

In this section, we describe our method for digitizing and
modeling the reproducing rolls. We first obtain piano roll
images through a scanner, then construct a template that
matches the layout geometry of the piano roll. Based on
the template and locations of the perforations, we recover
the note matrix that contain onset times for each note and
musical expression. Finally we model musical expressions
into dynamics and pedal information, that can be preserved
in MIDI files.

4.1 Scanning

The first step in digitizing the reproducing-piano rolls is to
generate the image file by scanning. The scanner used for
this project was purposely built for rolls with a transport

1 For the purpose of this paper, we refer to a “channel” as a column of
the punched holes.
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mechanism that allows continuous image capture by a con-
tact image sensor (CIS) module which produces a graphic
image file in either CIS or bitmap graphic format. The
scan produces a directory of bitmap image files, initially
preserving the 8-bit grayscale information. Each scanned
image is 7296 pixels wide, juxtaposing front and back of
the roll onto one side, with a pixel resolution of 324 dots-
per-inch (dpi). We convert the grayscale raw image data
to binary and invert the digit, so that 0 indicates no hole
(white), and 1 indicates a hole coverage (black) at each
pixel. On average, the size of a punched hole is 17 by 28
pixels.

4.2 Channel Grid Construction

Given a fixed piano-roll format, the edges of the zones
stay sufficiently constant due to the general uniformity of
the piano rolls. Thus, a quantitative template specifying
piano-roll layout geometry such as the exact location for
each channel and the spacing between different zones is
necessary. We refer to it as a Channel Grid.

However, to the best of our knowledge, there is no such
precise grid of hole placement available. Only general his-
torical and empirical evidence from playback are available.
Thus, using documentation of roll formats [11], and the no-
tation of the musical works recorded, we derived reference
points which were used to create a quantitative template
locating the notes and expression holes on the roll.

Histogram-based image processing [6] has been used
previously in optical music recognition to determine grid
layouts of musical scores. Fujinaga [4] applied the his-
togram method to successfully detect staff lines on sheet
music. We applied a similar method for the scanned piano
roll images by projecting the piano-roll image onto its x
axis to form a histogram of the holes in each channel. From
the x-projection, we process each note-channel histogram
to find the center point of each histogram peak relative to
the left edge of the piano roll, as illustrated in Figure 2. We
take that as defining center lines for each channel. Because
the hole-channels are adequately straight and nearly paral-
lel to the edge of the paper, the x projection histogram pro-
duces well separated “channel piles”. The set of all such
channel lines forms a grid on the piano roll in which each
channel line is a fixed measured distance from the left edge
of the paper. To map these note-center x-coordinates to
MIDI note numbers, we use the first note of Waltz in E flat
Major, Op.42 No.2 by Frédéric Chopin as an anchor note,
namely E[4 (MIDI note number 63). Under current im-
age resolution, the median gap between each note channel
was found to be approximately 33 pixels, which matches
the roll specification of 9 holes per inch as mentioned in
section 2.

Based on the distribution of the punched holes as well
as our manual inspection of the roll image, we further par-
tition the piano roll into three zones: zone 1 on the left in-
cludes the bass dynamics, zone 2 in the middle contains all
the note information for the 80 keys, and zone 3 spans the
treble dynamics, as shown in Figure 1. Our entire collec-
tion of Welte-Mignon Licensee rolls appears to be compat-

Figure 2. (Top left) Scanned image; (Top right) Zoomed-
in view; (Bottom left) Histogram for top left; (Bottom
right) Histogram for top right. Note: aspect ratio has been
modified for top left and top right images in order to fit into
plots.

ible with this template. Thus the template formation based
on one example is found to be sufficient. We are able to
prescribe the edges of the zones according to the plot of
channel histograms generated by the system, as described
above and further below.

4.3 Note Identification

We create a note matrix based on the channel grid we gen-
erated. We first match each hole with a note on the chan-
nel grid. We consider a match to occur when a hole inter-
sects with any note on the channel grid. Note that the size
of a hole is wider than one pixel. Then we perform a y-
projection of the hole to determine the note onset time. The
note matrixM is of size 80-by-N , whereN is the length of
the scanned roll in pixels, and Mi,j = 1 if a punched hole
covers the particular pixel. We then convert the sparse ma-
trix into readable format, row by row, consisting of MIDI
note number and note onset times. We scale the note on-
set time from pixels to milliseconds. We determine the
scale factor according to the time information indicated at
the beginning of each roll. For example, for a piece with
tempo mark 70, the roll should be played at a speed of 7
feet per minute [5]. We thus define the scale factor F to be
the length pixels divided by the time it takes to finish the
piano roll (in seconds). In the case of the Welte-Mignon
Format, F = 455 pixels per second.

For long notes, the punching system needs to punch
multiple holes closely spaced along the channel grid. Thus
to obtain the actual note durations, we define a minimum
threshold between two holes as 11 pixels. This threshold
was determined empirically based on observations of the
reference piano roll. If the gap between holes is smaller
than this minimum threshold, the holes are considered to
belong to the same note.
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Figure 3. (A) Excerpt from the original (distorted) image
(B) Edge profile of the left and right markers for the origi-
nal image. (C) Excerpt from the corrected image (D) Edge
profile of the left and right markers for the corrected image.

4.4 Distortion Correction

Due to instability in the scanner system, some scanned im-
age were warped, as shown in Figure 3A. We fix this dis-
tortion by locating reference lines. On each roll, there are
two straight bold lines marking the region of the punch
holes. We refer to them as markers, as shown in Figure 1B.
We first locate the two markers in the roll, and then use
them as reference point to evaluate if the paper is warped or
distorted. Our system iterates through each row and scale
the pixels between the two markers such that the markers
are enforced to be vertically straight and have a constant
distance in between. Thus the imperfection in scanning
can be detected and corrected, as in Figure 3C. Figure 3D
shows straight left and right marker after the distortion cor-
rection.

4.5 Modeling Musical Expressions

Next we decode and model the expression markings on
the left and right sides of the piano roll next to the mark-
ers. We obtain the location of each expression channel by
constructing an expression channel grid similar to the note
channel grid, as illustrated in Figure 4.

There are three types of musical expressions in Welte-
Mignon piano rolls: constant velocity, changing velocity,
and pedal information. The left zone of expression chan-
nels correspond to bass notes (notes below F]4), and the
zone on the right specifies the expression for treble notes
(notes from G4) with the pedal information controlling the
whole register.

For the constant-velocity controls, we simply map each
indicated piano-key velocity to a chosen constant MIDI ve-
locity, a seven-bit value between 0 and 127. Based on lis-

Figure 4. Musical expression holes in black with the ex-
pression channel grid in red vertical lines

tening tests and calibration experiments described in the
next section, we chose to map the normal (default) veloc-
ity to MIDI velocity 72, mezzoforte to 80, and forzando to
88. The piano samples used in this study is the Steinway
Grand Piano in Logic Pro X 2 .

To model the changing-velocity controls crescendo and
decrescendo, we need some understanding of the expres-
sion pneumatics system itself.

In most Welte-Mignon systems, the expression is im-
plemented using pallet valves [11]. Specifically, when
the system reads a hole on the crescendo channel, the
crescendo valve will be opened, introducing a suction to
the expression pneumatic that pulls the pneumatic closed,
producing a crescendo in the music. It takes significant
time for the air to come into the pneumatic system to take
effect. We model this process as an exponential approach
to a target value, using one-pole unity-gain lowpass fil-
ter having impulse-response time-constant τ that is set to
match the observed dynamics.

There are two types of crescendo:

1. a “very slow” crescendo produced by turning on the
crescendo channel. This control is latching, so that
one hole can turn it on.

2. a “fast” crescendo that is not latching.

A string of fast crescendo holes can used to speed up
the slow crescendo, thereby providing many ultimate
crescendo rates, as well as nonuniform crescendos. They
are like little bursts of additional suction along the way as
the slow crescendo develops.

Let the observed time-constant of the slow crescendo
be denoted by τs (s for “slow”). Then the slow-crescendo
one-pole filter has digital transfer function

Hs(z) =
1− ps

1− psz−1
(1)

2 https://www.apple.com/logic-pro/
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where its pole ps is defined as

ps = e−T/τs

with T denoting the digital sampling interval in seconds
(typically T = 1/fs, where fs denotes the sampling
rate, and fs = 44100 Hz or greater). The time-domain
difference-equation used to implement the slow crescendo
is given by

yn = (1− ps)xn + ps yn−1, n = 0, 1, 2, . . . ,

where xn is set to the target velocity at sample n, which is
forzando for a crescendo, and either normal or mezzoforte
for a decrescendo, depending on the last constant-velocity
setting.

The fast crescendo is modeled exactly like the slow
crescendo, but using a smaller time-constant τf � τs.

5. EVALUATION

We used MIDI file tools for Matlab 3 to convert our piano-
roll matrix into MIDI format, and we synthesized the MIDI
file in Logic Pro X using the Steinway Piano software-
instrument that comes with Logic. We evaluated the suc-
cess of our algorithm by comparing the synthesized audio
to a recording of the player-piano, both driven from the
same piano roll. Due to limited access to the machine and
rolls, we only include one roll in our discussion here. How-
ever, given that each roll format possesses a fix template,
we can assume that it will work for many additional rolls.

5.1 Recording Setup

We set up a recording environment for the player piano in
a concert hall. The player we used is called a “push-up”
because one pushes it up to a real piano where it plays
the piano using padded wooden mechanical “fingers” (see
Figure 5), as described further below. We recorded the
push-up’s performance on a 9’ Steinway grand piano. The
piano-roll chosen was the Chopin Op.42 Waltz in A[, per-
formed by Katherine Bacon, and published by Welte in
1924.

Figure 5. The Push-up Player

For the acoustic recording, we set up two cardioid mi-
crophones above the Steinway grand piano, one on the left,

3 https://github.com/kts/matlab-midi

Figure 6. Acoustic Recording Setup of the player piano

capturing most of the energy from the bass, and one on the
right, for the treble, as shown in Figure 6. The push-up
player is aligned at the piano and the roll is set in the player,
attaching the lead to the take up spool. The playback speed
is set manually on the player. There can be some variation
in playback on different players due to subtle differences in
condition, however, most features of rolls are reproduced
consistently on well functioning instruments. The instru-
ment used in this project has been evaluated by player pi-
ano technicians to be in good working condition.

5.2 Note Similarity Measurement

An example MIDI file 4 is shown in Figure 7, with the raw
image file on the top, and the MIDI file displayed in “piano
roll” editor window in the program Logic Pro X for Mac
OS X. We can see that the overall shape and trend of the
notes are visually identical.

Figure 7. Visual inspection of the scanned image (top) and
the ”piano roll” image of the synthesized MIDI in Logic
Pro X (bottom).

We measure the similarity of the audio content by cal-
culating a similarity matrix [3] of the spectrogram between
the MIDI-synthesized audio file and the audio recording.
We then apply dynamic time warping [10] to align the
MIDI file with audio and retrieve a path between the two.
Figure 8 shows the similarity matrix comparing the spec-
trogram of the audio recording and MIDI-synthesized au-

4 MIDI synthesized audio file on Chopin Waltz Op.42 No.2 can be
heard at https://tinyurl.com/kvyxc3s
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Figure 8. The spectrogram similarity matrix comparing
the live audio recording and the synthesized MIDI, with an
overlay of the time alignment line (red). Note: a straight
diagonal line means perfect alignment.

dio, with the red diagonal line representing the time align-
ment between the recording and the MIDI. We see that the
diagonal line is near straight and slope 1, meaning that we
get almost perfect alignment between the audio and the
MIDI. We found that there is some variation and curva-
ture towards the end of the diagonal line and that the over-
all length of the MIDI emulation is 8-second longer than
recording of the player piano.

5.3 Dynamics Measurement

To measure the success of modeling the dynamic expres-
sions, we calculated the root mean square energy of both
audio file. As in Figure 9, we see that their dynamic lev-
els are similar, but we see that the original playback has a
wider dynamic range than our synthesized MIDI file. We
plan to optimize our setting of the dynamic variability to
match the acoustic recording, but that will be the center
(default) setting of a knob that can be varied from “flat”
(no dynamics at all) to “exaggerated” (expanded dynam-
ics). With this control users can adjust to taste. For exam-
ple, it is nice to be able to make flatter renderings for noisy
listening environments such as cars.

Note that every player piano will give a slightly differ-
ent result due to variabilities in manufacturing and settings.
This is another reason to make the end-result easily ad-
justable.

We do not yet include pedal information because the
pedal on the player piano was not working perfectly at the
time of our recording. We presently do not have control
over how much pedal and pedal delay.

5.4 Discussion

We found that the MIDI file matched the original record-
ing quite well, both visually in the graphs and audibly in
recordings. As pointed out in the similarity measurement
section, we observe that the MIDI roll is not quite at the

Figure 9. Comparison of the root mean square energy for
live audio recording (blue) and synthesized MIDI (red).

same speed as the instrument playback of the roll. The
MIDI roll appears to be “slowing down” towards the end
compared to the original playback. Our research suggests
that this is likely a deliberate design from the factory to
compensate for increasing tempo change due to the chang-
ing diameter of the spool as it unwinds the paper upon
playback. Wider spacing of the holes towards the end of
the roll would keep the speed of the playback constant [1].
This would be consistent with our observation which finds
the original roll playback faster than the MIDI of the paper
roll itself. This observation will be explored with further
evidence as more rolls are scanned and digitized.

6. CONCLUSION AND FUTURE WORK

We proposed methods for decoding reproducing piano roll
images into MIDI files. We also proposed an apparently
novel method for interpreting the expression markings on
a piano roll. Though the system is designed to recognize
the Welte-Mignon piano-roll format, our note matrix tem-
plate is adaptable to all other systems with small modifi-
cations. However, the expression template is not adaptable
from system to system. We also developed models for the
Duo-art format. We have not yet evaluated this model with
a playback comparison due to limited availability of an ap-
propriate instrument. However, future work is planned for
interpreting all piano-roll types, and including comparing
different player instruments of the same type in order to
measure variabilities. We further plan to create a master
punch-matrix for the system types for correcting errors and
repunching the piano rolls, thereby “restoring” them. We
plan to develop a batch processing system for all the roll
images created by the new scanning device that is presently
being built for the Stanford Music Library [8]. Finally, we
plan to release these digitized piano rolls on the Web as a
free online resource.
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ABSTRACT

In this study, we compare the melodies of five medieval
chant traditions: Gregorian, Old Roman, Milanese, Ben-
eventan, and Mozarabic. We present a newly created
dataset containing several hundreds of offertory melodies,
which are the longest and most complex within the total
body of chant melodies. For each tradition, we train n-
gram language models on a representation of the chants as
sequence of chromatic intervals. By computing perplexi-
ties of the melodies, we get an indication of the relations
between the traditions, revealing the melodies of the Gre-
gorian tradition as most diverse. Next, we perform a classi-
fication experiment using global features of the melodies.
The choice of features is informed by expert knowledge.
We use properties of the intervallic content of the melodies,
and properties of the melismas, revealing that significant
differences exist between the traditions. For example, the
Gregorian melodies contain less step-wise intervals com-
pared to the other repertoires. Finally, we train a classifier
on the perplexities as computed with the n-gram models,
resulting in a very reliable classifier.

1. INTRODUCTION

In 789 Charlemagne ordained the Roman rite normative
for Christian worship throughout his Empire. The chant of
this rite became widely known as Gregorian chant (GRE).
The earliest manuscripts with pitch-readable notation date
from the beginning of the eleventh-century, increasing in
number until the Renaissance. Manuscripts with neumatic
contour notation go back to the end of the ninth century,
and manuscripts with only the texts of the chants to al-
most 800. Basically all these manuscripts exhibit the same
chants for specific liturgical occasions [13].

Since the invention of book printing and the Reforma-
tion, this uninterrupted and almost omnipresent European
chant tradition came to an end. The Council of Trent
(1545–1563) seems the beginning of many emended and
sometimes drastically refashioned traditions of Gregorian
chant. Since the restoration of Gregorian chant in the late

c© Peter van Kranenburg, Geert Maessen. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Peter van Kranenburg, Geert Maessen. “Comparing Of-
fertory Melodies of Five Medieval Christian Chant Traditions”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

nineteenth century, remnants of non-Gregorian chant tradi-
tions have continued to intrigue scholars. By the thirteenth
century most of these traditions had already been abolished
and replaced by Gregorian chant.

To this day the only surviving non-Gregorian tradi-
tion is the Milanese chant (MIL) of the Ambrosian rite
in Northern Italy. The earliest notated manuscripts date
from the twelfth century. Several hundreds of MIL chants
are melodically related to GRE chants [2]. The Old Ro-
man chant (ROM) that once existed in Rome itself is pre-
served in three graduals, several antiphoners and fragments
from the eleventh till thirteenth centuries. Nearly all ROM
chants are melodically related to GRE chants, with simi-
lar liturgical assignments. ROM was abolished in the thir-
teenth century [14]. Nearly 200 chants of the Beneven-
tan rite of Southern Italy survive in eleventh and twelfth-
century manuscripts among the regular GRE chants. Old
Beneventan chant (BEN) was abolished in 1058 [15].

On the Iberian Peninsula and Southern France the
Mozarabic rite was dominant from the sixth till the
eleventh century. Its chant is called Old Hispanic chant.
It was abolished in 1085 and replaced by the Roman rite
with its GRE. Six parishes in Toledo were allowed to con-
tinue the tradition. The oral Mozarabic tradition was no-
tated in early sixteenth century musical notation (MOZ).
However, we also have over 5,000 Old Hispanic chants
preserved in neumatic contour notation from the tenth till
thirteenth centuries. Unfortunately, the vast majority of
these chants do not correspond with MOZ and remain pitch
unreadable [19, 27].

Since the 1950s the central question in chant scholar-
ship concerned the relationship between GRE and ROM.
Which of these traditions was the earliest? Was there per-
haps another tradition preceding both? Many hypotheses
have been put forward, but hardly any conclusive positions
have been reached. Most scholars, however, believe that
both GRE and ROM are later developments of the Roman
tradition that was known to the Carolingians in the second
half of the eight century. So the question became: Which
was closer to eight century Rome, GRE or ROM? Some
scholars believe the formulaic character of ROM to hold
the earliest evidence, although the surviving manuscripts
are of later date than the earliest GRE sources [7]. Some
believe GRE reflects the earlier tradition, having adjusted
the Roman chant only slightly to the specific needs of the
Carolingian world [22]. Some still believe a third, Gallican
or Hispanic, tradition played a major role in the creation of
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tradition century chants offertories parts avg. notes/part std. notes/part
GRE: Gregorian Chant XI–XII 1,000 115 344 162.54 62.65
ROM: Old Roman Chant XI–XIII 700 94 285 170.14 69.04
MIL: Milanese Chant XII–XIII 800 104 147 177.63 98.50
BEN: Beneventan chant XI–XII 100 39 41 152.98 64.00
MOZ: Mozarabic chant XI–XVI 400 71 139 127.94 52.74

Table 1. Estimation of date and number of mass proper chants in the main sources of five traditions, number of offertory-
chants in our data set, number of offertory-parts, and average and standard deviation of the lengths of the parts.

the differences between GRE and ROM [17, 18]. A mat-
ter of debate also is the date when the chants were created.
McKinnon [22] argues, primarily based on the liturgical
assignment of the chant texts, that the Roman repertoire
was composed according to a plan in the last decades of
seventh-century Rome. Pfisterer [26] on the other hand
argues, primarily based on the comparison of Latin Bible
translations, that the repertoire has grown in accordance
with the solemnity of the feasts between the fifth and early
seventh centuries.

An important contribution to the discussion has been
made by Rebecca Maloy in her 2010 monograph on the
most complex of all chant genres in both traditions: the
offertory [20]. Her book (including a digital edition of
94 cognate pairs of GRE and ROM offertories) provides
a fascinating insight in modern scholarship and a highly
sophisticated analysis of the offertory genre in both tradi-
tions. Basically, however, she does not reach conclusive
arguments for a best hypothesis. In this paper, also, we
do not pretend to present a conclusive position. Instead,
we present the first results of a computational analysis of
melodic similarities and differences between chant tradi-
tions, illustrating directions of research that may give new
input to the longstanding questions. To this end we im-
proved the musicological approach of traditional styles in
terms of melismas, intervallic steps and leaps [13] to per-
plexities. We also verified and transformed Maloy’s edi-
tion into a data set, and expanded the set with all offerto-
ries from the main sources of GRE, ROM, MIL, BEN and
MOZ. Table 1 provides an overview with estimated num-
bers of mass proper chants in each tradition and the number
of offertory chants included in our data set.

Important chant studies using computational techniques
were published by several authors. However, most of the
data are no longer available [10], represent only part of a
single tradition [9], or a genre not easily available in five
traditions [6,12], or were not meant as exact data sets [30].
Some of the procedures used, however, need further inves-
tigation. Hansen’s [10] distinction of different tonalities
for different layers in GRE is one of these, as is the seg-
mentation procedure used by Halperin [9] and Haas [8].
In fact this last approach can be seen as a precursor of the
n-gram method we use in the current paper.

Maloy [20] does not use computational techniques, but
she does with the offertory present a genre that is clearly
available in five different traditions.

In this paper we demonstrate the importance of a com-

putational approach for two longstanding and complemen-
tary questions in chant research. Based on local melodic
structure, our n-gram method presents relations between
different traditions (Section 3). Given a set of traditions,
it shows which tradition has most characteristics in com-
mon with all (or most) traditions. This clearly relates to the
musicological question of “origin”. Based on global fea-
tures of the chants, our decision-tree based classification
method shows differences between the traditions, and is
able to identify with high reliability the traditional “home”
of single chants (Section 4). This can be helpful in identi-
fying chants not corresponding to the catalogues in use.

2. DATA SET

The contents of our data set is summarized in Table 1,
showing the number of offertory chants included in our set.
The first column lists codes and names of the separate tra-
ditions. The second and third columns give an estimate
of period and number of the total preserved mass proper
chants to which our offertories belong. In most cases, one
offertory is divided in parts, the first part being the an-
tiphon, and the subsequent parts the verses. Throughout
this paper, we take the parts as basic units for analysis and
classification. We include the number of parts per tradition
in the table. We also include basic statistics on the length
of chant-parts in number of notes.

For the GRE and ROM offertories we could have used
the data set of Haas [8]. However, we preferred the criti-
cal edition of Maloy, because the Offertoriale Triplex [23]
used by Haas is notably unreliable. One of the prob-
lems with the offertory concerns the many transpositions
to avoid non-diatonical pitches. In selecting the best sin-
gle manuscript for each separate chant Maloy chose, in our
view, the best option. We converted Maloy’s Finale scores
to Volpiano strings and again carefully checked all de-
tails. We manually encoded the remaining offertories from
the facsimile of Maloy’s most important manuscript, Ben
34 [1] and one, GRE-115, Audi Israhel, from her book.

The Volpiano truetype font was developed by David Hi-
ley and Fabian Weber at Regensburg University. 1 It is
a typeface for note heads on the five line staff for mono-
phonic music. It is perfectly suitable for our data set. It
affords an encoding of each score as a string of characters.
Characters a to p represent the notes A till a”, while the

1 Downloadable from: http://www.uni-regensburg.de/
Fakultaeten/phil_Fak_I/Musikwissenschaft/cantus/
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i represents the flat sign for b’. Small and capital w, x, y
and z representing other alterations; some as defined in the
font, some by new convention. Three dashes --- separate
the notes for the different words, two dashes --, for dif-
ferent syllables, and one dash marks a new neume within a
syllable. Numerals indicate clefs and breaks. For clarifica-
tion, Figure 1 shows an example of a Volpiano string and
the rendering of it with the Volpiano font.

1---a---c-cd-cdcd-f-fe--- 
 
1---a---c-cd-cdcd-f-fe---	
	

Figure 1. Example of a string in volpiano encoding and its
rendering in the font.

We manually encoded the MIL, BEN and MOZ offer-
tories from the best available sources; the Milanese mass
book [29], the recent critical edition of Beneventan chant
[16], and the facsimile of Mozarabic chant books [5].

3. COMPARING TRADITIONS USING N-GRAM
MODELS

To examine the interconnections between the chant tradi-
tions concerning small-scale melodic fragments, we take
an n-gram approach. n-gram modeling has been devel-
oped in computational linguistics [21]. It employs repet-
itive structures of a language to construct a probabilistic
model allowing to compute the probability of occurrence
of a word in its local context within a sentence. Con-
cretely, let w be a word in vocabulary V belonging to a
language L, and let s = w1, w2, . . . , wl be a sentence of
l words, also belonging to language L. Then, for a word
wi in s, an n-gram model allows to compute the condi-
tional probability of wi given the preceding context of n−1
words: p(wi|wi−(n−1), . . . , wi−1). Previous application
of n-gram modeling of music, notably include the IDyOM
model [24], which combines long and short term models.
For our purpose the basic n-gram approach suffices.

Typically, an n-gram model is derived from a large col-
lection of training sentences belonging to the language of
interest. In the most basic approach, for each unique con-
text wi−(n−1), . . . , wi−1 in these training sentences, an in-
ventory is made of all possible continuations wi. This re-
sults in a distribution over the vocabulary, indicating the
probability of each possible continuation of the context.
The full model consists of the collection of distributions
for the continuations of all unique contexts.

One of the uses of an n-gram model is to evaluate to
what extent a given sentence fits in a given language. This
is the way in which we employ n-gram models of the chant
traditions. Since sentences are of variable length, it is not
possible to simply compute the probability of a sentence
as product of the probabilities of each word. Therefore,
we will use the measure of perplexity, which indicates the

degree to which the sentence ‘fits’ in the language:

PP = p(w1, w2, . . . , wl)
− 1

l . (1)

One particular problem in computing
p(wi|wi−(n−1), . . . , wi−1) occurs if the n-gram
wi−(n−1), . . . , wi has no occurrences in the training
data. In that case, the probability of wi is evaluated as
zero, rendering the probability of the entire sentence zero.
To circumvent this problem, several approaches exist. We
use modified Kneser-Ney smoothing [4] as implemented
in the KenLM Language Model Toolkit [11]. This method
is widely accepted as the preferred method to deal with
zero-counts.

3.1 Application on Chant Data

To derive an n-gram model from our chant data, we need
to redefine some linguistic terms. We consider the tradi-
tions as languages. We consider each part of a chant as
sentence, and we consider the intervals between the notes
as words, where an interval is represented by a signed inte-
ger number indicating the direction (pos/neg) and the size
of the interval in semi-tones. Because each of the chant tra-
ditions uses the same melodic intervals, the traditions have
the same vocabulary, which allows us to compute the per-
plexity of a given chant for all five traditions. Also, since
the vocabulary is very small compared to the vocabulary of
any natural language, we need much less training data than
typically is needed for natural language modeling.

3.2 Choosing n

An important question is which value to choose for n. For
each n ∈ {2, 3, . . . , 10}, and for each tradition we com-
pute for each chant in that tradition the perplexity given
its own tradition. To avoid overfitting, we follow a 10-
fold evaluation, successively taking one subset of the data
to compute the perplexities and taking the other 9 subsets
for training, making sure that all parts of the same chant
always are in the same subset. By visual inspection of
the distributions of perplexities, we observe that for GRE,
MIL, and MOZ, no further decrease of average perplexity
is noticeable for n > 5, while for BEN and ROM slight
improvement is achieved for respectively 7-gram and 8-
gram models. Based on these findings, we choose n = 5
throughout this paper.

3.3 Comparing Chant Traditions using n-gram
models

3.3.1 Method

As we are interested in the differences and commonalities
of the five chant traditions, we perform an exhaustive eval-
uation in which we compute for each chant-part five per-
plexity values, one for each of the five traditions. In the
case of the perplexity of a chant-part given its own tradi-
tion, we need to derive an n-gram model from all other
chants of that tradition, excluding the chant that contains
the chant-part. To include this chant in deriving the n-gram

206 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



model would result in a too optimistic value for the per-
plexity. The chant must be ‘unseen’ by the model. The re-
sulting perplexity reflects the extent to which the chant-part
fits in its own tradition. For the perplexities given the other
four traditions, we take n-gram models that have been de-
rived from the entire sets of chants from those traditions.
These resulting four perplexity values reflect to what extent
the chant-part fits in the respective other four traditions.

After obtaining all perplexity values, we visualize the
distributions for the various conditions as box-and-whisker
plots [31]. The median is indicated with the red horizontal
line. The box extends from the first to the third quartile,
which is the interquartile range (IQR). The lower vertical
whisker extends to the lowest data point still within 1.5
IQR from the first quartile and the upper whisker extends
to the highest data point still within 1.5 IQR from the third
quartile. The data points past the whiskers are considered
outliers and are individually plotted as circles.

We evaluate whether two distributions differ signifi-
cantly by performing a Kolmogorov-Smirnov test [28], and
we evaluate the magnitude of the difference by computing
the effect-size according to

e =
x̄1 − x̄2

max(s1, s2)
(2)

in which x1 and x2 are the averages of the perplexities,
and s1 and s2 are the standard deviations. By taking the
max of s1 and s2, the resulting value for the effect size is a
pessimistic estimation.
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Figure 2. The distributions of perplexities of the chant-
parts given their own respective tradition, represented as
box-plots.

3.3.2 Results and Interpretation

The differences between the traditions are noticeable in
Figure 2. The higher the perplexities, the higher the in-
ternal diversity of the repertoire. GRE is most divers.
The outliers show specific chants of a single tradition most
alien to this tradition. In GRE the two verses of GRE-63,
Oravi Deum meum, are most extreme. This conforms to
the fact that this is the most “chromatic” GRE chant. Its
problematic pitches were already discussed by John of Af-
flighem (early twelfth century; [20]). The next GRE outlier
is the antiphon of GRE-95, Elegerunt apostoli. Oravi and

Elegerunt are considered two of only five offertories with
possible Gallican origin, since they have cognate pairs in
Old Hispanic chant. In ROM both antiphon and verse of
ROM-92, Domine Jesu Christe, are most extreme. This
conforms to the fact that this chant is almost identical to
its GRE counterpart, GRE-92, Domine Jesu Christe. As
Maloy demonstrates on textual evidence this chant in fact
should be considered a GRE chant. As she puts it, “it is one
of the few demonstrable instances of reverse, Frankish-to-
Roman transmission in the offertory repertory” [20]. MIL
and BEN hardly show outliers. However, in BEN the most
extreme outlier, BEN-70, Tunc imperator, is the most syl-
labic chant of BEN. In MOZ, finally, the most extreme out-
lier is MOZ-13, Offerte Domino, the only MOZ chant in
the fourth church mode.

Figure 3 shows the interrelations between the traditions.
Comparing the five traditions to the five models we have
25 comparisons, resulting in 25 distributions of perplexity
values. The Kolmogorov-Smirnov test for independence
shows that only six out of the 300 possible pairs of distri-
butions do not differ significantly (p > 0.028). Only 15
pairs of distributions have an effect size less than medium
(e < 0.5). This indicates that the vast majority of the dif-
ferences we see in the diagrams, are of significance.

Most striking is the top figure, showing the perplexities
given the GRE model. The five box-plots there show that
all five traditions are pretty close to the GRE model. BEN
being most alien. However, compared to the four other
figures, we see BEN being even more alien to ROM and
MOZ. As is apparent from the diagrams, GRE gives the
best overall model for all traditions. Second best is MIL.
The worst model for all is ROM, followed by MOZ.

These findings can be related to the longstanding ques-
tion about origin. Assuming that the process of oral trans-
mission generally results in decreasing complexity, it is
well conceivable that all traditions stem from GRE, while
it seems inconceivable that ROM was the root of all.

4. CLASSIFICATION WITH GLOBAL FEATURES

4.1 Feature Set

We also examine the differences between the traditions
in terms of a set of global features. A global feature
summarizes the entire melody in one value. The feature
set we use relates to earlier musicological approaches
to characterize the traditions. There are two groups of
features: features that describe the intervallic contents
of a melody, and features that are related to the length
of melismas. We measure the following features: the
frequencies of occurrence of each of the melodic intervals
from -12 to 12 semitones, where the sign indicates the
direction; aleaps, asteps, dleaps, and dsteps,
which measure the fraction of intervals that respec-
tively are ascending leaps, ascending steps, descending
leaps, and descending steps; leaps and steps are
the fractions of leaps and steps disregarding direction;
unison is the fraction of note repetitions; melis1-1,
melis2-2, melis3-5, melis6-10, melis11-20,
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Figure 3. Distributions of the perplexities given the vari-
ous traditions.

tradition precision recall F1-score support
BEN 0.38 0.22 0.28 41
GRE 0.90 0.89 0.89 344
MIL 0.64 0.65 0.65 147
MOZ 0.77 0.74 0.76 139
ROM 0.80 0.86 0.83 285
avg/total 0.79 0.79 0.79 956

Table 2. Classification results using the Decision Tree
learner on the data set with global features.

melis21-50, melis51-100, melis100-inf,
(melisx-y in general), represent the fraction of lyric
syllables that have between x and y (y included) notes
in the melody. melis mode is the most common
number of notes per syllable. melis longest,
melis secondlongest, melis thirdlongest,
and melis fourthlongest are the lengths of the
four longest melismas. Finally, melis skewness, and
melis kurtosis are the skewness and kurtosis of the
distribution of melisma lengths.

We measure the values of these features in each of the
956 chant-parts. With the resulting dataset we perform
a classification experiment to examine whether these fea-
tures contain information for distinguishing between the
five traditions.

4.2 Decision Tree Classification

Since we are not solely interested in classification accu-
racy, but we also want to understand the differences be-
tween the traditions, we prefer a learning algorithm that
results in an interpretable model. Therefore, we learn a
decision tree from our dataset with global features. We
use the implementation of the tree learning algorithm as
provided by the Python Scikit-learn library [25]. To pre-
vent overfitting, and to obtain a relatively small tree, we
set the minimum number of chant-parts per leaf to 10 and
the maximum depth of the tree to 3.

To estimate the generalization of the learned tree, we
perform 10-fold cross-validation, successively using one
subset for testing and the other 9 subsets for learning a tree.
For each chant in the current test-set, we record whether
the classification was right. Again, we make sure to keep
all parts from the same chant in either the test or the train
set. After this procedure, we have a classification result for
each of the chant-parts. Table 2 summarizes the resulting
classification performance. While the overall-performance
is not bad, discerning the chant-parts from BEN and MIL
appears to be less successful.

There is no clear sign of overfitting. Therefore, we train
a tree on the entire data set, which represents the differ-
ences between the traditions. The tree is depicted in Figure
4. It is apparent from the tree that the amount of step-wise
motion in the melodies is one of the most important charac-
teristics to isolate the GRE chants. These chants show the
lowest amount of steps. Furthermore, the number of sylla-
bles with only one note, the amount of descending minor
thirds, and the amount of descending minor seconds are of
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steps <= 0.6187
samples = 956

counts = [41, 344, 147, 139, 285]
class = gre

dsteps <= 0.3321
samples = 360

counts = [15, 312, 19, 9, 5]
class = gre

True

melis_1-1 <= 0.3239
samples = 596

counts = [26, 32, 128, 130, 280]
class = rom

False

melis_1-1 <= 0.5704
samples = 332

counts = [4, 308, 15, 5, 0]
class = gre

-1 <= 0.0961
samples = 28

counts = [11, 4, 4, 4, 5]
class = ben

samples = 321
counts = [3, 306, 12, 0, 0]

class = gre

samples = 11
counts = [1, 2, 3, 5, 0]

class = moz

samples = 11
counts = [0, 4, 4, 3, 0]

class = gre

samples = 17
counts = [11, 0, 0, 1, 5]

class = ben

dsteps <= 0.4086
samples = 327

counts = [16, 21, 25, 13, 252]
class = rom

-3 <= 0.0161
samples = 269

counts = [10, 11, 103, 117, 28]
class = moz

samples = 115
counts = [15, 21, 25, 3, 51]

class = rom

samples = 212
counts = [1, 0, 0, 10, 201]

class = rom

samples = 121
counts = [1, 3, 6, 100, 11]

class = moz

samples = 148
counts = [9, 8, 97, 17, 17]

class = mil

Figure 4. Decision tree as learned from the data set with global feature values. The order of the classes in the ‘counts’ field
is: [BEN, GRE, MIL, MOZ, ROM]. The values indicate the number of chant-parts from the respective tradition that are
‘in’ the leave of tree.

tradition precision recall F1-score support
BEN 0.71 0.59 0.64 41
GRE 0.90 0.92 0.91 344
MIL 0.73 0.73 0.73 147
MOZ 0.91 0.88 0.90 139
ROM 0.93 0.94 0.94 285
avg/total 0.88 0.88 0.88 956

Table 3. Classification results using the Random Forest
classifier on the data set with global features.

importance. With just these features, it appears possible to
separate the traditions to a moderately high degree.

4.3 Random Forest Classification

To examine whether it is possible to get higher classifi-
cation accuracy, we also train a Random Forest Classi-
fier, which trains a number of trees on random subsets
of the data [3]. This does not lead to an easily inter-
pretable model, but this procedure is known to typically
show higher performance than a single decision tree. We
set the number of trees to 10 and we follow the same pro-
cedure using 10-fold cross validation. The results are pre-
sented in Table 3. The results show significant improve-
ment, but still with weaknesses for BEN and MIL.

4.4 Classification with Perplexity values

Since the perplexity of a chant-part given the n-gram
model of a tradition also can be considered a global fea-
ture, we assemble another data set with for each chant-part
the five perplexities for the five traditions, as computed in
Section 3, as features. The classification results for a Ran-
dom Forest Classifier are shown in Table 4.

Based on the perplexity values, we obtain a very accu-
rate classifier with a F1-score as high as 0.97. Even for
the minority class BEN we obtain very good results. Such
a classifier can be of particular interest in tracing chants
whose origins are unclear.

tradition precision recall F1-score support
BEN 0.93 0.98 0.95 41
GRE 0.97 0.98 0.98 344
MIL 0.96 0.95 0.96 147
MOZ 0.95 0.94 0.95 139
ROM 1.00 0.98 0.99 285
avg/total 0.97 0.97 0.97 956

Table 4. Classification results using the Random Forest
classifier on the perplexity data.

We performed an analysis of the chant-parts that are
mis-classified by our best-performing classifier, the ran-
dom forest trained on the perplexity data. Due to space
constraints, it is not possible to give a full account of the
analysis here, but in general we can state that many of
the mis-classified parts are remarkable cases, including the
outliers that have been discussed in Section 3.3.2, but also
some other chants with debatable origin.

5. CONCLUSION AND FUTURE WORK

We presented an n-gram method to examine relations
between medieval chant repertories, touching on central
questions in chant scholarship. Our method shows in a
quantitatively precise way that the body of Gregorian offer-
tory melodies is characterized by a higher internal diversity
than the offertories from the other four traditions. We also
presented a highly accurate classification method. Outliers
and misclassifications in both cases pointed at known prob-
lems in chant scholarship. Future work will concentrate on
the refinement of our approaches for separate chant genres
within traditions.
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ABSTRACT

Machine learning models of music typically break up the
task of composition into a chronological process, compos-
ing a piece of music in a single pass from beginning to
end. On the contrary, human composers write music in
a nonlinear fashion, scribbling motifs here and there, of-
ten revisiting choices previously made. In order to better
approximate this process, we train a convolutional neural
network to complete partial musical scores, and explore the
use of blocked Gibbs sampling as an analogue to rewriting.
Neither the model nor the generative procedure are tied to
a particular causal direction of composition.

Our model is an instance of orderless NADE [36],
which allows more direct ancestral sampling. However,
we find that Gibbs sampling greatly improves sample qual-
ity, which we demonstrate to be due to some conditional
distributions being poorly modeled. Moreover, we show
that even the cheap approximate blocked Gibbs procedure
from [40] yields better samples than ancestral sampling,
based on both log-likelihood and human evaluation.

1. INTRODUCTION

Counterpoint is the process of placing notes against notes
to construct a polyphonic musical piece. [9] This is a chal-
lenging task, as each note has strong musical influences
on its neighbors and notes beyond. Human composers
have developed systems of rules to guide their composi-
tional decisions. However, these rules sometimes contra-
dict each other, and can fail to prevent their users from
going down musical dead ends. Statistical models of mu-
sic, which is our current focus, is one of the many compu-
tational approaches that can help composers try out ideas
more quickly, thus reducing the cost of exploration [8].

Whereas previous work in statistical music modeling
has relied mainly on sequence models such as Hidden
Markov Models (HMMs [2]) and Recurrent Neural Net-
works (RNNs [31]), we instead employ convolutional neu-
ral networks due to their invariance properties and em-

c© Cheng-Zhi Anna Huang, Tim Cooijmans, Adam
Roberts, Aaron Courville, Douglas Eck. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Cheng-Zhi Anna Huang, Tim Cooijmans, Adam Roberts, Aaron
Courville, Douglas Eck. “Counterpoint by Convolution”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

Figure 1. Blocked Gibbs inpainting of a corrupted Bach
chorale by COCONET. At each step, a random subset of
notes is removed, and the model is asked to infer their val-
ues. New values are sampled from the probability distribu-
tion put out by the model, and the process is repeated. Left:
annealed masks show resampled variables. Colors distin-
guish the four voices. Middle: grayscale heatmaps show
predictions p(xj | xC) summed across instruments. Right:
complete pianorolls after resampling the masked variables.
Bottom: a sample from NADE (left) and the original Bach
chorale fragment (right).

211



phasis on capturing local structure. Nevertheless, they
have also been shown to successfully model large-scale
structure [37, 38]. Moreover, convolutional neural net-
works have shown to be extremely versatile once trained,
as demonstrated by a variety of creative uses such as Deep-
Dream [29] and style transfer [10].

We introduce COCONET, a deep convolutional model
trained to reconstruct partial scores. Once trained, CO-
CONET provides direct access to all conditionals of the
form p(xi | xC) where C selects a fragment of a musi-
cal score x and i /∈ C is in its complement. COCONET

is an instance of deep orderless NADE [36], which learns
an ensemble of factorizations of the joint p(x), each cor-
responding to a different ordering. A related approach is
the multi-prediction training of deep Boltzmann machines
(MP-DBM) [12], which also gives a model that can predict
any subset of variables given its complement.

However, the sampling procedure for orderless NADE

treats the ensemble as a mixture and relies heavily on or-
dering. Sampling from an orderless NADE involves (ran-
domly) choosing an ordering, and sampling variables one
by one according to the chosen ordering. This process is
called ancestral sampling, as the order of sampling follows
the directed structure of the model. We have found that this
produces poor results for the highly structured and com-
plex domain of musical counterpoint.

Instead, we propose to use blocked-Gibbs sampling, a
Markov Chain Monte Carlo method to sample from a joint
probability distribution by repeatedly resampling subsets
of variables using conditional distributions derived from
the joint probability distribution. An instance of this was
previously explored by [40] who employed a NADE in the
transition operator for a Markov Chain, yielding a Gen-
erative Stochastic Network (GSN). The transition consists
of a corruption process that masks out a subset x¬C of
variables, followed by a process that independently resam-
ples variables xi (with i /∈ C) according to the distribu-
tion pθ(xi | xC) emitted by the model with parameters θ.
Crucially, the effects of independent sampling are amor-
tized by annealing the probability with which variables are
masked out. Whereas [40] treat their procedure as a cheap
approximation to ancestral sampling, we find that it pro-
duces superior samples. Intuitively, the resampling process
allows the model to iteratively rewrite the score, giving it
the opportunity to correct its own mistakes.

COCONET addresses the general task of completing par-
tial scores; special cases of this task include ”bridging” two
musical fragments, and temporal upsampling and extrapo-
lation. Figure 1 shows an example of COCONET popu-
lating a partial piano roll using blocked-Gibbs sampling.
Code and samples are publically available. 1 Our samples
on a variety of generative tasks such as rewriting, melodic
harmonization and unconditioned polyphonic music gen-
eration show the versatility of our model. In this work we
focus on Bach chorales, and assume four voices are active
at all times. However, our model can be easily adapted to

1
Code: https://github.com/czhuang/coconet

Data: https://github.com/czhuang/JSB-Chorales-dataset

Samples: https://coconets.github.io/

the more general, arbitrarily polyphonic representation as
used in [4].

Section 2 discusses related work in modeling music
composition, with a focus on counterpoint. The details of
our model and training procedure are laid out in Section 3.
We discuss evaluation under the model in Section 4, and
sampling from the model in Section 5. Results of quantita-
tive and qualitative evaluations are reported in Section 6.

2. RELATED WORK

Computers have been used since their early days for ex-
periments in music composition. A notable composition
is Hiller and Issacson’s string quartet Illiac Suite [18],
which experiments with statistical sequence models such
as Markov chains. One challenge in adapting such models
is that music consists of multiple interdependent streams
of events. Compare this to typical sequence domains such
as speech and language, which involve modeling a sin-
gle stream of events: a single speaker or a single stream
of words. In music, extensive theories in counterpoint
have been developed to address the challenge of compos-
ing multiple streams of notes that coordinate. One notable
theory is due to Fux [9] from the Baroque period, which in-
troduces species counterpoint as a pedagogical scheme to
gradually introduce students to the complexity of counter-
point. In first species counterpoint only one note is com-
posed against every note in a given fixed melody (cantus
firmus), with all notes bearing equal durations and the re-
sulting vertical intervals consisting of only consonances.

Computer music researchers have taken inspiration
from this pedagogical scheme by first teaching comput-
ers to write species counterpoint as opposed to full-fledged
counterpoint. Farbood [7] uses Markov chains to capture
transition probabilities of different melodic and harmonic
transitions rules. Herremans [16,17] takes an optimization
approach by writing down an objective function that con-
sists of existing rules of counterpoint and using a variable
neighbourhood search (VNS) algorithm to optimize it.

J.S. Bach chorales has been the main corpus in com-
puter music that serves as a starting point to tackle full-
fledged counterpoint. A wide range of approaches have
been used to generate music in the style of Bach chorales,
for example rule-based and instance-based approaches
such as Cope’s recombinancy method [6]. This method in-
volves first segmenting existing Bach chorales into smaller
chunks based on music theory, analyzing their function and
stylistic signatures and then re-concatenating the chunks
into new coherent works. Other approaches range from
constraint-based [30] to statistical methods [5]. In addi-
tion, [8] gives a comprehensive survey of AI methods used
not just for generating Bach chorales, but also algorithmic
composition in general.

Sequence models such as HMMs and RNNs are nat-
ural choices for modeling music. Successful application
of such models to polyphonic music often requires serial-
izing or otherwise re-representing the music to fit the se-
quence paradigm. For instance, Liang in BachBot [27] se-
rializes four-part Bach chorales by interleaving the parts,
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while Allan and Williams [1] construct a chord vocabu-
lary. Boulanger et al. [4] adopt a piano roll representation,
a binary matrix x where xit = 1 iff some instrument is
playing pitch i at time t. To model the joint probability
distribution of the multi-hot pitch vector xt, they employ
a Restricted Boltzmann Machine (RBM [19, 32]) or Neu-
ral Autoregressive Distribution Estimator (NADE [25]) at
each time step. Similarly Goel et al. [11] employ a Deep
Belief Network [19] on top of an RNN.

Hadjeres et al. [14] instead employ an undirected
Markov model to learn pairwise relationships between
neighboring notes up to a specified number of steps away
in a score. Sampling involves Markov Chain Monte Carlo
(MCMC) using the model as a Metropolis-Hastings (MH)
objective. The model permits constraints on the state space
to support tasks such as melody harmonization. However,
the Markov assumption can limit the expressivity of the
model.

Hadjeres and Pachet in DeepBach [13] model note pre-
dictions by breaking down its full context into three parts,
with the past and the future modeled by stacked LSTMs
going in the forward and backward directions respectively,
and the present harmonic context modeled by a third neural
network. The three are then combined by a fourth neural
network and used in Gibbs sampling for generation.

Lattner et al. imposes higher-level structure by in-
terleaving selective Gibbs sampling on a convolutional
RBM [26] and gradient descent that minimizes cost to tem-
plate piece on features such as self-similarity. This pro-
cedure itself is wrapped in simulated annealing to ensure
steps do not lower the solution quality too much.

We opt for an orderless NADE training procedure which
enables us to train a mixture of all possible directed mod-
els simultaneously. Finally, an approximate blocked Gibbs
sampling procedure [40] allows fast generation from the
model.

3. MODEL

We employ machine learning techniques to obtain a gen-
erative model of musical counterpoint in the form of pi-
ano rolls. Given a dataset of observed musical pieces
x(1) . . .x(n) posited to come from some true distribution
p(x), we introduce a model pθ(x) with parameters θ.
In order to make pθ(x) close to p(x), we maximize the
data log-likelihood

∑
i log pθ(x

(i)) (an approximation of
Ex∼p(x) log pθ(x)) by stochastic gradient descent.

The joint distribution p(x) over D variables x1 . . .xD
is often difficult to model directly and hence we construct
our model pθ(x) from simpler factors. In the NADE [25]
framework, the joint pθ(x) is factorized autoregressively,
one variable at a time, according to some ordering o =
o1 . . . oD, such that

pθ(x) =
∏
d

pθ(xod | xo<d
). (1)

For example, it can be factorized in chronological order:

pθ(x) = pθ(x1)pθ(x2|x1) . . . pθ(xD|xD−1 . . .x1) (2)

In general, NADE permits any one fixed ordering, and al-
though all orderings are equivalent from a theoretical per-
spective, they differ in practice due to effects of optimiza-
tion and approximation.

Instead, we can train NADE for all orderings o simulta-
neously using the orderless NADE [36] training procedure.
This procedure relies on the observation that, thanks to pa-
rameter sharing, computing pθ(xod′ | xo<d

) for all d′ ≥ d
is no more expensive than computing it only for d′ = d. 2

Hence for a given o and d we can simultaneously obtain
partial losses for all orderings that agree with o up to d:

L(x; o<d, θ) = −
∑
od

log pθ(xod | xo<d
, o<d, od) (3)

An orderless NADE model offers direct access to all dis-
tributions of the form pθ(xi|xC) conditioned on any set
of contextual variables xC = xo<d

that might already be
known. This gives us a very flexible generative model;
in particular, we can use these conditional distributions to
complete arbitrarily partial musical scores.

To train the model, we sample a training example x and
context C such that |C| ∼ U(1, D), and update θ based
on the gradient of the loss given by Equation 3. This loss
consists of D − d + 1 terms, each of which corresponds
to one ordering. To ensure all orderings are trained evenly
we must reweight the gradients by 1/(D − d + 1). This
correction, due to [36], ensures consistent estimation of the
joint negative log-likelihood log pθ(x).

In this work, the model pθ(x) is implemented by a deep
convolutional neural network [23]. This choice is moti-
vated by the locality of contrapuntal rules and their near-
invariance to translation, both in time and in pitch space.

We represent the music as a stack of piano rolls encoded
in a binary three-dimensional tensor x ∈ {0, 1}I×T×P .
Here I denotes the number of instruments, T the number
of time steps, P the number of pitches, and xi,t,p = 1 iff
the ith instrument plays pitch p at time t. We will assume
each instrument plays exactly one pitch at a time, that is,∑
p xi,t,p = 1 for all i, t.
Our focus is on four-part Bach chorales as used in prior

work [1,4,11,14,27]. Hence we assume I = 4 throughout.
We constrain ourselves to only the range that appears in
our training data (MIDI pitches 36 through 88). Time is
discretized at the level of 16th notes for similar reasons.
To curb memory requirements, we enforce T = 128 by
randomly cropping the training examples.

Given a training example x ∼ p(x), we present the
model with values of only a strict subset of its elements
xC = {x(i,t) | (i, t) ∈ C} and ask it to reconstruct its
complement x¬C . The input h0 ∈ {0, 1}2I×T×P is ob-
tained by masking the piano rolls x to obtain the context
xC and concatenating this with the corresponding mask:

h0
i,t,p = 1(i,t)∈Cxi,t,p (4)

h0
I+i,t,p = 1(i,t)∈C (5)

2 Here xo<d is used as shorthand for variables xo1 . . .xod−1 that
occur earlier in the ordering.
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where the time and pitch dimensions are treated as spa-
tial dimensions to convolve over. Each instrument’s piano
roll h0

i and mask h0
I+i is treated as a separate channel and

convolved independently.
With the exception of the first and final layers, all con-

volutions preserve the size of the hidden representation.
That is, we use “same” padding throughout and all acti-
vations have the same number of channels H , such that
hl ∈ RH×T×P for all 1 < l < L. Throughout our ex-
periments we used L = 64 layers and H = 128 chan-
nels. After each convolution we apply batch normaliza-
tion [21] (denoted by BN(·)) with statistics tied across
time and pitch. Batch normalization rescales activations
at each layer to have mean β and standard deviation γ,
which greatly improves optimization. After every second
convolution, we introduce a skip connection from the hid-
den state two levels below to reap the benefits of residual
learning [15].

al = BN(Wl ∗ hl−1; γl, βl) (6)

hl =


ReLU(al + hl−2)

if 3 < l < L− 1 and l mod 2 = 0
ReLU(al) otherwise

hL = aL (7)

The final activations hL ∈ RI×T×P are passed through
the softmax function to obtain predictions for the pitch at
each instrument/time pair:

pθ(xi,t,p | xC , C) =
exp(hLi,t,p)∑
p exp(h

L
i,t,p)

(8)

The loss function from Equation 3 is then given by

L(x;C, θ) = −
∑

(i,t)/∈C

log pθ(xi,t | xC , C) (9)

= −
∑

(i,t)/∈C

∑
p

xi,t,p log pθ(xi,t,p | xC , C)

where pθ denotes the probability under the model with pa-
rameters θ = W1, γ1, β1, . . . ,WL−1, γL−1, βL−1. We
train the model by minimizing

Ex∼p(x)EC∼p(C)
1

|¬C|
L(x;C, θ) (10)

with respect to θ using stochastic gradient descent with
step size determined by Adam [22]. The expectations are
estimated by sampling piano rolls x from the training set
and drawing a single context C per sample.

4. EVALUATION

The log-likelihood of a given example is computed ac-
cording to Algorithm 1 by repeated application of Equa-
tion 8. Evaluation occurs one frame at a time, within which
the model conditions on its own predictions and does not
see the ground truth. Unlike notewise teacher-forcing,
where the ground truth is injected after each prediction,
the framewise evaluation is thus sensitive to accumulation

of error. This gives a more representative measure of qual-
ity of the generative model. For each example, we repeat
the evaluation process a number of times to average over
multiple orderings, and finally average across frames and
examples. For chronological evaluation, we draw only or-
derings that have the tls in increasing order.

Algorithm 1 Framewise log-likelihood evaluation
Given a piano roll x
Lm,i,t ← 0 for all m, i, t
for multiple orderings m = 0 . . .M do

C ← ∅, x̂← x
Sample an ordering t1, t2 . . . tT over frames
for l = 0 . . . T do

Sample an ordering i1, i2 . . . iI over instruments
for k = 0 . . . I do

πp ← pθ(xik,tl,p | x̂C , C) for all p
Lm,ik,tl ←

∑
p xik,tl,p log πp

x̂ik,tl ∼ Cat(P, π)
C ← C ∪ (ik, tl)

end for
x̂C ← xC

end for
end for
return − 1

T

∑
t log

1
M

∑
m exp

∑
i Lm,i,t

5. SAMPLING

We can sample from the model using the orderless NADE

ancestral sampling procedure, in which we first sample an
ordering and then sample variables one by one according
to the ordering. However, we find that this yields poor
samples, and we propose instead to use Gibbs sampling.

5.1 Orderless NADE Sampling

Sampling according to orderless NADE involves first ran-
domly choosing an ordering and then sampling variables
one by one according to the chosen ordering. We use an
equivalent procedure in which we arrive at a random or-
dering by at each step randomly choosing the next variable
to sample. We start with an empty (zero everywhere) pi-
ano roll x0 and empty context C0 and populate them itera-
tively by the following process. We feed the piano roll xs

and context Cs into the model to obtain a set of categori-
cal distributions pθ(xi,t|xsCs , Cs) for (i, t) /∈ Cs. As the
xi,t are not conditionally independent, we cannot simply
sample from these distributions independently. However,
if we sample from one of them, we can compute new con-
ditional distributions for the others. Hence we randomly
choose one (i, t)s+1 /∈ Cs to sample from, and let xs+1

i,t

equal the one-hot realization. Augment the context with
Cs+1 = Cs ∪ (i, t)s+1 and repeat until the piano roll is
populated. This procedure is easily generalized to tasks
such as melody harmonization and partial score comple-
tion by starting with a nonempty piano roll.

Unfortunately, samples thus generated are of low qual-
ity, which we surmise is due to accumulation of errors.
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Model Temporal resolution
quarter eighth sixteenth

NADE [4] 7.19
RNN-RBM [4] 6.27
RNN-NADE [4] 5.56
RNN-NADE (our implementation) 5.03 3.78 2.05
COCONET (chronological) 7.79± 0.09 4.21± 0.05 2.22± 0.03
COCONET (random) 5.03± 0.06 1.84± 0.02 0.57± 0.01

Table 1. Framewise negative log-likelihoods (NLLs) on the Bach corpus. We compare against [4], who used quarter-note
resolution. We also compare on higher temporal resolutions (eighth notes, sixteenth notes), against our own reimplemen-
tation of RNN-NADE. COCONET is an instance of orderless NADE, and as such we evaluate it on random orderings.
However, the baselines support only chronological frame ordering, and hence we evaluate our model in this setting as well.

This is a well-known weakness of autoregressive mod-
els. [3, 20, 24, 39] While the model provides condition-
als pθ(xi,t|xC , C) for all (i, t) /∈ C, some of these con-
ditionals may be better modeled than others. We sus-
pect in particular those conditionals used early on in the
procedure, for which the context C consists of very few
variables. Moreover, although the model is trained to be
order-agnostic, different orderings invoke different distri-
butions, which is another indication that some conditionals
are poorly learned. We test this hypothesis in Section 6.2.

5.2 Gibbs Sampling

To remedy this, we allow the model to revisit its choices:
we repeatedly mask out some part of the piano roll and
then repopulate it. This is a form of blocked Gibbs sam-
pling [28]. Blocked sampling is crucial for mixing, as
the high temporal resolution of our representation causes
strong correlations between consecutive notes. For in-
stance, without blocked sampling, it would take many steps
to snap out of a long-held note. Similar considerations hold
for the Ising model from statistical mechanics, leading to
the Swendsen-Wang algorithm [33] in which large clusters
of variables are resampled at once.

We consider two strategies for resampling a given
block of variables: ancestral sampling and indepen-
dent sampling. Ancestral sampling invokes the orderless
NADE sampling procedure described in Section 5.1 on the
masked-out portion of the piano roll. Independent sam-
pling simply treats the masked-out variables x¬C as inde-
pendent given the context xC .

Using independent blocked Gibbs to sample from a
NADE model has been studied by [40], who propose to use
an annealed masking probability αn = max(αmin, αmax−
n(αmax−αmin)/(ηN)) for some minimum and maximum
probabilities αmin, αmax, total number of Gibbs steps N
and fraction η of time spent before settling onto the mini-
mum probability αmin. Initially, when the masking proba-
bility is high, the chain mixes fast but samples are poor due
to independent sampling. As αn decreases, the blocked
Gibbs process with independent resampling approaches
standard Gibbs where one variable at a time is resampled,
thus amortizing the effects of independent sampling. N is
a hyperparameter which as a rule of thumb we set equal to

IT ; it can be set lower than that to save computation at a
slight loss of sample quality.

[40] treat independent blocked Gibbs as a cheap ap-
proximation to ancestral sampling. Whereas plain an-
cestral sampling (5.1) requires O(IT ) model evaluations,
ancestral blocked Gibbs requires a prohibitive O(ITN)
model evaluations and independent Gibbs requires only
O(N), where N can be chosen to be less than IT . More-
over, we find that independent blocked Gibbs sampling in
fact yields better samples than plain ancestral sampling.

6. EXPERIMENTS

We evaluate our approach on a popular corpus of four-part
Bach chorales. While the literature features many variants
of this dataset [1, 4, 14, 27], we report results on that used
by [4]. As the quarter-note temporal resolution used by [4]
is frankly too coarse to accurately convey counterpoint, we
also evaluate on eighth-note and sixteenth-note quantiza-
tions of the same data.

It should be noted that quantitative evaluation of gener-
ative models is fundamentally hard [34]. The gold standard
for evaluation is qualitative comparison by humans, and we
therefore report human evaluation results as well.

6.1 Data Log-likelihood

Table 4 compares the framewise log-likelihood of the test
data under variants of our model and those reported in [4].
We find that the temporal resolution has a dramatic influ-
ence on the performance, which we suspect is an artifact
of the performance metric. The log-likelihood is evalu-
ated by teacher-forcing, that is, the prediction of a frame is
conditioned on the ground truth of all previously predicted
frames. As temporal resolution increases, chord changes
become increasingly rare, and the model is increasingly
rewarded for simply holding notes over time.

We evaluate COCONET on both chronological and ran-
dom orderings, in both cases averaging likelihoods across
an ensemble of M = 5 orderings. The chronological or-
derings differ only in the ordering of instruments within
each frame. We see in Table 4 that fully random orderings
lead to significantly better performance. We believe the
members of the more diverse random ensemble are more
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mutually complementary. For example, a forward ordering
is uncertain at the beginning of a piece and more certain to-
ward the end, whereas a backward ordering is more certain
at the beginning and less certain toward the end.

6.2 Sample Quality

In Section 5 we conjectured that the low quality of
NADE samples is due to poorly modeled conditionals
pθ(xi,t | xC , C) where C is small. We test this hypoth-
esis by evaluating the likelihood under the model of sam-
ples generated by the ancestral blocked Gibbs procedure
with C chosen according to independent Bernoulli vari-
ables. When we set the inclusion probability ρ to 0, we
obtain NADE. Increasing ρ increases the expected context
size |C|, which should yield better samples if our hypothe-
sis is true. The results shown in Table 6.2 confirm that this
is the case. For these experiments, we used sample length
T = 32 time steps and number of Gibbs steps N = 100.

Sampling scheme Framewise NLL
Ancestral Gibbs, ρ = 0.00 (NADE) 1.09± 0.06
Ancestral Gibbs, ρ = 0.05 1.08± 0.06
Ancestral Gibbs, ρ = 0.10 0.97± 0.05
Ancestral Gibbs, ρ = 0.25 0.80± 0.04
Ancestral Gibbs, ρ = 0.50 0.74± 0.04
Independent Gibbs [40] 0.52± 0.01

Table 2. Mean (± SEM) NLL under model of uncondi-
tioned samples generated from model by various schemes.

Figure 2 shows the convergence behavior of the various
Gibbs procedures, averaged over 100 runs. We see that for
low values of ρ (small C), the chains hardly make progress
beyond NADE in terms of likelihood. Higher values of ρ
(large C) enable the model to get off the ground and reach
significantly better likelihood.
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Figure 2. Likelihood under the model for ancestral Gibbs
samples obtained with various context distributions p(C).
NADE (Bernoulli(0.00)) is included for reference.
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Figure 3. Human evaluations from MTurk on how many
times a sampling procedure or Bach is perceived as more
Bach-like. Error bars show the standard deviation of a bi-
nomial distribution fitted to each’s binary win/loss counts.

6.3 Human Evaluations

To further compare the sample quality of different sam-
pling procedures, we carried out a listening test on Ama-
zon’s Mechanical Turk (MTurk). The procedures in-
clude orderless NADE ancestral sampling and indepen-
dent Gibbs [40], with each we generate four uncondi-
tioned samples of eight-measure lengths from empty piano
rolls. To have an absolute reference for the quality of sam-
ples, we include first eight measures of four random Bach
chorale pieces from the validation set. Each fragment lasts
thirty-four seconds after synthesis.

For each MTurk hit, participants are asked to rate on a
Likert scale which of the two random samples they per-
ceive as more Bach-like. A total of 96 ratings were col-
lected, with each source involved in 64 (=96*2/3) pair-
wise comparisons. Figure 3 shows the number of times
each source was perceived as closer to Bach’s style. We
perform a Kruskal-Wallis H test on the ratings, χ2(2) =
12.23, p < 0.001, showing there are statistically signifi-
cant differences between models. A post-hoc analysis us-
ing the Wilcoxon signed-rank test with Bonferroni correc-
tion showed that participants perceived samples from in-
dependent Gibbs as more Bach-like than ancestral sam-
pling (NADE), p < 0.05/3. This confirms the loglikeli-
hood comparisons on sample quality in 6.2 that indepen-
dent Gibbs produces better samples. There was also a sig-
nificance difference between Bach and ancestral samples
but not between Bach and independent Gibbs.

7. CONCLUSION

We introduced a convolutional approach to modeling mu-
sical scores based on the orderless NADE [35] framework.
Our experiments show that the NADE ancestral sampling
procedure yields poor samples, which we have argued is
because some conditionals are not captured well by the
model. We have shown that sample quality improves sig-
nificantly when we use blocked Gibbs sampling to itera-
tively rewrite parts of the score. Moreover, annealed in-
dependent blocked Gibbs sampling as proposed by [40] is
not only faster but in fact produces better samples.

216 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



Acknowledgments
We thank Kyle Kastner, Guillaume Alain, Gabriel Huang,
Curtis (Fjord) Hawthorne, the Google Brain Magenta
team, as well as Jason Freidenfelds for helpful feedback,
discussions, suggestions and support. We also thank Cal-
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ABSTRACT

Music notation expresses performance instructions in a
way commonly understood by musicians, but printed paper
parts are limited to encodings of static, a priori knowledge.
In this paper we present a platform for multi-way com-
munication between collaborating musicians through the
dynamic modification of digital parts: the Music Encod-
ing and Linked Data (MELD) framework for distributed
real-time annotation of digital music scores. MELD users
and software agents create semantic annotations of music
concepts and relationships, which are associated with mu-
sical structure specified by the Music Encoding Initiative
schema (MEI). Annotations are expressed in RDF, allow-
ing alternative music vocabularies (e.g., popular vs. clas-
sical music structures) to be applied. The same underly-
ing framework retrieves, distributes, and processes infor-
mation that addresses semantically distinguishable music
elements. Further knowledge is incorporated from exter-
nal sources through the use of Linked Data. The RDF is
also used to match annotation types and contexts to render-
ing actions which display the annotations upon the digital
score. Here, we present a MELD implementation and de-
ployment which augments the digital music scores used by
musicians in a group performance, collaboratively chang-
ing the sequence within and between pieces in a set list.

1. INTRODUCTION

Music is a fundamental channel of communication [7], be-
tween musicians and an audience, but also among musi-
cians performing together, and as a record of a perfor-
mance. Inter-performer communication can support semi-
structured performances such as jam sessions, where the
set list is not entirely pre-determined, and repetitions and
variations can be added within pieces. These decisions are
made and communicated as the performance unfolds.

Music is richly structured, and annotations may serve to
interlink musical content along such a structure. Annota-
tions must be able to specifically address elements within

c© David M. Weigl and Kevin R. Page. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: David M. Weigl and Kevin R. Page. “A framework for dis-
tributed semantic annotation of musical score: “Take it to the bridge!””,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

this structure if they are to be described or related. In mul-
timedia information systems, this is typically achieved us-
ing timeline anchors, offsets along a reference recording
specified, e.g., in milliseconds. Such timed offsets are not
intrinsically musically meaningful without context, limit-
ing their use when no reference recording is available.

We can address part of this issue using the Music En-
coding Initiative XML schema (MEI; [6]). MEI compre-
hensively expresses the classes, attributes, and data types
required to encode a broad range of musical documents and
structures. It does not, however, include or reference con-
cepts, relationships, or existing descriptive forms of multi-
media Linked Data external to its schema.

We present the Music Encoding and Linked Data
(MELD) framework and implementation architecture that
augments and extends MEI structures with semantic Web
Annotations capable of addressing musically meaningful
score sections. Through its use of Linked Data, our ap-
proach deploys knowledge structures expressing relation-
ships unconstrained by boundaries of encoding schema,
musical sub-domain, or use-case context, supporting re-
trieval of a wide range of music information. We employ
the flexible and extensible Web Annotation model. New
kinds of annotations are easily incorporated through cus-
tomisation of the MELD JavaScript web-client via drop-
in rendering and interaction handlers. Annotations, cap-
tured in the context of the performance session with prove-
nance information, can seamlessly reference external data
sources, and can in turn be referenced for external analysis,
reuse, and repurposing in other contexts.

To demonstrate the feasibility of our approach, we
present a prototypical implementation of a performance
scenario which collects, distributes, and displays semantic
annotations of digital music score in a live jam session.

2. RELATED WORK

Previous projects have applied digital notation to mu-
sic performance scenarios for just-in-time composition
and computer-assisted generation of musical score (e.g.,
[5, 23, 24]). While fascinating, these approaches are con-
cerned with generating, rather than augmenting, musical
score in real-time performance scenarios. Our work, in
contrast, concerns the flexible targetting and interlinking
of music resources and resource fragments within a frame-
work of meaningfully structured music information.
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2.1 Addressing Musical Content

Although typically delivered in a linear rendition, music is
richly structured at various levels, from individual notes
and performance directions to higher-level musical sec-
tions (intro, verse, chorus, bridge; all terms established
in western popular music). Viewed as hyperstructures [2],
these concepts can be annotated with extra-musical infor-
mation. Such annotations may be anchored to representa-
tions of the music using media fragments 1 [20] expressing
temporal positions along a reference timeline in millisec-
onds, beat instances, or MIDI clock ticks (e.g., [4, 16]).

Temporal anchors are widely used in multimedia infor-
mation systems – for instance to link to specific scan po-
sitions within YouTube videos 2 . As such anchors are not
musically meaningful, their usefulness is limited when tar-
geting music in conceptual terms, rather than in terms of a
reference recording, such as when annotating music score.

The Music Encoding Initative (MEI; [6]) provides an
XML schema encompassing a comprehensive represen-
tation of musical structure. Content is cleanly separated
from presentation [14], allowing the identification and ad-
dressing of (elements of) a musical work – from an entire
composition, to a collection of notes constituting a phrase
within a particular measure on a specific instrumental part.
MEI arranges musical elements, each of which may be
named with an XML identifier, within a well-specified hi-
erarchy. These named elements provide anchor points for
annotations targeting a musically meaningful structure.

The Open MEI Addressability Service (OMAS; [21])
addresses granular portions of music notation using offsets
employing units of musical structure (measures, staves,
beats), rather than temporal units. OMAS responds to such
an offset specification (supplied via a templated URI syn-
tax) by generating MEI documents containing copies of the
specified portion of source MEI, resulting in new resources
containing only the portions of music to be addressed. This
enables the addressing of musical score without requiring
a reference timeline. However, it is not equivalent to ad-
dressing a fragment of a resource within its (source) con-
text, a requirement when using the score as a dynamic
communication framework between multiple performers.
Although specifying offsets in musical terms, OMAS does
not directly address musically meaningful sections of the
score (e.g., “verse 1,” “chorus 2,” “bridge”).

2.2 Expressing Musical Relationships

Linked Data extends the structure of the World Wide Web
by employing URIs to specify directed relationships be-
tween data instances. These data instances are themselves
encoded by URIs or represented by literal values. In the
music information domain, Linked Data has been em-
ployed to describe musical resources in terms of associ-
ated catalogue metadata (e.g., [8, 22]); to publish features
derived from audio-signal content along with associated
provenance metadata [12, 13]; and to transcribe symbolic

1 http://www.w3.org/TR/media-frags/
2 https://developers.google.com/youtube/player_

parameters#start

music content [11]. Throughout this article, we apply
Linked Data to express annotations about musical struc-
ture from a music performance perspective.

Several ontologies – Linked Data formalisations of
classes, properties, and relationships within musical sub-
domains – support the relation, interlinking, reuse, and re-
purposing of music information within and between data
sets and associated applications. We now discuss three
pertinent examples: the Music Ontology [17]; the Segment
Ontology [3]; and the Common Hierarchical Abstract Rep-
resentation of Music (CHARM) ontology [9].

While it does not primarily focus on music perfor-
mance, the Music Ontology is a widely used data model
describing terms and relationships around the production
of musical works, actors (e.g., artists, composers), items
(e.g., recordings, published scores), and events (e.g., per-
formances). Its classes extend the Functional Require-
ments for Bibliographic Records (FRBR) ontology 3 , dis-
criminating between musical entities at different levels of
abstraction, ranging from (at the most abstract level) the
intellectual conception of a musical work, to its expression
(conceptualised, e.g., as musical score), to an embodied
manifestation (e.g., a publication of the musical score), to
(at the most concrete level) a physical item representing a
single exemplar of a manifestation (e.g., a musician’s per-
sonal copy of the published score).

The Segment Ontology represents music as comprised
of segments ordered along an abstractly defined axis (the
segment line). These music-generic segments are bridged
to different ontological structures expressing elements of
musical form appropriate to specific musical sub-domains
(e.g., intro, verse, chorus, bridge; or sonata, minuet, trio,
or fugue). This separation of concerns supports cross-
application to different musical domains and use cases.

CHARM describes music at a fundamental level of
pitches, times, and durations, expressing statements as log-
ical formulae operating upon abstract data types. In this
paper, we apply more concrete conceptualisations of musi-
cal score sufficient for the presented use case; but we invite
the prospect of ontological mappings from CHARM to our
framework, which could offer intriguing opportunities for
re-use and extension for music analytical purposes.

3. MELD FRAMEWORK

The MELD 4 semantic framework combines and augments
pertinent subsets of a number of ontologies in a semantic
scaffold supporting dynamic distributed annotation of mu-
sical score (Figure 1). The Music and Segment Ontologies
describe a musical work, the music score – a collection of
musical segments ordered along a segment line that express
the work (in FRBR terms) – and finally its manifestation
as a published score encoded as MEI. Collections of MEI
fragments, manifestations of musical segments embodied
within the published score, anchor annotations processed
by rendering and interaction handlers (Section 4). These
elements form the core of the MELD semantic framework.

3 http://vocab.org/frbr/core.html
4 http://github.com/oerc-music/meld
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Figure 1. MELD semantic framework. Annotations address music segments embodied in a published score (MEI) resource.
A music-generic core is linked to but seperable from domain-specific entities instantiating concrete music sections. Key
(top right): External ontologies in bold italics. frbr: Functional Requirements for Bibliographic Records Core; ldp: Linked
Data Platform Vocabulary; meld: MELD Vocabulary; mo: Music Ontology; motivation: MELD-specific oa motivations;
oa: Web Annotation Ontology; pop, popRole, popSec: Pop music domain-specific semantics; prov: PROV Namespace;
rdf: RDF Concepts; rdfs: RDF Schema; skos: Simple Knowledge Organization System; so: Segment Ontology.

These music-generic structures are linked with, but sep-
arable from, components expressing domain-specific enti-
ties associated with the concrete instantiations of musical
segments. Here, we have specified a taxonomy of popu-
lar music performance terms sufficient to accomodate our
use case. Notably, these domain- and use-case-specific
taxonomies may be modularly replaced by other ontologi-
cal structures reflecting different domains (e.g., popular vs.
classical music) or use cases (e.g., annotations supporting
music performance vs. musicological scholarship) without
modification of the core.

As each entity, class, and relationship in the framework
is assigned its own URI, the entire ontological structure,
as well as the generated annotation and session metadata,
is part of a wider web of Linked Data. This enables the
seamless inclusion of external information within MELD
annotations, as well as the referencing, reuse, and repur-
posing of the generated information by external services.

3.1 MELD Annotations

MELD annotations build upon the Web Annotation Data
Model, 5 a W3C recommendation providing an extensible,
interoperable, machine-readable means of creating annota-
tions by asserting relationships between a set of connected
resources, typically an annotation body and a target (or tar-
get resource fragment).

Web Annotations may be associated with an explicit
motivation formalising the given annotation’s intended

5 https://www.w3.org/TR/annotation-model/

purpose. In MELD, domain- and use-case-specific ren-
dering and interaction clients (Section 4.2) make use of
this information to map the annotation to corresponding
rendering and interaction handlers to effect changes to the
score displayed to the user. By defining MELD-specific
motivations subclassing generic ones specified within the
Web Annotation model, we promote reuse and repurposing
of MELD annotations in external contexts implementing
Web Annotation standards.

Web Annotations may also be associated with an in-
tended audience to whom a given annotation applies. In
MELD, this information is used to address annotations to
only certain specified participants – for instance, the player
of a given part within a session. By default, annotations
that do not specify an audience are made available to every
client associated with a given session.

3.2 Domain Ontologies

We have specified a taxonomy describing sections and
part roles of popular music. Abstract, music-generic or-
dered segments of a score are associated with more con-
crete notions of musical sections appropriate to popular
music (e.g., “intro”, “verse”, “chorus”, “bridge”) via the
Segment Ontology. In its original conception, this on-
tology bridges music-generic and domain-specific concep-
tions of musical segmentation by mapping an abstract seg-
ment line to a concrete reference timeline manifested along
a musical recording. To avoid the requirement of such a
reference, we instead anchor music-generic segments to

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 223



domain-specific musical sections, embodied as manifesta-
tions within the published score. These are represented as
collections of media fragment URIs specifying the named
MEI elements that comprise the given section. Where ref-
erence recordings form a part of the use case, both ap-
proaches are applicable, enabling flexible, complementary
structuring of music information via temporal, symbolic,
and semantic anchors. The simplicity of repurposing the
Segment Ontology’s bridging mechanism within our novel
context is afforded by our use of Linked Data.

The published score, represented in MELD by an MEI
resource, is also associated with domain-specific part roles
(e.g., “lead”, “bass”, “rhythm”) anchored within the MEI
via fragment URIs specifying the corresponding MEI staff
definition container element. We employ the PROV On-
tology to express and track the provenance of relationships
associating specific musicians with such part roles within
the context of a particular performance session.

By virtue of the clean separation between music-
generic and popular-music-performance-specific ontolog-
ical structures, the domain-specific structures may be
swapped out to address other use contexts while retaining
the rest of the presented framework, e.g. for an analytical
ontology of musicological terms supporting the use of dig-
ital score annotations to illustrate points in scholarly musi-
cological arguments. This flexibility of ontological schema
is another key affordance of Linked Data.

4. MELD ARCHITECTURE

The MELD architecture (Figure 2) implements server- and
client-side components: RESTful web services are used
to manage session and annotation resources; client-side
rendering and interaction handlers display and update an-
notated digital score parts relevant to each user, as well
as capturing user interactions and updating server-side re-
sources with interaction outcomes.

4.1 Web Services

MELD annotation and session management services are
implemented using a Python web server capable of han-
dling operations on RDF and JSON-LD datasets encoding
the collection of MELD sessions, as well as the performer
part-roles and annotations associated with each session.

4.1.1 Performance Session Service

The server exposes a RESTful web service providing ac-
cess to a resource representing the list of all MELD ses-
sions available to a user (requested via HTTP GET).
In order to create a new session, a Linked Data rep-
resentation of a basic session resource, related by a
mo:performance of predicate to the published score
MEI resource, is posted (via HTTP POST) to the list. The
server mints a URI to represent the new session. A ‘join’
resource is exposed to establish qualified associations be-
tween the respective performer and an instrumental part in
the session context.

4.1.2 Annotation Service

Clients interact with the annotation service using an API
based on the Web Annotation Protocol 6 , which specifies
transport mechanisms for creating and managing annota-
tions that are consistent with Web Architecture and REST
best practices. This involves casting each session as an an-
notation container, a form of Linked Data Platform (LDP)
container 7 with additional constraints derived from the
Web Annotation data model. New annotations are posted
to the annotation container, where they are associated with
the session using ldp:contains relationships.

MELD extends the Web Annotation model by track-
ing the state of each annotation associated with each per-
former, in order to support the dynamic, real-time nature of
the distributed annotation activity. Annotations are created
in a raw state. Upon the occurrence of certain events (e.g.,
user interaction), clients may optionally effect a processed
annotation state (via HTTP PATCH), signifying that the
annotation has been handled and is no longer of relevance
within the session context. This approach is preferable to
simply deleting the handled annotation (e.g., via HTTP
DELETE), as it may remain relevant in external contexts
– for instance for post-session review by the performers,
or by other interested observers.

4.2 Rendering and Interaction Clients

A JavaScript web client is responsible for rendering MEI
score parts to the user. The client dynamically augments
this display with currently relevant annotations; handles
user interactions; and communicates interaction outcomes
using the MELD web services (Section 4.1).

The procedure is illustrated in Figure 2. The client pro-
cesses a JSON-LD [19] representation of the graph asso-
ciated with the session resource, framed [18] to include
only relevant annotations by filtering on audience and state
(Sections 3.1 and 4.1.2). It retrieves the MEI resource as-
sociated with the session (HTTP GET), and renders the en-
coded score using Verovio [15], a tool that produces SVG
engravings of MEI-encoded music notation. Crucially,
Verovio retains the MEI hierarchy and element identifiers
into the produced SVG output, supporting the addressing
of graphical score elements for visual markup and dynamic
interaction through the web browser.

Each annotation is mapped to a corresponding handler,
which may be customised to a specific motivation and use-
case using CSS styling and drop-in JavaScript functions.
User-interaction outcomes trigger AJAX calls using the
web services to POST a new annotation, or to PATCH an
annotation’s state from raw to processed.

Each client continuously polls the session resource (us-
ing HTTP GET), maintaining the annotated score at its lat-
est state in near real-time. Simple resource hashes (HTTP
entity tags) and atomic server-side file writing reduce net-
work traffic and address race conditions inherent in dis-
tributed real-time interaction: the former by supplying

6 https://www.w3.org/TR/annotation-protocol/
7 https://www.w3.org/TR/ldp-primer/. LDP provides

read-write access to RDF datasets via RESTful HTTP services.
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Figure 2. MELD architecture: performance session and annotation web services; MELD client; and rendering and interac-
tion handlers. A tight polling loop, employing entity tagging techniques to reduce network load and address concurrency
concerns, distributes and maintains annotation state between performers in near-real-time.

lightweight HTTP 304 (“Not Modified”) responses that ex-
clude the resource body when a resource has not changed
from its state last seen by the client; and the latter by the
server rejecting changes (via HTTP 412 – “Precondition
Failed”) upon an entity tag mismatch, prompting the client
to GET the latest version of the session resource before
reattempting its modification.

5. SCENARIO

To validate the feasibility of our proposed approach, we
have produced an implementation of MELD to support
a simple scenario where musical performers collaborate
within a semi-structured performance environment.

5.1 Motivation

The selected use case is a performance – such as a jam ses-
sion – where collaborating musicians make fluid, ad-hoc
decisions about song repetitions and transitions, rather than
adhering to a pre-determined set list. Musicians may add
directions to change dynamic or stylistic elements of the
performance, e.g., to reference a particular prior record-
ing they wished the group to emulate in style or interpreta-
tions; or they may incorporate structural directions, e.g., to
repeat a chorus or a verse, or to move to a bridge section.
Such directions transcend the symbolic representation of
the music being performed, and may draw upon significant
contextual information external to the performance itself,
for instance to adopt the style of a certain artist, or to tran-
sition to another song by this artist.

5.2 Implementation

A session, corresponding to the performance of a given
song, is represented as an LDP container. It contains an-
notations, and connects participating performers to instru-
mental part roles via qualified associations (Figure 1). The
corresponding MEI staff definition elements are used to
filter the music structure in order to display only the rel-
evant instrumental parts to each performer on a personal
touchscreen (Figure 4). Only annotations pertinent to their
performance are displayed, using the Web Annotation au-
dience property as a filtering mechanism (Section 3.1).

Figure 3. The MELD client displays the annotated digital
score. A modal action pane enables users to generate anno-
tations enacting jumps within a piece, or queueing actions
determining the next piece to be performed.

Rendering and interaction handlers operate on annota-
tions that enable performers to collaboratively change the
performance sequence within and between musical scores.
Annotations are generated by using the touch screen to in-
teract with a modal action pane situated below the musical
score (Figure 3).

Navigational changes of sequence within a score – e.g.,
a jump to the bridge section – are requested by specifying
a jump source (highlighted on the score in red) and desti-
nation (highlighted in green). The former is specified by
tapping on a measure of the score. The action pane then
displays a list of musical sections representing potential
destinations. This list is automatically retrieved from the
Linked Data, by traversal of the segments on the segment
line associated with the current session’s score. When a
selection is made, an annotation is POSTed to the session,
specifying an annotation target (the fragment URI of the
jump source measure); an annotation body (the URI of the
selected destination); and motivation:jumpTo (a cus-
tom specialisation of Web Annotation’s oa:linking) as
the motivation. All performer clients retrieve the annota-
tion upon the next polling cycle.
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Figure 4. MEI staff definition element identifiers are associated with each performer in a session resource (Figure 1),
enabling filtering according to role. Here, an annotation targeting a segment embodied as myScore.mei#msr0823
retrieves the corresponding notes for Lead or Bass, according to the performer’s part-role association within the session.

Upon tapping on the red source measure, the render-
ing and interaction handler flips to the score page contain-
ing the destination measure. The highlights then fade, and
the performer’s copy of the annotation is PATCHed as pro-
cessed to avoid rerendering of stale information. 8

Annotations representing queueing instructions for nav-
igation between songs may target individual source mea-
sures as described above, or the URI of the current score (in
which case the rendering and interaction handler creates a
“next piece” button in place of the “next page” button on
the last page of the current piece). Songs to transition to
can be selected according to a criteria such as “More songs
by this artist”. These parameterise SPARQL queries 9 ,
in this case with the URI of the artist from the current
score’s MEI responsibility statement. The SPARQL query
retrieves a list of songs by this artist from DBPedia 10 [1],
matched against a cache of available MEI resources stored
on a local triplestore (Linked Data database). Upon se-
lecting a song, the annotator’s client requests the creation
of a new session associated with the corresponding MEI
resource. It then posts an annotation to the current ses-
sion, instructing all performers’ clients to join the next ses-
sion when an interaction event on the annotation target (the
jump source) is handled.

6. CONCLUSIONS AND FUTURE WORK

We have presented the MELD framework and architec-
ture applying musical structure as a semantic spine for
real-time annotation of digital music score. RESTful web
services manage the retrieval and distribution of annota-
tions created by user interactions in a performance session.
Annotations address MEI-encoded score elements using
Linked Data, enabling flexible reuse, repurposing, and in-
terlinking of the generated information in external con-
texts. The framework and associated implementation ar-
chitecture comprise separable music-generic and domain-
specific semantic structures, and modular rendering and in-

8 Measures are defined above staves within the MEI hierarchy, mean-
ing that the notes contained in the targeted measures, and the pages they
appear on, likely differ between performers, according to their instrumen-
tal part associations

9 SPARQL is a query language for Linked Data resources, analogous
to SQL queries against relational databases, but capable of retrieving data
spanning local and external data sets

10 DBPedia publishes Wikipedia information as structured Linked Data

teraction handlers, allowing components to target different
music domains and use cases. We have validated the feasi-
bility of the proposed framework through a MELD imple-
mentation supporting multi-way communication between
musicians collaboratively changing the performance se-
quence within and between pieces in a group performance.

In future work, we will focus on extending the capa-
bilities of the described framework to incorporate annota-
tions enacting modifications of the MEI structure, for in-
stance requesting changes in dynamics. Such modifica-
tions are readily incorporated within the client polling cy-
cle (Section 4.2), given the speedy rendering performance
of Verovio and the relation of the polled session resource
(via mo:performance of) to the MEI notation being
rendered. However, session management complexities in-
cluding MEI resource duplication, versioning, and the cap-
ture of provenance information will need to be accomo-
dated, and potential licensing issues carefully considered.

While physical interactions with musical score are com-
monplace in music performance – consider the necessity of
paging through paper parts – care must be taken in ongo-
ing interface development to minimise additional cognitive
load upon the performer. We have developed an alterna-
tive, multimodal interaction mechanism by integrating the
MELD framework with a technology supporting real-time
triggering of HTTP actions in response to specified pat-
terns matched to an audio or MIDI stream. This variation
of MELD has been successfully applied to drive a gamified
composition for disklavier and electronics [10], demon-
strating a more complex performance interaction than the
simple scenario used to explain the MELD framework in
this paper. Other interaction paradigms are imaginable, for
instance by means of foot pedals, or voice commands.

Finally, we are exploring the application of MELD in
non-performance-related use cases. MELD annotations
may be specified to target MEI and other digital media,
including audio, images, and textual commentary. Thus in-
terlinked, such media resources, annotated to target musi-
cally meaningful sections, may be used to illustrate schol-
arly musicological arguments. Together with the work pre-
sented here, these applications demonstrate the utility and
flexibility of adopting a semantic framework anchored in
addressable musical structure to express, retrieve, and dis-
tribute information in a variety of contexts and use cases.
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ABSTRACT

There are often situations in which a group of people
gather and listen to the same songs. However, major-
ity of existing studies related to music information re-
trieval (MIR) have focused on personalization for individ-
ual users, and there have been only a few studies related to
MIR intended for a group of people. Here, we present an
Android music player with a music selection function for
people who are listening to the same songs in the same
place. We assume that each user owns his/her favorite
songs on his/her Android device. Once a group of users
gathers each user can launch this player on his/her smart-
phone. Then, the player running on each device starts to
communicate with other devices via Bluetooth. Informa-
tion about songs stored in every device, along with the
playback history, is collected to a device referred to as
the master device. Then, the master device estimates each
user’s preference for every song based on playback his-
tory and music similarity. The master device then extracts
songs that are highly preferred and sends a command to
start playback to the devices storing these songs. Our ex-
perimental results demonstrate the successful estimation of
music preferences based on music similarity.

1. INTRODUCTION

In situations such as parties and carpooling, it is common
that a group of people gather and listen to the same back-
ground music. However, it is not easy to select songs in
such situations: if a particular member selects songs based
on his/her musical preferences, other members with differ-
ent musical preferences may be unsatisfied. To resolve this
problem, we need a mechanism to extract each member’s
musical preferences and select songs taking into account
those preferences.

Although music information retrieval (MIR) has a long
history of technology development [3], relatively few at-
tempts have been made to develop MIR techniques for a
group of people. MusicFX, developed by Jseph et al. [6],

c⃝ Jun’ichi Suzuki and Tetsuro Kitahara. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Jun’ichi Suzuki and Tetsuro Kitahara. “A Music
Player with Song Selection Function for a Group of People”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

selects a music broadcasting station from 91 stations spe-
cializing in different music genres, and the selection pro-
cess is indirectly influenced by the musical preference of
each member present at that place. This system uses a pref-
erence database consisting of every member’s preference
for 91 genres on a scale of -2 to 2. After detecting who is
present based on each member’s electronic badge, the sys-
tem determines a broadcasting station using this database
with a group preference arbitration algorithm. This algo-
rithm basically computes a group preferences as a squared
summation of individual preferences. Crossen et al. [4] de-
veloped a similar system called Flytrap. This system also
attempts to play songs that are pleasing to every person
present. The system detects the people who are present
and sends information about each member’s previous mu-
sic choices to a server. Based on a voting mechanism in
which high votes are given to those that have been listened
to previously, songs to be played back are determined. A
web application developed by Popescu et al. [8], called
GroupFun, helps a group of friends agree on a common
music playlist. With GroupFun, users can listen to and rate
their own songs as well as their friends’ songs. The sys-
tem then arbitrates between the users’ preferences using
four different algorithms to determine which songs to play.
BlueMusic, developed by Mahato et al. [1], uses Bluetooth
to send an indivdual’s musical preference data to a pub-
lic music playback system. Individual users enter their
musical preferences into a web form in advance and ob-
tain strings, such as “Bm+A1R3EST3,” that encodes their
musical preferences. Their mobile devices then broadcast
these data as Bluetooth device names. The public music
playback system collects such strings to determine which
songs to play back. In addition, some researchers devel-
oped music recommendation systems for a group of peo-
ple [5,7]. These systems typically assume that (1) informa-
tion on individual users’ musical preferences is collected
(or estimated from playback histories) in advance and (2)
songs to be played back are stored in a server or public
playback system.

Here, we develop a music selection and playback appli-
cation under the following assumptions:

• Individual users own songs inside their own smart-
phones (or mobile devices).

This means that songs to be played back are stored
separately in multiple devices. Appropriate songs
should be selected from a music collection dispers-
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ing at multiple devices and should be played back
without manually switching any settings.

• No server or special equipment is necessary.

The application should run on individual users’ de-
vices and songs are never copied to a server to avoid
copyright issues.

• An individual device possesses information about
only its playback history.

The application running on each device has no prior
knowledge about how much the device owner favors
each song stored in other devices. The appliaction
has to estimate this information from data that the
device has.

To meet these assumptions, we design the application
based on the following policy:

• One of the devices is regarded as the master devices,
and every device communicates the list of songs
stored in it and its playback history (in particular,
how many times the device owner has played back
each song) to that device.

• The master device does not collect the waveforms of
songs stored in other devices but rather commands
the device storing a song to be played back to con-
nect itself directly to the Bluetooth speaker. If a
song stored in a different device is selected next,
this device will be automatically connected to the
speaker after the current device is disconnected from
the speaker.

• Each user’s preference for songs stored in others’ de-
vices is estimated based on the similarity to songs
stored in his/her own device.

The rest of the paper is organized as follows: In Sec-
tion 2, we describe the overview of our application and
present a method for estimating the degree of preference
noted above. In Section 3, we report the system implemen-
tation and experiments. Finally, we conclude the paper in
Section 4.

2. SYSTEM OVERVIEW

This application aim to select songs from a collection sep-
arately stored in different devices and play the songs back
seamlessly. As discussed in the Introduction section, we
designed the application based on the following policies:

• Every device communicates information about
songs (not the waveforms themselves) to the master
device.

• After the song selection process occurs, the mas-
ter device commands the device storing the se-
lected song to connect itself directly to the Bluetooth
speaker to avoid copying the waveform somewhere.

Figure 1. Overview of system flow in the networked play-
back mode

• Each user’s preferences for songs stored on other
users’ devices is estimated based on the similarity
between these songs and the songs stored in his/her
device.

The application has two different modes. One is the nor-
mal playback mode, in which the user listens to songs in a
normal way. This mode provides basically the same func-
tionalities as a typical music player and is used to store
the playback history, particularly the number of plays (i.e.,
how many times the user has listened to each song). The
other mode is a networked playback mode, which is the
primary mode of this application. Once users gather and
launch the application on their devices, the devices start
to communicate with one other via Bluetooth, and one of
the devices is set to be the master device. After estab-
lising aBluetooth connection, the master device collects
information about the list of songs stored in each device
and the number of plays (how many times each song is
played back) from the other devices. Then, the master de-
vice generates a playlist and commands the device storing
each song in the playlist to play back the song.
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Below, we illustrate the procedure of the networked
playback mode (Figure 1).

2.1 Launching the Application

Let U = {u1, · · · , un} and D = {d1, · · · , dn} be a
group of users and a set of the users’ devices, respectively,
where d1 is the master device. Each device di communi-
cates the list of songs M(di) = {m(di,1), · · · ,m(di,n(di))}
and the number of plays for every song F (m(di,k)) (k =
1, · · · , n(di)) to the master device d1.

2.2 Calculating the Degree of Preference

For each user ui, the degree of preference for every song is
calculated. Let W (ui,m(dj ,k)) be the degree of preference
of user ui for song m(dj ,k). We formulate the degree of
preference based on the following assumptions:

1) If a user listen to a song frequently, his/her prefer-
ence for that song should be high.

2) If Song A is similar to Song B, which is highly fa-
vored, Song A should also highly favored.

Based on the first assumption, we can calculate the degree
of a user’s preference for songs stored in his/her own de-
vice using the number of plays. On the other hand, the
degree of preference for songs stored in others’ devices
cannot be calculated based on the number of plays because
such information is not available. Based on the second as-
sumption, we calculate the degree of preference for such
songs using that for similar songs owned by oneself.

2.2.1 The Degree of Preference for Owned Songs

The degree of preference for songs stored in a user’s own
device is calculated based on the number of plays. Here
we prepare two different definitions:

W (ui,m(di,k)) = 1− 1

{F (m(di,k)) + 1}α
(1)

and
W (ui,m(di,k)) = coshβF (m(di,k)), (2)

where α and β are parameters.

2.2.2 The Degree of Preference for Songs That Are Not
Owned

Here, we calculate the degree of preference for songs
stored in other users’ devices W (ui,m(dj ,k)) (i ̸= j).

First of all, the similarity of m(dj ,k) to every song stored
in di is calculated. Musical similarity is a very diffi-
cult concept and its calculation is still an open problem.
However, various similarity measures have been developed
from different points of view (e.g., [2]). Here, we combine
two different similarity measures: acoustic similarity and
(socially obtained) artist similarity.

To calculate acoustic similarity between two songs,
m(dj ,k) and m(di,l), a sequence of 20-dimensional mel-
frequency cepstral coefficient (MFCC) vectors is calcu-
lated from each song by adopting a shift by 160 sam-
ples after the waveform is resampled to 16 kHz. The

Earth mover’s distance between the two sequences, de-
noted by D(m(dj ,k),m(di,l)), is calculated. The similarity
sim

MFCC
(m(dj ,k),m(di,l)) is then calculated by using

sim
MFCC

(m(dj ,k),m(di,l)) =
1

1 +D(m(dj ,k),m(di,l))
.

The artist similarity between m(dj ,k) and m(di,l) is cal-
culated based on the Last.fm API1 . The Last.fm API has a
function, artist.getSimilar, which returns up to 100 similar
artists to a specified artist, along with similarity values on a
scale of 0 to 1. Let a(dj ,k) be the artist of the song m(dj ,k).
The list of artists similar to a(dj ,k), denoted by A(dj ,k),
and their similarities sim

last.fm
(a(dj ,k), a

′) (a′ ∈ A(dj ,k)) are

obtained using Last.fm. In general, sim
last.fm

(·, ·) is not sym-

metric. We therefore define the artist similarity as follows:

i) When a(dj ,k) = a(di,l),

sim
artist

(m(dj ,k),m(di,l)) = 1.0.

ii) When a(dj ,k) ∈ A(di,l) and a(di,l) ∈ A(dj ,k),

sim
artist

(m(dj ,k),m(di,l))

=
1

2

{
sim

last.fm
(a(dj ,k), a(di,l)) + sim

last.fm
(a(di,l), a(dj ,m))

}
iii) When a(dj ,k) ∈ A(di,l) and a(di,l) /∈ A(dj ,k),

sim
artist

(m(dj ,k),m(di,l)) = sim
last.fm

(a(dj ,k), a(di,l))

iv) When a(dj ,k) /∈ A(di,l) and a(di,l) ∈ A(dj ,k),

sim
artist

(m(dj ,k),m(di,l)) = sim
last.fm

(a(di,l), a(dj ,k))

v) When a(dj ,k) /∈ A(di,l) and a(di,l) /∈ A(dj ,k),

sim
artist

(m(dj ,k),m(di,l)) = ε,

where ε is basically zero but can be set to a very
small positive value to take into account the possibil-
ity of sparseness in similar artist responses (ε = 0.01
in the current implementation).

The similarity between two songs, denoted by
sim(m(dj ,k),m(di,l)), can be calculated as

sim(m(dj ,k),m(di,l))

= sim
MFCC

(m(dj ,k),m(di,l)) · sim
artist

(m(dj ,k),m(di,l)).

Using this similarity measure, the degree of preference
can be calculated as follows:

W (ui,m(dj ,k)) =

∑
l

sim(m(dj ,k),m(di,l))W (ui,m(di,l))∑
l

sim(m(dj ,k),m(di,l))
.

1 http://www.last.fm/api
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2.3 Integration of Degrees of Preference

The degree of every user’s preference is integrated as fol-
lows:

Wall(m(dj ,k)) =
n∏

q=1

W (uq,m(dj ,k))

2.4 Generating a Playlist

After the integrated degrees of preference Wall(m(dj ,k))
for all songs stored in all of the devices are calculated, a
necessary number of songs are selected in order of the in-
tegrated degree of preference.

2.5 Playing Songs

Let L = {m1, · · · ,mc} be the list of the selected songs
and let d(mi) be the device storing the song mi. For each
song mi, the following steps are executed:

1) The master device commands d(mi) to connect it-
self to the Bluetooth speaker.

2) The device d(mi) starts to play back mi.

3) The master device broadcasts the information (title,
artist name, etc.) of the song being played to all de-
vices to alert users about which song is being played.

4) Once the playback ends, the device d(mi) discon-
nects from the Bluetooth speaker and sends the mas-
ter device a message communicating the end of play-
back.

5) Return to 1) for the next song.

Advanced Audio Distribution Profile (A2DP) is used for
the connection between each device and the speaker. For
communication between devices, Serial Port Profile (SPP)
is used.

3. IMPLEMENTATION AND EXPERIMENTS

3.1 Implementation

We implemented this music player on Android 5.0 smart-
phones. Screenshots are shown in Figure 2. A demo
video of this application is available at https://www.
youtube.com/watch?v=gcOWjkBc_EA. For
roughly one hour, we confirmed that this application
sucessfully selected songs, switched the connection to the
Bluetooth speaker, and played the selected songs without
any troubles.

3.2 Evaluation of the Degree of Preference for Owned
Songs

We confirmed the appropriateness of the calculation of the
degrees of preference for a user’s own songs by checking
how these degrees calculated with our method matched the
actual level of preference reported by the users.

3.2.1 Dataset

Data of playback histories and preferences were obtained
from Last.fm. Using the Last.fm API, we obtained a user
profile containing playback histories and evaluations (the
“Liked” tag or no tag) for vairous songs. We collected user
profiles for 45,745 users, who were specified by choosing
one user at random and then traversing “Friend” links re-
cursively. However, many users did not apply the “Liked”
tag to any songs, we therefore chose to focus on the 11,074
users who gave “Liked” tags to 20–5000 songs. The total
number of the playback histories is 98,504,128.

3.2.2 Results

We analyzed the ratio of songs with the “Liked” tag with
respect to the numbers of plays binned by 5 (Figure 3).
From this figure, one can see that as the number of plays in-
creases, the ratio of songs with the “Liked” tag increases.
Regarding this ratio as the ground truth of the degree of
preference, we evaluated the degree of preference calcu-
lated with Equations (1) and (2). The results are shown in
Figure 4. One can see that using Equation (1) with α =
0.01 approximates the ground truth well. For songs with
less than 20 times of plays, Equation (1) with α = 0.10
and Equation (2) with β = 0.005 approximate better.

3.3 Evaluation of the Degree of Preference for Songs
That Are Not Owned

Next, we confirm the appropriateness of the calculation of
the degree of preference for songs not owned by a user.

3.3.1 Dataset

We used the Last.fm Dataset2 , which consists of playback
histories of 1,000 users. Of the songs contained in this
database, some songs were regarded as owned songs and
other songs were regarded as unowned songs and their
playback histories were accordingly hidden. From the
playback histories of the songs regared as unowned, the de-
grees of preference were estimated. Ideally, the estimated
degrees should be compared with real favor values (e.g.,
from questionnaires), but such data were not available from
this database. We therefore regarded the degrees of pref-
erence calculated from the playback histories as the quasi
ground truth. Because this database does not include the
waveforms themselves, a 30-second version of every song
is downloaded via 7digital API3 for feature extraction for
calculating acoustic similarity.

3.3.2 Procedure

We extracted 118 three-user groups such that the number
of songs listened to by three users of every group exceeded
300. For each group, we divided the songs listened to by
the group members into three sets; each set was regarded as
being owned by each member. We calculated the degrees
of preference for unowned songs of each member using the

2 http://ocelma.net/
3 https://www.7digital.com/
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Figure 2. Screenshot of our Android music player. Left: search of other devices via Bluetooh, Center: playlist display,
Right: music playback

Figure 3. The ratio of songs with the “Liked” tag with
respect to the numbers of plays.

proposed method. At the same time, the degrees of pref-
erence for the same songs were calculated using Equation
(1) or (2) and were regarded to be the quasi ground truth.

3.3.3 Results

The correlations between the degrees of preference calcu-
lated using our method and the quasi ground truth are listed
in Table 1. These data show that the correlation is approx-
imately 0.6 with almost any parameters and therefore that
the degree of preference is fairly appropriately estimated.
Figure 5 shows the correlations for each user. The correla-
tions were higher than 0.5 for roughly half of the users.

4. CONCLUSION

We have proposed an Android application that makes it
possible to seamlesssly enjoy songs that are separately
stored on different smartphones or devices. This applica-

(a) With Equation (1)

(b) With Equation (2)

Figure 4. Estimation of degree of preference for owned
songs

tion has two features. One feature is networked playback.
The master device commands other devices to connect to
or disconnect from the Bluetooth speaker. Users are ac-
cordingly freed from manually switching the device con-
nection. The other feature is music selection. Using each
user’s playback history and musical similarity, the appli-
cation estimates the degree of each user’s preference even
for songs that have not been listened to. Experimental re-
sults reveal that the degrees of preference estimated by our
method are correlated with the quasi ground truth.

There is still a lot of future work. First, the current
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(a) With Equation (1) for owned songs
α 0.01 0.1 0.2 0.3 0.4

Corr. 0.60548 0.60419 0.60217 0.5960 0.59658

(b) With Equation (2) for owned songs
β 0.002 0.005 0.100 0.205 0.300

Corr. 0.56625 0.56708 0.60060 0.60132 0.59658

Table 1. Estimation of degree of preference for unowned
songs

Figure 5. Histogram of per-user correlations between the
estimated degree of preference and the quasi ground truth.

playlist generation process—simply placing songs in order
of degree of preference—is too naive. We have to improve
this process to maintain the users’ satisfaction from the be-
ginning to the end of the playlist. We should also conduct
usability tests because experiments presented here were fo-
cused only on the music selection process. In addition, we
plan to distribute this application on Google Play to obtain
user feedback for further improvements.
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ABSTRACT

Tempo estimation is a fundamental problem in music in-
formation retrieval and has been researched extensively.
One problem still unsolved is the tendency of tempo es-
timation algorithms to produce results that are wrong by a
small number of known factors (so-called octave errors).
We propose a method that uses supervised learning to pre-
dict such tempo estimation errors. In a post-processing
step, these predictions can then be used to correct an algo-
rithm’s tempo estimates. While being simple and relying
only on a small number of features, our proposed method
significantly increases accuracy for state-of-the-art tempo
estimation methods.

1. INTRODUCTION

Tempo-related tasks are well established in music informa-
tion retrieval (MIR) [1]. One common task is to estimate
the tempo humans “tap” along to a beat when listening to
music. Another task, beat tracking, attempts to determine
the exact times at which beats occur. In this paper, we
deal with tempo estimation exclusively. While in some
genres—like Romantic music—local tempo changes are
common [11], Pop, Rock, and Dance music often have one
steady, global tempo, i.e. it can be represented by a single
number usually specified in beats per minute (BPM). The
method proposed in this paper is only suitable for music
with such a global tempo.

Over the years, many different approaches to tempo
estimation have been taken. Gouyon et al. [9] provided
a comparative evaluation of the systems that participated
in the ISMIR 2004 contest. Five years later, Zapata and
Gómez gave an updated overview [30]. To our knowledge,
the most recent comprehensive evaluations are presented
in [2, 23, 24]. For a textbook-style introductory overview
describing different approaches, see [20] by Müller.

Many methods divide the estimation problem into two
phases. First, via an onset strength signal (OSS) or nov-
elty curve, beat candidates are found. Second, one or more

c© Hendrik Schreiber, Meinard Müller. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Hendrik Schreiber, Meinard Müller. “A post-processing
procedure for improving music tempo estimates using supervised learn-
ing”, 18th International Society for Music Information Retrieval Confer-
ence, Suzhou, China, 2017.

periodicities are extracted from the OSS. Methods for find-
ing periodicities are often based on the Fourier transform,
but also include autocorrelation [23], tempograms [29], the
interonset interval (IOI) histograms [26], and resonating
comb filters [2]. The decision for a final result is based on
simple heuristics, genre classification [15, 25], secondary
tempo estimates [24], the discrete cosine transform of IOI
histograms [6], or a feature-based learning approach like
Gaussian mixture models (GMM) [22], support vector ma-
chines (SVM) [8,23], k-nearest neighbor classification (k-
NNC) [29], and neural networks [5].

For evaluation, results are typically compared with a
ground truth allowing a 4% tolerance. This measure is
called Accuracy1. Because many algorithms have a ten-
dency to under- or over-estimate the true value by a factor
of 2 or 3, a second measure called Accuracy2 has been in-
troduced. Accuracy2 allows for errors that correspond to a
factor of 2, 3, 1/2, or 1/3, also known as octave errors. De-
spite evidence that algorithms as well as humans can dis-
tinguish between slow and fast music [13, 18], Accuracy1
values for state-of-the-art algorithms are still below Accu-
racy2. One way to change this may lie in genre- or style-
related knowledge [4]. Many genres are partially defined
by a certain tempo or tempo range, which can be exploited
to pick the right octave. Schuller et al. [25] demonstrated
this for the Ballroom dataset and Hörschläger et al. [15]
did the same for the GiantSteps tempo dataset. The fact
that the excellent method by Böck et al. [2] scores remark-
able 95% when trained on the Ballroom dataset with 8-
fold cross validation, but reaches only 66.8% on the mixed
genre GTZAN dataset further supports this notion.

In this paper we describe a supervised learning ap-
proach to correct common tempo estimation errors. This
is achieved by re-framing error correction as a classifica-
tion problem. We are able to demonstrate that the pro-
posed method performs better or as well as state-of-the-art
algorithms when combined with a simple tempo estima-
tion method. Furthermore, because our error correction
approach can be trained for any tempo detection method,
we are able to show improvements in Accuracy1 for previ-
ously published algorithms via post-processing.

The remainder of this paper is structured as follows:
in Section 2 we describe a simple tempo estimation algo-
rithm, test datasets, measures, and investigate common es-
timation error classes. Then, in Section 3, we explain our
post-processing procedure, which corrects tempo estimates
using supervised learning based on a small number of au-
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dio features. In Section 4 we evaluate the proposed fea-
tures, and then compare our results with those from other
methods. Finally, in Section 5, we present our conclusions.

2. TEMPO ESTIMATION

To lay the groundwork for our error correction method, we
first describe a simple tempo estimation algorithm, then in-
troduce several test datasets and discuss common pitfalls.
In Section 2.5, we introduce performance metrics and de-
scribe observed errors.

2.1 Algorithm

To estimate the dominant pulse we follow the approach
taken in [24], which is similar to [23, 28]: We first con-
vert the signal to mono and downsample to 11025 Hz.
Then we compute the power spectrum Y of 93 ms win-
dows with half overlap, by applying a Hamming win-
dow and performing an STFT. The power for each bin
k ∈ [0 : K] := {0, 1, 2, . . . ,K} at time m ∈ [0 : M ] :=
{0, 1, 2, . . . ,M} is given by Y (m, k), its positive logarith-
mic power Yln(m, k) := ln (1000 · Y (m, k) + 1), and its
frequency by F (k) given in Hz. We define the onset signal
strength OSS(m) as the sum of the bandwise differences
between the logarithmic powers Yln(m, k) and Yln(m −
1, k) for those k where the frequency F (k) ∈ [30, 720]
and Y (m, k) is greater than αY (m− 1, k) (see [16]):

I(m, k) =


1 if Y (m, k) > αY (m− 1, k)

and F (k) ∈ [30, 720],
0 otherwise

(1)

OSS(m) =
∑
k

(Yln(m, k)− Yln(m− 1, k)) · I(m, k)

Both the factor α = 1.76 and the frequency range were
found experimentally [24].

The OSS(m) is transformed using a DFT with length
8192. At the given sample rate, this ensures a resolution
of 0.156 BPM. The peaks of the resulting beat spectrum
B represent the strength of BPM values in the signal [7],
but do not take harmonics into account [10, 21]. There-
fore we derive an enhanced beat spectrum BE that boosts
frequencies supported by harmonics:

BE(k) =

2∑
i=0

|B(bk/2i + 0.5c)| (2)

Similar to an enhanced beat histogram [28], BE incor-
porates harmonics by simply adding to each bin the mag-
nitudes of the bins denoted by half and by a quarter of its
own frequency—or, if not available—the closest available
bin. We choose to use fractions instead of multiples for
modeling harmonics and thus essentially model the fourth
harmonic, not the first. This allows us to take advantage of
the full DFT resolution without oversampling, as each bin
for the first harmonic is mapped to four different bins for
the fourth harmonic. To estimate the tempo T of the dom-
inant pulse (or periodicity in the OSS), we determine the
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Figure 1. Tempo distributions for the test datasets.

highest value of BE, divide its frequency by 4 to find the
first harmonic, and finally convert its associated frequency
to BPM:

T = F (argmax
k

BE(k)) ·
60

4
(3)

To ensure meaningful results for most kinds of Western
music, we constrain T to [40, 250] by halving or doubling
its value, if necessary.

2.2 Test Datasets

It has become customary to benchmark tempo estimation
methods with results reported for a small set of well known
datasets. These are ACM MIRUM [18, 22], Ballroom [9],
GTZAN [27], Hainsworth [12], ISMIR04 Songs [9], and
SMC [14]. The latter was specifically designed to be diffi-
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Dataset E0 E1 E2 E1/2 E3 E1/3 E4 E1/4 E3/2 E2/3 E5/4 E4/5 E4/3 E3/4

ACM˙MIRUM 0.7 73.5 16.0 7.0 0.8 0.0 0.1 0.0 1.8 0.1 0.0 0.0 0.0 0.1
Ballroom 0.4 64.3 1.0 29.7 0.0 1.1 0.0 0.7 0.1 2.3 0.0 0.0 0.0 0.3
Hainsworth 8.6 64.4 1.4 19.4 0.0 0.5 0.0 0.0 1.8 1.8 0.9 0.5 0.5 0.5
GTZAN 4.0 72.2 15.7 5.1 0.4 0.1 0.0 0.0 1.0 0.4 0.1 0.4 0.5 0.1
ISMIR04 Songs 4.3 64.7 19.4 6.3 1.1 0.2 0.0 0.0 2.4 0.4 0.4 0.2 0.2 0.4
SMC 29.0 37.8 6.0 10.6 0.0 2.3 0.0 0.0 5.1 2.3 0.5 2.3 0.9 3.2
Combined 3.9 68.1 12.3 11.2 0.5 0.4 0.0 0.1 1.5 0.8 0.1 0.3 0.2 0.4
GiantSteps 7.1 63.1 4.1 21.5 0.0 0.0 0.0 0.0 0.6 0.3 0.8 0.9 0.5 1.2

Table 1. Error class distribution for tempo estimates T (given in BPM) for different datasets in percent.

Dataset Sweet Oct. Cov. 90% 95%
ACM MIRUM 69− 138 72.8 50− 152 50− 170
Ballroom 71− 142 71.1 84− 204 82− 204
Hainsworth 79− 158 82.4 58− 150 57− 167
GTZAN 66− 132 80.9 55− 130 52− 138
ISMIR04 Songs 59− 118 74.1 48− 131 36− 136
SMC 51− 102 68.7 32− 115 32− 143
Combined 69− 138 72.9 40− 150 50− 180
GiantSteps 91− 182 88.1 85− 175 80− 180

Table 2. Sweet octaves and their respective coverage in
percent for the test datasets (left). Shortest BPM inter-
vals required to achieve a test set coverage of 90% or 95%
(right).

cult for beat trackers. Where applicable, we used the cor-
rected annotations from [23]. We refer to the union of these
six datasets as the Combined dataset. Additionally, we test
against the recently published GiantSteps dataset for elec-
tronic dance music (EDM) [17]. It is not included in Com-
bined to allow direct comparisons with older literature.

Not surprisingly, all mentioned datasets differ in their
composition (Figure 1). The mean tempo ranges from
78 BPM (SMC) to 137 BPM (GiantSteps) and the stan-
dard deviation spans from 24 (GTZAN) to 40 (Ballroom).
Furthermore, the tempo distributions of Ballroom and Gi-
antSteps contain some distinct spikes, while the other
datasets more closely resemble normal distributions. None
of the datasets have uniformly distributed tempi.

2.3 Octave Bias

If a dataset’s tempo distribution is not uniform and most
values fall into a relatively small interval, constraining re-
sults to this interval may lead to fewer octave errors. We
call deliberately choosing such an interval octave bias.

To illustrate this, assume an algorithm for the Gi-
antSteps dataset with 50% Accuracy1, but 100% Accu-
racy2. Further assume that all errors are by a factor of
2 or 1/2. 88.1% of all tempi in GiantSteps happen to be in
[91, 182). If we constrained results to this interval by halv-
ing and doubling, Accuracy1 would increase from 50% to
88.1%.

Each described dataset has such a sweet octave, i.e. a
tempo interval [j, 2j) that contains more of the dataset’s
songs than any other octave (Table 2). In the absence of a
uniform test set, it is therefore important to test the same al-
gorithm against datasets with different sweet octaves, thus
revealing the effects of octave bias. On the positive side,

a specialized or genre-aware algorithm may benefit from
exploiting knowledge about the test dataset (e.g. EDM-
specific tempi [15]). Additionally to sweet octaves, Table 2
lists the shortest BPM intervals required to achieve a cer-
tain test set coverage. For example, to cover 90% of the
tempi in the ACM MIRUM test set, one only needs to look
at the interval [50, 152] and not at the considerably larger
interval [37, 257] required for full coverage.

2.4 Genre Bias

While octave bias describes how algorithms can exploit
constraining results to certain tempo intervals, genre bias
describes a technique for algorithms to constrain their out-
put to a relatively small set of distinct tempi that are char-
acteristic for the genres in the dataset.

A good example for this is the Ballroom dataset. Even
though the dataset contains 698 songs, only 63 different
tempi occur. Assuming an unbiased algorithm with integer
precision is constrained to the [40, 250] BPM interval, it
solves a task equivalent to choosing one out of 210 classes.
An algorithm trained on the Ballroom dataset using k-fold
cross validation “knows” that there are only 63 classes and
therefore has a considerably easier task to solve.

2.5 Measures

As mentioned above, tempo estimation algorithms are usu-
ally evaluated with two metrics: Accuracy1, defined as the
percentage of correct estimates with 4% tolerance, and Ac-
curacy2, the percentage of correct estimates ignoring er-
rors caused by the factors 2, 3, 1/2, and 1/3.

Because we aim to correct estimation errors, we need to
test our tempo estimation method against the test datasets
and record not just accuracies, but also the kinds of er-
rors. To do so, we define the error classes E2, E3, E4,
E3/2, E5/4, E4/3 and their reciprocals with the index in-
dicating the error factor. Just like Accuracy1 and Accu-
racy2 we allow a 4% tolerance. Since not all estimates
are wrong and some errors are not covered by the men-
tioned classes, we define E1 for correct estimates (equiv-
alent to Accuracy1) and E0 for errors not described oth-
erwise. This leads to a total of 14 classes forming the
label set E := {E0, E1, . . .}. Table 1 shows the distri-
bution of estimated tempi over E for the test datasets us-
ing the tempo estimation method from Section 2.1. For
Combined, 12.3% of all tempi are in E2, while 11.2%
are in E1/2. Only 3.9% of all estimated values cannot be
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explained by one of the defined factors and thus are col-
lected under the label E0. This implies an upper bound of
96.1% Accuracy1 for any error correction scheme based
on E w.r.t. the Combined datasets.

3. TEMPO ERROR CORRECTION

As we have seen, most wrong tempo estimates are off by
a limited number of factors. Therefore the correction of
T can be re-framed as a classification problem, which is
solvable using supervised machine learning. Knowing the
error class for an estimate then allows us to calculate the
true tempo. In the following subsections we describe the
features used for classification, the training dataset, and the
tempo correction procedure.

3.1 Features

In order to keep the algorithm simple, we use as features
only T and a very small set of audio features. While not at-
tempting to specifically model genres, the features we use
aim at characterizing rhythm, tonality and beat intensity.
Combined, we expect them to capture essential informa-
tion about a musical piece.

3.1.1 Log Beat Spectrum

The tempi corresponding to the most common estimation
classes E1/2, E1, and E2 fall onto a logarithmic scale. To
mirror this, we use a logarithmic beat spectrum (LBS) to
describe the different periodicities in the signal. LBS is
computed by resampling/interpolating B into 10 logarith-
mically spaced bands representing tempi ranging from 40
to 500 BPM. Subsequently it is normalized so that its
highest value is 1.

While LBS provides a more complete picture of the pe-
riodicities than just the dominant tempo T , it does not add
any information about the frequency bands these periodic-
ities stem from. As a second modification to B, we create
different versions of LBS based on the five slightly over-
lapping bands [30, 110], [100, 220], [200, 440], [400, 880]
and [800, 1600] Hz. Combined, these spectra form the
multiband logarithmic beat spectrum (LBSM). For a given
song, LBSM consists of 5× 10 = 50 features.

3.1.2 Spectral Flatness

To represent tonality we use spectral flatness (SF), also
known as Wiener entropy. It is defined as the ratio be-
tween the geometric and the arithmetic mean of the power
spectrum:

SF(m) =
(
∏K−1

k=0 Y (m, k))
1
K

1
K

∑K−1
k=0 Y (m, k)

(4)

To determine SF(m), we re-use the power spectra
Y (m, k) already computed in Section 2.1. For increased
robustness against low sample rates, we limit k to F (k) ∈
[30, 3000]. As the two features for a given song we use
both the mean and the variance of all its SF(m).
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Figure 2. Distribution of genres and tempi for Train.

3.1.3 Temporal Flatness

To represent onset intensity we use a feature called tem-
poral flatness (TF). Instead of calculating the Wiener en-
tropy along the frequency axis of Y (m, k), as we did for
SF, we calculate it over a window of length ` along the
time axis:

TF(m, `, k) =
(
∏`−1

i=0 Y (m+ i, k))
1
`

1
`

∑`−1
i=0 Y (m+ i, k)

(5)

To compute TF values, we again re-use Y and limit
k to F (k) ∈ [30, 3000]. Y is split into non-overlapping
windows with length ` = 100. For each bin k in a given
window we compute TF. We then calculate the average
TFW(m, `) over all k. As the two features for a song we
use the mean and the variance of all its TFW(m, `) values.

3.2 Training Dataset

To avoid learning the test datasets, we use a dataset for
training the classifier that has been created separately.
Train is the union of an annotated, private music collec-
tion and the Extended Ballroom dataset [19] minus the 354
songs also occurring in the regular Ballroom set. Genre la-
bels are available for 71% of the recordings. The genre as
well as the tempo distribution are shown in Figure 2.

3.3 Correcting the Tempo Estimate

Differences between the training dataset’s true tempo val-
ues and the estimated tempo values let us derive error class
labels. With those and the proposed features, we can train
a classifier. Using the classifier, we are then able to predict
an estimated error class E ∈ E for any song for which we
also have features and a tempo estimate. Note that this es-
timate does not have to stem from our own algorithm intro-
duced in Section 2.1. One main idea of this paper, indeed,
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Features Accuracy1 Accuracy2
base 69.00- 94.31
LBS 75.84- 94.16
LBS + SF 76.68 94.09
LBS + TF 77.41 94.11
LBS + SF + TF 77.31 94.04
LBSM 76.66 93.87
LBSM + SF 75.91- 94.21
LBSM +TF 77.31 93.97
LBSM + SF + TF 76.21 94.14

Table 3. Accuracy1 and Accuracy2 for different feature
combinations trained on Train and tested against Com-
bined. The ‘−’ signs indicate a statistically significant dif-
ference between the marked results and LBS + TF.

is that the classification model is algorithm-specific. In
other words, the classifier must be trained for each tempo
estimation algorithm. Once trained, it can be used to cor-
rect octave errors inherent to the given tempo estimation
algorithm.

For the prediction process itself, we use a Random For-
est [3] with 300 trees and a maximum depth of 25.

Given the estimated tempo T and the predicted error E
the calculation of the corrected tempo Tcorrected is straight
forward:

J(T,E) =

{
1 if E = E0

i for Ei
(6)

Tcorrected = T · J(T,E)

4. EVALUATION

In a first evaluation step, we compute Accuracy1 for differ-
ent feature combinations. We then compare the best com-
bination with publicly available algorithms as well as other
simple correction schemes.

4.1 Feature Evaluation

We trained the classifier using the dataset Train with differ-
ent combinations of the proposed audio features and mea-
sured the performance against the dataset Combined. All
tested feature combinations clearly outperformed the base-
line algorithm base (T without correction) by at least 6pp
(percentage points) for Accuracy1 (Table 3). As was to be
expected, Accuracy2 didn’t change significantly. The best
performing feature combination was LBS + TF with an
Accuracy1 of 77.41%. When testing for significance with
McNemar’s test and a significance level of p < 0.01 [30],
we found that LBS + TF performed significantly better
w.r.t. Accuracy1 than LBS, LBSM + SF, and base. In
the following we refer to the error classifier trained with
LBS + TF as new. If no tempo estimation algorithm is
explicitly mentioned, the method from Section 2.1 is oth-
erwise implied.

4.2 Comparative Evaluation

We compared our method base+new to its baseline base
and the three publicly available algorithms böck, stem,
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Figure 4. Accuracy1 for Combined using no error correc-
tion, constraint-based correction, and new correction for
various tempo estimation algorithms.

and schr using the test datasets described in Section 2.2.
böck 1 is the algorithm published by Böck et al. in [2],

but trained with different datasets—among them our test
data, i.e. the algorithm is “familiar” with the test sets. Ac-
cording to the authors, this configuration participated in
MIREX 2016. stem is an algorithm aiming for low com-
putational complexity published by Percival et al. [23].
We used the implementation contained in Marsyas 0.5.0. 2

Lastly, schr 3 was published by Schreiber et al. in [24].
Since our error estimation and correction method can be
used as a post-processor for any tempo estimator, we also
trained the classifier for each of these three tempo estima-
tion algorithms to investigate potential improvements.

Figure 3 shows the Accuracy1 results for the four al-
gorithms when tested against Combined, both with and
without new post-processing. All of them score signif-
icantly higher values when combined with new than in
their plain form (McNemar, p < 0.01). The algorithms
base (77.4%, increase of +8.4pp) and stem (74.7%,
+5.3pp) clearly benefit the most, but also böck (74.5%,
+2.1pp) and schr (76.6%, +3.9pp) gain several percent-

1 https://github.com/CPJKU/madmom/
2 http://marsyas.info/
3 http://www.tagtraum.com/download/schreiber_

icassp2014.zip
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Dataset base base+new stem stem+new böck böck+new schr schr+new

ACM MIRUM 73.6 81.8+ 74.3 79.9+ 74.5 76.1+ 76.3 81.3+
ISMIR04 Songs 65.5 69.2 60.1 62.3 55.4 58.4+ 74.1 70.7-
Ballroom 64.3 85.1+ 64.0 81.8+ 84.8 90.4+ 67.0 85.0+
Hainsworth 64.9 73.4+ 69.8 74.8+ 84.2 85.6 73.0 75.7
GTZAN 73.5 78.8+ 77.9 76.9 70.7 71.1 78.0 76.2
SMC 45.2 39.6 29.5 29.5 51.1 51.6 41.5 35.5-
Dataset Average 64.5 71.3 62.6 67.5 70.1 72.2 68.3 70.7
Combined 69.0 77.4+ 69.1 74.4+ 72.4 74.5+ 72.8 76.6+
GiantSteps 64.5 64.0 47.0 65.0+ 61.5 70.9+ 58.0 60.1
GiantSteps+Combined 68.4 75.5+ 66.0 73.1+ 70.8 74.0+ 70.7 74.3+

Table 4. Tempo results for Accuracy1 in percent. The ‘+’ and ‘−’ signs indicate a statistically significant difference
between an algorithm and the same algorithm enhanced with new. Bold numbers mark the best-performing algorithm(s)
for a dataset. Dataset Average is the mean of the algorithms’ results for each dataset except GiantSteps.

age points.

As discussed in Section 2.3, a simple error correction
scheme can be based on octave bias exploiting statisti-
cal properties of the test dataset. We therefore compared
our method with such a constraint-based scheme, where
tempi below a lower interval bound are doubled and above
an upper bound are halved. For intervals we used the
sweet octave and those listed in Table 2 with 90% and
95% coverage. Results are shown in Figure 4. Except for
böck, none of the algorithms benefitted much from the
simple correction—perhaps a certain bias is already built-
in. When comparing böck+new and böck+90%we were
not able to observe a significant difference. It appears, as if
böck’s octave errors are harder to predict and correct than
those of the other algorithms, perhaps because they are less
systematic in nature.

Table 4 provides a detailed overview of Accuracy1 re-
sults for each of the test algorithms for all test datasets.
As mentioned, base+new reaches the highest score for
the Combined dataset (77.4%). To the best of our knowl-
edge, this is the highest Accuracy1 score reported for Com-
bined to date. For four of the six Combined datasets,
base+new reaches significantly higher values than base
(indicated by ‘+’ signs in Table 4). The largest improve-
ment was achieved for the Ballroom test set. The score
for base+new is more than 20pp higher than base’s.
The fact that 29% of Train consists of ballroom tracks cer-
tainly plays a role here. While the base+new score for
ISMIR04 Songs is 3.7pp higher than base’s, the improve-
ment is not significant. Similarly, the change for the SMC
dataset (−5.6pp) is not significant, but noteworthy. We be-
lieve that both octave and genre bias may play a role here.
Tracks in SMC are very different in style from those in
Train. And compared to SMC, Train contains relatively
few examples for slow tracks with 60 BPM or less. Infor-
mal tests confirm that choosing a different training dataset
leads to better results.

Dataset-specific scores for böck+new are all higher
than those for böck—more than half of them significantly.
The largest increase can be observed for the GiantSteps
dataset. Plain böck scores 61.5%—combined with new
it reaches 70.9% (+9.4pp). To the best of our knowl-
edge, this is the highest reported value for an unbiased,

non-commercial algorithm to date. 4

Dataset Average is the mean of the results for each of
the six datasets in Combined. Because it is an unweighted
average, it is not dominated by the larger datasets. But just
like for Combined, we can observe higher scores for all al-
gorithms when combined with new. With 72.2% (+2.1pp)
böck+new reaches the highest score, closely followed
by base+new with 71.3% (+6.8pp). stem (67.5%,
+4.9pp) and schr (70.7%, +2.4pp) benefitted as well.

Though not the topic of this paper, we also measured
Accuracy2. As expected, the results did not surprise and
stayed stable.

5. CONCLUSIONS

We have shown that the proposed error correction method
based on supervised learning of tempo estimation errors is
capable of significantly improving Accuracy1 results for
existing tempo estimation algorithms. It does so in an
algorithm-specific post-processing step. Combined with a
simple tempo estimation algorithm, it outperforms other
state-of-the-art algorithms for most of the tested datasets.
We believe the error correction method can be enhanced
even further by carefully selecting and incorporating other
genre-related features.

We also discussed different kinds of biases that can have
a large influence on the accuracy of tempo estimation al-
gorithms. Ideally, evaluations of general purpose tempo
estimators should be based on datasets with a mostly uni-
form tempo and genre distribution. Because better train-
ing data potentially leads to better results, training datasets
should be an integral part of the comparison to make fair
benchmarking possible. Defined train/test splits for exist-
ing datasets could be a first step in this direction.
Additional Material:
Binaries and other material are available at http://
www.tagtraum.com/tempo_estimation.html.
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ABSTRACT

Carnatic Music, a form of classical music prevalent in
South India, has a central concept called rāgas, defined
as melodic scales and/or a set of characteristic melodic
phrases. These definitions also account for the continuous
pitch movement in gamakas and micro-tonal adjustments
to pitch values.

In this paper, we present several statistics of gamakas
to arrive at a model of Carnatic music. We draw upon the
two-component model of Carnatic Music, which splits it
into a slowly varying ‘stage’ and a detail, called ‘dance’.
Based on the statistics, we propose slightly altered def-
initions of two similar components called constant-pitch
notes and transients. An automated implementation of
these definitions is used in collecting statistics from 84
concert renditions.

We then suggest that the constant-pitch notes and tran-
sients can be considered as context and detail respectively
of the rāga, but add that both are necessary for defining the
rāga. This is verified by performing listening tests on only
the constant-pitch notes and transients independently.

1. INTRODUCTION

Carnatic music, a classical form of music prevalent in
South India, has evolved into a sophisticated art and a
professional field. It uses svaras that roughly corre-
spond to the twelve notes of the Western-music scale.
Svaras are defined with respect to a base pitch called the
ādhāra s. ad. ja, or the tonic. A subset of the 12 notes are
played in specific orders and grouped together as phrases.
These scales and phrases are used in defining rāgas.

Indian musicians use the regions ‘between the notes’
as a means of introducing sophistication over monophonic
music. This can be seen in Figure 1 (reproduced with per-
mission from [6]). The scales are thus notes connected by
gamakas that traverse frequencies between them; they can
glide over even intermediate notes to reach notes further
away.

c© Venkata Subramanian Viraraghavan, R Aravind, Hema
A Murthy. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Venkata Subramanian
Viraraghavan, R Aravind, Hema A Murthy. “A Statistical Analysis of
GAMAKAs in Carnatic Music”, 18th International Society for Music In-
formation Retrieval Conference, Suzhou, China, 2017.

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Frequency (Cents)

N
or

m
al

iz
ed

 D
en

si
ty

 

 
Western Classical − C Major Scale
Hindustani Classical − Raga Bilawal
Carnatic Classical − Raga Shankarabharanam

S

R2

G3
M1

D2

N3

P

Figure 1: Histogram of notes of Carnatic, Hindustani and
Western music renditions. Notice notes in Indian music
span the regions between the notes of Western music.

The term svara, initially named the seven major notes
in an octave – Sa, Ri (Carnatic)/Re (Hindustani), Ga, Ma,
Pa, Da/Dha and Ni respectively corresponding to Do, Re,
Mi, Fa, So, La and Ti in Western music. However, it has
now expanded in meaning to identify even the transients
between a sequence of notes.

The concepts of gamaka and rāga are central to Indian
classical music. There is a perceived identity of rāgas that
needs to be preserved. The characteristics of a rāga are de-
termined in terms of its melodic phrases. Our observation
is that a melodic phrase can be thought of as being made
up of a sequence of constant-pitch notes (or CP-notes), and
transients. Specific combinations of CP-notes and trajecto-
ries of the transients together give a rāga its unique iden-
tity. Further, we show that the constant-pitch notes serve
as a context to interpret the transients in gamakas. While
the focus is primarily on Carnatic music, the methodol-
ogy described could perhaps be extended to other genres
that include significant continuous pitch movement, such
as Hindustani music and possibly Jazz music.

The rest of the paper is organized as follows. Section 2
lists previous work and in Section 3, an extensive analysis
of CP-notes and transients from concert recordings moti-
vates our proposed model. Relevant previous work is de-
scribed in terms of our model in Section 4.1. The results
of a listening experiment are presented in Section 4.2 to
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verify the model and Section 5 concludes the paper.

2. PREVIOUS WORK

One of the earliest attempts of analyzing gamakas in Car-
natic music using signal processing techniques was [16].
After an initial analysis of a few rāgas, the author proposed
the use of ‘melodic atoms’ to describe music. Again, as in
the case of gamakas, these are intuitive to the Carnatic mu-
sician, but there was no automated way of extracting them.
At a similar time, gamakas were analyzed for music infor-
mation retrieval in [22]. This used the concept of ‘extrema’
of the pitch contour, which were called ‘stationary points’
in [8] for discovering rāga motifs.

Given the importance of gamakas as borne out by
Figure 1, it is not surprising that they were the subject of
analysis in the CompMusic project [2]. An initial attempt
was based on several types of gamakas identified by mu-
sicologists [5]. A Carnatic musician, especially an instru-
mentalist, can intuitively relate to the descriptions of the
movements, but looking for these pitch patterns in audio
samples was not fruitful. Instead, rāga motifs (e.g. [8,14])
were identified. Rāga motifs can be seen as signature
pitch contour movements of a rāga and occur only in that
rāga and no other. This exclusivity is an important aspect
because, in Carnatic music, rāgas do share many common
phrases and the unique phrases are expected to be small in
number. A more recent, completely automated method of
rāga identification based on motifs is presented in [13].

In [21], we find manual analysis of Carnatic music
gamakas, mainly for use in synthesis. However, it is based
on one rendition of one varn. am. At a high level, it views
Carnatic music as two components: the stage, which has a
slowly varying pitch-contour, and the dance – a detail on
top of the stage. We show in this paper that the variations in
detail are quite short (typically under 400 ms) and propose
different definitions of the two components so that auto-
matic analysis is possible. In fact, [10] extends the stable
part of the pitch contour to segments of varying pitch for
Hindustani music retrieval; however, it is incomplete be-
cause significant information about (especially Carnatic)
rāgas is in the segments of audio where the pitch varies (as
we will show in Figure 5 later). A more recent result [11]
uses quantized forms of these segments for Hindustani mu-
sic, but does not characterize the variations.

In Section 4.2, the two-component theory, motifs and
the context-detail aspects of Carnatic music will be revis-
ited in the light of the model we propose.

3. ANALYSIS OF GAMAKAS IN CONCERT
RECORDINGS

We analyzed 84 Carnatic music concert pieces in seven
rāgas. The rāga-wise split of these pieces is given in Table
1. They are from the CompMusic database [1]. We chose
seven rāgas from those considered as the major in Car-
natic music [4] – tōd. ī, bhairavī, kharaharapriyā, kāmbhōji,
śankarābharan. am, varāl. ī, and kalyān. ī.

Rāga Number of pieces
Male Female

Tōd. ī 7 5
Bhairavī 6 6

Kharaharapriyā 7 5
Kāmbhōji 8 4

Śankarābharan. am 6 6
Varāl. ī 7 5

Kalyān. ī 9 3

Table 1: Rāga-wise split of the 84 vocal-concert rendi-
tions.

Figure 2: Examples of CP-notes (solid lines) and four
types of stationary points (unfilled circles). The two notes
marked exemplify EOb3.

3.1 Some Definitions

3.1.1 Constant-pitch Notes

Constant-pitch notes serve as a starting point for various
musical forms including Carnatic music and we provide a
working definition below, where the prefix EOb stands for
‘Empirical Observation’:

EOb1 A constant-pitch note is one whose pitch does not
vary from its mean pitch by more than ∆ semitones
and lasts for at least Cmin seconds.

where, nominally, ∆ = 0.3 and Cmin = 80 milliseconds
(ms). The value of 80 ms is intuitive: it is the length of the
shortest note played without gamakas, in Carnatic music
pieces that are extremely fast (gamakas are not perceived
at these speeds). This is possible on instruments for rāgas
such as mōhanam (e.g. [3]) and hamsadhwani. Such ren-
ditions from a personal collection were analyzed. The du-
ration of a CP-note at the fastest speed was found to be
around 87 ms in one rendition and 80 ms in another. Only
∆ = 0.3 was consistent with this observation. For exam-
ple, with ∆ = 0.1, the shortest CP-notes lasted more than
200 ms. Note that with other choices for ∆ and Cmin,
while the details of the statistics obtained may vary, the
meaningful split of Carnatic music into CP-notes and tran-
sients is expected to hold.

3.1.2 Stationary Points

Stationary points were defined and used extensively in
[7, 9, 22]. These are pitch positions where a continuous
pitch curve changes direction. An example of these two
features is shown in Figure 2. In the figure, a CP-note is
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easily recognized as a solid line drawn for its duration at
its mean pitch value. The stationary points are marked by
unfilled circles. (Note that statements 7 to 14 in Algorithm
2 remove redundant stationary points.) The same figure
also shows a region of silence at the end of the time-axis.
During silence, there is no prominent melodic pitch (i.e.
neither of the voice nor of the accompanying violin), but a
drone may be present. Four out of the six possible types of
pitch curves – called transients – are marked in the figure.
These types are defined by the neighbours of a stationary
point and are in fact, the six combinations possible from
the set {CPNote, STAtionary point, SILence} (the letters
in upper-case are the short-forms used later) :

1. CP-note on one side of the transient and, on the
other, one of {Another CP-note; A curve, which has
a stationary point; Silence}.

2. A curve with a stationary point on one side of the
transient, and on the other, one of {A curve with its
own stationary point, Silence}.

Our analysis counts the number of occurrences of each
of the above and is presented next 1 .

3.2 Method

For each of the renditions in Table 1, the prominent pitch
and tonic extracted for the work reported in [12] were re-
used. They had been found using the algorithms described
in [18], with a window length of 46 ms and a window shift
of 2.9 ms [19]. Sometimes, the tracked pitch could be that
of accompanying instruments and is prone to some octave-
errors. However, unlike in transcription (e.g. [17]), these
errors are inconsequential in identifying the type and du-
ration of each transient (Section 3.1.2) or CP-note. The
only impact was at most the splitting of a CP-note into
more than one. Manual inspection of several pieces and
their pitch tracks suggested that this occurred infrequently
enough to be neglected.

Algorithm 1 was used to identify CP-notes and Algo-
rithm 2, stationary points 2 . Each stationary point is also
marked with one of the types described in Section 3.1.2.

Statements 4 to 9 of Algorithm 1 look for the longest
possible CP-note from the current pitch value (at index i).
However, in statement 6 , a direct application of the defini-
tion of CP-notes (Section 3.1.1) resulted in too many false
alarms. For example, if the pitch rose by 0.6 semitones
within 80 ms, but was part of a continuous pitch move-
ment, it would still get detected as a CP-note. To elimi-
nate these cases, a threshold of one semitone per second
was used on the slope of the best-fit line. This is one-tenth
the nominal slope of continuous pitch variation reported
in [20].

The utility of defining CP-notes also emerges from Fig-
ures 3 and 4. Both rāgas show that the distribution of CP-
notes is much sharper than all notes put together. (Ignore
the stationary- and remaining-points for now.) For exam-

1 Silence on both sides of the transient was seen in under 0.005% of
the cases and is excluded.

2 A more sophisticated algorithm can be found in [7], but the infer-
ences do not depend on precise locations of the stationary points.

Algorithm 1 Algorithm to find CP-notes from the pitch
curve.

1: Track the pitch of each piece according to [18], which
also identifies silence regions. These result in pitch
values, f [i], i ∈ {0, . . . , L− 1}.

2: In the regions of music (i.e. not silence), with the tonic
of the piece as f0, find the pitch in semitones with re-
spect to the tonic as n[i] = 12 log2( f [i]

f0
)

3: i ← Index of the first pitch sample in the first non-
silence region

4: while i < L do
5: flagCpNoteFound← FALSE
6: while n[j], j ∈ {i + Cmin, . . . k}, j < L is a CP-

note and the slope is below the threshold do
7: k ← k + 1
8: flagCpNoteFound← TRUE
9: end while

10: if flagCpNoteFound = TRUE then
11: Mark the region from i to k − 1 as a CP-note
12: end if
13: i← k
14: if i is in a silence region then
15: i← the index of the first pitch sample in the next

non-silence region.
16: end if
17: end while

ple, in Figure 3, notice when the notes are all plotted to-
gether (dashed line), they show a significant value (defined
as occurring more often than 2% of the maximum occur-
rence) over G2 (3 semitones from Sa). However, the CP-
notes show no such peak. This means there is no CP-note
peak masked by the flat sections of the histogram. Fur-
ther, there are no peaks found at ‘incorrect’ locations, say
at 9.5 semitones. In fact, this behavior is sufficiently con-
sistent to attach the name of the nearest semitone to the
svara. That is, in a system of music with continuous pitch
variation, whether the CP-notes occur as part of svaras
with gamakas or without, the CP-notes cluster around the
rāga’s scale notes. This result is intuitive, but it is not ob-
vious from, say, Figure 1.

In Figure 3, the automatically identified svaras are
a subset of the written ārohan. a and avarohan. a of
śankarābharan. am. An interesting exception occurs in the
rāga tōd. ī (Figure 4) where the peak at R2 (2 semitones
from Sa), is not part of its ārohan. a and avarohan. a.

3.3 Key Observations

One more step in the method remains to be described, but
it needs to be motivated by a very significant observation
by looking ahead at the results. Of all the ≈ 975, 000
transients that were found using Algorithm 2, only 1.25%
were of the type SIL-STA-STA-STA-SIL, i.e. the central
stationary point was flanked on both sides by two station-
ary points that ended in silence segments. Further, when
one of the renditions was examined closely by ear (by a
semi-professional musician), all such instances were false
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Figure 3: Histograms of all notes, CP-notes, stationary
points and the remaining points in transients. Svara names
are marked for significant peaks of the CP-notes’ distribu-
tion. These peaks are much sharper than others. This is for
the rāga śankarābharan. am, whose nominal scale is S, R2,
G3, M1, P, D2, N3, but N3 is not a significant peak.

Figure 4: As in Figure 3, but this is for the rāga tōd. ī. The
nominal scale is S, R1, G2, M1, P, D1, N2, but G2 and N2
are not significant peaks, while R2 (not in the scale) is one.

Figure 5: Ratios of maximum and mean durations of
CCTs to that of CP-notes

alarms due to errors in marking silence-regions 3 . Thus,
we may posit that:

EOb2 Transients do not occur in isolation. They occur
along with a CP-note or ‘chained’ to other tran-
sients.

Further, from the intuitive experience of producing in-
dividual svaras especially at very slow speeds, we impose
that individual svaras, when sung in isolation, need to have
at least one CP-note segment. If this were not true, we
should have had more instances of isolated transients. We
use the term ‘anchor note(s)’ to denote the CP-note(s) as-
sociated with transient(s) in svaras.

Algorithm 2 Algorithm to find stationary points.
1: for Each segment of music (i.e. not silence) between

CP-notes and silence (see Algorithm 1) do
2: Smooth the pitch contour with a moving-average fil-

ter of length L = Cmin

4 .
3: Find the peaks and troughs of the pitch curve in the

segment.
4: for Each peak (trough) do
5: Retain only the maximum peak (minimum

trough) in a window of length L.
6: end for
7: for Each remaining peak OR trough, s, with pitch

value ns do
8: if A nearest neigbhour of s is a CP-note with

mean pitch value nc and |nc − ns| < ∆ then
9: Discard stationary point s.

10: else if The preceding neighbour is a stationary
point s′, with pitch value ns′ and |ns−ns′ | < ∆
then

11: Discard stationary point s′.
12: end if
13: end for
14: Discard stationary points with pitch values between

those of adjacent stationary points/CP-notes.
15: end for

If transients do not occur in isolation, it is instructive to
see how long a ‘contiguous chain of transients (CCTs)’ can
last without any CP-note appearing. A CCT is defined as
a segment of music from the end of a silence segment/CP-
note to the start of another. An example corresponds to the
pitch curve in Figure 2 from t ≈ 0.65 sec till t ≈ 1.3 sec.
The histograms of the ratios of the maximum and mean
lengths of CCTs and CP-notes in the 84 pieces are shown
in Figure 5. It reveals that the maximum length of a con-
tiguous chain of transients is comparable to the maximum
duration of a CP-note in that piece. Although there are
cases where this ratio is > 2, in around 80% of the cases,
it is < 1.5. Considering the mean durations: Over 50% of
the CCTs do not last longer than 1.5 times the mean CP-
note duration. Note that in this ‘consistency check’, the

3 A similar percentage of CP-notes or transients flanked by SIL may
thus be erroneous, but this does not affect the inferences made later.
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definitions of the types of transients (Section 3.1.2) do not
matter, so it is an independent corroboration of the utility
of EOb2.

However, it does suggest the need to allow phrases to
be concatenated by merging svaras. This type of chaining
of phrases is familiar to musicians [15]. We further specify
in detail:

EOb3 When two svaras are sung in sequence, their anchor
notes of the same pitch can be merged.

Thus, while individual svaras need at least one anchor
note each, S concatenated svaras can have N(≤ S) CP-
note segments in them. For example, the two notes – Pa
and Ma – marked in Figure 2 share a common anchor note.

3.4 Statistical Analysis

Based on the key observations in Section 3.3, specific
statistics relating to transients were collected. First, it is
possible for merged anchor notes to reduce in duration and
become stationary points in the limit. Thus, the starting
point of a transient is counted as the nearest among {the
end of a previous CP-note segment; another, earlier station-
ary point; or the end of a preceding silence segment}. Sim-
ilarly, the end of the transient is nearest among the starting
points of {a following CP-note segment; another, later sta-
tionary point; or the beginning of a succeeding silence seg-
ment}. These are marked in Figure 2. The distributions of
the transient- and CP-note-durations across all rāgas are
shown in Figure 6. The following observations are made.

1. The maximum duration of the transients is under 1
second, while the maximum duration of CP-notes is
over 10 seconds. This result depends upon the def-
initions of starting points and ending points given
above and Figure 5 vindicates the definitions.

2. The long transients are quite rare; more than 90% of
them are shorter than 400 ms.

3. There is a variation in the ranges of the transient-
durations across rāgas, but the mean values of the
transient durations are remarkably similar (≈ 100
ms) and is quite close to the 80 ms value set for the
parameter Cmin. See Figures 7 and 8.

4. About 40% of the transients have a very small du-
ration and need to be investigated further, but a
major contributing factor are the ‘attacks’ of notes
and where syllables are pronounced. During at-
tacks, the spectrum changes and the pitch curve
stops conforming to the definition of a CP-note (Sec-
tion 3.1.1). Thus, not all transients are perceived as
gamakas. Some may be perceived as svara-attacks.

5. The distribution of different types of stationary
points defined in Section 3.1.2 is given in Table 2.
This reaffirms the observations in Figures 3 and
4, where stationary points and other non-CP non-
stationary points densities show wider peaks. The
density for stationary points has been deliberately
raised so that it is visible in the figures.

4. MODEL VERIFICATION

4.1 Relation to the Two-Component Model

The narrow peaks of the histograms of CP-notes (Figures 3
and 4) and the durations of transients being comparable to
that of CP-notes (Figure 5) suggest that the CP-notes and
transients identified by our method are meaningful. Thus,
they can be compared with the model presented in [21],
where the authors view Carnatic music as consisting of two
components called the ‘stage’ and ‘dance’. Our model was
derived independently and it is quite significant that many
aspects are similar, but there are important practical differ-
ences. First, ‘stage’ in [21] approximately maps to anchor
notes, but we restrict anchor notes to be governed by EOb1.
This enables automatic segmentation of the audio into CP-
notes, transients and silence. Second, the stable and sus-
tained focal pitches of the ‘dance’ may get classified as a
CP-note in our model if they satisfy EOb1. The transient
focal pitches would get classified as our transients. In gen-
eral, focal pitches that do not satisfy EOb1 will be counted
as transients. However, similar to [21], it is possible to
view the CP-notes (approximately stage) as context of the
music and the transients (at least the dance component) as
its detail. Similarly, the oscillatory continuity condition
of [20] can be seen as a special case of EOb3.

Note that while [21] was based on a largely manual
analysis of one rendition of one varn. am in one rāga (in
aid of synthesis), we have found approximate stage-like
and dance-like components of 84 pieces in seven major
rāgas using an automated method (Sections 3.2 and 3.3).

4.2 Listening Tests

We report the results of experiments designed to evaluate
the dependence of transients and CP-notes 4 . Approxi-
mately 30-second snippets of violin ālāpanas (non-tāl.a-
bound extempore improvisations in a rāga) were chosen
for the test. Songs were excluded because listeners could
have recognized the song’s tune rather than the rāga. Each
snippet was then split into a CP-notes-only and transients-
only parts according to Algorithms 1 and 2. Rāgas tōd. ī,
bhairavī, śankarābharan. am, varāl. ī, and kalyān. ī were cho-
sen and in each, two snippets were picked manually. The
listener was asked to identify the rāgas of these 30 pieces,
while a superset of these rāgas was given as possible
choices. Listeners could also choose ‘Cannot make out’
if they actually could not or if they felt the rāga played
was not in the list. The order of pieces was randomized
separately for the transients-only (this set of 10 was played
first), CP-notes only (played next) and the unedited snip-
pets (played last). Fifty participants took the test.

The overall results point to the CP-notes’ and transients’
dependencies on each other: 81.4% of the clips were iden-
tified correctly, but only 58.4% of the transients-only snip-
pets, and 68.6% of the CP-notes only. Rāga-wise results
are presented in Table 3, which are restricted to the ex-
pert participants – those who could identify the rāgas of

4 http://www.iitm.ac.in/donlab/wermusic/index.
html?owner=venkat&testid=test1&wer=30
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Type CPN ◦ CPN CPN◦STA CPN◦SIL STA◦STA STA◦SIL

Percentage 14.5 17.5 5.3 49.0 13.7

Table 2: Relative occurrence of stationary-point types.

Rāga Percentage of participants
Transients only CP-notes only

Tōd. ī 95.0 81.3
Bhairavī 43.2 81.1

Śankarābharan. am 21.6 85.1
Varāl. ī 86.5 89.2

Kalyān. ī 89.7 68.0

Table 3: Accuracy of identification by experts

all unedited snippets of that rāga. Only one of them could
identify all instances of snippets with transients only and
CP-notes only. Among the rāgas, tōd. ī and varāl. ī fared
best. Bhairavī was surprisingly not easily identifiable with
only transients, even though it is considered a gamaka-
heavy rāga. Kalyān. ī was easier to recognize by transients
than only CP-notes, but śankarābharan. am could be identi-
fied from transients-only by only about 20% of the experts.
Overall, the results suggest that CP-notes and transients
need each other in Carnatic music.

Some qualitative results are also significant. A few par-
ticipants expressed surprise when presented with only CP-
notes or transients. Several said that the edited pieces were
quite unpleasant to the ear (edited vocal pieces sounded
worse). The edited pieces were noticeably fragmented,
but the artefacts were identical in both types of clips. Yet.
interestingly, the transients-only clips – a crucial compo-
nent of gamakas – were perceived as more unpleasant.
This clearly suggests the importance of context for tran-
sients in Carnatic music, which is provided, at least par-
tially, by the CP-notes.

5. CONCLUSION

The qualitative stage and dance model model for Carnatic
music is corroborated with an equivalent CP-note, tran-
sient model. An analysis of CP-notes and transients shows
that the CP-notes can last much longer than transients in
duration. We proposed that svaras can be viewed as CP-
notes providing the context for any transients. When com-
bined with the chaining rule, these observations can ex-
plain rāga motifs.

In a listening test, while 28 experts correctly identified
all original, unedited audio clips in five rāgas, only one
correctly identified all CP-notes-only and transients-only
clips. Several listeners reported that the latter pieces were
quite unpleasant on the ear.

Thus, the CP-notes and transients model is potentially a
good model of Carnatic music, with our analyses suggest-
ing that there is significant contextual rāga information in
CP-notes; they are, in fact, crucial for a pleasant listening
experience of the transients in the profusion of gamakas in
Carnatic music.

Figure 6: Distribution of the durations of transients and
CP-notes across rāgas described in Table 1. Each hor-
izontal line shows the rāga-specific range of transient-
durations, and the circles, their mean durations. Numbers
in brackets are the durations of the longest CP-note.

Figure 7: Distribution as in Figure 6 restricted to the
rāga śankarābharan. am. The range and means of
transient-durations correspond to each piece in the rāga.

Figure 8: Distribution as in Figure 7 restricted to the
gamaka-laden rāga tōd. ī. Its transient-duration means are
similar to those of śankarābharan. am.
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ABSTRACT

An audio-to-score alignment system adaptive to various
playing styles and techniques, and also with high accuracy
for onset/offset annotation is the key step toward advanced
research on automatic music expression analysis. Techni-
cal barriers include the processing of overlapped notes, re-
peated note sequences, and silence. Most of these charac-
teristics vary with expressions. In this paper, the audio-to-
score alignment problem of expressive violin performance
is addressed. We propose a two-stage alignment system
composed of the dynamic time warping (DTW) algorithm,
simulation of overlapped sustain notes, background noise
model, silence detection, and refinement process, to better
capture the onset. More importantly, we utilize the non-
negative matrix factorization (NMF) method for synthesis
of the reference signal in order to deal with highly diverse
timbre in real-world performance. A dataset of annotated
expressive violin recordings in which each piece is played
with various expressive musical terms is used. The opti-
mal choice of basic parameters considered in conventional
alignment systems, such as features, distance functions in
DTW, synthesis methods for the reference signal, and en-
ergy ratios, is analyzed. Different settings on different ex-
pressions are compared and discussed. Results show that
the proposed methods notably improve the conventional
DTW-based alignment method.

1. INTRODUCTION

An audio-to-score alignment algorithm captures note-level
information of a music performance with the aid of sym-
bolic data such as MIDI. It has numbers of applications
in the field of music information retrieval (MIR), such as
automatic accompaniment [4], and music retrieval through
matching a MIDI file to a polyphonic audio recording [7].
Besides, an effective audio-to-score alignment algorithm

c© Jia-Ling Syue, Li Su, Yi-Ju Lin, Pei-Ching Li, Yen-
Kuang Lu, Yu-Lin Wang, Alvin W. Y. Su. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jia-Ling Syue, Li Su, Yi-Ju Lin, Pei-Ching Li, Yen-Kuang Lu,
Yu-Lin Wang, Alvin W. Y. Su. “Accurate audio-to-score alignment for
expressive violin recordings”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

is also critical in computational music analysis, specifi-
cally in the case of extracting the note-level information
in expressive music recordings for music expression anal-
ysis. For example, Li et al. [10] used an audio-to-score
alignment algorithm [19] to annotate the onset and offset
positions of each note in a dataset, including violin solo
pieces interpreted by professional violinists with 10 ex-
pressive musical terms. 1 However, such annotation still
needs to be checked and corrected manually as it suffers
from low quality when there are overlapped sustain seg-
ments and unexpected silence between successive notes in
expressive violin performance. Therefore, an improved
audio-to-score alignment algorithm for expressive violin
performance would be of great help to avoid such a tedious
and labor-intensive process.

There have been numbers of audio-to-score align-
ment algorithms proposed in the past few decades, based
on graphical models [2, 15, 16], hidden Markov models
(HMM) [3, 6, 13, 18], and DTW [5, 12, 14]. Among these
models, an HMM [13] is of better potential in modeling
how the states of attack, decay or sustain evolve in a note,
but to train the model parameters one needs amounts of
correctly annotated data which are, as mentioned, hard to
get without an improved audio-to-score alignment algo-
rithm. Therefore, as an attempt to with low-resource data,
we opt to use DTW with further processing steps, which
can be implemented without the need of a large dataset.

Another challenge of matching a score to a musical
recording is the diversity of timbre of the input signals,
depending on the performer, instrument, recording envi-
ronment, etc. Mismatch of spectral features between the
MIDI-synthesized reference and the real violin sounds of
the same event leads to errors in alignment. Such an is-
sue was addressed by an HMM-based model exploiting
the spectral templates adaptive to different recordings [9].
In this paper, we adopt a more straightforward approach,

1 The SCREAM-MAC-EMT dataset compiled by Li et al. contains
recordings of 10 different classical music pieces, each of which is in-
terpreted with 5 selected expressions by 11 musicians [10]. It consid-
ers in total 10 expressive musical terms, including Scherzando (play-
ful), Tranquillo (calm), Con Brio (bright), Maestoso (majestic), Riso-
luto (rigid), Affettuoso (affectionate), Agitato (agitated), Cantabile (like
singing), Grazioso (graceful), and Espressivo (expressive). The experi-
ments in this paper are performed on a subset of this dataset, which con-
tains 50 recordings from randomly selected 3 musicians’ performance.

250



Figure 1. Flowchart of the proposed audio-to-score align-
ment system for expressive violin performance.

which utilizes the NMF method to directly learn the spec-
tral template for synthesis under low-resource data.

By inspecting the data, we raise four issues which could
be seen in aligning an expressive violin recording with
its corresponding MIDI. First, the strong sustain of one
note could be overlapped with the weak onset of its next
note, and this makes the algorithm fail to accurately cap-
ture the onset time of the next note. Second, in a repeated
note sequence, an algorithm is prone to erroneous onset
detection since all notes have the same pitch. Third, the
staccato technique usually causes unexpected silent seg-
ments which are not compatible to the ground-truth MIDI.
Lastly, the background noise in a real-world environment
may also cause mismatching. These issues are commonly
seen; for instance, an inspection shows that in the dataset,
37% of the notes have overlapped sustain with their suc-
cessive notes, 35% are in a repeated note sequence, 6%
have unexpected silence, and 2% follow a rest symbol.

To this end, we add solutions to deal with the four prob-
lems: First, we simulate the note overlap in two-stage
alignment (cf. Section 2.3). Second, we perform the dura-
tion ratio of repeated notes (cf. Section 2.4) and silence de-
tection (cf. Section 2.2) to refine onset positions. Besides,
we add a background noise template to model the rest parts
in a recording (cf. Section 2.1). These processes are evalu-
ated after a systematic experiment which finds the optimal
parameters such as features, timbres for synthesis, distance
measures, and energy measures in an audio-to-score algo-
rithm (cf. Section 3.1). Moreover, we also discuss the pre-
cision of proposed alignment system within different levels
of error tolerance, and draw an insight from analyzing the
expression-wise performance (cf. Section 3.2).

2. THIS WORK

Figure 1 shows the diagram of the proposed alignment sys-
tem, whose goal is to find the onset position accurately in
expressive violin performance. The system takes an au-
dio signal and its corresponding MIDI file as input. We
adopt the NMF to learn the spectral patterns of the audio
input of violin solo for MIDI-to-audio synthesis. Then, ei-

Figure 2. The audio played with staccato has extra silence
segments (green) that could not be found from the score.

Figure 3. An example of a note with strong energy in sus-
tain segment overlaps with its successive note, which has
weak energy in attack segment.

ther chroma or log-frequency spectral features, which are
the basic parameters considered in conventional alignment
systems (cf. Section 3.1), are extracted from both the au-
dios. Incorporated with a silence detection process, a two-
stage DTW-based audio-to-score alignment and a refine-
ment process are conducted for resolving the discrepancies
between audio and MIDI in expressive recordings includ-
ing overlapped sustain segments, unexpected silence seg-
ments, and repeated note sequences.

2.1 NMF and Spectral Synthesis

For MIDI-to-audio conversion, the NMF with the
Kullback-Leibler divergence [17] is adopted to train the
spectral patterns of each pitch in a recording. The NMF
decomposes an audio spectrogram V into two matrices W
and H , i.e. V ≈ V̂ = WH , where W is a spectral
template represented in column, and H is a time-varying
energy activation represented in row. Following Joder et
al. [8], we adopt a Gaussian mixture model to initialize the
template matrix W for each pitch with k Gaussian func-
tions centered at the fundamental frequency and the first
k-th harmonics of the pitch. Due to the weak energy in
the high-frequency range, we take k to be 4, the weight of
each Gaussian function to be k−2, and the variance to be 30
cents. Besides, we consider the frequency range from 65
Hz to 4 kHz, which removes the high- and low-frequency
noise. The activation matrix H is initialized by a normal
distribution with zero mean and unit standard deviation.
Moreover, we add an additional noise template (NT) with
random numbers in [0, 1] to simulate the noise of silence
parts in the recorded audio signal. Furthermore, we adopt
a preprocessing step of stretching or shortening the refer-
ence signal by insertion or deletion of frames so as to make
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Figure 4. Examples of accurate and erroneous alignment paths: (a) accurate result, (b) error caused by overlapped sustain
segment, (c) simulation of overlapped sustain segment, and error caused by (d) additional silence and (e) repeated notes.

its length similar to the input, in order to reduce the effect
of tempo changes in expressive violin performance.

2.2 Silence Detection

Violinists use different playing techniques to interpret dis-
tinct expressions. The staccato technique might be the one
which is most likely to cause errors in DTW alignment
among others due to the silence segments caused by ar-
ticulation of successive notes. Such a silent segment do
not have any information in the reference signal but could
be found in the audio recording as shown in Figure 2, it
results in deterioration in the DTW alignment path. This
issue is addressed by introducing an extra silence detection
process with energy measurement. From the fast Fourier
transform (FFT) 2 , the energy curve is computed by sum-
ming the spectrum over all the frequency bins and is ex-
pressed in dB scale. A silence segment is one which is
longer than 100ms and whose energy is less than 12 dB.

2.3 Two-stage Alignment

The main purpose of the proposed two-stage audio-to-
score alignment process is to capture the accurate onset
for overlapped successive notes where the former note has
a long sustain and the latter one has a soft onset. Such
a specific energy characteristic of violin is likely to cause
wrong alignment paths. As illustrated in Figure 3, the first
note C5, which has strong energy in sustain segment, over-
laps with the second note F4, which has weak energy in
the attack, and leads to a distorted alignment path. Figure

2 This paper uses a 2,048-point Hamming-windowed FFT with each
frame staggered by 882 samples (20ms) throughout all the experiments.

4(a) shows the ideal accurate result of this example: the
onset of F4 is at position (F, 5), while Figure 4(b) shows
the actual erroneous result of F4, where the onset of F4
locates at (I, 5). This is because the first 3 frames of F4
are submerged in the sustain segment of C5.

The two-stage alignment process is proposed to solve
this problem. In the first stage, we adopt the conventional
DTW-based alignment as our baseline, and obtain a rough
estimation of the onset of each note. Next, we add the
information of the silence segments mentioned in Section
2.2. If there is no silence detected between two successive
notes, then the two notes are considered overlapped. For
every pair of the overlapped notes, we lengthen the first
note of the reference MIDI with a duration of 3 frames,
in order to simulate the behavior of overlapped notes. 3

Then, we perform DTW again to align the audio with the
modified MIDI. This is the second-stage alignment (SA)
process. The SA process of the overlapped notes C5-F4 is
shown in Figure 4(c). The two-stage alignment is therefore
a combination of the baseline process and the SA process.

2.4 Refinement

The refinement process contains two tasks. The first task
is to fix the case of staccato and rest, where the errors of
alignment are usually caused by silence rather than over-
lapping between two consecutive notes. Figure 4(d) shows
the alignment result of an audio played with staccato. The
ideal accurate onset of F4 is at position (F, 5) as pointed
by the dashed-line arrow; however, the actual result of F4

3 We observe that for most of the overlapped notes, the overlapping
durations are between 2 and 4 frames (40ms and 80ms). Such an obser-
vation gives to an estimation 3 frames.
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Figure 5. An example of repeated notes, whose spectrum
is highly similar to each other. Their onsets are calibrated
via the duration ratio estimated from the reference signal.

locates at (D, 5), a position within the silence segment, as
pointed by the solid-line arrow. To address this issue, the
refinement of silence (RS) is implemented as follows: if the
onset of an aligned note locates in a silence segment of the
audio, then it will be shifted to the correct position, that is,
the frame right after such a silence segment.

The second task is to adjust the duration of repeated
notes, where the alignment path is hard to estimate because
of high similarity among the note spectra. This issue is il-
lustrated in Figure 4(e), where one can see that except for
the first C5, the onset results of the other notes are at the
wrong positions, (C, 5) and (I, 7), respectively, as pointed
by the solid-line arrows. The correct onsets of the second
and the third C5 are the positions pointed by the dashed-
line arrows. Figure 5 shows a real-world example of re-
peated notes in a more detailed manner: the spectra of the
four repeated notes A4 are highly similar, especially for
the last three notes with the same note type. It is hard to
figure out the accurate onset of each repeated note when
performing DTW alignment.

We therefore come up with a strategy to deal with this
problem. Our assumption is that both audio and its cor-
responding MIDI file have approximately similar duration
ratio of repeated notes. In other words, we can modify the
onsets of repeated notes by referring to the duration ratio
of such notes in the reference signal. Given a sequence
of repeated notes, r = (r1, r2, ..., rm), the refinement of
repeated notes (RRN) is realized as follows:

STEP 1 Computing the duration of each repeated note,
S = (S1, S2, ..., Sm) and L = (L1, L2, ..., Lm),
according to the reference signal and the onset re-
sults of the two-stage alignment, respectively.

STEP 2 Calculating the duration ratio for each repeated
note, i.e. ratiok = Sk/

∑m
k=1 Sk.

STEP 3 Estimating the predicted duration for such notes
in the audio recording, L̂ = (L̂1, L̂2, ..., L̂m), via
the calculation of L̂k = Lk × ratiok.

Timbre MIDI synthesizer NMF
Feature 12-D chroma 84-D linear-log spectrum

Precision 72.68 81.37 95.12

Table 1. Comparison of precision (in %) using chroma
and the 84-D spectrum feature. Since the 84-D spectrum
performs better, the timbre synthesis via MIDI synthesizer
or NMF is considered.

STEP 4 Adjusting the duration of the first m− 1 repeated
notes according to the criterion of |L̂k−Lk| > θ.
If L̂k > Lk then the onset of the (k+1)-th note is
shifted backward by |L̂k − Lk| − θ ms. Besides,
Lk+1 is also updated by the shifted value. On the
contrary, it is updated by shifting forward |L̂k −
Lk| − θ ms, and so does the Lk+1.

Our pilot study shows that choosing θ = 60 ms gives better
performance.

3. EVALUATION

The experiments are separated into two parts. The first
part is to find the optimal setting used in the conventional
DTW-based alignment. The second part is the results of the
proposed system, including the performance of baseline
process, proposed processes, and expression-wise. The test
dataset contains 10 expressions, each with 5 classical mu-
sic pieces, totaling 50 excerpts (2,925 notes). We use pre-
cision as our evaluation method, which is the percentage
of the number of correct onsets among all the excerpts. A
correct onset is defined as the difference between aligned
onset time and its corresponding ground-truth onset time,
being less than 100ms.

3.1 Factors Experiment

We consider four types of factors: feature, timbre, distance
function, and energy. The brief introduction and results of
each factor are described one by one as follows.

Two features are considered: chroma [1] and linear-log
frequency spectrum [5]. The chroma is a 12-dimensional
vector representing the energy of the 12 pitch classes (i.e.
C, C#, ..., B). The linear-log frequency spectrum is a spec-
tral feature with reduced dimension, performed by a 84-D
filterbank, which is in linear scale in the low frequencies
and in logarithm scale in the high frequencies [5]. Such a
feature simulates the linear-log frequency sensitivity in hu-
man auditory systems. Table 1 compares the two features
according to the averaged precision (in %) of all the 50 ex-
cerpts. The results indicate that the linear-log spectrum is
better than the chroma. We therefore select the 84-D spec-
trum for the feature factor.

Then, we compare two methods of synthesizing the ref-
erence signal from MIDI, where the one is directly through
a MIDI synthesizer, and the other uses the NMF to learn
the spectral features from the original audio recording, a
similar strategy of the HMM-based timbre learning method
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Ea/Em 13 dB 10 dB 0 dB -10 dB -13 dB
Cosine 96.10 96.10 96.14 96.00 96.00

Euclidean 77.81 88.62 95.12 78.39 60.62
SKL 95.73 95.86 95.41 96.85 96.75

Table 2. Comparison of precision (in %) using three types
of distance functions for DTW with five different levels of
energy ratios of audio recording to reference signal.

Process Precision
Baseline 96.14
Baseline+NT 97.03
Baseline+NT+SA 97.64
Baseline+NT+SA+RS 97.88
Baseline+NT+SA+RS+RRN (‘Proposed’) 98.43

Table 3. Performance (in %) of the baseline and the pro-
posed system. NT: noise template; SA: second stage align-
ment; RS: refinement of silence; RRN: refinement of re-
peated notes.

Process NT SA RS RRN Other
# Notes 45 1094 173 1015 598

# Baseline 15 42 6 40 10
Errors Proposed 2 26 1 10 7

Table 4. Comparison of the number of error notes between
the baseline and the proposed system based on the four
raised issues.

by Joder et al. [9]. To simulate the silence parts, we sim-
ply apply zero values for silence segments, which is the
same means used in the MIDI synthesizer. Results in Table
1 also shows that using NMF for timbre synthesis yields
much better precision (95.12%) than using a MIDI synthe-
sizer (81.37%), since a common MIDI synthesizer can not
well resemble the wide variety of timbre in expressive vi-
olin performance. We therefore take the NMF-based syn-
thesis method for the following experiments.

Moreover, since the dynamics of notes vary largely in
expressive violin performance, the distance functions in
DTW and the frame-level energy are also essential fac-
tors in the alignment process. We compare three types of
distance functions in the DTW algorithm: cosine similar-
ity [11], Euclidean distance [5], and symmetric Kullback-
Leibler (SKL) divergence [9]. Cosine similarity is the
normalized inner product of two non-zero vectors. Since
we would like to find the minimal value of the cost func-
tion, the inner product is subtracted by 1. Besides, Eu-
clidean distance calculates the straight-line distance of two
feature vectors. Further, SKL divergence is defined as:
dSKL(i, j) = dKL(i ‖ j) + dKL(j ‖ i), where i and j are
two n-dimensional vectors. The performance of a distance
function is highly related to the effect of energy ratios, i.e.
the ratio of the energy levels of the audio recording (Ea)

to the reference signal (Em). Table 2 presents the aver-
aged precision values using the three distance functions
for DTW with five different levels of energy ratio from -
13 dB to 13 dB. All the three distance functions have sim-
ilar performance when audio and reference signals have
similar levels of energy. However, when the energy ratio
exceeds 10 dB, performance degrades significantly for Eu-
clidean distance, while the cosine similarity turns out to be
the most stable distance function among all levels of en-
ergy ratio (STD=0.06%). Therefore, we opt to use cosine
similarity in the following experiments.

In short, the optimal setting of the conventional DTW-
based alignment algorithm (i.e. the baseline) encompasses
linear-log spectral features, the reference signal synthe-
sized with NMF on the input signal, and cosine similarity
as a distance function. We will use these settings in the
following experiments if not mentioned.

3.2 System Experiment

3.2.1 Overview

Table 3 lists the performance of the proposed system and
a comparison to the individual building blocks mentioned
in Section 2, i.e. one-stage DTW only (Baseline), noise
template (NT), second-stage alignment (SA), refinement of
silence (RS), and refinement of repeated notes (RRN). Re-
sults show that the baseline achieves a precision of 96.14%.
Its performance is then increased by 0.89% after adding
NT. A further improvement of 0.61% is seen after adding
SA and addressing the issue of overlapped sustain notes.
Finally, the RS and RRN also give a slight improvement of
0.24% and 0.55% subsequently. As a result, the averaged
precision of the proposed system comes to 98.43%, show-
ing a significant improvement from the baseline system as
validated by a two-tailed t-test (p < 0.05, d.f.=98).

Table 4 gives a more in-depth comparison of the num-
ber of error notes between the baseline and the proposed
system according to the four raised issues. 4 We find that
every process reduces the number of error notes of their
corresponding types, and the RRN process leads to the
greatest improvement: 40 error notes within repeated note
sequences are reduced to 10 notes.

Table 5 shows the precision of the proposed system
within different levels of error tolerance values not only
at 100ms but ranged from 20ms (1 frame) to 700ms (35
frames). We find that the performance is over 90% when
using the tolerance with 60ms (3 frames). In addition, the
maximal erroneous time of onset is within 700ms.

3.2.2 Expression-wise Performance

Table 6 presents the averaged precision for the 10 violin ex-
pressions based on the Baseline process with two distinct
timbre synthesis methods, MIDI synthesizer and NMF, and
the proposed system, respectively. Comparing the MIDI

4 An NT refers to a note which follows a rest symbol; SA counts the
note that overlaps its successive notes over 60ms; RS includes the notes
played with staccato; RRN contains the notes belonging to a sequence of
repeated notes; the remaining ones are marked as‘Other’.
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Error ≤
Proposed

Frames Seconds
1 0.02 58.60
2 0.04 85.61
3 0.06 94.84
5 0.1 98.43
10 0.2 99.62
15 0.3 99.79
20 0.4 99.83
25 0.5 99.93
30 0.6 99.97
35 0.7 100.00

Table 5. Performance (in %) of the proposed system
within different levels of error tolerance values.

Expression
Baseline

Proposed
MIDI NMF

Scherzando 78.25 96.37 96.98
Tranquillo 69.65 93.06 98.55
Con Brio 87.19 98.44 98.75
Maestoso 82.73 97.48 98.56
Risoluto 76.86 96.92 99.49

Affettuoso 87.41 96.67 100.00
Agitato 88.78 97.96 96.94

Cantabile 86.43 93.97 95.98
Grazioso 86.44 95.25 99.66

Espressivo 78.07 95.35 98.00

Table 6. Performance (in %) of the ten violin expressions
via the baseline process with two distinct timbre synthesis
methods and the proposed system.

synthesizer (i.e. the second column) to NMF-based synthe-
sis from audio recording (i.e. the third column), a signif-
icant improvement can be observed (p < 0.005, d.f.=18),
especially for Tranquillo and Risoluto, where the improve-
ment is over 20% for both cases. Besides, the proposed
system (i.e. the fourth column) has significant improve-
ment from both the Baseline cases (p < 0.05, d.f.=18).
Particularly, Tranquillo, Grazioso, and Affettuoso are im-
proved the most; this implies that the proposed system can
enhance the onset precision for such violin performance
with plentiful expression and intense vibrato. For Risoluto,
the expression played with staccato technique mostly, the
proposed system also gives excellent result. Furthermore,
we see that the improvement of Con Brio and Scherzando
is limited, probably due to their intense characteristics of
performance such as clear attack of energy envelope.

3.3 Discussion

According to the expression-wise performance as illus-
trated in Table 6, we find that Agitato is the only one ex-
pression which has degraded precision via the proposed
system. The reason is possibly that the energy of sustain
segment might be weak such that the simulation of sustain

perhaps cause additional errors. Except for Agitato, the
proposed system has improvement for other expressions.

Although we use a refinement process to deal with the
unexpected silence segments caused by the staccato tech-
nique, this process actually could be merged into the two-
stage alignment. For example, we can adopt similar means
which is used in the simulation of overlapped sustain notes,
by inserting additional frames in a reference signal based
on the information of silence segments. Thereby, the sys-
tem will be made more succinct.

In this paper, we only consider a subset of the vio-
lin expression dataset, which includes 50 solo recordings
from randomly selected 3 musicians’ performance. In or-
der to obtain more reliable performance and to develop
a robust alignment system, the test data needs to be ex-
panded such as using the recordings from other musicians
in the SCREAM-MAC-EMT dataset as well as data of
polyphonic recordings, where the latter suggest a future
work of constructing a new dataset for expression analysis
of violin solo in polyphonic music.

Moreover, this study only considers the accuracy of
onset-only alignment. Another important task for music
expression analysis of notes is offset alignment, which is
still a challenging problem. An extension of the proposed
alignment system such as to cover the offset alignment is-
sue is also left as future work.

4. CONCLUSION

To have better expression analysis of violin recordings, it is
desired to have the precise onset information of each note.
The conventional DTW algorithm is modified for accurate
audio-to-score alignment for the violin dataset, including
the simulation of sustain notes, silence detection, refine-
ment of duration ratio of repeated notes, and background
noise model, which are used to deal with the four common
issues usually seen in violin recordings. Experiments show
that high precision is achieved if instrumental timbre and
the 84-dimensional spectral feature vector are used. Co-
sine similarity is adopted as our distance formula for its
robustness to various violin playing techniques. The pro-
posed two-stage alignment system obtains significant im-
provement, not only for the addressed issues but also for
the distinct expressions, from the baseline process.
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ABSTRACT

The tabla is an essential component of the Hindustani clas-
sical music ensemble and therefore a popular choice with
musical instrument learners. Early lessons typically tar-
get the mastering of individual strokes from the inven-
tory of bols (spoken syllables corresponding to the distinct
strokes) via training in the required articulatory gestures on
the right and left drums. Exploiting the close links between
the articulation, acoustics and perception of tabla strokes,
this paper presents a study of the different timbral quali-
ties that correspond to the correct articulation and to iden-
tified common misarticulations of the different bols. We
present a dataset created out of correctly articulated and
distinct categories of misarticulated strokes, all perceptu-
ally verified by an expert. We obtain a system that auto-
matically labels a recording as a good or bad sound, and
additionally identifies the precise nature of the misarticu-
lation with a view to providing corrective feedback to the
player. We find that acoustic features that are sensitive to
the relatively small deviations from the good sound due to
poorly articulated strokes are not necessarily the features
that have proved successful in the recognition of strokes
corresponding to distinct tabla bols as required for music
transcription.

1. INTRODUCTION

Traditionally the art of playing the tabla (Indian hand
drums) has been passed down by word of mouth, and docu-
mentation of the same is rare. Moreover, recent years have
seen a decline in the popularity of Indian classical mu-
sic, possibly due to the relatively limited accessibility op-
tions in todays digital age. While tuners are commonly uti-
lized with melodic instruments, a digital tool that assesses
the timbre of the produced sound can prove invaluable for
learners and players of percussion instruments such as the
tabla, in avoiding deep-seated deficiencies that arise from
erroneous practice.

Based on the fact that there is an overall consensus

c© Krish Narang and Preeti Rao. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Krish Narang and Preeti Rao. “Acoustic Features for Determining
Goodness of Tabla Strokes”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.
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head
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Figure 1. Regions of the left (bayan) and right (dayan)
tabla surfaces, Patel and Iversen [1].

among experts when it comes to the quality of sound (in
terms of intonation, dynamics and tone quality) produced
by an instrumentalist [2], Picas et al. [3] proposed an au-
tomatic system for measuring perceptual goodness in in-
strumental sounds, which was later developed into a com-
munity driven framework called good-sounds.org [4]. The
website worked with a host of string and wind instruments,
whose goodness broadly depended on similar acoustic at-
tributes. We follow the motivation of good-sounds, extend-
ing it to a percussive instrument, the tabla, which has a so-
phisticated palette of basic sounds, each characterized by a
distinct vocalized syllable known as a “bol”. Further, in the
interest of creating a system that provides meaningful feed-
back to a learner, we explicitly take into account the link
between the manner of playing, or articulatory aspects, and
the corresponding acoustic attributes.

The tabla consists of two sealed membranophones with
leather heads: the smaller, wooden-shell “dayan’ (treble
drum) is played with the right hand, and the larger, metal-
shell “bayan’ (bass drum) is played with the left. Each
drum surface is divided into regions as shown in Figure 1.
Unlike typical percussion instruments that are played with
sticks or mallets hit at the fixed place on the drum surface,
a tabla stroke is specified by the precise hand gesture to be
employed (we term this the “manner of articulation”, bor-
rowing on terminology from speech production) and the
particular region of the drum surface to be struck (“place
of articulation”). Previous work has addressed the recog-
nition of tabla bols for transcription via the distinct acous-
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Figure 2. Articulation based classification of tabla bols.

tic characteristics associated with each of the strokes [5,6].
Temporal and spectral features commonly applied to musi-
cal instrument identification were used to achieve the clas-
sification of segmented strokes corresponding to different
bols. Gillet and Richard [5] performed classification of
individual bols by fitting Gaussian distributions to the en-
ergies in each of four different frequency bands. Chor-
dia [6] used descriptors comprised of generic temporal as
well as spectral features commonly used in the field of Mu-
sic Information Retrieval for bol classification. More re-
cently, Gupta et al. [15] used traditional spectral features,
the mel-frequency cepstral coefficients, for the transcrip-
tion of strokes in a ryhythm pattern extraction task on audio
recordings. While the recognition of well-played strokes
can benefit from the contrasting sounds corresponding to
the different bols, the difference between a well-played and
badly-played version of a bol is likely to be more nuanced
and require developing bol-specific acoustic features. In
fact, Herrera et al. [8] use spectral features for percussion
classification based on a taxonomy of shape/material of the
beaten object, specifically omitting instruments that drasti-
cally change timbre depending on how they are struck.

In this work, we consider the stroke classification prob-
lem where we wish to distinguish improperly articulated
strokes from correct strokes by the analysis of the audio
recording, and further provide feedback on the nature of
the misarticulation. Based on a training dataset, that con-
sists of strokes representing various kinds of playing errors
typical of learners, as simulated by tabla teachers, we carry
out a study of acoustic characteristics in relation to artic-
ulation aspects for each stroke. This is used to propose
acoustic features that are sensitive to the articulation er-
rors. Traditional features used in tabla bol recognition are
used as baseline features and eventually we develop and
evaluate a stroke classification system based on the combi-
nation of proposed and baseline features in a random forest
classifier.

Type Bol Label Position Manner Pressure

Resonant
Left

Ge Good Maidan Bounce Variable
Bad1 Siyahi Bounce Medium
Bad2 Maidan Press Medium
Bad3 Kinar Bounce Medium

Damped
Left

Ke Good Siyahi Press Medium
Bad1 Maidan Press Medium
Bad2 Siyahi Bounce Light

Resonant
Right

Ta/ Good Kinar Press Medium
Na Bad1 Kinar(e) Press Heavy

Bad2 Maidan Press Medium
Bad3 Kinar Press Heavy

Tun Good Siyahi Bounce None
Bad1 Siyahi Press Light
Bad2 Maidan Bounce None

Tin Good Maidan Bounce Light
Bad1 Siyahi Bounce Light
Bad2 Maidan Bounce Heavy

Damped
Right

Ti/ Good Siyahi Press Medium
Ra Bad1 Siyahi Bounce Light

Bad2 Siyahi(e) Press Medium
Tak Good Maidan Press Medium

Bad1 Maidan Bounce Light
Bad2 Kinar(e) Press Medium
Bad3 Siyahi(e) Press Medium

Table 1. Common articulations of bols in terms of position
of articulation, manner of articulation, and hand pressure.

2. ARTICULATION BASED CLASSIFICATION

The tabla is a set of two drums, the left bass drum (bayan)
and the right, higher pitched drum (dayan). Each tabla
drum surface is composed of three major regions- siyahi,
maidan, and kinar as depicted in Figure 1. Each tabla
stroke (bol) is characterized by a very specific combina-
tion of the hand orientation with respect to the the posi-
tion on drum surface, manner of striking, and pressure ap-
plied to the drum head, and has a very distinctive sound.
Due to the heavy dependence of perceived quality of tabla
bols on articulation accuracy of the player, it is instruc-
tive to understand the articulatory configurations of bols
via the taxonomy visualized in Figure 2. Mixed bols are
bols where both tablas are struck simultaneously (e.g. Dha,
Dhin Dhit). Verbose bols (e.g. TiNaKeNa) consist of a
sequence of strokes played in quick succession, whereas
atomic bols are single stroke bols. A resonant bol is one
where the skin of the drum is allowed to freely vibrate af-
ter it is struck, and a damped bol is one where the skin is
muted in some way after it is struck.

Bols of each type (leaf nodes of Figure 2) can further
be classified based on the place of articulation, manner of
articulation and amount of hand pressure applied on the
skin of the tabla. For example, for the bol tun, the index
finger strikes the siyahi of the right tabla (dayan), with no
damping (hand does not touch the tabla, finger is lifted af-
ter striking) (Patel and Iversen [1]). These are the three
major attributes that distinguish bols within a type, and

258 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



are also what decide the perceptual goodness of a tabla
stroke. For the same hand orientation, the drum can be
struck sharply followed by immediately lifting the finger
(we call this the ‘bounce’ manner of articulation) or it can
be struck followed by leaving the finger or palm pressed
against the drum head (we call this the ‘pressed’ manner of
articulation). For the rest of the study we focus on atomic
bols, which are sufficient for coverage of all beginner tabla
rhythms, as listed on raganet, an educational magazine on
Indian music [7]. For simplicity, mixed bols are not cov-
ered, since they are combinations of simultaneous left and
right tabla strokes.

Two tabla teachers were consulted on the common mis-
takes made by beginners while playing a particular bol.
Based on these, multiple classes were defined for each bol
using the aforementioned three attributes governing good-
ness of a bol. One of these classes represents the well-
played version of that bol, whereas the others represent
the most common deviations that are perceptually distinct
from the expected good sound. These are listed for all
bols in Table 1, which explicitly shows the position, man-
ner and hand pressure for different articulations of each
bol, where “(e)” refers to the edge of the specified region.
For example, a resonant right bol played on the maidan,
while applying light hand pressure and lifting the finger af-
ter striking, constitutes a well-played Tin bol. However the
same played while applying medium to heavy hand pres-
sure is a badly-played Tin bol.

3. DATABASE AND ACOUSTIC
CHARACTERISTICS

A dataset composed of 626 isolated strokes of 7 different
bols was recorded (sampling rate of 44.1 kHz) by two ex-
perienced tabla players on a fixed tabla set that was tuned
to D4 (294 Hz). The players were asked to play several
instances of each stroke while also simulating typical er-
rors that a new learner is likely to make in realizing a
given stroke. Thus our dataset consists of recordings of
each of bols realized in different ways as listed in Table 1,
which also provides an articulation based description of
the different realizations as executed by the tabla players.
All the recordings were perceptually validated by one of
the players who listened to each stroke and labeled it as
”good” or ”bad”. In order to develop a system that provides
specific feedback on the quality of a stroke, we required
badly played instances of the bols as well. This made
it impossible to use a publicly available dataset, as most
archived recordings are from professional performances.
Also, since our dataset is generated with reference to con-
trolled variations in articulation as typical of a learner, it
is likely to be more complete than the randomly sampled
acoustic space of all possible productions.

A number of recordings was made per bol as seen in the
Count column of Table 3, but with a roughly equal distribu-
tion of strokes across the classes corresponding to each bol
in order to facilitate the construction of balanced training
and test datasets for the classification task. The only excep-
tion to this is the bol Ge where a relatively large number

of instances of the good stroke were produced since it is
the only bol with pitch that can be modulated by changing
the amount of pressure applied on the drum surface while
striking. A number of such hand pressure based variations
were recorded for the correct articulatory settings of the Ge
stroke in order to get a reasonably representative dataset
for the good quality bol Ge (124 out of the total of 187 Ge
strokes in Table 3). This was important to ensure that the
classifier we build is robust to pitch variations and other ir-
relevant changes caused by an increase or decrease in hand
pressure.

Since each stroke presented in Table 1 is characterized
by specific articulation (in terms of place of articulation,
manner of articulation and amount of hand pressure), the
acoustic variability is likely to cover more than one di-
mension. By studying the short-time magitude spectra (i.e.
spectrograms) of the recorded bols, we were able to isolate
the acoustic characteristics that distinguished the various
classes of each bol. Time-domain waveforms and short-
time magnitude spectra for two bols, Tin (a resonant right
bol) and Ke (a damped left bol) are shown in Figure 3 and
Figure 4 respectively. We observe that the rate of decay of
the time-domain waveforms clearly discriminate the good
from bad strokes. Further, the saliency as well as rate of
decay of the individual harmonics (horizontal dark bands
in the spectrograms) are seen to differ between the differ-
ently realised versions of each of the strokes. The resonant
bol Tin is characterised by strong sustained harmonic com-
ponents for good quality. In contrast, the damped bol Ke
has a diffuse spectrum and rapidly decaying temporal en-
velope when realised correctly in Figure 4 top. A bounce
in the hand gesture, on the other hand, degrades the stroke
quality, contributing the prominent harmonics seen in the
low frequency region of the bottom most bad stroke in
Figure 4.

4. DEVISING FEATURES

From acoustic observations similar to those outlined in the
previous section, across bols and goodness classes, we hy-
pothesize that the strength, concentration and sustain of
particular harmonics is critical to the quality of realization
of a bol, especially for the resonant bols. Based on this, we
propose and evaluate a harmonics based feature set which
we call Feature set A. The features are designed to capture
per-harmonic strength, concentration and decay rates. Har-
monic based features are computed for each of the first 15
harmonics by extracting the corresponding spectral region
by passing the signal through a narrow bandpass filter cen-
tered around that harmonic. These are important for res-
onant bols. The energy, spectral variance, and decay rate
of each of the bandpass-filtered signals are computed. The
decay rate is obtained as a parameter corresponding to an
exponential envelope fitted to the signal. The energy and
variance together constitute the strength of the harmonic,
whereas decay rate represents how quickly that particu-
lar harmonic dies out. Spectral shaping features include
variance, skewness, kurtosis and high frequency content.
These features are extracted using Essentia [9], an open-
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Figure 3. Waveform (left) and spectrogram (right) for
good and selected bad recordings of Tin. Bad1 is played
in the wrong position, on the siyahi. Bad2 is played with
excess hand pressure.

Figure 4. Waveform (left) and spectrogram (right) for
good and selected bad recordings of Ke. Bad1 is played
in the wrong position, on the maidan. Bad2 is played
loosely- by bouncing the palm instead of pressing it.

Figure 5. Exponential envelope fitted to rectified wave-
form for a Ge stroke. Dots mark the retained samples for
curve fitting.

source library for audio analysis and audio-based music
information retrieval. The temporal features include the
energy and decay rate of the signal, and are useful for de-
termining goodness of both damped and resonant bols. We
also evaluate a baseline feature set (termed Feature Set B)
which is essentially the same as the features employed by
Chordia [6] in a tabla bol recognition task.

4.1 Harmonic Based Features

For each resonant bol that is correctly rendered, clear har-
monics are visible in the spectrogram at multiples of a fun-
damental frequency. For resonant bols on the right tabla,
the fundamental frequency is equal to the tonic of the tabla,
except for Tun, for which the fundamental frequency is two
semitones higher than the tonic [10]. However, these are
not always precise, and a pitch detection algorithm should
be used for determining the fundamental frequency of the
recorded bol, e.g. the YinFFT algorithm [11]. For our
dataset, the fundamental frequencies were manually esti-
mated by viewing the spectrogram. For the tabla set used
in our experiments, the tonic was determined to be 294 Hz,
and fundamental frequency for Tun to be 330 Hz. For the
left tabla stroke Ge the fundamental frequency was esti-
mated to be 125 Hz.

For extracting harmonic based features, the signal is
first passed through fifteen second-order IIR band pass
filters with a bandwidths of 100 Hz and center frequen-
cies at multiples of the fundamental frequency for that bol.
Then an exponential envelope is fitted to the resulting time
domain waveform. The waveform is full-wave rectified
(A′(t) = |A(t)|), and only the maximum amplitude sam-
ple in every 50 millisecond interval is retained (as marked
in Figure 5). The onset sample of the signal (assumed to
be maximum amplitude sample over all time) is kept at
t = 0. Next, SciPy’s curve fit function [12] is used to fit
an exponential (ae−bt) to the obtained samples, and both
parameters a and b are considered as features. a repre-
sents the estimated maximum amplitude (referred in our
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Bol Selected Features

Ge

Energy(overall, 250, 500, 750, 1000, 1125,
1625), Decay(overall, 125, 250, 375, 625, 875),
Impulse(125), Variance(125, 1500), MFCC(5,
6, 8, 10), Attack Time, Temporal Centroid,
ZCR, Spectral Centroid

Ke

Energy(overall, 1764, 2352, 3528, 4116),
Decay(overall, 294, 588, 2646, 3822),
Impulse(294, 588, 882, 2352, 3234), MFCC(0,
1, 7, 12), Attack Time

Ta/Na
Energy(overall, 294, 1176, 1470), Decay(882),
Impulse(2058), Variance(882, 1470, 2352),
MFCC(1), Temporal Centroid

Tak
Energy(588, 882, 1176, 1470, 2646, 4116),
Decay(294), Impulse(588), Variance(294),
MFCC(1, 3), Attack Time, Temporal Centroid

Ti/Ra
Energy(588, 1764), Decay(588, 1176),
Impulse(588), Variance(588), MFCC(11, 12),
Attack Time, Temporal Centroid, ZCR

Tin
Energy(294, 2352, 3822), Decay(overall, 294,
588, 1470), Impulse(1764), Variance(294,
588), MFCC(2), Temporal Centroid

Tun
Energy(4950), Decay(330, 2310, 3960),
Impulse(overall), Spectral Centroid, Temporal
Centroid, ZCR

Table 2. Features selected from combination of set A and
set B. The numbers in the bracket indicate the harmonic
frequencies selected for energy/decay/impulse/variance
and the indexes of selected coefficients (0-12) for MFCC.

feature set as ‘impulse’) of the signal and b represents the
estimated decay rate (inversely proportional to the decay
time). A similar curve fitting is done to the unfiltered time
domain waveform. From the spectrum of the unfiltered sig-
nal, we calculate the energy and variance of the spectrum
in bands centered around the first 15 harmonics with band-
width equal to fundamental frequency. Finally the total en-
ergy of the signal is also taken as a feature. Finding energy
and variance in a particular frequency range and band pass
filtering were both done using routines from Essentia [9].
A total of 63 features were extracted in this way.

4.2 Baseline Feature Set

The baseline feature set consists of commonly used tem-
poral and spectral features along with 13 MFCC’s. These
were used by Chordia [5] for tabla bol classification, and
their relevance and effectiveness is also described in detail
by Brent [13]. The temporal features are zero crossing rate,
temporal centroid (the centroid of the time domain signal)
and attack time. The attack time is calculated as time taken
for the signal envelope to go from 20% to 90% of its max-
imum amplitude (default used in Essentia [9]). The spec-
tral features are spectral centroid, skewness, and kurtosis.
These are all obtained from the magnitude spectrum com-
puted over the full duration of the recorded stroke. All of
these features were computed using Essentia [9] routines.

Bol Count Classes Set A Set B Combined
Set

Ge 187 4 89.8 89.8 94.1
Ke 67 3 79.1 76.1 85.1
Ta/Na 86 4 89.5 86.1 91.9
Tak 101 4 80.2 82.2 86.1
Ti/Ra 79 3 77.2 96.2 91.1
Tin 48 3 89.6 93.8 97.9
Tun 29 3 81.0 91.4 93.1

Table 3. Percentage classification accuracies (one good
class, multiple articulation based bad classes) Accuracies
with Harmonic Features (Set A), Baseline Features (Set B),
and selected features from a combination of Set A and Set
B (Combined Set).

5. TRAINING AND EVALUATION OF BOL
ARTICULATION CLASSIFIERS

Given our set of features, engineered as presented in the
previous section, and the fact that our dataset is not very
large, we employ a random forest classifier for the stroke
classification task. A random forest classifier is an ensem-
ble approach based on decision trees. We test for k-way
classification accuracy in 10 fold cross validation mode
with each of the different feature sets using the Weka [14]
data mining software. Here k is the number of classes for
a particular bol, consisting of one good class and multiple
articulation based bad classes as shown in Table 3 where
the number of strokes in the dataset for each bol is pro-
vided as well. For each instance the classifier predicts
whether a bol is well-played (labeled good) or what mis-
articulations were made while playing the bol (labeled as
the appropriate bad class). Apart from this, a subset of
features is selected from the union of the two feature sets,
using the CfsSubsetEval attribute selector with a GreedyS-
tepwise search method from the Weka [14] data mining
software. The greedy search picks each succeeding fea-
ture based on the classification improvement it brings to
the existing set, using a threshold on achieved accuray as
a stopping criterion. The set of selected features for each
bol is shown in Table 2. Classification accuracies obtained
with each of the 3 feature sets are presented in Table 3. We
observe that the combination of features performs better
than the baseline in nearly all cases. This indicates that
the new harmonics based features bring in some useful in-
formation, complementary to the baseline features. In the
case of the bol Ti/Ra, there is a decrease in classification
accuracy with respect to the baseline. This is a damped bol
and therefore harmonic features are not as important to it as
spectral shaping features; however the issue of decreased
accuracy after feature selection needs further investigation.
Finally, Table 4 shows the results of two-way classification
into good and bad strokes achieved by the combination fea-
tures.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 261



Bol Feature
Dimension

Accuracy

Ge 25 96.3
Ke 20 95.5
Ta/Na 11 96.5
Tak 13 94.1
Ti/Ra 10 92.4
Tin 12 97.9
Tun 8 93.1

Table 4. Percentage classification accuracies for two-way
classification (good/bad stroke) based on features selected
from the combined data set (as listed in Table 2).

6. CONCLUSION

Unlike many percussion instruments, the tabla is a musical
instrument with a diverse inventory of basic sounds that
demand extensive training and skill on the part of a player
to elicit correctly. We proposed a taxonomy of strokes
in terms of the main dimensions of articulation obtained
through discussions with tabla teachers. This allowed us
to construct a representative dataset of correct and com-
mon incorrectly articulated strokes by systematically mod-
ifying the articulatory dimensions. The results of this study
show that nuanced changes in articulation are linked to
perceptually significant changes in the acoustics of a tabla
stroke. We presented acoustic features extracted from the
isolated stroke segments to detect the articulation accuracy
and therefore the perceptual goodness of a stroke from its
audio. The best choice of features was observed to depend
on the nature of the bol.

The present dataset was restricted to a single tabla set.
For future work we would like to continue this research
using a larger database from more sources, and to in-
clude coverage of mixed bols. The latter would further re-
quire measurements of relative timing between the atomic
strokes that make up the mixed bol. This study can also
easily be extended to evaluate sequences of bols (talas) for
beginners- by a combination of rhythm scoring and evalu-
ation of segmented bols of the sequence individually. The
concept of expression and emotion in the playing of the
tabla, which is vital to intermediate and expert players, is
however a much more open ended question, and further
research will hopefully lead to a characterization of that
problem as well.
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ABSTRACT

The term ‘sampling’ refers to the usage of snippets or
loops from existing songs or sample libraries in new songs,
mashups, or other music productions. The ability to auto-
matically detect sampling in music is, for instance, benefi-
cial for studies tracking artist influences geographically and
temporally. We present a method based on Non-negative
Matrix Factorization (NMF) and Dynamic Time Warping
(DTW) for the automatic detection of a sample in a pool
of songs. The method comprises of two processing steps:
first, the DTW alignment path between NMF activations
of a song and query sample is computed. Second, features
are extracted from this path and used to train a Random
Forest classifier to detect the presence of the sample. The
method is able to identify samples that are pitch shifted
and/or time stretched with approximately 63% F-measure.
We evaluate this method against a new publicly available
dataset of real-world sample and song pairs.

1. INTRODUCTION

In the context of music composition and production, sam-
pling stands for the concept of reusing pre-existing digital
recordings in new compositions in a way that it fits the
musical context. In digital sampling, an artist records a seg-
ment of a song or sound that they wish to sample, possibly
modifies it, and then reuses it (and possibly other samples)
by incorporating it into a new composition [11]. Sampling
of audio has become popular in mainstream pop, hip-hop,
and rap music.

A Sample Detection (SD) system automatically detects
samples from a pool of songs and thus enables musico-
logical studies of the influence of older artists over newer
generation artists by observing sampling patterns over the
years and geographically. Another possible use case of a SD
system could be to detect plagiarism or copyright infringe-
ment. Sampling is legally controversial and determining
fair use is largely left to the judicial system. A system that
gives an objective measure of the likelihood of a sample
being present in an audio file could add weight to either
party’s argument in a lawsuit.

c© Siddharth Gururani, Alexander Lerch. Licensed under
a Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Siddharth Gururani, Alexander Lerch. “Automatic Sample
Detection in Polyphonic Music”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

The algorithm discussed in this paper focuses on solving
the problem of detecting the presence of a given sample in
a set of songs as well as its time location in the song.

2. RELATED WORK

The task of SD has been addressed in only few previous
publications. There exist, however, several parallels that
may be drawn from other areas of research that are relevant
to SD such as cover song detection, audio fingerprinting,
and remix recognition.

2.1 Audio Fingerprinting

Audio Fingerprinting (AFP) refers to the method of extract-
ing content-based signatures from audio [1, 5, 10]. It is
commonly used in content-based music identification sys-
tems such as Shazam. 1 Van Balen proposed the use of AFP
for sample detection [24,25], using a popular fingerprinting
algorithm by Wang [27] in an implementation by Ellis [8].

Fingerprinting systems are robust against noise injection
and, with appropriate modifications, pitch shifting and time
stretching [31]. As long as the level difference between the
sample and other sources is within the noise level expecta-
tions, a modified system could be a good choice for sample
detection. Given that a sample might be mixed at a low
level, it is questionable if this assumption really holds true
for the majority of cases.

2.2 Cover Song Detection

Cover Song Detection (CSD) is the task of recognizing
whether a given reference track has a cover song in a set of
test tracks [2,9,19]. Covers may, for example, be transposed
and deviate from the original song in terms of tempo and
other properties. Dynamic Time Warping (DTW) [20] is
often used to make the comparison tempo-invariant. The
difference from SD is that covers are renditions of a musical
piece, while samples are snippets of audio which are usually
a part of the mix overlaid with multiple other instruments
and sounds unrelated to the sample. The evaluation of SD
systems, however, is similar to that of CSD. Both have a
test/reference pair which is then categorized as a positive or
negative match with or without a confidence measure.

2.3 Remix Recognition

Work done in remix recognition by Casey and Slaney [6]
draws inspiration from a method for web crawling called

1 https://www.shazam.com, last accessed: 4/26/2017
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‘shingling’ which utilizes a stream of text position-based
features to detect if a document has already been crawled
before. In their work, they compute audio features such
as pitch-class profiles and Log-Frequency Cepstral Coef-
ficients using 0.1 second frames. They concatenate these
feature vectors into 4 second ’shingles’ and model the distri-
bution of pair-wise distances between shingles from remixes
and shingles that are not from remixes. A nearest neighbor
classifier is used to identify which distribution a query ’shin-
gle’ belongs to. Such a system is not appropriate for SD
since this method relies on long-term similarity between
the query and the reference, however, a sample may be a
short, one-shot sample (triggered samples without looping).
A working remix recognition system, however, would be
helpful in ways similar to SD in that it helps with tracing
influences across artists. In addition, some remixing cases
might also involve instances of sampling.

2.4 Sample Detection with Non-negative Matrix
Factorization

Dittmar et al. listed sampling as one of three kinds of pla-
giarism in music [7]. They utilize Non-negative Matrix
Factorization (NMF) to learn the spectral templates from
the sample and detect the presence of these templates in the
suspect audio. Correlating the activations from the sample
and the song then gives the likelihood of plagiarism. While
the authors provide a general outline of a sample detection
system, they neither offer a detailed algorithmic description
nor a formal evaluation of their proposed system. In [28],
Whitney uses NMF in a similar manner except that instead
of factorizing entire spectrograms, NMF is applied to short
texture windows in the sample and the song. The detection
is done using pairwise 2-dimensional cross-correlation of
the two activation matrices obtained. To account for pitch
shifting and time stretching, the audio files are resampled
using factors computed by taking the ratio of the sample and
song BPM and multiple NMFs are performed. The issue
with this approach is that the time stretching and pitch shift
factor are not necessarily inverse when sampling. Nonethe-
less, NMF appears to be a good choice for a SD system
as fixed templates allow to obtain activations for only the
common components between the song and the sample.

The task of sample detection has been identified in music
information retrieval literature, and various approaches have
been proposed. However, it has not yet been well defined
in terms of evaluation methodology or metrics. Reasonably
sized datasets are also non-existent or proprietary. There-
fore, there is no formal evaluation that can be performed
to compare different sample detection methods. This paper
aims to bridge this gap by providing a dataset and propose
a common evaluation framework.

3. METHOD

The algorithm presented in this paper is inspired by the
proposal of Dittmar et al. [7]. Since the task of sample
detection is similar to a source identification problem where
the sample is one of the sources present in the mix, an NMF-
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Figure 1. High Level Block Diagram

based approach is fitting due to its prevalence in audio
source separation tasks [18, 21]. The block diagram in
Figure 1 shows the processing steps of the algorithm.

3.1 Non-Negative Matrix Factorization

NMF is a widely popular algorithm in unsupervised
learning with applications in recommendation systems
[12, 15, 16] and signal processing tasks, specifically source
separation [13, 23, 26]. NMF factorizes a signal matrix
V ∈ RM×N into a template matrix W ∈ RM×K and an
activation matrix H ∈ RK×N such that:

V ≈W ·H. (1)

If V is the magnitude spectrogram with M frequency bins
and N blocks, W contains the K spectral or harmonic
component templates in V while H contains temporal in-
formation about each corresponding spectral component in
the template matrix [22].

In a pre-processing step, both the original sample and the
paired song are RMS-normalized, downmixed, and down-
sampled to 22.05 kHz; then, their magnitude spectrogram
is computed (block size: 4096, hop size: 1024 samples).
Using NMF, the sample spectrogram will be factorized into
K templates Wo and the activation matrix Ho, o indicating
’original’. A sample, used in a song, may be thought of as
one source in a mixture of multiple sources in this song.
The factorization of the song will then be performed using
partially fixed NMF (PFNMF) [29, 30]. In this case, the
template matrix W consists of a fixed, not updated, part
containing the extracted templates Wo and a randomly ini-
tialized part Wm with L templates that is iteratively learned
and represents what we refer to as the mixture templates.
The dimension of the complete template matrix is thus
M × (K + L). All activations are iteratively updated as
well.

3.1.1 NMF Rank Selection

The rank K of the sample spectrogram has to be chosen
based on how many spectral templates can approximate the
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Figure 2. Geometric mean of cross-correlation functions.
Black function shows sample occurrence, while blue does
not have any samples.

specific sample. Similarly, while computing the PFNMF,
the rank L for approximating the templates representing
the remaining mixture in the song has to be selected in a
way that minimizes the impact on the fixed sample template
activations in order to robustly detect the sample.

Different songs will usually require different ranks for
accurately approximating and factorizing their magnitude
spectrograms with a low reconstruction error. In the current
algorithm, however, fixed ranks are chosen: K = 10 and
L = 20. The rationale behind using fixed low ranks is that
for this task a perfect reconstruction is not required and that
the following processing steps should be robust enough to
detect the sample regardless of whether the templates are
able to combine linearly to an accurate reconstruction of the
original spectrogram. If the sample is used in a song, the
same fixed templates should produce a roughly similar set
of activations independent of the mixture rank. Larger fixed
ranks were tested but no gain in performance was observed
while resulting in increased computational cost.

Still, a future extension might be to analyze the audio
separately as a pre-processing step to obtain a ‘complexity’
measure that could be used to adapt the ranks K and L
based on the signals to be modeled.

3.2 Activation Function Processing

In the subsequent analysis, only the activations Hs are of
interest. These are the activations corresponding to the orig-
inal templates Wo after PFNMF and indicate the presence
of the sample in the song if they match the pattern of the
original activations Ho. If the sample were neither pitch
shifted nor time stretched, cross-correlation functions be-
tween each corresponding activation in Ho and Hs could
be computed. Peaks in the aggregated (across the K di-
mensions) cross-correlation function would then indicate
the presence of the sample. Figure 2 shows two example
functions after using the geometric mean for aggregation: a
sample occurs twice in the black song (as indicated by the
two local maxima), while it is not present in the blue song.

3.2.1 Activation Normalization

Proper normalization of the activation matrix is essential
for accurate sample detection, however, there is no “cor-
rect” way to do this as the level (or even the presence) of
the sample in the paired song is unknown. The relative
activation levels between the K templates of one matrix,
however, should remain identical. Thus, each activation
matrix H is normalized by the absolute maximum across
all the K activations across time, preserving the relative
activation strengths for the spectral templates of the sample:
Hnormalized = H

max(H) .

3.2.2 Pitch Shifting & Time Stretching

The assumption that the sample is neither time stretched nor
pitch shifted is false for the majority of cases. In the dataset
used for this study, for example, 57.5% of samples are pitch
shifted. Pitch shifting is often required for the sample to
match the tonality of the song, and time stretching is often
required to adjust for tempo differences between the two.

In case of pitch shifting, the original templates Wo will
no longer be valid templates since the frequency axis of
the spectral content will be scaled by the pitch shift factor.
In order to account for pitch shifting, we construct new
spectral templates W p

o by scaling the frequency axis of
the original templates with a set of hypothetical pitch shift
factors. Now, a partially fixed NMF will be able to extract
activations corresponding to the pitch shifted templates and
these may be compared to the activations from the original
sample. Ideally, we would perform factorizations for a
set of hypothetical pitch shifts usually ranging from one
octave lower to one octave higher in semi-tone or quarter-
tone steps. For this paper, however, we allow the dataset
to inform our pitch shift steps. The used pitch shift set in
semi-tone steps from the original sample templates Wo is:

P = {p | p ∈ {−5,−4,−3,−2,−1, 0, 0.5, 1, 2, 3, 4, 5}}.

Partially-fixed NMF is then performed individually for
each pitch shift in P , i.e., 12 times. The activations Hp

s

correspond to the pitch shifted templates W p
o .

When the sample is time stretched, the activations from
the song will be stretched or compressed accordingly; there-
fore, cross-correlation cannot be used. In such a scenario,
DTW can align the activations Ho with the activations Hp

s

in the song for each pitch shift p. A distance matrix D is
constructed using the pair-wise correlation distance between
the K-dimensional activations. The size of D is No ×Ns,
where No is the number of frames in the original sample
activations and Ns is the number of frames in the song acti-
vations. Correlation is used as the distance measure because
it is scale independent. Preliminary tests showed that other
frequently used distance measures perform either similarly
or worse. The resulting distance matrix shows how similar
a set of activations is to the extracted activations at each
time instant. The distance matrix D and properties of the
extracted path can be used to indicate the presence of a
sample in a song. Figure 3 shows an example of a distance
matrix with a looped sample. The low cost parallel blue
paths indicate the presence of the sample.
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Figure 3. Distance matrix computed between activations
in the case where a sample is looped

The problem is now a subsequence search for the sample
activations Ho within the series of activations correspond-
ing to the sample templates in the song, Hp

s . A standard
DTW implementation would initialize the cost matrix C by
accumulating the first row and first column of the distance
matrix D. Such a scheme can be applied when only one
global optimal path that aligns the two entire time series is
required. In the case of sample detection, a sample could
be present in multiple locations within the song; hence, the
detection of multiple alignment paths at multiple locations
in D is required. Each of these paths should align the entire
sample with segments of the song. Therefore, the initial-
ization of C is modified to only accumulate the distances
along the dimension of the sample, which in our case is the
column. This subsequence DTW scheme [17] initializes
the cost matrix C as follows:

C(1, j) = D(1, j)

C(i, 1) =
i∑

k=1

D(k, i)
(2)

Initializing in this fashion and proceeding to compute the
cost matrix allows us to obtain backtracking paths from
every index in the last row of D (as opposed to one path
from the last element of D, which is the case for “standard”
DTW). The last row of the cost matrix C corresponds to
the cost of aligning the sample backtracking from every
frame of the song. The backtracking paths now satisfy the
requirement of aligning the entire sample with a section in
the song. To summarize, every alignment path obtained is
the path that aligns the sample activations Ho backtracking
from every frame f in the song activations Hp

s . Note that
the subsequence DTW is performed for each p ∈ P .

3.2.3 Pitch Candidate Selection

From the set of pitch shifts, the most likely pitch shift is
inferred before feature extraction. Of the 12 cost matrices,
the one corresponding to the most likely pitch candidate
will be the one with the global minimum cost (minimum of
the last row of the cost matrix),i.e., the one with a minimum
cost lower than the minimum cost of all other matrices. All
subsequent computations are based on the activation matrix
of the selected candidate; the results for the 11 remaining
pitch shifted templates are discarded.

Figure 4. DTW cost function; minima indicate the end of
the sample

3.3 Feature Extraction

The last row of the cost matrix C, containing the alignment
path costs normalized by the length of the path, will be
referred to as DTW cost function. Local minima in this
DTW cost function indicate potential sample end points.

Using an absolute threshold on the DTW cost function
to detect a sample is not meaningful because the absolute
cost level depends on both sample and song characteristics.
The mixing ratio of different samples in different songs will
be different. Some samples might occur in a section with no
other sources while others might be heavily overlaid with
other sounds, leading to interference and varying strength
in activations across different (song, sample) pairs. The
DTW backtracking paths from all possible end points to
their corresponding start location results in a set of unique
start locations in the song for each (song, sample) pair. We
refer to this mapping from every end point to a start point
in the song as DTW path start function. Every unique start
location is a candidate for a sample being present. Note
that each unique start location can have multiple paths/end
points. Figure 5 shows one example of this function. We
choose to derive features from the two functions we defined
above because we expect that the properties of the DTW
alignment paths vary depending on whether a sample is
present or not. The features extracted from this data are
explained in the following sections.

3.3.1 Cost-based Features

From the multiple path end points of each start location,
the following three features are extracted: (i) the minimum
DTW cost across all end points, (ii) the average DTW cost
across all end points, and (iii) the standard deviation of the
DTW cost across all end points.

3.3.2 Path-based Features

The properties of the DTW alignment path should be mean-
ingful for detecting the presence of the sample. For exam-
ple, the tempo of the sample should stay roughly constant,
meaning that the slope of the path stays constant as well.
Thus, the idealized path would connect start point and end
point with a straight line. Note that when we refer to end
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Figure 5. DTW path start function; Longer steps indicate
sample; Long steps indicate that several DTW paths back-
tracked to the same start point.

points here, we refer to the group of end points that map
to one unique start location. Overall, the following fea-
tures are extracted for every unique start location: (i) the
absolute length of the minimum cost path normalized by
the sample length, (ii) the slope of the minimum cost path,
(iii) the average perpendicular deviation of the minimum
cost path from the idealized path, normalized by the length
of the path, (iv) the average slope across all end point paths,
(v) the standard deviation of the slope across all end point
paths, (vi) the average absolute length of all end point paths
normalized by the sample length, (vii) the standard devia-
tion of the absolute length of all end point paths normalized
by the sample length, (viii) the average perpendicular de-
viation from the idealized path across all end point paths,
normalized by the length of the paths, (ix) the standard
deviation of the perpendicular deviation from the idealized
path across all end point paths, normalized by the length of
the path, and (x) the number of end points mapping to this
unique start location.

3.4 Classification

Each unique start location is represented by a 13-
dimensional feature vector, which is a data point that can be
used as the input to a binary classifier for detecting whether
a sample is present or not. A random forest classifier with an
ensemble of 200 decision trees was chosen [3]. The number
of features chosen for each decision split is 4 and has been
decided based on the convention of choosing round(

√
n)

where n is the number of features, 13. The output is a
probability of the data point belonging to each class.

4. EVALUATION

4.1 Dataset

A dataset for Sample Detection was compiled using data
from whosampled.com 2 which aggregates information
about songs that sample or cover other songs. The au-
dio was downloaded using web services from streaming
websites such as Youtube or Dailymotion.

2 www.whosampled.com, last accessed: 1/22/2017

Eighty popular samples (according to the users of
Whosampled) were selected from the catalog of songs
by popular and frequently sampled artists such as James
Brown, Stevie Wonder, Michael Jackson, and Queen. The
resulting set has a balanced distribution among the genres
Pop, Rock, Funk and Hip-Hop.

The samples cover several variations of sampling such
as: one-shot samples of musical snippets or voice samples,
looped drums, and looped melodies. The length of the
longest sample is 25 s, the shortest is half a second and the
average length of the samples is 4.5 s seconds. The total
number of sampling instances is 876. The overall dataset
contains 80 pairs of original song and sampling song.

The following annotations were added manually with
the software Sonic Visualizer [4]: (i) start and end time in
seconds of the sample in the original song, (ii) start time in
seconds of the sample in the sampling song, and (iii) pitch
shift (in semi-tones) of the sample in the sampling song.
57.5% of the samples are pitch shifted. Pitch shift was
annotated by a human listener by ear. In cases where the
pitch shift was difficult to ascertain, the sample and song
snippet was compared in a DAW and different pitch shifts
were tested until a match was found. These annotations
plus additional meta-data including the song names, iden-
tifiers, and URLs for obtaining the audio have been made
available publicly in an online repository. 3 The repository
also contains the MATLAB source code for the algorithm.

4.2 Experiments

For each of the 80 samples in our dataset, there are 79
songs in which the sample does not occur. We randomly
pick 9 songs from these 79 songs. This, in combination
with the one song that includes the sample, results in a pool
of 10 songs to be paired with each sample, resulting in an
overall number of queries: 80 ·10 = 800 for the 80 samples.
Performing experiments with all possible pairs in the entire
dataset would be impractical without more compute power.
This overall set is split into a training set of 50 samples/500
queries and a test set of 30 samples/300 queries.

In order to use the ground truth data for training, one
additional step of interaction is necessary: all unique start
points have to be labeled as ‘0’ or ‘1’ based on whether
a sample is present. More specifically, the start points
associated with minimum DTW cost within a 1 s window
of the ground truth annotation are labeled ‘1’ and the rest
are labeled ‘0’. Multiple start points within the tolerance
range are merged so that the minimum cost path remains.

For the test set, any positive detection of the sample
within a 1 s tolerance window of the ground truth anno-
tation will be regarded as True Positive. Every positive
detection outside of this tolerance window and for queries
not containing the sample will be regarded as False Positive.

With respect to the metrics, the False Positive Rate, Preci-
sion, Recall, and the F-measure are reported for the sample
location detection. We refer to these as Micro-accuracy
measures as they take into account the sample location and
the number of occurrences.

3 https://github.com/SiddGururani/sample detection
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Precision Recall F-measure Fp-rate
Micro 79.37% 34.60% 48.19% 0.04%
Macro 83.33% 50.00% 62.50% 1.11%

Table 1. Results for song-level macro accuracy and sample
location-level micro accuracy measures

Macro-accuracy measures, on the other hand, report the
song-level sample detection results and indicate whether
a sample is present in a song or not regardless of position
and number of occurrences. The same metrics are reported,
but the sample detection is evaluated per song rather than
per sample instance. In summary, using both the Macro
and Micro-level accuracy metrics we are able to report the
performance of the method in two usage scenarios: First,
detecting whether a sample is present in a song (Macro),
and second, detecting where in a song and how often a
given sample is present (Micro).

5. RESULTS AND DISCUSSION

Table 1 reports the test accuracy of the classifier. The re-
sults show that the presented method is somewhat effective
at detecting the presence of sampling in a set of songs with
a low false-positive rate and a reasonably high precision.
The low recall of the method can be attributed to the highly
imbalanced nature of the problem as depicted in the confu-
sion matrix in Table 5: the testing dataset has 289 instances
of sampling against around 74,000 instances that are not
locations of sampling. The training set is similarly skewed
in its distribution of positive and negative classes. We ob-
serve an area under receiver operating characteristic curve
(AUROC) of 72.54%, a result strongly impacted by the low
false positive rate due to the imbalanced classes.

A possible reason for the low recall is also that the
method is not always accurate when it comes to picking
candidates. More specifically, it already misses approx-
imately 7% of sampling instances during the candidate
selection stage. This number is computed by classifying all
unique start locations as sample instances and calculating
the number of false negatives. A closer investigation of
some training samples showed that sometimes the DTW
cost function did not have a minimum at respective sam-
ple locations. In these cases, the distance matrix would
not contain clear alignment paths like the one shown in
Figure 3. The absence of clear alignment paths might stem
from incorrect modeling of the fixed sample templates in
the song NMF step or pitch shifts not considered in our
algorithm. The choice of the distance measure might also
impact the results: while the use of the correlation distance
makes sense because it is scale invariant, custom distance
measures might outperform it in this particular use-case.

It is worth pointing out that most problematic cases that
we came across were hard to detect for humans as well.
These cases included sparse drum loops, very short sam-
ples, samples that were mixed at a very low level, and
samples with excessive use of audio effects applied to them.
The high precision of our method, especially in the macro-

Micro Not Sample Sample
Not Sample 74126 26

Sample 189 100

Macro No Sample Has Sample
No Sample 267 3
Has Sample 15 15

Table 2. Confusion Matrices for Micro & Macro Accuracy

accuracy use case, enables utilizing this system as a pre-
processing step to a manual detection of sampling instances,
e.g., for studies that trace artist influences. Given a database
of songs and a set of samples to look for in the database,
this method can be used to pre-label data as cases of sam-
pling with high confidence on songs where samples are
detected, allowing the human operator to focus on the re-
maining database. In the context of plagiarism detection, a
high precision enables such a system to be used with high
confidence in case of a positive detection of plagiarism.
However, a low recall system “favors” the sampling artists
so the involvement of human experts remains a requirement.

6. CONCLUSION AND FUTURE WORK

We introduced a method to detect the presence of a sam-
ple in a set of songs robust against common sampling modi-
fications such as pitch shifting and time stretching. PFNMF
is used to extract sample activations from the song, and
DTW is used to align the set of activations obtained from
the song and the sample. We also present a new publicly
available dataset of real-world samples and songs contain-
ing fine-grained annotations for exact time locations of
sample occurrences within the song. The presented method
is evaluated against this dataset and we obtain 79.37% pre-
cision in detecting the exact location of the sample and
83.33% precision in song-level detection of a given sample.

Further research is required in order to improve the us-
ability of this method. Since the algorithm works for many
cases, a systematic way to improve it would be to more
closely investigate the problematic cases in order to design
modifications and algorithmic extensions to increase recall.

As this problem is inherently unbalanced, a possible
direction is to observe best practices for machine learn-
ing on imbalanced datasets. In addition to undersampling,
other techniques such as algorithmic modifications and cost-
sensitive learning that may be employed to solve imbal-
anced classification problems [14].

Investigating custom distance measures for the DTW
is another possible avenue to explore. Applying a non-
linearity to the NMF activations may help in increasing the
sparsity, possibly improving the differentiation between an
instance containing a sample and one that does not.

Sample detection is an intriguing and challenging, yet
largely untouched MIR task and it is our hope that the
dataset and this paper will encourage future work on this
topic in the MIR community.
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ABSTRACT

Chord recognition is a fundamental task in the harmonic
analysis of tonal music, in which music is processed into
a sequence of segments such that the notes in each seg-
ment are consistent with a corresponding chord label. We
propose a machine learning model for chord recognition
that uses semi-Markov Conditional Random Fields (semi-
CRFs) to perform a joint segmentation and labeling of
symbolic music. One benefit of using a semi-Markov
model is that it enables the utilization of segment-level fea-
tures, such as segment purity and chord coverage, that cap-
ture the extent to which the events in an entire segment of
music are compatible with a candidate chord label. Corre-
spondingly, we develop a rich set of segment-level features
for a semi-CRF model that also incorporates the likelihood
of a large number of chord-to-chord transitions. Evalua-
tions on a dataset of Bach chorales and a corpus of theme
and variations for piano by Beethoven and Mozart show
that the proposed semi-CRF model outperforms a discrim-
inatively trained Hidden Markov Model (HMM) that does
sequential labeling of sounding events, thus demonstrating
the suitability of semi-Markov models for joint segmenta-
tion and labeling of music.

1. INTRODUCTION AND MOTIVATION

Harmonic analysis is an important step towards creating
high level representations of tonal music. High level struc-
tural relationships form an essential component of music
analysis, whose aim is to achieve a deep understanding of
how music works. At its most basic level, harmonic anal-
ysis requires the partitioning of music into segments along
the time dimension, such that the notes in each segment
correspond to a musical chord. This chord recognition
task can often be time consuming and cognitively demand-
ing, hence the utility of computer-based implementations.
Reflecting historical trends in artificial intelligence, auto-
matic approaches to harmonic analysis have evolved from
purely grammar-based and rule-based systems [6, 15], to

c� Kristen Masada, Razvan Bunescu. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Kristen Masada, Razvan Bunescu. “Chord Recognition
in Symbolic Music using semi-Markov Conditional Random Fields”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

Figure 1. Segment-based recognition (top) vs. event-
based recognition (bottom), on measures 11 and 12 from
Beethoven WoO68.

systems employing weighted rules and optimization algo-
rithms [8, 11, 13, 14], to data driven approaches based on
supervised machine learning (ML) [9, 10]. Due to their re-
quirements for annotated data, ML approaches have also
led to the development of music analysis datasets contain-
ing a large number of manually annotated harmonic struc-
tures, such as the 60 Bach Chorales introduced in [9], and
the 27 theme and variations of TAVERN [2].

A relatively common strategy in ML approaches to
chord recognition is to break the musical input into a se-
quence of short duration spans and then train sequence
tagging algorithms such as HMMs to assign a chord label
to each span in the sequence (at the bottom in Figure 1).
The spans can result from quantization using a fixed mu-
sical period such as half a measure [10] or constructed
from consecutive note onsets and offsets [9]. Variable-
length chord segments are then created by joining consec-
utive spans labeled with the same chord symbol (at the top
in Figure 1). A significant drawback of these short-span
tagging approaches is that segments are not known during
training and inference, therefore the ML model cannot use
features that capture properties of segments that are known
to be relevant with respect to their harmonic content. The
chordal analysis system of Pardo and Birmingham [8] is
an example where the assignment of chords to segments
takes into account segment-based features, however it uses
a processing pipeline where segmentation is done indepen-
dently of the subsequent chord labeling.

In this paper, we propose a machine learning approach
to chord recognition in which a semi-Markov CRF model
is trained to do joint segmentation and labeling of sym-
bolic music. Also called segmental CRFs, this class of
models can exploit features that look at all the notes in-
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side a segment. Correspondingly, we define a rich set of
features that capture the extent to which the events in an
entire segment of music are compatible with a candidate
chord label. When evaluated on a dataset of Bach chorales,
the semi-CRF approach obtains a 15% error reduction over
an event-tagging system. Substantially larger improve-
ments in event-level and segment-level performance are
observed on a more difficult corpus of theme and variations
by Beethoven and Mozart, thus validating empirically the
modeling advantage of joint segmentation and labeling.

2. SEMI-MARKOV CRF MODEL FOR CHORD
RECOGNITION

Since harmonic changes may occur only when notes be-
gin or end, we first create a sorted list of all the note on-
sets and offsets in the input music, i.e. the list of partition
points [8]. A basic music event [9] is then defined as the
set of notes sounding in the time interval between two con-
secutive partition points. Let s = hs1, s2, ..., sKi denote
a segmentation of the musical input x, where a segment
sk = hsk.f, sk.li is identified by the indices sk.f and sk.l
of its first and last events, respectively.

Let y = hy1, y2, ..., yKi be the vector of chord labels
corresponding to the segmentation s. The set of labels
can range from coarse grained labels that indicate only the
chord root [14] to fine grained labels that capture mode,
inversions, added and missing notes [3], and even chord
function [2]. Here we follow the middle ground proposed
by Radicioni and Esposito [9] and define a set of labels that
encode the chord root (12 pitch classes), the mode (ma-
jor, minor, diminished), and the added note (none, fourth,
sixth, seventh), for a total of 144 different labels. Since
the labels do not encode for function, the model does not
require knowing the key in which the input was written.

A semi-Markov CRF [12] defines a probability distribu-
tion over segmentations and their labels as shown in Equa-
tions 1 and 2. Here, the global segmentation feature vec-
tor F decomposes as a sum of local segment feature vec-
tors f(sk, yk, yk�1,x), with label y0 set to a constant “no
chord” value. The ensuing factorization of the distribution
enables an efficient computation of the most likely seg-
mentation argmax

s,y P (s,y|x,w) using a semi-Markov
analogue of the Viterbi algorithm [12].

P (s,y|x,w) =

ew
T
F(s,y,x)

Z(x)

(1)

Z(x) =

X

s,y

ew
T
F(s,y,x)

F(s,y,x) =

KX

k=1

f(sk, yk, yk�1,x) (2)

Following Muis and Lu [7], for faster inference, we further
restrict the local segment features to two types: segment-
label features f(sk, yk,x) that depend on the segment and
its label, and label transition features g(yk, yk�1,x) that
depend on the labels of the current and previous segments.
The corresponding probability distribution over segmenta-
tions is shown in Equations 3 to 5 below.

Given an arbitrary segment s and a label y, the vector
of segment-label features can be written as f(s, y,x) =

[f1(s, y), ..., f|f |(s, y)], where the input x is left implicit
in order to compress the notation. Similarly, given arbi-
trary labels y and y0, the vector of label transition features
can be written as g(y, y0,x) = [g1(y, y0), ..., g|g|(y, y

0
)].

In Section 3 we describe the set of segment-label features
fi(s, y) and label transition features gj(y, y0) that are used
in our semi-CRF chord recognition system.

P (s,y|x,w) =

ew
T
F(s,y,x)+u

T
G(s,y,x)

Z(x)

(3)

F(s,y,x) =

KX

k=1

f(sk, yk,x) (4)

G(s,y,x) =

KX

k=1

g(yk, yk�1,x) (5)

3. CHORD RECOGNITION FEATURES

Given a segment s and chord y, we will use the following
notation:

• s.Notes , s.N = the set of notes in the segment s.

• s.Events , s.E = the sequence of events in s.

• e.len, n.len = the length of event e or note n, in
quarters.

• e.acc, n.acc = the accent value of event e or note n,
as computed by the beatStrength() function in
Music21 1 . This is a value that is determined based
on the metrical position of n, e.g. in a song written
in a 4/4 time signature, the first beat position would
have a value of 1.0, the third beat 0.5, and the sec-
ond and fourth beats 0.25. Any other eighth note
position within a beat would have a value of 0.125,
any sixteenth note position strictly within the beat
would have a value of 0.0625, and so on.

• y.root , y.third , and y.fifth = the triad tones of the
chord y.

• y.added = the added note of chord y, if y is an added
tone chord.

We use the following heuristics to determine whether a
note n from a segment s is a figuration note with respect to
a candidate chord label y:

1. Passing: There are two anchor notes n1 and n2 such
that: n1’s offset coincides with n’s onset; n2’s onset
coincides with n’s offset; n1 is one scale step below
n and n2 is one step above n, or n1 is one step above
n and n2 one step below; n is not longer than either
n1 or n2; the accent value of n is strictly smaller than
the accent value of n1; at least one of the two anchor
notes belongs to segment s; n is non-harmonic with
respect to chord y, i.e. n is not equivalent to the root,

1 http://web.mit.edu/music21
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third, fifth, or added note of y; both n1 and n2 are
harmonic with respect to the segments they belong
to.

2. Neighbor: There are two anchor notes n1 and n2

such that: n1’s offset coincides with n’s onset; n2’s
onset coincides with n’s offset; n1 and n2 are both
either one step below or one step above n; n is not
longer than either n1 or n2; the accent value of n is
strictly smaller than the accent value of n1; at least
one of the two anchor notes belongs to segment s; n
is non-harmonic with respect to chord y; both anchor
notes are harmonic with respect to the segments they
belong to.

3. Suspension: Note n belongs to the first event of seg-
ment s. There is an anchor note m in the previous
event (last event in the previous segment) such that:
m and n have the same pitch; n is either tied with
m (i.e. held over) or m’s offset coincides with n’s
onset (i.e. restruck); n is not longer than m; n is
non-harmonic with respect to chord y, while m is
harmonic with respect to the previous chord.

4. Anticipation: Note n belongs to the last event of
segment s. There is an anchor note m in the next
event (first event in the next segment) such that: n
and m have the same pitch; m is either tied with
n (i.e. held over) or n’s offset coincides with m’s
onset (i.e. restruck); n is not longer than m; n is
non-harmonic with respect to chord y, while m is
harmonic relative to all other notes in its event.

Futhermore, because we are using the weak semi-CRF fea-
tures shown in Equation 4, we need a heuristic to determine
whether an anchor note is harmonic whenever the anchor
note precedes the current segment. The heuristic simply
looks at the other notes in the event containing the anchor
note: if the event contains 2 or more other notes, at least 2
of them need to be consonant with the anchor, i.e. intervals
of octaves, fifths, thirds, and their inversions; if the event
contains just one other note, it has to be consonant with the
anchor.

We emphasize that the rules mentioned above for de-
tecting figuration notes are only approximations. We rec-
ognize that correctly identifying figuration notes can also
depend on subtler stylistic and contextual cues, thus allow-
ing for exceptions to each of these rules.

Equipped with this heuristic definition of figuration
notes, we augment the notation as follows:

• s.Fig(y) = the set of notes in s that are figuration
with respect to chord y.

• s.NonFig(y) = s.Notes � s.Fig(y) = the set of
notes in s that are not figuration with respect to y.

Some of the segment-label features introduced in this
section have real values. Given a real-valued feature
f(s, y) that takes values in [0, 1], we discretize it into K+2

Boolean features by partitioning the [0, 1] interval into a set

of K subinterval bins B = {(bk�1, bk]|1  k  K}. For
each bin, the corresponding Boolean feature determines
whether f(s, y) 2 (bk�1, bk]. Additionally, two Boolean
features are defined for the boundary cases f(s, y) = 0 and
f(s, y) = 1. For each real-valued feature, unless specified
otherwise, we use the bin set B = [0, 0.1, ..., 0.9, 1.0].

3.1 Segment Purity

The segment purity feature f1(s, y) computes the fraction
of the notes in segment s that are harmonic, i.e. belong to
chord y:

f1(s, y) =

X

n2s.Notes

1[n 2 y]

|s.Notes|
The duration-weighted version f2(s, y) of the purity fea-

ture weighs each note n by its length n.len:

f2(s, y) =

X

n2s.Notes

1[n 2 y] ⇤ n.len

X

n2s.Notes

n.len

The accent-weighted version f3(s, y) of the purity feature
weighs each note n by its accent weight n.acc:

f3(s, y) =

X

n2s.Notes

1[n 2 y] ⇤ n.acc

X

n2s.Notes

n.acc

The 3 real-valued features are discretized using the default
bin set B.

3.1.1 Figuration-Controlled Segment Purity

For each segment purity feature, we create a figuration-
controlled version that ignores notes that were heuristi-
cally detected as figuration, i.e. replace s.Notes with
s.NonFig(y) in each feature formula.

3.2 Chord Coverage

The chord coverage features determine which of the chord
notes belong to the segment. The first 3 features refer to
the triad notes:

f4(s, y) = 1[y.root 2 s.Notes]

f5(s, y) = 1[y.third 2 s.Notes]

f6(s, y) = 1[y.fifth 2 s.Notes]

A separate feature determines if the segment contains all
the notes in the chord:

f7(s, y) =
Y

n2y

1[n 2 s.Notes]

A chord may have an added tone y.added , such as a 4th,
a 6th, or a 7th. If a chord has an added tone, we define two
features that determine whether the segment contains the
added note:

f8(s, y) = 1[9y.added ^ y.added 2 s.Notes]

f9(s, y) = 1[9y.added ^ y.added /2 s.Notes]
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Through the first feature, the system can learn to prefer the
added tone version of the chord when the segment con-
tains it, while the second feature enables the system to
learn to prefer the triad-only version if no added tone is
in the segment. To prevent the system from recognizing
added chords too liberally, we add a feature that is trig-
gered whenever the total length of the added note in the
segment is greater than the total length of the root:

alen(s, y) =
X

n2s.Notes

1[n = y.added ] ⇤ n.len

rlen(s, y) =
X

n2s.Notes

1[n = y.root ] ⇤ n.len

f10(s, y) = 1[9y.added ] ⇤ 1[alen(s, y) > rlen(s, y)]

The duration-weighted versions of the chord coverage fea-
tures weigh each chord tone by its total duration in the
segment. For the root, the feature would be computed as
shown below:

f11(s, y) =

X

n2s.Notes

1[n = y.root ] ⇤ n.len

X

n2s.Notes

n.len

Similar features f12 and f13 are computed for the third and
the fifth. The corresponding accent-weighted features f14,
f15, and f16 are computed in a similar way, by replacing
the note duration n.len in the duration-weighted formulas
with the note accent value n.acc.

The duration-weighted feature for the added tone is
computed similarly:

f17(s, y) =

1[9y.added ] ⇤
X

n2s.Notes

1[n = y.added ] ⇤ n.len

X

n2s.Notes

n.len

Furthermore, by replacing n.len with n.acc, we also ob-
tain the accent-weighted version f18.

An alternative definition of duration-weighted features
is based on the proportion of the segment time that is
covered by a particular chord note. The corresponding
duration-weighted feature for the chord root is shown be-
low:

f19(s, y) =

X

e2s.Events

1[y.root 2 e] ⇤ e.len

X

e2s.Events

e.len

Similar duration-weighted features normalized by the seg-
ment length are defined for thirds, fifths, and added notes.

All duration-weighted and accent-weighted features are
discretized using the default bin set B.

3.2.1 Figuration-Controlled Chord Coverage

For each chord coverage feature, we create a figuration-
controlled version that ignores notes that were heuristi-
cally detected as figuration, i.e. replace s.Notes with
s.NonFig(y) in each feature formula.

3.3 Bass

The bass note provides the foundation for the harmony of
a musical segment. For a correct segment, its bass note of-
ten matches the root of its chord label. If the bass note in-
stead matches the chord’s third, fifth, or added dissonance,
this may indicate that the chord is inverted. Thus, compar-
ing the bass note with the chord tones can provide useful
features for determining whether a segment is compatible
with a chord label.

There are multiple ways to define the bass note of a seg-
ment s. One possible definition is the lowest note of the
first event in the segment, i.e. s.e1.bass . Comparing it with
the root, third, fifth, and added tones of a chord results in
the following features:

f20(s, y) = 1[s.e1.bass = y.root ]

f21(s, y) = 1[s.e1.bass = y.third ]

f22(s, y) = 1[s.e1.bass = y.fifth]

f23(s, y) = 1[9y.added ^ s.e1.bass = y.added ]

An alternative definition of the bass note of a segment is
the lowest note in the entire segment, i.e. mine2s.E e.bass .
The corresponding features will be:

f24(s, y) = 1[y.root = min

e2s.E
e.bass]

f25(s, y) = 1[y.third = min

e2s.E
e.bass]

f26(s, y) = 1[y.fifth = min

e2s.E
e.bass]

f27(s, y) = 1[9y.added ^ y.added = min

e2s.E
e.bass]

The duration-weighted version of the bass features
weigh each chord tone by the time it is used as the low-
est note in each segment event, normalized by the duration
of the bass notes in all the events. For the root, the feature
is computed as shown below:

f28(s, y) =

X

e2s.Events

1[e.bass = y.root ] ⇤ e.len

X

e2s.Events

e.len

Similar features f29 and f30 are computed for the third
and the fifth. The duration-weighted feature for the added
tone is computed as follows:

f31(s, y) =

1[9y.added ] ⇤
X

e2s.E

1[e.bass = y.root ] ⇤ e.len

X

e2s.E

e.len

The corresponding accent-weighted features f31, f32, f33,
and f34 are computed in a similar way, by replacing the
bass duration e.bass.len in the duration-weighted formulas
with the note accent value e.bass.acc.

All duration-weighted and accent-weighted features are
discretized using the default bin set B.
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3.3.1 Figuration-Controlled Bass

For each bass feature, we create a figuration-controlled
version that ignores event bass notes that were heuristi-
cally detected as figuration, i.e. replace e 2 s.Events with
e 2 s.Events^e.bass /2 s.Fig(y) in each feature formula.

3.4 Chord Bigrams

The arrangement of chords in chord progressions is an im-
portant component of harmonic syntax [1]. A first order
semi-Markov CRF model can capture chord sequencing in-
formation only through the chord labels y and y0 of the cur-
rent and previous segment. To obtain features that gener-
alize to unseen chord sequences, we follow Radicioni and
Esposito [9] and create chord bigram features using only
a) the mode: major (M), minor (m), or diminished (d); b)
the added note: none (;), fourth (4), sixth (6), or seventh
(7); and c) the interval in semitones between the roots of
the two chords.

g1(y, y
0) = 1[y.mode={M,m, d} ^ y.added={;, 4, 6, 7}^

y0.mode={M,m, d} ^ y0.added={;, 4, 6, 7}^
��y.root � y0.root

�� = {0, 1, ..., 11}]

Note that g1(y, y0) is a feature template that can gen-
erate (3 modes ⇥ 4 added)2⇥ 12 intervals = 1,728 dis-
tinct features. To reduce the number of features, we use
only the (mode.added)–(mode.added)’–interval combina-
tions that appear in the manually annotated chord bigrams
from the training data.

4. CHORD RECOGNITION DATASETS

For evaluation, we used two chord recognition datasets:

1. BCHD: this is the Bach Choral Harmony Dataset, a
corpus of 60 four-part Bach chorales that contains
5,664 events and 3,090 segments in total [9].

2. TAVERN: this is a corpus of 27 complete sets of
theme and variations for piano, composed by Mozart
and Beethoven. It consists of 63,876 events and
12,802 segments overall [2].

The BCHD corpus has been annotated by a human expert
with chord labels, using the set of labels described in Sec-
tion 2. Of the 144 possible labels, 102 appear in the dataset
and of these only 68 appear 5 times or more. Some of the
chord labels used in the manual annotation are enharmonic,
e.g. C-sharp major and D-flat major, or D-sharp major and
E-flat major. Reliably producing one of two enharmonic
chords cannot be expected from a system that is agnostic
of the key context. Therefore, we normalize the chord la-
bels and for each mode we define a set of 12 canonical
roots, one for each scale degree. When two enharmonic
chords are available for a given scale degree, we selected
the one with the fewest sharps or flats in the correspond-
ing key signature. Consequently, for the major mode we
use the canonical root set {C, Db, D, Eb, F, Gb, G, Ab,
A, Bb, B}, whereas for the minor and diminished modes

we used the root set {C, C#, D, D#, F, F#, G, G#, A, Bb,
B}. Thus, if a chord is manually labeled as C-sharp ma-
jor, the label is automatically changed to the enharmonic
D-flat major. The actual chord notes used in the music are
left unchanged. Whether they are spelled with sharps or
flats is immaterial, as long as they are enharmonic with the
root, third, fifth, or added note of the labeled chord.

The TAVERN dataset 2 currently contains 17 works by
Beethoven (181 variations) and 10 by Mozart (100 vari-
ations). The themes and variations are divided into a
total of 1,060 phrases, 939 in major and 121 in minor.
The pieces have two levels of segmentations: chords and
phrases. The chords are annotated with Roman numer-
als, using the Humdrum representation for functional har-
mony 3 . When finished, each phrase will have annotations
from two different experts, with a third expert adjudicat-
ing cases of disagreement between the two. After adjudi-
cation, a unique annotation of each phrase is created and
joined with the note data into a combined file encoded in
standard **kern format. However, many pieces do not cur-
rently have the second annotation or the adjudicated ver-
sion. Consequently, we only used the first annotation for
each of the 27 sets. Furthermore, since our chord recog-
nition approach is key agnostic, we developed a script that
automatically translated the Roman numeral notation into
the key-independent canonical set of labels used in BCHD.
Because the TAVERN annotation does not mark added
fourth or sixth notes, the only added chords that were gen-
erated by the translation script were those containing sev-
enths. This results in a set of 72 possible labels, of which
69 appear in the dataset.

Few other annotated chord recognition datasets exist.
One of these is the Kostka-Payne corpus 4 , a dataset of 46
brief excerpts compiled by David Temperley from Kostka
and Payne’s music theory textbook [4]. Several chord
recognition systems have used this dataset in the past [8,9].
However, it is smaller than both BCHD and TAVERN,
with 3,964 events and only 779 segments. Another dataset
is Chris Harte’s Beatles collection [3], containing anno-
tations for 12 complete albums. Though this dataset is
much larger in size, the chord labels are mapped to audio.
We considered re-mapping these labels to MIDI files, but
had difficulty finding accurate MIDI files for most Beatles
songs.

5. EXPERIMENTAL EVALUATION

We implemented the semi-Markov CRF chord recognition
system using a multi-threaded package 5 that has been pre-
viously used for noun-phrase chunking of informal text [7].
Following the experimental setting from [9], we evaluated
the semi-CRF model on BCHD using 10-fold cross val-
idation: the 60 Bach Chorales were split into 10 folds,
and each fold was used as test data, with the other nine
folds being used for training. We used the same parti-

2 https://github.com/jcdevaney/TAVERN
3 http://www.humdrum.org/Humdrum/representations/harm.rep.html
4 http://www.cs.northwestern.edu/ pardo/kpcorpus.zip
5 http://statnlp.org/research/ie/
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tion into folds as that employed by Radicioni and Espos-
ito [9], to enable comparison with their perceptron-trained
HMM system, henceforth referred to as HMPerceptron.
We also used their set of labels, consisting of the 102
chords observed in the dataset, which corresponds to 90
canonical chords. For each feature we computed its fre-
quency of occurrence in the training data, using only the
true segment boundaries and their labels. To speedup train-
ing and reduce overfitting, we only used features whose
counts were at least 5. The performance measures were
computed by pooling together the results from the 10 test
folds. Table 1 shows the event-level and segment-level
performance of the semi-CRF model, together with two
versions of the HMPerceptron: HMPerceptron1, for which
we do enharmonic normalization both on training and test
data, similar to the normalization done for semi-CRF; and
HMPerceptron2, which is the original system from [9] that
does enharmonic normalization only on test data. When
computing the segment-level performance, a predicted seg-
ment is considered correct only if both its boundaries and
its label match those of the true segment.

System AccE PS RS FS

semi-CRF 83.16% 77.60% 73.48% 75.48%
HMP-tron1 80.30% 74.18% 69.76% 71.90%
HMP-tron2 80.16% 70.24% 65.78% 67.94%

Table 1. Comparative results on the BCHD dataset, using
Event-level accuracy (AccE) and Segment-level precision
(PS), recall (RS), and F-measure (FS).

The semi-CRF model achieves a 3% improvement in
accuracy over the original HMPerceptron model, which
corresponds to a 15% relative error reduction. The im-
provement in accuracy over HMPerceptron1 is statistically
significant at a p-value of 0.01, using a one-tailed Welch’s
t-test over the sample of 60 chorale results. The improve-
ment in segment-level performance is even more substan-
tial, with a 7.5% absolute improvement in F-measure over
the original HMPerceptron model, and a 3.6% improve-
ment in F-measure over the HMPerceptron1 version, which
is statistically significant at a p-value of 0.04, using a one-
tailed Welch’s t-test.

Error analysis revealed wrong predictions being made
on chords that contained dissonances that spanned the du-
ration of the entire segment (e.g. a second above the root of
the annotated chord), likely due to an insufficient number
of such examples during training. Manual inspection also
revealed a non-trivial number of cases in which the authors
disagreed with the manually annotated chords, e.g. some
chord labels were clear mistakes, as they did not contain
any of the notes in the chord. This further illustrates the
necessity of building music analysis datasets that are an-
notated by multiple experts, with adjudication steps akin
to the ones followed by TAVERN.

To evaluate on the TAVERN corpus, we created a test
dataset from 6 Beethoven sets (B063, B064, B065, B066,
B068, B069) and 4 Mozart sets (K025, K179, K265, K353).

The remaining 11 Beethoven sets and 6 Mozart sets were
used for training. All sets were normalized enharmoni-
cally before being used for training or testing. Table 2
shows the event-level and segment-level performance of
the semi-CRF and HMPerceptron model on the TAVERN
dataset. Despite the smaller number of chord labels (69 in

System AccE PS RS FS

semi-CRF 77.47% 66.86% 60.35% 63.44%
HMP-tron 60.55% 27.83% 23.21% 25.31%

Table 2. Comparative results on the TAVERN dataset, us-
ing Event-level accuracy (AccE) and Segment-level preci-
sion (PS), recall (RS), and F-measure (FS).

TAVERN vs. 90 in BCHD), the results in Tables 1 and 2
show that chord recognition is substantially more difficult
in the TAVERN dataset. The comparatively lower perfor-
mance on TAVERN is likely due to the substantially larger
number of figurations and higher rhythmic diversity of the
variations compared to the easier, mostly note-for-note tex-
ture of the chorales. Error analysis on TAVERN revealed
many segments where the first event did not contain the
root of the chord. For such segments, HMPerceptron in-
correctly assigned chord labels whose root matched the
bass of this first event. Since a single wrongly labeled
event invalidates the entire segment, this can explain the
larger discrepancy between the event-level accuracy and
the segment-level performance. In contrast, semi-CRF as-
signed the correct labels in these cases, likely due to its
ability to exploit context through segment-level features,
such as the chord root coverage feature f4 and its duration-
weighted version f11.

6. CONCLUSION AND FUTURE WORK

We presented a semi-Markov CRF approach to chord
recognition that does joint segmentation and labeling of
tonal music in symbolic form. Compared to event-level
tagging approaches based on HMMs or linear CRFs, the
segmental CRF approach has the advantage that it can ac-
commodate features that consider all the notes in a candi-
date segment. This capability was shown to be especially
useful for music with complex textures that diverge from
the simpler note-for-note structures of the Bach chorales.
On the more difficult TAVERN corpus, the semi-CRF sub-
stantially outperformed a previous system based on event-
level tagging, thus validating empirically the suitability of
joint segmentation and labeling for chord recognition.

Manually engineering good features for chord recogni-
tion is a cognitively demanding and time consuming pro-
cess that requires music theoretical knowledge and that
is unlikely to lead to optimal sets of features, especially
when complex features are involved. In future work we
plan to investigate automatic feature extraction using re-
current neural networks (RNN) that preserve the semi-
Markov property, such as the recently proposed segmental
RNNs [5].

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 277



7. ACKNOWLEDGMENTS

We would like to thank Patrick Gray for his help with pre-
processing the TAVERN corpus. We also greatly appreci-
ate the prompt help provided by Daniele P. Radicioni and
Roberto Esposito. Their detailed responses to our ques-
tions and willingness to share the original BCHD dataset
and the HMPerceptron code enabled us to conduct a more
thorough experimental comparison with their system. Fi-
nally, we would like to thank the anonymous reviewers for
their insightful comments on the initial draft of this paper.

8. REFERENCES

[1] E. Aldwell, C. Schachter, and A. Cadwallader. Har-
mony and Voice Leading. Schirmer, 4th edition, 2011.

[2] Johanna Devaney, Claire Arthur, Nathaniel Condit-
Schultz, and Kirsten Nisula. Theme and variation en-
codings with roman numerals (TAVERN): A new data
set for symbolic music analysis. In International So-
ciety for Music Information Retrieval Conference (IS-
MIR), 2015.

[3] Christopher Harte. Towards Automatic Extraction of
Harmony Information from Music Signals. PhD thesis,
Queen Mary University of London, August 2010.

[4] Stefan Kostka and Dorothy Payne. Tonal Harmony.
McGraw-Hill, 1984.

[5] Liang Lu, Lingpeng Kong, Chris Dyer, Noah A. Smith,
and Steve Renals. Segmental recurrent neural networks
for end-to-end speech recognition. In INTERSPEECH,
San Francisco, CA, September 2016.

[6] H. John Maxwell. An expert system for harmoniz-
ing analysis of tonal music. In Mira Balaban, Kermal
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ABSTRACT

Inspired by previous work on confidence measures for
tempo estimation in loops, we explore ways to add confi-
dence measures to other music labelling tasks. We start by
reflecting on the reasons why the work on loops was suc-
cessful and argue that it is an example of the ideal scenario
in which it is possible to define a confidence measure in-
dependently of the estimation algorithm. This requires ad-
ditional domain knowledge not used by the estimation al-
gorithm, which is rarely available. Therefore we move our
focus to defining confidence measures for hidden Markov
models, a technique used in multiple music information re-
trieval systems and beyond. We propose two measures that
are oblivious to the specific labelling task, trading off per-
formance for computational requirements. They are exper-
imentally validated by means of a chord estimation task.
Finally, we have a look at alternative uses of confidence
measures, besides those applications that require a high
precision rather than a high recall, such as most query re-
trievals.

1. INTRODUCTION

Most of the efforts in music information retrieval research
are directed towards improving the performance of vari-
ous automatic labelling tasks. This consists of develop-
ing algorithms that are increasingly good at approximating
some reference labels, often produced by human annota-
tors, based on an input audio file. These labels represent
different musical concepts, such as genre, tempo, instru-
mentation or musical key.

When such algorithms are deployed in real world sce-
narios, however, no explicit comparison is made between
the generated labels and a reference. An example is the
retrieval of audio based on musically meaningful search
terms. The only relevant measure of performance here is
the degree of satisfaction of the user with the returned au-
dio files. The user will subconsciously verify if the re-
turned audio corresponds somewhat to the query term, and

c© Johan Pauwels, Ken O’Hanlon, György Fazekas, Mark
B. Sandler. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Johan Pauwels, Ken
O’Hanlon, György Fazekas, Mark B. Sandler. “Confidence measures and
their applications in music labelling systems based on hidden Markov
models”, 18th International Society for Music Information Retrieval Con-
ference, Suzhou, China, 2017.

be dissatisfied if it doesn’t, but this implicit and informal
evaluation is nowhere as rigorous as the numerical evalua-
tion performed to demonstrate algorithmic improvements.
This gap between algorithmic evaluation and user evalu-
ation makes that increases in algorithmic performance do
not necessary lead to increases in user satisfaction.

Crucially, in many retrieval tasks the precision is more
important than the recall. The users only judge the qual-
ity of the returned audio, the amount of potentially use-
ful audio files that are not returned to them are unknown
and irrelevant (once the amount of returned files reaches a
minimally acceptable number of course). A relatively easy
way to improve the perceived quality of the returned au-
dio (and thereby user satisfaction) would be to only return
those files for which the generated labels are known to be
of a high quality. This necessitates a reliable measure of
confidence for the generated output labels, which must be
calculated without relying on a known reference output.

Despite its obvious use-case, not much work has been
performed on confidence measures for music labelling. For
tempo estimation in music loops specifically, a thorough
study has been recently performed by Font and Serra [5].
They propose a new confidence measure and compare it to
earlier efforts of Zapata et al. [18]. In this paper, we devise
new methods for confidence estimation that are not spe-
cific to a single task, but work with all systems based on
hidden Markov models (HMMs). To this end, we start by
analysing the reasons why the work on loops was success-
ful and what we can and cannot reuse from it in Section 2.
Then we look at the general framework of HMMs, propose
some candidate confidence measures and evaluate them for
chord estimation in Section 3. Next, a novel application
for confidence measures is discussed in Section 4. We end
by formulating some conclusions and directions for future
work in Section 5.

2. DOMAIN-BASED VERSUS
ALGORITHM-BASED CONFIDENCES

MEASURES

To aid coming up with confidence measures for a wider
range of tasks, it is useful to first reflect on the underly-
ing conditions that made Font and Serra’s work [5] suc-
cessful. They managed to define a confidence measure
that can be calculated from just the generated output. It
is therefore oblivious to the algorithm that was used to cal-
culate the output. The advantage is that knowledge of and
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access to the inner workings of the algorithm are not re-
quired in order to use the confidence measure. However,
this type of confidence measure relies on extra prior knowl-
edge about the application domain, which is used to ver-
ify the output against in the absence of internal states of
the algorithm and (obviously) the target labels. Therefore
we call these confidence measures domain-specific, as op-
posed to algorithm-specific measures. For example, the
domain knowledge used for loops is that they are cut in
such a way that each loop contains an exact number of
beats.

It is of the utmost importance that this domain informa-
tion hasn’t been exploited yet by the estimation algorithm.
All tested software in [5] fulfils this criterion, as they were
developed for music pieces in general, not just loops. If
algorithms would already rely on this prior knowledge, the
output would be internally adjusted by keeping only those
tempo candidates that lead to an exact multiple of beats for
the duration of the loop. The confidence measure would
then always be maximal and therefore useless.

Finding such unexploited knowledge for a specific ap-
plication is not always possible, and if there is one, it also
needs to be distinctive enough. Take for instance the case
of key estimation in loops. A reasonable prior would be to
assume that there are no key changes for the duration of a
loop. Even if a key estimation algorithm is capable of pro-
ducing key changes, it is unlikely that multiple keys will
be generated over the short duration of a typical loop. No
reliable confidence measure can then be derived from this
additional information.

We argue that having sufficient unexploited and distinc-
tive domain knowledge for a particular task is a rare event.
In practice, it is therefore more likely that we need recourse
to algorithm-specific confidence measures. These are de-
fined using the intermediate states of the algorithm, which
unfortunately means that separate measures need to be for-
mulated for each algorithm and that the resulting confi-
dence cannot easily be compared between algorithms. The
upside is that they are not tied to a particular domain.

In the remainder of this paper, we propose some can-
didate algorithm-based confidence measures. To mitigate
their algorithm-specificity, we will look at the framework
of hidden Markov Models [15], which is commonly used
in a variety of estimation tasks. Our hope is that the
proposed solutions will therefore be task-independent and
widely applicable.

3. HIDDEN MARKOV MODEL-BASED
CONFIDENCE MEASURES

3.1 Hidden Markov Model Basics

According to Ghahramani [7], “a hidden Markov model
(HMM) is a tool for representing probability distributions
over sequences of observations.” It is widely used to model
sequences in applications as diverse as speech recogni-
tion [15] and bioinformatics [4]. In music information re-
trieval, it is commonly used to take temporal dependencies
into account when observations are localised.

Formally, an HMM is a doubly stochastic process that
consists of a first-order Markov chain of hidden states that
can only be observed through another, visible stochastic
process. Both processes are sampled at discrete inter-
vals, so they can be represented by an index variable t.
This sequence index often represents time. The observed
variables can be discrete or continuous, finite or infinite,
univariate or multivariate, or any combination thereof, as
long as they have a probability distribution associated with
them. The state variables, on the other hand, are always
discrete and there’s a finite number N of them. The val-
ues the state variable can possibly take are therefore enu-
merated as Sn,∀1 ≤ n ≤ N . The value of the specific
hidden state at index t is represented as Yt, so Yt ∈ S =
{S1, . . . , SN}. The observed variable at index t is repre-
sented as Xt. It can potentially take an uncountable num-
ber of values, so we can’t enumerate them, only represent
their space by O. Furthermore, an observed variable Xt is
assumed to depend only on the hidden state Yt at the cor-
responding position t in the sequence, not on the hidden or
observed variables at any other positions.

Hidden Markov models are entirely described by spec-
ifying three probability distributions: (1) the initial state
distribution; (2) the state transition distribution, which is
time-invariant in a standard HMM; (3) the observation dis-
tribution, which is also time-invariant in a standard HMM

P (Y1 = Si) ≡ πi,∀1 ≤ i ≤ N (1)

P (Yt+1 = Sj |Yt = Si) ≡ aij ,∀1 ≤ i, j ≤ N (2)

p (Xt = O|Yt = Sj) ≡ bj (O) ,∀1 ≤ j ≤ N, ∀O ∈ O(3)

The set of parameters of an HMM can therefore be
summarised as λ = {Π, A,B}, where Π = {πi}i, A =
{aij}i,j , B = {bj (O)}j,O

The context in which confidence measures are use-
ful assumes that the HMM parameters λ are already de-
termined. Given a particular sequence of observations
x1:T = x1, . . . , xT , we want to determine the underlying
state sequence (called path) y1:T = y1, . . . , yT that pro-
duced these observations and a value c that indicates how
much confidence we have in the generated hidden state se-
quence. The process that determines the optimal hidden
state sequence is called “decoding” the HMM and is well
established in the literature [15]. Our goal is to find out
which of the internal states of the decoding process could
be repurposed as a confidence measure.

The most common way to decode an HMM is to find the
single path ŷ1:T that is the maximum a posteriori (MAP)
estimate:

ŷ1:T = argmax
y1:T∈ST

p
(
y1:T |x1:T , λ

)
(4)

= argmax
y1:T∈ST

p
(
y1:T , x1:T |λ

)
(5)

This path can be found by following the Viterbi-
algorithm [17]. For more details about its implementation,
we refer to Rabiner’s well-known tutorial [15].
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3.2 Experimental Setup

In order to experimentally validate the theoretical confi-
dence measures we’re about to propose, we need a con-
crete labelling system based on an HMM. In this section,
we describe the chord estimation system that will be used
to this end.

Our system first converts an audio file into mono and
extracts a time-chroma [6] representation from it that will
be used as observations in the HMM. We use two different
chroma extractors, such that we can verify that the confi-
dence measure works regardless of features. The first vari-
ant we use is recently developed by Korzeniowski et al. [9].
They trained a three layer dense neural network to map
quarter-tone log-frequency magnitude spectra to chromas.
The second variant is the Compressed Log Pitch (CLP)
chroma [12], which applies logarithmic compression be-
fore summing the semi-tone log-frequency power spectra
into one octave. Both implementations are taken from the
madmom library [2], version 0.15.1. The parameters were
set to the values proposed in their original papers.

Because the features that are fed into the HMM are
chromas, this means the observation space consists of
twelve-dimensional positive real numbers O = R12

≥0. The
observation probability distribution bj (O) over O is cal-
culated using template matching. This requires that each
chord state Sj has a template Mj associated with it and
a similarity measure that maps observation-template pairs
(O,Mj) to probabilities. We use the normalised cosine
similarity, defined as

bj (O) =
〈O ,Mj〉

‖O‖L2 ‖Mj‖L2
(6)

where 〈O,Mj〉 represents the inner product betweenO and
Mj .

In our experiments, we set the number of chord states to
48. We discern four chord types (maj-min-dim-aug triads)
for each of the twelve possible roots. The associated chord
templates are binary, with the chromas that are theoreti-
cally present in the chord set to one and the other chromas
set to zero.

The last parts of the HMM that need to be configured
are the initialisation and the transition probabilities. Both
systems are initialised uniformly, i.e. the probability to
start in a specific state is 1/48 for all chords. The transi-
tion probabilities are kept deliberately simple. The state
self-transition probabilities are all assigned the same value

aii = τ,∀1 ≤ i ≤ N (7)

whereas the state-changing probabilities are distributed
uniformly

aij =
1− τ
N − 1

,∀1 ≤ i, j ≤ N, i 6= j (8)

This reduces the number of parameters considerably,
thereby reducing the potential that our experiments don’t
translate to other datasets, but it has also been demon-
strated that such a simple transition matrix is enough to get

most of the benefits of applying an HMM to the observa-
tions. In [13], it is shown that the state-changing probabil-
ities in an HMM where states represent relative chords in
a key can at most improve the estimation performance by
2–3 %-points, whereas [3] show that this is even less when
states represent absolute chords, without the context of a
key (as is the case here too). The HMM then effectively
acts as a probabilistic temporal smoother, and does not take
into account the specific values of surrounding states, only
their duration. The only remaining parameter τ is deter-
mined through an exhaustive search on the test data.

The score that would ideally be predicted by the confi-
dence measure is calculated by the open-source MusOOE-
valuator 1 tool [14]. This is the same software that is used
for MIREX. We use the “MirexMajMin” preset for chord
evaluation.

Finally, we use two datasets for testing the chord esti-
mation systems and their confidence measures, in order to
investigate data-specific behaviour. The first is the “Iso-
phonics” 2 dataset [11]. Specifically, we use the subset
that is used for the MIREX chord estimation task. It con-
tains 217 songs and is comprised of 12 Beatles albums (180
songs), a Queen compilation (19 songs) and one Zweieck
album (18 songs). The second is the “RWC Popular” 3

dataset [8]. The latter contains 100 Japanese pop songs
purposefully recorded for music information retrieval re-
search.

3.3 Sequence Probability as Confidence Measure

As part of the MAP decoding, the probability of the opti-
mal label sequence gets returned:

p
(
ŷ1:T

)
= max

y1:T∈ST
p
(
y1:T |x1:T , λ

)
(9)

= max
y1:T∈ST

p
(
y1:T , x1:T |λ

)
(10)

Although this seems like an obvious candidate for a
confidence measure, as far as we know, nobody has ever
examined the correlation between optimal path probability
and labelling score. We know from the definition that the
optimal path probability has the highest value relative to
the probabilities of any other paths, but in order for it to be
useful as a confidence measure, its absolute value matters.

Since the joint probability p
(
y1:T , x1:T

)
can be decom-

posed as

p
(
y1:T , x1:T

)
= P (y1) p (x1|y1)

T∏
t=2

P (yt|yt−1) p (xt|yt) (11)

a first step that needs to be taken is to normalise the
path probability with respect to the song duration T , as
p
(
y1:T , x1:T

)
gets progressively smaller with T 4 . This

1 https://github.com/jpauwels/MusOOEvaluator
2 annotations available at http://isophonics.net/

content/reference-annotations
3 annotations available at https://github.com/tmc323/

Chord-Annotations
4 In practice, we’re working in the logarithmic domain precisely to

mitigate this vanishing probability problem
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Figure 2: Separate contributions to the optimal path prob-
ability log [P (yt|yt−1) p (xt|yt)] for every frame t

way, we can compare songs of different length. Be-
cause the probabilities per frame get accumulated through
a product, it makes sense to take the T -th root of the path
probability. Then we are effectively calculating the geo-
metric mean of the contributions per frame to the overall
path probability.

We’ve plotted in Figure 1a an example of the scores as
a function of the resulting geometric mean for the system
with CLP features run on the Isophonics dataset. It is im-
mediately clear from the figure that there is little correla-
tion between the two axes and therefore the optimal path
probability is not suitable as a confidence measure.

To find out why this is the case, we take a look at the in-
dividual contributions per frame P (ŷt|ŷt−1) p (xt|ŷt) ,∀t
separately. In Figure 2, we show these probabilities for an
example song. We can see that there are some strong out-
liers in these probabilities, and this is the case for every
song, not just this example. Because the contributions per
frame are multiplied 5 to form the overall probability, we
postulate that the limited number of outliers dominate the
overall probability regardless of the performance on other
frames, such that there is no longer a relation between the
overall probability and how well ŷ1:T explains x1:T . Note
that the presence of such an outlier at frame t does not nec-
essarily mean that the global optimal path strays from the
locally optimal path at that frame. It could also mean that
none of the states can explain that particular observation
well bj (xt) ≈ 0,∀j. Cases like this are not problematic
for the determination of the globally optimal path, since

5 The values depicted in Figure 2 are actually summed, because we
work in the logarithmic domain.

only the difference between observation distributions per
state is relevant for the Viterbi algorithm, but the overall
probability will be affected.

Since the outliers of (P (yt|yt−1) p (xt|yt)) prove to be
so problematic, it makes sense to aggregate the frames
differently than through a geometric mean. Instead, we
take the median, such that the exact magnitude of the low-
est probabilities doesn’t matter. We plotted the results in
Figure 1b for the same chord estimator configuration as
Figure 1a. The figure shows a marked improvement with
respect to the geometric mean based confidence measure.

We do believe that it should be possible to achieve a
clearer linear relationship between score and confidence
measure though. However, as far as repurposing the inter-
nal variables of the standard Viterbi algorithm go, we feel
we have reached a limit. The advantage of the median-
based confidence measure is that it requires practically
no more computation time than standard MAP decoding.
It only requires the so-called lattice of intermediate path
probabilities p

(
x1:t, y1:t, yt = Si|λ

)
,∀i, t to be kept in its

entirety, as opposed to only needing to keep the previous
and current frame (t and t − 1), which obviously leads to
an increase in memory. In the next sections, we will com-
pare this measure with a more computationally expensive
one and report on more thorough experiments.

3.4 Combining Decoders as Confidence Measure

While the Viterbi algorithm returns the globally optimal la-
bel sequence in the MAP sense of the word, the definition
of “optimal” is inherently ambiguous. Another criterion
of optimality leads to another decoding method. A com-
mon alternative to MAP decoding is pointwise maximum
a posteriori (PMAP) decoding 6 . If we represent the path
estimate returned through PMAP decoding from now on as
ỹ1:T , then we find

ỹt = argmax
yt∈S

p
(
yt|x1:T , λ

)
(12)

As the name implies, the optimal path is determined
point-by-point in such a way that the expected number

6 Confusingly, this decoding algorithm is known under many names,
posterior decoding or max-gamma decoding just a few of them. More
alternative names can be found in [10, p. 4].
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of correct individual states is maximised. The probabil-
ity to be in a given state s at frame t is found by means
of helper forward αt (s) and backward βt (s) variables ob-
tained through a process known as the forward-backward
algorithm [1]:

p
(
s|x1:T

)
=

αt (s)βt (s)∑
r∈S αt (r)βt (r)

(13)

For further implementation details, we again refer to [15].
It depends strongly on the application whether MAP

or PMAP decoding will lead to the best results 7 and to
which extent they produce different paths. However, it is
known that MAP decoding is most effective when a single
path through the HMM strongly dominates all other ones,
whereas PMAP decoding gives better results when multi-
ple competing paths have similar overall probabilities [4].

We postulate that when the two methods of decoding
yield the same path, this gives a good indication that the
path will have a good score. Thus we derive a new con-
fidence measure PPD

(
y1:T

)
based on the pointwise path

differences (PPD) as

PPD
(
y1:T

)
=

1

T

T∑
t=1

δ (ŷt, ỹt) (14)

where δ is the Kronecker-delta, and ŷt/ŷt the MAP/PMAP
path estimates at time index t.

To illustrate the PPD, we take once more the same
HMM configuration as in Figure 1a and plot the score as
a function of the PPD in Figure 1c. Here the relation be-
tween the two is more clearly linear. The drawback of this
confidence measure is obviously that it requires an addi-
tional PMAP decoding step, which requires extra compu-
tational power. Some steps, such as the calculation of the
observation probabilities, are the same for both decoding
algorithms though, so there’s potential for reuse. Note that
we still return the same MAP path as before, because it
gives better results for our HMM configurations than the
PMAP path, but the latter is available too.

3.5 Evaluation

As we now have two candidate confidence measures, we
can systematically test them on the four combinations of
features and datasets. Therefore we perform a similar
experiment as in [5]. We start by taking the duration-
weighted average score over the complete dataset and then
progressively filter the files by first excluding those for
which the confidence measure is the lowest. A good con-
fidence measure will then lead to a monotonic increase in
score as the filtering threshold increases. The results for
the Isophonics dataset and the RWC Popular dataset can
be found in Figure 3a, respectively Figure 3b.

In all cases, we observe that the PPD is working well
as a confidence measure. The score of the filtered dataset
increases monotonically, save for a few exceptions when
the number of remaining songs in the dataset becomes so

7 We tried both and verified that MAP decoding generally gives the
best result for our proposed chord estimation system

low that the average scores become noisy. The curves of
the filtered dataset size as a function of confidence cutoff
are also close to straight, which means the PPD is nearly
linearly distributed between its extrema. As expected, the
median of the per frame contributions to the optimal path
is less suitable as a confidence measure. The filtered score
initially increases in all situations though, so it can still be
used to remove the files with the lowest confidence from
the dataset. Doing so will increase the precision when
looking for a particular chord sequence in a dataset, for
example, at the expense of decreasing the recall. Partic-
ularly for the CLP features, the median-based confidence
measure seems to work less well. A possible explanation
is that the neural network based chromas take context into
account. The observations derived from the CLP features
are therefore noisier, which will affect the median more.

4. OPTIMAL CHANNEL SELECTION BASED ON
CONFIDENCE MEASURE

In this section, we explore an alternative usage for confi-
dence measures. Traditionally, labels in music information
retrieval are estimated from mixed down mono audio. Us-
ing the mono mix ensures that all information present in
the audio is used for the label estimation. For certain types
of labels however, it might be beneficial to selectively ig-
nore some of the information. For example, ignoring per-
cussion while estimating chords can be helpful, which has
led to percussion separation techniques [16].

If we have multi-channel audio at our disposal, it is
therefore possible that analysing a specific channel or com-
bination of channels leads to higher quality labels than
when the mono mixdown is used. The problem is then
how to determine this (combination of) channel(s). Next,
we’ll verify if a confidence measure can be used for this.

Ideally, we’d use multi-channel or multi-track audio for
this experiment, but since there is no such dataset with an-
notated chords, we propose an alternative. Starting from
stereo Isophonics audio files, we demix the left (L) and
right (R) channel according to their panning position into
centre (C), hard left (HL) and hard right (HR). We em-
ploy the technique used by the “center cut” 8 audio filter
of the open-source video editor VirtualDub. It operates in
the complex spectral domain and relies on the fact that HL
and HR are perpendicular to each other, such that L = C
+ HL and R = C + HR. In addition to these channels, we
calculate the mono (L + R) and sides (HL + HR), such that
we end up with seven virtual channels per song.

For each channel, we estimate the chord sequences from
CLP features and their confidences. We first aim to de-
termine the theoretical limits of optimal channel selection
by performing an oracle-style experiment where we select
the channels that lead to the biggest increase and biggest
decrease in chord score when compared to the reference
mono channel. Then we check how well we can retrieve
the optimal channel by selecting the one that returns the
chord sequence with the highest confidence.

8 http://www.virtualdub.org/blog/pivot/entry.
php?id=102
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Figure 3: Confidence filtered chord scores for two datasets. The marks indicate the average score over the filtered dataset.
The lines represent the number of remaining files in the database as a function of the confidence cutoff.

Album title Mono score
Oracle
best ∆

Oracle
worst ∆

Median
conf. ∆ PPD conf. ∆

The Beatles - Please Please Me 52.86 6.01 -13.93 -7.23 1.17
The Beatles - With the Beatles 56.22 0.60 -26.81 -18.72 -2.11
The Beatles - A Hard Day’s Night 56.21 3.05 -31.91 -21.88 2.24
The Beatles - Beatles for Sale 63.98 9.33 -3.26 5.91 7.33
The Beatles - Help! 52.54 11.82 -13.23 7.90 10.03
The Beatles - Rubber Soul 59.25 5.44 -18.89 -3.00 2.77
The Beatles - Revolver 66.06 5.64 -17.63 -0.70 3.71
The Beatles - Sgt. Pepper’s Lonely Hearts Club Band 51.33 4.93 -19.81 -4.83 -1.74
The Beatles - Magical Mystery Tour 66.77 3.52 -18.33 -3.10 0.54
The Beatles - The Beatles (CD1) 62.45 6.32 -17.82 1.76 1.68
The Beatles - The Beatles (CD2) 52.05 6.16 -18.91 1.38 1.67
The Beatles - Abbey Road 63.86 8.39 -17.47 4.33 4.11
The Beatles - Let It Be 61.16 11.96 -8.09 9.24 8.21
Queen - Greatest Hits I 47.50 7.86 -3.54 6.53 6.66
Queen - Greatest Hits II 66.16 4.02 -5.49 -1.45 -1.50
Zweieck - Zwielicht 54.73 7.73 -8.10 5.35 6.26
Overall 57.81 6.60 -14.97 -0.39 3.42

Table 1: Channel selection results grouped per album, using CLP features. The reference mono channel score is reported
along with the absolute score differences for the best and worst oracle-style and the confidence-based channel selection.

The channel selection results overall and per album are
reported in Table 1. From the oracle experiments we learn
that a sizeable improvement in chord score can potentially
be achieved by selecting the optimal channel, but also that
the consequences of choosing the wrong channel can be
severe. The PPD measure can be used successfully to de-
termine a better channel than the mono reference, and man-
ages to get a bit more than half the theoretically maximal
improvement. The median-based confidence measure, on
the other hand, is not suitable to select the optimal channel.

Based on the individual results per album, no relation
with mixing style can be established. The mixing practices
range from the mono-like early Beatles albums to the hard-
panned late Beatles albums, with more modern Queen and
Zweieck in between, but no trends in the (potential) score
increase can be identified. Note that when we repeated the
experiments with the DeepChroma chord estimation sys-
tem, the oracle-based maximal increase was barely over
2%-points, and the PPD increase proportionate. A reason
might be that the neural network is trained on mono mixes.

5. CONCLUSION AND FUTURE WORK

In this paper, we investigated confidence measures for
HMM-based music labelling systems. We formulated two

measures, a simple one that doesn’t require extra compu-
tational power and a better one that is more demanding.
They were tested for their ability to filter low-quality out-
put of a chord estimation system. Finally, the capacity of
the confidence measures to select the most optimal channel
to use for chord estimation has been evaluated.

We hope that the applicability of the proposed confi-
dence measures to other labelling tasks will be verified
in the future, by ourselves or by others. To improve the
chance of the latter, we’ve created a new general and mod-
ular HMM library 9 , usable with C++ and Python, that in-
cludes the proposed measures. The code specific to the
chord estimation experiments and the presented figures can
also be found on-line 10 .

Further work will include investigating whether a con-
fidence measure can be used to select the optimal HMM
parametrisation. For instance, the self-transition probabil-
ity τ is currently set to a dataset-wide optimal value, even
though it is clearly related to harmonic rhythm and there-
fore song-dependent. It might be worth investigating if the
best value out of a number of candidates can be selected
based on confidence.

9 https://github.com/jpauwels/Hiddini
10 https://github.com/jpauwels/

chord-estimation-confidence
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ABSTRACT 

In this paper a novel approach that adopts Convolutional 

Neural Networks (CNN) for the Beat Tracking task is 

proposed. The proposed architecture involves 2 convolu-

tional layers with the CNN filter dimensions correspond-

ing to time and band frequencies, in order to learn a Beat 

Activation Function (BAF) from a time-frequency repre-

sentation. The output of each convolutional layer is com-

puted only over the past values of the previous layer, to 

enable the computation of the BAF in an online fashion. 

The output of the CNN is post-processed by a dynamic 

programming algorithm in combination with a bank of 

resonators for calculating the salient rhythmic periodici-

ties. The proposed method has been designed to be com-

putational efficient in order to be embedded on a dancing 

NAO robot application, where the dance moves of the 

choreography are synchronized with the beat tracking 

output. The proposed system was submitted to the Signal 

Processing Cup Challenge 2017 and ranked among the 

top third algorithms. 

1. INTRODUCTION 

Rhythm analysis has been one the most important tasks in 

the Music Information Retrieval (MIR) community. The 

metrical structure of a music piece, comprising the met-

rical levels, their relations, the beats and the beat rate (i.e. 

tempo), fully describe its rhythm content as proposed in 

the Generative Theory of Tonal Music [1]. The exact beat 

locations are essential information of a music excerpt 

which describe various aspects of it, as for example tem-

po variations, expressive timing, temporal grouping of 

weak and strong accents within the meter etc.  

Automated beat estimation, usually found under the 

term of Beat Tracking, has been one of the fundamental 

tasks in the MIR field. Beyond the importance of the in-

formation that can be found in the beat locations for a 

music excerpt as mentioned before, the automatic estima-

tion of beats is important because it can serve as an in-

termediate step to tackle other MIR tasks, such as chord 

change detection [2], chord detection [3], the computation 

of beat-synchronous features for identifying cover songs 

[4], tempo estimation [5] and downbeat detection [6, 7] to 

name a few.  

A variety of different approaches can be found in the 

literature to tackle the beat tracking task. In an early 

work, Scheirer [8] deployed comb resonators on spectral 

energies to for a tempo and beat estimation system, where 

the response of the resonators was interpreted as the beat 

positions. Dixon presented BeatRoot [9], a beat tracking 

software based on inter-onset interval (IOI) clustering for 

tempo induction and multiple agents for finding the beats. 

In [10], the authors extended BeatRoot to a real-time beat 

tracking software named IBT. In [11] a dynamic pro-

gramming formulation for the beat-tracking task is pre-

sented. In a similar manner in [12] the output of a tempo 

estimation method was incorporated in a dynamic pro-

gramming based beat-tracking method. In [13] the au-

thors propose a two-state probabilistic model to handle 

discontinuities in beats caused by switching metrical lev-

els. Peeters and Papadopoulos [14] propose a probabilis-

tic framework, where beat positions are considered as la-

tent variables in order to extract downbeats and beats. In 

[15] a unified probabilistic framework in the context of 

rhythm analysis is proposed, consisting of a time-

invariant Bayesian network for modeling the relations of 

tactus, tatum and meter and the beat locations.   

More recent works incorporated Neural Networks 

(NN) for handling the Beat-Tracking task. A remarkable 

work was firstly presented in [16], where an onset detec-

tion method which was based on Bidirectional Long 

Short-Term Memory (BLSTM) Neural Networks was 

adapted to a beat tracking system. The performance of 

this method outperformed the state-of-the-art. In [17], 

under the assumption that humans perceive the rhythm in 

a relative manner with respect to the salient periodicities 

of a music excerpt, a cepstroid invariant neural network is 

proposed to estimate the beat positions.  

Although Convolutional Neural Networks (CNN) have 

been successful in many MIR applications such as onset 

detection [18], structure analysis [19], chord recognition 

[20] and genre classification [21, 22], to the best of our 

knowledge there are no works that deploy CNNs for the 

beat tracking task. CNNs have used recently for down-

beat tracking as in [23] and [24]. However, these methods 

apply the CNN on larger segments of beat synchronous 

features, i.e. a beat-tracking step (based on another tech-

nique) is preceded. In a very recent approach [25] a dance 
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Figure 2. Beat Locations, Beat Activation Function and 

Accent Features. 
 

Figure 1. Overview of the proposed method. 

genre classifier that is based on CNNs that model tem-

poral features is proposed. 

In this paper we propose a novel approach that adopts 

CNNs to handle the beat-tracking task. The CNN are 

used to learn a Beat Activation Function (BAF) from a 

time-frequency input representation. The resulting BAF is 

subsequently used to infer the beats with a dynamic pro-

gramming approach. The proposed method was embed-

ded on a dancing NAO
1
 robot application. Dancing robots 

[26] have gained some interest in both robotics and MIR 

scientific communities and is an essential application for 

human-robot interaction and entertainment [27]. In [28] 

the authors focused on the motion of a humanoid dancing 

robot without any music rhythm analysis. In [29] a simple 

beat-tracking system was embedded on the RoboNova 

and Hubo robots. In [30] a singing robot that synchroniz-

es its singing with the estimated beats is presented. In 

[31] the authors focused on eliminating the ego-motion 

and beat-synchronous noise caused by a real-time danc-

ing robot. 

The rest of the paper is organized as follows. Section 2 

will provide a brief overview of the proposed method. 

The algorithmic details of the beat-tracking method will 

be presented in Section 3. Technical and implementation 

details of the dancing robot application are discussed in 

Section 4. Section 5 is dedicated on the evaluation of the 

proposed method. Section 6 concludes this paper with 

discussion and future work directions. 

2. METHOD OVERVIEW 

An overview of the proposed method is shown in Figure 

1. From the input signal the time-varying features that 

capture the salient musical events are firstly computed. 

These features along with the Beat Activation Function 

derived from the ground truth data are used to train a 

Convolutional Neural Network (CNN). In the testing 

phase, the output of the CNN is interpreted as a prior 

probability of a time instant corresponding to a beat. The 

CNN output is processed further by a filter-bank of comb 

                                                           
1 
https://www.ald.softbankrobotics.com/en/cool-robots/nao 

resonators to capture the salient periodicities and estimate 

the music tempo, which along with the BAF are pro-

cessed by a Dynamic Programming Beat Estimation 

module. The aim of this module is to find a sequence of 

beats that are rhythmically consistent, and are dominant 

on the BAF. The beat tracking algorithm is embedded on 

a NAO robot. The robot reproduces an audio waveform, 

while in real-time it computes the beat locations. Conse-

quently, the NAO robot synchronizes its dancing move-

ments of the choreography to the predicted beats. 

3. METHOD DETAILS 

3.1 Feature Extraction 

A conventional front-end schema is used for feature ex-

traction. The input music signal is firstly downsampled to 

16 kHz. Downsampling is required in order to conform 

with NAO’s audio recording capabilities, since NAO can 

only record at 16 and 48 kHz
2
. At next, the amplitude 

spectrogram denoted by X is calculated, using a sliding 

window of 1024 samples shifted at 160 samples (100 Hz 

frame rate). Each frame is then processed by a mel-

filterbank of M bands to derive the mel-band amplitudes 

S. Next, the time difference of the logarithm of the ampli-

tudes S of consecutive frames is computed. Finally, the 

output features are half-wave rectified to derive the ac-

cent features A. 

3.2 Calculating a Beat Activation Function 

A Beat Activation Function (BAF) is a function of time 

that represents the salience or the probability of time in-

stants being beats. Figure 2 (a) shows the beat locations 

of a music excerpt, Figure 2 (b) shows the corresponding 

BAF, while in Figure 2 (c) the input features of the corre-

sponding music excerpt are shown. BAF is a smoother 

version of pulses at the beat locations and is derived by 

using a Gaussian curve around the beat locations. The 

aim of the Gaussian blurring is to decrease the sensitivity 

to less accurate beat annotations. The standard deviation 

                                                           
2 Although the current implementation does not use the micro-

phone, the use of the recording sampling rate was chosen for 

reasons of uniformity. 
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Figure 3. Convolution of periodic sequences with its 

rhythm elements. 

of each Gaussian is set to be inversely proportional to the 

beat period.  

In the proposed method a Convolutional Neural Net-

work is deployed to learn the BAF denoted by ���� from 

the accent features ����. The intuition for this choice is 

that a CNN can learn temporal patterns of the input fea-

ture space and map these features to the BAF space. An 

example of how a simple Convolutional Unit can learn a 

rhythmic pattern and outputs a BAF is shown in Figure 3. 

Figure 3a shows a pattern �� of length L and Figure 3b 

shows a rhythmic repetitive pattern of �� , � �

���, ��, ��, . . . . ���. We assume that beat positions should 

occur on the positive peak the ��. If r is convolved with 

�̃���� � ����  �� the resulting vector will exhibit peaks 

with the same period as r, but in different positions (Fig-

ure 3c). However, if r (Figure 3e) is convolved with filter 

�̃� (Figure 3d) which is a circular shift of ��, then the re-

sulting output (Figure 3f) is in phase, i.e. exhibits peaks 

at the same locations, with r. This simple example indi-

cates that the CNNs are capable of producing a BAF that 

is synchronous with its input in a causal manner. If a se-

quence a of length N is convolved with a filter h of length 

L, the resulting sequence of length N-L+1 can be syn-

chronous with a target BAF cropped by L-1 samples from 

the beginning. In this way, we can compute a BAF in a 

causal manner, i.e. ���� is derived only from current and 

past samples of  � and ��: 

 
1

0
[ ] [ ] [ ]

L

i
b n h n i a n i

−

=
= − −∑ ɶ  (1) 

 where ����� � ���  ��. 

The CNN architecture of the proposed method is 

shown in Figure 4. It consists of two convolutional layers 

and three dense layers. No max-pooling or other pooling 

step is applied anywhere, since this would reduce the 

frame rate, which is critical in the context of real-time 

beat tracking. The first convolutional layer consisting of 

�� filters of �� length is applied on the accent features A. 

This results to temporal sequences of dimension �� ��. 

Next, the dimension is reduced to dimensions of M and 1 

by applying the �� � 1  and � � 1   input-output feed 

forward layers respectively. As a non-linearity function 

of the CNN, the logistic function is applied to the output 

of each layer. The above process results to a 1-

dimensional temporal sequence of length �  �� � 1  

where N is the length of the input accent features A. The 

output  ����� of this subnet is further processed by the 2
nd
 

convolutional layer with ��  filters of ��  length. The re-

sulting temporal ����,��  sequence of dimension ��  is 

then reduced to a single-dimensional sequence ����  by 

applying a �� � 1 feed forward layer. As before, the lo-

gistic function is deployed at each layer. ���� is consid-

ered as the output of the network. For training the net 

work, the binary cross-entropy is used as the cost func-

tion. 

After the calculation of the BAF, the beat tracking 

problem can be seen as a peak selection step, which com-

prises of two steps. At first a dominant tempo is estimat-

ed and then the most salient peaks of the BAF that are 

rhythmically consistent with that tempo are selected. 

These two steps are presented in detail in the Sections 

3.3-3.5. 

3.3 Tempo Estimation 

The next important component of the beat-tracking meth-

od is the estimation of the music tempo. A central notion 

on rhythm analysis is the Periodicity Function (PF) [32] 

or Periodicity Vector, which is a function or vector that 

represents the salience of the rhythmic frequencies. In 

this approach, we compute a PF by processing the BAF 

by a bank of oscillators, each of which oscillates at a pe-

riod τ. The output ����� of the oscillator with period τ and 

input ���� is chosen as: 

 [ ] [ ] (1 ) [ ]o n o n a nτ τβ τ β= ⋅ − + − ⋅ . (2) 

The PF for period τ at the frame n is given by the maxi-

mum value of �� within the past period, i.e., 

 { }[ ][ ] max [ ], ...P n o k k n nττ τ= = − . (3) 

The PF is not calculated for every frame but every �� 

frames and for periods in the range � ∈ ����� , �� !�. In 

order to estimate a more reliable PF and cope with slight 

PF variations, the PFs are averaged for the last K values 

to get an smoothed PF  "�. The tempo period is then cal-

culated as the maximum value of "�. 

3.4 Beat Tracking as Dynamic Programming 

The Beat Estimation method is a modification and adap-

tation of the method presented in [12]. It is a dynamic 

programming method that finds an optimal path of a beat 

sequence that maximizes a cost function. Let #��$� denote 

the candidate beat positions, which are the positive peaks 

of the BAF. The first part of the beat tracking algorithm 

is to define a beat similarity of two candidate beats 

�� % �& as 
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Figure 5. Illustration of the real-time implementation of 

the beat-tracking method 

 
Figure 4. The Convolution Neural Network Architecture. 

 0( , ) ( , ) (1 ) [ ]i j T i j jd b b c d b b c o b d= ⋅ + − + , (4) 

where 

 ( )2

2

1
( , ) exp{ ln ( ) / }T i j j id b b b b τ

σ
= − − , (5) 

with τ in (5) being the tempo period and '(�� , �&) being 

the weighted sum of two terms plus the bias '*. The first 

term in (4) '+(�� , �&)  indicates if the beats �� , �&  are 

rhythmically consistent, and increases as the distance of 

�� , �& ap proaches the tempo period τ. The second term is 

related to the beat salience, and is equal to the value of 

the BAF. Finally, the term '* can be seen as a beat inser-

tion bias. Given a sequence #��$� of possible beats, a beat 

activation function ����  and a tempo period τ one can 

find the optimal path  #�∗�$ that maximizes the objective 

function 

 
1

* * *({ , }) ( , )
l ll

l L

O b l L d b b
−

∈

∈ =∑  (6) 

3.5 Real-Time Formulation of Beat Tracking 

The beat tracking model described in the previous section 

is not a straightforward online algorithm and has to be 

adapted to meet the real-time requirements. For setting 

the real-time formulation, we define four frame sets. Let 

us denote with �* the current frame. Then we define by 

- � #��$� the beat candidates (peaks of BAF) before �*, 

by . � #��
∗$�/ the optimal path of beats, by 0 � #��

∗$�/ 

the output of the real-time beat tracking before �* and by 

1 � #2�$�/  the expected beats of the �* frame. Note that 

#��
∗$�/ 3 #��

∗$�/, since . can be considered as the non-

causal output before �*	, while the set 0 is the causal out-

put before �*. A graphical illustration is shown in Figure 

5. When a new peak at frame �� is detected, then the hy-

potheses #��
∗$�5 , #��

∗$�5 , and #2�$�5  are updated as fol-

lows. Firstly, the optimal path of beats is recalculated 

#��
∗$�5 . Then, 1 � #2�$�5 is updated by adding a new ex-

pected beat  2̃ , which is the last beat ��  of . � #��
∗$�5 

plus the tempo period τ. Moreover, the expected beats 

close to 2̃ (based to a threshold) are removed. Next, if the 

current peak ��  is close enough (based to the same 

threshold) to an expected beat (added to 1 � #2�$�5  on a 

past frame), the �� is considered as a beat, it is added to 

0 � #��
∗$�5  and the corresponding expected beat is re-

moved from 1 � #2�$�5. In other words, a peak is instant-

ly classified as a beat, if it is close enough to an expected 

beat. Based on this formulation, the algorithm is almost 

online, with a latency of one frame, which is needed to 

decide whether a frame is peak or not. The algorithm can 

be summarized as follows: 

1) Initialize: - � #$, 1 � #$, . � #$, 0 � #$  

2) Get new frame n. 

3) Compute the BAF ���� 
4) If n is not peak GOTO 2. 
5) Compute distance of n to previous peaks. 

6) Get optimal beat sequence . � #��
∗$� before n. 

7) Add 2̃ � �� � � (�� is last beat of #��
∗$�) to E. 

8) Remove elements of E very close to 2̃. 

9) Get last element �̃ of R (if any). 

10) For each e in E: 

a. if (n close to e) and (�  �̃ 6 �/2) 
i. add e to R. 

ii. remove e from E. 
iii. This_frame_is_beat = True 

11) GOTO 2. 

The statement x close to y is defined to be true if |: 

;| % 4 frames. The second condition �  �̃ 6 �/2  in the 

statement 10a ensures that once a past frame is classified 

as beat, the frames that are close to this frame should not 

be classified as beats. 

4. THE DANCING ROBOT APPLICATION 

4.1 The NAO Robot 

For deploying the real-time beat tracking method to a 

dancing robot, a NAO Robot v4 was used as the target 

hardware. It runs on an Intel Atom Z530 CPU with 2 

cores at 1600Mhz, with 1GB RAM. The Operating Sys-

tem is the Linux based NAOqi, version 2.1.2. The NAO's 

kinematics include 25 motors; 2 motors for controlling 

the head, 4 motors for each arm, 2 motors for each hand, 

5 motors for each leg, plus 1 motor for controlling both 

hip's yaw pitch (Figure 6). The pose (or “state”) of the 

robot can be uniquely described by the state of the 25 mo-

tors, which are used to define NAO's dancing movements 

that are synchronous with the real-time beat tracking re-
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Figure 6. NAO’s motor map. 

sults. Although NAOqi has built-in functions for control-

ling the robot’s stability, steep movements should be still 

avoided. Apart from the robot's movements, NAO's eyes 

are used to show the beat-times that are calculated in real- 

time. Each eye consists of 8 leds. The color of NAO’s 

eyes is controlled to change on every beat. 

4.2 The Choreography Model 

NAO's dancing movements have been designed to be eas-

ily parameterized. We refer to this parameterization as the 

“Choreography Model (CM)”. The CM consists of a set 

of poses = � #=�, =�, … , =?$ and a @ � @  transition ma-

trix T of these poses. Each pose =�  is represented by the 

25 values that correspond to the state of each of the mo-

tors mentioned above. The (A, B) element of matrix T de-

notes the probability of moving to pose =&  given that 

NAO’s previous pose is =� . Thus, each row of T sums to 

one. In this way one can define different choreographies. 

The elements of T can be binary values, thus defining a 

deterministic sequence of positions, or can take values in 

the interval (0,1) defining a stochastic sequence, or 

mixed, i.e. certain groups of deterministic sequences can 

be mixed stochastically. The CM allows an easy way to 

define an arbitrary choreography, mixing different chore-

ographies (i.e. reusing =�) and change the choreography 

in real-time, as for example in the case where the chore-

ography is linked to a genre classifier. Although the CM 

poses contain information for the legs, for reasons of 

simplicity and to maintain the robot’s stability, the 

movement of the legs of the robot are overridden by an-

other simpler CM that considers only leg movements and 

involves only two poses, which realize the slight hip (or 

knee) movement of the robot that can be seen in the 

demonstration videos. 

4.3 Robot Dancing in Practice 

Since the robot cannot instantly move to the next pose 

when a beat is found, somehow the next beat-time has to 

be inferred beforehand. When a beat is found in real-time, 

then the next beat time is inferred by adding to the current 

beat time the tempo period (similarly to the expected beat 

notion of previous Section). Therefore, the predicted next 

beat that determines the robot’s movement, slightly dif-

fers from the actual prediction of the real-time beat track-

er. However, although such differences might be audible, 

they are not visible, i.e. they are not evident by human 

vision, as it can be seen in the demonstration video. Let’s 

consider the case that a beat is found by the real-time al-

gorithm at time instant 0.0 sec with a tempo at 60 BPM 

(i.e. period of 1 sec). Then the next beat will be inferred 

to be at 1.0 secs, and therefore the robot will start moving 

from its current pose to the next at 1.0 sec of a specific 

choreography. If the beat of the actual real-time algorithm 

is found a few msecs later of the inferred one (e.g. 

50 msecs), this difference will not be visible. Moreover, 

the robot will adapt its movement in order to complete its 

next move at 2.10 secs. This can be seen in the demon-

stration video, since robot's movements look natural and 

synchronous with the music despite the small variations 

from the true beat.  

However, in order to demonstrate the actual capability 

of the algorithm and make it clearly visible, apart from 

dance movement we incorporated an instant change in the 

color of the eyes when a beat is found. The colors used 

can also be parameterized as it is shown for the music ex-

cerpts in the demonstration video. Moreover, due to mo-

tor limitations of the robot, the robot dances on half time, 

i.e. the movement is planned for every second subsequent 

beat. Thus, every two beats (two color changes of the 

eyes) the robot completes one movement of the choreog-

raphy. 

5. EVALUATION 

5.1 Algorithm Parameters and Implementation De-

tails 

In this section some details of the implementation and 

parameters of the proposed method will be provided. Re-

garding the accent features (Eq. 1), the number of bands 

of the mel-filterbank was set to M=8, and the frame rate 

was set to 100 Hz (see Section 3.1). For the tempo esti-

mation phase,  the corresponding periods of the tempo 

analysis range (Eq. 4) were set to ���� � 350, �� ! �

700 ms. The size of the CNN is set to �� � 50, �� �

100, �� � 50 and �� � 200. The whole implementation 

is written in Python 2.7. The training functions were writ-

ten using the Lasagne/Theano
1
 libraries and run on a Tes-

la K40 GPU. The Binary Cross Entropy was used as the 

loss function of the network, which was trained using 

Nesterov momentum of 0.9 and a variable learning rate. 

Due to the robot’s software limitations, for the embedded 

algorithm only the Numpy library was used for calculat-

ing dot products. The algorithm runs at ~ 100% CPU sin-

gle core on the NAO robot and ~3 % CPU single core on 

an Intel i7.  

5.2 Beat-Tracking Performance 

The proposed method was submitted to the Real-Time 

Beat Tracking Challenge of the IEEE Signal Processing 

                                                           
1
  http://lasagne.readthedocs.io/en/latest/ 
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Cup 2017 [33]. It was a prerequisite that the submissions 

should have been implemented around creative applica-

tion of a real-time beat tracking algorithm that is embed-

ded on a device. The challenge was run in three phases. 

Initially, the teams were provided two datasets, an open 

dataset consisting of 25 excerpts that were annotated by 

the organizers, and a closed dataset, where the annota-

tions were not released to the participating teams. In the 

first phase each team had to submit annotations for three 

annotated excerpts of their choice (other than the open 

and closed datasets). One of these three pieces was se-

lected by each team as a challenge piece. The challenge 

pieces for all teams formed the challenge dataset, and the 

dataset consisting of the other two pieces submitted by 

each team, formed the team datasets. In the second phase 

each team had to submit the results of their algorithm for 

the closed and challenge datasets, while they were pro-

vided annotation for the team dataset to be used for train-

ing or fine tuning. The submissions were evaluated based 

on three criteria, the annotation quality, the beat-tracking 

performance and the novelty of the application. The beat-

tracking performance was measured by a metric based 

upon the standard AMLt, but instead of the arbitrary in-

clusion of double, half-time or off-beat tapping, the "al-

lowed" metrical levels were specified on an excerpt-by-

excerpt basis. In this way, the evaluation could cope with 

excerpts in odd meters in a more robust manner. After the 

2nd phase, the three best teams were selected to partici-

pate in the final phase of the competition at the ICASSP 

2017 conference. 

The Convolutional Neural Network of the proposed 

method was trained on three datasets, the GTZAN dataset 

[34], the Ballroom Dataset [35] and the SMC Mirex Da-

taset [36]. The parameters of Eq. (4), and (5) were tuned 

with a grid search on the open and the team submitted 

datasets which were used as validation set. The proposed 

method achieved a beat-tracking performance of 63.3% 

and 64.2% on the closed and challenge datasets respec-

tively, based on the modified AMLt metric and was 

ranked 6
th
 among 21 submissions regarding the beat-

tracking performance. Figure 7 presents the comparative 

beat tracking results for all submissions. Due to the or-

ganizers choice, the comparative results are provided 

anonymously. The video demonstration of the robot 

dancing for two excerpts can be downloaded from
1
.  

6. CONCLUSION AND FUTURE WORK 

In this paper a novel method that adopts CNNs for the 

beat-tracking problem is presented. CNN are proved to be 

capable to function in an online manner, i.e. the output of 

the CNN depends only on current and past values of its 

input, thus allowing a real-time implementation. The pro-

posed method was designed to be embedded on a NAO 

robot, and its parameters were optimized to meet the real-

time requirements rather than to optimize beat-tracking 

                                                           
1 http://mir.ilsp.gr/dance_robot.html 

performance in general. The proposed method was sub-

mitted in the IEEE 2017 Signal Processing Cup Beat 

Tracking Challenge and was ranked 6
th
 among 21 algo-

rithms. 

There are a number of challenges and future work im-

posed by the proposed method. Regarding the use of 

CNNs, a further investigation and experimentation of var-

ious network parameters, such as the network architec-

ture, the number and size of layers, the use of other than 

the sigmoid non-linearity functions, more relevant to the 

beat-tracking problem cost functions, or even the smooth-

ing procedure of the target BAF. Moreover, CNNs can be 

combined with other Neural Network types such as Re-

current Neural Networks, as for example in a setting that 

CNN will act as a feature preprocessing step to extract a 

smooth BAF, which will be further processed by an 

RNN. 

Apart from the CNN, other aspects can be further 

elaborated to increase the performance of the beat-

tracking algorithm. At first, the tempo estimation method 

may be improved, by considering more complex oscilla-

tors or other alternative Periodicity Analysis methods that 

can be found in the literature. Moreover, further pro-

cessing of the PF can be incorporated to the method, re-

ducing the so called “octave errors”. Regarding the beat 

tracking, it can be further improved to more sophisticated 

approaches, as for example with the use of agents [10] 

allowing smarter selection from the candidate beats. 

Regarding the robot itself, we plan to incorporate a 

genre classifier. This will allow the robot to change cho-

reographies on the fly, with respect to the music being 

played. Finally, it will be an important extension of the 

proposed method to handle audio streams recorded from 

the robot’s microphones instead of audio files. This 

would require either the training of the CNN to be made 

with data recorded from microphone, or by deploying de-

noising techniques. 
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ABSTRACT

While most schemes for automatic cover song identifi-
cation have focused on note-based features such as HPCP
and chord profiles, a few recent papers surprisingly showed
that local self-similarities of MFCC-based features also
have classification power for this task. Since MFCC and
HPCP capture complementary information, we design an
unsupervised algorithm that combines normalized, beat-
synchronous blocks of these features using cross-similarity
fusion before attempting to locally align a pair of songs. As
an added bonus, our scheme naturally incorporates struc-
tural information in each song to fill in alignment gaps
where both feature sets fail. We show a striking jump
in performance over MFCC and HPCP alone, achieving
a state of the art mean reciprocal rank of 0.87 on the Cov-
ers80 dataset. We also introduce a new medium-sized hand
designed benchmark dataset called “Covers 1000,” which
consists of 395 cliques of cover songs for a total of 1000
songs, and we show that our algorithm achieves an MRR
of 0.9 on this dataset for the first correctly identified song
in a clique. We provide the precomputed HPCP and MFCC
features, as well as beat intervals, for all songs in the Cov-
ers 1000 dataset for use in further research.

1. INTRODUCTION

A “cover song” is a different version of the same song, usu-
ally performed by a different artist, and often with different
instruments, recording settings, mixing/balance, tempo,
and key. To sidestep a rigorous definition, like others, we
evaluate algorithms on a set of songs that have been labeled
as covers of each other, and we declare success when our
algorithm recognizes clusters of songs which have been
deemed covers of each other. In fact, this problem is more
of a “high level music similarity” task beyond exact record-
ing retrieval, making the problem intrinsically more diffi-
cult than traditional audio fingerprinting [16, 31, 30].

Most work on automatic cover song identification to
date has focused on estimating and matching note-based
features such as chord estimates [1], chroma [8, 11],
harmonic pitch class profiles (HPCP) [15, 23, 25], 2D

c© Christopher J. Tralie. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Christopher J. Tralie. “Early MFCC And HPCP Fusion for Robust Cover
Song Identification”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

Fourier magnitude coefficients to approximate these fea-
tures [12, 19]. This is natural, since regardless of all
of the transformations that can happen between versions,
note sequences should be preserved up to transpositions.
Problems occur, however, when note sequences are not
the defining characteristic of a musical expression. This
is common in hip hop, for example, such as the song
“Tricky” in the “Covers 80 Dataset” ([10], Section 4.1)
performed by Run D.M.C. and The Beastie Boys. There
are also songs which are entirely percussive, such as the
8 covers of Frank Zappa’s song “The Black Page” that we
present in Section 4.3. Moreover, even for song pairs with
strong harmonic content, there may be sections with drum
solos, un-pitched spoken words, or other musical state-
ments on which pitch-based features fail. However, the is-
sue with features complementary to Chroma, such as Mel-
Frequency Cepstral Coefficients (MFCCs), is that they are
highly sensitive to instrument and balance changes. In
spite of this, some recent works have shown that MFCC-
based features can also be used in cover song identification
[5, 29]. Particularly, if the relative changes of MFCC are
captured, as in [29], performance is still reasonable.

Naturally, then, rather than relying on a single feature in
isolation, recent works have shown the benefits of feature
fusion after song comparisons have been made with each
feature set alone. For instance, aggregating ranks from
individual features can improve results [20, 21]. Other
works show the advantage of using all pairwise similar-
ities computed with different features [6], using a cross-
diffusion process known as “similarity network fusion”
(SNF) ([32, 33], Section 3.1) to come up with a consen-
sus similarity score between all pairs of songs in a corpus.

In this work, we develop a similarity network-based
early fusion technique which achieves state of the art re-
sults by combining complementary HPCP, MFCC, and
self-similarity MFCCs (SSM MFCCs). Unlike [6], we ap-
ply SNF before alignment in the space of features. This fu-
sion technique incorporates both cross-similarity between
two different songs and self-similarity of each song, so it
is able to combine information about matching sections
between songs and structural elements within each song.
We also apply late fusion on similarity scores between
a network of songs to further boost the results. While
state of the art supervised techniques on the popular “Cov-
ers 80” benchmark dataset yield a mean reciprocal rank
(MRR) of 0.625 [6] 1 , our completely unsupervised tech-

1 This technique scored the best in MIREX 2016
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nique achieves a MRR of 0.87 (Section 4.1). We also in-
troduce our own dataset consisting of 395 cliques of songs,
which we call “Covers1000” (Section 4.2), and on which
we report an MRR of 0.9 with our best fusion technique.

2. BEAT-SYNCHRONOUS BLOCKED FEATURES

In this section, we describe three complementary features
which we later fuse together in Section 3. One concept we
rely on in our feature design is “block-windowing,” which
was described in [29]. The idea is that when a contiguous
set of features in time are stacked into one large vector,
they give more information about the local dynamics of a
song. This is related to the concept of a delay embedding
in dynamical systems [17]. Having many blocks across
the song also allows us to control for drift by normalizing
within each block. To control for tempo differences, we
compute our blocks synchronized with beats, which is a
common preprocessing step [8, 11, 29]. We use the sim-
ple dynamic programming approach of [9], since it allows
the specification of a tempo bias. As in [11] and [29], we
bias the beat tracker at 3 different tempo levels (60, 120,
180bpm), and we compare all pairs of tempo levels, for
up to 9 unique combinations, since the beat tracker may
choose an arbitrary level of subdivision in a rhythm hierar-
chy. Once the beat onsets are computed, we form a block
for every contiguous group of B beat intervals, as in [29].

2.1 HPCP Features

One proven set of pitch-based features for cover song iden-
tification are “harmonic pitch class profiles” (HPCPs) [14]
2 . Following [26], we compute a stacked delay embed-
ding of the HPCP features within B beats, with two HPCP
windows per beat, for a total of 2B windows per block.
This has an advantage over other works which do not use
a delay, as it gives more context in time, and it is con-
sistent with the block/windowing framework. To normal-
ize for key transpositions, we need to determine an “opti-
mal transposition index” (OTI) between two songs ([24]).
Given the average HPCP vector X ∈ R+12 from song A
and the average HPCP vector Y ∈ R+12 from song B, we
compute the correlation XTY over all 12 half-step trans-
positions of the original HPCP features in the block, and
we use the transposition that leads to the maximum corre-
lation. Then, we compute cosine distance between all pairs
of HPCP blocks between the two songs.

2.2 MFCCs / MFCC Self-Similarity Matrices (SSMs)

In addition to HPCP features, we compute exponentially
liftered MFCCs in beat-synchronous blocks. We take the
MFCC window size to be 0.5 seconds, and we advance the
window intervals evenly from the beginning of the block
to the end of a block with a hop size of 512 samples. At
a sample rate of 44100 Hz, this leads to a window size
of 22050 and an overlap of roughly 97.5% between win-
dows (Section 2.2). Longer windows have been shown to

2 To ensure we have a state of the art implementation, we use the Es-
sentia library to compute HPCPs [4].

Figure 1: Example 8-beat Z-normalized MFCC SSMs
blocks in correspondence between cover versions. A block
from “Claudette” by the Everly Brothers and Roy Orbison.
The pattern in this block is Guitar + “Oooh ooh Claudette”
+ Guitar.

increase robustness of SSM matching in [29] and audio fin-
gerprinting [16], which justifies this choice. To allow di-
rect comparisons between different blocks, we interpolate
to 400 MFCCs per block, and we perform Z-normalization
(as in [29]) to control for loudness and drift, which we
found to be an essential step.

In addition to block-synchronized and normalized raw
MFCCs, we also compute self-similarity matrices (SSMs)
of the Z-normalized MFCCs within each block, as in [29],
leading to a sequence of SSMs for each song. That is, un-
like [2], who compares SSMs between entire songs, we
compare SSMs summarizing blocks of audio on the order
of tens of beats, as recommended by [29]. For each beat-
synchronous block, we create a Euclidean SSM between
all MFCC windows in that block. As with the raw MFCCs,
to allow comparisons between blocks, we resize each SSM
to a common image dimension d × d. Figure 1 shows an
example of MFCC SSM blocks with 8 beats and 500 win-
dows per block which were matched between a song and
its cover in the Covers80 dataset. Although the underlying
sounds are quite different (male to female, different instru-
ments and balance), the SSMs look similar. [29] argue that
this is why, counter to prior intuition, it is possible to use
MFCCs in cover songs.

2.3 Cross-Similarity Matrices (CSMs) between Blocks

Given a set of M beat-synchronous block features for a
song A and a set of N beat-synchronous block features
for a song B, we compare all pairs of blocks between the
two songs for that feature set, yielding an M × N cross-
similarity matrix (CSM), which can be used to align the
songs. For each song, we have 3 different CSMs for the
three different feature sets, which are each aligned at the
same beat intervals. For MFCC and MFCC SSMs, we
use the Euclidean distance (Frobenius norm) to create the
CSM, while for HPCP, we use the cosine distance after
OTI. We then use the Smith Waterman algorithm [28] to
find the best locally aligned sections between a pair of
songs. To apply Smith Waterman, we turn the CSM into a
binary matrixBM , so thatBMij = 1 ifCSMij is within the
κN th smallest values in row i of the CSM and if CSMij is
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within the κM th smallest values in column j of the CSM,
and 0 otherwise, where κ ∈ (0, 1) is a mutual nearest
neighbors threshold. As shown by [25] and [29], this is
a crucial step for improving robustness.

Once we have the BM matrix, we use a diagonally con-
strained variant of Smith Waterman to locally align the two
songs. The score returned by this algorithm roughly corre-
sponds to the length of the longest interval of consecutive
blocks matched between songs, with more tolerance for
gaps than a naive cross-correlation. More details can be
found in[25] and [29]. For comparison, we perform align-
ments with the CSMs obtained for each feature individu-
ally and on the CSM obtained from fusing them.

3. FEATURE FUSION

Figure 2 shows an overall pipeline for the fusion process.
We first briefly review the general mathematical technique
that we use to fuse cross-similarity matrices from different
feature sets, and then we show specifically how we apply
it in our pipeline.

3.1 Similarity Network Fusion (SNF)

Given all pairs of similarity scores between objects using
different features, Similarity Network Fusion (SNF) is de-
signed to find a better matrix of all pairwise scores that
combines the strengths of each feature [32, 33]. Roughly,
it performs a random walk using the nearest neighbor sets
from one feature while using the transition probability ma-
trices from all of the other features, while continuously
switching which feature set is used to determine the near-
est neighbors. More precisely, the algorithm is defined
as follows. First, start with a pairwise distance function
ρ(i, j) between objects for each feature type, and create an
exponential kernel W (i, j) = e−ρ

2(i,j)/2(σij)
2

, where σij
is a neighborhood-autotuned scale which is the average of
ρ(i, j) and the mean k-nearest neighbor intervals of blocks
i and j, for some k (see [33] for more details). Now, create
the following Markov transition matrices

P (i, j) =

{
1
2

W (i,j)∑
k 6=iW (i,k) j 6= i

1/2 otherwise

}
(1)

This is simply a first order Markov chain with a regular-
ized diagonal to promote self-recurrence. Once this matrix
has been obtained, create a truncated k-nearest neighbor
version of this matrix

S(i, j) =

{
W (i,j)∑

k∈N(i)W (i,k) j ∈ N(i)

0 otherwise

}
(2)

where N(i) are the k nearest neighbors of vertex i, for
some chosen k. Now let P f and Sf be the P and S matri-
ces for the f th feature set, and let P ft=0 = P f . Then define
a first order “cross-diffusion” random walk recursively as
follows

P ft+1 = Sf
(∑

v 6=f P
v
t

m− 1

)
(Sf )T (3)

wherem is the total number of features. In other words,
a random walk is occurring but with probabilities that are
modulated by similarity kernels from other features. As
shown by [32], this process will eventually converge, but
we can cut it off early. Whenever it stops, the final fused
transition probabilities are P̂t = 1

m

∑M
k=1 P

k
t .

3.2 Late SNF

One way to use SNF is to let the matrix ρ(i, j) be all pair-
wise distance between songs, computed by some align-
ment [6]. In this case, the result should be a better net-
work of similarity scores between all songs 3 . We fol-
low a similar approach to [6], but we we work with the
Smith Waterman scores we get from a unique combina-
tion of MFCC, MFCC SSM, and HPCP blocks ([6] ap-
plied SNF to different alignment schemes on the same
feature set). Given a particular score matrix S between
all pairs of songs, we compute the kernel matrix W as
W (i, j) = 1/S(i, j). Since Smith Waterman gives a
higher score for better matching songs, this ensures that the
kernel is close to 0 in this case. At this point, we perform
SNF, and we obtain a final N × N transition probability
matrix P . We can then look along each row to find the
neighboring songs with maximum fused probability. This
process can be thought of as exploiting the network of all
songs in a collection in an unsupervised manner.

3.3 Early SNF

In addition to SNF after Smith Waterman has given scores,
we can perform fusion at the feature level before running
Smith Waterman. One advantage of doing fusion before
scores are computed is that we don’t need a network of
songs to compute a score; we can obtain an improved score
between two songs without any other context 4 . Our tech-
nique for early fusion, which we found to be superior to
the “OR fusion” proposed in [13], is to apply SNF on
the beat-aligned cross-similarity matrices obtained from
two or more different feature sets before creating a binary
cross-similarity matrix (CSM) and applying Smith Water-
man.

As defined in Section 3.1, SNF would operate on self-
simlarity matrices (SSMs), so it cannot be directly applied
to cross-similarity matrices. To make it so that CSMs fit
into the framework, we create a “parent SSM” for each fea-
ture set that holds both SSMs and the CSM for that feature
set. In particular, given song A with M blocks in a partic-
ular feature set and song B with N blocks in that feature
set, form the SSMDAB which is the SSM that results after
concatenating song B to the end of song A. Let the SSM
for song A be DA, the SSM for song B be DB , and the

3 Note that [27] essentially do the same thing with only one feature set
4 Note that [6] refer to SNF after Smith Waterman as “early fusion”

with respect to rank aggregation, which they call “late fusion,” but we
call their technique “late fusion” because we fuse before Smith Waterman
with SNF, which is even earlier in the pipeline.
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Figure 2: A block diagram of our system which performs early similarity network fusion of blocked MFCCs, MFCC
SSMs, and HPCPs before scoring with Smith Waterman alignment.
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Figure 3: A pictorial representation of the SSM that results
when concatenating song B to song A, which we feed to
SNF for early fusion of low level features. Including self-
similarity blocks of each song helps to promote structural
elements in cross-similarity regions during SNF.

CSM between them be CAB . Then DAB can be split into
four sub-blocks:

DAB(i, j) =


DA(i, j) i < M, j < M

DB(i−M, j −M) i >= M, j >= M
CAB(i, j −M) i < M, j >= M

CBA(i−M, j) =
CT

AB(j, i−M) i >= M, j < M

 (4)

Figure 3 shows this pictorially. Given such a matrix for
each feature set, we could then run SNF and extract the
cross-similarity sub-matrix at the end. The issue with this
is the dynamic range of the SSM may be quite different
from the dynamic range of the CSM, as it is likely that
blocks in song A are much more similar to other blocks
in song A than they are to blocks in B. To mitigate this,
given a nearest neighbor threshold κ for the CSM, we com-
pute the kernel neighborhood scales σij individually for
DA, DB , and CSMAB , and we put them together in the
final kernel matrix WAB according to Figure 3. Once we
have such a matrix WAB for each feature set, we can fi-
nally perform SNF. At the end, we will end up with a fused
probability matrix P , from which we can extract the cross-
probability PCAB

. We can then take mutual highest prob-
abilities (akin to mutual nearest neighbors) to extract a bi-
nary matrix and perform Smith Waterman as normal. Fig-
ure 4 shows an example of the constructed matrices WAB

Figure 4: An example of early SNF on blocks of MFCC
SSMs and blocks of HPCP features on the song “Before
You Accuse Me” with versions by Eric Clapton and Cree-
dence Clearwater Revival. The block size is 20 beats, and
there are three iterations of SNF. The kernels WAB are
shown for each, and the CSM portion is highlighted with
a blue box. The final fused probability matrix P returned
from SNF is shown in the upper right. The correspond-
ing CSM portions for all three matrices shown for each
on the bottom. In the fused probability matrix, the diag-
onal regions are much crisper and more distinct from the
background than they are for the individual feature sets.
The result is that the mutual nearest neighbors binary CSM
has longer uninterrupted diagonals, which is reflected by a
higher Smith Waterman score.
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MR MRR Top-01 Top-10 ../80
MFCCs 29.7 0.538 79 97 42/80
SSMs 15.1 0.615 91 111 48/80

HPCPs 18.2 0.673 102 119 53/80
Late

SSMs/MFCCs
14.0 0.7 107 125 55/80

Late All 8.63 0.824 127 141 64/80
Early 7.76 0.846 131 143 68/80

Early + Late 7.59 0.873 136 144 69/80
[6] ? 0.625 ? 114 ?

Table 1: Results of different features and fusion techniques
on the Covers 80 dataset.

and the resulting fused probabilities P .
One advantage of this technique is that since the CSM

and SSMs are treated together and normalized to a similar
range, any recurrent structure which exists in the SSMs
can reinforce otherwise weaker structure in the CSMs
during the diffusion process. This can potentially help
to strengthen weaker beat matches in an otherwise well-
matching section, leading to longer uninterrupted diago-
nals in the resulting binary CSM.

3.4 Early Fusion Examples

Before we launch into a more comprehensive experiment,
we show a few examples of early SNF to illustrate the value
added. In each example, we used 20-beat blocks, κ = 0.1
for both similarity fusion and binary nearest neighbors, and
3 iterations of SNF. Figure 5 shows an example where the
three individual features are rather poor by themselves, but
where they happen to all pick up on similarities in comple-
mentary regions. As a result, early SNF does a fantastic
job fusing the features. Figure 6 shows an example where
MFCC SSMs happen to do better than HPCP, but where the
results fusing both are still better than each individually.

4. EXPERIMENTS

We are now ready to evaluate the performance of this new
algorithm. In all of our experiments below, we settle on
κ = 0.1 (the mutual nearest neighbor threshold for binary
CSMs) and B = 20 beats per block. For similarity net-
work fusion, we take 20 nearest neighbors for both early
fusion and late fusion, we perform 3 iterations for early fu-
sion, and we perform 20 iterations for late fusion. We also
include an “early + late” fusion result, which is applying
late fusion to the network of similarities obtained from all
of the feature sets (MFCCs, MFCC SSMs, HPCPs) plus
the network of similarities obtained from the early fusion
of the three feature sets.

4.1 Covers 80 Dataset

To benchmark our algorithm, we begin by testing it on the
“Covers 80” dataset [10]. This dataset contains 160 songs
which are split into two disjoint subsets A and B, each
with exactly one version of a pair of songs, for a total of 80

MR MRR Top-01 Top-10
MFCCs 83.3 0.618 583 679
SSMs 72.5 0.623 581 698

HPCPs 44.4 0.757 727 809
Late 19.8 0.875 855 931
Early 22.5 0.829 798 884

Early + Late 14 0.904 884 950

Table 2: Results of different features and fusion techniques
on the Covers 1000 dataset.

pairs. [8] and [11] assess performance as follows: given
a song in group A, declare its cover song to be the top
ranked song in set B, and record the total number of top
ranked songs that are correct. To get a better idea of the
performance, we also compute the mean rank (MR), mean
reciprocal rank (MRR), and the number of songs correctly
identified past a certain number. All of these statistics are
computed on the full set of 160 songs, which is more diffi-
cult than simply looking in set A or set B.

Table 1 shows the results. By themselves, HPCP fea-
tures perform better than MFCC-based features, which is
consistent with findings in the literature. However, there
are big improvements when fusing them all. Surprisingly,
we obtain a score of 42/80 just by blocking and normaliz-
ing the MFCCs. This shows the power of having stacked
delay MFCCs and of normalizing within each block to cut
down on drift. Also, when fusing MFCCs and MFCC
SSMs with late fusion, we get a large performance boost
over either alone, showing that SSMs are adding comple-
mentary information to the MFCCs they summarize.

4.2 Covers 1000 Dataset

To test our algorithm more thoroughly, we created our
own dataset by manually choosing 1000 cover songs
(395 cliques total) based on annotations given by users
on http://www.secondhandsongs.com 5 . This
dataset covers over a century of Western music from 1905
- 2016, and hence, it covers a wide variety of genres and
styles. Figure 7 shows the full distribution of years cov-
ered. By contrast, the Covers80 dataset contains almost
exclusively pop music from the ‘80s and early ‘90s.

Most cliques have only two songs as in the Covers80
dataset, but there are a few cliques with 3 and 4 songs. In
this case, we report the MR and MRR of the first correctly
identified song in the clique. Table 2 shows the results.
Similar trends are seen to the Covers80 case, and perfor-
mance scales to this larger size. One difference is that late
fusion on HPCPs/MFCCs/MFCC SSMs performed better
relative to early fusion, likely because the network was
much richer with the additional volume of songs.

5 MFCC and HPCP features for our dataset are publicly available at
http://www.covers1000.net, along with beat intervals and other
metadata including song title, album, and year
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Figure 5: Smith Waterman tables/scores for “All Tomorrow’s Parties” by Japan and Velvet Underground.

Figure 6: Smith Waterman tables/scores for “Time” by Tom Waits and Tori Amos
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Figure 7: A distribution of years of songs in the Covers
1000 dataset.

4.3 Frank Zappa: “The Black Page”

In our final experiment, we test a clique of 8 cover versions
of the song “The Black Page” by Frank Zappa, which is en-
tirely a drum solo that has absolutely no harmonic content.
We query each song against all of the songs in the Cov-
ers1000 dataset, and we compute the mean average preci-
sion (MAP) for the songs in the clique. Unsurprisingly,
for HPCP, the MAP is a mere 0.014, while for the rest of
the features these songs are quite distinct from the rest of
the songs in the Covers 1000 dataset. The best performing
feature set is early SNF, with a MAP of 0.98, followed by
raw blocked MFCCs at a MAP of 0.97, followed by MFCC
SSMs with a MAP of 0.905.

5. DISCUSSION

In this work, we have demonstrated the benefit of com-
bining complementary features at a very early stage of the
cover song identification pipeline, in addition to the late fu-
sion techniques in [6]. Unlike [6] and other techniques, our
algorithm works on a pair of songs and does not need a net-
work of songs to improve performance, though we show
that incorporating information from a network of songs
(“late fusion”) can further improve results. We showed
that HPCP and MFCC features capture complementary in-

formation and are able to boost performance substantially
over either alone. In the process, we also developed a novel
cross-similarity fusion scheme which was validated on sev-
eral datasets, and which we believe could be useful beyond
cover song identification in music structure analysis.

The main drawback of our technique is the requirement
of beat tracking. In practice, beat trackers may not return
correct onsets. Our current best remedy for this is to use
different tempo biases, which blows up computation by a
factor of 9. Also, coming up with a single beat level is ill-
posed, since most music consists of a hierarchy of rhyth-
mic subdivisions [22]. There does seem to be a recent con-
vergence of techniques for rhythm analysis, though, [7, 18]
so hopefully our system will benefit.

In addition to imperfect beat intervals, there are also
computational drawbacks in low level alignment, which is
why most recent works on cover songs perform approx-
imations to global cross-correlation, such as 2D Fourier
Magnitude Coefficients [12, 19]. By contrast, we rely
on Smith Waterman, which is a quadratic algorithm, and
early SNF adds another quadratic time complexity algo-
rithm even with sparse nearest neighbor sets. To address
this, we are in the process of implementing GPU algo-
rithms for every step of our pipeline, and we hope to apply
it to the “Second Hand Songs Dataset,” which is a subset
of the Million Songs Dataset [3].
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ABSTRACT 

Music librarians and people pursuing music librarianship 

have exchanged emails via the Music Library Association 

Mailing List (MLA-L) for decades. The list archive is an 

invaluable resource to discover new insights on music 

information retrieval from the perspective of the music 

librarian community. This study analyzes a corpus of 

53,648 emails posted on MLA-L from 2000 to 2016 by 

using text mining and quantitative analysis methods. In 

addition to descriptive analysis, main topics of discus-

sions and their trends over the years are identified 

through topic modeling. We also compare messages that 

stimulated discussions to those that did not. Inspection of 

semantic topics reveals insights complementary to previ-

ous topic analyses of other Music Information Retrieval 

(MIR) related resources. 

1. INTRODUCTION 

The Music Library Association Mailing List (MLA-L)1 

has a variety of subscribers including music librarians, 

MLA members, and professionals and students in music 

librarianship as well as musicology. The archive of this 

list serves as an invaluable resource for studying discus-

sions among these people; it is the oldest and largest re-

pository for studying issues in this profession [11].  

Music librarians are an integral and important part 

of the larger Music Information Retrieval (MIR) commu-

nity. The experiences, expertise, interests and concerns of 

music librarians are highly relevant to the advancement 

of MIR research. Similarly, MIR research can improve 

practices in music librarianship, ultimately enhancing the 

discovery of music information for diverse types of users 

[23]. Given the abundance of emails archived in the 

MLA-L, we can identify main topics discussed through-

                                                           
1 https://www.musiclibraryassoc.org/?page=mlal 

out the years which can offer insights into real-world mu-

sic information interactions, particularly concerning the 

use and management of music information, from the per-

spectives of music information professionals and their 

clients. This study seeks to uncover the key topics of dis-

cussion related to music information needs and uses in 

the MLA mailing list by using text mining and quantita-

tive analysis methods. 

2. LITERATURE REVIEW 

2.1 MLA-L Content Analysis 

Interest in, and analysis of, the MLA-L collection is not 

new: nearly three decades ago when e-mail was the new-

est form of written communication, the list became the 

object of investigation (e.g., [5], [26]). Griscom [11] of-

fered a detailed and relatively more recent account of the 

history and development of the MLA-L. Through qualita-

tive content analysis, Griscom organized postings in the 

“E-Mail Digest” column of the MLA-L archive into nine 

categories as shown in Table 1. 

Category Definition 

Reference 

questions 

questions on locating songs or music work of 

specific topics or sources 

Cataloging 
extended discussions on catalogs of music li-

brary collections 

Practical  

matters 

problems unique to music libraries such as cir-

culation and preservation of holdings 

Technology 
questions and opinions about adapting to tech-

nological advancements 

Ethics 
questions on unexpected and controversial top-

ics such as illegal items  

Copyright 
questions and comments on reproduction mat-

ters and copyright laws 

Circulation  

policies 

policies and procedures posed by special for-

mats in music libraries 

Assisting  

colleagues 

alerts on problems and peculiarities such as 

production errors. 

MLA matters 
communications from the board of directors of 

the association 

Table 1. Main categories of MLA-L postings in [11]. 

While it is noteworthy that a majority of these cate-

gories were consistent with the categorization in earlier 

studies on the MLA-L [5], [26], analytical research on 

mailing lists or discussion forums of library professionals 
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should not only identify categories of messages, but also 

consider what specific topics were discussed [10]. More 

importantly, the data analyzed in the most recent endeav-

or of MLA-L content analysis [21] were up to year 1998 

which was nearly two decades ago, and thus inspiring the 

updated account via current exploration of the data.  

2.2 Text Analysis in MIR 

Text analyses of MIR-related resources have increasingly 

appeared in recent years in the MIR community. Downie 

and Cunningham [9] contributed an early analysis of 

postings of music-related information requests on a music 

newsgroup. In their results, “locate” was identified as a 

predominant intended use for the requested music infor-

mation. This is consistent with the category of “reference 

questions” shown in Table 1. In fact, the category “refer-

ence questions” was identified in all the previous studies 

on the MLA-L [5], [11], [26].  

Music related Q&A (question & answers) websites 

are also a rich resource of MIR-related discussion. Bain-

bridge et al. [1] analyzed users’ music queries in Google 

Answers using a grounded theory approach, revealing 

that bibliographic metadata were commonly included in 

users’ queries. This leads to corroboration with the “cata-

loging” category of MLA-L postings [11]; bibliographic 

metadata such as performer and title are necessary for 

catalogs in music libraries. A later study by Lee [16] em-

ployed content analysis, also on Google Answer queries, 

to look into music information seeking behaviors. The 

results revealed that the “location” of a music information 

object (e.g., a recording) was also one of the most promi-

nent information needs.  

In addition to newsgroups and Q&A websites, pub-

lications in MIR have also been analyzed. Lee et al. [16] 

examined papers in the proceedings of the Conference of 

the International Society for Music Information Retrieval 

(ISMIR). Analysis of keywords in titles and abstracts of 

ISMIR papers identified “audio” and “classification” as 

the most frequent terms. Most recently, Hu et al. [13] 

compared the keywords in titles of ISMIR papers written 

by female to those by male authors, revealing the gender-

based differences of topic preferences between authors.  

Lyrics, music reviews, users’ interpretations of mu-

sic, and other types of listeners’ input in social media 

(e.g., social tags and tweets) have also been analyzed, 

mainly by automated methods [24], for various tasks in 

MIR such as genre classification [22], mood classifica-

tion [14], and subject classification [7]. In these studies, 

natural language processing methods are applied to con-

vert textual data into numerical data in large scales, 

which are then fed into a wide range of machine learning 

approaches to fulfill aforementioned MIR tasks. More 

often than not, such texts are used in combination with 

audio signals to further improve performances via multi-

modal approaches (e.g. [14]).          

2.3 Topic Modelling and Trend Analysis 

Machine learning and quantitative methods have demon-

strated their capability in automating the processing of 

email messages [6] and other text input by users. Barua et 

al. [2] used a prevalent statistical modeling technique 

called Latent Dirichlet Allocation (LDA) [3] to discover 

topics and their trends in Q&A websites, in order to gain 

insights into the wants and needs of the participants. Prior 

studies employing topic modelling on email messages 

and replies are seemingly scarce. McCallum et al. [20], 

being one rare case, also used the LDA in analyzing an 

email corpus. 

Exploration of the changes in topics found in a body 

of messages over time—trend analysis—is particularly 

important due to the evolving focus in documents such as 

emails and queries (Blei and Lafferty, 2003 as cited in 

[27]). Unsupervised topic modeling as an extension to 

LDA is one way to generate the temporal relationships of 

topics [12]. 

Mishne and Glance [21] showed that comments 

made by users on weblogs could be an indicator of popu-

larity of posts or the weblogs themselves. The mechanism 

of MLA-L is also in the form of postings welcoming po-

tential replies, and thus it is reasonable to evaluate the 

popularity of topics based on their corresponding replies. 

To bridge the gaps in previous research, this study 

aims to answer the following research questions: 1) What 

are the primary topics discussed in the MLA-L list from 

2000 to 2016?; 2) How did the strength of the topics 

change over time?;  and 3) Which topics attracted replies 

and which did not? Answers to these questions will help 

MIR researchers and practitioners understand information 

needs of the community and identify potential use cases 

of MIR tasks and applications. 

3. DATA STATISTICS 

The corpus used in this study consists of 53,648 emails 

posted on MLA-L from 2000 to 2016 by approximately 

2,713 people (Figure 1). Among these emails, 33,250 

(61.98%) received no replies while the other 20,398 

emails (38.02%) formed 8,384 distinct online conversa-

tions (email threads) with the largest thread containing 52 

emails. The average length of an email is 177.5 words 

(after removing reply and signature blocks; blank emails 

not included) with the longest email containing 1,389 

words, indicating that most of the emails contain substan-

tial content.  

 

Figure 1. Number of emails in MLA-L across years. 
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4. PREPROCESSING 

The data cleaning steps for preprocessing the large corpus 

include: 1) removing special formats and converting 

emails into plain text using OpenRefine2; 2) removing 

reply blocks (quoted emails included in reply emails); 3) 

detecting signature blocks by detecting variations of the 

sender’s name using the tool Jangada3 from the last 10 

lines of the emails as suggested in [6]; 4) removing mail-

ing list footers; and, finally 5) removing various leave-

takings such as “best wishes” and “sincerely.” Given the 

large amount of data, it is not possible to manually evalu-

ate the accuracy of preprocessing on the entire corpus. 

Instead, inspection of a random sample of 100 pre-

processed emails show 89% had the aforementioned 

noisy parts correctly removed. 

The cleaned emails underwent text processing pro-

cedures for text mining purposes. Stopwords4 that are ex-

tremely common in English were removed to increase the 

quality of discovered topics. In addition, words that oc-

curred in more than 15% of the emails, such as “music” 

and “send”, were also removed, since they had little dis-

criminant power and thus could be regarded as domain 

stopwords. To enhance the readability of the topics, lem-

matization5 was applied to convert words in derivative 

forms into their lemmas, instead of crude stemming that 

usually cuts out suffixes of words. Finally, emails that 

were left with less than four words were eliminated as it 

would not be reliable to assign them to a certain topic 

based on too few words. Figure 2 illustrates an example 

email before and after preprocessing.  

 

Figure 2. An example email from the MLA-L postings 

before and after preprocessing. 

5. METHODS 

5.1 Topic Modeling Setup and Labeling Procedure 

We employed one of the popular topic modeling algo-

rithms, Latent Dirichlet Allocation (LDA). It is a genera-

tive model that represents documents as probability dis-

tributions over topics, and represents topics as probability 

distributions over words [3]. In other words, given a set 

of documents, LDA can identify latent topics discussed in 

these documents based on word-document co-

occurrences. As a probabilistic method, LDA can assign 

each document to a small number of topics with different 

                                                           
2 http://openrefine.org/ 
3 http://www.cs.cmu.edu/~vitor/codeAndData.html 
4 https://code.google.com/archive/p/stop-words/ 
5 http://morphadorner.northwestern.edu/morphadorner/ 

probabilities. At the same time, each topic is represented 

by a small set of words that are highly related to this top-

ic. Due to its superior performances compared to other 

topic modeling methods, LDA has been widely used to 

discover topics from diverse corpora such as papers, web 

postings, and even tweets. It is believed that LDA can 

also discover topics well from email content [20]. 

In this study, we ran the LDA implementation in the 

MALLET machine learning toolkit, which has been 

widely used in topic modeling research [19]. In LDA, the 

number of topics is tightly linked to the granularity of the 

learned topics. After changing the number of topics from 

10 to 200, we report the case when the number of topics 

was set as 50, for a proper granularity of topics. To in-

crease the quality of text analysis, we used bigrams (i.e., 

combinations of two consecutive terms) as well as uni-

grams (i.e., individual terms) as “words” when learning 

the topics [25]. 

The resultant topics then underwent a manual screen-

ing process, to filter out noisy, meaningless topics. This is 

a common practice in applying topic modeling (e.g., 

[12]). Those noisy topics were introduced by trivial text 

patterns that frequently appeared in the corpus. In our 

context, due to the inevitable side effect of the automatic 

approach to data preprocessing, which was mandated by 

the scale of the corpus, some signatures and forwarded 

message headers remained and were inputted into the top-

ic modeling process. As a result, these signatures and 

senders were grouped into a noisy topic. Another exam-

ple of a noisy topic is the agglomeration of words in lan-

guages other than English. Common email terms (e.g., 

“post”, “email”) and greeting/closing words also formed 

a topic which conveyed little meaning. Fortunately, topic 

modeling associates each identified topic with representa-

tive words, and thus it is convenient and reliable for re-

searchers to examine and weed out noisy topics. 

The remaining topics appear to be meaningful. To 

enhance readability of the topics, we manually labeled 

each topic with one or two phrases based on the meanings 

of the top 10 words and the top 50 emails associated with 

the topic. In particular, frequently appearing words in the 

subject lines of the highly ranked emails in each topic 

help us gain a deeper understanding of the topic.  

5.2 Topic Trend Analysis 

Besides identifying topics in the entire corpus, we also 

calculated the probability over topics given a particular 

year, 𝑃(𝑡|𝑦), to examine the topical trend over time. To 

this end, we followed the empirical probability calcula-

tion procedure proposed in [12]. Based on the topic mod-

eling result, we first computed a matrix 𝑪 of 𝐷×𝑇 dimen-

sions where D refers to the number of documents (emails) 

in our corpus and T the number of topics identified. 

The (𝑑, 𝑡)-th element of the matrix 𝑪 holds the number of 

words assigned to the 𝑡-th topics in the 𝑑-th document. 

From here, we can induce the probability over the topics 

per year 𝑦 as follows: 
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𝑃(𝑡|𝑦) =
∑ 𝑪(𝑑, 𝑡)𝑑=𝐷𝑦

∑ 𝑁𝑑𝑑=𝐷𝑦

,                   (1) 

where 𝐷𝒚 is the set of documents that belong to year 

𝑦, and 𝑁𝒅 is the number of words in the 𝑑-th document. 

The probability 𝑃(𝑡|𝑦) over the years can then form a 

time series for topic t.  

In order to determine whether there is a statistically 

significant upward or downward trend for a topic over 

time, Cox Stuart trend analysis was used with a signifi-

cance level of 0.05 [18]. Cox Stuart trend analysis splits a 

time series into two halves and counts the numbers of 

positive and negative differences between pairs of data 

points drawn from the two halves. If there are more nega-

tive differences than positive ones, then an upward trend 

is detected, indicating that the topic gained more attention 

over the years, and vice versa.  

5.3 Topics with and without Replies 

To answer the third research question, we compared the 

topics associated with emails with replies and those with-

out. As mentioned before, in the results of LDA, each 

email is assigned to multiple topics with different proba-

bilities. In this analysis, we aggregated the topics and 

their probabilities across all emails either with or without 

replies. Then we ranked the topics based on their aggre-

gated and normalized probabilities. By comparing the top 

topics of the two sets of emails, we can discover which 

topics were more engaging and generated more discus-

sions among the MLA community.     

6. RESULTS AND DISCUSSION 

6.1 Discovered Topics  

Upon careful screening, 27 of the resultant topics were 

identified as meaningful. Table 2 presents these topics, 

ranked by their topic weights. For each topic, Table 2 

presents the topic IDs, the labels, the topic weight (in pa-

rentheses), frequent words in the subjects of top emails 

associated with this topic, the top 10 words assigned to 

this topic in the LDA results, trend over time (upward or 

downward as indicated by arrows), and the trendline that 

plots the probability change of this topic across the years.   

The weight of the topic (the Dirichlet parameter) is 

roughly proportional to the overall portion of the docu-

ments assigned to a given topic [19]. Therefore, topics 

with higher weights are more popular in the corpus, while 

those with lower weights rarely appear. As shown in Ta-

ble 2, it is not surprising that the most important topic in 

our corpus is about requests and questions from patrons 

(i.e., clients). Unlike other topics, there is no frequent 

word in subject lines for this topic. A closer examination 

revealed that it is because each subject belonging to this 

topic was unique. Based on this topic’s highest weight, 

we can infer that there must have been a wide range of 

requests and questions from patrons. The second highest 

ranked topic is musical terms whose top words include a 

range of music genres, indicating that music librarians not 

only focus on Classical music (topic #35), but also on a 

wide diversity of music. Other top ranked topics cover 

various aspects of librarianship (e.g., #6: cataloging; #14: 

circulation; #22: collection), and music-specific materi-

als: scores (#30), recordings (#47), and songs (#12).  

In order to compare our results to categories identi-

fied in previous studies using content analysis, the 27 

meaningful topics discovered in this study were manually 

grouped into nine broader topic categories based on their 

semantic similarity: Cataloging, Reference Questions, 

Circulation Policies, Copyright, Audio Technology, 

MLA, Advertisements, Music Related Terms, and Others. 

Five of the categories (Reference questions, Cataloging, 

Copyright, Circulation Policies, MLA) were equivalent 

with those uncovered by Griscom [11] (c.f. Table 1), 

while Audio Technology appears closely related to Gris-

com’s “Technology.” The Advertisement (CD/DVD 

sales, Travel information, Job postings) category is novel 

to our findings. 

Our discovered topics are also consistent with re-

sults from earlier topic analyses on MIR-related discus-

sions. For example, some of the most frequent words in 

topic #31 (e.g., “bibliographic,” “metadata”) are exactly 

the same as how users of MIR systems predominantly 

described their needs, particularly on music-related dis-

cussion platforms [1], [9]. Similarly, Audio Technology 

was one of the main topics revealed in this analysis, 

whereas “audio” has been one of the most commonly 

used title terms in ISMIR research topics [16]. With the 

rapid growth of audio-based research in the MIR com-

munity, insights and needs on audio technology from the 

music librarian community can provide important real-

life use cases for MIR studies. Another example is Topic 

#42 which was labelled “Grove music online.” It echoes 

the trend of online access to digital music information, 

which is also a major theme in MIR research community. 

As a major research-oriented online resource serving 

scholars and music professionals, Grove Music Online 

can be used by MIR researchers for improving MIR ser-

vices and applications targeting the scholarly and profes-

sional user groups. 

6.2 Topic Trend Analysis  

The temporal trends of these topics are reported in the 

“trend column” in Table 2. Results of Cox Stuart tests 

show that six topics had increasing trends (#20, #31, #7, 

#49, #24, #27.) while four had decreasing trends (#41, 

#14, #12, and #2). Other topics had no significant trend. 

It is noteworthy that the topics with decreasing trends 

ranked higher in Table 2 than those with increasing 

trends, reflecting a phenomenon that popular topics be-

came less dominating over time while topics with lower 

weights started gaining popularity in recent years, result-

ing in diversified topics.  

The topics showing downward trends are related to 

the traditional functions of music libraries: #41 (Patron's 

requests and questions), #14 (Circulation and library pol-

icy in colleges), and #12 (Song requests). These indicate 
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ID Topic Label (weight) Frequent words in Subjects Top 10 Words Trend Trendline 

41 
Patron's request & question 

(0.086) 
N/A 

dear, copy, cw, patron, source, dear, cw, piece, 
score, advance, check ↓  

28 Musical terms (0.062) Jazz, band, blues, rock music, songs 
Jazz, band, record, blue, play, album, rock, live, 
john, sing 

-  

4 MLA Event (0.054) MLA meeting, conference, mentoring 
mla, meeting, program, meet, conference, 
session, attend, pm, friday, time 

- 
 

6 Cataloging (0.054) 
oclc, lc, classification, cataloging, 
authority record, bib record 

Record, title, oclc, number, catalogue, 
authority, catalog, add, authority record, item 

- 
 

14 
Circulation and library 

policy in colleges 

(0.046) 

school, due date, except to faculty, 
circulate, Music Practice Room(s) in 
Library, students, faculty 

student, collection, faculty, material, item, 
class, patron, circulate, score, staff ↓  

35 Classical music (0.045) orchestra, chamber music, piano, concerto 
piano, orchestra, symphony, violin, string, 
quartet, op, concerto, sonata, piece 

- 
 

22 Music collection (0.039) 
Music collection, catalogue, material, 
archive, donation 

collection, manuscript, sheet, material, book, 
score, item, special, rare, project 

- 
 

30 Scores, edition (0.037) 
score, edition, need, actual music piece 
information (op, major, ..) 

score, edition, publish, publisher, volume, 
copy, print, major, publication, complete 

- 
 

47 Audio recording (0.034) 
audio, recording, streaming, iPod, I-tunes, 
physical format, mp3 

naxos, audio, recording, classical, stream, file, 
listen, digital, service, record 

-  

12 
Requesting songs 

(0.032) 

Folk song for a wedding, Song in a 
Sopranos episode, Animal Songs, Songs 
about aging, Lyrics question, 

song, lyric, sing, tune, word, folk, title, tina, 
popular, dallas ↓  

23 
Journal and periodical 

(0.030) 
journal, JSTOR, RIPM publications, ECO 
music journal, IIMP 

journal, article, review, publish, issue, rilm, 
online, editor, title, publication - 

 

39 Job posting (0.028) 
Job opening, Job posting, position, job 
announcement 

service, librarian, experience, collection, 
position, reference, application, degree, faculty, 
professional 

- 
 

2 Music storage (0.028) cd, lp, case, vinyl cd sleeves, cd box lids cd, disc, lp, dvd, record, tape, label, case, box, booklet ↓  

20 
MLA board, member 

(0.027) 

MLA Newletter, roundtable, Note-Book, 
Call for new members, Board meeting, 
Board reports 

mla, committee, member, board, association, 
report, chair, membership, year, annual ↑  

33 List of books (0.027) 
Encylopedia, books, bibliography, Reference 
titles to give away, book titles 

book, press, author, title, publication, york, 
year, isbn, publish, history 

- 
 

0 
Subject Heading, lc, genre, 

code (0.027) 

call numbers(lc, Dewey), language code 
zxx, Genre heading, field, marc, aacr2, 
classification 

subject, head, heading, term, title, instrument, 
score, code, form, musical 

- 
 

29 Copyright (0.025) 
Copyright question, copyright tips, 
copyright courses, royalties, purchasing a 
download, ILL(InterLibrary Loan) 

copyright, copy, law, fair, public, license, 
domain, legal, public_domain, permission 

- 
 

44 
Journal and periodical 

(0.024) 
Journal, issue, periodical 

issue, journal, volume, spring, copy, fall, 
american, june, summer, july 

- 
 

10 

Conference 

roommate/transportation

-mate solicitation (0.022) 

roommates for, Shuttles to, registration 
registration, conference, hotel, room, rate, 
register, tour, roommate, reservation, fee 

- 
 

31 Metadata (0.020) 
Music metadata, RDA, MOUG, 
Bibliographic Control Committee (BCC), 
ISBD, OCLC-MARC, music cataloging 

catalogue, rda, bibliographic, metadata, marc, 
moug, oclc, service, indiana, access ↑ 

 

7 
Call for papers, 

proposals, awards, etc. 

(0.019) 

Call for Papers, Call for Submissions, Call 
for Proposals, Call for Applications, Call 
for poster sessions, call for seminar topics 

conference, proposal, paper, submission, 
session, presentation, submit, poster, deadline, 
topic 

↑  

13 
Travel information 

(0.019) 

currency exchange, meeting, travel saving, 
transportation 

san, travel, city, food, train, water, station, 
street, building, bus 

- 
 

42 
Grove music online 

(0.019) 
grove, grove online, grove dictionary, new 
grove 2(ng2) 

grove, online, article, dictionary, reference, 
print, oxford, grove_online, edition, resource 

- 
 

15 Hymn (0.019) 
Hymnals, hymn tune, chant, mass, choral 
music 

church, organ, hymn, choral, saint, psalm, sing, 
choir, antoinette, mass - 

 

49 Job posting (0.019) Job posting 
job, position, service, placement, librarian, 
apply, mla, placement_service, mla_placement, 
hire 

↑  

24 CD/DVD sales (0.018) 
CD HotList, Music Media Monthly, MLA 
Discount 

order, sale, label, cd, offer, release, special, set, 
time, mla ↑  

27 
Call for papers 

proposals, awards, etc. 

(0.014) 

Call for Papers, Call for Submissions, Call 
for Proposals, Call for Applications, Call 
for poster sessions, call for seminar topics 

letter, support, grant, application, travel, award, 
year, annual, meeting, moug ↑  

Table 2. Identified topics by topic modeling
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that MLA members tended to engage more on other is-

sues than these traditional library functions in recent 

years. This shift of attention may be attributed to ad-

vancement of technologies in recent years, including 

those in MIR. For instance, the downward trend of topic 

#12 (Requesting songs) might be related to the fact that 

music librarians and their clients have been equipped 

with alterative means to discover and access songs and 

other musical materials, such as search engines and 

online music repositories. Another trendline that may also 

reflect technology advancement is topic # 2 (music stor-

age). The sharp decrease of this topic corresponds to the 

decline of CDs, LPs, tapes as formats of physical music 

materials. In this regard, technologies and resources facil-

itating music information retrieval and access are of great 

demand, particularly when the ways and channels people 

look for music information are changing so rapidly.  

On the other hand, topics with upward trends in-

clude #20, which consists of messages about MLA board 

and members, demonstrating a vibrant and active profes-

sional association in the field of music librarianship. The 

second topic with a growing popularity is #31 (Metadata), 

which corroborates with recent developments in the 

metadata field such as RDA (Resource Description and 

Access, a standard for cataloging released in 2010). The 

other topics with upward trends all fall into the Adver-

tisement category: #7 and #27 (Call for papers, proposals, 

awards), #49 (Job postings) and #24 (CD/DVD sales). 

This again reflects the flourishing development of the 

field and the community. In fact, the MLA and the U.S. 

branch of the International Association of Music Librar-

ies (IAML-US) were merged in 2011, which has substan-

tially boosted the status of MLA in the profession.6  

6.3 Topics of Emails with/without Replies 

We compared the email messages that stimulated discus-

sion among participants of the MLA-L to those that did 

not. Figure 3 shows topics and their normalized weights 

in emails with and without replies respectively. Among 

the 27 topics identified by topic modeling, three pairs 

were merged for this analysis as the semantics of each 

pair are almost identical: #39 and #49 (Job postings), # 

23 and #44 (Journals and periodicals) and #7 and #27 

(Call for papers/proposals/awards). As shown in Figure 3, 

there is an overlap among highly-ranked topics between 

the two lists, such as “Cataloging”, “Patron’s request & 

questions”, and “Classical music”. This is not surprising 

as these are the most popular topics in the entire dataset 

(Table 2). 

It is more interesting to see that there are topics 

ranked high in emails with replies but low in those with-

out, such as “Subject heading, LC, genre, code” (#0), 

“Requesting songs” (#12), “Audio recording” (#47), and 

“Copyright” (#29)—indicating that emails in these topics 

often started discussions among subscribers. In particular, 

emails in “Requesting songs” (#12) and “Audio record-

ing” (#47) are likely to contain music information needs 

                                                           
6 https://www.musiclibraryassoc.org/?page=AboutMLA 

and queries for music information. Similar to postings in 

Q&A websites, these email exchanges provide insights 

on 1) what kind of music information was needed by mu-

sic librarians who in turn were trying to meet the needs of 

their patrons (i.e., the end users); and 2) how well-trained 

music information professionals looked for music infor-

mation. Some of the heated discussions in threads with a 

large number of replies are likely to include queries that 

were interesting yet hard to find information for. These 

are excellent resources to discover not only new use cases 

but also search strategies for novel MIR systems.  
 

 

Figure 3. Topics in emails with and without replies.  

Topics that are much more popular in emails with-

out replies than in those with replies include “MLA 

event” (#4), “Call for papers/proposals/awards” (#7 and 

#27), “MLA board, members” (#20), and “CD/DVD 

sales” (#24). These topics are mostly of the nature of an-

nouncement and thus are unlikely to trigger discussions.  

7. CONCLUSION 

This study collected email messages posting in the Music 

Librarian Association mailing list (MLA-L) from 2000 to 

2016, and analyzed the content through text mining. Main 

topics of discussions and their trends over the years are 

identified using Latent Dirichlet allocation (LDA). Twen-

ty-seven meaningful topics were found and their seman-

tics and trends were discussed in the context of MIR re-

search. Topics in emails with and without replies were 

compared. As music librarians are gateways and bridges 

between music resources and users, the goals of music 

librarians and those of MIR researchers and practitioners 

are consistent: to help and facilitate users to access and 

make better use of music information. Therefore, the 

concerns and focuses reflected in the MLA-L are worthy 

of attention from the MIR community.  

Future work will include detailed content analysis of 

the emails in such topics as “Requesting songs” and “Pa-

tron’s Request & questions”, to identify the needs of mu-

sic information professionals and their users, and to learn 

about effective strategies of identifying and locating hard-

to-find music information.   
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FAST AND ACCURATE: IMPROVING A SIMPLE BEAT TRACKER WITH
A SELECTIVELY-APPLIED DEEP BEAT IDENTIFICATION

Akira Maezawa
Yamaha Corporation

ABSTRACT

In music applications, audio beat tracking is a central com-
ponent that requires both speed and accuracy, but a fast
beat tracker typically has many beat phase errors, while
an accurate one typically requires more computation. This
paper achieves a fast tracking speed and a low beat phase
error by applying a slow but accurate beat phase detector at
only the most informative spots in a given song, and inter-
polating the rest by a fast tatum-level tracker. We present
(1) a framework for selecting a small subset of the tatum in-
dices that information-theoretically best describes the beat
phases of the song, (2) a fast HMM-based beat tracker for
tatum tracking, and (3) an accurate but slow beat detec-
tor using a deep neural network (DNN). The evaluations
demonstrate that the proposed DNN beat phase detection
halves the beat phase error of the HMM-based tracker and
enables a 98% decrease in the required number of DNN
invocations without dropping the accuracy.

1. INTRODUCTION

Offline audio beat tracking, the task of identifying beats in
a music audio signal, is now a critical component in mu-
sic applications, having uses in digital audio workstations,
synthesizers, music recommendation and many others. In
beat tracking, it is important to both estimate a reasonable
tempo (inversely proportional to the period between two
beats), as well as the timings of beat occurrence, or the
beat phase. In these applications, a beat tracker must be
fast and accurate for common types of musical pieces such
as popular music and electronic dance music. The capabil-
ity to analyze one song in a few seconds is often desirable
in end-user products, while being satisfactorily accurate.

There is a trade-off, however, between the speed and
the accuracy of a beat tracker. On the one hand, a fast beat
tracker tends to make mistakes due to some simplifying
assumptions. On the other hand, an accurate beat tracker
that employs a more elaborate model like deep neural net-
works (DNN) tends to require more computation, which is
proportional to the song duration.

We observe two points in these extrema. First, many
of the errors in a fast tracker are attributed to incorrect beat

c© Akira Maezawa. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Akira
Maezawa. “Fast and Accurate: Improving a Simple Beat Tracker With a
Selectively-applied Deep Beat Identification ”, 18th International Society
for Music Information Retrieval Conference, Suzhou, China, 2017.

Beat position 

interpolation

Audio signal

Figure 1. The overview of our method. Our system im-
proves a simple beat tracker with little computational over-
head by adding a slow but accurate beat phase estimator.
Computation is reduced by only using a subset of the de-
tected tatums for phase estimation, and interpolating the
estimated phase output.

phase estimation, especially for current popular music. For
example, a simple beat tracker often mistakenly tracks the
off-beat. This means that a simple method is already quite
capable of tracking the tatum, i.e., some integer subdivi-
sion of the beat, but poorly identifies which of them are the
beats.

Second, using an accurate but slow beat tracker to
sweep through an entire song is often wasteful. For many
pieces where tatum tracking is possible with a simple
method, the primary role of an elaborate method is in beat
phase identification. In many musical pieces, however, the
meter is mostly stationary, so the beat phase identification
needs to be done only sparingly. If the beats are identified
at the most informative spots in the music for beat phase
identification, the rest may be interpolated by exploiting
the stationarity of the meter.

In this paper, we combine the best of both worlds – a
fast tracking of beats with a moderate amount of beat phase
errors, and an accurate identification of the beats through
the use of elaborate methods. Our key idea, as shown in
Figure 1, is to efficiently fix the beat phase estimation er-
rors of a simple but fast beat tracker, by sparingly applying
an accurate but slow beat phase identifier, only at the most
informative spots in the song. To elaborate, we (1) detect
the tatum reliably with a simple beat tracker, (2) select a
small disjoint subset of the tatums that best describes the
beat phases of the entire song, (3) apply an elaborate beat
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identifier only at the selected tatum subset, and (4) interpo-
late the beat identification for the remaining tatums. Such
a framework is enabled by exploiting a strong tatum-level
correlation of the beat phase: it allows us to select a small
set of tatums that best describes, in the sense of mutual in-
formation, the rest of the beats, and to interpolate the rest.

Our contributions are (1) a low-overhead framework for
improving an existing simple beat tracker by cascading a
more elaborate beat phase detector, achieved by identify-
ing the most informative tatums in a song for beat phase
identification; (2) a beat phase identification method us-
ing a DNN that accurately identifies the beat phase of a
tatum-sliced data; and (3) a simple and fast HMM-based
beat detector that jointly decodes the BPM and beat phase.

2. RELATED WORK

2.1 Beat Tracking and Downbeat Estimation

Beat tracking is the task of identifying the beats in a mu-
sic audio signal, a task that has been studied extensively.
Earlier methods match hand-crafted onset features while
assuming the evolution of the tempo, through soft rules [9]
dynamic programming [8] or hidden Markov models [20],
often with an explicit tempo induction step [5, 6]. One of
the key design issues is the choice of the hand-crafted fea-
tures, such as changes of harmony [9] or variants of spec-
tral flux [8, 13, 18], and features indicating the salient beat
interval [13].

Beat phase error is a common failure mode in beat
trackers [4, 5, 18]. For example, it is often common for
a beat tracker to track half a beat behind an acceptable beat
position, or to track the off-beats (e.g., tracking second and
fourth beats in a 4/4 time) when tracking at half the under-
lying tempo. The frequency of such a failure mode occurs
suggests that tatum tracking is relatively easily done with a
simple and fast method, but identifying the beat within the
detected tatums is a more delicate problem.

To estimate the beat phase, and more generally down-
beats, modeling of the rhythmic patterns [9,16], or extract-
ing the features indicating the spectral change at multiple
temporal level [13] have been shown to be useful. More
recently, significant improvements in downbeat estimation
have been achieved through the use of DNN, which dele-
gates the delicate task of designing the relevant features to
machine learning. For example, convolutional neural net-
works [7] or recurrent neural networks [2, 15] have shown
significant improvements, at a cost of more computation.

2.2 Sensor Placement and Submodular Optimization

The core idea of our paper is to find the “best” tatum po-
sitions to apply the computationally-heavy DNN output so
that the most information may be extracted with each invo-
cation of the DNN. In a related problem of acquiring data
with costly sensors, the problem of determining the “best”
way to place each sensor as to get the most information
out is known as the sensor placement problem [14]. Sen-
sor placement problem is often tackled by exploiting the
spatial correlation. For example, if the spatial distribution

Figure 2. The state transition for the simple beat estimator.
The beat phase counts down deterministically, and the next
beat duration is chosen according to a beat period transition
probability.

of the temperature needs to be acquired, it is better to place
the temperature sensors far apart with than near each other,
since the sensor readings at two nearby points, as opposed
to far-away points, are more strongly correlated and thus
are less revealing.

The sensor placement problem can be formulated as to
maximize the mutual information between the placed sen-
sors and some other points of interest for which the sensors
are not placed. While this problem is NP-hard, the sub-
modularity of the mutual information may be exploited to
arrive at a greedy near-optimal algorithm [19]. Submodu-
larity amounts to concavity for sets, and means that a given
function f over a set A satisfies f(X ∪ {i}) ≥ f(Y ∪ {i})
for all X ⊆ Y ⊆ A and i ∈ A \ Y .

3. PROPOSED METHOD

Our method consists of (1) a simple tatum tracker that
quickly tracks the tatum in an audio signal, (2) a slow but
accurate beat identifier that identifies which of the tracked
tatums are the beats, and (3) a tatum index selector, that
selects a few tatum indices for applying the beat identifier,
as to extract the most information regarding the presence
of the beat.

3.1 Tracking Tatums with a Fast HMM Beat Tracker

We first track the tatum in a given audio signal. This is
achieved by first using a simple beat tracker to extract the
beat positions. Then, the tracked beat positions are sub-
divided equidistantly by a given factor ∆n to obtain the
tatums (∆n = 4 in this paper). Notice that while the beat
detector may often track the wrong beat phase, it usually
tracks the tatum properly.

To track the beat, we use an HMM-based beat detec-
tor, which uses onset and tempo features to jointly decode
the beat position and the tempo. For the onset feature at
frame t, we compute the first-order difference of the log-
magnitude spectrum flux ot, and for the BPM feature, we
compute a comb filter-bank with the onset feature rt, sim-
ilar to [13].

We assume that the observed feature sequence is gener-
ated from an underlying sequence of discretized beat du-
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ration (related to tempo) ω, and a “count-down” timer in-
dicating the number of feature frames until the next beat.
We assume that each normalized φ is associated to a unique
onset feature observation likelihood p(o|φ), and each value
of the beat duration ω is associated with a unique tempo
feature observation likelihood p(r|ω). Based on these as-
sumptions, the observation likelihood is given as follows:

p(ot, rt|φt, ωt) = p(ot|φt)p(rt|ωt). (1)

We choose p(o|φ) to be a Normal distribution whose mean
and the variance are selected based on the value of φ nor-
malized by the beat duration. We choose three sets of the
mean and the variance, based on whether the normalized
beat phase is 0, 0.5 and others; the parameters are trained
with maximum likelihood. Furthermore, p(r|ω) is chosen
to be a von Mises-Fisher distribution 1 , whose parameters
switches for each value of ω.

The time sequence of the beat duration ωt and the
count-down timer φt evolves such that (1) the φt decreases
deterministically until reaching zero while ωt remains con-
stant and (2) when φt is zero, the beat duration ωt switches
to a new value according to a tempo transition matrix, and
φt+1 is set to ωt+1. This amounts to the following genera-
tive process, also illustrated in Figure 2:

(φt, ωt)|(φt−1, ωt−1)

∼

{
δ(φt, φt−1 − 1)δ(ωt, ωt−1) φt−1 > 0

Rωt−1,ωt
δ(φt,Φωt

) φt−1 = 0
, (2)

where Φω is the number of audio frames corresponding to
the beat duration for the beat duration ω, and Rω1,ω2

is
a transition matrix that describes the probability of tran-
sitioning from beat duration ω1 to ω2. We reduce the
search space by pruning negligible values of R and lim-
iting the set of beat durations ω to consider, similar to
[17]. The beat positions are decoded using the Viterbi al-
gorithm to arrive at a set of N estimated tatum positions
{τn|n ∈ T = {1, 2 . . . N}}.

This model is quite similar to the bar pointer model
[24], except (1) we apply the bar pointer model only to
decode the beats and not the underlying meter or rhythm
and (2) we use both the tempo and the onset likelihoods to
decode the beats and the beat durations. The inference is
more efficient compared to the bar-pointer model because
the search space is much smaller – i.e., the state space is at
the beat level instead of the bar level, the beat duration is
discretized, and the allowed transition is pruned.

Despite the efficient processing, this method, like many
beat trackers, suffers from beat phase estimation errors, oc-
curring approximately once every ten songs, for example,
for songs with strong syncopations. Thus, we consider us-
ing a more elaborate beat phase detection that is capable
of directly modeling the kind of long-term characteristics
required for beat phase identification.

1 The likelihood is given by p(x;µ, κ) ∝ exp(κµT x) for some µ, x
in (D− 1)-sphere, D being the dimension of the comb-filter output, and
κ is a scalar parameter.
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Figure 3. The architecture for predicting the Beat phase.

3.2 Identifying the Beats with Deep Neural Networks

To detect the presence of a beat at some tatum index, we
use a DNN-based classifier of beats given tatum-sliced fea-
tures. A DNN-based model is preferable because the no-
tion of a beat depends on many factors like the rhythm and
the harmony, and a manual feature design on such a prob-
lem is difficult.

To identify the beat position using a DNN, we use as
the input the mel-scale log spectrogram (MSLS) that has
been computed at each tatum. For each tatum, an 80-
dimensional MSLS is extracted over a tatum window of
48 tatums before and after the current tatum, creating an
input of R96×80.

The network consists of three convolutional layers, each
with a leaky ReLU activation followed by max-pooling.
The number of channels and the kernel sizes, in increas-
ing order of layers, are 30, 100, 30 and (3 × 3), (3 × 10)
and (3 × 3), respectively. It is followed by dropout regu-
larization [23] during learning and a fully-connected layer
with 200-dimensional output with a batch-normalization
layer [11] and a leaky ReLU activation. Finally, a fully
connected layer with a softmax activation extracts the pos-
terior probability of the beat presence. Thus, for some
tatum index n, the DNN outputs bn ∈ {0, 1}, which is
1 if tatum index n is a beat and 0 otherwise. Note that the
model has no recurrent connections, allowing a random ac-
cess to the tatum index.

Given a ground-truth annotation of the beat presence b̂n,
we minimize the cross-entropy loss L(Θ):

L(Θ) =
∑
n

b̂n log bn(Θ)+(1− b̂n) log(1−bn(Θ)), (3)

with n indexed over the training dataset. The optimiza-
tion is done stochastically, using ADAM [12] with weight
decay regularization. The mini-batch is shuffled randomly
and we augment the data by pitch-shifting the input audio
by -7 to +7 semitones, similar to [22].

This model is similar to the network in [7] in that we
also use tatum-level features, but we (1) use the full MSLS
instead of a band-passed input, allowing simultaneous ex-
traction of both harmonic and rhythmic features that con-
tribute to beats, and (2) use both convolutional and fully
connected layers.

3.2.1 On the Choice of the Tatum Window Size

To justify the use of MSLS evaluated over a windows of 48
tatums before and after the current tatum, we have tested
the accuracy of our beat identification method when chang-
ing the window radius. The accuracy on the validation data
by changing the number of beats (assuming 4 tatums per
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L [beats] 1 2 4 8 10 12
Accuracy[%] 83 87 90 93 93 93

Table 1. Validation accuracy of the beat estimator when
changing the tatum window radius L, in beats.

beat) is shown in Table 1. Since the performance saturates
at 10 beats, use of 48 tatums provides sufficient perfor-
mance. Such a change in accuracy shows that a long-term
analysis spanning a few measures is indeed required for
properly identifying the beat.

3.3 Choosing Tatums for Beat Identification

Since the identification of the beats from a single frame is
prone to errors, it is typical to identify the beat presence bn
for allN frames to arrive at the final beat position estimate.
However, identifying the beat using all the detected tatums
is computationally expensive. Therefore we consider us-
ing a small subset of the detected tatums with K � N
elements for identifying the beats at the selected tatums
and interpolating the rest.

Let us formalize the problem. Let bn be the beat phase
estimation at some tatum index n. bn can be evaluated by
invoking an accurate but computationally expensive beat
phase estimator as was discussed. Let T = {1, 2, · · ·N}
be the set of tatum indices. The ultimate goal is to obtain
an estimate of bn for all n in T reliably while evaluating
bn only at a few spots. Thus, the goal is to find some small
subsetDK ⊂ T ofK elements for which we do invoke the
beat phase estimation algorithm. For the remaining tatums
D̄K , we interpolate the beat phase estimate by evaluating
the expectation of bD̄K

given bDK
.

To both identify the small subset DK and interpolate
the beat phase output, we exploit the strong tatum-level
correlation of the beat identification output. To illustrate,
Figure 4 shows the auto-correlation ri of the beat identifi-
cation output bn. Notice that a non-negligible correlation
exists not only nearby but also far away, up to about 100
tatums. This means that the existence of a beat at some
tatum index provides information about the beat existence
of the neighboring tatums.

To exploit such a covariance we assume that bn is a
Gaussian process [21]. That is, for some disjoint ordered
sets of indicesD,U ⊆ T , the joint pdf of bD = {bi|i ∈ D}
and bU = {bi|i ∈ U} is expressed as follows:(

bD
bU

)
∼ N

(
µ,

(
ΣDD ΣDU
ΣUD ΣUU

))
. (4)

Here, ΣAB is the cross-covariance matrix ∈ R|A|×|B| be-
tween {bi|i ∈ A} and {bi|i ∈ B}, such that element (i, j)
of ΣA,B is the covariance between the ith element of A
and the jth element of B. µ is the expectation of bi that is
computed from a training dataset.

3.3.1 Index Selection for Beat Phase Identification

Assuming the underlying Gaussian process, we seek to
identify a set of tatum indices DK ∈ T subject to |DK | =
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Figure 4. The auto-correlation of the estimated beat phase.

K, as to maximize the mutual information between beat
phase output bDK

and the unobserved beat phase output
bD̄K

. This problem is NP-hard [14], but thanks to the sub-
modularity of mutual information, a near-optimal greedy
algorithm exists [19]. To solve the problem with a greedy
near-optimal algorithm, we iteratively add a new index i to
the set of indicesDk that maximizes the increase in mutual
information, i.e., Dk = Dk−1 ∪ {i} where:

i = arg max
i′∈D̄k−1

MI(Dk−1 ∪ {i′})−MI(Dk−1), (5)

where MI(D) denotes the mutual information between D
and D̄. This can be seen as a special case of the sen-
sor placement problem based on mutual information maxi-
mization, where we ignore any points for which the sensor
may not be placed.

Equation 5 for a Gaussian process amounts to setting
i = arg maxi′∈D̄k

δk−1,i′ at step k, with the following δi,k:

δk,i =
Σi,i − Σ{i},Dk

Σ−1
Dk,Dk

ΣDk,{i}

Σi,i − Σ{i},Cki
Σ−1
Cki,Cki

ΣCki,{i}
, (6)

where Cki = Dk ∪ {i}. Here, the numerator amounts to
the conditional variance of bi given bDk

and the denomi-
nator amounts to the conditional variance of bi given the
remaining elements. Intuitively, therefore, this objective
seeks to find an index i that is unpredictable based on the
already-observed data bDk

, while being representative of
the non-selected indices, i.e., easily predictable from see-
ing the data of the non-selected indices.

It is important to notice that the computation of Equa-
tion 6 is independent of the actual values of bn. Thus, DK
can be evaluated without invoking the computationally ex-
pensive DNN beat identifier. Furthermore, given the auto-
correlation computed beforehand, the setDK depends only
on the number of tatums in a given song and not the ac-
tual observations. Thus, DK may be pre-computed for all
practical values of the number of tatums, incurring zero
runtime overhead.

3.3.2 Analysis of the Selected Indices

To see how the indices are chosen with our method, Fig-
ure 5 shows the index chosen as the index selection algo-
rithm proceeds. Notice how in the initial stage (K = 2 and
4; red and yellow boxes), the algorithm selects the middle
and the edges of the song while selecting pairs of indices
that are 2 tatums apart, congruent mod 4. This shows that
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Figure 5. The indices chosen by the the mutual infor-
mation maximization criterion as the algorithm progresses
with K = 2, 4, up to 32 (best viewed in color).

the method tries to disambiguate the beat versus the off-
beat, while staking out the entire song. As the algorithm
progresses it selects tatum indices so that it (1) is more-or-
less uniformly sampled throughout the song and (2) sam-
ples indices two tatums apart due to the weak correlation
with lag 2 as was shown in Figure 4.

3.3.3 Interpolation of the Beat Phase Outputs

For interpolation, we evaluate the conditional expectation
of bT given bDK

:

E[bi|bDK
] = Σi,DK

Σ−1
DK ,DK

bDK
. (7)

The evaluation of this function over all tatum indices re-
quires a total of K invocations to the beat phase estimator.

Finally, given the interpolated beat phase estimates
computed from Equation 7, we use in this paper a simple
heuristic to decide the beat positions. For the given level
of beat subdivision ∆n used to compute the tatums, we
find the beat phase given a beat subdivision. For each beat
phase hypothesis ρ, we compute the following quantity:

Rρ =

N/∆n∑
k=0

E[bk∆n+ρ|bDK
] (8)

Then, the beats are estimated as all tatum positions with
indices ρ̂+ k∆n with k ∈ N and ρ̂ = arg maxρRρ. This
heuristic is valid if the tatum tracking is successful and the
number of tatums per beat remains fixed at ∆n.

4. EXPERIMENTAL EVALUATION

4.1 Dataset

For the training and the validation dataset of the DNN beat
identification and for estimating the auto-correlation of the
beat identifier output at the tatum level, we used 100 popu-
lar songs from the RWC Popular Music Database [10]. For
the test dataset, we prepared an in-house dataset consisting
of 410 popular music in the United States and Japan. The
median duration of the songs was four minutes. The tatum
was extracted with the proposed method and the beat phase
was hand-annotated based on a music score data created by
professional musicians.

Method Beat phase
error

Real-time
factor

BOCK15 14.0% 0.149
Baseline 12.2% 0.012

Proposed (Full) 6.1% 0.328
Proposed (K = 4) 16.2% 0.016
Proposed (K = 8) 10.1% 0.017

Proposed (K = 16) 7.6% 0.020
Proposed (K = 32) 6.1% 0.026

Table 2. The beat phase estimation error for songs that
succeeded at tatum tracking, and the mean real-time factor.

4.2 Experiment 1: Beat Detection Improvement

First, we evaluated the beat phase estimation error of the
proposed DNN beat identification method.

4.2.1 Experimental Condition

We extracted the beats using four methods: (1) an imple-
mentation 2 of the DNN-based beat detector in [3] with the
tempo estimation method of [1], denoted “BOCK15,” (2)
the tatum detector used as a beat tracker (denoted “Base-
line”), (3) the tatum detector with the DNN beat identifier
evaluated over the entire data (denoted “Proposed (full)”),
(4) the tatum detector with the DNN beat identifier evalu-
ated over a subset of the data that has been selected with
the proposed method (denoted “Proposed (K = n)” when
using n tatum indices to evaluate the DNN). Since our fo-
cus is on fixing beat detection that succeeds at tatum track-
ing but fails at beat phase identification, we compared the
methods for songs for which tatum extraction was success-
ful (393 songs out of 410).

In addition, we computed the real-time factor, mea-
sured on a machine with Intel Core i5 processor running
at 2.6 GHz with 4 GB of RAM with no GPU, utilizing one
CPU core. Notice that the condition “Proposed (full)” is
the baseline, in terms of computational speed, for most pre-
vious DNN-based downbeat detectors such as [7], as the
previous method applies DNN to the entire audio data. The
baseline method was implemented in C++ using SSE2 for
SIMD instructions. The DNN was implemented in Python
using the Chainer 3 library (an SSE2-optimized implemen-
tation of the DNN in C++ yielded in a similar benchmark
and thus is omitted).

4.2.2 Results and Discussion

The results are shown in Table 2. It can be seen that by
choosing K = 32, the method performs identically to
when using the entire data for beat estimation, while being
twelve times faster (38x faster than real-time). The modest
increase in computation time over the Baseline suggests
that there is only a marginal overhead, especially when the
beat phase identification is executed in tandem with the
beat extraction.

2 Obtained from https://github.com/CPJKU/madmom, com-
mit de906fb

3 https://github.com/chainer/chainer
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Figure 6. The match to the DNN beat detector when sam-
pling K tatums in a song using different methods. Greater
value indicates that the estimated beat phase better matches
that estimated by the DNN.

To get a better idea of the computational costs, the beat
detector takes 740 msec to process a minute of audio using
a single core. The selection of indices incurred virtually no
overhead, since we pre-computed the indices for all possi-
ble number of tatums. Note that this kind of index pre-
computation is viable for K = 32; even when evaluating
the indices for songs with 65000 tatums, the total memory
for storing the indices is at most only 4 MB.

Each call to the DNN used about 100 msec. Of this, the
convolutional layer comprised about 60% of the total time,
and the fully-connected layer comprised about 40%. In our
implementation, the convolution layer is performed fully
for each call to the DNN, but this is redundant because
portions of MSLS spectrograms may be shared across dif-
ferent audio frames. For songs with fewer than K × 96
tatums (e.g., song of six and a half minutes with a BPM
of 120 and K = 32), there are redundant outputs of the
convolutive layers. Such a redundancy potentially enables
us to further speed up the convolutive layers.

4.3 Experiment 2: Tatum Selection Strategy

Second, we evaluated the capability for the proposed tatum
index selection method to approximate the DNN evaluated
over all tatums, by comparing the index selection method
to other possible ways of selecting the tatum index subset.

4.3.1 Experimental Condition

For each song in the test dataset, including those for which
tatum tracking had failed, we selectedK indices withK =
[4, 8, 16, 32], with five different strategies: (1) select the
first K tatums (denoted ”Head”), (2) select the middle K
tatums (denoted ”Mid”), (3) select K uniformly-sampled
tatums (denoted ”Random”), (4) select K linearly-spaced
tatums (denoted ”Linear”), and (5) select K tatums with
the proposed method. Then we evaluated, for each strat-
egy and K, the agreement rate of the beat detection out-
put, evaluated with Equation 8, between that obtained us-
ing (1) the indices obtained by each strategy and (2) all
index. Notice that a high agreement for a given index se-
lection scheme suggests its capability to approximate the
beat identification using all indices.

4.3.2 Results and Discussion

Figure 6 shows the agreement rate between each tatum se-
lection strategy and the full DNN.

When trying to identify the beat with only more than
four tatums, the proposed method consistently outper-
formed the baselines. When choosing only four tatums
(K = 4), the strategy of choosing the middle performs the
best, perhaps because it is better to focus on one region to
estimate the beat phase instead of dispersing the selection
throughout the piece. The result nonetheless demonstrates
the capability of our method to select a “good” set of in-
dices for beat identifications compared to other intuitively-
arrived methods.

Comparing the result with the previous experiment,
with K = 32 the agreement of the proposed method does
not reach 100% even though the beat detection accuracy
for K = 32 is identical to those using the entire DNN
output. This means that interpolated beats disagree for
songs for which tatum tracking has failed. Such a disagree-
ment occurs because (1) if the tatum tracking fails, the as-
sumed covariance of the DNN output Σ poorly describes
the underlying DNN output and (2) our beat position de-
coding method relies on a proper tracking of tatums with
no change of meter.

5. CONCLUSION

This paper presented a method to improve a fast and simple
beat tracker with little computatinal overhead by using an
elaborate DNN-based beat identifier to fix the error in the
simple beat tracker at carefully-selected tatums.

We addressed the critical issue of achieving both the
accuracy enjoyed by a DNN-based beat identification of
slow and elaborate methods, and the fast speed enjoyed by
a simple but erroneous beat tracking methods. This was
tackled by applying a DNN beat identification sparingly,
only at the most informative tatum indices given by a sim-
ple beat-tracker. The selection was done as to maximize
the mutual information between the selected and the non-
selected indices for invoking the DNN.

Evaluation demonstrated that the DNN halved the beat
phase error, and the tatum selection strategy provided the
same performance as when sweeping through the entire
audio signal, resulting in a twelve-fold speed improve-
ment for a typical song. Furthermore, the subset selec-
tion method was also shown to be consistently efficient at
approximating the DNN output compared to other index
selection methods.

Future work includes (1) application of the index selec-
tion framework to other tasks in MIR such as downbeat
estimation, (2) relaxing the assumptions made for the in-
dex selection, such as assuming a known and a fixed co-
variance of the output, (3) allowing the parameter K to be
determined automatically, (4) improving the heuristics for
deciding the beat positions.
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ABSTRACT

We introduce the Free Music Archive (FMA), an open
and easily accessible dataset suitable for evaluating sev-
eral tasks in MIR, a field concerned with browsing, search-
ing, and organizing large music collections. The commu-
nity’s growing interest in feature and end-to-end learning
is however restrained by the limited availability of large
audio datasets. The FMA aims to overcome this hurdle by
providing 917 GiB and 343 days of Creative Commons-
licensed audio from 106,574 tracks from 16,341 artists
and 14,854 albums, arranged in a hierarchical taxonomy of
161 genres. It provides full-length and high-quality audio,
pre-computed features, together with track- and user-level
metadata, tags, and free-form text such as biographies. We
here describe the dataset and how it was created, propose
a train/validation/test split and three subsets, discuss some
suitable MIR tasks, and evaluate some baselines for genre
recognition. Code, data, and usage examples are available
at https://github.com/mdeff/fma.

1. INTRODUCTION

While the development of new mathematical models and
algorithms to solve challenging real-world problems is ob-
viously of first importance to any field of research, eval-
uation and comparison to the existing state-of-the-art is
necessary for a technique to be widely adopted by re-
search communities. Such tasks require open benchmark
datasets to be reproducible. In computer vision, the com-
munity has developed established benchmark datasets such
as MNIST [22], CIFAR [18], or ImageNet [4], which have
proved essential to advance the field. The most celebrated
example, the ILSVRC2012 challenge on an unprecedented
ImageNet subset of 1.3M images [34], demonstrated the
power of deep learning (DL), which won the competition
with an 11% accuracy advantage over the second best [19],
and enabled incredible achievements in both fields [21].

Unlike the wealth of available visual or textual content,
the lack of a large, complete and easily available dataset
for MIR has hindered research on data-heavy models such
as DL. Table 1 lists the most common datasets used for

c© Michaël Defferrard, Kirell Benzi, Pierre Vandergheynst,
Xavier Bresson. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Michaël Defferrard,
Kirell Benzi, Pierre Vandergheynst, Xavier Bresson. “FMA: A Dataset
For Music Analysis”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

dataset1 #clips #artists year audio

RWC [12] 465 - 2001 yes
CAL500 [45] 500 500 2007 yes
Ballroom [13] 698 - 2004 yes
GTZAN [46] 1,000 ∼ 300 2002 yes
MusiClef [36] 1,355 218 2012 yes
Artist20 [7] 1,413 20 2007 yes
ISMIR2004 1,458 - 2004 yes
Homburg [15] 1,886 1,463 2005 yes
103-Artists [30] 2,445 103 2005 yes
Unique [41] 3,115 3,115 2010 yes
1517-Artists [40] 3,180 1,517 2008 yes
LMD [42] 3,227 - 2007 no
EBallroom [23] 4,180 - 2016 no2

USPOP [1] 8,752 400 2003 no
CAL10k [44] 10,271 4,597 2010 no
MagnaTagATune [20] 25,8633 230 2009 yes4

Codaich [28] 26,420 1,941 2006 no
FMA 106,574 16,341 2017 yes
OMRAS2 [24] 152,410 6,938 2009 no
MSD [3] 1,000,000 44,745 2011 no2

AudioSet [10] 2,084,320 - 2017 no2

AcousticBrainz [32] 2,524,7395 - 2017 no
1 Names are clickable links to datasets’ homepage.
2 Audio not directly available, can be downloaded from

ballroomdancers.com, 7digital.com, youtube.com.
3 The 25,863 clips are cut from 5,405 songs.
4 Low quality 16 kHz, 32 kbit/s, mono mp3.
5 As of 2017-07-14, of which a subset has been linked to genre

labels for the MediaEval 2017 genre task.

Table 1: Comparison between FMA and alternative datasets.

content-based MIR. GTZAN [46], a collection of 1000
clips from 10 genres, was the first publicly available bench-
mark dataset for genre recognition (MGR). As a result, de-
spites its flaws (mislabeling, repetitions, and distortions),
it continues to be the most used dataset for MGR [43].
Moreover, it is small and misses metadata which e.g. pre-
vents researchers to control for artists or album effects.
Looking at Table 1, the well-known MagnaTagATune [20]
and the Million Song Dataset (MSD) [3] as well as the
newer AudioSet [10] and AcousticBrainz [32] appear as
contenders for a large-scale reference dataset. MagnaTa-
gATune, which was collected from the Magnatune label
and tagged using the TagATune game, includes metadata,
features and audio. The poor audio quality and limited
number of songs does however limit its usage. MSD and
AudioSet, while very large, force researchers to download
audio clips from online services. AcousticBrainz’s ap-
proach to the copyright issue is to ask the community to
upload music descriptors of their tracks. Although it is the
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100% track_id 100% title 93% number
2% information 14% language_code 100% license
4% composer 1% publisher 1% lyricist

98% genres 98% genres_all 47% genre_top
100% duration 100% bit_rate 100% interest
100% #listens 2% #comments 61% #favorites
100% date_created 6% date_recorded 22% tags
100% album_id 100% title

94% type 96% #tracks
76% information 16% engineer 18% producer
97% #listens 12% #comments 38% #favorites
97% date_created 64% date_released 18% tags

100% artist_id 100% name 25% members
38% bio 5% associated_labels
43% website 2% wikipedia_page

5% related_projects
37% location 23% longitude 23% latitude
11% #comments 48% #favorites 10% tags1

99% date_created 8% active_year_begin
2% active_year_end

1 One of the tags is often the artist name. It has been subtracted.

Table 2: List of available per-track, per-album and per-artist
metadata, i.e. the columns of tracks.csv. Percentages indi-
cate coverage over all tracks, albums, and artists.

largest database to date, it will never distribute audio. On
the other hand, the proposed dataset offers the following
qualities, which in our view are essential for a reference
benchmark.

Large scale. Large datasets are needed to avoid over-
training and to effectively learn models that incorporate the
ambiguities and inconsistencies that one finds with musi-
cal categories. They are also more diverse and allows to
average out annotation noise as well as characteristics who
might be confounded with the ground truth and exploited
by learning algorithms. While FMA features less clips than
MSD or AudioSet, every other dataset with available qual-
ity audio are two orders of magnitude smaller (Table 1).

Permissive licensing. MIR research has historically
suffered from the lack of publicly available benchmark
datasets, which stem from the commercial interest in mu-
sic by record labels, and therefore imposed rigid copyright.
The FMA’s solution is to aim for tracks which license per-
mits redistribution. All data and code produced by our-
selves are licensed under the CC BY 4.0 and MIT licenses.

Available audio. Table 1 shows that while the smaller
datasets are usually distributed with audio, most of the
larger do not. They either (i) only contain features derived
from the audio, or (ii) provide links to download the au-
dio from an online service. 1 The problem with (i) is that
researchers are stuck with the chosen features and are pre-
vented to leverage feature learning or end-to-end learning
systems like DL. Moreover, we should be wary of propri-
etary features like those computed by commercial services
such as Echonest. The problem with (ii) is that researchers
have no control, i.e. we have no assurance that the files or
services will not disappear or change without notice.

Quality audio. Distributed or downloadable audio are
usually clips of 10 to 30 seconds and sometimes of low
quality, e.g. 32 kbit/s for MagnaTagATune or an average of

1 Going to the source distributor is a way to adhere with copyright.

104 kbit/s for MSD [37]. The problem with clips is that the
beginning 30 seconds of tracks may yield different results
than the middle or final 30 seconds, and that researchers
may not have control over which part they get. In compar-
ison, FMA comes with full-length and high-quality audio.

Metadata rich. The dataset comes with rich metadata,
shown in Table 2. While not complete in any means, it
compares favorably with the MSD which only provides
artist-level metadata [3] or GTZAN which offers none.

Easily accessible. Working with the dataset only re-
quires to download some .zip archives containing .csv
metadata and .mp3 audio. No need to crawl the web
and circumvent rate limits or access restrictions. Besides,
we provide some usage examples in the usage.ipynb
Jupyter notebook to start using the data quickly.

Future proof and reproducible. All files and archives
are checksummed and hosted in a long-term digital
archive. Doing so alleviates the risks of songs to become
unavailable. Moreover, we share all the code used to (i)
collect the data, (ii) analyze it, (iii) generate the subsets
and splits, (iv) compute the features and (v) test the base-
lines. The developed code can serve as a starting point for
researchers to compute their own features or evaluate their
methods. Finally, anybody can recreate or extend the col-
lection, thanks to public songs and APIs.

Note that an alternative to open benchmarking is the ap-
proach taken by the MIREX evaluation challenges: the
evaluation (by the organizers) of submitted algorithms
on private datasets [6]. This practice however incurs an
approximately linear cost with the number of submis-
sions, which put the long-term sustainability of MIREX
at risk [26]. By releasing this open dataset, we realize part
of the vision of McFee et al. in “a distributed, community-
centric paradigm for system evaluation, built upon the prin-
ciples of openness, transparency, and reproducibility”.

2. DATASET

2.1 The Free Music Archive

The dataset, both the audio and metadata, is a dump of
the Free Music Archive, a free and open library directed
by WFMU, the longest-running freeform radio station in
the United States. Inspired by Creative Commons and
the open-source software movement, the FMA provides a
platform for curators, artists, and listeners to harness the
potential of music sharing. The website provides a large
catalog of artists and tracks, hand-picked by established
audio curators. Each track is legally free to download as
artists decided to release their works under permissive li-
censes. While there exists other sources of CC-licensed
music, notably Jamendo, FMA is unique as it combines
user-generated content with the curatorial role that WFMU
and others have always played. 2

2.2 Creation

As of April 1st 2017, when the dataset was gathered,
the online archive largest track id was 155,320, of which

2 Interview with Jason Sigal of the Free Music Archive, Rhizome.
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Figure 1: (left) Growth of the archive, created in 11/2008. (right) Number of albums released per year (min 1902, max 2017).

track album artist
track_id title genres_all genre_top dur. listens title listens tags name location

150073 Welcome to Asia [2, 79] International 81 683 Reprise 4091 [world music, dubtronica, fusion] DubRaJah Russia
140943 Sleepless Nights [322, 5] Classical 246 1777 Creative Commons Vol. 7 28900 [classical, alternate, soundtrack, piano, ... Dexter Britain United Kingdom
64604 i dont want to die alone [32, 38, 456] Experimental 138 830 Summer Gut String 7408 [improvised, minimalist, noise, ... Buildings and Mountains Oneonta, NY
23500 A Life In A Day [236, 286, 15] Electronic 264 1149 A Life in a Day 6691 [idm, candlestick, romanian, candle, ... Candlestickmaker Romania
131150 Yeti-Bo-Betty [25, 12, 85] Rock 124 183 No Life After Crypts 3594 [richmond, fredericksburg, trash rock, ... The Crypts! Fredericksburg

Table 3: Some rows and columns of the metadata table, stored in tracks.csv.
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Figure 2: Track duration (min 0, max 3 hours).
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Figure 3: Album listens (min 0, max 3.6 millions).

109,727 were valid. The missing 45,594 ids probably cor-
respond to deleted tracks. Figure 1 illustrates the growth
of the dataset. In addition to per-track metadata, the used
hierarchy of 161 genres and extended per-album (480 not
found) and per-artist (250 not found) metadata were col-
lected via the available API. 3 Finally, mp3 audio was
downloaded over HTTPS. Out of all collected track ids,
180 mp3s could not be downloaded, 286 could not be
trimmed by ffmpeg, and features could not be extracted
from 71. Finally, the license of 2,616 tracks prohibited
their redistribution, leaving us with 106,574 tracks.

While it may be argued that the dataset should be
cleaned, we wanted it to resemble real world data. As
such, we did not remove tracks which have too many gen-
res, are too long, belong to rare genres, etc. Moreover, it
is hard to set a threshold, algorithms shall handle outliers,
and the small number of outliers will not impact perfor-
mance much anyway. Researchers are obviously free to
discard any track for training.

3 See webapi.ipynb to query the API with our helpers.
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Figure 4: Per-track, album and artist tags (min 0, max 150).

2.3 Content

The collected metadata 4 was cleaned, uniformly format-
ted, merged and stored in tracks.csv 5 which Table 3
shows an excerpt. That file is a relational table where each
row represents a track and columns are listed in Table 2.
For ease of use, we kept all the metadata in a single table
despite the redundancy incurred by the fact that all tracks
from a given artist share all artist related columns. The
problem is mitigated in practice by compression for stor-
age and by categorical variables for memory usage.

All the metadata available through the API has been
archived. It includes song title, album, artist, and per-
track genres; user data such as per-track/album/artist fa-
vorites, play counts, and comments; free-form text such as
per-track/album/artist tags, album description and artist bi-
ography. Coverage varies across fields and is reported in
Table 2. Note that all that metadata has been produced by
the artists when uploading their music and that while the
content is curated, the curators focus on the musical con-
tent not the metadata. Figures 1, 2 and 3 show the distri-
bution of albums per year, track durations, and play counts
per album. See the analysis.ipynb notebook for a
much more detailed analysis of the content.

The audio for each track is stored in a file which name
is the track id. All tracks are mp3-encoded, most of them
with sampling rate of 44,100 Hz, bit rate 320 kbit/s (263
kbit/s on average), and in stereo.

4 raw_tracks.csv, raw_albums.csv, raw_artists.csv
5 See creation.ipynb for the code which created the dataset.
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id parent top_level title #tracks

38 None 38 Experimental 38,154
15 None 15 Electronic 34,413
12 None 12 Rock 32,923

1235 None 1235 Instrumental 14,938

25 12 12 Punk 9,261
89 25 12 Post-Punk 1,858
1 38 38 Avant-Garde 8,693

Table 4: An excerpt of the genre hierarchy, stored in
genres.csv. Some of the 16 top-level genres appear in the
top part, while some second- and third-level genres appear in the
bottom part.
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14 / 1499
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11 / 367

Funk
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Deep Funk
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genres_top
max: 8

Figure 5: (left) Example of genre hierarchy for the top-level
Soul-RnB genre. Left number is the genre_id, right is the
number of tracks per genre. (right) Number of genres per track. A
3 genres limit has been introduced early on by the administrators.

2.4 Genres

The FMA is especially suited for MGR as it features fine
genre information, i.e. multiple (sub-)genres associated to
individual tracks, has a built-in genre hierarchy (Table 4),
and is annotated by the artists themselves. While the artists
are the best placed to judge the positioning of their cre-
ations, they might be inconsistent and motivated by fac-
tors not necessarily objective, such as achieving a higher
play count. As labeling noise is unavoidable, those labels
should ideally be one of many ground truths, to be com-
plemented by crowd-sourcing and experts (from different
music metadata websites).

While there is no agreement on a taxonomy of gen-
res [35], we followed the hierarchy used by the archive,
which is the one the authors had in mind when annotating
their tracks. That hierarchy is composed of 161 genres of
which 16 are roots, the others being sub-genres. Table 4
shows an excerpt of that information along with the num-
ber of tracks per genre and the associated top-level genre,
that is the root of the genre tree. Figure 5 shows an excerpt
of the tree.

In the per-track table, the genres column contain the
genre ids indicated by the artist. Then, given such hi-
erarchical information, we constructed a genres_all
column which contains all the genres encountered when
traversing the tree from the indicated genres to the roots.
The root genres are stored in the genres_top column.
Figure 5 and 6 shows the number of genres per track and
tracks per genre.

E
xp

er
im

en
ta

l
E

le
ct

ro
ni

c
R

oc
k

In
st

ru
m

en
ta

l
P

op
Fo

lk
P

un
k

A
va

nt
-G

ar
de

H
ip

-H
op

N
oi

se
A

m
bi

en
t

E
xp

er
im

en
ta

l P
op

E
le

ct
ro

ac
ou

st
ic

Lo
-F

i
S

ou
nd

tra
ck

A
m

bi
en

t E
le

ct
ro

ni
c

In
di

e-
R

oc
k

In
te

rn
at

io
na

l
Im

pr
ov

S
in

ge
r-

S
on

gw
rit

er
Ja

zz
C

la
ss

ic
al

G
ar

ag
e

ID
M

Fi
el

d 
R

ec
or

di
ng

s
M

us
iq

ue
 C

on
cr

et
e

G
lit

ch
D

ro
ne

P
sy

ch
-R

oc
k

Lo
ud

-R
oc

k
P

sy
ch

-F
ol

k
In

du
st

ria
l

C
hi

p 
M

us
ic

Te
ch

no
N

oi
se

-R
oc

k
D

ow
nt

em
po

0

20000

40000

#t
ra

ck
s

R
oc

k

E
le

ct
ro

ni
c

E
xp

er
im

en
ta

l

H
ip

-H
op

Fo
lk

In
st

ru
m

en
ta

l

P
op

In
te

rn
at

io
na

l

C
la

ss
ic

al

O
ld

-T
im

e 
/ H

is
to

ric

Ja
zz

C
ou

nt
ry

S
ou

l-R
nB

S
po

ke
n

B
lu

es

E
as

y 
Li

st
en

in
g

0

2500

5000

#t
ra

ck
s

Figure 6: (top) Tracks per (sub-)genre on the full set (min 1, max
38,154). (bottom) Tracks per all 16 root genres on the medium
subset (min 21, max 7,103). Note how experimental music is
much less represented in the curated medium subset.

2.5 Features

To allow researchers to experiment without dealing with
feature extraction, we pre-computed the features listed in
Table 6. These are all the features the librosa Python li-
brary, version 0.5.0 [25], was able to extract. Each feature
set (except zero-crossing rate) is computed on windows of
2048 samples spaced by hops of 512 samples. Seven statis-
tics were then computed over all windows: the mean, stan-
dard deviation, skew, kurtosis, median, minimum and max-
imum. Those 518 pre-computed features are distributed in
features.csv for all tracks. 6

2.6 Subsets

For the dataset to be useful as a development set or for peo-
ple with lower computational resources, we propose the
following sets, each of which is a subset of the larger set:

1. Full: the complete dataset, described above. All 161
genres, unbalanced with 1 to 38,154 tracks per genre
(Figure 6) and up to 31 genres per track (Figure 5).

2. Large: the full dataset with audio limited to 30 sec-
onds clips extracted from the middle of the tracks (or
entire track if shorter than 30 seconds). That trim-
ming reduces the size of the data by a factor 10.

3. Medium: while root genre recognition should be
treated as a multi-label problem in general, we
constructed this subset for the simpler problem of
single-label prediction. It makes sense as half the
tracks have a single root genre (Figure 5). As such,
we selected those tracks with only one top genre and
sampled the clips according to the completeness of
their metadata and their popularity, hoping to select
tracks of higher quality. That selection left us with
25,000 30s clips, genre unbalanced with 21 to 7,103
clips per top genre (Figure 6), but only one of the 16
top genres per clip.

6 See features.py for the code which computed the features.
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4. Small: to construct a balanced subset, we selected
with the same process the top 1,000 clips from the
8 most popular genres of the medium set. The sub-
set is thus composed of 8,000 30s clips from 8 top
genres, balanced with 1,000 clips per genre, 1 root
genre per clip. This subset is similar to the very
popular GTZAN [46] with the added benefits of the
FMA, that is metadata, pre-computed features, and
copyright-free audio.

Table 5 highlights the main differentiating factors between
the proposed subsets.

2.7 Splits

We propose an 80/10/10% split into training, validation
and test sets to make research on the FMA reproducible.
Training and validation shall be merged if cross-validation
is used instead. Below are the followed constraints:

1. Stratified sampling to preserve the percentage of
tracks per genre (important for minority genres).
Each root genre is guaranteed to be represented in all
splits, but the ratio is only exact for the small subset
(800/100/100). The seven smallest sub-genres (less
than 20 tracks in total) are however not guaranteed
to appear in all splits of the full and large sets.

2. An artist filter for artists to be part of one set only,
thus avoiding any artist and album effect. It has been
shown that the use of songs from the same artist in
both training and test sets leads to over-optimistic
accuracy and may favor some approaches [8, 29].

The above constraints are satisfied for all subsets, and a
track is assigned to the same split across all of them.5 The
2,231 tracks without genre label are assigned to the train-
ing set (full and large sets) as they might be useful as addi-
tional training samples for semi-supervised algorithms.

3. USAGE

With its rich set of metadata, user data, audio and fea-
tures, the FMA is amenable to many tasks in MIR. We
share below some possible uses which serve to illustrate
the breadth of data available in the dataset.

3.1 Music Classification and Annotation

Music classification is a key problem in MIR with many
potential applications. For one, a classification system en-
ables end users to search for the types of music they are
interested in. On the other hand, different music types
are managed more effectively and efficiently once they
are categorized into different groups [9]. The classifica-
tion tasks which can readily be evaluated on FMA include
genre recognition, artist identification, year prediction, and
automatic tagging. Automatic tagging [2] is a classifica-
tion problem which covers different semantic categories,
where tags are labels which can be any musical term that
describes the genre, mood, instrumentation, and style of
the song. It helps to convert the music retrieval problem
to text retrieval by substituting songs with tags. In addi-
tion to supervised methods which classify music given an

dataset clips genres length size

[s] [GiB] #days

small 8,000 8 30 7.4 2.8
medium 25,000 16 30 23 8.7
large 106,574 161 30 98 37
full 106,574 161 278 917 343

Table 5: Proposed subsets of the FMA.

feature set dim. LR kNN SVM MLP

1 Chroma [11] 84 44 44 48 49
2 Tonnetz [14] 42 40 37 42 41
3 MFCC [33] 140 58 55 61 53
4 Spec. centroid 7 42 45 46 48
5 Spec. bandwidth 7 41 45 44 45
6 Spec. contrast [17] 49 51 50 54 53
7 Spec. rolloff 7 42 46 48 48
8 RMS energy 7 37 39 39 39
9 Zero-crossing rate 7 42 45 45 46

3 + 6 189 60 55 63 54
3 + 6 + 4 273 60 55 63 53
1 to 9 518 61 52 63 58

Table 6: Test set accuracies of various features and classifiers for
top genre recognition on the medium subset.

arbitrary taxonomy, another approach is to cluster data in
an unsupervised way so that a categorization will emerge
from the data itself based on objective similarity measures.
Then, does genre or another taxonomy naturally come up?

3.2 Genre Recognition

Music genres are categories that have arisen through a
complex interplay of cultures, artists, and market forces to
characterize similarities between compositions and orga-
nize music collections. Yet, the boundaries between gen-
res still remain fuzzy, making the problem of music genre
recognition (MGR) a nontrivial task [35]. While its util-
ity has been debated, mostly because of its ambiguity and
cultural definition, it is widely used and understood by end-
users who find it useful to discuss musical categories [27].
As such, it is one of the most researched areas of MIR. We
propose the following prediction problems of increasing
difficulty:

1. Single top genre on the balanced small subset.
2. Single top genre on the unbalanced medium subset.
3. Multiple top genres on the large / full set.
4. Multiple (sub-)genres on the large / full set.
Table 6 reports accuracies for problem 2 with nine

mainstream feature sets and some combinations as well
as four standard classifiers using scikit-learn, version
0.18.1 [31]. Specifically, we employed linear regression
(LR) with an L2 penalty, k-nearest neighbors (kNN) with
k = 200, support vector machines (SVM) with a radial
basis function (RBF) kernel and a multilayer perceptron
(MLP) with 100 hidden neurons. All classifiers were tested
with otherwise default settings. 7 Reported performance
should not be taken as the state-of-the-art but rather as

7 See baselines.ipynb for all details.
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a lower-bound and an indication of the task’s difficulty.
Moreover, the developed code can serve as a reference and
is easily modified to accommodate other features and clas-
sifiers.

A major motivation to construct this dataset was to en-
able the use of the powerful DL set of techniques to music
analysis, an hypothesized cause of stagnation on MIREX
tasks [38]. With availability of audio, DL architectures
such as convolutional neural networks and recurrent neu-
ral networks can be applied to the waveform to avoid any
feature engineering. While those approaches have fallen
behind learning from higher-level representations such as
spectrograms [5], a greater exploration of the design space
will hopefully provide alternatives to solving MIR chal-
lenges [16].

3.3 Data Analysis

While our intention was to release a large volume of au-
dio for machine learning algorithms, analyzing audio is
certainly of interest to musicologists and researchers who
want to study relations with higher-level representations.
Moreover, the availability of complete tracks allows proper
study of music properties, for example music structure
analysis. Finally, the metadata is surely a valuable addition
to existing datasets (e.g. MusicBrainz, AllMusic, Discogs,
Last.fm) for metadata analysis.

4. DISCUSSION

While the FMA can be used to evaluate many tasks, meta-
data is missing for e.g. mood classification or instrument
recognition. However, a more thorough investigation of
the available tags may reveal their feasibilities. Similarly,
cover song detection may be doable if multiple versions
of many songs are featured. While the present dump only
captures listening and downloading counts in aggregates, 8

the lists of which songs, albums and artists a user marked
as favorites or commented are public, as well as user mixes.
While not public, listening and downloading activities are
logged and might be shared after anonymization. 9 More-
over, users form a public social network via friend re-
quests. Collecting this information would open the possi-
bility of a large-scale evaluation of content-based recom-
mender systems. Cover images for tracks, albums, and
artists are another public asset which may be of interest.
Finally, we can expect the dataset to be cross-referenced
with other resources to unlock additional tasks, as has hap-
pened for example with the MSD and AllMusic, last.fm
and beaTunes for genre recognition [37, 39], musixmatch
for lyrics, SecondHandSongs for cover songs, or This Is
My Jam for user play counts.

Diversity is another issue. As suggested by Figure 6,
this collection is biased toward experimental, electronic,
and rock music. Moreover, it does not contain mainstream
music and few commercially successful artists. A com-
mon criticism of basing research on CC-licensed music is

8 That information can be useful to e.g. analyze and predict hits.
9 Private discussion with the website administrators.

that the music is of substantially lower “quality”. More-
over, it is unknown whether datasets made up of main-
stream or non-mainstream music have similar properties
and if algorithms tailored on one perform similarly on the
other. While those points are valid for high-level tasks such
as recommendation (which depend on a variety of factors
beyond the acoustic content), this is a much more tenu-
ous case for the majority of tasks, in particular perceptual
tasks. Nevertheless, algorithms should ideally be evaluated
on multiple datasets, which will help answer such ques-
tions.

5. CONCLUSION AND PERSPECTIVES

Benchmarking is an important aspect in experimental sci-
ences — results reported by individual research groups
need to be comparable. Important aspects of these are
datasets that can be easily shared among researchers, to-
gether with a set of defined tasks and splits. The FMA
enables researchers to test algorithms on a large-scale col-
lection, closer to real-world environments. Even though
it is still two orders of magnitude behind commercial ser-
vices who have access to tens of millions of tracks, 10 it is
of the same scale as the largest image dataset which opened
the door to dramatic performance improvements for many
tasks in computer vision. By providing audio, we do not
limit the benchmarking to pre-computed features and al-
low scientists to develop and test new feature sets, learn
features, or learn mappings directly from the audio. For
now, music classification, and MGR in particular, is the
most straightforward use case for FMA. The inclusion of a
genre hierarchy makes it specially interesting, as it offers
possibilities rarely found in alternative collections.

In addition to the proposed usage and many others peo-
ple will find, future work on the dataset itself should fo-
cus on (i) validating the ground truth by measuring agree-
ment by independent annotators and (ii) obtaining addi-
tional metadata and labels. If the community finds interest
in the dataset and validate its use, that can be achieved by
scraping the website for information not available through
the API, cross-referencing with other resources, or crowd-
sourcing (with e.g. Mechanical Turk or CrowdFlower).

In a post about the dataset, Cheyenne Hohman, the Di-
rector at the Archive, wrote that “by embracing the . . . phi-
losophy of Creative Commons, artists are not only making
their music available for the public to listen to, but also
for educational and research applications”. Let’s hope for
a future where sharing is first and researchers feed open
platforms with algorithms while they feed us with data.
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ABSTRACT

Most existing neural network models for music genera-
tion use recurrent neural networks. However, the recent
WaveNet model proposed by DeepMind shows that convo-
lutional neural networks (CNNs) can also generate realis-
tic musical waveforms in the audio domain. Following this
light, we investigate using CNNs for generating melody (a
series of MIDI notes) one bar after another in the symbolic
domain. In addition to the generator, we use a discrimina-
tor to learn the distributions of melodies, making it a gen-
erative adversarial network (GAN). Moreover, we propose
a novel conditional mechanism to exploit available prior
knowledge, so that the model can generate melodies either
from scratch, by following a chord sequence, or by con-
ditioning on the melody of previous bars (e.g. a priming
melody), among other possibilities. The resulting model,
named MidiNet, can be expanded to generate music with
multiple MIDI channels (i.e. tracks). We conduct a user
study to compare the melody of eight-bar long generated
by MidiNet and by Google’s MelodyRNN models, each
time using the same priming melody. Result shows that
MidiNet performs comparably with MelodyRNN models
in being realistic and pleasant to listen to, yet MidiNet’s
melodies are reported to be much more interesting.

1. INTRODUCTION

Algorithmic composition is not a new idea. The first com-
putational model for algorithmic composition dates back
to 1959 [16], according to the survey of Papadopoulos and
Wiggins [23]. People have also used (shallow) neural net-
works for music generation since 1989 [30]. It was, how-
ever, only until recent years when deep neural networks
demonstrated their ability in learning from big data col-
lections that generating music by neural networks became
a trending topic. Lots of deep neural network models for
music generation have been proposed just over the past two
years [4, 7, 10, 15, 18, 19, 21, 22, 26, 28, 31, 33].

The majority of existing neural network models for mu-
sic generation use recurrent neural networks (RNNs) and

c© Li-Chia Yang, Szu-Yu Chou, Yi-Hsuan Yang. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Li-Chia Yang, Szu-Yu Chou, Yi-Hsuan
Yang. “MidiNet: A Convolutional Generative Adversarial Network for
Symbolic-domain Music Generation”, 18th International Society for Mu-
sic Information Retrieval Conference, Suzhou, China, 2017.

their variants, presumably for music generation is inher-
ently about generating sequences [2, 3, 9, 14]. These mod-
els differ in the model assumptions and the way musical
events are represented and predicted, but they all use in-
formation from the previous events to condition the gen-
eration of the present one. Famous examples include the
MelodyRNN models [33] for symbolic-domain generation
(i.e. generating MIDIs) and the SampleRNN model [19]
for audio-domain generation (i.e. generating WAVs).

Relatively fewer attempts have been made to use deep
convolutional neural networks (CNNs) for music genera-
tion. A notable exception is the WaveNet model [31] pro-
posed recently for audio-domain generation. It generates
one audio sample at a time, with the predictive distribution
for each sample conditioned on previous samples through
dilated causal convolutions [31]. WaveNet shows it possi-
ble for CNNs to generate realistic music. This is encourag-
ing, as CNNs are typically faster to train and more easily
parallelizable than RNNs [32].

Following this light, we investigate in this paper a novel
CNN-based model for symbolic-domain generation, focus-
ing on melody generation. 1 Instead of creating a melody
sequence continuously, we propose to generate melodies
one bar (measure) after another, in a successive manner.
This allows us to employ convolutions on a 2-D matrix
representing the presence of notes over different time steps
in a bar. We can have such a score-like representation for
each bar for either a real or a generated MIDI.

Moreover, to emulate creativity [23] and encourage di-
verse generation result, we use random noises as input to
our generator CNN. The goal of the generator is to trans-
form random noises into the aforementioned 2-D score-
like representation, that “appears” to be from real MIDI.
This transformation is achieved by a special convolution
operator called transposed convolution [8]. Meanwhile, we
learn a discriminator CNN that takes as input a 2-D score-
like representation and predicts whether it is from a real or
a generated MIDI, thereby informing the generator how to
appear to be real. This amounts to a generative adversarial
network (GAN) [11–13,24,27], which learns the generator
and discriminator iteratively under the concept of minimax
two-player game theory.

This GAN alone does not take into account the tem-
poral dependencies across different bars. To address this
issue, we propose a novel conditional mechanism to use

1 In general, a melody may be defined as a succession of (monophonic)
musical notes expressing a particular musical idea.
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MelodyRNN Song from PI DeepBach C-RNN-GAN MidiNet WaveNet
[33] [7] [15] [21] (this paper) [31]

core model RNN RNN RNN RNN CNN CNN
data type symbolic symbolic symbolic symbolic symbolic audio
genre specificity — — Bach chorale — — —
mandatory prior knowl- priming music scale &

— — —
priming

edge melody melody profile wave
follow a priming melody

√ √ √ √

follow a chord sequence
√

generate multi-track music
√ √ √ √

use GAN
√ √

use versatile conditions
√

open source code
√ √ √

Table 1. Comparison between recent neural network based music generation models

music from the previous bars to condition the generation of
the present bar. This is achieved by learning another CNN
model, which we call the conditioner CNN, to incorporate
information from previous bars to intermediate layers of
the generator CNN. This way, our model can “look back”
without a recurrent unit as used in RNNs. Like RNNs, our
model can generate music of arbitrary number of bars.

Because we use random noises as inputs to our gener-
ator, our model can generate melodies from scratch, i.e.
without any other prior information. However, due to the
conditioner CNN, our model has the capacity to exploit
whatever prior knowledge that is available and can be rep-
resented as a matrix. For example, our model can generate
music by following a chord progression, or by following a
few starting notes (i.e. a priming melody). Given the same
priming melody, our model can generate different results
each time, again due to the random input.

The proposed model can be extended to generate differ-
ent types of music, by using different conditions. Based
on an idea called feature matching [27], we propose a way
to control the influence of such conditions on the genera-
tion result. We can then control, for example, how much
the current bar should sound like the previous bars. More-
over, our CNNs can be easily extended to deal with tensors
instead of matrices, to exploit multi-channel MIDIs and to
generate music of multiple tracks or parts. We believe such
a highly adaptive and generic model structure can be a use-
ful alternative to RNN-based designs. We refer to this new
model as the MidiNet.

In our experiment, we conduct a user study to compare
the melodies generated by MidiNet and MelodyRNN mod-
els [33]. For fair comparison, we use the same priming
melodies for them to generate melodies of eight-bar long
(including the primers), without any other prior informa-
tion. To demonstrate the flexibility of MidiNet, we pro-
vide the result of two additional settings: one uses addi-
tionally chord progressions of eight-bar long to condition
the generation, and the other uses a slightly different net-
work architecture to generate more creative music. For re-
producibility, the source code and pre-trained models of
MidiNet are released online 2 .

2 https://github.com/RichardYang40148/MidiNet

2. RELATED WORK

A large number of deep neural network models have been
proposed lately for music generation. This includes mod-
els for generating a melody sequence or audio waveforms
by following a few priming notes [10,18,19,22,31,33], ac-
companying a melody sequence with music of other parts
[15], or playing a duet with human [4, 26].

Table 1 compares MidiNet with a number of major re-
lated models. We briefly describe each of them below.

The MelodyRNN models [33] proposed by the Magenta
Project from the Google Brain team are possibly among the
most famous examples of symbolic-domain music gener-
ation by neural networks. In total three RNN-based mod-
els were proposed, including two variants that aim to learn
longer-term structures, the lookback RNN and the atten-
tion RNN [33]. Source code and pre-trained models for
the three models are all publicly available. 3 As the main
function of MelodyRNN is to generate a melody sequence
from a priming melody, we use the MelodyRNN models as
the baseline in our evaluation.

Song from PI [7] is a hierarchical RNN model that uses
a hierarchy of recurrent layers to generate not only the
melody but also the drums and chords, leading to a multi-
track pop song. This model nicely demonstrates the ability
of RNNs in generating multiple sequences simultaneously.
However, it requires prior knowledge of the musical scale
and some profiles of the melody to be generated [7], which
is not needed in many other models, including MidiNet.

DeepBach [15], proposed by Sony CSL, is specifically
designed for composing polyphonic four-part chorale mu-
sic in the style of J. S. Bach. It is an RNN-based model that
allows enforcing user-defined constraints such as rhythm,
notes, parts, chords and cadences.

C-RNN-GAN [21] is to date the only existing model
that uses GAN for music generation, to our best knowl-
edge. It also takes random noises as input as MidiNet
does, to generate diverse melodies. However, it lacks a
conditional mechanism [17, 20, 25] to generate music by
following either a priming melody or a chord sequence.

3 https://github.com/tensorflow/magenta/tree/
master/magenta/models/melody_rnn (accessed 2017-4-26)
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Figure 1. System diagram of the proposed MidiNet model for symbolic-domain music generation.

WaveNet [10, 31] is a CNN-based model proposed by
DeepMind for creating raw waveforms of speech and mu-
sic. The advantage of audio-domain generation is the pos-
sibility of creating new sounds, but we choose to focus on
symbolic-domain generation in this paper.

3. METHODS

A system diagram of MidiNet is shown in Figure 1. Below,
we present the technical details of each major component.

3.1 Symbolic Representation for Convolution

Our model uses a symbolic representation of music in fixed
time length, by dividing a MIDI file into bars. The note
events of a MIDI channel can be represented by an h-
by-w real-valued matrix X, where h denotes the number
of MIDI notes we consider, possibly including one more
dimension for representing silence, and w represents the
number of time steps we use in a bar. For melody gener-
ation, there is at most one active note per time step. We
use a binary matrix X ∈ {0, 1}h×w if we omit the velocity
(volume) of the note events. We use multiple matrices per
bar if we want to generate multi-track music.

In this representation, we may not be able to easily dis-
tinguish between a long note and two short repeating notes
(i.e. consecutive notes with the same pitch). Future exten-
sions can be done to emphasize the note onsets.

3.2 Generator CNN and Discriminator CNN

The core of MidiNet is a modified deep convolutional gen-
erative adversarial network (DCGAN) [24], which aims at
learning a discriminator D to distinguish between real (au-
thentic) and generated (artificial) data, and a generator G
that “fools” the discriminator. As typical in GANs, the in-
put of G is a vector of random noises z ∈ Rl, whereas the
output of G is an h-by-w matrix X̂ = G(z) that “appears”
to be real to D. GANs learn G and D by solving:

min
G

max
D

V (D,G) = EX∼pdata(X)[log(D(X))]+

Ez∼pz(z)[log(1−D(G(z)))] ,
(1)

where X ∼ pdata(X) denotes the operation of sampling
from real data, and z ∼ pz(z) the sampling from a random
distribution. As typical in GANs, we need to train G and
D iteratively multiple times, to gradually make a better G.

Our discriminator is a typical CNN with a few convolu-
tion layers, followed by fully-connected layers. These lay-
ers are optimized with a cross-entropy loss function, such
that the output of D is close to 1 for real data (i.e. X) and
0 for those generated (i.e. G(z)). We use a sigmoid neuron
at the output layer of D so its output is in [0,1].

The goal of the generator CNN, on the other hand, is
to make the output of D close to 1 for the generated data.
For generation, it has to transform a vector z into a matrix
X̂. This is achieved by using a few fully connected layers
first, and then a few transposed convolution layers [8] that
“upsamples” smaller vectors/matrices into larger ones.

Owing to the nature of minimax games, the training
of GANs is subject to issues of instability and mode col-
lapsing [12]. Among the various possible techniques to
improve the training of GANs [1, 5, 27], we employ the
so-called feature matching and one-sided label smooth-
ing [27] in our model. The idea of feature matching is
to add additional L2 regularizers to Eq. 1, such that the
distributions of real and generated data are enforced to be
close. Specifically, we add the following two terms when
we learn G:

λ1‖EX− E G(z)‖22 + λ2‖E f(X)− E f(G(z))‖22 ,
(2)

where f denotes the first convolution layer of the discrim-
inator, and λ1, λ2 are parameters to be set empirically.

3.3 Conditioner CNN

In GAN-based image generation, people often use a vec-
tor to encode available prior knowledge that can be used
to condition the generation. This is achieved by reshaping
the vector and then adding it to different layers of G and
D, to provide additional input [20]. Assuming that the con-
ditioning vector has length n, to add it to an intermediate
layer of shape a-by-b we can duplicate the values ab times
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to get a tensor of shape a-by-b-by-n, and then concatenate
it with the intermediate layer in the feature map axis. This
is illustrated by the light orange blocks in Figure 1. We call
such a conditional vector 1-D conditions.

As the generation result of our GAN is an h-by-w ma-
trix of notes and time steps, it is convenient if we can per-
form conditioning directly on each entry of the matrix. For
example, the melody of a previous bar can be represented
as another h-by-w matrix and used to condition the genera-
tion of the present bar. We can have multiple such matrices
to learn from multiple previous bars. We can directly add
such a conditional matrix to the input layer of D to influ-
ence all the subsequent layers. However, to exploit such
2-D conditions in G, we need a mechanism to reshape the
conditional matrix to smaller vectors of different shapes, to
include them to different intermediate layers of G.

We propose to achieve this by using a conditioner CNN
that can be viewed as a reverse of the generator CNN. As
the blue blocks in Figure 1 illustrates, the conditioner CNN
uses a few convolution layers to process the input h-by-w
conditional matrix. The conditioner and generator CNNs
use exactly the same filter shapes in their convolution lay-
ers, so that the outputs of their convolution layers have
“compatible” shapes. In this way, we can concatenate the
output of a convolution layer of the conditioner CNN to
the input of a corresponding transposed convolution layer
of the generator CNN, to influence the generation process.
In the training stage, the conditioner and generator CNNs
are trained simultaneously, by sharing the same gradients.

3.4 Tunning for Creativity

We propose two methods to control the trade-off between
creativity and discipline of MidiNet. The first method is to
manipulate the effect of the conditions by using them only
in part of the intermediate transposed convolution layers
of G, to give G more freedom from the imposed condi-
tions. The second method capitalizes the effect of the fea-
ture matching technique [27]: we can increase the values
of λ1 and λ2 to make the generated music sounds closer to
existing music (i.e. those observed in the training set).

4. IMPLEMENTATION

4.1 Dataset

As the major task considered in this paper is melody gen-
eration, for training MidiNet we need a MIDI dataset that
clearly specifies per file which channel corresponds to the
melody. To this end, we crawled a collection of 1,022
MIDI tabs of pop music from TheoryTab, 4 which provides
exactly two channels per tab, one for melody and the other
for the underlying chord progression. With this dataset, we
can implement at least two versions of MidiNets: one that
learns from only the melody channel for fair comparison
with MelodyRNN [33], which does not use chords, and
the other that additionally uses chords to condition melody
generation, to test the capacity of MidiNet.

4 https://www.hooktheory.com/theorytab

dimensions 1–12 13
major C, C#, D, D#, E, F, F#, G, G#, A, A#, B 0
minor A, A#, B, C, C#, D, D#, E, F, F#, G, G# 1

Table 2. 13-dimensional chord representation

For simplicity, we filtered out MIDI tabs that contain
chords other than the 24 basic chord triads (12 major and
12 minor chords). Next, we segmented the remaining tabs
every 8 bars, and then pre-processed the melody channel
and the chord channel separately, as described below.

For melodies, we fixed the smallest note unit to be the
sixteenth note, makingw = 16. Specifically, we prolonged
notes which have a pause note after them. If the first note
of a bar is a pause, we extended the second note to have
it played while the bar begins. There are other exceptions
such as triplets and shorter notes (e.g. 32nd notes), but
we chose to exclude them in this implementation. More-
over, for simplicity, we shifted all the melodies into two oc-
taves, from C4 to B5, and neglected the velocity of the note
events. Although our melodies would use only 24 possible
notes after these preprocessing steps, we considered all the
128 MIDI notes (i.e. from C0 to G10) in our symbolic
representation. In doing so, we can detect model collaps-
ing [12] more easily, by checking whether the model gen-
erates notes outside these octaves. As there are no pauses
in our data after preprocessing, we do not need a dimension
for silence. Therefore, h = 128.

For chords, instead of using a 24-dimensional one-hot
vector, we found it more efficient to use a chord representa-
tion that has only 13 dimensions— the first 12 dimensions
for marking the key, and the last for the chord type (i.e.
major or minor), as illustrated in Table 4.1. We pruned the
chords such that there is only one chord per bar.

After these preprocessing steps, we were left with 526
MIDI tabs (i.e. 4,208 bars). 5 For data augmentation, we
circularly shifted the melodies and chords to any of the 12
keys in equal temperament, leading to a final dataset of
50,496 bars of melody and chord pairs for training.

4.2 Network Specification

Our model was implemented in TensorFlow. For the gen-
erator, we used as input random vectors of white Gaussian
noise of length l = 100. Each random vector go through
two fully-connected layers, with 1024 and 512 neurons re-
spectively, before being reshaped into a 1-by-2 matrix. We
then used four transposed convolution layers: the first three
use filters of shape 1-by-2 and two strides [8], and the last
layer uses filters of shape 128-by-1 and one stride. Accord-
ingly, our conditioner has four convolution layers, which
use 128-by-1 filters for the first layer, and 1-by-2 filters for
the other three. For creating a monophonic note sequence,
we added a layer to the end of G to turn off per time step
all but the note with the highest activation.

As typical in GANs, the discriminator is likely to over-
power the generator, leading to the so-called vanishing gra-

5 In contrast, MelodyRNN models [33] were trained on thousands of
MIDI files, though the exact number is not yet disclosed.
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dient problem [1,12]. We adopted two strategies to weaken
the discriminator. First, in each iteration, we updated the
generator and conditioner twice, but the discriminator only
once. Second, we used only two convolution layers (14 fil-
ters of shape 128-by-2, two strides, and 77 filters of shape
1-by-4, two strides) and one fully-connected layer (1,024
neurons) for the discriminator.

We fine-tuned the other parameters of MidiNet and con-
sidered the following three variants in our experiment.

4.2.1 Model 1: Melody generator, no chord condition

This variant uses the melody of the previous bar to condi-
tion the generation of the present bar. We used this 2-D
condition in all the four transposed convolution layers of
G. We set the number of filters in all the four transposed
convolution layers of G and the four convolution layers of
the conditioner CNN to 256. The feature matching param-
eters λ1 and λ2 are set to 0.1 and 1, respectively. We did
not use the 2-D condition for D, requiring it to distinguish
between real and generated melodies from the present bar.

In the training stage, we firstly added one empty bar
before all the MIDI tabs, and then randomly sampled two
consecutive bars from any tab. We used the former bar as
an instance of real data (i.e. X) and the input to D, and the
former bar (which is a real melody or all zeros) as a 2-D
condition and the input to the conditioner CNN Once the
model was trained, we used G to generate melodies of 8-
bar long in the following way: the first bar was composed
of a real, priming melody sampled from our dataset; the
generation of the second bar was made by G, conditioned
by this real melody; starting from the third bar, G had to
use the (artificial) melody it generated previously for the
last bar as the 2-D condition. This process repeated until
we had all the eight bars. 6

4.2.2 Model 2: Melody generator with chord condition,
stable mode

This variant additionally uses the chord channel. Because
our MIDI tabs use one chord per bar, we used the chord
(a 13-dimensional vector; see Table 4.1) of the present bar
as a 1-D condition for generating the melody for the same
bar. We can say that our model is generating a melody
sequence that fits the given chord progression.

To highlight the chord condition, we used the 2-D
previous-bar condition only in the last transposed convo-
lution layer of G. In contrast, we used the 1-D chord con-
dition in all the four transposed convolution layer of G, as
well as the input layer for D. Moreover, we set λ1 = 0.01,
λ2 = 0.1, and used 128 filters in the transposed convolu-
tion layers ofG and only 16 filters in the convolution layers
of the conditioner CNN. As a result, the melody generator
is more chord-dominant and stable, for it would mostly fol-
low the chord progression and seldom generate notes that
violate the constraint imposed by the chords.

6 It is also possible to use multiple previous bars to condition our gen-
eration, but we leave this as a future extension.

Figure 2. Result of a user study comparing MelodyRNN
and MidiNet models, for people (top row) with musical
backgrounds and (bottom) without musical backgrounds.
The middle bars indicate the mean values. Please note that
MidiNet Model 2 takes the chord condition as additional
information.

4.2.3 Model 3: Melody generator with chord condition,
creative mode

This variant realizes a slightly more creative melody gen-
erator by placing the 2-D condition in every transposed
convolution layer of G. In this way, G would sometimes
violate the constraint imposed by the chords, to somehow
adhere to the melody of the previous bar. Such violations
sometimes sound unpleasant, but can be sometimes cre-
ative. Unlike the previous two variants, we need to listen
to several melodies generated by this model to handpick
good ones. However, we believe such a model can still be
useful for assisting and inspiring human composers.

5. EXPERIMENTAL RESULT

To evaluate the aesthetic quality of the generation result,
a user study that involves human listeners is needed. We
conducted a study with 21 participants. Ten of them un-
derstand basic music theory and have the experience of be-
ing an amateur musician, so we considered them as people
with musical backgrounds, or professionals for short.

We compared MidiNet with three MelodyRNN mod-
els pre-trained and released by Google Magenta: the basic
RNN, the lookback RNN, and the attention RNN [33]. We
randomly picked 100 priming melodies from the training
data 7 and asked the models create melodies of eight bars
by following these primers. We considered two variants
of MidiNet in the user study: model 1 (Section 4.2.1) for
fair comparison with MelodyRNN, and model 2 (Section
4.2.2) for probing the effects of using chords. Although the
result of model 2 was generated by additionally following
the chords, we did not playback the chord channel in the
user study.

We randomly selected the generation result of three out
of the 100 priming melodies for each participant to listen
to, leading to three sets of music. To avoid bias, we ran-
domly shuffled the generation result by the five considered

7 Even though these priming melodies are in the training data, MidiNet
generates melodies that are quite different from the existing ones.
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(a) MidiNet model 1

(b) MidiNet model 2

(c) MidiNet model 3

Figure 3. Example result of the melodies (of 8 bars) generated by different implementations of MidiNet.

models, such that in each set the ordering of the five mod-
els is different. The participants were asked to stay in a
quiet room separately and used a headphone for music lis-
tening through the Internet, one set at a time. We told them
that some of the music “might be” real, and some might
be generated by machine, although all of them were actu-
ally automatically generated. They were asked to rate the
generated melodies in terms of the following three metrics:
how pleasing, how real, and how interesting, from 1 (low)
to 5 (high) in a five-point Likert scale.

The result of the user study is shown in Figure 2 as vi-
olin plots, where the following observations can be made.
First, among the MelodyRNN models, lookback RNN and
attention RNN consistently outperform basic RNN across
the three metrics and two user groups (i.e. people with and
without musical backgrounds), which is expected accord-
ing to the report of Magenta [33]. The mean values for
lookback RNN are around 3 (medium) for being pleasant
and realistic, and around 2.5 for being interesting.

Second, MidiNet model 1, which uses only the previous
bar condition, obtains similar ratings as the MelodyRNN
models in being pleasant and realistic. This is encouraging,
as MelodyRNN models can virtually exploit all the previ-
ous bars in generation. This result demonstrates the effec-
tiveness of the proposed conditioner CNN in learning tem-
poral information. Furthermore, we note that the melodies
generated by MidiNet model 1 were found much more in-
teresting than those generated by MelodyRNN. The mean
value in being interesting is around 4 for people with musi-
cal backgrounds, and 3.4 for people without musical back-
grounds. The violin plot indicates that the ratings of the
professionals are mostly larger than 3.

Third, MidiNet model 2, which further uses chords, ob-
tains the highest mean ratings in being pleasant and realis-
tic for both user groups. In terms of interestingness, it also
outperforms the three MelodyRNN models, but is inferior
to MidiNet model 1, especially for professionals.

According to the feedback from the professionals, a
melody sounds artificial if it lacks variety or violates prin-
cipals in (Western) music theory. The result of MidiNet
model 1 can sound artificial, for it relies on only the pre-
vious bar and hence occasionally generates “unexpected”

notes. In contrast, the chord channel provides a musical
context that can be effectively used by MidiNet model 2
through the conditional mechanism. However, occasional
violation of music theory might be a source of interesting-
ness and thereby creativity. For example, the professionals
reported that the melodies generated by MelodyRNN mod-
els are sometimes too repetitive, or “safe,” making them
artificial and less interesting. It might be possible to fur-
ther fine tune our model to reach a better balance between
being real and being interesting, but we believe our user
study has shown the promise of MidiNet.

Figure 3 shows some melodies generated by differ-
ent implementations of MidiNet, which may provide in-
sights into MidiNet’s performance. Figure 3(a) shows that
MidiNet model 1 can effectively exploit the previous bar
condition—most bars start with exactly the same first two
notes (as the priming bar) and they use similar notes in be-
tween. Figure 3(b) shows the result of MidiNet model 2,
which highlights the chord condition. Figure 3(c) shows
that MidiNet can generate more creative result by mak-
ing the chord condition and previous bar condition equally
strong. We can see stronger connections between adjacent
bars from the result of this MidiNet model 3. For more
audio examples, please go to https://soundcloud.
com/vgtsv6jf5fwq/sets.

6. CONCLUSION

We have presented MidiNet, a novel CNN-GAN based
model for MIDI generation. It has a conditional mecha-
nism to exploit versatile prior knowledge of music. It also
has a flexible architecture and can generate different types
of music depending on input and specifications. Our eval-
uation shows that it can be a powerful alternative to RNNs.

For future work, we would extend MidiNet to generate
multi-track music, to include velocity and pauses by train-
ing the model by using richer and larger MIDI data. We
are also interested in using ideas of reinforcement learn-
ing [29] to incorporate principles of music theory [18], and
to take input from music information retrieval models such
as genre recognition [6] and emotion recognition [34].
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ABSTRACT

String-based (or viewpoint) models of tonal harmony often
struggle with data sparsity in pattern discovery and predic-
tion tasks, particularly when modeling composite events
like triads and seventh chords, since the number of distinct
n-note combinations in polyphonic textures is potentially
enormous. To address this problem, this study examines
the efficacy of skip-grams in music research, an alternative
viewpoint method developed in corpus linguistics and nat-
ural language processing that includes sub-sequences of n
events (or n-grams) in a frequency distribution if their con-
stituent members occur within a certain number of skips.

Using a corpus consisting of four datasets of Western
classical music in symbolic form, we found that including
skip-grams reduces data sparsity in n-gram distributions
by (1) minimizing the proportion of n-grams with negligi-
ble counts, and (2) increasing the coverage of contiguous
n-grams in a test corpus. What is more, skip-grams sig-
nificantly outperformed contiguous n-grams in discovering
conventional closing progressions (called cadences).

1. INTRODUCTION

Corpus studies employing string-based (or viewpoint)
methods in music research often suffer from the contigu-
ity fallacy—the assumption that note or chord events on
the musical surface depend only on their immediate neigh-
bors. For example, in symbolic music corpora, researchers
often divide the corpus into contiguous sequences of n
events (called n-grams) for the purposes of pattern discov-
ery [4], classification [5], similarity estimation [16], and
prediction [17]. And yet since much of the world’s mu-
sic is hierarchically organized such that certain events are
more stable (or prominent) than others [1], non-contiguous
events often serve as focal points in the sequence [11]. As
a consequence, the contiguous n-gram method yields in-
creasingly sparse distributions as n increases, resulting in
the well-known zero-frequency problem [27], in which n-
grams encountered in the test set do not appear in the train-
ing set. Perhaps worse, the most highly recurrent temporal

c© Sears, Arzt, Frostel, Sonnleitner, Widmer. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Sears, Arzt, Frostel, Sonnleitner, Widmer. “Mod-
eling Harmony with Skip-grams”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.
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Figure 1: Haydn, String Quartet in C minor, Op. 17/4, i,
mm. 6–8. Non-chord tones are shown with orange
noteheads, and Roman numeral annotations appear below,
with the chords of the perfect authentic cadence (PAC)
progression embraced by a horizontal square bracket.

patterns in tonal music—melodic formulæ, conventional
chord progressions, etc.—are rarely included.

By way of example, consider the closing measures of
the main theme from the first movement of Haydn’s string
quartet Op. 17, No. 4, shown in Figure 1. The passage
culminates in a perfect authentic cadence, a syntactic clos-
ing formula that features a conventional chord progression
(V–I) and a falling upper-voice melody (2̂–1̂). In the music
theory classroom, students are taught to reduce this musi-
cal surface to a succession of chord symbols, such as the
Roman numeral annotations shown below. Yet despite the
ubiquity of this pattern throughout the history of Western
tonal music, string-based methods generally fail to retrieve
this sequence of chords due to the presence of intervening
non-chord tones (shown in orange), a limitation one study
has called the interpolation problem [3].

To discover the organizational principles underlying
tonal harmony using data-driven methods, this study ex-
amines the efficacy of skip-grams in music research, an
alternative viewpoint method developed in corpus linguis-
tics and natural language processing that includes sub-
sequences in an n-gram distribution if their constituent
members occur within a certain number of skips. In lan-
guage corpora, skip-grams have been shown to reduce data
sparsity in n-gram distributions [13], discover multi-word
expressions (or collocations) in pattern discovery tasks
[22], and minimize model uncertainty in word prediction
tasks [12].

Models for the discovery of harmonic progressions
in polyphonic corpora typically exclude higher-order se-
quences (when n > 2) due to the sparsity of their dis-
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tributions [18], so this paper examines the utility of skip-
grams for 2-grams, 3-grams, and 4-grams. We begin in
Section 2 by describing the voice-leading type (VLT), an
optimally reduced chord typology that models every pos-
sible combination of note events in the dataset, but that re-
duces the number of distinct chord types based on music-
theoretic principles. Following a formal definition of skip-
grams in Section 3, Section 4 describes the datasets used
in the present research and then presents the experimen-
tal evaluations, which consider whether skip-grams reduce
data sparsity in n-gram distributions by (1) minimizing
the proportion of rare n-grams (i.e., that feature negligible
counts), and (2) covering more of the contiguous n-grams
in a test corpus. We conclude by considering avenues for
future research.

2. DATA-DRIVEN CHORD TYPOLOGIES

Corpus studies in music research often treat the note event
as the unit of analysis, examining features like chromatic
pitch [18], melodic interval [23], and chromatic scale de-
gree [15]. Using computational methods to identify com-
posite events like triads and seventh chords in complex
polyphonic textures is considerably more complex, since
the number of distinct n-note combinations associated with
any of the above-mentioned features is enormous.

To derive chord progressions from symbolic corpora us-
ing data-driven methods, many music analysis software
frameworks perform a full expansion of the symbolic en-
coding, which duplicates overlapping note events at every
unique onset time. 1 Shown in Figure 2, expansion re-
sults in the identification of 23 unique onset times. Since
expansion is less likely to under-partition more complex
polyphony compared to other partitioning methods [4], we
adopt this technique for the analyses that follow.

To reduce the vocabulary of potential chord types, pre-
vious studies have represented each chord according to
the simultaneous relations between its note-event members
(e.g., vertical intervals) [21], the sequential relations be-
tween its chord-event neighbors (e.g., melodic intervals)
[4], or some combination of the two [19]. The skip-gram
method can model any of these representation schemes, but
for the purposes of this study, we have adopted the voice-
leading type (VLT) representation developed in [19, 20],
which produces an optimally reduced chord typology that
still models every possible combination of note events in
the dataset. The VLT scheme consists of an ordered tuple
(S, I) for each chord in the sequence, where S is a set of up
to three intervals above the bass in semitones modulo the
octave, resulting in 133 (or 2197) possible combinations; 2

and I is the melodic interval (again modulo the octave)
from the preceding bass note to the present one.

Because the VLT representation makes no distinction
between chord tones and non-chord tones, the syntactic

1 In Humdrum, this technique is called ditto [14], while Music21 calls
it chordifying [6].

2 The value of each vertical interval is either undefined (denoted by
⊥), or represents one of twelve possible interval classes, where 0 denotes
a perfect unison or octave, 7 denotes a perfect fifth, and so on.

Vln I
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Figure 2: Full expansion of Op. 17/4, i, mm. 6–8.
Non-chord tones are shown with orange noteheads, and
the most representative chord onsets of the PAC
progression are annotated with the VLT scheme.

domain of voice-leading types is still very large. To re-
duce the domain to a more reasonable number, we have ex-
cluded pitch class repetitions in S (i.e., voice doublings),
and we have allowed permutations. Following [19], the
assumption here is that the precise location and repeated
appearance of a given interval are inconsequential to the
identity of the chord. By allowing permutations, the major
triads 〈4, 7, 0〉 and 〈7, 4, 0〉 therefore reduce to 〈4, 7,⊥〉.
Similarly, by eliminating repetitions, the chords 〈4, 4, 10〉
and 〈4, 10, 10〉 reduce to 〈4, 10,⊥〉. This procedure re-
stricts the domain to 233 unique VLTs when n = 1 (i.e.,
when I is undefined). Figure 2 presents the VLT encoding
for the PAC progression annotated in Figure 1, with the
vertical interval classes S provided below each chord on-
set, and the melodic interval classes I inserted under hori-
zontal angle brackets.

3. DEFINING SKIP-GRAMS

In corpus linguistics, researchers often discover recurrent
patterns by dividing the corpus into n-grams, and then de-
termining the number of instances (or tokens) associated
with each unique n-gram type in the corpus. N-grams con-
sisting of one, two, or three events are often called uni-
grams, bigrams, and trigrams, respectively, while longer
n-grams are typically represented by the value of n.

3.1 Contiguous N-grams

Each piece m consists of a contiguous sequence of VLTs,
so let k represent the length of the sequence in each piece,
and let C denote the total number of pieces in the corpus.
The number of contiguous n-gram tokens in the corpus is

C∑
m=1

km − n+ 1 (1)

This formula ensures that the total number of tokens is nec-
essarily smaller than the total number of events in the se-
quence when n > 1.

3.2 Non-Contiguous N-grams

The most serious limitation of contiguous n-grams is that
they offer no alternatives; every event depends only on its

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 333



a b c d e

Contiguous
Skip

t 2-grams

0 ab bc cd de

1 ac bd ce

2 ad be

3 ae

Figure 3: Top: A 5-event sequence, with arcs denoting all
contiguous (solid) and non-contiguous (dashed) 2-gram
tokens. Bottom: All 2-gram tokens, with t indicating the
number of skips.

immediate neighbors. Without this limitation, the number
of associations between events in the sequence necessarily
explodes in combinatorial complexity as n and k increase.

The top plot in Figure 3 depicts the contiguous and
non-contiguous 2-gram tokens for a 5-event sequence with
solid and dashed arcs, respectively. According to (1), the
number of contiguous 2-grams in a 5-event sequence is
k − n + 1, or 4 tokens. If all possible non-contiguous
relations are also included, the number of tokens is given
by the combination equation:(

k

n

)
=

k!

n!(k − n)!
=

k(k − 1)(k − 2) . . . (k − n+ 1)

n!
(2)

The notation
(
k
n

)
denotes the number of possible com-

binations of n events from a sequence of k events. By
including the non-contiguous associations, the number of
2-grams for a 5-event sequence increases to 10. As n and
k increase, the number of patterns can very quickly be-
come unwieldy: a 20-event sequence, for example, con-
tains 190 possible 2-grams, 1140 3-grams, 4845 4-grams,
and 15,504 5-grams.

3.2.1 Fixed-Skip N-grams

To overcome the combinatoric complexity of counting to-
kens in this way, researchers in natural language process-
ing have limited the investigation to what we will call fixed-
skip n-grams [13], which only include n-gram tokens if
their constituent members occur within a fixed number of
skips t. Shown in the bottom plot in Figure 3, ac and bd
constitute 1-skip tokens (i.e., t = 1), while ad and be con-
stitute 2-skip tokens. Thus, up to 7 tokens occur when
t = 1, up to 9 occur when t = 2, and up to 10 occur
when t = 3.

3.2.2 Variable-Skip N-grams

For natural language texts, the temporal structure of a se-
quence of linguistic utterances is not clearly defined. Yet
for music corpora, temporal characteristics like onset time
and duration play an essential role in the realization and re-
ception of musical works. For example, the upper bound-
ary under which listeners can group successive events into
temporal sequences is around 2s [10]. Thus, as an alterna-
tive to the fixed-skip method, we also include variable-skip
n-grams, which include n-gram tokens if the inter-onset
interval(s) (IOI) between their constituent members occur
within a specified upper boundary (e.g., 2s).

4. EXPERIMENTAL EVALUATIONS

This section describes the datasets in the present research
and then examines whether the inclusion of skip-grams (1)
minimizes the proportion of n-gram types with negligible
counts, and (2) covers more of the contiguous n-gram to-
kens in a test corpus.

4.1 Datasets & Pre-Processing

Shown in Table 1, this study includes four datasets of
Western classical music that feature symbolic representa-
tions of both the notated score (e.g., metric position, rhyth-
mic duration, pitch, etc.) and a recorded expressive perfor-
mance (e.g., onset time and duration in seconds, velocity,
etc.). Altogether, the corpus totals over 20 hours of music.

The Kodály/Haydn dataset consists of 50 Haydn string
quartet movements encoded in MIDI format [21]. The data
were manually aligned at the downbeat level to recorded
performances by the Kodály Quartet, and then the onset
time for each chord event in the symbolic representation
was estimated using linear interpolation.

The Batik/Mozart dataset consists of 13 complete
Mozart piano sonatas encoded in MATCH format [24].
The data were aligned to performances by Roland Batik
that were recorded on a Bösendorfer SE 290 computer-
controlled piano, which is equipped with sensors on the
keys and hammers to measure the timing and dynamics of
each note [25].

The remaining two datasets were encoded in Mu-
sicXML format, and were also aligned to performances
that were recorded on a Bösendorfer computer-controlled
piano. The Zeilinger/Beethoven dataset consists of 9

Composer (Performer) Npieces Nchords N tokens>3

Haydn (Kodály) 50 73,704 0
Mozart (Batik) 39 63,418 969
Beethoven (Zeilinger) 30 42,157 910
Chopin (Magaloff) 156 147,871 3666

Total 275 327,150 5545

Note. Ntokens>3 denotes n-gram tokens that initially consisted of more
than three interval classes.

Table 1: Datasets and descriptive statistics for the corpus.
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complete Beethoven piano sonatas performed by Clemens
Zeilinger [8], while the Magaloff/Chopin dataset consists
of 156 Chopin piano works that were performed by Nikita
Magaloff [8, 9].

Performing a full expansion on all four datasets pro-
duced 327,150 unique onsets from which to derive chords.
Unfortunately, some onsets presented more than three ver-
tical interval classes, but since the VLT scheme only per-
mits up to three interval classes S above the bass, it was
necessary to replace these chords. Each onset containing
more than three distinct vertical interval classes was re-
placed either with (1) the closest maximal subset estimated
from the immediate surrounding context (i.e., ±5 chords);
(2) the most common maximal subset estimated from the
entire piece; or finally (3) the most common maximal sub-
set estimated from all pieces in the corpus.

4.2 Reducing Sparsity

In natural language corpora, n-gram distributions of indi-
vidual words (n = 1) and multi-word expressions (n < 5)
demonstrate a power-law relationship between frequency
and rank, with the most frequent (i.e., top-ranked) types
accounting for the majority of the tokens in the distribu-
tion [26]. In music corpora, however, this relationship be-
comes increasingly linear as n increases due to the greater
proportion of types featuring negligible counts. Such rare
n-grams are thus more difficult to retrieve and model in
discovery and prediction tasks, so this section examines
whether the inclusion of skip-grams minimizes the propor-
tion of rare n-grams in chord distributions.

4.2.1 Methods

Contiguous n-gram distributions were calculated from n =
1 to n = 7, along with 4-grams that include the following
skip levels: Fixed – up to 1, 2, 3, or 4 skips; Variable – all
possible skips occurring within a maximum IOI of .5, 1,
1.5, or 2s.

Skip Ntypes Ntokens

No Skip
135,331 326,034

Fixed – Skip boundary (#)
1 850,222 2,604,972
2 2,364,840 8,780,643
3 4,765,289 20,786,976
4 8,207,123 40,548,000

Variable – IOIa boundary (s)
0.5 2,213,148 10,150,852

1 12,498,736 90,278,381
1.5 31,591,468 306,289,766

2 59,147,107 718,717,231
a IOI denotes the maximum permitted inter-onset interval in seconds be-
tween adjacent members of each n-gram.

Table 2: Counts associated with 4-gram types and tokens
using both fixed and variable skips.

4.2.2 Results

Table 2 presents the counts for 4-gram types and tokens
with both fixed and variable skips. As expected, including
skips of either type significantly increased the number of
types and tokens. When skips were not included, the cor-
pus produced over 300 thousand tokens, but this number
increased to over 40 million tokens for skip-grams includ-
ing up to 4 skips, or over 700 million tokens for skip-grams
including all skips occurring within an IOI of 2s.

To visualize the increasing impact of data sparsity on
the n-gram distribution as n increases, the top plot in
Figure 4 presents the cumulative probability distributions
for contiguous n-gram types from n = 1 to n = 7. Types
appearing to the right of each marker feature only one
token in the corpus. When n is small, the distributions
loosely conform to the family of power laws used in lin-
guistics to describe the frequency-of-occurrence of words
in language corpora, where a small proportion of types
account for most of the encountered tokens. When n in-
creases, however, the proportion of types featuring negligi-
ble counts also increases, resulting in increasingly uniform
distributions.

Shown in the bottom plot in Figure 4, the power-law re-
lationship returns in the 4-gram distributions when skips
are included. What is more, the proportion of types featur-
ing negligible counts also decreases, thereby minimizing
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Figure 4: Cumulative probability distributions for (top)
contiguous n-gram types, with types appearing to the right
of each marker featuring only one token in the corpus; and
(bottom) 4-gram types featuring no skips, up to four skips,
or all skips occurring within an IOI of 2s.
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the potential for data sparsity in the VLT distribution.

4.3 Increasing Coverage

This section examines whether the inclusion of skip-gram
types during training covers more of the contiguous n-gram
tokens in a test corpus.

4.3.1 Methods

2-gram, 3-gram, and 4-gram distributions were calculated
for the following skip levels: Fixed – no skip, or up to 1,
2, 3, or 4 skips; Variable – no skip, or all possible skips
occurring within an IOI of .5, 1, 1.5, or 2s. To evaluate
skip-gram coverage, we employed 10-fold cross-validation
stratified by composer [7], using the proportion of contigu-
ous n-gram types in the test set that appeared in the train-
ing set as a measure of performance. To create folds con-
taining the same number of compositions and chords, we
computed the mean number of chords that should appear in
each fold m, and then selected the fold indices for which
each fold (1) contained an approximately equal number of
compositions, and (2) contained a total number of chords
that was ±1% of m.

4.3.2 Analysis

To examine the potential increase in coverage at each suc-
cessive (fixed or variable) skip, we calculated a planned
comparison statistic that does not assume equal variances,
called the Welch t test. 3 The mean of each skip was com-
pared to the mean of the previous skip using backward-
difference coding (e.g., Fixed: 2 skips vs. 1 skip, 3 skips
vs. 2 skips, etc.). To minimize the risk of committing a
Type I error, each comparison was corrected with Bonfer-
roni adjustment, which divides the significance criterion by
the number of planned comparisons.

4.3.3 Results

Figure 5 displays line plots of the mean proportion of con-
tiguous n-gram tokens from the test that appeared dur-
ing training using either fixed or variable skips. Table 3
provides the mean coverage estimates and planned com-
parisons. For 2-grams, on average the contiguous types
covered nearly 96% of the tokens in the test set. When
skips were included, this estimate improved significantly
to 98.3% of the tokens for up to two fixed skips, or up to
99.2% percent of the tokens for all skips occurring within
an IOI of 1.5 s.

As n increased, the proportion of tokens that appeared
during training using contiguous n-grams decreased sub-
stantially. For 3-grams, the contiguous types only covered
70.7% of the tokens on average. This estimate improved
dramatically when either fixed or variable skips were in-
cluded, however. For the fixed-skip factor, including up to

3 In hypothesis testing, planned comparisons typically follow an om-
nibus statistic like the F ratio, which indicates whether the differences
between the means of a given factor are significant. In this case, the
Welch F test was significant for every model, so we forgo reporting those
statistics here, and instead simply report the planned comparisons, which
indicate whether coverage increased significantly as the number of skips
(or the size of the temporal boundary) increased.
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Figure 5: Line plots of the mean proportion of n-gram
tokens from the test that were covered during training
using either fixed (top) or variable (bottom) skips.
Whiskers represent the 95% confidence interval (CI)
around the mean.

four skips during training covered an additional 20% of the
tokens during test, resulting in a mean coverage estimate of
over 90%. In the variable-skip condition, this estimate fur-
ther improved to 94.3% when all skips occurring within an
IOI of 2s were included. Finally, for 4-grams, the contigu-
ous types covered just 36.5% of the tokens, but this esti-
mate improved to 71.1% in the fixed-skip condition, and to
82.4% in the variable-skip condition.

5. SUMMARY AND CONCLUSION

To reduce data sparsity in n-gram distributions of tonal har-
mony, this study examined the efficacy of skip-grams, an
alternative viewpoint method that includes sub-sequences
in an n-gram distribution if their constituent members oc-
cur within a certain number of skips (fixed), or a specified
temporal boundary (variable). To that end, we compiled
four datasets of Western classical music that feature sym-
bolic representations of the notated score. Our findings
demonstrate that the inclusion of skip-grams reduces spar-
sity in higher-order n-gram distributions by (1) minimiz-
ing the proportion of n-grams with negligible counts, thus
recovering the power-law relationship between frequency
and rank when n < 5 that was previously lost in the cor-
responding contiguous distributions, and (2) increasing the
coverage of the contiguous n-grams in a test set, thereby
mitigating the severity of the zero-frequency problem.

In our view, this approach would directly benefit tasks
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2-grams 3-grams 4-grams
Skip Mcoverage t p Mcoverage t p Mcoverage t p

No Skip
.959 .707 .365

Fixed – Skip boundary (#)
1 .976 7.144 <.001 .813 9.726 <.001 .529 10.963 <.001
2 .983 4.000 .003 .859 5.518 <.001 .618 6.023 <.001
3 .986 2.529 .085 .884 3.620 .008 .672 3.948 .003
4 .988 1.848 .327 .901 2.814 .046 .711 3.063 .027

Variable – IOI boundary (s)
0.5 .979 8.439 <.001 .837 12.744 <.001 .595 15.795 <.001

1 .988 6.598 <.001 .904 10.132 <.001 .727 9.786 <.001
1.5 .992 3.647 .010 .929 5.313 <.001 .788 5.266 <.001

2 .993 2.311 .132 .943 3.564 .009 .824 3.808 .005

Table 3: Mean coverage estimates and planned comparisons for 2-gram, 3-gram, and 4-gram tokens using either fixed or
variable skips.

related to pattern discovery and prediction, since recur-
rent temporal patterns rarely appear on the musical surface,
thereby forcing n-gram models to either exclude higher-
order n-grams (e.g., where n > 2) due to the sparsity of
the distributions, or calculate escape probabilities to ac-
commodate patterns that do not appear (contiguously) in
the training set [2]. Consider, for example, the two four-
chord cadential progressions in Table 4: the semplice ca-
dence, which features a dominant-to-tonic progression in
root position (e.g., I6-ii6-V7-I); and the composta cadence,
which also features a six-four suspension above the ca-
dential dominant (e.g., ii6-“I64”-V7-I). These cadences are
ubiquitous in music of the classical style, and yet the VLT
configurations representing these progressions rarely ap-
pear on the surface; the semplice cadence never appears
contiguously, while the composta cadence is featured in

Skip I6-ii6-V7-I ii6-“I64”-V7-I

No Skip
0 7

Fixed – Skip boundary (#)
1 3 16
2 10 36
3 13 50
4 15 63

Variable – IOIa boundary (s)
0.5 5 8

1 10 33
1.5 21 51

2 32 77

Note. VLT encodings for these progressions appear in the major and
minor mode, and feature the pre-dominant and dominant harmonies both
with and without the seventh (e.g., ii6 and ii65).

Table 4: Number of pieces containing semplice or
composta four-chord progressions using both fixed and
variable skips.

just seven pieces. When skips are included, however, the
two progressions appear in 32 and 77 of the 245 pieces in
the corpus, respectively.

Due to the combinatoric complexity of the task, one
limitation of the skip-gram method is that execution times
become unfeasible beyond certain values of n and t. Nev-
ertheless, if the organizational principles underlying hier-
archical stimulus domains like natural language or poly-
phonic music reflect limitations of human auditory pro-
cessing, it seems reasonable to impose similar restrictions
on the sorts of contiguous and non-contiguous relations
the skip-gram method should model. Given the restric-
tions imposed in this study, retrieving all 4-gram tokens
from a sequence of 1,000 chords using commodity hard-
ware produced runtimes of less than 100ms in the largest
fixed-skip condition (t = 4 skips), and less than 3s in the
largest variable-skip condition (t = 2s), proving skip-gram
modeling is entirely attainable in a research setting.

Of course, counting all possible skip-grams in this way
assumes no a priori knowledge about the sorts of non-
contiguous relations analysts might hope to discover. For
example, collocation extraction algorithms in the NLP
community typically exclude infrequent n-grams, or use
parts-of-speech tags to privilege syntactically meaningful
utterances [22]. Music researchers could adopt similar
methods by excluding (or weighting) each n-gram by the
temporal proximity or periodicity of its members [21], or
privileging patterns that appear in strong metric positions
or feature changes of harmony. Together with the skip-
gram method, these techniques could usher in a new suite
of inductive, data-driven tools for the discovery of musical
organization.
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ABSTRACT

Understanding human perception of music is foundational
to many research topics in Music Information Retrieval
(MIR). While the field of MIR has shown a rising interest
in the study of brain responses, access to data remains an
obstacle. Here we introduce the Naturalistic Music EEG
Dataset—Tempo (NMED-T), an open dataset of electro-
physiological and behavioral responses collected from 20
participants who heard a set of 10 commercially available
musical works. Song stimuli span various genres and tem-
pos, and all contain electronically produced beats in du-
ple meter. Preprocessed and aggregated responses include
dense-array EEG and sensorimotor synchronization (tap-
ping) responses, behavioral ratings of the songs, and basic
demographic information. These data, along with illustra-
tive analysis code, are published in Matlab format. Raw
EEG and tapping data are also made available. In this pa-
per we describe the construction of the dataset, present re-
sults from illustrative analyses, and document the format
and attributes of the published data. This dataset facilitates
reproducible research in neuroscience and cognitive MIR,
and points to several possible avenues for future studies on
human processing of naturalistic music.

1. INTRODUCTION

Humans possess a unique ability to process music, and
many topics in Music Information Retrieval (MIR) involve
computational modeling of human perception. Tasks that
humans often perform with ease—such as melody extrac-
tion, beat detection, and artist identification—remain open
topics in MIR. At the same time, a full understanding of
the cognitive and perceptual processes underlying human
processing of music has yet to be reached.

Greater cross-disciplinary collaboration between MIR
and neuroscience has been proposed [14], and a number
of studies have incorporated approaches from both fields.

c© Steven Losorelli, Duc T. Nguyen, Jacek P. Dmochowski,
and Blair Kaneshiro. Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Steven Losorelli,
Duc T. Nguyen, Jacek P. Dmochowski, and Blair Kaneshiro. “NMED-T:
A Tempo-Focused Dataset of Cortical and Behavioral Responses to Nat-
uralistic Music”, 18th International Society for Music Information Re-
trieval Conference, Suzhou, China, 2017.

For example, neural correlates of short- and long-term fea-
tures introduced in MIR for genre classification [34] have
been sought [1, 6, 10, 20], and brain responses have been
used in MIR-related applications including tempo estima-
tion [29, 30] and emotion recognition [5, 21]. Yet even as
brain data become more prevalent in MIR research, ex-
perimental design, data collection, and data cleaning can
present challenges [14]. Therefore, the research com-
munity can arguably benefit from curated, ready-to-use
datasets of brain responses to real-world musical works.

Aiming to provide an open dataset with which sev-
eral MIR and neuroscience topics can be explored, we
introduce the Naturalistic Music EEG Dataset—Tempo
(NMED-T), a dataset of EEG and behavioral responses to
commercially available musical works. The dataset con-
tains dense-array EEG responses from 20 adult participants
who listened to 10 full-length songs, as well as tapped re-
sponses to the beat of shorter excerpts (collected in a sep-
arate listen). These responses have been cleaned and ag-
gregated, and are ready to use in Matlab format along with
ratings of familiarity and enjoyment, as well as basic de-
mographic information about the participants.

NMED-T contributes to a growing body of publicly
available music-related EEG repositories, including the
DEAP [17], Music BCI [32], NMED-H [15], and Open-
MIIR [31] datasets. It is well suited for MIR research in
that the data are cleaned and ready to use but are also made
available in raw form; stimuli are complete, naturalistic 1

musical works spanning a wide range of tempos; metadata
links to stimulus audio are provided; and behavioral data
are included. Moreover, as EEG was recorded while par-
ticipants listened attentively but did not focus on any par-
ticular dimension of the songs, these data are suitable for
studying many aspects of music processing.

The remainder of the paper is structured as follows. In
§ 2 we describe stimulus selection, study design, data col-
lection, and data preprocessing. Illustrative analyses of the
preprocessed data, which build upon past music perception
and MIR approaches and reveal cortical and behavioral ev-
idence of entrainment to musical beat, are presented in § 3.
In § 4 we document the dataset itself. We conclude and
discuss potential future uses of the data in § 5.

1 Denoting real-world music—i.e., music that was created to be con-
sumed in everyday life, as opposed to controlled stimuli created for ex-
perimental research.
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2. METHODS

2.1 Stimuli

2.1.1 Stimulus Selection

As the present dataset is focused on naturalistic music and
tempo, stimuli were ecologically valid, real-world musical
works containing steady, electronically produced beats in
duple meter at a variety of tempos. The 10 selected songs
are all 4:30–5:00 in length, contain vocals (all but one in
English), and are in the Western musical tradition. Song
information is summarized in Table 1.

To aid in song selection, we computed objective mea-
sures of tempo using publicly available Matlab code [8].
The computed tempos were then validated perceptually by
four trained musicians. The final set of selected songs
range in tempo from 56–150 BPM—a wide enough range
to potentially explore octave errors [11, 35]. To facilitate
further research on the audio as well as the responses, we
purchased digital versions of all songs from Amazon, and
include in Table 1 each song’s Amazon Standard Identifi-
cation Number (ASIN).

These real-world stimuli are complex and contain en-
ergy at various frequencies—not just those directly re-
lated to the beat. We followed the approach of Nozaradan
et al. [27] and visualized low-frequency spectra of the stim-
uli. We extracted the amplitude envelope of each song us-
ing the MIR Toolbox, version 1.5 [18] at a sampling rate of
125 Hz (the sampling rate of the preprocessed EEG), and
plotted magnitude spectra up to 15 Hz. As can be seen in
Fig. 1, spectral peaks often occur at harmonics and subhar-
monics of the beat—implicating the hierarchical timescale
of music—as well as at other frequencies.

2.1.2 Stimulus Preparation

To prepare the stimuli for the EEG experiment, full-length
songs were first converted to mono using Audacity, ver-
sion 2.1.2. 2 We then embedded the second audio channel
with an intermittent click that was transmitted directly to
the EEG amplifier (not played to participants) to ensure
precise time stamping of the stimuli. For the behavioral
experiment, we created 35-second excerpts of each song.
Using Audacity, we selected the audio from 1:00–1:34 and
applied a linear fade-in and fade-out to the first and last
2 seconds, respectively. We then appended 1 second of si-
lence to make the conclusion of each excerpt more obvious
to the participant.

2.2 Participants

Twenty right-handed participants, aged 18–29 years (mean
age 23 years, 6 female) participated in the experiment. All
reported normal hearing, fluency in English, and no cogni-
tive or decisional impairments. We imposed no eligibility
criteria related to formal musical training; 17 participants
reported having received training (mean 8.4 years among
those with training). Participants reported listening to mu-
sic for 14.5 hours per week on average.

2 http://www.audacityteam.org

2.3 Experimental Specifications & Data Collection

This study was approved by the Stanford University In-
stitutional Review Board. All participants provided writ-
ten informed consent before participating. Each partici-
pant filled out a general demographic and musical back-
ground questionnaire, after which the EEG and tapping
blocks were completed, with the EEG block always oc-
curring first.

2.3.1 EEG Experiment

First, each participant was informed that the general pur-
pose of the experiment was to study human processing of
music, and that he or she would be completing an EEG ses-
sion and a behavioral test. As the EEG data were collected
for the general study of music processing (not limited to
beat perception), no explicit mention of beat or tempo was
given at this stage of the experiment. Rather, participants
were instructed simply to listen attentively to the songs as
they played, and to avoid movement of any kind (includ-
ing stretching, yawning, and tapping or moving to the beat)
during the trials. Songs were presented in random order.
Following each trial, participants delivered ratings of fa-
miliarity and enjoyment for the song just presented, on a
scale of 1–9. The EEG experiment was split into two con-
secutive recording blocks in order to mitigate participant
fatigue, limit data size of the EEG recordings, and allow
for verification of electrode impedances between record-
ings. Therefore, a total of 40 EEG recordings were col-
lected across the 20 participants.

The EEG experiment was programmed in Matlab ver-
sion 2013b 3 with a custom template built on the Psy-
chophysics Toolbox, version 3 [4]. Each participant sat
comfortably in a chair at a desk for the duration of the
experiment. Stimuli were presented through magnetically
shielded Genelec 1030A speakers at a measured loudness
level between 73–78 dB. During the trials, the participant
viewed a fixation image presented on a computer monitor
located 57 cm in front of him or her.

Dense-array EEG was recorded using the Electrical
Geodesics, Inc. (EGI) GES300 system [33]. Data were
recorded from 128 electrodes with vertex reference using
an EGI Net Amps 300 amplifier and Net Station 4.5.7
acquisition software, sampled at 1 kHz with a range of
24 bits. Electrode impedances were verified to be no
greater than 50 kΩ—an appropriate level for this system—
at the start of each recording.

2.3.2 Behavioral Experiment

Following the EEG recordings, the electrode net was re-
moved from the participant, and the behavioral test began.
Here, each participant listened to the 35-second song ex-
cerpts, after receiving instructions to “tap to the steady beat
of the song as you perceive it.” If the participant had ques-
tions about tapping to multiple tempos for a given song, he
or she was instructed to tap to the steady beat that best re-
flected his or her perception of it in the moment. Excerpts
were presented in random order.

3 https://www.mathworks.com
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# Song Title Artist ASIN Tempo (BPM) Tempo (Hz) min:sec

1 “First Fires” Bonobo B00CJE73J6 55.97 0.9328 4:38
2 “Oino” LA Priest B00T4NHS2W 69.44 1.1574 4:31
3 “Tiptoes” Daedelus B011SAZRLC 74.26 1.2376 4:36
4 “Careless Love” Croquet Club B06X9736NJ 82.42 1.3736 4:54
5 “Lebanese Blonde” Thievery Corporation B000SF16MI 91.46 1.5244 4:49
6 “Canopée” Polo & Pan B01GOL4IB0 96.15 1.6026 4:36
7 “Doing Yoga” Kazy Lambist B01JDDVIQ4 108.70 1.8116 4:52
8 “Until the Sun Needs to Rise” Rüfüs du Sol B01APT6JKA 120.00 2.0000 4:52
9 “Silent Shout” The Knife B00IMN40O4 128.21 2.1368 4:54

10 “The Last Thing You Should Do” David Bowie B018GS2A46 150.00 2.5000 4:58

Table 1. Stimulus set. Songs were selected on the basis of vocals, electronically produced beats, genre, tempo, and length.

Figure 1. Low-frequency magnitude spectra of stimulus amplitude envelopes. Frequencies related to the musical beat
hierarchy, from 1/4x the tempo (whole notes) to 8x the tempo (32nd notes) are denoted with vertical dashed lines.

Tapping responses were collected using Tap-It, an iOS
application that plays audio while simultaneously record-
ing responses tapped on the touchscreen [16]. We note
a tap-to-timestamp latency of approximately 15 msec
(st. dev. 5 msec) [16]. An Apple iPad 2 was used for this
experiment, with stimuli delivered at a comfortable listen-
ing level using over-ear Sony MDR-V6 headphones.

2.4 Data Preprocessing

All data preprocessing and analysis was conducted using
Matlab, versions 2013b and 2016b.

2.4.1 EEG Preprocessing

The following preprocessing steps were performed on in-
dividual EEG recordings that had been exported from
Net Station to Matlab cell arrays. First, data from
each electrode in the electrodes-by-time data matrix were
zero-phase filtered using 8th-order Butterworth highpass
(0.3 Hz) and notch (59–61 Hz) filters, and a 16th-order
Chebyshev Type I lowpass (50 Hz) filter. Following this,
the filtered data were temporally downsampled by a factor
of 8 to a final sampling rate of 125 Hz.

We extracted trial labels, onsets, and behavioral rat-
ings, and corrected the stimulus onset times using the click
events sent directly from the audio to the EEG amplifier.
The data for each trial were epoched, concatenated, and
DC corrected (subtracting from each electrode its median
value). Bad electrodes were removed from the data ma-
trix, resulting in a reduction in the number of rows. We
computed EOG components for tracking vertical and hori-
zontal eye movements, and retained electrodes 1–124 for
further analysis, excluding electrodes on the face. We

applied a validated approach using Independent Compo-
nents Analysis (ICA) to remove ocular and cardiac artifacts
from the data [2, 13] using the runica function from the
EEGLAB toolbox [7].

As final preprocessing steps, transients exceeding 4
standard deviations of each electrode’s mean power were
identified in an iterative fashion and replaced with NaNs.
We then reconstituted missing rows corresponding to pre-
viously identified bad electrodes with rows of NaNs, en-
suring that each data matrix contained the same number
of rows. We appended a row of zeros—representing the
vertex reference—and converted the data frame to average
reference (subtracting from each electrode the mean of all
electrodes). All missing values (NaNs) were imputed with
the spatial average of data from neighboring electrodes,
and a final DC correction was performed. Finally, the
epochs were separated once again into single trials. There-
fore, after preprocessing, each recording produced a cell
array of EEG data, each element of which contained an
electrodes-by-time matrix of size 125×T , where T varied
according to the length of the stimulus.

After preprocessing all recordings, we aggregated the
data on a per-song basis. The data frame for each song is
thus a 3D electrodes-by-time-by-participant matrix of size
125× T × 20.

2.4.2 Preprocessing of Tapping Responses

The Tap-It application stores the timestamps of taps, in
seconds, measured from the device touchscreen on a per-
trial basis, as well as each participant’s randomized stim-
ulus ordering array [16]. We aggregated the tapping re-
sponses in a cell array and the ordering arrays in a matrix.
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3. ILLUSTRATIVE ANALYSES

The following analyses are presented to illustrate basic
properties of the dataset.

3.1 EEG Responses

One approach to studying beat processing using EEG in-
volves low-frequency (≤ 20 Hz) steady-state evoked po-
tentials (SS-EPs). In an SS-EP paradigm, stimuli presented
(e.g., flashed or sounded) at a particular frequency elicit
brain responses at that same frequency. While SS-EPs are
more often used to study vision processing [25], the ap-
proach has in recent years been used to study responses to
auditory rhythms. Here, SS-EPs have shown evidence of
entrainment to musical beat, peaking at beat- and meter-
related frequencies even when metrical accents are imag-
ined [26] or when beat frequencies do not dominate low-
frequency stimulus spectra [27]. To our knowledge, mu-
sic SS-EP studies have to date used simple, synthesized
rhythmic patterns as stimuli. Our first illustrative analysis
extends this approach to complex, naturalistic music.

Spatial filtering is a technique for EEG analysis
whereby a weighted sum of electrodes is computed sub-
ject to some criterion [3]. Advantages of concentrating ac-
tivity of interest from many electrodes to a few spatially
filtered components include dimensionality reduction, im-
proved SNR, and a reduction in multiple comparisons. For
the present analysis we consider two simple spatial filters.
The first is simply the mean across all electrodes (ME),
which can be thought of as a constant weight applied to
each electrode. For the second, we perform Principal Com-
ponents Analysis (PCA), and analyze the first PC of data.

We first averaged each song’s 3D electrodes-by-time-
by-participant matrix across participants, producing an
electrodes-by-time matrix for each song. Then, so that we
analyzed the same amount of data for each song and to
account for the time course of listener entrainment to the
beat [9], we retained 4 minutes of data from each song,
starting 15 seconds into the song.

To compute the spatial filters, we concatenated the
participant-averaged data frames across all songs, produc-
ing an electrodes-by-aggregated-time matrix. Then, for the
ME spatial filter, we computed the mean across electrodes,
while for the PCA filter we computed electrode weightings
for PC1 using Singular Value Decomposition (SVD). Fi-
nally, we reshaped each resulting song-concatenated com-
ponent vector into a songs-by-time matrix. As our current
interest is on SS-EPs, we present the magnitude spectrum
of each component on a per-song basis.

The SS-EPs are shown in Fig. 2; y-axis scaling is con-
sistent within each spatial filtering technique. By inspec-
tion of the plots, low frequencies (<15 Hz) of ME spectra
occasionally contain peaks at frequencies in the musical
beat hierarchy (e.g., Song 5). PC1 performs better, elic-
iting more robust spectral peaks at beat-related frequen-
cies. Moreover, EEG PC1 appears to peak at frequencies
directly related to musical beat, while suppressing many of
the other spectral peaks that were observed in the magni-
tude spectra of stimulus amplitude envelopes (Fig. 1).

Spatial filters can be visualized by projecting the filter
weights on a 2D scalp topography. While it is common
to convert the spatial filter weights to a so-called “forward
model,” which captures the projection of filtered activity
on the scalp, for PCA the spatial filter is equivalent to the
forward model [28]. The ME filter, applying a constant
weight to all electrodes, would reveal no spatial variation.
However, the PC1 filter topography (Fig. 2, bottom right)
applies a range of positive and negative weights to the elec-
trodes, which may help to explain why this filter produces
more prominent spectral peaks at beat frequencies.

3.2 Behavioral Ratings

Participant ratings of familiarity and enjoyment are shown
in Fig. 3. Familiarity with the songs was low overall; rat-
ings of enjoyment tended to be higher, and also varied
more across participants.

3.3 Tapped Responses

For each trial of tapping data, we first converted each inter-
tap interval to an instantaneous measure of tempo in Hz,
mapped it to the midpoint of the interval, and then linearly
interpolated the result to a consistent timing grid with a
temporal resolution of 2 Hz. We analyze and plot data from
a 17-second interval starting 15 seconds into the excerpt
(i.e., starting at time 1:15 in the complete song).

The aggregate tapping responses are shown in Fig. 4.
We present two visualizations of these results. First, the
top figure for each song shows instantaneous tempo over
the time of the excerpt for individual participants (gray
curves), with the median across participants plotted in
black. In bottom figures, we compute the median tempo
across time for each individual participant, and summa-
rize with histograms. Beat-related frequencies are shown
in the orange (1/2x tempo frequency), green (tempo fre-
quency), and red (2x tempo frequency) lines. To a large
extent, participants tended to tap at what we had previously
determined to be the tempo frequency. However, there
are cases of lower agreement, particularly for the slowest
songs (Song 1 and Song 2). Here, the histograms suggest
a nearly bimodal distribution of tapped tempos, split be-
tween the computational measure and twice that, with the
higher measure lying closer to what is considered the pre-
ferred tempo region for humans [23].

4. PUBLISHED DATASET

We publish the cleaned EEG data, aggregated behavioral
ratings, aggregated tapped responses, and basic demo-
graphic data about the participants in Matlab .mat for-
mat. Example code and helper functions for the illustrative
analyses are provided, also in Matlab format. Finally, we
publish raw EEG recordings (for researchers who wish to
apply their own preprocessing pipelines) as well as individ-
ual files of the tapped responses. The dataset is available
for download from the Stanford Digital Repository [22], 4

published under a Creative Commons CC-BY license.
4 https://purl.stanford.edu/jn859kj8079
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Figure 2. Low-frequency EEG spectra using a mean-electrode spatial filter (top) and PC1 spatial filter (bottom) for each
song. Beat-related frequencies are shown with dashed vertical lines. Bottom right: PC1 spatial filter weights.

Figure 3. Participant ratings of familiarity and enjoyment.

4.1 Cleaned EEG Data

The .mat file songSS Imputed.mat contains the
cleaned EEG records, aggregated across participants, for
song SS (§ 2.4.1). There are 10 such files, one per song.
Each .mat file contains the following variables:
• dataSS: 3D electrodes-by-time-by-participant data

frame. The size is 125 × T × 20, with T varying
according to the song.

• subsSS: Cell array of participant ids. Contents are
the same for all songs, but are included in order to
link these data to raw EEG files, raw tapping re-
sponses, and participant demographics.

• fs: Sampling rate, in Hz (always 125).

4.2 Raw EEG Data

We provide the raw EEG records in their exported state
before preprocessing. No filtering, epoching, or cleaning
has been performed. As each participant underwent two
recordings, there are a total of 40 raw EEG files. The file
PP R raw.mat refers to recording R∈ 1, 2 from partici-
pant PP. Each file contains the following variables:
• X: Raw data frame. Size is electrodes-by-time,

129×T , where T is the total length of the recording,
including time periods not related to the experimen-
tal trials. The vertex reference electrode is row 129.

• DIN 1: Cell array containing all event labels (trig-
gers) and times. We provide the helper function
parseDIN.m to extract the labels and onsets into
numeric vectors. Full specification on labels is pro-
vided in the README file accompanying the dataset.

• fs: Sampling rate, in Hz (always 1000).

4.3 Behavioral Ratings

Participants delivered ratings of familiarity (Q1) and en-
joyment (Q2) of each song during the EEG session. The
file behavioralRatings.mat contains a single vari-
able behavioralRatings, which is a 3D participant-by-
song-by-question (20× 10× 2) matrix.

4.4 Tapping Responses

Aggregated and raw tapping responses are stored in the file
TapIt.zip. This archive contains the file TapIt.mat,
which comprises the following variables:
• allTappedResponses: Aggregated tapped response

times across all participants and songs. This is a
participants-by-song (20×10) cell array. Each entry
is a column vector of tap times in seconds, recorded
from the device touchscreen.

• allSongOrders: Song-order vectors, aggregated
across all participants. This is a participants-by-trial
(20×10) matrix, where each row contains the stimu-
lus presentation order for the respective participant.
Numbering starts at 1.

Individual response files are also included in the .zip file:
• PPP SS.txt: Single trial of tapped responses, in sec-

onds, for participant PPP and song SS.
• PPP play order.txt: Stimulus presentation ordering

for participant PPP. Numbering starts at 0.

4.5 Participant Demographics

The file participantInfo.mat contains a struct ar-
ray participantInfo with participant demographics. Fields
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Figure 4. Tapping responses. Top: Instantaneous tempo over time for individual participants (gray), with median across
participants in black. Bottom: Histograms of median tempo, over time, for individual participants. Ground-truth tempos
are shown with orange (1/2x tempo frequency), green (tempo frequency), and red (2x tempo frequency) lines.

include age, nYearsTraining, weeklyListening (hours), and
id (participant identifier link to raw filenames).

4.6 Code

The file Code.zip contains the Matlab scripts for the
analyses performed in § 3. A variety of helper functions
and files (e.g., electrode location map, script to parse the
DIN 1 variable in raw EEG files) are also provided here.

5. DISCUSSION

This paper introduces NMED-T, an open dataset of elec-
trophysiological and behavioral responses collected from
20 participants listening to real-world musical excerpts.
The published data include both raw and preprocessed
dense-array EEG and tapping responses, behavioral ratings
of the songs, and basic demographic information.

Our illustrative analyses validate the frequency-tagging,
SS-EP approach [26, 27] with responses to complex, nat-
uralistic music (Fig. 2). Even a simple PCA filter com-
puted from trial-averaged responses highlights beat-related
frequencies in the EEG spectra. Many PC1 spectra show
prominent peaks between 5–10 Hz, regardless of tempo;
future research could use this dataset to investigate further
the stimulus and response attributes contributing to this
phenomenon. The variability in tapping responses (Fig. 4)
highlights the challenge of defining a ‘ground truth’ for
tempo and beat identification, particularly for complex mu-
sic [24]. Here we see various, sometimes conflicting re-
sults across and within participants’ tapped responses. Past
research has suggested that humans inherently prefer cer-
tain frequencies related to natural movement [23,35]. This
may help to explain why some participants tapped at twice
the tempo for the slowest songs, tending toward the postu-
lated 2-Hz natural resonant frequency.

We faced several trade-offs when designing the study.
Collection of EEG data, while relatively inexpensive [14],
still incurs costs of equipment and time. Participant fa-
tigue must also be taken into account when planning the
overall duration of an experiment. As we wished to col-
lect EEG responses to a set of full-length songs from ev-
ery participant, we were limited in the number of songs

we could use, and relegated the secondary tapping task to
shorter excerpts. Stimulus selection, too, is often a com-
promise of breadth and depth. For example, the OpenMIIR
dataset [31] uses shorter stimuli from a variety of genres,
but at the expense of depth within any one genre; while the
NMED-H [15] includes various stimulus manipulations of
complete songs, but only four songs from a single genre.
Our focus on full-length songs with a steady beat and a va-
riety of tempos limited the range of genres somewhat. We
also deliberately avoided massively popular songs in or-
der to minimize possible effects, on the brain responses, of
varying familiarity, established personal preferences, and
autobiographical associations with the songs [12].

There are shortfalls to the dataset. One potential con-
found is that the EEG session always preceded the behav-
ioral task; thus, participants were more familiar with the
music during the tapping task. As a result, the tapping
data may not be suitable for studying the time course of
beat entrainment. However, we chose this arrangement so
that participants would not be focused specifically on beat
while EEG responses were recorded. Second, the tapping
data show variations in tapped tempo across participants
and within-participant over time. Whether this reflects our
participant pool (not all trained musicians), inadequate in-
struction for the task, or is merely characteristic of this re-
sponse is not addressed in the present illustrative analyses.
Finally, listeners are known to exhibit variations in tempo
octave during tapping while largely agreeing on whether
a song is fast or slow [19], but we unfortunately did not
collect data here to explore this distinction.

Generally speaking, this dataset facilitates research on
encoding and decoding of naturalistic music. While the
study design and initial analyses focused primarily on beat
and tempo, the EEG responses can be analyzed in conjunc-
tion with various other stimulus features as well. Investiga-
tion of individual differences is also possible (e.g., predict-
ing a particular participant’s tapping tempo or preference
rating from his or her own EEG). Other researchers might
consider augmenting the dataset with complementary re-
sponses to the same songs. Ideally, the dataset will find ap-
plications in MIR and neuroscience research beyond those
envisioned by the authors of this study.
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ABSTRACT

This paper presents a fast and accurate alignment method
for polyphonic symbolic music signals. It is known that
to accurately align piano performances, methods using the
voice structure are needed. However, such methods typi-
cally have high computational cost and they are applicable
only when prior voice information is given. It is pointed
out that alignment errors are typically accompanied by per-
formance errors in the aligned signal. This suggests the
possibility of correcting (or realigning) preliminary results
by a fast (but not-so-accurate) alignment method with a
refined method applied to limited segments of aligned sig-
nals, to save the computational cost. To realise this, we
develop a method for detecting performance errors and a
realignment method that works fast and accurately in lo-
cal regions around performance errors. To remove the de-
pendence on prior voice information, voice separation is
performed to the reference signal in the local regions. By
applying our method to results obtained by previously pro-
posed hidden Markov models, the highest accuracies are
achieved with short computation time. Our source code is
published in the accompanying web page, together with a
user interface to examine and correct alignment results.

1. INTRODUCTION

To computationally analyse music performances or to con-
struct performance databases, it is needed to match notes
in a music performance signal (called an aligned signal)
to those in a reference musical score or another perfor-
mance signal (reference signal). This process is called mu-
sic alignment and automating it is a fundamental technique
for music information processing and has been a popular
field of research [1–16]. This study deals with offline sym-
bolic music alignment, with particular focus on piano per-
formances. Both score-to-MIDI alignment and MIDI-to-
MIDI alignment are considered in this paper. We consider
Western classical music or similar music styles where mu-
sical scores exist behind the performances.

c© Eita Nakamura, Kazuyoshi Yoshii, Haruhiro Katayose.
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cense (CC BY 4.0). Attribution: Eita Nakamura, Kazuyoshi Yoshii,
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Figure 1. An outcome of the proposed method. Errors
in preliminary alignment caused by reordered note pairs in
the aligned signal are corrected by the realignment method.

Since music alignment between two identical perfor-
mances is trivial, the central issue of automatic music
alignment is to handle deviations in music performances.
Possible deviations include tempo changes, performance
errors (e.g. pitch errors, note insertions and deletions), or-
namentation, and global structural differences (repeats and
skips). To find the optimal alignment, various extensions
of sequence matching methods such as hidden Markov
models (HMMs) [7–9] and dynamic time warping (DTW)
[1,2,6] have been studied. In the method using HMMs [7],
for example, an HMM is constructed for each reference
signal, in which note insertions and deletions, repeats, and
skips are described by transition probabilities, and pitch
errors are described by output probabilities. The aligned
signal is considered as an output sequence from the HMM
and the most probable sequence of latent states is estimated
with the Viterbi algorithm for alignment.

It has been found that, in the case of polyphonic pi-
ano performances, deviations in performances due to asyn-
chronies between hands/voices require special treatments
[4, 5, 7, 9]. Such asynchronies result in reordering of notes
with different score times, which is the main cause of
alignment errors for HMMs or DTWs that are not spe-
cially designed to handle them. Models with explicit voice
structure have been proposed and proved effective to solve
this [4,5,9]. However, prior voice information of the refer-
ence signal is needed for applying these methods, which
imposes limitations on usability since voice information
is not given in single-channel MIDI signals and in some
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score file formats. Moreover, these methods have high
computational cost compared to standard HMMs or DTWs
[5–7, 9]. As is empirically known, those reordered notes
appear only occasionally and in most cases the standard
alignment methods work as accurately as the refined meth-
ods using voice information. Thus, the high computational
cost would be reduced if parts of aligned signals, for which
special treatments are necessary, can be selected.

Because significant deviations in music performances
can usually be interpreted as performance errors, align-
ment errors are often connected with performance errors.
For example, a pair of extra and missing notes as in Fig. 1
typically appear as a result of alignment errors. Based on
the authors’ experience, displaying performance errors en-
ables human annotators to easily find alignment errors and
greatly improves the efficiency of examining and correct-
ing automatic alignment results. Likewise, by detecting
performance errors in a given result of automatic align-
ment, it would be possible to select limited regions in the
aligned signal that may contain alignment errors.

Based on these observations, this study aims to develop
an automatic post-processing method for correcting given
symbolic music alignment results. We first develop a per-
formance error detection algorithm that recognises pitch
errors, extra notes, and missing notes in a given align-
ment result. Error regions are then defined as segments of
aligned and reference signals around performance errors
and we investigate how much alignment errors are con-
tained in these regions with various sizes of the regions.
Next we develop a post-processing realignment method
that can handle hand/voice asynchrony based on a voice-
structured model. Since both music alignment and recog-
nition of performance errors involve searches for an opti-
mal choice among possible candidate solutions, we formu-
late them based on statistical models whose parameters can
be optimised from data. To construct a realignment method
that does not require prior voice information, we combine
the method using merged-output HMMs [9] with a voice
(hand) separation method [17]. For concreteness, we use
as a preliminary alignment method the one based on tem-
poral HMMs [7]. The results of the proposed method are
evaluated in comparison with the state-of-the-art methods.

The contributions of this study are as follows. First,
our alignment method achieves the highest accuracy and its
computational cost is much smaller than previous methods
with comparable accuracies. The method works without
prior voice information and can be applied for a wide class
of performance and score data. The source code for our
algorithms and a user interface to examine and correct the
results is published in the accompanying web page [18]. To
our knowledge, this is currently the only publicly available
alignment tool of comparable accuracies. Second, this is
the first paper that quantitatively investigates the relation
between performance errors and alignment errors, which
can be used generally to reduce high computational cost
that is typically required in elaborated methods. Lastly, our
alignment algorithm of the merged-output HMMs yields
better sub-optimisation than a previous one [9].

1.1 Current State-of-the-Art Methods

The method by Gingras and McAdams [5] (GM algo-
rithm), which takes into account the voice structure and
timing information, is regarded as one of the most accu-
rate methods for symbolic music alignment, with 99.978%
of accuracy on their data. The method based on the tem-
poral HMM by Nakamura et al. [7] (NOSW algorithm)
also uses the timing information but not the voice struc-
ture. The method can handle arbitrary repeats and skips,
but the accuracy was lower than the GM algorithm in a di-
rect comparison. For online alignment, the method using
merged-output HMMs for incorporating the voice structure
had better accuracies than the temporal HMMs [9].

Recently, Chen et al. [6] reported a significant lower ac-
curacy (≤ 91.93%) for the GM algorithm on other data and
proposed a method based on DTW (CJL1 algorithm) with
a better accuracy (≤ 98.51%) 1 . Another method (CJL2
algorithm) is proposed in the paper, which is less accurate
but more efficient than the CJL1 algorithm. The CJL al-
gorithms neither use voice information nor have a special
architecture to utilise the voice structure.

2. PERFORMANCE ERROR DETECTION

2.1 Problem Statement

Both reference and aligned signals can be represented as
a sequence of musical notes (called reference notes and
aligned notes) with a pitch and an onset time described as
physical or score time. For MIDI-to-MIDI alignment, the
reference signal can be a performed MIDI signal that has
(almost) continuous onset times. In this case, we cluster
notes according to onset times to obtain a reference sig-
nal with quantised onset times, which enables us to dis-
cuss score-to-MIDI and MIDI-to-MIDI alignment in a uni-
fied way. Specifically, we put a threshold of 35 ms, which
is known to well discriminate chordal notes [19], to form
clusters of notes and then quantise onset times (e.g. in units
of ms etc.). An alignment result is a sequence of labels that
indicates for each aligned note the corresponding reference
note. If there is no corresponding note (as is the case for
extra notes), a distinguished label ‘EXTRA’ is given.

As performance errors we consider pitch errors, extra
notes, and missing notes. Extra notes are aligned notes that
are not matched to any of the reference notes and missing
notes are reference notes that do not appear in the aligned
signal. In this study we consider the strict alignment, for
which each reference note can be matched to at most one
aligned note 2 . For a strict alignment result, performance
errors are automatically determined: aligned notes with-
out corresponding reference notes are extra notes; aligned
notes with pitches different from the corresponding refer-
ence notes have pitch errors; reference notes not appearing

1 A different evaluation measure was used in Ref. [6] and these upper
bounds have been derived as conservative limits.

2 This condition must be relaxed and apply only locally if we allow
global repeats and skips in the aligned signal. In addition, trills and tremo-
los are exceptions where multiple aligned notes correspond to each refer-
ence note. For simplicity and for the lack of space, we concentrate on the
case without ornaments, repeats, and skips in this paper.
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Figure 2. Steps for performance error detection. After (a)
cluster-wise LR Viterbi alignment is performed, (b) note-
wise LR Viterbi alignment is performed for each cluster.

in the alignment result are missing notes.
Standard alignment methods such as HMMs and DTWs

often output alignment results that are not strict (so that
a reference note can appear more than once) and perfor-
mance error indications are not given. Therefore, the aim
of performance error detection is to obtain a strict align-
ment result from a non-strict alignment result, which is
equivalent to identifying extra notes in the latter one. In
fact, our method uses only the information of matched
score times for each note in an input alignment result.

2.2 Model

Our approach for the identification of extra notes is to carry
out two left-to-right (LR) Viterbi alignments, first in units
of ‘chords’ and second in units of notes within each ‘chord’
(Fig. 2). To be precise, we define a reference cluster as a set
of all notes with the same score time in the reference sig-
nal. Aligned notes are clustered so that all successive notes
form a cluster (aligned cluster) as long as their reference
labels are in the same onset cluster. The first LR Viterbi
alignment is then performed on the sequence of aligned
clusters and those clusters assigned a reference cluster dif-
ferent from the original one are identified as extra clusters.
Note that after this procedure each non-extra aligned clus-
ter is matched to a unique reference cluster.

In the next step, extra notes in each (non-extra) aligned
cluster are identified. Based on our intuition that aligned
notes with correct pitches play a pivot role and the as-
signed reference labels should respect the pitch order, we
first identify aligned notes with correct pitches and then
match other notes, which are either extra notes or notes
with pitch errors. Since in general there are multiple notes
with the same pitch in one aligned cluster, the onset time
information should be used here. As a reference point of
onset time, the expected onset time t̃ of the reference onset
cluster is computed by local averaging, similarly as tempo
estimation [19]. If there are multiple candidates with the
correct pitch, the one with an onset time nearest to t̃ is cho-
sen and the other candidates are identified as extra notes.

Let (q1, . . . , qC) denote an ordered set of notes in the
concerned reference cluster, where qc is the integral pitch
of the c-th note and satisfies q1 ≤ q2 ≤ · · · ≤ qC , and let
Qcorr denote the set of reference notes matched to aligned
notes with correct pitches. Similarly, let us order notes in
the concerned aligned cluster according to pitch first and
then onset time. Denoting the pitch and onset time of the

b-th note by pb and tb, we thus have for all b ∈ {1, . . . , B}
(B is the number of notes in the aligned cluster) pb−1 ≤ pb
and tb−1 ≤ tb if pb−1 = pb. Now suppose that a pair
of pivot notes (c, c′) (c, c′ ∈ {1, . . . , C}) satisfies that
qc, qc′ ∈ Qcorr, qc < qc′ , and qj /∈ Qcorr for each qj
with c < j < c′. For such a pair we define Q = {qj | c <
j < c′} and S = {b ∈ {1, . . . , B} | qc < pb < qc′}. The
next step is to match Q and S for each pair (c, c′) of pivot
notes. For aligned notes with pitches higher or lower than
the highest or lowest pivot note, we can similarly define Q
and S as half-bounded sets, and for the case with no pivot
notes, we define Q = {1, . . . , C} and S = {1, . . . , B},
and carry out the following procedure.

The matching is trivial when #Q ≤ 1 and #S ≤ 1.
In other cases, multiple interpretations of pitch errors ex-
ist and some principle must be introduced to find the op-
timal choice (Fig. 2(b)). We solve this optimisation prob-
lem with a statistical performance model including tem-
poral fluctuations and pitch errors, similar to the model in
Ref. [7]. The mapping z : Q 3 j 7→ zj ∈ S is optimised
by LR Viterbi alignment with the following probability:

P (zj = b | zj−1 = b′) = θb′b ψ
pitch(pb − qb)ψtime(tb − t̃)

where θ is a #S×#S LR transition probability matrix,

θb′b =

{
1/#{l ∈ S | l > b′}, b′ < b;

0, otherwise,
(1)

and ψpitch(δp) is the probability of pitch errors in δp semi-
tones (given by Eq. (30) of Ref. [19]), and ψtime(δt) is the
probability of onset time fluctuation given as

ψtime(δt) = N(δt; 0, ρ2). (2)

Here, N( · ;µ,Σ) denotes a normal distribution with mean
µ and variance Σ. The value of ρ is taken as 100 ms in our
implementation. Aligned notes without matched reference
notes are classified as extra notes.

2.3 Error Regions and Alignment Errors

Having identified the performance errors, we now define
error regions in the aligned signal around them. To do this,
we first calculate the synchronised onset time for each ref-
erence cluster by averaging onset times of corresponding
aligned notes, or if there are no such notes, by interpolat-
ing/extrapolating neighbouring synchronised onset times.
We consider, for each extra note n with onset time tn, a
time interval of the form [tn − ∆, tn + ∆) with width ∆
(called an extra note region) and construct the set Re of
such time intervals for all extra notes. Likewise, the set of
pitch error regions Rp is constructed. The set of missing
note regionsRm is similarly constructed by using the syn-
chronised onset times to define each time region. Finally,
the error region R is constructed by combining elements
in Re, Rp, and Rm. If there are overlapping time regions,
they are expanded/unified to one time region at this step
(Fig. 3). Thus, R is a set {[tr, t′r)}NRr=1 of non-overlapping
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time regions where we have t′r−1 < tr for all r. The num-
ber of missing notes, extra notes, and pitch errors in each
region r is denoted by nm(r), ne(r), and np(r).

Let us discuss the relation between performance errors
and alignment errors. An alignment error is defined as a
reference label in an alignment result that is different from
the ground-truth label. We say that an alignment error is
contained in the error regions if the onset time of the in-
correctly aligned note is contained in one of the regions in
R. The proportion of alignment errors contained in the er-
ror regions for varying time width ∆, calculated for align-
ment results of the temporal HMM on the three datasets
explained in Sec. 4, is shown in Fig. 4, together with the
proportion of aligned notes contained in the error regions.
More than 90% of the performance errors are contained in
the error regions for ∆ as small as 0.1 s, while contained
aligned notes remain less than 20% for ∆ ≤ 0.3 s.

For the alignment errors to be corrected by realign-
ment carried out on each error region, not only incor-
rectly aligned notes but also their corresponding reference
notes must be contained in the region. To be precise, for
each time region [tr, t

′
r) in R, we choose segments of the

aligned and reference signals and use them as the aligned
and reference signals for realignment. For the segment of
the aligned signal, the subsequence of aligned notes whose
onset times belong to the time region is used. For these
aligned notes, we obtain the maximal and minimal score
times (τmax and τmin) of corresponding reference notes.
The subsequence of all reference notes whose onset score
times are in the range [τmin, τmax] is used as the segment of
the reference signal. We call an alignment error in an error
region correctable if its ground-truth label is ‘EXTRA’ or
is a reference note in the reference signal segment. We see
in Fig. 4 that the proportion of correctable errors increases
rapidly for ∆ < 0.3 s and gradually for ∆ > 0.3 s.

Although it is not always the case, naively we expect
that the number of performance errors is reduced when
alignment results are corrected, as is evident in the case of
correcting a mismatched pair of missing and extra notes.
On the other hand, if only one performance error exists or
only missing notes exist in an error region, the number of
performance errors cannot be reduced by realigning notes.
By expanding this idea, we can impose conditions on er-
ror regions so that most of the alignment errors remain
contained in the selected error regions but the contained
alignment notes are reduced significantly. Results in Ta-
ble 1, where error regions were imposed the condition of
containing at least two types of performance errors, show
an example of this fact. Such conditions can be used to
increase the efficiency of realignment, as we see in Sec. 4.
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Conditions Alignment
errors

Correctableg
errors

Aligned
notes

None 98.7% 87.5% 18.5%
nmne+nenp+npnm > 0 88.5% 80.3% 9.2%

Table 1. Same as Fig. 4 with and without imposed condi-
tions on the error regions (∆ = 0.3 s).

3. REALIGNMENT

Here we develop a realignment method based on merged-
output HMMs, which is applied to the error regions to cor-
rect the preliminary alignment result. The overall proce-
dure of realignment is illustrated in Fig. 5. We first apply
hand separation for the reference signal segment to esti-
mate the voice structure and then carry out alignment based
on the merged-output HMM using the estimated voices.

3.1 Hand Separation

To formulate a method that does not require prior voice
information, we apply voice separation to each reference
signal segment. Because voice asynchrony in piano per-
formances usually appears between the left- and right-hand
parts and a larger number of voices increases the computa-
tional cost for realignment, we use a technique that sepa-
rates a performance signal into two hand parts [17].

Voice information is described with a binary variable
sm for each note m in the reference signal segment. If
sm = L (or R), the m-th note is in the left-hand (or right-
hand) part. Let us denote the pitches of the reference sig-
nal segment by x = x1:M = (x1, . . . , xM ), where the
notes are ordered according to the onset score time. (Sim-
ilar notations appear throughout the paper.) To estimate
the sequence s = s1:M from the input x, we construct a
merged-output HMM. The Markov model for each voice is
described with transition probabilities on pitches, denoted
by χL

yy′ and χR
yy′ . Introducing pitch variables for the two

voices, yLm and yRm for each m, the latent state variable for
the merged-output HMM is given as Ym = (sm, y

L
m, y

R
m)

and the transition and output probabilities are given as

P (Ym = Y |Ym−1 = Y ′)

= 1
2 (δsL χ

L
y′LyL δy′RyR + δsR χ

R
y′RyR δy′LyL), (3)

P (xm |Ym = Y ) = δsLδyLxm
+ δsRδyRxm

, (4)

where δyy′ denotes Kronecker’s delta. To complete the
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stochastic process, we should specify the initial probabil-
ity, which is given similarly as in Eq. (3) with initial pitch
values denoted by yL0 and yR0 . We use as yL0 and yR0 the
lowest and highest pitch in the reference signal segment.
We can estimate s with the maximal posterior probability
using an efficient Viterbi algorithm [17].

3.2 Realignment Based on Merged-Output HMM

For realignment we use the merged-output HMM proposed
previously [9]. Modifications to the model are introduced
to reduce computational cost and an inference algorithm
that is more rigorous than the original one is derived.

Let us first briefly review the temporal HMM [7] for
music alignment. The aligned signal (segment) can be can
be described as a sequence (p, t), where p = (p1, . . . , pN )
denotes the integral pitches and t = (t1, . . . , tN ) denotes
the onset times (N is the number of aligned notes). The
reference signal (segment) is represented as a sequence
of reference clusters indexed by i ∈ {1, . . . , I} (I is the
number of reference clusters), and the corresponding onset
score time is denoted by τi. Local tempos are denoted by
v = (v1, . . . , vN ). The corresponding reference cluster of
the n-th aligned note is denoted by in ∈ {1, . . . , I}. The
latent state of the temporal HMM is indexed by (in, vn)
for each n ∈ {1, . . . , N} and the output symbol is the pair
(pn, tn). Transition and output probabilities are given as

P (in, vn | in−1, vn−1) = π(in−1, in)N(vn; vn−1, σ
2
v),

P (pn|in) = φ(in, pn), (5)

P (tn | tn−1, in−1 = i′, in = i, vn)

= (1− δii′)N(tn; tn−1 + vn(τi − τi′);σ2
t )

+ δii′Exp(tn − tn−1;λ), (6)

where we have assumed the statistical independence for the
pairs in and vn, and pn and tn. The probability π stochas-
tically describes how the performance proceeds in the ref-
erence signal. The standard deviation σv represents the
amount of tempo variation during the performance. The
pitch output probability φ stochastically describes pitch
errors (similarly as ψpitch in Sec. 2.2); it depends on the
pitch context of reference cluster i. The form of the output
probability for onset times reflects the fact that inter-onset
intervals between chordal notes obey an exponential distri-
bution (denoted by Exp) and those between onset clusters
are approximately given as the product of the local tempo
and the score time interval [7]. The scale parameter λ and
the standard deviations σt and σv have been measured [7].

We can now construct the merged-output HMM for mu-
sic alignment using voice information, by describing each
voice by the temporal HMM and merging outputs from the
two HMMs [9]. To reduce computational cost, we intro-
duce two simplifications to the model. First, since the error
region is considered to span a small time range (less than a
few seconds), the variation of tempos should be relatively
small. We therefore assume a constant tempo v in each
error region, which can be obtained from the preliminary
alignment result. This removes the dynamics of tempos
and reduces the state space of the temporal HMM to that
indexed only by in. Second, again because of the locality
of error regions, we can assume LR transition probabilities
for π. This reduces the number of possible state transition
paths and thus reduces the computational cost. With these
simplifications, the state space of the merged-output HMM
is indexed by k = (s, iL, iR, tL, tR) (s ∈ {L,R}) and the
transition and output probabilities are

P (kn = k | kn−1 = k′)

= 1
2As(i

s, ts | i′s, t′s, v)

·
[
δsLδi′RiRδ(t

′R − tR) + δsRδi′LiLδ(t
′L − tL)

]
,

As(i
s, ts | i′s, t′s; v) = π(i′s, is)P (t′s | ts, i′s, is, v), (7)

P (pn | kn = k) = φ(is, pn), (8)

P (tn | kn = k) = δ(tn − ts), (9)

where δ( · ) is the Dirac delta function. Notating k = k1:N ,
the complete-data probability is given as

P (k,p, t) =

N∏
n=1

P (kn|kn−1)P (pn|kn)P (tn|kn). (10)

The alignment result is obtained by inferring k that
maximises P (k,p, t). The direct application of the Viterbi
algorithm is impossible since the temporal HMM is of
autoregressive type, i.e. the output probability of onset
times depends on past values. Instead of the rough sub-
optimisation method used in Ref. [9], we use a trick of in-
troducing an auxiliary variable that encodes the historical
path, as in Ref. [20], which enables almost exact optimi-
sation. Introduce hn = 1, 2, · · · , which is defined as the
smallest h ≥ 1 satisfying sn 6= sn−h for each n. We have

hn =

{
hn−1+1, sn = sn−1;

1, sn 6= sn−1,
tsn =

{
tn, s = sn;

tn−hn
, s 6= sn.

With a change of variables (h = h1:N , iL = iL1:N , etc.),

P (k,p, t) = P (s,h, iL, iR,p, t)

=
∏
n

{
1
2

[
δsnLδi′RiR + δsnRδi′LiL

]
·
[
δsnsn−1

δhn(hn−1+1)A
same
n + (1− δsnsn−1

)δhn1A
diff
n

]}
,

Asame
n = Asn(isnn , tn | isnn−1, tn−1; v),

Adiff
n = Asn(isnn , tn | isnn−1, tñ; v) (11)

where ñ = n− hn−1 − 1. It is now possible to derive the
Viterbi algorithm for the state space of (s,h, iL, iR). A
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Algorithm GM data CJL data Our data
Proposed 0.18± 0.08 0.79± 0.06 0.48± 0.03
NOSW+ 1.46± 0.23 1.81± 0.08 0.64± 0.04
NOSW [7] 1.78± 0.25 2.33± 0.10 2.24± 0.07
GM [5] 0.28± 0.10 [7] 8.07† ± 0.18 [6] N/A
CJL1 [6] N/A 1.49† ± 0.08 [6] N/A
CJL2 [6] N/A 2.20† ± 0.09 [6] N/A

Table 2. Alignment error rates (%) with 1σ statistical er-
rors. The best values within 1σ significance are displayed
in bold font. Daggers indicate lower bounds (see Sec. 1.1).

cutoff (∼ 50) on the maximum value of hn can be put to
reduce the search space with little loss of optimality [20].
Finally, the performance error detection described in Sec. 2
is performed separately on each voice (hand part).

During testing the method, we noticed that alignment
errors as simple as a pair of missing and extra notes as in
Fig. 1 sometimes remain after applying the described re-
alignment step. This is often because the result of hand
separation is not completely correct. To handle this, we
carried out a simple processing step (called pairing step)
of matching trivially corresponding missing and extra note
pairs. For each missing note, an extra note with the same
pitch is searched within the time region of half width ∆,
and if found, they are matched. The pairing step can also
be applied before the realignment step to correct trivial
alignment errors and thus reduce the cost of realignment.

4. EVALUATION

As explained in Sec. 1.1, the state-of-the-art methods are
the NOSW algorithm [7], the GM algorithm [5], and the
CJL algorithms (CJL1 and CJL2) [6]. For comparison, we
run the performance error detection on the results of the
NOSW algorithm (NOSW+ algorithm), and the proposed
realignment was applied to its results. Since the GM and
CJL algorithms were not available from their authors but
the used data were provided, we run the proposed method
and temporal HMM on their data and directly compared
the accuracies. The GM data consisted of seven perfor-
mances of two excerpts of Chopin’s piano pieces (total of
2,815 aligned notes). The CJL data consisted of 21 pairs
of piano MIDI files (total of 25,656 aligned notes), most
of which are synthetic (not human-played) performances.
We also tested the proposed method on the human-played
performance data that we prepared. Our data consisted of
60 excerpts of classical piano pieces each played by three
different pianists (total of 43,608 aligned notes) 3 . For the
GM data and our data it was score-to-MIDI alignment and
for the CJL data it was MIDI-to-MIDI alignment. For the
proposed method, ∆ = 0.3 s was used, error regions sat-
isfying the condition (nmne + nenp + npnm > 0) were
selected for realignment, and the pairing step was applied
before and after the realignment step.

The rates of alignment errors in Table 2 show that for
all data the realignment method significantly improved the
preliminary alignment results: in total 47% (= 369 aligned

3 The data could be provided upon requests to the authors.

GM data CJL data Our data Time (s)
(a) 0.18 0.79 0.48 5.54± 0.07
(b) 0.25 1.17 0.51 6.31± 0.07
(c) 0.14 0.85 0.61 6.32± 0.05

Table 3. Alignment error rates (%) and processing time
(averaged over five trials) for the proposed method with (a)
both paring steps and conditions on error regions, (b) only
conditions on error regions, and (c) only pairing steps.

notes) of alignment errors made by the NOSW+ algorithm
were reduced. The proposed method had the highest ac-
curacies for all datasets. To evaluate computational ef-
ficiency, the processing time was measured. Our algo-
rithms were implemented in C++ on a computer with 3.1
GHz CPU and 16 GB memory running Mac OS X 10.11.
The measured time for the CJL data was 8.25 s for the
NOSW algorithm, 17.76 s for the performance error de-
tection, and 1.12 s for the realignment. Compared to the
reported values [6], 342.70 s and 3535.36 s for the CJL1
and GM algorithm, the computational efficiency of the pro-
posed method is evident, although direct comparison is not
possible because of different computer environments. Ex-
amples demonstrating the effect of the realignment method
are shown in the accompanying web page [18].

To examine the effect of the paring step and the condi-
tions imposed on error regions, the proposed method with-
out these modifications was compared in terms of accura-
cies and processing time for all data (Table 3). In addition
to the expected reduction of computation time, these mod-
ifications were also effective in reducing overall alignment
errors. This suggests that the realignment by the merged-
output HMM increases alignment errors in some error re-
gions and these modifications have effects in avoiding this.
Detailed analyses are currently being undertaken.

5. CONCLUSION

We have described a realignment method for symbolic mu-
sic signals based on merged-output HMMs, which can deal
with reordered notes due to voice asynchrony. To reduce
the high computational cost, performance errors are de-
tected and the merged-output HMMs are applied to regions
around the performance errors rather than to the whole
signal. In all tested data and for both score-to-MIDI and
MIDI-to-MIDI alignment cases, the proposed realignment
method combined with an HMM-based method achieved
the highest accuracies, with short computation time.

The principle of using performance errors to select re-
gions in the aligned signals that possibly contain alignment
errors is generally applicable to save computation time.
For example, when a further refined alignment method is
found in the future, we can apply it to the error regions
of the results by the proposed method, instead of doing
alignment from scratch. In addition, since the realignment
can be done locally, it can be applied to performance sig-
nals with global repeats and skips [7]. For future work,
refinements for the model for performance error detection
by examining human-annotated data would be possible to
further improve the accuracy and efficiency.
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ABSTRACT

In this paper we describe an approach to identify the
name of a piece of piano music, based on a short audio ex-
cerpt of a performance. Given only a description of the
pieces in text format (i.e. no score information is pro-
vided), a reference database is automatically compiled by
acquiring a number of audio representations (performances
of the pieces) from internet sources. These are transcribed,
preprocessed, and used to build a reference database via a
robust symbolic fingerprinting algorithm, which in turn is
used to identify new, incoming queries. The main chal-
lenge is the amount of noise that is introduced into the
identification process by the music transcription algorithm
and the automatic (but possibly suboptimal) choice of per-
formances to represent a piece in the reference database.
In a number of experiments we show how to improve the
identification performance by increasing redundancy in the
reference database and by using a preprocessing step to
rate the reference performances regarding their suitability
as a representation of the pieces in question. As the results
show this approach leads to a robust system that is able
to identify piano music with high accuracy – without any
need for data annotation or manual data preparation.

1. INTRODUCTION

Efficient algorithms for content-based audio retrieval en-
able systems that allow users to browse and explore music
collections (see e.g. [10] for an overview). In this con-
text audio fingerprinting algorithms which permit the fast
identification of an unknown recording (as long as an al-
most exact replica is contained in the reference database)
play an important role. For this task there exist highly effi-
cient algorithms that are in everyday commercial use (see
e.g., [3, 6, 13, 15–17]).

However, these algorithms are not able to identify dif-
ferent performances of the same piece of music, as they
are not designed to work in the face of musical variations
such as different tempi, expressive timing, differences in

c© Andreas Arzt, Gerhard Widmer. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Andreas Arzt, Gerhard Widmer. “Piece Identification in Clas-
sical Piano Music Without Reference Scores”, 18th International Society
for Music Information Retrieval Conference, Suzhou, China, 2017.

instrumentation, ornamentation and other performance as-
pects. Regarding classical music, the identification of per-
formances that derive from a common musical score is of
special interest, as in general there exists a large number
of performances of the same piece (and new renditions are
performed every day).

This task is generally called audio matching (or, mostly
in the context of popular music, cover version identifica-
tion, see e.g. [14]). A common approach to solve this prob-
lem is to use an audio alignment algorithm. This is com-
putationally expensive, as it basically involves aligning the
query snippet with every position within every audio file in
the database (see [12], and [11] for a indexing method that
makes the problem more tractable). Furthermore, due to
the coarse feature resolution of these algorithms, relatively
large query sizes are needed.

As there exist efficient fingerprinting algorithms, it
seems natural to try to adapt them to the problem of cover
version identification. A first study towards this is pre-
sented in [9], where the authors focused on the suitabil-
ity of different low-level features as a basis for fingerprint-
ing algorithms, but neglected the problem of tempo dif-
ferences between performances. In [1] an extension to a
well-known fingerprinting algorithm [17] is proposed that
makes it invariant to the global tempo. With the help of
an audio transcription algorithm for piano music (see [5])
a system was built that, given a short audio query, almost
instantly returns the corresponding (symbolic) score from
a reference database – despite the fact that audio transcrip-
tion is a very hard problem and thus introduces a lot of
noise in the process.

In this paper we show how to use this algorithm in the
absence of symbolic scores to identify unknown perfor-
mances, using a reference database based on other perfor-
mances of the pieces in question. As symbolic scores are
often not readily available, this increases the applicability
of this algorithm in real life systems. The downside of this
approach is that now audio transcription is used for both
the data contained in the reference database and for the
queries, which introduces even more noise. Furthermore,
the transcription algorithm we are using is optimised on pi-
ano sounds, which for now limits the proposed system to
piano music only.

We are going to describe this approach in the context of
a system geared towards fully automatic identification of
classical piano music, in the sense that even the creation
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of the collection of audio recordings, which is needed to
perform the identification task, is automated. The moti-
vation for this is to reduce the amount of costly manual
annotation to a minimum, and instead facilitate available,
albeit noisy, web sources like YouTube 1 or Soundcloud 2 .
The main challenge in this setting is the noise introduced
into the identification process via multiple processes (auto-
matic retrieval of reference performances, audio transcrip-
tion of reference performances, and audio transcription of
the query). In the paper we will show how to deal with
this amount of noise by increasing redundancy in the ref-
erence database and by an automatic selection strategy for
the reference performances.

The paper is structured as follows. Section 2 gives an
overview of the proposed system. Then, in Section 3 the
data we are using for our experiments is described. Sec-
tions 4, 5, 6 and 7 describe the core experiments of the
paper, showing that our approach is robust enough to cope
with the multiple sources of noise and performs well in our
experiments. A brief outlook on possible improvements
and applications is given in Section 8.

2. SYSTEM OVERVIEW

In this section we are going to describe the piece identifi-
cation system that will be used throughout the paper. The
main goals of the system are 1) to automate the process of
compiling a reference database, thus making manual anno-
tations obsolete, and 2) based on this reference database,
allow for robust and fast piece identification. Figure 1 de-
picts how the components interact with each other.

The system is based on a Database Definition file,
which is a list of pieces that are to be included in the
database. On this list each piece is represented by an ID,
the name of the composer and the name of the piece, in-
cluding identifiers like the opus number (see Figure 2 for
an excerpt of the list). We would like to emphasise once
more that this is the only input our system needs (in ad-
dition to a source from which the recordings can be re-
trieved). All the data necessary to perform the identifica-
tion task is then prepared automatically. This also means
that extending the database is as easy as adding a new line
to the text file, describing the new piece. The data in this
file also defines the granularity of the database. For ex-
ample, movements of a sonata could be represented as in-
dividual pieces or combined as single piece – for our ex-
periments we took the latter approach. For our proof-of-
concept implementation we settled for 339 piano pieces of
well-known composers (Mozart, Beethoven, Chopin, Scri-
abin, and Debussy), which already represents a substantial
share of the classical piano music repertoire.

A Web Crawler takes this list of pieces and retrieves
audio recordings of performances of the pieces. In our
case we use a simple crawler for YouTube (an alternative
would be to use Soundcloud, amongst others). The queries
are constructed by concatenating the name of the composer

1 https://www.youtube.com
2 https://soundcloud.com

and the piece, and adding the word “piano”, to ensure that
mainly piano performances are returned.

Next, the collected recordings are fed into a Music
Transcription Algorithm that takes the audio files and
transcribes them into series of symbolic events. For this
step we rely on a well known neural network based method
presented in [5], more specifically the version that is avail-
able as part of the Madmom library [4]. As input it takes a
series of preprocessed and filtered STFT frames with two
different window lengths. The neural network consists of
a linear input layer with 324 units, three bidirectional fully
connected recurrent hidden layers with 88 units, and a re-
gression output layer with 88 units, which directly repre-
sent the MIDI pitches. The output of the transcription al-
gorithm is a list of detected musical events, represented by
their pitches and start times. For details we refer the reader
to [5]. This algorithm exhibits state of the art results for
the task of piano transcription, as was demonstrated at the
MIREX 2014 3 . Still, polyphonic music transcription is a
very hard problem, and thus the output of this transcription
algorithm contains a relatively large amount of noise, of
which the following components need to be robust to.

The Automatic Preprocessing step is concerned with
the question of which of the downloaded recordings for
each piece should be used in our fingerprint database. In
this paper we discuss three setups: take the top match re-
turned by the web crawler (see Section 4), take the top five
/ fifteen matches returned by the web crawler (see Section
5), and download 30 recordings for each piece, rank them
automatically via comparing them to each other and use
the top recordings identified via this approach (see Section
6). This means that in the latter two experiments a single
piece is represented by multiple recordings, adding redun-
dancy to the reference database.

The transcribed sequences of symbolic event informa-
tion, i.e. sequences of pairs (pitch, onset time), are fed to
the Tempo-invariant Symbolic Fingerprinter, to build a
database of fingerprints that later on can be used to iden-
tify queries. The algorithm is used as described in [1],
thus it will be summarised here very briefly. The princi-
ple idea of the fingerprinting algorithm is to represent an
instance (in this case a transcribed performance, represent-
ing a piece) via a large number of local, tempo-invariant
fingerprint tokens. These tokens are created based on the
pitches of three temporally local note events, together with
the ratio of their distances in time. Due to the way they are
created, the tokens are invariant to the global tempo, and
can be stored in a hash table and efficiently queried for.

An incoming Query is processed in the same way as
above by the Music Transcription Algorithm. The re-
sulting sequence of symbolic events is used to query the
Tempo-invariant Symbolic Fingerprinter for matches.
To do so, from the query the same kind of fingerprint to-
kens are computed, and matching tokens are retrieved from
the fingerprint database. Finally, in this result set continu-
ous sequences of matching tokens, which are a strong in-

3 http://www.music-ir.org/mirex/wiki/2014:
MIREX2014_Results
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Figure 1. System Overview

ID ; Composer ; P i e c e
. . .
1 7 ; Mozart ; P i ano So na t a No . 17 i n B−f l a t major K 570
1 8 ; Mozart ; P i ano So na t a No . 18 i n D major K 576
1 9 ; Mozart ; F a n t a s y No . 1 wi th Fugue i n C major K 394
2 0 ; Mozart ; F a n t a s y No . 2 i n C minor , K 396
. . .
4 1 ; Bee thoven ; P iano S o na t a No . 14 , Op . 27 , No . 2 ” Moonl igh t ”
4 2 ; Bee thoven ; P iano S o na t a No . 15 , Op . 28 ” P a s t o r a l ”
. . .
168 ; Chopin ; Mazurka Op . 7 No . 5 i n C major
169 ; Chopin ; Noc tu rne Op . 15 No . 1 i n F major
170 ; Chopin ; Noc tu rne Op . 15 No . 2 i n F−s h a r p major
171 ; Chopin ; Noc tu rne Op . 15 No . 3 i n G minor
. . .
281 ; Debussy ; L 113 , C h i l d r e n ’ s Corner , Doc to r Gradus ad Parnassum
282 ; Debussy ; L 113 , C h i l d r e n ’ s Corner , Jimbo ’ s L u l l a b y
. . .
332 ; S c r i a b i n ; P iano S o na t a No . 3 , Op . 23
333 ; S c r i a b i n ; P iano S o na t a No . 4 , Op . 30
. . .

Figure 2. An excerpt of the file used for collecting the
database.

dication that the query matches a specific part of a piece
stored in the fingerprint database, are identified (via a fast,
histogram based approach).

The Query Result is a list of positions within the refer-
ence performances that were inserted into the database (see
Table 1). The positions in the result set are ordered by their
number of tokens matching the query. As can be seen, the
result set is actually more detailed than necessary for our
applications scenario, as we are only interested in identify-
ing the respective piece, and not a specific reference perfor-
mance (or even a position within reference performance).
Thus for the experiments in this paper we summarise all
occurrences of a piece into one score by summing up the
matching scores of all its occurrences in the results set.

3. GROUNDTRUTH DATA AND EXPERIMENTAL
SETUP

For the experiments presented in this paper, ground truth
data, i.e. performances for which the composer and the
name of the piece is known, is needed. We are using com-
mercial recordings of a large part of the pieces contained
in our database. This includes e.g. Uchida’s recordings of
the Mozart Sonatas, Brendel’s recordings of the Beethoven
Sonatas, Chopin recordings by Arrau, Pires and Pollini,
and Debussy recordings by Pollini, Thibaudet, Zimerman.
We would like to emphasise that to get realistic results,
in our experiments we made sure manually that no exact
replicas of these performances are contained in the auto-

Piece ID Performance ID Time in Ref. Score

1 0 99 351
1 0 21 292
1 4 16 109
1 4 15 36
1 4 148 36
1 4 150 32

10 48 368 7
1 0 239 7

Table 1. An example of a result returned by the fingerprint-
ing algorithm. This query was performed on a database in
which multiple reference performances represent a piece of
music, hence for the piece with ID 1 results for two perfor-
mances are returned. The score is the number of matching
fingerprint tokens for the given query at the specific time
in the reference recording. For our purposes we summarise
the results per piece, i.e. the matching score for the piece
with ID 1 is 863, and for the piece with ID 10 it is 7.

matically downloaded data that is used to build the refer-
ence database later on. In total 370 tracks were selected
and assigned manually to the respective pieces (roughly
30 hours of music, or 665 000 transcribed events). Some
of the tracks were assigned to the same piece, as e.g. the
movements of the sonatas are typically represented as dif-
ferent audio tracks, but are represented as a single piece in
our database.

The experimental setup is as follows. We are going to
use the same set of randomly extracted queries for each ex-
periment. We are using three query lengths of 2, 5 and 10
seconds (we only took queries though which had at least 10
transcribed notes, avoiding to e.g. query for silence), and
extract for each length ten queries for each ground truth
performance (giving a total of 3 700 queries for each query
length). The experiments are based on different strategies
to automatically compile the reference database. We start
with a simple baseline approach (Section 4) and then grad-
ually improve on it by introducing redundancy and a selec-
tion strategy (Sections 5 to 7).

As evaluation measure we use the Recall at Rank k 4 .

4 We would like to note that the related measure Precision at Rank k
is not useful in our experimental setup, as there will only be at most one
correct result in the result set.
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Query Length
2 s 5 s 10 s

Recall at Rank 1 0.28 0.38 0.46
Recall at Rank 5 0.34 0.45 0.54
Recall at Rank 10 0.35 0.47 0.55
Mean Reciprocal Rank 0.30 0.41 0.48
Mean Query Time 0.13 s 0.41 s 0.92 s

Table 2. Results of the baseline approach. The results are
based on 3 700 queries for each query length.

This is the percentage of queries which have the correct
corresponding piece in the first k retrieval results. In our
experiments we look at the recall at ranks 1, 5 and 10. In
addition, we also report the Mean Reciprocal Rank (MRR).

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(1)

Here, ranki refers to the rank position of the correct re-
sult for the ith query.

The mean query times (i.e. the mean time it takes to
process a single query) given in the tables are based on a
desktop computer on a single core 5 . If needed, the compu-
tation could easily be sped up by multi-threading the query
process.

4. BASELINE APPROACH

The baseline approach is very straightforward. The web
crawler is used to download the top result from the web
source for each piece on the list. The downloaded audio
files are transcribed and then processed by the fingerprint-
ing algorithm to build the reference database, i.e. in the
reference database each piece is represented by one perfor-
mance. Note that due to the automatic process the database
can be quite noisy, as some of the pieces might be incom-
plete (e.g. only a single movement of a piece), represented
by more than the actual piece (if e.g. the performance
downloaded for the piece also contains other pieces, like a
recording of a full concert), or the representation is wrong
(if the top result of the web crawler is actually a perfor-
mance of some other piece).

The generated fingerprint database is queried via the
prepared excerpts of the collected ground truth data (see
Section 3). The results of this first experiment can be seen
in Table 2. As can be seen, already in this scenario and
despite the small query sizes the method gives reasonable
results. For queries of length ten seconds the algorithm re-
turns the correct name of the piece in close to 50% of the
cases. A closer look at the results though showed that the
main problem with this simplistic approach is that, as ex-
pected, for many pieces the representation in the database
is not correct or incomplete. This problem is tackled in the
following sections.

5 Intel Core i7 6700K 4 GHz with 32 GB RAM.

Query Length
2 s 5 s 10 s

Recall at Rank 1 0.58 0.69 0.74
Recall at Rank 5 0.72 0.84 0.90
Recall at Rank 10 0.74 0.86 0.92
Mean Reciprocal Rank 0.64 0.77 0.84
Mean Query Time 0.34 s 0.81 s 2.49 s

Table 3. Results on the reference database based on mul-
tiple recordings (the top five results according to the web
source) to represent each piece. The results are based on
3 700 queries for each query length.

Query Length
2 s 5 s 10 s

Recall at Rank 1 0.76 0.87 0.91
Recall at Rank 5 0.84 0.94 0.97
Recall at Rank 10 0.86 0.95 0.98
Mean Reciprocal Rank 0.80 0.90 0.94
Mean Query Time 0.82 s 2.85 s 6.08 s

Table 4. Results on the reference database based on multi-
ple recordings (the top fifteen results according to the web
source) to represent each piece. The results are based on
3 700 queries for each query length.

5. USING MULTIPLE INSTANCES PER PIECE

A simple way to improve the performance of the system is
to increase the redundancy within the reference database.
Instead of relying on a single instance (recording) for each
piece in the reference base, each piece is represented by
multiple recordings. For the first experiment five perfor-
mances per piece were downloaded using the web crawler.
The performances were processed in the same way as for
the baseline approach in Section 4 above and inserted into
the fingerprint database. Then, on this database the same
set of queries were performed. As described in Section 2,
the match score of a piece is computed by summing up the
scores of the performances representing the piece in ques-
tion (also see Table 1).

Table 3 shows the results of this experiment. As can
be seen, the increased redundancy leads to a substantial
increase in identification results, compared to the baseline
(see Table 2). The added redundancy increases the chances
that for each piece at least one “good” performance (in the
sense of corresponding to the piece and relatively easy to
transcribe) is contained in the reference database, and thus
mitigates the problems caused by noise, at least to some
extent.

For an additional experiment we increased the number
of performances to fifteen per piece. These results are
shown in Table 4. This improved the results even further.
The downside of adding more instances to the fingerprint
database is a significant increase in computation time.
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Query Length
2 s 5 s 10 s

Recall at Rank 1 0.54 0.68 0.74
Recall at Rank 5 0.63 0.76 0.83
Recall at Rank 10 0.64 0.78 0.85
Mean Reciprocal Rank 0.58 0.72 0.78
Mean Query Runtime 0.14 s 0.47 s 0.97 s

Table 5. Results on the reference database based on the top
recording selected via the proposed strategy to represent
each piece. The results are based on 3 700 queries for each
query length.

Query Length
2 s 5 s 10 s

Recall at Rank 1 0.72 0.85 0.89
Recall at Rank 5 0.82 0.92 0.96
Recall at Rank 10 0.84 0.93 0.97
Mean Reciprocal Rank 0.77 0.88 0.92
Mean Query Time 0.49 s 1.71 s 3.83 s

Table 6. Results on the reference database based on mul-
tiple recordings (top five recordings selected via the pro-
posed strategy) to represent each piece. The results are
based on 3 700 queries for each query length.

6. AUTOMATICALLY SELECTING SUITABLE
REPRESENTATIONS

A closer look at the results so far shows that increasing the
redundancy in the reference database indeed leads to bet-
ter results, but also increases the computation time. The
main problem with our approach is that in addition to use-
ful data, the process also adds a lot of extra noise to the
fingerprint database. The web crawler returns a consid-
erable number of performances of the wrong piece, per-
formances played on a different instrument, and perfor-
mances recorded in very bad quality. This kind of data
increases the runtime and decreases the identification ac-
curacy. In this section we present a method for identifying
performances in a given a set of candidates for a piece that
most probably are related to the piece in question, which
also enables us to discard performances that most proba-
bly are noise. In this way we try to reduce the number
of stored fingerprint tokens, which generally decreases the
computation time, while still achieving good identification
performance.

Thus, for each piece we perform the following process
to select appropriate representations. First, 30 recordings
are downloaded via the web crawler. With a high probabil-
ity at least some of these are actually piano performances
of the piece we are looking for, while the others might have
nothing in common. The idea now is to find a homoge-
nous group within this set of candidates. To identify per-
formances which are part of this group, we again employ
the symbolic fingerprinting process, but limited to the set

of candidate performances. To do so, the performances are
transcribed and inserted into a new fingerprint database.

The intuition is that for a query extracted from the same
set of candidate performances (that actually matches the
piece), the fingerprinter will likely return three kinds of re-
sults. Firstly, the top result will be the performance the
query was taken from. This is a perfect fit for all tokens,
which results in the maximum score. Secondly, a number
of other performances will probably also have a high score,
identifying them as being based on the same piece and
as being transcribed in sufficient quality. Thirdly, perfor-
mances that actually belong to a different piece, or which
are transcribed poorly, will score very low.

Based on these observations, we designed the process
of ranking the performances regarding their suitability to
represent the piece in question as follows. For each of
the performances ten queries are randomly extracted (for
our experiments we used a query length of ten seconds)
and processed by the fingerprinting algorithm. As in all
other experiments, the results are summarised on the per-
formance level (i.e. match scores of positions within the
same performance are summed up). Then, for each result
the score of the top match (i.e. of the performance the
query stems from) is stored, this performance is removed
from the result set, and the remaining matching scores are
normalised by dividing by the top match score. The rea-
soning behind this is that the absolute scores depend on the
particulars of the query (foremost the length in the sense of
the number of notes, but also e.g. if the part in question is
normally played in a steady tempo or is subject to expres-
sive tempo changes, which makes it harder to detect and
leads to a lower score).

This results in 300 preprocessed and normalised result
sets. The suitability of a performance to represent the piece
in question is computed by summing up all the scores of
all its occurrences in the result sets. The higher this value
is for a performance, the more it has in common with the
other performances assigned to the piece in question.

Based on this ranking we repeat experiments from Sec-
tions 4 and 5, but this time for each piece we select the top
one or top five performances, respectively, according to the
computed rank within the candidate set for each piece. The
results are shown in Tables 5 and 6, which should be com-
pared to Tables 2 and 3, respectively. As can be seen the
selection strategy increases the identification performance
for both scenarios and for all query lengths.

A comparison of Tables 6 and 4 shows that by using
the proposed selection strategy a lower number of perfor-
mances (5 versus 15) is sufficient to achieve comparable
identification accuracy. The decreased number of tokens
also results in roughly half the computation time.

The runtime actually depends on a number of factors,
most importantly the size of the fingerprint database. But
of similar influence is the actual number of tokens that are
returned by the fingerprint database for a specific query.
The reason is that each of these tokens has to be processed
individually to come up with the matching score. This also
means that queries for pieces which are represented in the
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database by a large number of performances will actually
take longer to compute – a further argument in favour of
the selection strategy presented in this section.

7. USING MULTIPLE QUERIES PER
PERFORMANCE

So far the assumption was that we only have access to a
single short query of two to ten seconds. If instead we have
access to a full recording, just querying for one short query
would be a suboptimal approach. Thus, we tried an addi-
tional query strategy on the reference database based on
the performance selection strategy from Section 6 above.

A standard approach for processing long queries (in
this case a whole performance) would be to apply shin-
gling [2,7,8], i.e. splitting longer queries into shorter, over-
lapping ones and track the results of these sub-queries over
time. Here, as proof of concept we use an even simpler
method: we select ten random queries from the piece we
want to identify, process them individually and sum up the
results. This can be seen as adding redundancy (relying
on multiple queries instead of a single one) on the query
side. We perform this experiment on the reference database
based on the top five selected recordings via the proposed
strategy. The results are shown in Table 7. As can be seen
this again considerably improves the results, and we are
getting very close to 100%. The main cause for this is that
the retrieval precision heavily depends on the quality of
the transcription. Some parts of a performance are much
harder to transcribe than others (e.g. heavily polyphonic
parts with a lot of sustain pedal, which are difficult to tran-
scribe correctly). Using multiple queries, randomly dis-
tributed over the whole performance, increases the chances
that at least some parts are transcribed in good quality, and
that together these queries enable high retrieval accuracy.

Finally, we had a closer look at the few performances
that were still misclassified and identified two problems.
Our approach does not take care of the problem of record-
ings of full concerts. If included in the reference database
for multiple pieces, these will lead to misclassifications.
Furthermore, for some pieces only a small number of per-
formances exists, which causes the crawler to return “sim-
ilar” but wrong performances (e.g. performances of other
pieces of the same composer). We sketch a possible solu-
tion to these problems in Section 8 below.

8. CONCLUSIONS AND FUTURE WORK

In this paper we presented an approach towards piece
identification for performances of piano music, based on
an automatically compiled reference database using web
sources. It is shown that the symbolic fingerprinting
method is robust enough to deal with the noise introduced
by the transcription algorithms and allows for fast query-
ing in the symbolic domain. Furthermore, increasing the
redundancy by using multiple performances to represent a
single piece, especially using the proposed selection strat-
egy, largely alleviates the problem of noise introduced by

Querylength
2 s 5 s 10 s

Recall at Rank 1 0.92 0.95 0.95
Recall at Rank 5 0.98 0.99 0.99
Recall at Rank 10 0.99 1 1
Mean Reciprocal Rank 0.94 0.97 0.97
Mean Query Time 0.49 s 1.71 s 3.83 s

Table 7. Results for querying for a whole performance
via ten random small queries with ten seconds each. The
results are based on 3 700 queries for each query length.

the automatic compilation of the reference database. Addi-
tionally, this increases the robustness of the identification
process via the fingerprinting algorithm, as ’problematic’
sections (e.g. regarding the transcription process) are rep-
resented multiple times, thus increasing the chances that
the parts in question are well covered by the reference
database.

There exist a number of possible improvements regard-
ing the automatic selection of performances for a piece. In
our implementation the focus is on increasing the homo-
geneity within the group of performances for a piece by
comparing them to each other. An additional option is to
analyse matches on the full reference database and try to
find out which performances match well to multiple pieces
and exclude them (as they cover multiple songs or were
mistakenly assigned to multiple pieces by the crawler).

We are currently in the process of collecting a much
larger collection of classical piano music. This dataset will
contain a few thousand pieces, covering a large part of the
classical piano repertoire 6 . On this dataset we are going
to conduct experiments regarding the scalability of our ap-
proach in terms of runtime and retrieval accuracy.

In the future, we will also investigate the usefulness of
the presented approach for non-classical piano music. Pre-
liminary experiments have shown that this is a much harder
task, as compared to classical piano music the pieces are
not as strictly defined via a detailed score (e.g. popu-
lar songs and jazz standards are mostly described via lead
sheets). Thus, performances of the same piece differ more
heavily than in classical music. Of course we would also
like to lift the restriction to piano music and try our method
on other genres, but thus far general music transcription is
not robust enough to be used with our approach. Hopefully
this will change in the future.

Finally, regarding real-world applications, an automatic
method to determine which pieces are well covered by
the database, and which ones would benefit from man-
ual intervention, would be desirable. This would help to
quickly build a reference database which already covers
most pieces well, and then to manually add additional ref-
erences (based on performances, or even on symbolic score
data) for pieces the identification algorithm struggles with.

6 The reference database is of course compiled automatically (based
on the list of pieces), but the preparation of the ground truth for the ex-
periments is a time consuming, manual process.
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ABSTRACT

We present PiPo, a plugin API for data stream processing
with applications in interactive audio processing and music
information retrieval as well as potentially other domains
of signal processing. The development of the API has been
motivated by our recurrent need to use a set of signal pro-
cessing modules that extract low-level descriptors from au-
dio and motion data streams in the context of different au-
thoring environments and end-user applications.

The API is designed to facilitate both, the develop-
ment of modules and the integration of modules or module
graphs into applications. It formalizes the processing of
streams of multidimensional data frames which may rep-
resent regularly sampled signals as well as time-tagged
events or numeric annotations. As we found it sufficient
for the processing of incoming (i.e. afferent) data streams,
PiPo modules have a single input and output and can be
connected to sequential and parallel processing paths. Af-
ter laying out the context and motivations, we present the
concept and implementation of the PiPo API with a set
of modules that allow for extracting low-level descriptors
from audio streams. In addition, we describe the integra-
tion of the API into host environments such as Max, Juce,
and OpenFrameworks.

1. INTRODUCTION

1.1 Context and Motivation

Many of the interactive audio applications that we have de-
veloped over the past years in collaboration with artists and
other researchers rely on signal processing techniques to
automatically analyse and annotate audio and motion sen-
sor streams. We often refer to the techniques we deploy in
this context as content-based audio processing [1]. These
techniques generally allows for interactively transforming
recorded audio materials as a function of low-level audio
descriptions such as pitch, intensity, and timbre descrip-
tions as well as segmentations into temporal units such as

c© Norbert Schnell, Diemo Schwarz, Joseph Larralde, Ric-
cardo Borghesi. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Norbert Schnell, Diemo
Schwarz, Joseph Larralde, Riccardo Borghesi. “ PiPo, A Plugin Interface
for Afferent Data Stream Processing Modules ”, 18th International Soci-
ety for Music Information Retrieval Conference, Suzhou, China, 2017.
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Figure 1. An interactive audio system with afferent and
efferent data streams. The labels at the bottom cite existing
plugin interfaces for audio applications.

notes, syllables, and musical phrases. Similar processing
applies in this context to motion capture streams to extract
movement qualities and meaningful events and temporal
units such as onsets and gestures. In this processing, we
frequently reuse a set of algorithms such as filters, pro-
jections, extractors, and detectors that may apply in real-
time to incoming data streams or, offline, to data streams
recorded into files. Since these data streams occur in the
overall interactive systems we develop as inputs, we refer
to them as afferent data streams.

Figure 1 shows the overall structure of such an inter-
active system. The schema does not distinguish whether
the audio and motion data streams actually enter the sys-
tem in real-time or whether they are read from files. Af-
ferent streams processed in real-time typically originate
from a microphone or motion sensors. In some of the sys-
tems we have developed, the streams are used to control
an interactive system through sound (e.g. voice) or move-
ment. In many of these systems, the same — or very sim-
ilar — processing that is applied in real-time, applies to
data streams read from files. For example for concatenative
synthesis [21], audio descriptors are extracted from pre-
recorded materials. While some interactive systems may
generate sound in real-time, the generated description and
annotations may be used to create visualizations (e.g. in
the context of musicology or education) as well as to sup-
port the editing and transformation of recordings in post-
production systems.

In general, the processing of afferent streams can be
described as reducing the data streams in terms of their
complexity, dimensionality, and data rate. Typical terms
used to characterize this processing include filtering, anal-
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ysis, extraction, description, detection, recognition, scal-
ing, and mapping.

The PiPo API (Plug-in Interface for Processing Ob-
jects) formalizes modules that in this sense transform an
incoming data stream into an output data stream allowing
for a possibly wide range of streams as well as for mod-
ules of arbitrary complexity going from simple scalings to
sophisticated machine learning algorithms.

The major motivations for developing the PiPo API can
be summarized as follows:

• facilitating the integration of algorithms of different
origins (i.e. developers) into a given application

• facilitating the use/comparison of different algo-
rithms of similar functionalities in a given context
(e.g. applying different filters, extractors or classi-
fiers to the same input stream)

• facilitating the integration of a given algorithm into
different contexts and applications

• facilitating the development of applications where
the same algorithm applies to data streams in real-
time and offline

Ultimately, the motivation for developing the API is
the idea of enabling the development of an ecosystem of
stream modules and host environments in particular do-
mains as well as across different domains of signal pro-
cessing.

1.2 Requirements

In this section, we give an overview over the most impor-
tant general requirements for an afferent data stream pro-
cessing framework for real-time and off-line use. These re-
quirements concern specific functionalities as well as their
efficient implementation in a real-time system (see [22]).

1.2.1 Functional Requirements

Scheduling Processing should run either in batch on
sound files and buffers, or on a live audio stream

Segmentation Allow several streams of segmentations in
parallel and overlapping segments, or an implicit seg-
mentation, where segments are analysis frames, ele-
mentary waveforms, or whole sound files.

Temporal Modeling Any number of temporal modeling
algorithms can be integrated, either universal (modeling
all descriptors, e.g. mean) or specific (modeling specific
descriptors only, e.g. geometric mean for pitch).

Data Type Data can be numeric scalars, vectors, matrices,
or strings

Multi-Modality The input data type and rate should allow
motion and other data and not be limited to audio only.

User Composability Modules should be composable by
the user in the host environment (without having to
write and compile code), e.g. chaining feature ex-
tractors, smoothing filters, segmentation, and temporal

modeling, in order to allow experimentation and rapid
prototyping.

1.2.2 Implementation Requirements

Easy Integration and Efficiency It should be easy to in-
tegrate the framework in any platform and environment,
including real-time and resource-constrained systems
(e.g. single-board computers). This basically stipulates
that the API be written in C or C++.

Dynamic Plugin Loading It should be possible to add
processing modules as plugins to an existing host in-
stallation, e.g. by leveraging dynamic linking of shared
libraries.

Efficient Modularisation The framework should allow
an efficient implementation, notably by sharing com-
monly used calculation results, most of all the FFT rep-
resentation, between modules, by avoiding copying and
re-sending data, instead writing them directly to its des-
tination.

External Data External data streams and sources of seg-
mentation, such as a human tapping on attacks oder ex-
isting analysis files, must be integratable into the data
flow.

Reanalysis A subset of descriptors or only the segmenta-
tion and subsequent temporal modeling can be re-run
with changed parameters.

Almost all of these requirements are fulfilled by PiPo,
with the exception of the possibility to pass strings as data
elements. This has been avoided to simplify the API and
avoid problems of memory-handling. A fixed set of strings
(such as class labels for machine-learning) can always be
transmitted by their index.

The top-level requirements, that best distinguish PiPo
from other frameworks are dynamic linking of plugins,
multi-modality, and user-composability of modules.

1.3 Related Work

In the rich existing work, we must distinguish audio anal-
ysis libraries and toolboxes (see the recent overview [15])
from plugin APIs which impliy a formalization of the in-
put/output formats and the dynamic loading of modules.

Several plugin APIs are commonly used in the
world of audio signal processing and virtual instruments,
namely LADSPA (Linux Audio Developer’s Simple Plu-
gin API), 1 VST (Virtual Studio Technology by Stein-
berg), 2 and AU (Audio Units by Apple). 3 These APIs
are mainly designed for transforming an input audio stream
(effect processing) or for generating an audio stream in
reaction to incoming MIDI events (virtual instruments).
Thus they are not applicable to the demands of general data
processing or audio feature extraction.

Many monolithic or collections of analysis mod-
ules for popular real-time environments exist, such as

1 http://www.ladpsa.org
2 http://ygrabit.steinberg.de
3 http://developer.apple.com/audio/audiounits.html
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Figure 2. A chain of modules in a host environment.

analyser˜ [11], the patch-based ZSA [13] for MAX,
imtr-analysis [22], TimbreID [3] for PureData. None of
these can be integrated into other environments.

The first descriptor analysis frameworks that would al-
low the dynamic inclusion of external modules are either
plugin frameworks such as the sadly defunct FEAPI [12],
and the more lively VAMP [6]. 4 However, the latter does
not propose user-composability nor multi-modality (the in-
put is always audio).

There are many existing libraries for audio descrip-
tor analysis (Yaafe 5 [14], Essentia 6 [2], OpenSmile 7 [7,
8], libXtract, 8 IrcamDescriptor [18]) see this compari-
son [15]. None of them allow for dynamic linking, easy
integration of new algorithms, or user composability with-
out having to code a new module.

The MARSYAS framework, dedicated to music informa-
tion retrieval, is concerned with scheduling [5] as well as
CLAM, 9 but neither is a common environment for real-
time sound and music applications.

In summary, no existing API combines all three top-
level requirements of dynamic linking of plugins, multi-
modality, and user-composability of modules.

2. CONCEPTS AND FORMALIZATION

The PiPo API formalizes modules as objects that receive
a data stream as a succession of frames at their input and
send a stream as output. As shown in figure 2, modules
can be connected to a chain by connecting the input of one
module to the output of another. In the simplest case, the
processing requires a single module. A PiPo host, con-
structs the modules and connects to the input of the first
module of the chain as the source of the stream of frames
to be processed. In addition, the host connects to the out-
put of the last module of the chain as the terminating sink
that receives the resulting stream.

The data streams received and produced by PiPo mod-
ules are described by a set of stream attributes that are de-
fined before the modules actually receive and produce any
frames. This way, the initialization of a module may de-
pend on the attributes of the incoming stream and the mod-
ule may determine the attributes of the stream it produces
as a function of the attributes of the incoming stream.

4 http://vamp-plugins.org
5 http://yaafe.sourceforge.net
6 http://essentia.upf.edu/
7 http://opensmile.sourceforge.net/
8 http://jamiebullock.github.io/LibXtract/documentation/
9 http://clam-project.org

The propagation of the stream parameters and the actual
processing of frames are separated into two phases that are
both initiated by the host through its connection to the first
module. In both phases, each module receives information
from its predecessor in the chain and sends information to
its successor. In the initialization phase, the host sends out
the stream parameters of the input stream to the first mod-
ule which sends its output stream parameters to the input of
the next module, and so forth, until the last module sends
the resulting stream parameters back to the host connected
to its outlet. Similarly, once the modules are initialized,
the host can start sending frames into the input of the first
module and receives the resulting frames from the output
of the last module. Only in the case of error, as for example
when a module cannot accept a stream with a given set of
attribute values at its input, a module would report directly
to the host, which in turn can output the error message to
the host environment.

2.1 Streams of Frames

Each frame of a data stream is composed of a time-tag and
a two-dimensional matrix of numeric values. A data stream
is described by the following set of attributes:

• frame rate of the stream

• whether the frames of the stream are time-tagged

• dimensions of the frames’ two-dimensional matrix

• labels describing the columns of the data matrix

• whether the frames’ data matrices have a variable
number of rows

In case of streams of time-tagged frames of an irregular
rate, the frame rate attribute should announce the worst
case (the fastest) rate, so that succeeding modules — or
the host — can take this parameter into account (e.g. for
allocating memory).

This formalization of data streams allows for represent-
ing a large spectrum of different signals, event streams, and
numeric annotations. For example:

• mono or multi-channel audio signals are represented
as scalars or multi-dimensional vectors of a constant
frame rate

• real or complex frames of spectral data are repre-
sented as single column vectors or matrices of two
columns (i.e. labeled ’real’ and ’imag’), usually of a
constant frame rate

• multi-dimensional motion capture data streams are
represented as multi-dimensional row-vectors (e.g.
labeled ’x’, ’y’, ’z’) that may be time-tagged or of a
constant frame rate

• onset markers are represented as time-tagged frames
without numeric data (i.e. an empty matrix)

• segments are represented as time-tagged frames with
a row-vector of data including a ’duration’ column
and, optionally, multiple columns of values describ-
ing the segment (e.g. ’pitch’, ’intensity’, ’category’)
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• harmonics are represented as two-dimensional ma-
trices with variable number of rows, one row for
each harmonic, with multiple columns (’frequency’,
’amplitude’, ’phase’) of a constant frame rate

From the host’s point of view, once constructed, an ar-
bitrary chain of modules is defined by the stream it pro-
duces as a function of the input stream provided by the
host. Before starting the actual stream processing by send-
ing frames into the chain, the host retrieves the attributes
of the output stream that can be used, for example, to al-
locate memory or bandwidth and automatically determine
display options as well as to configure and generate other
interactions with connected sub-systems or users.

2.2 Chains of Modules

As mentioned above, PiPo modules have a single input and
output and can be connected to chains. Hereby, a chain of
modules — conceptually as well as by implementation —
may appear as a single module communicating with its en-
vironment (i.e. a host or connected modules) through a
single in- and output and an error channel.

Apart from the stream attributes of its incoming stream,
each module is configured and controlled by a set of typed
module parameters that are explicitly declared through the
PiPo API. Possible parameter types are single values of 64-
bit float, 32-bit integer, string, and declared enumerated
types as well as fixed or variable sized arrays of values
of these types and heterogeneous variable sized arrays. In
addition to its type, a module parameter is declared with a
name, a short description, and a flag whether changing a
given module parameter requires the reinitialization of the
module — and consequently of the following modules in a
chain.

An important feature of the design of the API is that
it allows for implementing modules of virtually any com-
plexity and for composing chains of modules of any
granularity. An extractor of MEL cepstrum coefficients
(MFCCs), for example, may be implemented as a single
monolithic module or composed of a chain of modules that
include the successive calculation of STFT frames, MEL
coefficients, and DFT coefficients.

2.3 Graphs Beyond Chains

The construction of certain algorithms from basic modules
requires more complex graphs of modules. For example,
the extraction of a set of basic audio descriptors shown
in figure 3 requires to split and merge the processing of
the implied data streams. While the first split allows for
processing the same audio frames in time and frequency
domain, the second applies the calculation of a loudness
descriptor and a spectral centroid to the same frequency
domain frames produced by the STFT. The final set of esti-
mated descriptor values (i.e. pitch, periodicity, AC1, loud-
ness, and spectral moments) is merged to a single vector at
the output of the sub-graph.

As described in section 2.2, any chain (or sequence) of
modules can be considered as a single module. In the for-

PiPo descr
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windowed frames
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Figure 3. A complex graph of PiPo modules for calculat-
ing 9 basic audio descriptors.
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module 1 module 2 module n. . .

parallel module

module 1
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module n

.

.

.

Figure 4. Any number of modules connected in sequence
or in parallel can be reduced to a single module.

malization of graphs in the PiPo API, parallel modules can
also be reduced to a single module. These two rules, il-
lustrated by figure 4, provide a consistent basis to build a
large variety of complex PiPo graphs.

Figure 5 shows the structure of the pipo.descrmod-
ule expressed in terms of sequence and parallel compo-
nents.

2.4 Hosts

In summary, a PiPo host has to provide the following func-
tionalities:

• constructing a single or a graph of modules

• parametrizing the modules

scalesum

fft

yin

mo-
ments

slice

sequence
parallel

Figure 5. Decomposition of the pipo.descr module
into sequence and parallel elements.
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• connecting a terminating sink to the output of the
chain

• acquiring the input stream

• initializing the modules by sending the input stream
attributes into the chain

• handling initialization errors emitted by the modules

• sending the frames of the input stream into the chain
and handling the frames of the output stream

• allowing for real-time parametrization of the mod-
ules (if applicable)

The PiPo API includes abstractions that support the im-
plementation of hosts.

3. IMPLEMENTATION

PiPo is an API that essentially consists of a single C++
header file. This file defines the base PiPo class, and its
declared parameters. 10 .

3.1 The PiPo API

The minimal module must inherit from the class PiPo
and implement at least the streamAttributes and
frames methods:

In streamAttributes, all initialisation can be
done, as all input stream attributes are known. The
output stream attributes are passed on to the receiv-
ing module via propagateStreamAttributes. In
frames, only data processing and, when needed, buffer-
ing should be done. Output frames are passed on with
propagateFrames.

If the module can produce additional output data af-
ter the end of the input data (e.g. filters), it must im-
plement finalize, from within which more calls to
propagateFrames can be made, followed by a manda-
tory call to propagateFinalize.

If the module keeps internal state or buffering, it should
implement the reset method to put itself into a clean
state.

A segmentation module calls the method
propagateSegment to signal the onset, offset and
exact boundaries of a new segment to following temporal
modeling modules (which implement segment).

The utility function signalError can be used to pass
an error message to the host.

3.2 Module Parameters

The template class PiPo::Attr permits to define scalar,
enum, or variable or fixed size vector parameters of a pipo
module that are exposed to the host environment.

They are initialised in the module constructor with a
short name, a description, a flag if a change of value means
the fundamental stream parameters must be reset (if true,

10 https://github.com/Ircam-RnD/pipo-sdk/tree/master/include

streamAttributes will be called again for the whole
chain), and a default value.

Their value can be queried in streamAttributes
or frames (in real-time hosts, a parameter’s value can
change over time) with PiPo::Attr::get().

3.3 Example of a Minimal PiPo Module
class PiPoGain : public PiPo
{
private:
std::vector<PiPoValue> buffer;

public:
PiPoScalarAttr<double> factor;

PiPoGain (Parent *parent, PiPo *receiver = NULL)
: PiPo(parent, receiver),
factor(this, "factor", "Gain Factor", false, 1.0) { }

∼PiPoGain (void) { }

int streamAttributes (bool hasTimeTags, double rate,
double offset, unsigned int width, unsigned int height,
const char **labels, bool hasVarSize,
double domain, unsigned int maxFrames)

{ // can not work in place, create output buffer
buffer.resize(width * height * maxFrames);

return propagateStreamAttributes(hasTimeTags, rate,
offset, width, height, labels,
hasVarSize, domain, maxFrames);

}

int frames (double time, PiPoValue *values,
unsigned int size, unsigned int num)

{ // get gain factor here, it could change while running
double f = factor.get();
PiPoValue *ptr = &buffer[0];

for (unsigned int i = 0; i < num; i++)
{
for (unsigned int j = 0; j < size; j++)
ptr[j] = values[j] * f;

ptr += size;
values += size;

}

return propagateFrames(time, &buffer[0], size, num);
}

};

3.4 Existing Modules

The list of existing PiPo modules can be organized into the
following categories:

Stream Processing slice (windowing), scale, sum,
select (get columns),

Filtering biquad (biquad filter), mvavrg (moving aver-
age filter), median (median filter), delta (deriva-
tive), finitedif [9], bayesfilter [10]

Segmentation onseg (segments starting at signal onset),
chop (segments of regular intervals), gate (seg-
ments excluding weak sections), sylseg [16]

Temporal Modeling mean, std, meanstd, min, max

Analysis descr (basic audio descriptors), yin (pitch
extractor), moments (centroid, spread, skew-
ness, kurtosis), lpc (linear predictive coding),
lpcformants (formant extraction), psy (pitch
synchronous markers), ircamdescriptor [18]
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Frequency Domain Processing fft (FFT from pre-
windowed frames), dct (discrete cosine transform),
bands (MEL bands and similar from power or
amplitude spectrum), mel (MEL bands from au-
dio stream), mfcc (MFCC from audio stream),
wavelet (wavelet transform from audio stream)

They can be instantiated from C++ code us-
ing the precompiled libpipo library, thanks to the
PiPoCollection class defined in the PiPo SDK, or be
used in one of the environments described in 3.6. The
PiPoCollection class acts as a module factory. It is
able to instantiate PiPo graphs from a simple syntax, which
can then be used as simple PiPos in a host environment. It
also allows users of the API to add their own PiPo mod-
ules to the original collection. Once added, more complex
graphs combining modules from libpipo and these new
modules can be instantiated and run inside a PiPo host.

3.5 PiPo Graph Construction

Graphs of PiPo modules can be either constructed in C++
code or — within a given host environment — through ex-
pressions of a very simple syntax. For the first case, the
API defines a set of primitives that can be used to con-
struct graphs of any complexity by arranging modules in
sequence and in parallel. In the latter case, these primi-
tives are instantiated by a parser function provided by the
API.

3.5.1 Specific Graph Construction Modules

Additional to the data processing modules listed above,
there are two internal modules that handle the connection
of processing modules in sequence or in parallel.

The sequence module simply connects the upstream
module to the downstream one (i.e. setting the latter as
receiver, so that the API calls get propagated through the
chain). The parallel module essentially consists of an
ordered set of modules that receive the same input stream
and output towards an internal merge module. Each in-
coming frame is processed by each of the parallel modules
in the given order, whereby the merge module concate-
nates the output data column-wise into a single matrix that
is output towards the receiver of the parallel module.

3.5.2 Graph Construction Syntax

The construction of sequences and parallel modules is also
available at the user level via a simple syntax inspired by
FAUST [17], with the following operators:

: (sequence)
< (branch)
, (parallel)
> (merge)

For example, the pipo.descr module de-
scribed in section 2.3 would be written like this:
slice<yin,fft<sum:scale,moments>>

A fifth operator, _ (identity), allows the propagation of
intermediate analysis results to the end of the graph. Fol-

lowing the sequence and parallel reduction rules from sec-
tion 2.3, any PiPo graph is equivalent to a PiPo, and as a
consequence must have a single input and a single output,
which implies that the graph syntax must contain the exact
same number of branch and merge operators.

3.6 Bindings

3.6.1 Max

The PiPo modules are available within the MAX visual
programming environment via the MuBu package, [19]
where they can run in real-time using the pipo∼ and
pipo MAX objects, or offline using the mubu.process
object.

3.6.2 Juce, OpenFrameworks, OpenMusic, Unity3D

PiPo has been integrated into the JUCE 11 framework,
the creative coding framework OPENFRAMEWORKS, 12

the computer-aided composition environment OPEN-
MUSIC [4] and the game development environment
UNITY3D. 13 Most if these developments are based on the
IAE (Interactive Audio Engine) library. [20] The library
allows for loading a sound file as input of a user-specified
PiPo chain and to retrieve the result at the output.

4. CONCLUSIONS AND FUTURE WORK

The PiPo API and modules are in production use in our de-
partment, and with research project partners, and artists in
interactive gesture and music installations and digital in-
struments. We feel it could help a wider community for
easy prototyping and transfer to developed products.

The PiPo API is currently in the process of being in-
tegrated in the RAPIDMIX API, a wider C++ software
ecosystem including machine learning, signal feature ex-
traction and audio processing libraries, as a standardized
way of building modular signal descriptors and machine
learning algorithms, integrating them into a global work-
flow and allowing users of this ecosystem to build sustain-
able code on top of a base collection of algorithms, by pro-
viding a flexible mean of interaction between its software
components.

We made first steps to add an API similar to PiPo to also
integrate the iterative training of machine learning and data
processing easily into the same host environments.

The PiPo SDK that supports the development of mod-
ules as well as hosts, has been published under the
BSD 3-Clause license at https://github.com/Ircam-RnD/
pipo-sdk.
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and Center for New Music and Audio Technologies
(CNMAT), University of California, Berkeley, USA,
1997.

[12] Alexander Lerch, Gunnar Eisenberg, and Koen
Tanghe. FEAPI: A Low Level Feature Extraction Plu-
gin API. In 8th International Conference on Digital
Audio Effects (DAFx05, 2005.

[13] M. Malt and E. Jourdan. Zsa. Descriptors: a library for
real-time descriptors analysis. In 5th Sound and Music
Computing Conference, pages 134–137, Berlin, Ger-
many, August 2008.

[14] Benoit Mathieu, Slim Essid, Thomas Fillon, Jacques
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ABSTRACT 

Emotion recognition is an open problem in Affective 
Computing the field. Music emotion recognition (MER) 
has challenges including variability of musical content 
across genres, the cultural background of listeners, relia-
bility of ground truth data, and the modeling human hear-
ing in computational domains. In this study, we focus on 
experimental music emotion recognition. First, we 
present a music corpus that contains 100 experimental 
music clips and 40 music clips from 8 musical genres. 
The dataset (the music clips and annotations) is publicly 
available at: http://metacreation.net/project/emusic/. Then, 
we present a crowdsourcing method that we use to collect 
ground truth via ranking the valence and arousal of music 
clips. Next, we propose a smoothed RankSVM (SRSVM) 
method. The evaluation has shown that the SRSVM out-
performs four other ranking algorithms. Finally, we ana-
lyze the distribution of perceived emotion of experi-
mental music against other genres to demonstrate the dif-
ference between genres.  

1. INTRODUCTION 

The research in MER proposes computational approaches 
to recognize the emotion of music. The increasing num-
bers of MER studies in recent years have been focusing 
on particular musical genres, such as classical music, pop, 
rock, jazz, and blues [41]. So far, to our knowledge, MER 
in experimental music has yet to be explored.  

The definition and use of the term experimental music 
have been an ongoing discussion within the last century.   
John Cage [15] clarifies the action of experimentalism as 
“the outcome of which is not foreseen”. Demers [17] de-
fined experimental as “anything that has departed signifi-
cantly from norms of the time…” [p.7] and continues by 
the two assumptions of “…that experimental music is dis-
tinct from and superior to a mainstream-culture industry 
and that culture and history determine aesthetic experi-
ence" [p.139]. Experimental music does not only rely on 
harmony and melody [6]. Experimental music explores 
the continuum between rhythm, pitch, and noise; the no-
tion of organized sound; the expansion of temporal field; 
and the morphologies of sound. In this study, our defini-
tion of experimental music encompasses experimental 

electronic music such as acousmatic music, electroacous-
tic music, noise music, soundscape compositions as well 
as experimental music with acoustic instruments such as 
free improvisation or improvised music. We also include 
Contemporary Art practices that use sound as a medium 
in our definition of experimental music.  

There are many applications in which a computational 
model of MER for experimental music would be benefi-
cial. MER computational models can be used in the sys-
tem architecture of Musical Metacreation (MuMe) sys-
tems for experimental music. MuMe is the partial or 
complete automation of musical tasks [34]. A variety of 
MuMe systems apply machine listening. Machine listen-
ing is the computational modeling of the human hearing. 
In that sense, a computational model for MER in experi-
mental music can be useful to design a machine listening 
algorithm for a MuMe system. Moreover, we can use 
computational MER models in the analysis of experi-
mental music works. Also, we can design mood enabled 
recommendation systems for experimental music albums 
using a MER model for experimental music.  

Still, MER has several challenges. First, music percep-
tion can be dramatically different if listeners are from dif-
ferent regions of the world and have various unique cul-
tural backgrounds [5,18]. Second, it is difficult for re-
searchers to collect ground truth data to cover a wide 
range of population that well distributed in different parts 
of the world [5]. Third, in the previous studies, research-
ers designed listening tests that asked participants to an-
notate the music pieces by rating their emotion perception 
of the music pieces [41,49]. However, the cognitive load 
of rating emotion is heavy for participants [9]. This 
causes the low-reliability of the annotations [19,44]. 
Fourth, the level of participant’s agreement on the emo-
tion of a music clip varies because the perception of mu-
sic is subjective. Even for one individual, the ratings can 
change during a day [49]. Fifth, in the case of experi-
mental music emotion recognition, there is no annotated 
dataset available. The current MIREX MER task is the 
case of pop music emotion recognition. 

To overcome these difficulties, we designed a ranking-
based experiment to collect ground truth annotations 
based on a crowdsourcing method. Crowdsourcing meth-
od is to elicit a large amount of data from a large group of 
people from online communities [8]. Our ground truth 
annotations were gathered from 823 annotators from 66 
countries, which covers diverse cultural backgrounds. 
Then, to reduce the cognitive load, we used a ranking-
based method to ask participants to do pairwise compari-
sons between experimental music clips. The ranking 
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based approach only needs relative comparisons instead 
of absolute ratings. This improves the objectiveness of 
the ground truth data. We applied the Quicksort algorithm 
to select comparisons during the data collection stage to 
reduce the workload (see Section 4.1). Then, we proposed 
a SRSVM method and compared it with other ranking 
algorithms. The results show that SRSVM is better than 
four other ranking algorithms regarding experimental 
music emotion recognition.  

The database, containing the 140 music clips and the 
annotations, can be freely downloaded at 
http://metacreation.net/project/emusic/. We believe that 
public release of such a dataset will foster research in the 
field and benefit MER communities. The main contribu-
tions of this paper are thus four-fold:  
• We provide a music corpus, EMusic. The corpus 

includes 100 experimental music clips and 40 
mainstream music clips. 

• We use a crowdsourcing method to collect the 
pairwise ranking data for experimental music clips, 
and share an annotated experimental music dataset. 

• We proposed the SRSVM method for experimental 
music emotion recognition and compared our ap-
proach with other ranking algorithms. 

• We compared the annotations of experimental mu-
sic with that of other music genres.  

2. RELATED WORKS 

The Music Information Research Evaluation eXchange 
(MIREX) community evaluates systems for Audio Music 
Mood Classification every year. Studies have been classi-
fied into two major categories based on the model of 
emotion: categorical and dimensional approaches.  

2.1 Categorical Approaches in MER 

Categorical MER approaches use discrete affect models 
to estimate emotion. Discrete affect models propose that 
we can describe all emotions using a set of basic emo-
tions. These basic emotion categories are happiness, sad-
ness, fear, anger and disgust [22, 33], shame, embarrass-
ment, contempt and guilt [3], as well as exuberance, anx-
ious/frantic and contentment [32]. There is still no con-
sensus on the discrete emotion categories of music [32].  

In the previous studies with categorical MER ap-
proaches, researchers conducted experiments to collect 
the ground truth annotations. Then, researchers used the 
audio features of music clips with classification methods 
to model the relationship between audio features and 
emotion categories [23, 45, 46]. 

2.2 Dimensional Approaches in MER 

Dimensional affect models use a Cartesian space with 
continuous dimensions to represent emotions [7,14,40,48]. 
The simplest dimensional affect model has two dimen-
sions: valence and arousal. Other dimensional affect 
models with additional dimensional such as tension, po-
tency, and dominance have also been proposed in the lit-
erature [32]. MER studies use dimensional affect models 
to compute continuous values that represent the emotion 
of audio samples. These studies focus on continuous ma-

chine learning models such as regression models. Re-
searchers gather the ground truth data by conducting an 
evaluation experiment in which the participants label the 
emotion music clips on a dimensional affect grid.  

2.3 Rating or Ranking 

Affective ratings instruments have been used for collect-
ing affective annotations. Researchers have used such 
tools in video emotion recognition [27, 30], music emo-
tion recognition [11], speech emotion recognition [35], 
soundscape emotion recognition [20] and movement 
emotion recognition [43]. However, recent studies show 
that rating based experiments have limitations and fun-
damental flaws [13]. Rating-based experiments neglect 
the existence of interpersonal differences on the rating 
process. In addition, rating emotion in a continuum is dif-
ficult because annotators tend to score the samples based 
on the previous ratings instead of their non-biased feel-
ings [44]. Yang and Lee indicated that the rating-based 
approach imposes a heavy cognitive load on the subjects 
[48]. Moreover, the contextual situation of annotators can 
affect the consistency of ratings [12]. 

Ranking has been an alternative approach for eliciting 
responses from subjects [9, 39, 48]. Metallinou and Na-
rayanan found that there is a higher Inter-annotator relia-
bility when people were asked to describe emotions in 
relative terms rather than in absolute terms [2]. Yannaka-
kis et al. also showed that the inter-rater agreement of the 
ordinal data is significantly higher than that of the nomi-
nal data [12].  

Yang and Chen designed a ranking-based experiment 
to collect ground truth data and build a ranking model 
recognize the perceived emotion of pop music [9]. The 
result showed that the ranking-based approach simplifies 
the annotation process and enhances the Inter-annotator 
reliability. Hence, we designed a ranking-based method 
to for experimental music emotion recognition, where 
annotators made pairwise comparisons between two au-
dio clips based on valence and arousal. 

2.4 Emotion Taxonomy 

According to previous studies [1, 24], two types of emo-
tions are at play when listening to music. 
• Perceived emotion: Emotions that are communicat-

ed by the source. 
• Induced emotion: Emotional reaction that the 

source provokes in listeners. 

The perceived emotion is more abstract and objective. It 
is the emotion the source conveys. The perceived emotion 
of happy songs is always “happy”. However, the induced 
emotion is more subjective. The same happy music may 
not necessarily induce happiness in the listener. In this 
study, we focus on the perceived emotion of music clips 
because it is more objective. 

3. DATA COLLECTION 

To build a MER system for experimental music, we first 
built an experimental music corpus: EMusic. Then, we 
collected emotion annotations using a crowdsourcing 
method.   
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3.1 Corpus Construction 

In EMusic corpus, there are 100 experimental music clips 
and 40 music clips from 8 musical genres, including 
blues, classical, country, electronic, folk, jazz, pop and 
rock. The 100 experiment music clips are extracted from 
29 experimental music pieces, which are high quality 
works of Electroacoustic music. The 40 music clips are 
selected from 1000 songs database [29]. We segmented 
these compositions using multi-granular novelty segmen-
tation [31] provided in the MIRToolbox [32]. Using this 
automatic segmentation method, we ensure that each 
segment is consistent. Then, we manually chose novel 
clips to create a homogeneous and consistent corpus that 
would not disturb the listeners. A 0.1 seconds fade in/out 
effect has been added to each audio clip. 

Music clips are converted to a format in wav (44100 
Hz sampling frequency, 32 bits precision and mono 
channel). All the audio samples are normalized. Regard-
ing the duration, Xiao et al. [50] showed that the use of 
six to eight seconds is good for presenting stable mood 
for classical music segments. Fan et al. [19] indicated that 
the duration of six seconds is long enough for soundscape 
emotion recognition. Following the previous study, we 
aimed for the average duration of 6 seconds in this exper-
iment (Mean: 6.20s, Std: 1.55s). The duration of clips 
varies because of the automatic segmentation by novelty.  

3.2 Select Comparisons 

To create a robust set of annotations, we need multiple 
annotations per pairwise comparison of audio clips. 
Baveyes et al. [44] found that collecting three annotations 
per comparison is a good compromise between the cost 
and the accuracy of the experiment. Therefore, we follow 
this approach for its feasibility within our experiment. 

To efficiently create pairwise comparisons presented 
to the listeners, we use a Quicksort algorithm [44]. For 
the first iteration of the algorithm, we select one audio 
sample as the pivot. All remaining clips are to be com-
pared with the pivot so that the algorithm generates 139 
comparisons. We then collect three annotations for each 
comparison and determine the result to be the one that 
provided by at least two annotators. In the case that we 
did not select a pivot that has the lowest or the highest 
valence or arousal, we end up with two separate sets after 
the first iteration. Therefore we repeatedly select a new 
pivot in each set until each audio clip received a rank of 
valence and a rank of arousal from 1 to 140. The compu-
tational complexity of the Quicksort algorithm is 
O(NlogN). 

3.3 Online Experiment 
We conduct an online experiment to annotate our corpus 
of experimental music clips with affective labels. We 
used the CrowdFlower1 platform to crowd source annota-
tions from people online. To sort the 140 music clips 
based on valence and arousal independently, we launched 
one task for valence and another task for arousal. 

                                                             
1 https://www.crowdflower.com/ 

 

  

 

Figure 1. The interface of crowdsourcing study. 

At the beginning of the annotation process, subjects 
are provided with the terminology of arousal and v                
dalence. In our experiment, we used valence to describe 
perceived  
pleasantness of the sound. We provided subjects with the 
Self-Assessment Manikin [28] at the beginning of the 
task to make sure the task was understood. The Self-
Assessment Manikin is a pictorial system used in experi-
ments to represent emotional valence and arousal axes. Its 
non-verbal design makes it easy to use regardless of age, 
educational or cultural background. We modified the pic-
torial system by adding arrows to inform annotators that 
we were collecting perceived emotion. 

We requested annotators to follow a tutorial to get fa-
miliar with the annotation interface. Annotators were no-
tified that they were required to use headphones to listen 
to the audio clips. We asked them to turn the volume up 
to a comfortable level given a test signal. Annotators 
were then presented with a quiz, where 5 gold standard 
comparisons were provided. These comparisons were 
easily comparable regarding valence and arousal, which 
were carefully selected by experts. The annotators could 
continue to the task only if they achieve an 80% of accu-
racy in the quiz. 

To ensure the quality of the annotations, we tracked 
annotators’ performance by inserting gold standard com-
parisons throughout the tasks. Similar to the comparisons 
in the quiz, these 5 comparisons were easily comparable 
regarding valence and arousal. If their answers were not 
the same as the default answer, they would be noticed by 
a pop out window. If they had strong reason to explain 
their answer, they could message the reason to us. This 
also affects annotators’ reputation on the CrowdFlower. 
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Annotators could listen repeatedly to an audio clip. Af-
ter an annotator had listened to both audio clips, the op-
tion to enter the response was presented in the form of an 
input button. For easing the fatigue that increases natural-
ly during manual data annotation [2], they could pause 
the annotation process at any time and continue at a later 
stage. The volume control bar was disabled so that anno-
tators could not adjust the individual volumes themselves. 
An annotator had to rank 5 pairs of clips before being 
paid US$0.05 and was able to exit the task at any time.  

3.4 Annotation Results 

A total of 823 annotators performed the task from 66 dif-
ferent countries. Most of the workers are Venezuelans 
(31.71%), Brazilian (6.93%), Serbian (6.44%), Russian 
(5.95%) and Bosnians (5.10%). The annotators were from 
the world population and it is unlikely they have a back-
ground in experimental music. This avoids the potential 
bias brought by experts.  

Each pair was displayed to annotators until three anno-
tations are collected for this pair. 823 annotators provided 
2817 comparisons for arousal and 2445 comparisons for 
valence. The 823 trusted annotators had an average accu-
racy of 91.81% in the quiz. Annotators took approximate-
ly 13s to perform a task. This also proves that annotators 
carefully listened to both music clips.   

 
Categories Arousal Valence 

Percent Agreement 0.839 0.801 
Krippendorff’s 𝛼 0.360 0.222 

Table 1. Inter-annotator reliability. 

We evaluate the Inter-annotator reliability based on 
percent agreement and Krippendorff’s 𝛼. Percent agree-
ment calculates the ratio between the number of annota-
tions that are in agreement and the total number of anno-
tations. However, percent agreement overestimates inter-
annotator reliability because it does not consider the 
agreement expected by chance. Krippendorff’s 𝛼 is more 
flexible and allows missing data (comparisons can be an-
notated by any number of workers). Thus, no compari-
sons are discarded to compute this measure. Their values 
can range from 0 to 1 for Percent agreement and from -1 
to 1 for Krippendorff’s alpha.  

In Table 1, the inter-annotator reliability is similar to 
other emotion studies [30, 44]. The percent agreement 
indicates that annotators agreed on 83.9% and 80.1% of 
comparisons. The value of Krippendorff’s 𝛼 is between 
0.21 to 0.40, which indicates a fair level of agreement.  

4. LEARN TO RANK 

4.1 Standard Ranking Algorithms 
The state-of-the-art ranking algorithms can be three cate-
gories: the pointwise approach [42], the pairwise ap-
proach [36] and the listwise approach [10]. The pointwise 
approach learns the score of the samples directly. The 
pointwise approach takes one train sample at a time and 
trains a classifier/regressor based on the loss of the single 
sample. The pairwise approach solves the ranking prob-
lems by using a pair of samples to train and provides an 

optimal ordering for the pair. Listwise methods try to 
minimize the listwise loss by evaluating the whole rank-
ing list. Each ranking algorithm assigns a ranking score to 
each sample, and rank the sample based on the score.  

In the following, we introduce five ranking algorithms: 
ListNet, Coordinate Ascent, RankNet, RankBoost and 
RankSVM. ListNet is a listwise ranking algorithm [10], 
which uses neural networks to predict the ranking score. 
The algorithm calculates the probability of the sample 
ranking within top-k, and computes the difference be-
tween the probability distribution of predicted ranks and 
ground truth data based on cross entropy. Coordinate As-
cent algorithm is a gradient-based listwise method for 
multi-variate optimization [16]. It directly optimizes the 
mean of the average precision scores for each ranking. 
RankNet is a pairwise ranking algorithm, which predicts 
the ranking probability of a pair of samples <A, B>. If 
sample A receives a higher ranking score than that of 
sample B, then the object probability 𝑃!" equals 1, oth-
erwise, 𝑃!" equals 0. The loss function of RankNet is the 
cross-entropy between the predicted probability and the 
object probability. RankBoost is another pairwise ranking 
algorithm [47]. It replaces training samples with pairs of 
samples to learn the association between samples. 
RankSVM is a common pairwise method extended from 
support vector machines [36]. The difference between 
features vectors of a pair of training samples can be trans-
formed to a new feature vector to represent the pair. 
RankSVM converts a ranking task to a classification task. 

4.2 Searching Strategies 

Given a test sample, a ranking model provides a ranking 
score regarding valence/arousal. A ranking score is a real 
number. To obtain the predicted rank of the test sample 
based on the ranking score, we used two search strategies: 
one-by-one search and smoothed binary search.  

4.2.1 One-by-One Search 

First, we obtain predicted ranking scores of the entire 
training set and the test sample. Then, we sorted all clips 
by ranking score to obtain the predicted ranking of the 
test sample. Ties are unlikely to happen since we set the 
value of the score retains 6 digits after the decimal point.  

4.2.2 Smoothed Binary Search 
Smoothed binary search compares the ranking score of a 
test sample with the ranking scores of pivots selected 
from the training set to find the rankings of a test sample 
along the valence/arousal axis. We add a smoothed win-
dow to traditional binary by selecting a group of pivots 
instead of one pivot. Following is the description of the 
smoothed binary search: 
• Given a test sample, pick an odd number of clips 

from the training set that are consecutive on the va-
lence/arousal axis as pivots. The odd number of 
clips avoids the ties. The group of pivots has the 
medium value of valence/arousal among the subset.  

• Predict the ranking score for the group of pivots 
and the test sample, and compare their ranking 
score. The test sample with a score of less than half 
of the pivots comes before the pivots, while the test 
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sample with a score greater than half of the pivots 
comes after pivots.  

• Recursively apply the above steps until the size of 
subsets is 2. The average ranking of these two train-
ing samples is the predicted rankings. 

4.3 SRSVM 

We propose the SRSVM for experimental music emotion 
recognition. The training of SRSVM is the same as 
standard RankSVM. During the testing/ranking stage, 
SRSVM finds the predicted ranking of the test sample 
based on the smoothed binary search.  

5. PERFORMANCE ANALYSIS 

5.1 Features Selection 

We began with a feature set including rms, brightness, 
loudness, spectral slope, spectral flux, spectral rolloff, 
attack leap, regularity, pulse clarity, hcdf, inharmonicity, 
perceptual sharpness, pitch, key, tempo, and 12 MFCCs. 
We used 23-ms analysis windows and calculated the 
mean and standard deviation to represents signals as the 
long-term statistical distribution of local spectral features, 
which ended up with a 56-dimension feature vector [21].  
We used MIRToolbox [32] and YAAFE [4] libraries to 
extract audio features.  

 
Selected Features 
Mean of Root Mean Square  
Standard deviation of Root Mean Square 
Standard deviation of Brightness 
Mean of MFCC 1 
Standard deviation of MFCC 2 
Standard deviation of MFCC 8 
Mean of MFCC 12 
Mean of Hcdf 
Mean of Loudness 
Standard deviation of Loudness  
Mean of Regularity 

Table 2. Selected features for predicting valence/arousal  
 
Before training the model, we build a feature selector 

that removes all low-variance features over the entire 
corpus to select a subset of discriminative features. The 
threshold of variance is 0.02, which is chosen as a heuris-
tic value. This step kept 43 features out of 56 features. 
Then, we used a random forests method, which has ten 
randomized decision trees to evaluate the importance of 
features based on the Gini impurity index. We ended up 
having an 11-dimensional feature vector (see Table. 2). 
Because our dataset includes 100 experimental music 
clips and 40 clips belong to other genres, we tested the 
ranking algorithms using the whole dataset and the subset 
of experiment music separately.  

5.2 Comparing with Ranking Algorithms 

We evaluate the ranking algorithms of experimental MER 
using Goodman-Kruskal gamma (G). Goodman-Kruskal 
gamma measures the association between the predicted 
rankings and the ground truth annotations [37, 38]. G de-

pends on two measures: the number of pairs of cases 
ranked in the same order on both variables (number of 
concordant, 𝑁!) and the number of pairs of cases ranked 
in reversed order on both variables (number of discordant, 
𝑁!). G ignores ties. In our experiment, we had no ties. G 
is close to 1 indicate strong agreement, -1 for total disa-
greement, and 0 if the rankings are independent. 

G =
NS − ND

NS + ND

                                   (1) 

We used the leave-one-out validation method to com-
pare the SRSVM with ListNet, RankNet, Coordinate As-
cent, and RankBoost. For a given test sample, ranking 
algorithms output a predicted valence/arousal score. To 
obtain the predicted rankings of the whole test set, we 
used one-by-one searching strategy and smoothed binary 
search strategy. Then, we measured the gamma between 
the predicted rankings and the ground truth annotation. 

As we can see from Table 3, when we use SRSVM, 
we obtain the best performance when the windows size is 
three samples (G: 0.733, p < 0.001). When the window 
size is 1, the test sample will be compared with one pivot 
iteratively until it falls into a small interval. This becomes 
a standard binary search. After adding a smoothed win-
dow, the test sample is compared with a group of pivots. 
This increases the accuracy of predicting whether the test 
sample is larger or smaller than the pivots. 

 

Algorithm 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.044 0.088 0.057 0.022 

RankNet 0.096 0.386 0.269 0.255 
Coordinate 

Ascent 0.191 0.436 0.387 0.486 

Rank-
Boost 0.619 0.679 0.697 0.717 

RankSVM 0.398 0.690 0.733 
SRSVM 

0.697 
SRSVM 

Table 3. Goodman-Kruskal gamma of ranking algorithms 
for arousal recognition using the whole dataset 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet   0.015 0.002 0.049 0.002 

RankNet 0.063 0.155 0.055 0.260 
Coordinate 

Ascent 0.016 0.130 0.195 0.254 

Rank-
Boost 0.438 0.467 0.345 0.440 

RankSVM 0.333 0.490 0.573 
SRSVM 

0.556 
SRSVM 

Table 4. Goodman-Kruskal gamma of ranking algorithms 
for valence recognition using the whole dataset 
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When using the whole dataset, the valence recognition 
is harder than arousal recognition. However, the SRSVM 
still obtains the best performance (G: 0.573, p < 0.001). 
 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.001 0.037 -0.013 0.013 

RankNet 0.110 0.096 0.242 0.299 
Coordinate 

Ascent 0.237 0.515 0.519 0.556 

Rank-
Boost 0.698 0.741 0.740 0.748 

RankSVM 0.300 0.776 0.801 
SRSVM 

0.776 
SRSVM 

Table 5. Goodman-Kruskal gamma of ranking algorithms 
for arousal recognition using the subset that only contains 
experimental music clips.    

As Table 5 shows, when we only consider experi-
mental music, the Gamma statistic of SRSVM for arousal 
recognition has the best result (G: 0.801, p < 0.001). The 
results of the experimental music case are better than the 
results of the case including clips of all genres.  

 

Method 
One-

by-One 
Search 

Smoothed Binary Search 
 (Number of samples) 

1 3 5 

ListNet 0.115 0.037 -0.012 0.036 
RankNet 0.058 0.116 0.246 0.277 

Coordinate 
Ascent 0.067 0.100 0.131 0.106 

Rank-
Boost 0.167 0.236 0.279 0.346 

RankSVM 0.434 0.570 0.795 
SRSVM 

0.628 
SRSVM 

Table 6. Goodman-Kruskal gamma of ranking algorithms 
for valence recognition using the subset that only contains 
experimental music clips.     

Table 6 shows that when we only consider experi-
mental music, the Gamma statistic of SRSVM for va-
lence recognition (G: 0.795, p < 0.001) is significantly 
higher than using the whole dataset.  

From Table 3-6, we can see the best performing model 
is SRSVM with 3 samples as the smoothed window. The 
second best performing model is SRSVM with 5 samples 
as the smoothed window. This result implies that a good 
emotion-recognition can be obtained by using SRSVM. 

5.3 Comparing between Experimental Music and 
Other Genres 

We convert the rankings to ratings to visualize the distri-
bution of the ranking data. This illustration has two as-
sumptions. First, the distances between two successive 
rankings are equal. Second, the valence and arousal are in 
the range of [-1.0, 1.0]. 

 

Figure 2. The distribution of the ground truth annota-
tions, the green dots represent experimental music clips 

From Figure 2, it can be observed that other genres 
have both higher perceived valence and arousal compar-
ing to experimental music. Because we have only 5 sam-
ples per genre, we need to have a large ground truth da-
taset to prove that assumption. The figure also shows the 
negative correlation between valence and arousal of ex-
perimental music clips. To test this, we run a Pearson cor-
relation test on the ground truth data. Our Pearson corre-
lation coefficient is -0.3261, which indicates there is a 
weak negative correlation between the two dimensions. 

6. CONCLUSIONS AND FUTURE WORKS 

We present an annotated dataset for experimental music 
emotion recognition. 140 music clips are ranked along the 
valence and arousal axis through a listening experiment. 
It is available at http://metacreation.net/project/emusic/.  
We presented a SRSVM method to predict rankings of 
experimental music clips regarding valence/arousal and 
compared SRSVM with other ranking method. We also 
compared the valence and arousal of experimental music 
with that of the music of other genres, which shows other 
genres of music have both higher perceived valence and 
arousal than experimental music. 

Even with the smaller number of clips, we found other 
genres have both higher perceived valence and arousal 
comparing to experimental music. In the future, we plan 
to compare the perceived emotion of different genres by 
collecting a larger dataset.  

7. REFERENCES 

[1] A. Kawakami, K. Furukawa, K. Katahira and K. 
Okanoya, “Sad music induces pleasant emotion,” 
Front Psychol Vol. 4, No. 311, 2013. 

[2] A. Metallinou and S. Narayanan, “Annotation and 
processing of continuous emotional attributes: chal-
lenges and opportunities,” IEEE International Con-
ference and Workshops on Automatic Face and Ges-
ture Recognition, pp. 1–8, 2013. 

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 373



  
 
[3] A. Ortony and T. J. Turner, “What’s basic about 

basic emotions?” Psychological review. Vol. 97, No. 
3, pp. 315-331, 2014. 

[4] B. Mathieu, S. Essid, T. Fillon, J. Prado, and G. 
Richard, “Yaafe, an Easy to Use and Efficient Audio 
Feature Extraction Software,” Proceedings of the 
International Symposium on Music Information 
Retrieval, pp. 441–446. 2010. 

[5] C. J. Stevens, “Music perception and cognition: A 
review of recent cross-cultural research,” Topics in 
Cognitive Science, Vol. 4, No. 4, pp. 653– 667, 2012. 

[6] C. Palombini, “Pierre Schaeffer. 1953: Towards an 
Experimental Music,” Music and Letters, Vol. 74, 
No. 4, pp. 542–57, 1993.  

[7] D. Liu, L. Lu, and H.-J. Zhang, “Automatic mood 
detection from acoustic music data,” Proceedings of 
the International Symposium Music Information 
Retrieval,, pp. 81–87, 2003. 

[8] D. McDuff, “Crowdsourcing affective responses for 
predicting media effectiveness,” Ph.D. Dissertation. 
Massachusetts Institute of Technology, 2014.  

[9] D. Yang and W.-S. Lee, “Disambiguating music 
emotion using software agents,” Proceedings of the 
International Conference on Music Information 
Retrieval, 2004.  

[10] F. Xia, T.-Y. Liu, J. Wang, W.-S. Zhang, and H. Li, 
“Listwise approach to learning to rank: Theory and 
algorithm,” Proceedings of the IEEE International 
Conference on Machine. Learning, pp. 1192–1199, 
2008. 

[11] F. Weninger, F. Eyben, and B. Schuller, “On-line 
continuous-time music mood regression with deep 
recurrent neural networks,” Proceedings of the IEEE 
International Conference Acoustics, Speech and 
Signal Processing, 2014. 

[12] G. N. Yannakakis and H. P. Matínez, “Grounding 
Truth via Ordinal Annotation,” Proceedings of the 
International Conference on Affective Computing 
and Intelligent Interaction, 2015.  

[13] G. N. Yannakakis, H. P. Mart´ınez, “Ratings are 
overrated!” Frontiers on Human-Media Interaction, 
Vol. 2, No. 13, 2015. 

[14] J. A. Sloboda and P. N. Juslin, “Psychological 
perspectives on music and emotion,” in Music and 
Emotion: Theory and Research, Oxford University 
Press, 2001.  

[15] J. Cage, Silence: Lectures and Writings, Wesleyan, 
1961. 

[16] J. Chen, C. Xiong, and J. Callan, “An empirical 
study of learning to rank for entity search,” 
Proceedings of the International ACM SIGIR 

Conference on Research and Development in 
Information Retrieval, 2016. 

[17] J. Dermers, Listening through the Noise: The 
Aesthetics of Experimental Electronic Music, Oxford 
University Press, 2010. 

[18] J. Fan and M. Casey, “Study of Chinese and UK hit 
songs prediction,” Proceedings of the International 
Symposium on Computer Music Multidisciplinary 
Research, pp. 640–652, 2013. 

[19] J. Fan, M. Thorogood, P. Pasquier, “Automatic 
Soundscape Affect Recognition Using A 
Dimensional Approach,” Journal of the Audio 
Engineering Society, Vol. 64, No. 9, pp. 646–653, 
2016.  

[20] J. Fan, M. Thorogood, and P. Pasquier, “Automatic 
Recognition of Eventfulness and Pleasantness of 
Soundscape,” Proceedings of the 10th Audio Mostly, 
2015.  

[21] J. J. Aucouturier and B. Defreville, “Sounds like a 
park: A computational technique to recognize 
soundscapes holistically, without source 
identification,” Proceedings of the International 
Congress on Acoustics, pp. 621–626, 2009. 

[22] J. Panksepp: Affective Neuroscience: The  
Foundation of Human and Animal Emotions, Oxford 
University Press, 1998. 

[23] K. Bischoff, C. S. Firan, R. Paiu, W. Nejdl, C. 
Laurier, and M. Sordo, “Music mood and theme 
classification—a hybrid approach,” Proceedings of 
the International Conference on Music Information 
Retrieval, pp. 657-662, 2009. 

[24] K. Kallinen and N. Ravaja, N, “Emotion perceived 
and emotion felt: Same and different,” Musicae 
Scientiae, Vol. 5, No. 1, pp. 123-147, 2006. 

[25] K. Svore, L. Vanderwende, and C. Burges, 
“Enhancing single-document summarization by 
combining RankNet and third-party sources,” 
Proceedings of the Joint Conference on Empirical 
Methods in Natural Language Processing and 
Computational Natural Language Learning, pp. 
448–457, 2007. 

[26] L. A. Goodman and W. H. Kruskal, “Measures of 
Association for Cross Classifications,” Journal of 
the American Statistical Association. Vol. 49, No. 
268, pp-732–764, 1954.  

[27] L. Devillers, R. Cowie, J.-C. Martin, E. Douglas-
Cowie, S.  Abrilian, and M. McRorie, “Real life 
emotions in French and English TV video clips: an 
integrated annotation protocol combining continuous 
and discrete approaches,” Proceedings of the 
International conference on Language Resources 
and Evaluation, 2006.  

374 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



  
 
[28] M. M. Bradley and P. J. Lang, “Measuring emotion: 

the self- assessment manikin and the semantic dif-
ferential,” Journal of behavior therapy and experi-
mental psychiatry, Vol. 25, No. 1, pp. 49–59, 1994. 

[29] M. Soleymani, M. N. Caro, E. M. Schmidt, C.-Y. 
Sha, and Y.-H. Yang, “1000 songs for emotional 
analysis of music,” Proceedings of the 2nd ACM In-
ternational Workshop on Crowdsourcing for Multi-
media, pp. 1–6, 2013. 

[30] N. Malandrakis, A. Potamianos, G. Evangelopoulos, 
and A. Zlatintsi, “A supervised approach to movie 
emotion tracking,” Proceedings of the IEEE Interna-
tional Conference Acoustics, Speech and Signal 
Processing, pp. 2376–2379, 2011 

[31] O. Lartillot, D. Cereghetti, K. Eliard, and D. 
Grandjean, “A simple, high-yield method for assess-
ing structural novelty,” Proceedings of the 3rd Inter-
national Conference on Music & Emotion, 2013 

[32] O. Lartillot, P. Toiviainen, and T. Eerola, “A Matlab 
Toolbox for Music Information Retrieval,” in: C. 
Preisach, H. Burkhardt, L. Schmidt-Thieme, P. D. R. 
Decker, (Eds), Data Analysis, Machine Learning 
and Applications. Studies in Classification, Data 
Analysis, and Knowledge Organization, pp. 261–268, 
Springer, Berlin, Heidelberg, 2008.  

[33] P. Ekman, “An argument for basic emotions,” 
Cognition and Emotion. Vol. 6, No. 3, pp.169–200, 
1992. 

[34] P. Pasquier, A. Eigenfeldt, O. Bown, and S. Dubnov, 
“An Introduction to Musical Metacreation,” ACM 
Computers In Entertainment, Special Issue: Musical 
Metacreation, Vol. 14, No. 2, 2016.  

[35] R. Elbarougy and M. Akagi, “Speech Emotion 
Recognition System Based on a Dimensional 
Approach Using a Three-Layered Model,” 
Proceedings of the Signal & Information Processing 
Association Annual Summit and Conference, 2012. 

[36] R. Herbrich, T. Graepel, and K. Obermayer, 
“Support vector learning for ordinal regression,” 
Proceedings of International Conference on. 
Artificial Neural Network, 1999. 

[37] R. Morris, “Crowdsourcing workshop: The 
emergence of affective crowdsourcing,” 
Proceedings of the Annual Conference Extended 
Abstracts on Human Factors in Computing Systems, 
2011. 

[38] R. Morris and D. McDuff, “Crowdsourcing 
techniques for affective computing,” in R.A. Calvo, 
S.K. DMello, J. Gratch and A. Kappas (Eds). 
Handbook of Affective Computing, Oxford 
University Press, 2014.  

[39] S. Ovadia, “Ratings and rankings: Reconsidering the 
structure of values and their measurement,” 
International Journal of Social Research 
Methodology, Vol. 7, No. 5, pp. 403–414, 2004. 

[40] T. Eerola, O. Lartillot, and P. Toiviainen, 
“Prediction of multidimensional emotional ratings in 
music from audio using multivariate regression 
models,” Proceedings of the International 
Symposium Music Information Retrieval, pp. 621–
626, 2009. 

[41] T. Eerola, Tuomas, and J. K. Vuoskoski. “A Review 
of Music and Emotion Studies: Approaches, 
Emotion Models, and Stimuli,” Music Perception: 
An Interdisciplinary Journal, Vol. 30, No. 3, pp. 
307–340, 2013.  

[42] T. Y. Liu, “The Pointwise Approach,” in Learning 
to rank for information retrieval. Berlin: Springer-
Verlag Berlin and Heidelberg GmbH & Co. K, 2011. 

[43] W. Li, P. Pasquier, “Automatic Affect Classification 
of Human Motion Capture Sequences in the 
Valence-Arousal Model,” Proceedings of the 
International Symposium on Movement and 
Computing, 2016. 

[44] Y. Baveye, E. Dellandrea, C. Chamaret, and L. Chen, 
“LIRIS-ACCEDE: A video database for affective 
content analysis,” IEEE Transactions on Affective 
Computing, Vol. 6, No. 1, pp. 43–55, 2015. 

[45] Y. Feng, Y. Zhuang, and Y. Pan, “Popular music 
retrieval by detecting mood,” Proceedings of the 
International Conference on Information Retrieval, 
pp. 375–376, 2013.   

[46] Y. E. Kim, E. M. Schmidt, R. Migneco, B. G. 
Morton, P. Richardson, J. Scott, J. A. Speck, and D.  
Turnbull, “Music emotion recognition: A state of the 
art review,” Proceedings of the International 
Conference on Music Information Retrieval, 2010. 

[47] Y. Freund, R. Iyer, R. Schapire, and Y. Singer, “An 
efficient boosting algorithm for combining 
preferences,” Proceedings of the International 
Conference on Machine Learning, pp. 170–178, 
1998. 

[48] Y.-H. Yang and H. Chen, “Ranking-based emotion 
recognition for music organization and retrieval,” 
IEEE Transactions on Audio, Speech, and Language 
Processing, Vol. 19, No. 4, pp. 762– 774, 2011.  

[49] Y.-H. Yang and H.-H. Chen, “Machine recognition 
of music emotion: A review,” ACM Trans. Intel. 
Systems & Technology, Vol. 3, No. 3, 2012. 

[50] Z. Xiao, E. Dellandrea, W. Dou, and L. Chen, “What 
is the best segment duration for music mood 
analysis?” Proceedings of the International 
Workshop on Content-Based Multimedia Indexing, 
pp. 17–24, 2008. 

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 375



SCALE- AND RHYTHM-AWARE MUSICAL NOTE ESTIMATION FOR
VOCAL F0 TRAJECTORIES BASED ON A SEMI-TATUM-SYNCHRONOUS

HIERARCHICAL HIDDEN SEMI-MARKOV MODEL

Ryo Nishikimi1 Eita Nakamura1 Masataka Goto2 Katsutoshi Itoyama1 Kazuyoshi Yoshii1,3
1Graduate School of Informatics, Kyoto University, Japan 3RIKEN AIP, Japan
2National Institute of Advanced Industrial Science and Technology (AIST), Japan

{nishikimi, enakamura, itoyama, yoshii}@sap.ist.i.kyoto-u.ac.jp, m.goto@aist.go.jp

ABSTRACT
This paper presents a statistical method that estimates a se-
quence of musical notes from a vocal F0 trajectory. Since
the onset times and F0s of sung notes are considerably de-
viated from the discrete tatums and pitches indicated in a
musical score, a score model is crucial for improving time-
frequency quantization of the F0s. We thus propose a hier-
archical hidden semi-Markov model (HHSMM) that com-
bines a score model representing the rhythms and pitches
of musical notes with musical scales with an F0 model rep-
resenting time-frequency deviations from a note sequence
specified by a score. In the score model, musical scales
are generated stochastically. Note pitches are then gener-
ated according to the scales and note onsets are generated
according to a Markov process defined on the tatum grid.
In the F0 model, onset deviations, smooth note-to-note F0
transitions, and F0 deviations are generated stochastically
and added to the note sequence. Given an F0 trajectory,
our method estimates the most likely sequence of musical
notes while giving more importance on the score model
than the F0 model. Experimental results showed that the
proposed method outperformed an HMM-based method
having no models of scales and rhythms.

1. INTRODUCTION

Singing voice analysis is important for music information
retrieval because a singing voice usually forms a large part
of the melody line of popular music, and provides much in-
formation about music. Singing voice analysis techniques
such as vocal F0 estimation [1,3,7,9,14] and singing voice
separation [8, 12] have actively been studied and applied
to singer identification [10, 22], karaoke generation [19],
query-by-humming [8], and active music listening [6]. To
leverage musical information conveyed by singing voices,
it is helpful to convert a vocal F0 trajectory to a musical
score containing only discrete symbols.

c⃝ Ryo Nishikimi, Eita Nakamura, Masataka Goto, Kat-
sutoshi Itoyama, Kazuyoshi Yoshii. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Ryo Nishikimi, Eita Nakamura, Masataka Goto, Katsutoshi Itoyama,
Kazuyoshi Yoshii. “Scale- and Rhythm-Aware Musical Note Estimation
for Vocal F0 Trajectories Based on a Semi-Tatum-Synchronous Hierar-
chical Hidden Semi-Markov Model”, 18th International Society for Mu-
sic Information Retrieval Conference, Suzhou, China, 2017.
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Figure 1: The generative process of a vocal F0 trajectory
based on a hierarchical hidden semi-Markov model involv-
ing a score model and an F0 model.

In this study, we tackle musical note estimation for vo-
cal F0 trajectories that tend to have large deviations from
original musical scores. The pitches and onset times of
musical notes in a musical score can take only discrete val-
ues, whereas an F0 trajectory is a continuous signal that
can dynamically and smoothly vary over time. F0 trajecto-
ries are modulated by vibrato and changes smoothly from
one note to another by a portamento. Naive time-frequency
quantization of an F0 trajectory therefore outputs a note se-
quence that often includes statistically-rare chromatic note
progressions with unlikely rhythms.

To solve this problem, we propose a statistical method
of scale- and rhythm-aware musical note estimation based
on integration of a score model describing the process of
generating a note sequence and an F0 model describing the
process of generating an F0 trajectory from the note se-
quence (Fig. 1). In the score model, a sequence of musical
scales (local keys) is determined by a Markov process and
the semitone-level pitch of each note is then determined ac-
cording to both a scale of the note position and the pitch of
a previous note. The onset position of each note on a tatum
grid is determined according to that of a previous note
to make rhythmic structures. In the F0 model, the time-
frequency deviations are added to a step-function-shaped
F0 trajectory corresponding to a musical score given by
the score model. The integrated model is thus formulated
as a hierarchical hidden semi-Markov model (HHSMM).
Given a vocal F0 trajectory with a tatum grid, the scales,
musical notes, and F0 deviations, which are all latent vari-
ables of the proposed model, are jointly estimated by us-

376



ing a Markov chain Monte Carlo algorithm. A key feature
of our method is that musical scales and rhythms work as
self-organizing constraints on time-frequency quantization
of vocal F0 trajectories.

2. RELATED WORK

In this section, we introduce related work on the analysis
of singing voices.

2.1 Vocal F0 Estimation for Music Audio Signals

Estimation of vocal F0 trajectories for music audio signals
has actively been studied [1, 3, 7, 9, 14], and the outputs
of these methods can be used as inputs of our method.
One of the most basic method is subharmonic summation
(SHS) [7] that calculates the sum of the harmonic compo-
nents of each candidate F0. Ikemiya et al. [9] improved
F0 estimation based on SHS and singing voice separation
based on robust principle component analysis (RPCA) [8]
by using the mutual dependency of those two tasks. Sala-
mon et al. [21] estimated contours of the melody F0 can-
didates by calculating a salience function and then recur-
sively removed contours which do not form a melody line
by using the characteristics of each contour. Durrieu et
al. [3] extracted a main melody by representing accompa-
niments with a model inspired by non-negative matrix fac-
torization (NMF) and leading voices with a source-filter
model. Mauch et al. [14] modified the YIN [1] in a prob-
abilistic way so that the modified system could determine
multiple candidate fundamental frequencies and then se-
lect one at each frame by using an HMM.

2.2 Musical Note Estimation for Singing Voices

Estimation of musical notes from sung melody has been
a hot research topic [6, 11, 13, 15, 17, 18, 20, 23]. A naive
method is to take the majority of vocal F0s in each interval
of a regular grid [6]. Paiva et al. [17] proposed a cascad-
ing method based on multipitch detection, multipitch tra-
jectory construction, segmentation of multipitch trajectory,
elimination of irrelevant notes, and extraction of notes that
form a main melody. Raphael [18] proposed an HMM-
based method that estimates pitches, rhythms, and tempos
when the number of notes is given. The rhythm and on-
set deviation models used in [18] are similar to those used
in our method. Laaksonen et al. [11] divided audio data
into segments corresponding to scales and notes by focus-
ing on the boundaries of chords given as input, and inde-
pendently estimated the notes based on a score function.
Ryynänen et al. [20] proposed a method based on a hierar-
chical HMM in order to capture the different kinds of vocal
fluctuations (e.g., vibrato and portamento) within one note.
In this model, the transition between pitches is represented
in the upper-level HMM and the transition between the
vocal fluctuations is represented in the lower-level HMM.
Molina et al. [15] focused on the hysteresis characteris-
tics of vocal F0s. Nishikimi et al. [16] proposed a method
based on an HHM that represents the generative process of
a vocal F0 trajectory considering the time and frequency
deviations. Yang et al. [23] proposed a method based on
a hierarchical HMM that represents the generative process

of the f0-∆f0 plane. Mauch et al. [13] developed a soft-
ware tool called Tony for extracting pitches. In this tool, a
vocal F0 trajectory is estimated by PYIN [14], and musical
notes are estimated by a modified version of Ryynänen’s
method [20].

3. PROPOSED METHOD

This section explains the proposed method of estimating a
sequence of musical notes from a vocal F0 trajectory. The
method is based on an HHSMM (Fig. 1) that stochastically
generates the F0 trajectory with time-frequency deviations
from a sequence of musical notes depending on musical
scales. The upper part of the proposed model is an HMM
that stochastically generates a sequence of musical notes
according to the scales that are assigned to bars. The lower
part is an HSMM that represents the musical notes and
temporal deviations as latent variables and the frequency
deviations as F0 emission probabilities.

3.1 Problem Specification

The problem we tackle is defined as follows:

Input: A vocal F0 trajectory X= {xt}Tt=1 and 16th-note-
level tatums Y = {(un, vn)}Nn=0,
Output: A sequence of notes Z= {zj=(pj , lj)}Jj=0,

where T is the number of frames in a vocal F0 trajectory, xt
is a log frequency at time t, and N is the number of 16th-
note-level tatums. un ∈ {1, . . ., T+1} is the time of tatum
n and the beginning and end of music are represented as
u0 = 1 and uN = T+1, respectively. vn ∈ {0, . . ., 15} is
the relative position of tatum n in a bar. J is the number of
musical notes estimated by proposed methods, and the j-th
note zj is represented as a pair consisting of an pitch pj ∈
{1, . . . ,K} and a note length lj ∈ {1, . . . , L} in the unit of
tatums, where K is the number of kinds of semitone-level
pitches, and pj indicates any one in {µ1, . . . , µK}, which
is a set of log frequencies corresponding to semitone-level
pitches. For convenience we introduce the initial note z0
that does not appear in the actual score.

3.2 Probabilistic Modeling of Musical Scores

This section describes the score model constructed with an
HMM that represents rhythms and pitches of musical notes
under musical scales.

3.2.1 Modeling Scale Transitions

Scales are represented as S = {sm}Mm=0, where M de-
notes the number of bars in the musical piece and sm de-
notes the scale at the m-th bar. For convenience, we intro-
duce the initial bar s0 to which the initial note z0 belongs.
Instead of fixing one scale for the whole piece, the scale
is allowed to change at bar lines. Each scale sm takes one
of the 24 values of {C,C#, · · · ,B}×{major, minor}. The
latent variables S are described by a Markov chain as

p(s0|π) = πs0 , (1)

p(sm|sm−1, ξsm−1
) = ξsm−1sm , (2)

where π∈R24
≥0 is a set of initial probabilities and ξs∈R24

≥0

is a set of transition probabilities.
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Figure 2: Overview of the score model.
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(a) Temporal deviations
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(b) Frequency deviations

Figure 3: Deviations in a vocal F0 trajectory.

3.2.2 Modeling Pitch Transitions

The sequence of pitches P is generated by a Markov chain
depending on scales S as follows (Fig. 2):

p(p0|s0,ϕs0) = ϕs0p0 , (3)

p(pj |pj−1, sm,ψsmpj−1
) = ψsmpj−1pj , (4)

where ϕs∈RK≥0 is a set of initial probabilities, ψsp∈RK≥0

is a set of transition probabilities, and m is the index of
a bar to which the note zj belongs. Moreover, ϕs0p0 and
ψsmpj−1pj are defined as

ϕs0p0 =
ϕ̂ŝ0deg(p0;s0)∑K
p=1 ϕ̂ŝ0deg(p;s0)

, (5)

ψsmpj−1pj =
ψ̂ŝmdeg(pj−1;sm)deg(pj ;sm)∑K
p=1 ψ̂ŝmdeg(pj−1;sm)deg(p;sm)

, (6)

where ŝ∈{major,minor} is the mode of scale s and deg(p;s)
∈{0, . . . , 11} is the degree of pitch p in scale s (defined as
the relative pitch class of p from the tonic of scale s). ϕ̂∗
and ψ̂∗ are the initial and transition probabilities of pitch
classes, given the scales.

3.2.3 Modeling Onset Transitions

Considering the transition between onset positions of adja-
cent notes, the model makes Z have the plausible rhythm.
Let rj−1∈{vn}Nn=1 be the onset position of the j-th note
zj . The transition probability is given by

p(rj |rj−1, ζrj−1
) = ζrj−1rj , (7)

where the distance between rj−1 and rj indicates the note
value lj of note zj . We assume that r0 = v0 and rJ = vN .

3.3 Probabilistic Modeling of F0 Trajectories

The section describes the F0 model based on an HSMM
that represents the generative process of a vocal F0 trajec-
tory. In our model, the pitches, onsets, and temporal devia-
tions are represented as latent variables, and the frequency
deviations are represented as emission probabilities.
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Figure 4: The black bold line represents a sequence of the
location parameters of the Cauchy distributions.

3.3.1 Modeling Temporal Deviations

We assume that vocal F0 trajectories include the following
two types of temporal deviations (Fig. 3a):

Onset deviation: the gap between the vocal onset time
and the note onset time.

F0 transitional duration: the time it takes for singing
voices to finish transitioning from one pitch to the next.

The onset deviationsG = {gj}Jj=0 accompanying with
Z are represented as discrete latent variables. Each gj can
take an integer value between −G andG. As with the onset
position model, gj−1 denotes the onset deviation of note
zj . We assume that each gj is independently generated by

p(gj |ρ) = ρgj , (8)

where ρ ∈ R2G+1
≥0 is a set of onset deviation probabilities.

We assume that there are no deviations for the onset of the
first note and the offset of the last note, i.e., g0 = gJ = 0.

The F0 transitional durations D = {dj}Jj=1 accompa-
nying with Z are also represented as discrete latent vari-
ables. Each dj can take a value from 1 to D. The con-
tinuous transition of vocal F0s between notes zj−1 and zj
is represented by a slanted line spanning dj frames. We
assume that each dj is independently generated as follows:

p(dj |η) = ηdj , (9)

where η ∈ RD≥0 is a set of duration probabilities.

3.3.2 Modeling Frequency Deviations

The vocal F0 trajectory X = {xt}Tt=1 is generated by im-
parting probabilistic frequency deviations to the sequence
of notes to which probabilistic temporal deviations have
already been imparted (Fig. 3b). Assuming that xt is inde-
pendently generated at each frame, the emission probabil-
ity of the j-th note zj is given by

p(xτj−1:τj−1|pj−1, pj , lj , gj−1, gj , dj , µ̂t, λ)

=

τj−1∏
t=τj−1

{δxt,voicedCauchy(xt|µ̂t, λ) + δxt,unvoiced}

= epj−1pj ljgj−1gjdj , (10)

where xτ ′:τ−1 indicates xτ ′ , . . . , xτ−1, λ is a scale param-
eter that represents the scale of the frequency deviations, δ
is Kronecker’s delta, and µ̂t (Fig. 4) is a location parameter
given by

µ̂t=

{µpj
−µpj−1

dj
(t−τj−1)+µpj−1

(τj−1≤t<τj+dj)
µpj (τj−1+dj≤t<τj)

. (11)

When the onset of note zj+1 is located at the n-th tatum,
τj = un + gj and τj−1 = un−lj + gj−1.
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Figure 5: The configuration of the hyperemarameter aϕ̂ŝ .

3.4 Prior Distributions
We put conjugate Dirichlet priors on categorical model pa-
rameters π, ξ, ϕ̂, ψ̂, ζ, ρ, and η as follows:

π ∼ Dirichlet
(
aπ

)
, ξs ∼ Dirichlet

(
aξs

)
,

ϕ̂ŝ ∼ Dirichlet
(
aϕ̂ŝ

)
, ψ̂ŝdeg(p;s)∼Dirichlet

(
aψ̂ŝdeg(p;s)

)
,

ζr ∼ Dirichlet
(
aζr

)
,

ρ ∼ Dirichlet
(
aρ

)
, η ∼ Dirichlet

(
aη

)
, (12)

where aπ∈R26
+ , aξs∈R26

+ , aϕ̂ŝ∈R12
+ , aψ̂ŝdeg(p;s)∈R

12
+ , aζr∈R16

+ ,

aρ∈R2G+1
+ , and aη∈RD+ are hyperparameters. The prob-

ability distribution over the 12 pitch classes under a scale
is estimated using the priors on the initial and transitional
probabilities of those classes. As illustrated in Fig. 5, we
set the hyperparameters aϕ̂ŝ and aψ̂ŝdeg(p;s) so that the prob-
ability distributions represent the diatonic scales, respec-
tively. Since the Cauchy distribution does not have a con-
jugate prior, we put a Gamma prior on λ as

λ ∼ Gamma
(
aλ0 , a

λ
1

)
, (13)

where aλ0 and aλ1 are shape and rate hyperparameters.

3.5 Bayesian Inference
Given an F0 trajectoryX , we aim to calculate the posterior
distribution p(Q,S,Θ|X), where Q = {P ,L,G,D}
(latent variables) and Θ = {π, ξ, ϕ̂, ψ̂, ζ,ρ,η} (model
parameters). Since this calculation is analytically intractab-
le, we use Markov chain Monte Carlo (MCMC) methods.
To get samples of the latent variables S and Q, forward
filtering-backward sampling algorithms are used. To get
samples of Θ except for λ, a set of parameters with con-
jugate priors, a Gibbs sampling algorithm is used. Since
there is no conjugate prior for the parameter λ, we use
the Metropolis-Hastings (MH) algorithm. Since S and Q
share the sequence of notesZ and are mutually dependent,
each variable is updated as follows:

1. Initialize notes Z with a majority-vote method.
2. Update the sequence of scales S based on given Z.
3. UpdateQ based on given S.
4. Update the model parameters Θ.
5. Return to 2.

3.5.1 Inferring Latent Variables S

Given the sequence of notes Z, each sm is sampled in ac-
cordance with the probability given by

βSsm = p(sm|sm+1:M ,Z), (14)

where sm+1:M represents sm+1, . . . , sM . The calculation
of Eq. (14) and sampling of scales S are performed by the
forward filtering-backward sampling method.

In forward filtering, we recursively calculate the proba-
bility αSsm as follows:

αSs0 = p(p0, s0) = p(p0|s0)p(s0) = ϕs0p0πs0 , (15)

αSsm = p(p0:jm+1−1, sm)

=

jm+1−1∏
j=jm

ψsmpj−1pj

∑
sm−1

ξsm−1smα
S
sm−1

, (16)

where jm is the index of the first note whose onset belongs
to the m-th bar. jm can be calculated from given note val-
ues L.

In backward sampling, Eq. (14) is calculated by using
the values calculated in forward filtering, and scales are
sampled recursively as follows:

βSsM = p(sM |Z) ∝ αSsM , (17)

βSsm = p(sm|sm+1:M ,Z) ∝ αSsmξsmsm+1 . (18)

3.5.2 Inferring Latent VariablesQ

The latent variables Q can be estimated in a way similar
to that in which the latent variables S are inferred. In
forward filtering, we recursively calculate the probability
αQpnln,gndn as follows:

αQp0l0g0d0 = p(p0|S) = ϕy0p0 , (19)

αQpnlngndn= p(x1:τn−1, pn, ln, gn, dn|S)

=



0 (ln>n)

ρgnηdnζr0rn
·
∑
p0
ψs1p0pnep0pnln0gndnα

Q
p0l0g0d0

(ln=n)∑
pn′ ,gn′

min(n′,L)∑
ln′

∑
dn′

ρgnηdnζrn′rnψsm(n′)pn′pn

· epn′pnlngn′gndnα
Q
pn′ ln′gn′dn′ (ln<n)

, (20)

where τn = un + gn, n′ = n− ln, and m(n′) is the index
of the bar that the n′-th tatum belongs to. pn, ln, gn, and
dn are the variables of forward messages that correspond
to the note whose offset position is at the n-th tatum un.
Note that these variables are different from j-indexed vari-
ables pj , lj , gj , and dj . Since the onset and offset times
of the note zn = (pn, ln) are respectively the (n−ln)-th
tatum and the n-th tatum, the probability p(ln) which ap-
pears in the recursive calculation of Eq. (20) is replaced by
p(rn|rn−ln).

In backward sampling, the posterior distribution of the
latent variables is calculated by using the values calculated
in forward filtering, and notes and temporal deviations are
sampled recursively as follows:

βpN lNgNdN = p(pN , lN , gN , dN |X,S) ∝ αQpN lNgNdN ,

βpn′ ln′gn′dn′

= p(pn′ , ln′ , gn′ , dn′ |pn:N , ln:N , gn:N , dn:N ,X)

∝


0 (ln>n)

epn′pnlngn′gndnψsm(n′)pn′pn

· ζrn′rnρgnηdnα
Q
pn′ ln′gn′dn′ (ln ≤ n)

. (21)

3.5.3 Learning Model Parameters Θ

The posterior distributions of the model parameters with
the prior distributions are calculated using S and Q ob-
tained in the backward sampling steps, and these parame-
ters are sampled according to the posterior distributions as
follows:

π∼Dirichlet
(
aπ+bπ

)
, ξs∼Dirichlet

(
aξs+b

ξ
s

)
, (22)
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ϕ̂ŝ∼Dirichlet
(
aϕ̂ŝ+b

ϕ̂
ŝ

)
, (23)

ψ̂ŝdeg(p;s)∼Dirichlet
(
aψ̂ŝdeg(p;s)+b

ψ̂
ŝdeg(p;s)

)
, (24)

ζr ∼Dirichlet
(
aζr+b

ζ
r

)
, (25)

ρ ∼Dirichlet
(
aρ+bρ

)
, η∼Dirichlet

(
aη+bη

)
, (26)

where bπ∈R26
≥0 is a unit vector whose s0-th element is 1.

bξs∈R26
≥0 is a vector whose s′-th element indicates the num-

ber of transitions between adjacent scales s and s′ in the se-
quence of latent variables Y . bρ∈R2G+1

≥0 is a vector whose
g-th element indicates the number of vocal onset devia-
tions of g in sampled Q, and bη∈RD≥0 is a vector whose
d-th element represents the number of F0 transitional du-
rations of d in sampledQ. bζr∈R16

≥0 is a vector whose r′-th
element represents the number of transitions between ad-
jacent note onset positions r and r′ in R= {rj}Jj=0 that
can be calculated from the note values L sampled in back-
ward sampling. Regarding the vector bϕ̂ŝ∈R12

>0, when the
scale of the initial bar and the pitch of the initial note are
s0 = s and p0 = p, the value of the element bϕ̂ŝdeg(p;s)
is 1, and the other elements are 0. Regarding the vector
bψ̂ŝdeg(p;s)∈R

12
≥0, the value of bψ̂ŝdeg(p;s)deg(p′;s) is increased

by one when there is a transition from a pitch p to a pitch
p′ under a scale s in the sampled latent variables.

To apply the MH sampling to the parameter λ, we define
a random-walk proposal distribution as follows:

q(λ∗|λ) = Gamma(γλ, γ), (27)

where λ∗ is a proposal, λ is the current sample, and γ is
a hyperparameter. The proposal λ∗ is accepted as the next
sample according to the probability given by

A(λ∗, λ) = min

{
L(λ∗)q(λ|λ∗)
L(λ)q(λ∗|λ)

}
, (28)

where L(λ) is the complete joint likelihood of λ given by

L(λ) = Gamma
(
λ|aλ0 , aλ1

) J∏
j=1

epj−1pj ljgj−1gjdj , (29)

{pj , lj , gj , dj}Jj=0 are the values sampled in the backward
sampling. The value of λ is updated by λ∗ only when the
value of A(λ∗, λ) is larger than a random number sampled
from the uniform distribution U(0, 1).

3.6 Viterbi Decoding

The sequence of latent variables S and Q are estimated
with the Viterbi algorithm with the model parameters that
maximize the joint distribution p(X,Q,S,Θ|Φ) in the
learning process. As in the inference of latent variables, we
initialize Z by the majority-vote method, S is estimated
based on Z, and then Q is estimated depending on the S
estimated in the previous step.

In the Viterbi decoding on scales S, the value ωSs is
recursively calculated as follows:

ωSs0= lnϕs0k0+ lnπs0 , (30)

ωSsm=

jm+1−1∑
j=jm

lnψsmpj−1pj+max
sm−1

{
ln ξsm−1sm+ω

S
sm−1

}
. (31)

In the recursive calculation of ωSs , the previous state sm−1

that maximizes the value of ωSsm is memorized as cSsm , and
the scales S are recursively estimated as follows:

sM = arg max
sM

αSsM , sm−1 = cSsm . (32)

In the Viterbi decoding on variables Q, the value ωQplgd
is recursively calculated as follows:

ωQp0l0g0d0 = wϕ lnϕs0p0 , (33)

ωQpnlngndn

=



− inf (ln>n)

wρ ln ρgn+wη ln ηdn+wζ ln ζrnr0

+maxp0

{
wψ lnψs1p0pn

+we ln ep0pnln0gndn + ωQp0l0g0d0

}
(ln=n)

wρ ln ρgn+wη ln ηdn+wζ ln ζrnrn′

+max(pn′ ,ln′ ,gn′ ,dn′ )

{
wψ lnψsm(n′)pn′pn

+we ln epn′pnlngn′gndn + ωQpn′ ln′gn′dn′

}
(ln<n)

,

(34)

where wϕ, wψ , wρ, wη , wζ , and we are the weight pa-
rameters that control the balance between probabilities. In
the recursive calculation of ωQplgd, the previous states pn′ ,
ln′ , gn′ , and dn′ which maximize the value of ωQpnlngndn
are memorized as cQpnlngndn , and the variablesQ are recur-
sively estimated as follows:

(pN , lN , gN , dN ) = arg max
pN ,lN ,gN ,dN

αQpN lNgNdN , (35)

(pn′ , ln′ , gn′ , dn′) = cQpnlngndn . (36)

4. EVALUATION

We report comparative experiments conducted to evaluate
the performance of the proposed method in musical note
estimation from vocal F0 trajectories.

4.1 Experimental Conditions

Among the 100 pieces of popular music in the RWC mu-
sic database [5], we used 63 pieces that do not include
32nd notes, triplets, harmonizing parts, and overlaps of ad-
jacent notes, which the proposed method cannot deal with.
The input F0 trajectories were obtained from the annota-
tion data [4] or automatically estimated by using the state-
of-the-art melody extraction method proposed in [9]. The
annotation data contain unvoiced regions and the estima-
tion data do not. The tatum times and onset positions were
obtained from the annotation data.

The Bayesian inference and Viterbi decoding were in-
dependently conducted for each song. The onset transi-
tion probabilities were learned in advance from a corpus
of rock music [2] without Bayesian learning. The hyper-
parameters were aπ=1, aξs=1, aζr=1, aρ = aη = aλ0 =
aλ1 = γ =1, where 1 and 1 respectively represent the ma-
trix and vector whose elements are all ones. The elements
of aϕ̂ŝ and aψ̂ŝdeg(p;s) corresponding to musical notes on the
scale of ŝ were 10 and the others were 1. The weight pa-
rameters of the Viterbi algorithm were empirically set as
wϕ = wψ = 29.4, wρ = 2.4, wη = 2.9, wζ = 48.5, and
we = 3.8. To obtain musically-consistent sequences of
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Model Input F0s Tatum level Note level

Proposed Ground-truth 72.4± 1.7 28.1± 2.1
method Estimated 68.7± 1.3 30.7± 1.8

With Ground-truth 71.5± 1.6 26.3± 2.1
only rhythms Estimated 67.7± 1.3 29.1± 1.8

With Ground-truth 67.8± 1.6 10.6± 1.2
only scales Estimated 65.6± 1.2 13.8± 1.1

Without scales Ground-truth 67.2± 1.5 9.8± 1.2
& rhythms Estimated 64.6± 1.2 12.9± 1.1

Majority vote Ground-truth 54.1± 1.5 20.1± 1.4
Estimated 61.0± 1.4 22.0± 1.5

HMM [16] Estimated 68.0± 1.2 14.8± 1.3

Table 1: Average matching rates [%] and their standard
errors in tatum and note levels.

musical notes, we put more emphasis on the score model
than the F0 model.

For comparison, we tested the majority-vote method as
a baseline and the latest conventional method based on
a semi-beat-synchronous HMM [16]. Since the conven-
tional method cannot deal with unvoiced regions in a vocal
F0 trajectory given as input, we only tested the method
for the estimation data. To evaluate the effectiveness of
the score model, we tested four versions of the proposed
method; a method that does not consider scales (scale tran-
sition probabilities) and rhythms (onset transition proba-
bilities), a method considering only scales, a method con-
sidering only rhythms, the full method considering both
scales and rhythms. To accelerate the inference, the search
range of pitches was limited around the pitches estimated
by the majority-vote method.

To evaluate the performance of each method, we cal-
culated tatum-level and note-level matching rates by com-
paring the estimated sequences of musical notes with the
ground-truth data. The tatum-level matching rate is the rate
of the number of tatum units whose pitches were estimated
correctly to the total number of tatum units whose pitches
exist in the ground-truth scores. The note-level match-
ing rate is the rate of the number of musical notes whose
pitches, onsets, and offsets were estimated correctly to the
total number of musical notes in the ground-truth scores.
If adjacent notes in the ground-truth scores have the same
pitch or are connected by a tie, those notes were regarded
as a single note. Since the compared method [16] outputs
a pitch in a 16th-note-wise manner, a sequence of the same
pitches was regarded as a single note.

4.2 Experimental Results

The experimental results are shown in Table 11 . The pro-
posed method outperformed the majority-vote method and
the conventional method in terms of both measures. Com-
paring the tatum-level matching rates obtained by the four
versions of the proposed method, we confirmed that the
score model improved the performance of musical note
estimation. The use of the onset transition probabilities

1 The results of music note estimation by the proposed method are
available online: http://sap.ist.i.kyoto-u.ac.jp/members/nishikimi/demo/
ismir2017/
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Figure 6: Musical scores estimated from a ground-truth F0
trajectory by the proposed method and its variant without
scale and rhythm constraints.

(rhythm constraints) was found to be more effective than
that of the scale transition probabilities (scale constraints).
Although the tatum-level matching rate obtained the pro-
posed method (68.7%) was close to that obtained by the
conventional method (68.0%), the note-level matching rate
obtained the proposed method (30.7%) was better than that
obtained by the conventional method (14.8%), This is a re-
markable advantage of the proposed HHSMM that can di-
rectly represent both the pitches and durations (onsets and
offsets) of musical notes on symbolic musical scores, not
on continuous-time piano rolls.

Examples of estimated musical scores are illustrated in
Fig. 6. The proposed method yielded the almost accurate
musical score except that some notes were merged. To cor-
rectly recognize two adjacent notes with the same pitch, it
is necessary to refer to original singing voices or music au-
dio signals. The score estimated without considering the
score model, on the other hand, included a lot of wrong
notes that were inconsistent with music theory. This result
also shows the effectiveness of using the score model as
musical constraints on musical note estimation.

5. CONCLUSION

This paper presented a statistical method for musical note
estimation from a vocal F0 trajectory. Our method is based
on an HHSMM that combines a score model (HMM) rep-
resenting the generative process of a musical score from
musical scales with an F0 model (HSMM) representing
the generative process of a vocal F0 trajectory with time-
frequency deviation from the musical score. We confirmed
that the proposed method can yield more musically-consistent
sequences of musical notes.

One of the most interesting directions of this research is
to use the proposed model as a musically-meaningful prior
distribution on a vocal F0 trajectory in vocal F0 estimation
for music audio signals. We plan to integrate the proposed
“language” model that generates an F0 trajectory from a
musical score with an acoustic model that generates a spec-
trogram from the F0 trajectory in a hierarchical Bayesian
manner. This enables us to jointly learn the vocal F0 tra-
jectory and musical score from music audio signals. Joint
estimation of beat times and F0s is worth investigating to
overcome the problem of estimation-error accumulation in
the cascaded estimation approach.
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ABSTRACT

This paper introduces a new score-informed method for the
segmentation of jingju a cappella singing phrase into syl-
lables. The proposed method estimates the most likely se-
quence of syllable boundaries given the estimated syllable
onset detection function (ODF) and its score. Through-
out the paper, we first examine the jingju syllables struc-
ture and propose a definition of the term “syllable onset”.
Then, we identify which are the challenges that jingju a
cappella singing poses. Further, we investigate how to
improve the syllable ODF estimation with convolutional
neural networks (CNNs). We propose a novel CNN ar-
chitecture that allows to efficiently capture different time-
frequency scales for estimating syllable onsets. Besides,
we propose using a score-informed Viterbi algorithm –
instead of thresholding the onset function–, because the
available musical knowledge we have (the score) can be
used to inform the Viterbi algorithm to overcome the iden-
tified challenges. The proposed method outperforms the
state-of-the-art in syllable segmentation for jingju a cap-
pella singing. We further provide an analysis of the seg-
mentation errors which points possible research directions.

1. INTRODUCTION

The ultimate goal of our research project is to automat-
ically evaluate the jingju a cappella singing of a student
in the scenario of jingju singing education – see Figure 1.
Jingju, a traditional Chinese performing art form also
known as Peking or Beijing opera, is extremely demand-
ing in the clear pronunciation and accurate intonation for
each syllabic or phonetic singing unit. To this end, during
the initial learning stages, students are required to com-
pletely imitate tutor’s singing. Therefore, the automatic
jingju singing evaluation tool we envision is based on this
training principle and measures the intonation and pronun-
ciation similarities between the student’s and the tutor’s
singings. Before measuring the similarities, the singing

c© Jordi Pons∗, Rong Gong∗ and Xavier Serra. Licensed
under a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Jordi Pons∗, Rong Gong∗ and Xavier Serra. “Score-
informed syllable segmentation for a cappella singing voice with convolu-
tional neural networks”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

phrase should be automatically segmented into syllabic or
phonetic units in order to capture the temporal details.
In this paper we tackle the problem of score-informed au-
tomatic syllable segmentation for a cappella singing (bold
rectangle in Figure 1). Jingju music scores, which contain
the duration information for each singing syllable, will be
a helpful hint for the segmentation method.

Figure 1. Framework of the entire research project. The
module with bold border is addressed in this paper.

The syllable segmentation task consists of determining
the time positions of the syllable boundaries – onset and
offset. In this research, we consider the onset of the sub-
sequent syllable to be the offset of the current one. There-
fore, we treat the segmentation task as an onset detection
problem.

Most segmentation methods rely on first estimating an
ODF. For example, Klapuri [7] utilizes a band-wise pro-
cessing principle inspired by psychoacoustics. He divides
the audio signal into 21 non-overlapping bands, then de-
tects onset components in each band ODF and finally com-
bines them to yield onsets. Obin et al. [10] obtain a syllable
ODF by fusing mel-frequency intensity profiles and voic-
ing profiles. One shortcoming of these band-wise methods
has been already pointed out by Klapuri [7]: “they are un-
able to deal with strong amplitude modulations” – what is
very common in singing voice recordings.

On the other hand, some methods are based on features
and supervised learning. For example, Toh et al. [17] use
two Gaussian Mixture Models (GMMs) to classify singing
audio frames into onset or non-onset classes. Three timbral
features (MFCCs, LPCCs and ERB-bands) are chosen as
input. Their results show that this supervised method is
superior to many band-wise ODF-based methods.

Neural networks have also been successfully explored
for the task of musical onset detection. Eyben et al. [4]
trained a bidirectional long-short term memory neural net-
work on mel-scale magnitude spectrograms to estimate an
ODF. Schlüter et al. [16] proposed to use CNNs to esti-
mate the ODF, which defines the current state-of-the-art
for onset detection. The advantage of applying deep learn-
ing methods in musical onset detection is that one does not
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Figure 2. A dan role-type singing phrase with its last syllable prolongated. Top: log-mel bands spectrogram.
Bottom: syllable ODF estimated with Schlüter’s method [16] (blue), and ground truth syllable onsets (red).

need to design rules or handcraft features to capture the rel-
evant facets for detecting onset/non-onset frames – which
are very difficult to design. Besides, if context (more than
one frame) is input into the network, spectro-temporal fea-
tures can also be learned – what might be useful to learn
slow-transient features defining some onsets.

Thresholding or peak-picking operations are normally
executed over the ODF in order to determine the final on-
sets [4, 7, 16, 17]. However, we will argue that these oper-
ations are not suitable for selecting jingju singing syllable
onsets. Probabilistic models –which allow incorporating
prior domain knowledge for decision making– usually re-
sult in a performance gain compared to simple threshold-
ing and peak-picking methods. For example, Böck et al.
[1] tracked the beat/downbeat by using a dynamic bayesian
network (DBN) observing a beat ODF estimated by a re-
current neural network (RNN). Or Obin et al. [10] applied
a segmental Viterbi algorithm over a syllable ODF to detect
speech syllable onsets. These two approaches are closely
related to ours: former one relates with our work because
it uses deep learning to estimate the ODF, and latter one
because we also consider using the Viterbi algorithm for
estimating the onset sequence.

This paper introduces a new score-informed method for
the segmentation of jingju singing into syllables. We first
define what a “syllable” and “syllable onset” is in the con-
text of jingju music. By doing so, in section 2 we introduce
the challenges we aim to address. The audio dataset we use
is described in section 3. Section 4 explains the CNN ar-
chitecture used for estimating the syllable ODF, and the
Viterbi decoding algorithm that exploits the prior syllable
duration information extracted from the score. Evaluation
and error analysis are conducted in section 5, and section
6 concludes this work.

2. BACKGROUND AND CHALLENGES

Jingju singing is the most precise articulated rendition of
the spoken Mandarin language. Although certain special
pronunciations in jingju theatrical language differ from
their normal Mandarin pronunciations –due to: firstly, the
adoption of certain regional dialects; and secondly, the ease
or variety in pronunciation and projection of sound– the

mono-syllabic pronouncing structure of the standard Man-
darin doesn’t change [18].

A syllable/character of jingju singing is composed of
three distinct parts in most of the cases: the “head” (tou),
the “belly” (fu) and the “tail” (wei). The “head” consists of
an initial consonant or semi-vowel – and a medial vowel,
if the syllable includes one. The “head” is not normally
prolonged in its pronunciation except when there is a me-
dial vowel. The “belly” follows the “head” and consists
of the central vowel and it is normally prolonged. The
“belly” is the most sonorous part of a jingju singing syl-
lable and can be analogous to the nuclei of a speech sylla-
ble. The “tail” is composed of the terminal vowel or con-
sonant [18]. However, there are syllables in jingju singing
where “head” is absent – only “belly” is a necessary ele-
ment. To avoid ambiguity, we define the syllable onset as
“the start of the initial consonant if the syllable includes
one or the start of the central vowel otherwise”. This def-
inition is slightly different from that agreed by most of the
phonological theories [5]: “any consonants that precede
the nuclear element (the vowel)”. It is also worth stressing
that our notion of singing syllable onset is different from
the singing onset defined in Toh et al.’s paper [17]: “the
start of a new human-perceived note, taking into account
contextual cues”, of which the latter emphasizes on the in-
tonational aspect instead of the phonological aspect of the
singing voice.

2.1 Challenges

Figure 2 shows an example of a dan role-type singing
phrase in which the last syllable lasts approximately 20s.
This singing method is more common in dan singing than
in laosheng singing. However, both role-types use it as a
way of improving artistic expression and showing off their
singing skills. These skills include breathing techniques,
intonational techniques and dynamic control techniques,
among others. The syllable ODF (blue curve in Figure 2)
is generated using a CNN model based on Schlüter et al.’s
work [16], which is considered the state-of-the-art. This
CNN model is trained with the jingju dataset presented in
section 3. The resulting syllable ODF is quite robust to
pitch variations and continuous dynamic change since no
prominent peaks are observed in these regions. However,
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many peaks can be found in the start and end positions
of each articulation throughout this long syllable (≈ 20s).
Note that thresholding or peak-picking would choose these
peaks (false syllable onsets) since they have similar ampli-
tude level than real onsets. For that reason, we propose
using a score-informed decoding method as an alternative
to naive thresholding.

Stealing breath (tou qi) is one of the primary methods of
taking the breath in jingju singing. Breath is stolen when
a sound is too long to be delivered in one breath – and no
vocal pauses are desired [18]. However, this is not the only
technique which can lead to pauses within a syllable. An-
other singing technique (zu yin – literal translation: block
sound), provokes also pauses without occurring exhalation
or inhalation. This kind of pause can be very short in du-
ration and can be easily found in jingju singing syllables,
see Figure 3 for example. These silences can be another
source of false positives if thresholding or peak-picking is
used. However, these can also be avoided by using a score-
informed decoding method.

A priori syllable duration information is often easy to
obtain from the score and this is an advantage which we
exploit to avoid previously described issues. The reper-
toire of jingju includes around 1400 plays [18], and most
used teaching pieces are transcribed into scores. We use
the score to guide the Viterbi decoding throughout the on-
set detection process.

Figure 3. Another dan role-type singing phrase. A zu
yin (block sound) is located by the arrow within a nor-
mal length syllable. Schlüter’s syllable ODF (blue curve).
Ground truth syllable onset positions (red vertical lines).

3. DATASET

The a cappella singing audio dataset 1 used for this study
focuses on two most important jingju role-types [14]: dan
(female) and laosheng (old man). It contains 39 interpreta-
tions of 31 unique arias sung by 11 jingju singers. Audio is
sampled at 44.1 kHz and is is pre-segmented into phrases.
The syllable onset ground truth is manually annotated in
Praat [2] – with 291 phrases and 2641 syllables (includ-
ing padding written-characters [18]). Two Mandarin na-
tive speakers and a jingju musicologist have been devoted
to this annotation work. Syllable durations are manually
transcribed from music scores considering as unit duration
1 https://goo.gl/y0P7BL

the quarter note. The whole dataset is randomly split into
training, validation and test sets (60%, 20% and 20%, re-
spectively). The percentage of presence of each role-type
in a split is kept constant throughout sets.

In order to highlight the differences between jingju mu-
sic and popular western music, we compare the vowel’s
duration between Kruspe’s dataset [8] (a cappella singing
of commercial pop songs) and ours. In Kruspe’s dataset,
the standard deviation duration of voiced phonemes is of
0.31s, whereas this duration is more than doubled in our
dataset: 0.75s. Since voiced phonemes are the main com-
ponent of a syllable, it thus becomes clear that jingju
singing syllable durations show huge variations. There-
fore, it is impossible to model syllable durations with a
single distribution. For that reason the proposed model
must be able to handle different syllable lengths depend-
ing on the case. To this end, syllable durations extracted
from scores will be a valuable information.

4. APPROACH

A score-informed syllable boundary detection approach is
explained in this section. We first propose some improve-
ments to the current state-of-the-art CNN onset detection
model proposed by Schlüter et al. The syllable ODF out-
put from the CNN serves as observation probability for
the syllable boundary decoding process. Then, an a pri-
ori syllable duration model based on the score is proposed.
This model guides the Viterbi algorithm by informing it in
which time-positions is likely to occur a syllable boundary.
Therefore, the syllable boundaries sequence is decoded by
taking advantage of a score-informed Viterbi algorithm.

4.1 CNN syllable onset detection function

Studied CNNs are inspired by Schlüter et al.’s [16] and
Pons et al.’s work [11, 12]. Schlüter et al. have shown
that CNNs fed with spectrograms can achieve state-of-
the-art performance for the onset detection task [16]. On
the other hand, Pons et al. [11] have recently proposed a
novel design strategy for spectrograms-based CNNs. They
propose using different filter shapes in the first layer so
that local stationarities in spectrograms (present at differ-
ent time/frequency-scales) can be efficiently captured.

Explored models are based on Schlüter et al.’s archi-
tecture [16], which consists of two convolutional layers,
and a dense layer of 256 units connected to an output soft-
max layer – with two output units standing for onset and
non-onset. First CNN layer uses 20x 3×7 filters 2 and is
followed by a 3×1 max pool layer. Second CNN layer has
20x 3×3 filters and is followed by a 3×1 max-pool layer.
Input is set to be a log-mel spectrogram 3 of size 80×21
– note that the network takes a decision for every frame
given its context: ±10 frames, 21 frames in total.

2 First number denote the number of filters (ie. 20x). Second and third
respectively denote the frequency and temporal size of the filter (ie.
3×7).

3 Original Schlüter et al.’s model inputs three channels with different
resolution spectrograms to the network. However, preliminary results
showed that a single channel was performing better than three.
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Proposed architectures follow Pons et al. [11,12] design
strategy and several filter shapes in the first layer are used.
This approach allows to efficiently capture different time-
frequency scales, what might be interesting for the task at
hand because onsets can exhibit different time-frequency
patterns. For example, Figure 4 depicts two onsets: mid-
dle onset is expressed as an abrupt time-frequency change
corresponding to an onset starting with a consonant, and
right onset is expressed as a gradual timbral change that
corresponds to an onset starting with a central vowel. Note
that these examples are representative of the proposed def-
inition of syllable onset. Moreover, using different filter
shapes in the first layer promotes a much richer repre-
sentation out of the first layer. In the following, several
CNNs are designed to efficiently capture the relevant time-
frequency contexts and scales for onset detection.

Figure 4. Log-mel spectrograms (80 bands, 21 frames).
left: Non-onset spectrogram. middle and right: Onset
spectrograms. Red line denotes the onset frame.

Schlüter et al.’s architecture and proposed ones only
differ in the way the first convolutional layer and its fol-
lowing max-pool layer are set up. Input and remaining
layers are kept intact – unless it is explicitly stated:
→ Temporal architecture. Note that the small filters pro-
posed by Schlüter et al. might have difficulties on learn-
ing the longer time-scales required to model the gradual
changes that some onsets express – see Figure 4, right.
Several filter shapes are designed to efficiently capture dif-
ferent and longer time-scales [11] than Schlüter et al.:
· 12x 1×7, 6x 3×7 and 3x 5×7
· 12x 1×12, 6x 3×12 and 3x 5×12

These CNNs are followed by a 3×5 max-pool layer.
→ Timbral architecture. Since our syllable onset definition
considers phonological aspects, we consider the timbre to
be an important feature for our task. Filter shapes are de-
signed to learn timbral representations, note that these fil-
ters span throughout the frequency domain [12]:
· 12x 50×1, 6x 50×5 and 3x 50×10
· 12x 70×1, 6x 70×5 and 3x 70×10

These CNNs are followed by a 5×3 max-pool layer.
We also explore combining temporal and timbral ar-

chitectures. We propose a late-fusion approach where we
multiply the estimated output probabilities from temporal
and timbral (independently trained) architectures 4 .

In addition, we also explore increasing the number of
filters in the second layer from 20x to 32x.

For concatenating several feature maps resulting of
CNNs with different filter shapes, it is required to use zero

4 Using temporal and timbral filters in first layer yield to worse results.

padding. We apply same padding in the first CNN layer, so
that all resulting feature maps have the same length and
these can be concatenated. STFT was performed using
a 25ms window (2048 samples with zero-padding) with
a hop size of 10ms. The 80 log-mel bands energies are
calculated on frequencies between 0Hz and 11000Hz and
spectrograms are standardized to have zero mean and unit
variance. We use L2 weight decay regularization, ELU
activation functions [3] and 30% dropout for each layer.
The model parameters are learned with mini-batch training
(batch size 128) using the ADAM update rule [6] and early
stopping – if validation loss (categorical cross-entropy)
was not decreasing after 10 epochs. In order to allow
a fair comparison between Schlüter’s and Pons’ architec-
tures, the original Schlüter architecture is modified to meet
above described hyper-parameters.

Finally, syllable ODFs estimated with CNNs are
smoothed by convolving those with a 5 frames Hanning
window [16] – since estimated syllable ODFs are typically
very spiky.

4.2 A priori duration model

The a priori duration model is shaped with a Gaussian
function N (x;µl, σ

2
l ) whose mean µl represents the l-th

relative syllable duration – according to the score. Its stan-
dard deviation σl is proportional to µl: σl = γµl and γ is
heuristically set to 0.35.

N (x;µl, σ
2
l ) =

1√
2πσl

exp

(
− (x− µl)

2

2σ2
l

)
. (1)

Figure 5 provides an intuitive example of how the a priori
duration model works. Observe that it provides the prior
likelihood of an onset to occur according to the duration in
the score.

Figure 5. A priori relative duration distributions (bottom)
of the syllables of a singing phrase.

The relative duration of each note is measured consid-
ering a quarter note length as a unit, so an eighth note has
a duration of 0.5. We only keep the relative duration and
discard the tempo information of the score. By normaliz-
ing the summation of the notes’ relative durations to the
incoming audio recording’s duration, we obtain the abso-
lute notes’ durations. Then, a sequence of syllable abso-
lute durations M = µ1µ2 · · ·µL is deduced by summing
the notes’ absolute durations corresponded with each sylla-
ble, where L is the total syllable number of the score. The
a priori duration model distributions will be incorporated
into the Viterbi algorithm as state transition probabilities
to inform the algorithm where syllable boundary is likely
to occur.
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4.3 Decoding of the syllable boundaries

To decode the syllable boundaries, we construct a hidden
markov model characterized by the following:

1. The hidden state space is a set of N candidate on-
set positions S1, S2, · · · , SN discretized by the hop
size, where SN is the offset position of the last syl-
lable.

2. The state transition probability at the time instant l
associated with state changes is defined by a priori
duration distributionN (dij ;µl, σ

2
l ), where dij is the

time distance between states Si and Sj (j > i). The
length of the decoded state sequence is equal to the
total syllable number L written in the score.

3. The observation probability for the state Sj is rep-
resented by its corresponding value in the syllable
ODF p, which is denoted as pj .

The goal is to find the best onset position state sequence
Q = q1q2 · · · qL for a given a priori duration sequence M ,
where qi denotes the onset of the i+1th decoding syllable.
q0 and qL are fixed as S1 and SN as we expect that the on-
set of the first syllable to be located at the beginning of the
incoming audio and the offset of the last syllable is located
at the ending of the audio. One can fulfill this assumption
by truncating the silences at the beginning and at the end
of the incoming audio. According to the logarithmic form
of Viterbi algorithm [13], we define:

δl(i) = max
q1,q2,··· ,ql

logP [q1q2 · · · ql, µ1µ2 · · ·µl]

with the initial step as follows:

δ1(i) = log(N (d1i;µ1, σ
2
1)) + log(pi)

ψ1(i) = S1

with the following recursive step:

δl(j) = max
16i<j

[δl−1(i) + log(N (dij ;µl, σ
2
l ))] + log(pj)

ψl(j) = arg max
16i<j

[δl−1(i) + log(N (dij ;µl, σ
2
l ))]

and the following termination step:

logP ∗ = max
16i<N

[δL−1(i) + log(N (diN ;µL, σ
2
L))]

q∗L = arg max
16i<N

[δL−1(i) + log(N (diN ;µL, σ
2
L))]

Finally, the best offset position state sequence Q is ob-
tained by the backtracking step. An example of the best
boundary position decoding path is showed in figure 6.

5. EXPERIMENTS AND RESULTS

5.1 Performance metrics

The syllable segmentation task consists on determining
the time positions of syllable boundaries. The proposed
evaluation consists in comparing the detected syllable on-
sets/offsets to their reference ones. We report F-measure
results in this paper. The definition of a correct segmented

Figure 6. Illustration of an example of the best boundary
position decoding path (black) with N = 558 and L = 8.
The intermediate states are omitted in the vertical direction
for a clear visualization. Blue curve: syllable ODF; red
horizontal lines: decoded boundary positions.

syllable is borrowed from the note transcription literature
[9]. For syllable onsets, we choose an evaluation tolerance
of ±τ ms. For offsets, we choose an evaluation tolerance
of either (a) ±20% of the syllable’s duration annotation,
or (b) ±τ ms – whichever is larger. If both the onset and
the offset of a syllable lie within the tolerance of their an-
notated counterparts and the syllable is correctly labeled,
we consider that it’s correctly segmented. We report the
results for a tolerance of τ = 0.05 (seconds).

5.2 Results and discussion

Two state-of-the-art methods are set as baselines: Obin et
al. [10] as a traditional approach, and Schlüter et al. [16]
as a deep learning method – both already introduced. We
explore Pons et al.’s CNNs design strategy [11, 12] as a
way to improve our results. Code is available online 5 . All
syllable ODFs are decoded by using the same approach
(described in section 4.3). F-measure results are reported
in Table 5.2. The evaluation can not be performed by us-
ing peak-picking because the syllabic label can not be at-
tached. However, in section 2 we already discussed the
potential problems of peak-picking which are explicitly ad-
dressed with the proposed score-informed method.

Results show that proposed architectures improve the
state-of-the-art in all cases. These results support the idea
that using different filter shapes in the first CNN layer is
beneficial. Moreover, observe that #params is reduced at
least to the half – interpret #params (number of parameters
of the CNN) as a measure of the representational capacity
of the network. This denotes how efficient can be CNNs if
these are designed to capture the relevant features for the
task at hand. Also note that if the #params of a network is
reduced, the over-fitting risk is reduced as well.

We also observe that late-fusing the predictions helps
to improve the results. The interesting idea behind this
approach is that individual networks still need to be able
to solve the task by their means – and we propose fusing

5 https://github.com/ronggong/jingjuSyllabicSegmentaion/tree/v0.1.0

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 387



Syllable ODFs #params F-measure (%)

Late-fusion (32) - 86.37
Temporal (32) 210,403 83.28
Timbral (32) 185,420 84.83

Late-fusion (20) - 84.05
Temporal (20) 132,127 83.86
Timbral (20) 119,432 82.89

Schlüter et al. [16] 535,290 81.93
Obin et al. [10] - 40.61

Table 1. Syllable segmentation results using different
methods for estimating the syllable ODF. Numbers in
parenthesis indicate the #filters in the second CNN layer.

Figure 7. Three syllable ODFs. Red vertical line: decoded
syllable onset time positions. Black arrows: ground truth.

models that are tailored towards learning complementary
time-frequency scales: temporal and timbral architectures.

We also see a significant performance gap between
Obin et al. and CNN-based methods. For example in
Figure 7 numerous noisy peaks can be observed for Obin
et al.’s method, what is significantly decreasing its perfor-
mance. This result denotes the difficulty of designing rules
or handcrafting features for estimating the syllable ODF.

5.3 Error analysis

We conduct an error analysis to study the causes of the seg-
mentation errors produced by our best performing method,
what points out future research directions for further im-
provement. We study falsely detected onsets in the test
dataset by comparatively observing the detected syllable
onset positions, the ground truth positions, the spectrogram
and the corresponding scores. Errors out of 0.05s tolerance
are analyzed and 70 syllable onsets out of 512 are identi-
fied as false detections. Errors are then classified according
to their causes. Two main error classes are found: score-
performance mismatching and ambiguous syllable transi-
tions.

The majority of the errors (71.42%) are caused by per-

formance deviations from the score: syllable insertion, syl-
lable deletion or performing different syllable durations
than the score. The proposed syllable boundary decod-
ing algorithm is not able to preserve the correctness when
the difference between the score and its performance be-
comes too large. Furthermore, since the length of the de-
coded state sequence of the algorithm must be equal to the
number of syllables in the score, singing syllable insertions
and deletions not expressed in the score can not be handled
properly. One possible solution is to incorporate more do-
main knowledge of jingju singing into the decoding pro-
cess – such as considering the probability of a padding-
character to be inserted/deleted, or the expectation of pro-
longing the last syllable in a phrase.

The second source of errors include ambiguous sylla-
ble transitions (15.61%) – such as transitions from vowel
to vowel, from vowel or to semi-vowel, etc. These er-
rors are very difficult to be corrected because no promi-
nent spectral changes can be discerned within such transi-
tions [15]. In future investigations we shall detect “onset
regions” rather than “onset time positions” since this kind
of syllable transitions usually manifest themselves as grad-
ual spectral changes.

6. CONCLUSIONS

This paper introduces a new score-informed method for the
segmentation of jingju singing into syllables. Two main
contributions are presented in this paper: (i) improvements
for estimating the syllable ODF with CNNs, and (ii) a
method for incorporating score information into Viterbi’s
algorithm for estimating syllable boundaries.

The improvements to the CNN architecture consisted
of using different filter shapes in the first layer and late-
fusing the predictions of two models – designed to learn
complementary representations (temporal and timbral). By
doing so, we increased the expressiveness of the first layer
and enabled the networks to efficiently capture different
time-frequency scales useful for detecting syllable onsets.
Proposed models, with many filter shapes in the first layer,
has proven to be more effective than the state-of-the-art
model based on a single filter shape in the first layer.

Moreover, we proposed an a priori duration model that
describes the probability of a syllable boundary given the
score. The likelihood of a syllable boundary is shaped with
the a priori duration model and incorporated into Viterbi’s
algorithm as state transition probabilities – this being the
core of the proposed score-informed Viterbi algorithm.

We validated the proposed method on a jingju a cappella
singing dataset, which achieved better performance than
the state-of-the-art. Although the proposed ameliorations
helped to improve our results, the proposed method has
not yet solved the task. To this end, we plan to investigate
incorporating more domain knowledge into the decoding
process, and to further improve the ODF with RNNs – that
has proven to be very useful for similar tasks [1, 4].
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ABSTRACT

A tool for automatic pronunciation evaluation of singing
is desirable for those learning a second language. How-
ever, efforts to obtain pronunciation rules for such a tool
have been hindered by a lack of data; while many spoken-
word datasets exist that can be used in developing the tool,
there are relatively few sung-lyrics datasets for such a pur-
pose. In this paper, we demonstrate a proof-of-principle
for automatic pronunciation evaluation in singing using a
knowledge-based approach with limited data in an auto-
matic speech recognition (ASR) framework. To demon-
strate our approach, we derive mispronunciation rules spe-
cific to South-East Asian English accents in singing based
on a comparative study of the pronunciation error patterns
in singing versus speech. Using training data restricted to
American English speech, we evaluate different methods
involving the deduced L1-specific (native language) rules
for singing. In the absence of L1 phone models, we in-
corporate the derived pronunciation variations in the ASR
framework via a novel approach that combines acoustic
models for sub-phonetic segments to represent the miss-
ing L1 phones. The word-level assessment achieved by the
system on singing and speech is similar, indicating that it
is a promising scheme for realizing a full-fledged pronun-
ciation evaluation system for singing in future.

1. INTRODUCTION

Educators recommend singing as a fun and effective lan-
guage learning aid [6]. In fact, it has been observed that
the use of songs and karaoke is helpful in teaching and
improving pronunciation in adult second language (L2)
classes [1, 17] . Scientific studies have shown that there is
a connection between the ability of phonemic production
of a foreign language and singing ability [16], and singing

c© Chitralekha Gupta, David Grunberg, Preeti Rao, Ye
Wang. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Chitralekha Gupta, David Grunberg,
Preeti Rao, Ye Wang. “Towards automatic mispronunciation detection in
singing”, 18th International Society for Music Information Retrieval Con-
ference, Suzhou, China, 2017.

ability often leads to better imitation of phrases in an un-
known language [15]. More recently, evidence from exper-
imental psychology suggests that learning a new language
through songs helps improve vocabulary gain, memory re-
call, and pronunciation [11]. Additionally, singing releases
the need to focus on prosody, as melody of the song over-
rides the prosodic contrasts while singing [13]. So, given a
familiar melody, all the attention can be on articulating the
lyrics correctly.

Given the potential of singing in pronunciation training,
it is of interest to research automatic pronunciation evalu-
ation for sung lyrics similar to the large body of work in
computer-aided pronunciation training (CAPT) for speech
[18, 29]. There is little work on mispronunciation detec-
tion for sung lyrics. Jha et al. attempted to build a system
for evaluating vowels in singing with Gaussian Mixture
Model (GMM) and linear regression using Mel Frequency
Cepstral Coefficients (MFCC) and pitch as features [12].
However, they did not account for possible pronunciation
error patterns in singing, and further, their work did not
extend to consonants. There have been a few other stud-
ies that have subjectively compared the pronunciation in
singing versus that in speech. Yoshida et al. [26] con-
ducted a subjective mispronunciation analysis in singing
and speech in English for Japanese natives and found that
the subjects familiar with singing tend to make less mis-
takes in pronunciation while singing than speaking. An-
other study found that the most frequent pronunciation er-
rors by Indonesian singers in singing English songs occur
in the consonants [21]. None of these studies however at-
tempted to build an automatic evaluator of pronunciation
in singing.

Though studies have been conducted to compare
singing and speech utterances [5, 19], the automated as-
sessment of singing pronunciation is hampered by the lack
of training datasets of phone-level annotated singing. Duan
et al. created a dataset to analyse the similarities and dif-
ferences between spoken and sung phonemes [8]. This
dataset consists of sung and spoken utterances from 12
unique subjects, out of which 8 were noted as non-native
speakers. But their work did not study the pronuncia-
tion error patterns in singing or speech. A part of this
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dataset was phonetically transcribed in 39 CMU phones
[25], which is inadequate for annotating non-native pro-
nunciations. We use a subset of audio clips from this
dataset for our work (as explained in Section 2.2). But we
did not use their phonetic annotations due to these limita-
tions.

In this work, we demonstrate a knowledge-based ap-
proach with limited data to automatically evaluate pro-
nunciation in singing in an automatic speech recognition
(ASR) framework. We will adopt a basic method of pho-
netic evaluation that is used for speech, i.e. deriving pro-
nunciation variants based on L1-L2 pair error patterns,
and incorporating this knowledge in the ASR framework
for evaluation [3, 23]. In our study, we analyze the error
patterns in singing versus those in speech in the accents
of South-East Asia - Malaysian, Indonesian, and Singa-
porean. South-East Asia is one of the most populous re-
gions of the world, where the importance of speaking stan-
dard English has been recognized [14], and hence such a
pronunciation evaluation system is desired. Given that the
data available to train acoustic models is restricted to a na-
tive American English speech database [10], we present
a novel approach of combining sub-phonetic segments to
represent missing L1-phones. Also, we demonstrate how
the systematic incorporation of the knowledge of the error
patterns helps us obtain a reliable pronunciation evaluation
system for non-native singing.

2. PRONUNCIATION ERROR PATTERNS

2.1 Previous Studies

In the process of learning a second language L2, a common
type of mispronunciation is replacing phones of L2 that do
not exist in the native language (L1) with the closest sound-
ing phoneme of L1 [4]. In Malaysian, Singaporean, and In-
donesian English, the dental fricatives /th/ and /dh/ are of-
ten substituted by alveolar stops /t/ and /d/ respectively (eg.
“three”→“tree”, “then”→“den”). These accents are influ-
enced by Malay, Mandarin, and Indonesian languages, in
which the dental fricatives /th/ and /dh/ are absent [2, 7, 9].
Also, a pattern particularly seen in Indonesian English ac-
cent is that the alveolar stop consonants /t/ and /d/ tend to
be substituted by their apico-dental unaspirated stop vari-
ant. The reason for this confusion is that in the Indonesian
language, the phones /d/ and /t/ can be both alveolar or den-
tal [2, 22]. Another pattern in Singaporean and Malaysian
accents is that they tend to omit word-end consonants, or
replace them with glottal stops. Note the lack of word-end
consonants in the Malay counterparts of words like “prod-
uct” is “produk”. Also in Mandarin, most words do not end
with a consonant, except /ng/ and /n/. Vowel difficulties are
seen in all these accents, such as long-short vowel confu-
sions like “bead”→“bid”, because the long /iy/ is absent in
the Indonesian language. Another clear pattern reported is
the voiced post-alveolar approximant /r/ in English being
pronounced as an apical post-dental trill /r/ in Indonesian,
that sounds like a rolling “r”.

Here, we investigate the general rules of mispronuncia-

Figure 1: Example of word-level subjective evaluation on
the website (incorrect words marked in red).

tion in singing, which will be then used for automatic pro-
nunciation evaluation in singing. We will, henceforth, refer
to the L1 roots of Malaysian, Singaporean, and Indonesian
English as M, S, and I, respectively.

2.2 Dataset

The dataset (a subset of a published dataset [8]) consists of
a total of 52 audio files: 26 sung and 26 spoken, from 15
popular English songs (like Do Re Mi, Silent Night, etc.).
Each song has 28 lines (phrases) on an average. These
songs were sung and spoken by 8 unique subjects (4 male,
4 female) - 3 Indonesian, 3 Singaporean, and 2 Malaysian.
The subjects were students at National University of Singa-
pore, with experience in singing. The subjects were asked
to familiarize themselves with lyrics of the songs before
the recording session and could use a printed version of
the lyrics for their reference during recording. No back-
ground accompaniments were used while recording except
for metronome beats which were sent to headphones.

We developed a website to collect subjective ratings for
this dataset. The website consisted of the audio tracks,
their corresponding lyrics, and a questionnaire. Each word
in the lyrics could be clicked by the rater to mark it as in-
correctly pronounced (red), as shown in the screenshot of
the webpage in Figure 1. For each sung and spoken au-
dio clip, the raters were asked to first listen to the track
and mark the words in the lyrics that were incorrectly pro-
nounced, and then fill up the questionnaire based on their
word-error judgment, as shown in Figure 2. We asked 3
human judges (two North American native English speak-
ers, and one non-native speaker proficient in English), to
do this task. Here, native English pronunciation (North
American) is considered as the benchmark for evaluating
pronunciation.

In the questionnaire, the judges evaluated the overall
pronunciation quality on a 5 point scale. On a 3 point
scale, they evaluated the presence of each consonant sub-
stitution (C1-C4), vowel replacement (V), word-end con-
sonant deletion (CD), and rolling “r” (R), each correspond-
ing to the rules listed in Table 1, where rating 1 means there
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Figure 2: Questionnaire for every audio clip on the subjective evaluation webpage.

are hardly any errors of that category, while rating 3 means
almost all of the occurrences have error. We shall refer to
these ratings as Rating Set 1. These questions cover all the
phone error categories in speech in the accents concerned
according to the literature, as described in section 2.1. Ad-
ditionally, the questionnaire included a comment text-box
in which the rater could mention about any other kinds of
errors that they observed, which were not covered by the
other questions. In this way, we tried to ensure that the
subjective evaluation was not biased by the mentioned er-
ror categories in the questionnaire.

The average inter-judge correlation (Pearson’s) of the
overall rating question was 0.68 for the sung clips and 0.62
for the spoken clips, and that for the questions on error-
categories was 0.89 for the sung clips and 0.74 for the
spoken clips. Thus the inter-judge agreement was high.
Also, in the comment text-box, the judges provided only
rare minor comments, such as mispronouncing “want to”
as “wanna”, which could not be categorized as systematic
errors due to L1 influence, and hence are not included in
the current study.

We chose the word-level pronunciation assessment
(“correct”/ “wrong”) of one of the North American native
English speaking judges as the ground truth. We shall refer
to these ratings as Rating Set 2.
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Figure 3: Average subjective rating for seriousness of each
error category for singing and speech. Error category la-
bels are as per Table 1.

2.3 Analysis of Error Patterns: Singing vs. Speech

From the rating set 2, we obtained a list of consonant and
vowel error patterns in speech and singing, and examples
of such words, as shown in Table 2. These error categories
can be directly mapped to the questions in the question-
naire, and are consistent with the literature on error pat-
terns in South-East Asian accents.

Our aim here is to derive a list of rules relevant to mis-
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Table 1: Statistical significance of the difference of each
error category between singing and speech (WB: Word Be-
ginning, WM: Word Middle, WE: Word Ending).

pronunciation in singing. From rating set 1, we compute
the average subjective rating for each of the mispronun-
ciation rules for singing and speech, as shown in Fig-
ure 3. To identify the rules that are relevant for singing,
we compute the difference of the average ratings between
singing and speech for every rule for each of the 26 pairs
of audio files, and compute the p − value of this differ-
ence. For a particular rule, if the overall average rating
of singing is less than that of speech, and the difference
of average ratings between singing and speech is signifi-
cant (p − value < 0.05), then that particular kind of mis-
pronunciation is not frequent in singing, and thus the rule
is not relevant for singing. For example, we found that
most of the detectable mispronunciations in singing were
seen in consonants, which agrees with the literature pre-
viously discussed [2, 7, 9, 21, 22]. The mean rating for
the question “Are there vowel errors?” was much lower
for singing than for speech, meaning that there are fewer
vowel errors perceived in singing than in speech (as shown
in Figure 3). The difference of the 26 ratings for this ques-
tion between singing and speech is statistically significant
(p−value = 5×10−5) (Table 1), and hence confirms this
trend. In singing, the vowel duration and pitch in singing
are usually dictated by the corresponding melodic note at-
tributes, which makes it different from spoken vowels. For
example, the word “sleep” is stretched in duration in the
song “Silent Night”, thus improving the pronunciation of
the vowel. However, in speech the word might tend to be
pronounced as “slip”. The explanation could lie in the way
singers imitate vowels based on timbre (both quality and
duration) rather than by the categorical mode of speech
perception which is applied only to the consonants. In
the same way, we also found that the “word-end consonant
deletion” category of errors is significantly less frequent
in singing than in speech (p − value = 0.032) (Table 1).
This implies that either the word-end stop consonants like
/t/ and /d/ are hardly ever omitted in singing or are imper-
ceptible to humans. This leads us to the conclusion that
only a subset of the error patterns that occur in speech are
seen to be occurring in singing. This is a key insight that
suggests a possible learning strategy: learning this “sub-
set” of phoneme pronunciation through singing, and the
rest through speech.

Another interesting inference from Figure 3 is that on
an average, singing has a lower extent of perceived pro-

 
Consonants 

Error WB WM WE 

/dh/ ! /d/ the, they, thy, then mother, another,  
 /th/ ! /t/ thought, thread,  nothing 
 /t/ ! /th/ to, tea, take spirits, into, sitting note, it, got 

/d/ ! /dh/ drink, dear outdoors, wonderful cloud, world 
Consonant deletion (only WE) night, moment, child 
rolling "r" run, ray,round bread, drop, bright brighter, after 

Vowels 

Error Actual word What is spoken 

ow-->ao golden gawlden 
uw-->uh fool full 
iy-->ih,ix seem, sees, sleeping,  sim, sis, slipping 
eh-->ae every avry 
 
Table 2: Error categories in singing and speech, and ex-
amples of words where they occur.

L1 Label Rule Example 
M, S, I C1 WB,WM 

/dh/ → /d/ 
“that” → “dat”  

M, S, I C2 WB,WM / 
th/ → /t/  

“thought” → “taught”  

I C3 WB,WM,WE  
/t/ → /th/  

“sitting” → “sithing”,  
“take” → “thake”  

I C4 WB,WM,WE  
/d/ → /dh/  

“dear” → “dhear”,  
“cloud” → “cloudh”  

 
 
 

L1 Label Rule Dictionary A Dictionary B 
Can. Mis. Can. Mis. 

M, S, I C1 WB,WM 
/dh/ → /d/ 

dh → vcl d  dh → vcl d  
vcl dh →vcl d 

M, S, I C2 WB,WM / 
th/ → /t/  

th → cl t  th  → cl t 
cl th → cl t 

I C3 WB,WM,WE  
/t/ → /th/  

cl t → th cl t →  cl th 

I C4 WB,WM,WE  
/d/ → /dh/  

vcl d → dh vcl d→ vcl dh 

 Table 3: Mispronunciation rules for singing, and corre-
sponding transcriptions for Dictionaries A and B. Can.:
Canonical, Mis.: Mispronunciation (cl: unvoiced closure,
vcl: voiced closure, dh: dental voiced fricative, d: alve-
olar voiced stop, th: dental unvoiced fricative, t: alveolar
unvoiced stop).

nunciation errors compared to speech, which is also indi-
cated by the average of the overall rating, which is higher
for singing (singing = 3.87, speech = 3.80). This suggests
that if the non-native subject is familiar with a song and
its lyrics, he/she makes fewer pronunciation mistakes in
singing compared to speech. Also, a non-native speaking
accent is typically characterised by L1-influenced prosody
as well such as stress and intonation aspects, which can
influence subjective ratings. Singing on the other hand
uses only the musical score and is therefore devoid of L1
prosody cues.

Table 3 lists the L1-specific mispronunciation rules for
singing that we derived, in which the word-end consonant
deletion and vowel substitution rules have been omitted for
reasons mentioned above. In the Indonesian accent, the
phone “r” was often replaced with a rolling “r” (trill) (Fig-
ure 3), which occurs frequently in singing as well (Table
1). But this phone is absent in American English, so we
do not have a phonetic model to evaluate it. So, we have
excluded this error pattern in this study.

With our dataset of sung utterances from 8 subjects, we
could see clear and consistent mispronunciation patterns
across the speakers in our subjective assessment study, and
these patterns agree with the phonetic studies of L1 influ-
ence on English from these accents in the literature. There-
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fore, even if the dataset is small, it captures all the expected
diversity.

3. AUTOMATIC DETECTION OF
MISPRONUNCIATION IN SINGING

Our goal is to use an automatic speech recognition (ASR)
system to detect mispronunciations in singing. In previ-
ous studies, vowel error patterns in Dutch pronunciation
of L2 learners were used by Doremalen et al. to improve
automatic pronunciation error detection systems [23]. In
another work, Black et al. derived common error patterns
in children’s speech and used an adapted lexicon in an ex-
tended decoding tree to obtain word-level pronunciation
assessment [3]. A standard way to detect mispronuncia-
tion is to let the ASR recognize the most likely sequence
of phonemes for a word from a given set of acceptable
(canonical) and unacceptable (mispronounced) pronunci-
ation variants of that word. A pronunciation is detected as
unacceptable if the chosen sequence of phonemes belongs
to the list of unacceptable pronunciation variants of the
word (called the “lexicon” or the “LEX” method in [3]).
While the present work is similar in principle to the above,
we face the additional challenge of lack of training data for
the L1 phones not present in L2. Yu et al. [27] have used a
data-driven approach to convert the foreign-language lexi-
con (L2) to native-language lexicon (i.e. using L1 phones
only), where they had large L1 speech training data, in
contrast to our case of availability of L2 training speech
only. In the current work, we use a novel knowledge-based
approach to overcome the constraints of lack of L1 train-
ing data for both speech and singing. We compare the
case of restricting ourselves to L2 phones with a method
that uses L1 phones derived from a combination of sub-
phonetic segments of L2 speech to approximate unavail-
able L1 phones.

We compare a Dictionary A that contains only Ameri-
can English (TIMIT [10]) phones (L2), with a Dictionary
B that contains TIMIT phones+modified (L1-adapted)
phones. To design Dictionary B, we compared the phones
of the South-East Asian accents with that of the Ameri-
can English TIMIT speech dataset [10]. We found that the
dental fricatives /th/ and /dh/ are often mispronounced as
alveolar stops /t/ and /d/ respectively (rules C1, C2). Both
of the substituted phones /t/ and /d/ are present in Amer-
ican English, and hence their phone models are available
in TIMIT. But when L1 is Indonesian, the alveolar stop
consonants /t/ and /d/ tend to be substituted by their apico-
dental unaspirated stop variant (rules C3, C4), as explained
in Section 2.1. But dental stop phones are not annotated
in American English datasets like TIMIT [10]. In order
to solve this problem of lack of dental stop phone mod-
els in L2, we combined sub-phonetic TIMIT models. We
observed that the dental stop phones consist of a closure
period followed by a burst period with dental place of artic-
ulation. So we combined the TIMIT models for unvoiced
closure model /cl/ with the unvoiced dental fricative model
/th/ to approximate unvoiced dental stop /t/, as shown in
Figure 4, and voiced closure model /vcl/ with the voiced

s ih cl ih ngth

n      ah th ih ng

(a)

s ih cl ih ngth

g      eh er n cl t iyvcl

(b)

Figure 4: (a) American speaker (TIMIT) articulating
word-middle unvoiced dental fricative /th/ in “nothing”
(note: there is no closure) (b) Indonesian speaker substitut-
ing unvoiced alveolar stop with unvoiced dental stop (“sit-
ting” as “sithing”) modeled as /cl th/.

dental fricative model /dh/ to obtain voiced dental stop /d/.
It is important to note that in these accents, the dental frica-
tives /th/ and /dh/ are also often substituted by dental stops
/cl th/ and /vcl dh/. But this particular substitution pat-
tern is common in American English [28], and hence not
considered to be mispronunciation. Hence, we add these
variants to the list of acceptable variants (canonical).

In summary, the mispronunciation rules in Dictionary
B are: dental fricative and stop /dh/ being mispronounced
as alveolar stop /d/ (L1: M, S, I); dental fricative and stop
/th/ being mispronounced as alveolar stop /t/ (L1: M, S,
I); alveolar stop /t/ being mispronounced as dental stop
/th/ (L1: I); and alveolar stop /d/ being mispronounced as
dental stop /dh/ (L1: I). These mispronunciation rules are
listed in Table 3.

3.1 Methodology

We use the toolkit KALDI [20] for training 48 context in-
dependent GMM-HMM and DNN-HMM phonetic mod-
els using the TIMIT train set [10] with the parameters
set by Vesely et al. [24]. The HMM topology is 3 ac-
tive states, the MFCC features are frame-spliced by 11
frames, dimension-reduced by Linear Discriminant Analy-
sis (LDA) to 40 dimensions. Maximum Likelihood Linear
Transformation (MLLT), feature-space Maximum Likeli-
hood Linear Regression (fMLLR), and Cepstral Mean and
Variance Normalization (CMVN) are applied for speaker
adaptive training. The DNN has 6 hidden layers, 2048
hidden units per layer. The Restricted Boltzmann Ma-
chine (RBM) pre-training algorithm is contrastive diver-
gence and the frame cross-entropy training is done by
mini-batch stochastic gradient descent. Phone recognition
performance of the acoustic models trained and tested on
TIMIT was consistent with the literature [24].
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Figure 5: Overview of automatic mispronunciation detec-
tion in singing. 

 

L1 
(#EP-
W) 

AM 

Speech Singing 

Dictionary A Dictionary B Dictionary A Dictionary B 

P R F P R F P R F P R F 

M,S 
 

(245) 

DNN-HMM 0.51 0.58 0.54 0.60 0.68 0.63 0.62 0.65 0.63 0.69 0.66 0.67 

GMM-HMM 0.41 0.54 0.47 0.49 0.63 0.55 0.54 0.52 0.53 0.55 0.51 0.53 

#GT-E 78 86 

I 
 

(834) 

DNN-HMM 0.29 0.55 0.38 0.56 0.46 0.50 0.23 0.59 0.33 0.42 0.54 0.47 

GMM-HMM 0.27 0.50 0.35 0.46 0.40 0.43 0.21 0.58 0.31 0.33 0.34 0.34 

#GT-E 219 176 

Table 4: Performance of automatic mispronunciation de-
tection for singing and speech. P: Precision = TP/(TP+FP);
R: Recall = TP/(TP+FN); F: F-score = 2.P.R/(P+R); AM:
Acoustic Models; #GT-E: no. of error-prone words mispro-
nounced; #EP-W: no. of error-prone words. L1 languages
- M: Malaysian, S: Singaporean, and I: Indonesian.

We use these speech trained acoustic-phonetic models,
along with the L1-specific variant dictionary (A or B) to
force-align the lyrics to the sung and spoken audio files, to
obtain word-level automatic pronunciation evaluation by
the “LEX” method, as described before. An overview of
this system is shown in Figure 5. We first segment the
audio files at phrase level by aligning its pitch track with
a template containing a reference pitch track and marked
phrase-level boundaries, using dynamic time warping. The
26 songs are segmented into 740 phrases, containing a to-
tal of 5107 words. For singing, out of these 5107 words,
1079 words are the error-prone words, i.e. they fall un-
der the mispronunciation rules. Only 14 out of the rest
4028 non-error-prone words (0.3%) are subjectively evalu-
ated as mispronounced in singing, which confirms that the
mispronunciation rules for singing are correctly identified.
To compare speech and singing, we apply the same rules
for the speech phrases because we expect that the words
that are mispronounced in singing are likely to be mispro-
nounced in speech as well.

Table 4 shows the validation results for the L1-specific
error-prone words from the two acoustic model configu-
rations in singing and speech, using the dictionaries A and
B, where the ground truth is the word-level subjective eval-
uation as obtained in rating set 2. To evaluate the perfor-
mance of the system, we compute the metrics precision, re-

call, and F-score [3], where TP (True Positive) is the num-
ber of mispronounced words detected as mispronounced,
FP (False Positive) is the number of correctly pronounced
words detected as mispronounced, and FN (False Nega-
tive) is the number of mispronounced words detected as
correctly pronounced (Table 4).

4. RESULTS AND DISCUSSION

We note that the method of combining sub-phonetic Amer-
ican English models for approximating the missing phone
models of L1 is effective as the F-scores indicate that the
system using dictionary B outperforms the one using A
in all the cases. DNN-HMM outperforms GMM-HMM
consistently for the task for pronunciation evaluation in
singing, as it has been widely observed in speech recog-
nition. Also, the F-score values of singing and speech are
similar, which shows that our knowledge-based approach
for singing pronunciation evaluation is promising.

A source of false positives is the rule /t/→/th/ which
causes error when /t/ is preceded by a fricative (eg. /s/),
for example “just” [jh, ah, s, cl, t]. Since both /s/ and /th/
are fricatives, the system gets confused and aligns /th/ at
the location of /s/. A way to handle such errors is to obtain
features specific to classifying the target and the competing
phonemes, which will be explored in the future.

5. CONCLUSION

In this paper, we have analysed pronunciation error pat-
terns in singing vs. those in speech, derived rules for pro-
nunciation error patterns specific to singing, and demon-
strated a knowledge-based approach with limited data to-
wards automatic word-level assessment of pronunciation
in singing in an ASR framework. From subjective evalua-
tion of word pronunciation, we learn that nearly all identi-
fied mispronunciations have an L1-based justification, and
singing has only a subset of the errors found in speech. We
provide the rules that predict singing mispronunciations for
a given L1. In order to solve the problem of unavailable
L1 phones due to the lack of training speech data from L1
speakers, we propose a method that uses a combination of
sub-phonetic segments drawn from the available native L2
speech to approximate the unavailable phone models. This
method is shown to perform better than the one that re-
stricts to only L2 phones. And finally, the performance of
this system on singing and speech is comparable, indicat-
ing that this approach is a promising method for develop-
ing a full-fledged pronunciation evaluation system. In fu-
ture, we would explore a combination of data-driven meth-
ods such as in [27] and our knowledge-based methods to
improve the mispronunciation detection accuracy.
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ABSTRACT

The emotional content of jingju (aka Beijing or Peking
opera) arias is conveyed through pre-defined metrical pat-
terns known as banshi, each of them associated with a
specific expressive function. In this paper, we first re-
port the work on a comprehensive corpus of jingju lyrics
that we built, suitable for text mining and text analysis in
a data-driven framework. Utilizing this corpus, we pro-
pose a novel approach to study the expressive functions
of banshi by applying text analysis techniques on lyrics.
First we apply topic modeling techniques to jingju lyrics
text documents grouped at different levels according to the
banshi they are associated with. We then experiment with
several different document vector representations of lyrics
in a series of document classification experiments. The
topic modeling results showed that sentiment polarity (pos-
itive or negative) is better distinguished between different
shengqiang-banshi (a more fine grained partition of ban-
shi) than banshi alone, and we are able to achieve high ac-
curacy scores in classifying lyrics documents into different
banshi categories. We discuss the technical and musico-
logical implications and possible future improvements.

1. INTRODUCTION

Traditionally, the emotional content of jingju (aka Beijing
or Peking Opera) music is conveyed through pre-defined
melodic and metrical patterns known as shengqiang and
banshi. With the general absence of professional com-
posers, the melodic material of jingju was taken from local
tunes, and lyrics were arranged by performers according
to their poetic structure. In order to convey different emo-
tional contents, the original melodic outlines were trans-
formed rhythmically, according to a pre-defined set of la-
belled metrical patterns. Each of the metrical patterns,
known as banshi, is associated with an expressive func-
tion. Each of the melodic materials to which this metrical
patterns were applied is known as shengqiang, and is also
associated with emotional content at a larger scale.

© Shuo Zhang, Rafael Caro Repetto, Xavier Serra. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Shuo Zhang, Rafael Caro Repetto, Xavier
Serra. “Understanding the expressive functions of jingju metrical pat-
terns through lyrics text mining ”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

There exists many general descriptions and rules for the
expressive functions associated with each banshi in musi-
cological literature [11, 15] and jingju textbooks [2, 3, 14].
However, the actual realization of these associativities
across existing jingju repertoires has not been character-
ized in a clear manner. Such a task is well suited for a
data-driven computational analysis.

In this work, we first report the work on constructing the
Jingju Lyrics Collection data collection, a comprehensive
corpus of jingju lyrics that we built through web scrap-
ing xikao.com, suitable for text mining and text analy-
sis in a data-driven framework. We describe substructures
of this data collection as well as relevant corpus statistics
based on musicological entities and considerations. Utiliz-
ing this corpus, we propose a novel approach to study the
expressive functions of banshi by applying text analytics
techniques on lyrics.

The rest of the paper is organized as follows. Section
2 provides necessary musicological concepts and back-
ground that lead to the research questions we are concerned
with, namely, understanding the emotional content of ban-
shi metrical patterns through lyrics text analytics. Section
3 reports the construction of the JLC lyrics data collection
and describes its substructures as well as relevant corpus
statistics. Following the introduction of the JLC data col-
lection, we then report text analytics experiments aimed
at revealing different semantic content in different banshi,
including topic modeling (Section 4) and document clas-
sification (Section 5). Finally we discuss the results and
future directions.

2. BACKGROUND

As stated above, shengqiang (SQ) and banshi (BS) are the
melodic and rhythmic devices used in arranging the music
in jingju. They are selected in order to deliver the emo-
tional content of lyrics, the psychological profile of the
characters or the general atmosphere of the play. The two
main shengqiang of jingju are xipi and erhuang. There are
around twelve types of most common banshi, each inter-
related with others. For example, yuanban, literally mean-
ing ’original meter’, is considered a default medium tempo
meter, and the rest of banshi can be considered transfor-
mations of this one: manban, the result of slowing down
yuanban in tempo and stretching it in meter; kuaiban, the
result of speeding yuanban up in tempo and compressing it
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Banshi Code Postulated expressive
function

Musical
feature

yuanban YB
straightforward,
unemotional, narration,
facts and explanation

medium

manban MB peaceful, introspective slow

kuaiban KB animated, excitement,
anticipation fast

yaoban YAB exterior calm and
interior tension free meter

Sheng
-qiang Code Postulated expressive

function
Musical
feature

xipi XP
sprightly, bright and
clear, energetic, forceful,
and purposeful

melodic
skeleton

erhuang EH dark, deep and profound,
heavy and meticulous

melodic
skeleton

Table 1. List of common banshi (rhythmic) and
shengqiang (melodic) types and their acronyms (Code) in
this paper. The entity column contains 4 banshi types in
the first 4 rows, and 2 shengqiang types in the last 2 rows.

in meter, etc. The combination of a shengqiang with a par-
ticular banshi results in a unique musical form (henthforce
referred to as SQBS), which is referred to by combining
both elements, such as erhuang yuanban, xipi manban,
etc. In general, shengqiang are associated with general
emotional frameworks, and banshi with specific expres-
sive functions [11]. Table 1 lists the most common types
of banshi and shengqiang, their musical and postulated ex-
pressive functions.

The goal of this paper is twofold: first, to introduce a
jingju lyrics corpus that we constructed especially for com-
putational text analysis in this domain; second, to under-
stand the expressive functions associated with each banshi
through large-scale text analytics. In the current context,
we take the implicit assumption that the emotional content
(i.e., the target of the expressive functions for a banshi) of
the jingju can be represented by inspecting the semantic
content expressed in lyrics. We define the following re-
search questions: (1) What are the document-topic-word
distributions that characterize the lyrics texts found in each
type of banshi? (2) How distinct are these distributions
among different banshi? (3) Are we able to distinguish be-
tween one banshi and another from lyrics? (classification)
(4) How does the interplay between shengqiang and banshi
affect this characterization?

In recent years, there has been a number of studies em-
ploying data-driven and computational approaches to vari-
ous facets of jingju music [6–8,12,13]. However, all of the
previous works rely on audio recording or score as their
primary data source. To the best of our knowledge, the cur-
rent work is novel in its use of large-scale lyrics text cor-
pus for jingju and the application of state-of-the-art NLP
and text mining algorithms to uncover the associations be-
tween jingju music and expressive functions.

3. BUILDING THE JINGJU LYRICS
COLLECTION

3.1 Web Scraping Xikao Database

There are a limited number of traditional style plays in the
jingju repertoire (as they are not being expanded much in
modern times). In order to build a comprehensive corpus
of collection of jingju lyrics, we have chosen to extract
data from the well-maintained open source jingju libretto
database website xikao.com. As this website provides
jingju librettos in HTML and PDF formats not ready for
corpus analysis purposes, we have crawled the website to
extract all lyrics in plain text format through web scrap-
ing. All texts from this website is of Creative Commons
License and is free to use for non-commercial purposes.
We denote our overall collection of the lyrics data (includ-
ing subsequence creation of substructures within the col-
lection) as JLC (Jingju Lyrics Collection). We use this
generic name to accommodate future possibilities of ex-
panding the collection from other sources.

xikao.com is a community collaboration platform
aimed at building the most comprehensive collection of
jingju plays for jingju professionals and aficionados by col-
laboratively digitizing published jingju librettos available
in prints. It is being actively maintained since its inception
in 2000, and there has been a steady growth in the number
of digitized librettos. At the time of writing, there are a to-
tal of 2163 published librettos in print being considered for
digitization, whereas there are 850 works already digitized
and proof-read/edited, and there are currently 360 plays at
the various stages of being digitized by dozens of anony-
mous users/editors/annotators. Due to the dynamic growth
of its content, we can also periodically re-apply our web
scraping pipeline in order to expand our data collection to
reflect the most comprehensive coverage to date.

Librettos in Xikao is organized by play as a basic unit.
Metadata, banshi (metrical pattern), shengqiang (melodic
skeleton), role type, as well as other information such as
the instrumental interlude and oral delivery mode (spo-
ken dialogue, singing) are also annotated in the digitized
documents. Meanwhile, as noted above, the overall goal
of Xikao is not oriented towards computational analysis,
therefore we need to apply several transformations in or-
der to create the most useful data sets for our study (de-
tailed in Section 3.2 and 3.3). Several examples of these
shortcomings are illustrated here. First, the organization
by play may not be the most useful for analysis aimed at
understanding shengqiang or banshi or other musicolog-
ically meaningful categories. Second, the meta data in-
formation are also spread within the documents, making
it hard to retrieve in an straightforward way. Overall, the
Xikao website in its original form (before or after we have
scraped its contents and stored in plain text files) is consid-
ered unstructured data that needs to be re-structured and
augmented in order to use for large scale data-drive text
analysis.
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3.2 Text Processing

In a post-processing stage to the web scraping, we extract
all lyrics that are sung to a particular banshi type clearly
indicated (there are a good portion of a play that are spo-
ken dialogue). As part of the standard NLP pipeline for
Chinese 1 , we perform word segmentation 2 on all text
documents using the state-of-the-art, Conditional Random
Field-based Stanford Word Segmenter 3 [10]. The result
of the segmentation is verified by hand by a native speaker
of Chinese and deemed reasonable. 4 After the segmenta-
tion is obtained, we use Unicode based tokenization (split-
ting on whitespaces) in the study, where each token is de-
fined as one or more Unicode character 5 . In all subsequent
processing steps we remove 125 frequent single-character
words using a standard stop word list of Chinese. All
punctuations are removed as a normalization step for NLP
pipeline. The resulting corpus contains lyrics text files for
818 plays, a quite large size to study considering the small
number of jingju plays that are still being performed today.

3.3 Data Sets Permutation and Creation

Following preprocessing, we extract subsets of the data
collection and restructure them in order to create musico-
logically meaningful datasets for computational text anal-
ysis of jingju lyrics. We consider the creation of several
data sets within this framework.

SQBS Dataset: This general data set consists of lyrics
from all lines in all plays that correspond to a SQBS, in
a tabular format, where the first column indicates SQBS
category, second contains the lyrics line. Here, it’s worth
pointing out a ’lyrics line’ is referring to the longest unit
an actor is singing continuously in the same SQBS without
switching to or interrupted by any other SQBS. The total
number of SQBS categories in this data set is 151. In this
case, it is possible to observe the distribution of the fre-
quencies of each SQBS category. In Figure 1 and Figure 2,
we show the top 10 SQBS categories in the SQBS dataset
by number of lines and by number of words/characters
(where a ’line’ is defined as above). With few exceptions,
we can see that the top 10 most frequent categories are
mostly consistent when considered by number of lines vs.
by number of words/characters. Meanwhile, we note that
xipi yaoban (XPYAB) is the most frequent musical form
in jingju by all measures, which is often used in singing in
the middle of spoken dialogues.

1 Here we apply a shallow pipeline of word segmentation, tokeniza-
tion, and stop-word removal.

2 Since the Chinese language is written without spaces between char-
acters and words, the word segmentation is a necessary and challenging
task for any NLP or text mining analysis of Chinese text.

3 Obtained at http://nlp.stanford.edu/software/segmenter.shtml.
4 The linguistic style of the jingju lyrics is a mixed style that is typi-

cally similar to modern Chinese yet with occasional semi-classical style
language. Therefore, unless there is a segmenter trained specifically on
this language, using any pre-trained segmenter would not have yielded a
perfect segmentation. To give an estimate of error, the original Stanford
Segmenter paper [10] gives a overall F-score around 0.95, with a recall of
known vocabulary greater than 0.95 and a recall of unknown vocabulary
(OOV) in the range of 0.7s.

5 In Chinese, a ’word’ can be any number of characters, most com-
monly 1,2,3, or 4.
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SQBS7 Dataset: Among the 151 SQBS categories, we
have selected a core set of 3 banshi types coupled with
the two shengqiang, based on their musicological impor-
tance and the frequency of their occurrence in our corpus.
Concretely, we consider the most basic banshi types for
the two main shengqiang, that is yuanban, manban, and
kuaiban for xipi and erhuang 6 . To also include a non me-
tered banshi, we have also considered the one with a more
frequent occurrence in our corpus, that is, yaoban, giving
rise to 7 core SQBS categories that are most representative
in analysis. We denote this data set as SQBS7, which is a
subset of SQBS data set. All following data sets to be used
in this study are transformed from the SQBS7 dataset.

PL* Datasets: The PL* data sets are grouped by play
and one or two other musicological entities (BS or SQBS).
First, we create the PLay-ShengQiang-BanShi (PLSQBS)
data set, where a document is defined to be all the texts
associated with a particular shengqiang banshi within the
same play. For example, all the erhuang manban texts
from one play form one PLSQBS document, whereas all
the erhuang yuanban texts from the same play form an-
other PLSQBS document. This is aimed at looking at a
particular combination of shengqiang banshi type. Sec-
ond, we collapse all shengqiang categories and create the

6 It has to be noticed that in traditional plays erhuang was never set to
kuaiban.
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PLay-BanShi (PLBS) documents. Each document in this
data set is defined to be all the texts associated with a par-
ticular banshi within the same play. Therefore, regardless
of shengqiang, all the manban texts from one play form
one PLBS document.

One potential problem with the PL* data sets is that the
partition of documents may result in very short documents,
creating a data sparseness problem in document modeling
algorithms. Figure 4 shows the distribution of document
length in the PLSQBS data set. We observe that there is a
peak at less than 200 words per document, whereas there
are also a few documents with more than 2000 or 4000
words. This may be taken into consideration when per-
forming text mining experiments on these data sets.

AG* Datasets: We aggregate all PLSQBS documents
to form 7 AGSQBS (’AG’ for aggregate) documents (as
there are 7 types of shengqiang banshi considered in the
current study), in order to study the characteristics in all
texts associated with a particular shengqiangbanshi. By
analogy, we aggregate all PLBS documents to form the 4
AGBS documents (i.e., all texts for a particular banshi).

We provide an overview of the relationships between
data sets in Figure 3. Table 2 gives a more detailed de-
scription of the PL* and AG* data sets used in the sub-
sequent experiments. The entire data collection is openly
available through Github 7 , and the datasets used in the ex-
periments of this paper are available through CompMusic
project website 8 .

Raw data SQBS SQBS7

PLBS
PLSQBS

AGBS
AGSQBS

-spoken
+preproc

+extract
SQBS

Select
7 SQBS 

Group by play

Aggregate all 
text of a 
BS/SQBS

Figure 3. Block diagram overview of data sets created

Name Description of document #docu-
ments

PLSQBS
all the texts associated with a particular
shengqiang-banshi within a particular
play

1429

PLBS all the texts associated with a particular
banshi within the a particular play 1247

AGSQBS
all the texts associated with a particular
shengqiang-banshi 7

AGBS all the texts associated with a particular
banshi 4

Table 2. Overview of data sets used in the experiments of
this paper

7 https://github.com/MTG/Jingju-Lyrics-Collection
8 http://compmusic.upf.edu/jingju-lyrics-datasets
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Figure 4. Distribution of document length in the PLSQBS
dataset

4. EXPLORING TOPIC STRUCTURES OF
SUBSECTIONS OF JLC DATA COLLECTION

In this section, we use probabilistic topic models to ex-
plore the topic structures of lyrics in different banshi in an
unsupervised setting 9 .

4.1 Topic Modeling

Topic model is a class of unsupervised statistical models
for uncovering the underlying semantic structure of a doc-
ument collection. The idea is to model each document as
arising from multiple background (latent) topics, where a
topic is defined to be a distribution over a fixed vocabu-
lary of terms. Specifically, we assume that K topics are
associated with a collection, and that each document ex-
hibits these topics with different proportions. In a topic
model, we typically obtain a document-topic distribution
(the probabilistic distribution of all topics in a particular
document), and a topic-word distribution (the distribution
of the terms that are associated with one topic). In the cur-
rent context, we are interested in the topics that character-
ize each banshi(BS) or shengqiang banshi(SQBS) in the
AGBS and AGSQBS data sets.

Here we consider a state-of-the-art topic modeling tech-
niques known as Latent Dirichlet Allocation(LDA) [1]. In
LDA, each topic z is associated with a multinomial dis-
tribution over the vocabulary Φz , which is drawn from a
Dirichlet prior Dir(β). A given document Di is then gen-
erated by the following process:(1) Choose Θi ˜Dir(α), a
topic distribution for Di; (2) For each word wj ∈ Di: (a)
Select a topic zj ˜Θi (b) Select the word wj ˜Φzj . We use
collapsed Gibbs sampling implementation in Mallet 10 to
infer the values of the latent variables Φ and Θ.

We compute the perplexity measure for a held-out data
set defined in the LDA model to determine the optimal
number of background latent topics in the current exper-
iments. The perplexity, used by convention in language

9 The code for all experiments in this paper is available at
https://github.com/MTG/Jingju-Lyrics-Text-Analysis.

10 Downloaded from http://mallet.cs.umass.edu/
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YB 0:Hanxin (military General), youth, wealth,
ruthless

KB 2:family, mother, husband-wife, brother; 16:
war, military, mails, destruction

MB 4:princess, death, crime, Chang’an, brave; 19:
wish, sir, madam, pain, defeat

YAB 7: sudden news, human head, revenge,
affection

Table 3. Top topics for each banshi and their top words.
Sorted by topic index number (0 is topic 0 assigned by the
LDA model, etc.)

modeling, is monotonically decreasing in the likelihood
of the test data, and is algebraically equivalent to the in-
verse of the geometric mean per-word likelihood [1]. A
lower perplexity score indicates better generalization per-
formance. More formally, for a test set of M documents,
the perplexity is:

perplexity = exp

{
−
∑M

d=1 log p(wd)∑M
d=1Nd

}
(1)

where wd is a word in the document, and Nd is the
length of the document (total number of words). In our
experiments, we compute perplexity for each topic model
given number of topics from 8 to 50. The result shows that
using 20 topics results in the lowest perplexity and is the
optimal choice.

4.2 Topic Modeling Results

First, we present the topic modeling results for the AGBS
and AGSQBS data sets. In this case, the output from the
MALLET LDA model contains a document-topic distri-
bution and a topic-word distribution. The former shows
the distribution of topics (number of topic K=20, as deter-
mined in Section 4.1) in each BS/SQBS (i.e., each doc-
ument in the data set), and the latter shows the top 20
words associated with each topic. Since we are interested
in characterizing the main topics found in each BS/SQBS,
we show results for both of these components.

To better understand the topics that characterize each
category, we extracted the most salient topics from the
topic distribution of each BS or SQBS. In doing so, we
removed common topics with high occurrences in all cat-
egories, and only select those with a high occurrences in
each category. We present these topics and summarize
their top words in English in Table 3 and Table 4. Many of
these topics have to do with specific stories in Chinese his-
tory that are well known in jingju repertoires. Comparing
these results to the general descriptions found in Table 1,
we see a reasonable interpretation for each category - al-
though we observe that the division between the positive
and negative emotions of xipi banshi and erhuang banshi
in Table 4 are much more salient than the topics that dis-
tinguish the four banshi types in Table 3.

EHYB 0: pity, old, heavy, prince, depart, pain, cold

EHMB 2: unfortunate, pity, worry; 14: war, military,
courtesy, hero

EHYAB
4: tears, sir, madam, wish, leave, pain, hurt,
stab; 18: life, run, death, brave, sword

XPYB 7: Kings from The Three Kingdoms, drink,
happy

XPKB 10: traitor, laugh, believe
XPMB 12: youth, beautiful view, morning, world

XPYAB
11: general(military), prime minister, angry,
military, step forward; 14: (see EHMB)

Table 4. Top topics for each shengqiang-banshi (SQBS)
and their top words. Sorted by topic index number(0 is
topic 0 assigned by the LDA model, etc.)

5. DOCUMENT CLASSIFICATION IN JLC DATA
COLLECTION

In this section we propose a supervised document classifi-
cation task with the aim of classifying lyrics documents in
the PL* data sets into different banshi categories.

5.1 Document Vector Representation

In the vector-space model (VSM) of information retrieval,
a text document is represented by a document-term vector
where each attribute represents the frequency (count) with
which a particular term wk,i (a word in the vocabulary)
occurs in the document di (aka bag-of-words or BOW).
A highly effective transformation of BOW word vector
weights is tf-idf weighted vectorization. 11 However, a
shortcoming of these types of traditional word vectors is
that it is high-dimensional and very sparse.

Recent advances in NLP have concentrated on train-
ing word embeddings with neural networks that result in
low-dimensional dense vector representations of words [5]
by predicting target words from context (or vice versa).
These high quality word embeddings also have the desired
property of reflecting semantic similarity in vector space
(semantic similarities can be captured by vector arith-
metics). Expanding on this idea of word embeddings, [4]
trained embeddings for sentences or longer units, which
they denote ”paragraph vectors”. These paragraph vectors
have the similar properties of reflecting semantic similarity
above the word level, and is shown to be highly effective
in a series of document and sentiment classification tasks.

5.2 Document Classification in JLC

To characterize the strength of the association between the
lyrics text and its associated banshi, we define a document
classification task: to what degree can we use textual fea-
tures extracted from the lyrics to classify the documents in
the PLBS and PLSQBS data sets into one of the four BS
or seven SQBS classes?

11 In the tf-idf (term frequency - inverse document frequency) weight-
ing scheme [9], the term frequency count is compared to an inverse doc-
ument frequency count, which measures the number of occurrences of a
word in the entire corpus. Thus the tf-idf transforms the document into a
weighted vector that assigns higher value to terms that have high occur-
rences in a small number of documents.
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We use several varieties of vector representation for
documents in our classification experiment, as described
above: (1) BOW; (2) tf-idf BOW; (3) Paragraph Vec-
tors (D2V); (4) document-topic distribution from the topic
models (TM) we derived in Section 4. The document-
topic distribution can be seen as a very low-dimension
representation of a document, which has been shown to
perform well in document classification tasks in place of
BOW representation [1]. For Paragraph Vectors, we train
document embeddings on our PL* data sets using the
Doc2Vec (D2V) implementation available in the Python
library gensim. The resulting embeddings has 100 di-
mensions for each document. We use Support Vector Ma-
chine (SVM) with RBF kernel for all classification experi-
ments.

5.3 Document Classification Results

For the PLSQBS and PLBS data sets, we present the docu-
ment classification accuracy 12 in Table 5. We observe that
document classification accuracy scores are significantly
above chance in both data sets (chance being 1/7 == 0.14
in PLSQBS data set and 1/4 == 0.25 in PLBS data
set), with best accuracy scores of 0.41 and 0.53. This
indicates that supervised learning is able to capture the
important features that distinguish the different banshi or
shengqiang-banshi classes, which in these particular JLC
data sets, are somewhat unintuitive even for human judg-
ments 13 .

Contrasting the performance of different features, we
note that tf-idf is more effective than BOW, as expected.
The D2V Paragraph Vectors achieves comparable or lower
results with the tf-idf (200 times higher in dimension).
This is somewhat unexpected since these Paragraph Vec-
tors are supposed to be a higher quality vector represen-
tation that captures both semantic similarity and word or-
der that is absent from BOW representations such as tf-
idf [4]. We attribute this under-performance of D2V to
the smaller amount of training data available in the PL*
data sets (comparing to much larger general-domain train-
ing corpora used in literature for D2V). In the mean time,
we observe that the topic models features are ineffective at
capturing the document-level distinctions.

6. CONCLUSION

In this work, we have introduced the Jingju Lyrics Col-
lection, a comprehensive data collection of jingju lyrics
enriched and re-structured with several extracted datasets
based on musicological considerations. Utilizing this data,
we performed topic modeling in order to explore the topic
structures of the jingju lyrics as related to different ban-
shi and SQBS types. The results show that while the
topics are in general reasonable, the distinctions between

12 The datasets are well balanced in their class sizes therefore accuracy
is an appropriate measure.

13 Here we are referring to a layperson who is a native speaker of Chi-
nese but may not be a jingju expert. We are yet to evaluate this task on
jingju experts.

Dataset Feature Accuracy
PLBS BOW (20000) 0.481
PLBS tf-idf (20000) 0.527
PLBS D2V (100) 0.528
PLBS TM (20) 0.274

PLSQBS BOW (20000) 0.356
PLSQBS tf-idf (20000) 0.408
PLSQBS D2V (100) 0.347
PLSQBS TM (20) 0.112

Table 5. Document classification with SVM RBF kernel,
with dimensionality of features shown in parenthesis

different banshi are less contrastive than between differ-
ent shengqiang-banshi 14 . Document classification exper-
iments are carried out to further understand the association
within a supervised setting. The strong results in document
classification support the associations between the expres-
sive functions (as expressed in the lyrics) and the banshi or
shengqiang-banshi (SQBS) categories.

We observe that unexpectedly, neither D2V Paragraph
Vectors nor the topic models are more effective at docu-
ment classification than the high-dimension tf-idf vectors.
We postulate that these have several implications (even
though our goal and contribution in this work do not lie
in the use of these more advanced representations). First,
it shows that latent topics may not be the most effective
way to capture the different expressive functions in differ-
ent banshi types (as opposed to, e.g., sentiment). It maybe
of interest to perform feature and error analysis to under-
stand what components of the document classification have
made it more effective (e.g., sentiment polarity words, etc).
Second, in addition to the training size problem discussed
in Section 5.3, we attribute lower performance of D2V/TM
to the potential errors in the NLP pipeline applied to the
corpus, especially the Chinese segmentation (as already
mentioned in Section 3.2). This includes two aspects: first,
the automatic segmentation may introduce errors even for
standard Chinese text; second, the language of jingju falls
somewhere between modern and archaic Chinese, making
it more challenging to segment automatically using a stan-
dard segmenter trained on modern language. Our on-going
and future work, therefore, includes making corrections to
the segmentation in the JLC while keeping expanding the
collection.
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14 Our main goal in this paper is to investigate the expressive functions
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ABSTRACT

Automatic music transcription aims at transcribing musical
performances into music notation. However, most existing
transcription systems only focus on parametric transcrip-
tion, i.e., they output a symbolic representation in absolute
terms, showing frequency and absolute time (e.g., a piano-
roll representation), but not in musical terms, with spelling
distinctions (e.g., A[ versus G]) and quantized meter. Re-
cent attempts at producing full music notation output have
been hindered by the lack of an objective metric to mea-
sure the adherence of the results to the ground truth mu-
sic score, and had to rely on time-consuming human eval-
uation by music theorists. In this paper, we propose an
edit distance, similar to the Levenshtein Distance used for
measuring the difference between two sequences, typically
strings of characters. The metric treats a music score as a
sequence of sets of musical objects, ordered by their on-
sets. The metric reports the differences between two music
scores based on twelve aspects: barlines, clefs, key signa-
tures, time signatures, notes, note spelling, note durations,
stem directions, groupings, rests, rest duration, and staff
assignment. We also apply a linear regression model to the
metric in order to predict human evaluations on a dataset of
short music excerpts automatically transcribed into music
notation.

1. INTRODUCTION

Automatic Music Transcription (AMT) is the process of
inferring a symbolic representation of a musical perfor-
mance. Despite four decades of active research, AMT is
still an open problem, with humans being able to achieve
better results than machines [2]. AMT systems can be
broadly classified into two categories according to the cho-
sen symbolic representation: parametric transcription and
music notation transcription. Parametric transcription sys-
tems output a parametric representation of the musical per-
formance, such as an unquantized MIDI pianoroll [14].
This representation is expressed in physical terms, such as
seconds for note onset and duration, and hertz or MIDI
numbers for pitch [7]. It can faithfully represent the mu-

c© Andrea Cogliati, Zhiyao Duan. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Andrea Cogliati, Zhiyao Duan. “A metric for music notation
transcription accuracy”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

sical performance, but normally it does not explicitly en-
code high-level musical structures, such as key, meter and
voicing [21]. Music notation transcription systems, on the
other hand, output a common music notation that human
musicians read. This representation is expressed in musi-
cally meaningful terms, such as quantized meter for note
onset and duration, and spelling distinctions (e.g., A[ ver-
sus G]) for pitch. Compared to parametric transcription,
music notation transcription is generally more desirable for
many applications connecting humans and machines, such
as computational musicological analysis and music tutor-
ing systems. The vast majority of existing AMT methods,
however, are parametric transcription systems.

Researchers have put considerable effort toward build-
ing music notation transcription systems by identifying
musical structures from unquantized parametric represen-
tations, especially MIDI files, from both MIR and cog-
nitive perspectives [20]. Cambouropoulos [3] described
the key components necessary to convert a MIDI per-
formance into music notation: identification of elemen-
tary musical objects (i.e., chords, arpeggiated chords, and
trills), beat identification and tracking, time quantization
and pitch spelling. Takeda et al. [18] describe a Hid-
den Markov Model (HMM) for the automatic transcription
of monophonic MIDI performances. Cemgil [4] presents
a Bayesian framework for music transcription, identify-
ing some issues related to automatic music typesetting
(i.e., the automatic rendering of a musical score from a
symbolic representation), in particular tempo quantization,
and chord and melody identification. Karydis et al. [12]
proposed a perceptually motivated model for voice sep-
aration capable of grouping polyphonic groups of notes,
such as chords or other forms of accompaniment figures,
into a perceptual stream. A more recent paper by Gro-
hganz et al. [11] introduced the concepts of score-informed
MIDI file (S-MIDI), in which musical tempo and beats are
properly represented, and performed MIDI file (P-MIDI),
which records a performance in absolute time. The paper
also presented a procedure to approximate an S-MIDI file
from a P-MIDI file – that is, to detect the beats and the me-
ter implied in the P-MIDI file, starting from a tempogram
then analyzing the beat inconsistency with a salience func-
tion based on autocorrelation.

Researchers have also attempted to infer musical struc-
tures directly from audio. Ochiai et al. [16] proposed a
model for the joint estimation of note pitches, onsets, off-
sets and beats based on Non-negative Matrix Factorization
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(NMF) constrained with a rhythmic structure modeled with
a Gaussian mixture model. Collins et al. [8] proposed a
model for multiple fundamental frequency estimation, beat
tracking, quantization, and pattern discovery. The pitches
are estimated with a neural network. An HMM is sepa-
rately used for beat tracking. The results are then com-
bined to quantize the notes. Note spelling is performed by
estimating the key of the piece and assigning to MIDI notes
the most probable pitch class given the key.

An immediate problem arising when building a music
notation transcription system by incorporating the above-
mentioned musical structure inference methods is to find
an appropriate way to evaluate the transcription accuracy
of the system. In our prior work [7], we asked music
theorists to evaluate music notation transcriptions along
three different musical aspects, i.e., the pitch notation, the
rhythm notation, and the note positioning. However, sub-
jective evaluation is time consuming and difficult to scale
to provide enough feedback to further improve the tran-
scription system. It would be very helpful to have an ob-
jective metric for music notation transcription, just like the
standard metric F-measure for parametric transcription [1].
Considering the inherent complexity of music notation,
such a metric would need to take into account all of the
aspects of the high-level musical structures in the notation.
To the best of our knowledge, there is no such metric, and
the goal of this paper is to propose such a metric.

Specifically, in this paper we propose an edit distance,
based on similar metrics used in bioinformatics and lin-
guistics, to compare a music transcription with the ground-
truth score. The design of the metric was guided by a data-
driven approach, and by simplicity. The metric is calcu-
lated in two stages. In the first stage, the two scores are
aligned based on the pitch content; in the second stage,
the differences between the two scores are accumulated,
taking into account twelve different aspects of music nota-
tion: barlines, clefs, key signatures, time signatures, notes,
note spelling, note durations, stem directions, groupings,
rests, rest duration, and staff assignment. This will serve
the same purpose as F-measure in evaluating parametric
transcription. To validate the saliency and the usefulness
of this metric we also apply a linear regression model to
the errors measured by the metric to predict human evalu-
ations of transcriptions.

2. BACKGROUND

Approximate sequence comparison is a typical problem in
bioinformatics [13], linguistics, information retrieval, and
computational biology [15]. Its purpose is to find simi-
larities and differences between two or more sequences of
elements or characters. The sequences are assumed suffi-
ciently similar but potentially corrupted by errors. Possi-
ble differences include the presence of different elements,
missing elements or extra elements. Several metrics have
been proposed to measure the distance between two se-
quences, including the family of edit metrics [15], and gap-
penalizing alignment techniques [13].

A music score in traditional Western notation can be

viewed as a sequence of musical characters, such as clefs,
time and key signatures, notes and rests, possibly oc-
curring concurrently, such as in simultaneous notes or
chords. Transcription errors include alignment errors due
to wrong meter estimation or quantization, extra or miss-
ing notes and rests, note and rest duration errors, wrong
note spelling, wrong staff assignment, wrong note group-
ing and beaming, and wrong stem direction. All of these
errors contribute to a various degree to the quality of the
resulting transcription. However, the impact of each error
and error category has not, to the best of our knowledge,
been researched.

As an example, Fig. 1 shows two transcriptions of the
same piece. Both transcriptions contain similar errors, i.e.,
wrong meter detection, but the transcription in Fig. 1c is
arguably worse than that in Fig. 1b. A similar problem can
be observed with the standard F-measure typically used to
evaluate parametric transcriptions [1]; while the metric is
objective and widely used, the impact of different errors
on the perceptual quality of a transcription has not been
researched. Intuitively, certain errors, such as extra notes
outside of the harmony, should be perceptually more ob-
jectionable than others, such as octave errors. This is the
reason for both proposing an objective metric and correlat-
ing the metric with human evaluations of transcriptions.
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Figure 1: Comparison of two transcriptions of the same
piece containing similar errors but with different readabil-
ity.

3. PROPOSED METHOD

The proposed metric is calculated in two stages: in the
first stage, the transcription is aligned with the ground-
truth music notation based on its pitch content only, i.e.,
all of the other objects, such as rests, barlines, and time
and key signatures are ignored; in the second stage, all of
the objects occurring at the aligned portions of the scores
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Figure 2: Alignment between the ground-truth (top) and
a transcription (bottom) of Bach’s Minuet in G. Arrows
indicate aligned beats.
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Figure 3: Alignment between the ground-truth (top) and
another transcription (bottom) of Bach’s Minuet in G. Ar-
rows indicate aligned beats.

are grouped together and compared. The metric reports the
differences in aligned portions in terms of twelve aspects:
barlines, clefs, key signatures, time signatures, notes, note
spelling, note durations, stem directions, groupings, rests,
rest duration, and staff assignment.

Some algorithms to efficiently calculate certain edit dis-
tances, e.g., the Wagner-Fischer algorithm to calculate the
Levenshtein distance between two strings, are able to align
two sequences and calculate the edit costs in a single stage.
We initially tried to apply the same strategy to our problem,
but we discovered that the algorithm was not sufficiently
robust, especially with transcriptions highly corrupted by
wrong meter estimation. Intuitively, notes are the most
salient aspects of music, so it is arguable that the align-
ment of two transcriptions should be based primarily on
that aspect, while the overall quality of the transcription
should be judged on a variety of other aspects.

The ground truth and the transcription are both encoded
in MusicXML, a standard format to share sheet music files
between applications [10]. The two scores are aligned us-
ing Dynamic Time Warping [17]. The local distance is
simply the number of mismatching pitches, regardless of
duration, spelling and staff positioning.

To illustrate the purpose of the initial alignment, we
show two examples in Fig. 2 and Fig. 3. The alignment
stage outputs a list of pairs of aligned beats. Fig. 2 shows
the alignment of a fairly good transcription of Bach’s Min-
uet in G from the Notebook for Anna Magdalena Bach,
with the ground truth, which corresponds to the following

sequence, expressed in beats, numbered as quarter notes
starting from 0 (GT is ground truth, T is transcription):

GT 0.0 1.0 1.5 2.0 2.5 3.0 4.0
T 0.0 1.0 1.5 2.0 2.5 3.0 4.0

4.0 5.0 6.0 7.0 7.5 8.0 8.5 9.0
5.0 5.0 6.0 7.0 7.5 8.0 8.5 9.0

10.0 10.0 11.0 12.0 13.0 13.5 14.0 14.5
10.0 11.0 11.0 12.0 13.0 13.5 14.0 14.5
15.0 16.0 16.5 17.0 17.5
15.0 16.0 16.5 17.0 17.5

In this case, since the transcription is properly aligned
with the ground truth, the sequence is just a list of all equal
numbers, one for each onset of the notes in the score. How-
ever, beat 4.0 in the ground truth is matched with beats 4.0
and 5.0 in the transcription; the same happens for beats
10.0 and 11.0, so DTW cannot properly distinguish re-
peated pitches. Only one alignment is shown in the figure
for clarity.

Fig. 3 shows an example of an alignment for a badly
aligned transcription of the same piece. The corresponding
sequence is the following:

GT 0.0 0.0 0.0 1.0 1.0 1.5
T 0.0 0.5 1.0 1.75 2.0 2.5

2.0 2.5 3.0 3.0 3.0 4.0 4.0
3.0 3.75 4.25 4.5 5.0 5.5 7.0
5.0 6.0 6.0 6.0 7.0 7.5 8.0
7.0 8.25 8.5 9.0 9.75 10.25 10.75
8.0 8.5 9.0 10.0 10.0 10.0 11.0

11.0 11.5 12.0 13.5 14.75 15.0 15.0

In this case, multiple beats in the transcription corre-
spond to the same beat in the ground truth, e.g., beat 1.0 in
the ground truth corresponds to beats 1.75 and 2.0 in the
transcription, because a single note in the ground truth has
been transcribed as two tied notes. Only one alignment is
shown in the figure for clarity.

To calculate the distance between the two aligned
scores, we proceed by first grouping all of the musical ob-
jects occurring inside aligned portions of the two scores
into sets, thus losing the relative location of the objects
within each set but preserving all of the other aspects, in-
cluding staff assignment. Then the aligned sets are com-
pared, and the differences between the two sets are re-
ported separately. The following aspects only allow binary
matching: barlines, clefs, key signatures, and time signa-
tures. Rests are matched for duration and staff assignment,
i.e., a rest with the correct duration but on the wrong staff
will be considered a staff assignment error, a rest with the
correct staff assignment but wrong duration will be consid-
ered a rest duration error. A missing or an extra rest will be
considered a rest error. Notes are matched for spelling, du-
ration, stem direction, staff assignment, and grouping into
chords. For groupings, we only report the absolute value
of the difference between the number of chords present in
the two sets. The metric does not distinguish missing or
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Figure 4: Correlation between the predicted ratings and
the average human evaluator ratings of all of the transcrip-
tions in the dataset.

extra elements. These choices were dictated by simplicity
of design and implementation.

All of the errors are cumulated for all of the matching
sets. The errors for barlines, notes, note spelling, note du-
rations, stem directions, groupings, rests, rest duration, and
staff assignment are then normalized by dividing the total
number of errors for each aspect by the total number of
musical objects taken into account in the score. This step
is necessary to normalize the number of errors for pieces
of different lengths. The errors for clefs, key signatures,
and time signatures are not normalized, as they are typi-
cally global aspects of the scores, and not influenced by the
length of the piece. This might be a limitation for pieces
with frequent changes in key signature or time signature.

As an example, the set of objects at the first beat of the
first measure of Fig. 2 include the initial barlines, clefs,
time signature, key signature, and notes starting on the
downbeat of the measure. Barlines, clefs, time signature,
and key signature are all correctly matched. All of the
notes are correct in pitch, spelling and duration, however
there are two errors in stem direction, one error in group-
ing, and one error in staff assignment. All of the rests are
considered rest errors at each respective onsets.

For the first beat of the first measure of Fig. 3, all of the
elements of the transcription till the first transcribed notes
(the three notes pointed by the first arrow) and the notes
tied to them will be considered as part of the same set. The
wrong key signature and time signature will be reported as
errors. The two eight rests will be reported as rest errors.
The three notes in the transcription are properly spelled,
but their duration is wrong, so that will be counted as three
note duration errors. The missing D from the chord will
be reported as a note error. The extra tied notes will be
reported as note errors as well.

In summary, the following twelve normalized error
counts are calculated by the metric: barlines, clefs, key
signatures, time signatures, notes, note spelling, note dura-
tions, stem directions, groupings, rests, rest duration, and
staff assignment. In order to translate these error counts
into a musically relevant evaluation, we propose to use
linear regression of the twelve error counts to fit human
ratings of three musical aspects of automatic transcrip-
tions, i.e., the pitch notation, the rhythm notation, and the
note positioning. For each aspect, the linear regression
learns twelve weights, one for each of the normalized error
counts, to fit the human ratings. These weights can then be
used to predict the human ratings of other music notation
transcriptions.

4. EXPERIMENTAL RESULTS

To evaluate the proposed approach, we calculate the nor-
malized error count and run linear regression to fit human
ratings of 19 short music excerpts collected in our prior
work [7]. These music excerpts were from the Kostka-
Payne music theory book, all of them piano pieces by well-
known composers, and were performed on a MIDI key-
board by a semi-professional piano player. These excerpts
were then transcribed into music notation using four differ-
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ent methods: a novel method proposed in the paper (which
will be referred to as CDT), MuseScore, GarageBand and
Finale. For each transcription, the human evaluators were
asked to assign a numerical rating between 1 and 10 for
three musical aspects, i.e., the pitch notation, the rhythm
notation, and the note positioning.

The proposed method of calculating the error counts
uses MusicXML [10], the de facto standard for shar-
ing sheet music files between applications, as the for-
mat of music notation. Two of the methods evalu-
ated in the paper (Finale and MuseScore) can output
the scores into MusicXML. For GarageBand, CDT and
the ground truth, however, MusicXML was not avail-
able or was difficult to output automatically. We had to
manually convert the scores into MusicXML. The tran-
scribed scores are named with the initial of the tran-
scription method and a number indicating the excerpt.
So, M-8.mxl represents the eight excerpt transcribed
with MuseScore. The letter K, for Kostka-Payne, in-
dicates the ground truth scores. This dataset and a
Python implementation of the proposed approach are
available at http://www.ece.rochester.edu/

˜acogliat/repository.html. The implementa-
tion uses the music21 toolkit [9] for parsing the Mu-
sicXML files and processing the imported scores. The im-
plementation has been tested with music21 V3.1.0.

In order to validate the quality of the prediction we
calculated the coefficient of determination R2, which is
the square of the Pearson correlation coefficient. The R2

was 0.558 for the pitch notation correlation, 0.534 for the
rhythm notation, and 0.601 for note positioning. These re-
sults are reflected in Fig. 4; the proposed metric fits the
data adequately, in general, even though the correlation is
not perfect. It can also be noted that the prediction of the
score for note positioning is the best, while the prediction
of the score for rhythm notation is the worst.

To understand the underlying causes of the covariance
we firstly analyzed the ratings given by the human evalua-
tors. As we can see from Fig. 5, the human evaluators were
oftentimes in disagreement among themselves. It must also
be noted that in our prior work [7], the human annotators
were not given exact instructions on what features to con-
sider for the evaluation, so a considerable amount of sub-
jectivity and judgment calls were likely to be present in the
ratings.

We also analyzed two transcriptions with the largest de-
viation from the predicted ratings, i.e., one transcription
with a high predicted rating and a low human rating, and
one transcription with a low predicted rating and a high hu-
man rating. The largest positive deviation occurred for the
rhythm notation of transcription M-1, for which the pro-
posed metric predicted a rating of 2.78, while the average
human rating was 5.98. If we compare the transcription
with the ground truth in Fig. 6 we can see that MuseScore
misinterpreted the meter, causing the proposed metric to
report a large number of note duration errors and barline
errors, which resulted in a low rating. Human annotators,
on the other side, likely penalized the meter error only once
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Figure 5: Distributions of the human ratings of the 76 tran-
scriptions contained in the dataset. Each boxplot repre-
sents the ratings from 5 human evaluators.

globally, but still considered the transcription acceptable
overall.

The largest negative deviation occurred for the pitch no-
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Figure 6: Transcription of the first excerpt in the dataset
by MuseScore, which shows the largest positive difference
between the average human rating and the predicted rating,
that is a high predicted rating and a low human rating. This
evaluation difference occurs on the rhythm notation.

tation of transcription C-13, for which the proposed metric
predicted a rating of 6.83, while the annotators assigned an
average score of of 4.48. If we compare the transcription
with the ground truth in Fig. 7, we can notice that CDT
makes a single mistake in notating the pitches, i.e., G[[ in-
stead of E]. It also makes a systematic error notating all Bs
one octave lower. Finally, not grouping the eight notes in
the treble staff makes the transcription hard to read. Pos-
sibly, the human annotators penalized the transcription be-
cause of its poor readability.

5. CONCLUSION AND FUTURE WORK

In this paper we proposed an objective metric to mea-
sure the differences between music notation transcriptions
and the ground truth score. The metric is calculated by
first aligning the pitch content of the transcription and the
ground-truth music notation, and then counting the differ-
ences in twelve key musical aspects: barlines, clefs, key
signatures, time signatures, notes, note spelling, note dura-
tions, stem directions, groupings, rests, rest duration, and
staff assignment. We then used linear regression to predict
human evaluator ratings along three aspects of music nota-
tion, namely, pitch notation, rhythm notation, and note po-
sitioning, from the error counts. Experiments show a clear
correlation between the predicted ratings and the average
human ratings, even though the correlation is not perfect.

One issue with the prediction is the high variance of the
evaluator ratings, which likely originates from the inher-
ent subjectivity of the tasks. Another issue of the proposed
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Figure 7: Transcription of the thirteenth excerpt in the
dataset by CDT, which shows the largest negative devia-
tion between the average human rating and the predicted
rating on rhythm notation, that is a low predicted rating and
a high human rating. This evaluation difference occurs on
the pitch notation.

metric is that it does not incorporate music theory knowl-
edge, such as the method proposed by Temperley to evalu-
ate metrical models [19].

The current experiments were conducted on music no-
tation transcriptions of human performances recorded on
a MIDI keyboard; as a consequence, the transcriptions
do not contain the errors commonly observed in audio-to-
MIDI conversion processes, such as octave errors and extra
or missing notes [5,6]. More research is necessary to eval-
uate the performance of the proposed method in the pres-
ence of such errors. In addition, the excerpts in the dataset
were very short, compared to real piano pieces, so addi-
tional research is necessary to assess the robustness of the
metric, and its computational complexity on longer pieces.

A Python implementation of the proposed ap-
proach, along with the dataset, is available at http:
//www.ece.rochester.edu/˜acogliat/
repository.html. This implementation can be used
to calculate the twelve error counts as well as to predict
human ratings on the three musical aspects of a music
notation transcription.
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ABSTRACT

Many successful recommendation approaches are based on
the optimization of some explicit utility function defined
in terms of the misfit between the predicted and the ac-
tual items of the user. Although effective, this approach
may lead to recommendations that are relevant but obvi-
ous and uninteresting. Many approaches investigate this
problem by trying to avoid recommendation lists in which
items are very similar to each other (aka diversification)
with respect to some aspect of the item. However, users
may have very different preferences concerning what as-
pects should be diversified and what should match their
past/current preferences. In this paper we take this into
consideration by proposing a solution based on multiobjec-
tive optimization for generating recommendation lists fea-
turing the optimal balance between the aspects that should
be held fixed (maximize similarity with users actual items)
and the ones that should be diversified (minimize similar-
ity with other items in the recommendation list). We eval-
uate our proposed approach on real data from Last.fm and
demonstrate its effectiveness in contrast to state-of-the-art
approaches.

1. INTRODUCTION

In scenarios of vast and dynamic availability of con-
tent, such as online music streaming services, users are
quickly overloaded with a large and ever increasing space
of choices. Recommender systems are successful tools
for addressing this issue by modeling the preferences of
users and anticipating their information needs. The most
successful recommendation approaches are usually those
based on the optimization of some explicit utility function
defined in terms of the misfit between the predicted and the
actual items consumed by the user. Although effective in
many scenarios, the recommendation algorithms that opti-
mize this kind of function are prone to deliver recommen-
dations that are relevant but possibly uninteresting. For ex-

c© Ricardo S. Oliveira, Caio Nóbrega, Leandro B. Marinho,
Nazareno Andrade. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Ricardo S. Oliveira,
Caio Nóbrega, Leandro B. Marinho, Nazareno Andrade. “A Multiob-
jective Music Recommendation Approach for Aspect-based Diversifica-
tion”, 18th International Society for Music Information Retrieval Confer-
ence, Suzhou, China, 2017.

ample, for a user who only listens to American punk rock
bands from the 70’s, a recommendation of more bands of
this kind would probably be accurate, but possibly tedious
given that this user may very likely be able to find these
artists without aid.

In order to mitigate this problem, many approaches
have appeared with the aim of increasing diversity in rec-
ommendations [6, 14, 17, 19]. This is usually achieved
by mechanisms that avoid recommendation lists in which
items are very similar to each other with respect to some
aspect of the items (e.g. music genre). Such approaches
can potentially increase users satisfaction by providing less
obvious recommendations. However, users may have dif-
ferent preferences concerning what aspects should be di-
versified and what should match their past/current prefer-
ences. For example, a user may be very conservative con-
cerning the music genres she likes to listen (e.g. Bossa
Nova), but very open to discover how this genre is played
across different countries (e.g. Bossa Nova played in Japan
and India). This is exactly the recommendation scenario
we investigate in this paper, i.e., we want to generate rec-
ommendation lists by explicitly holding one or more item
aspects (e.g. Bossa Nova) constant, but increasing diver-
sity in others (e.g. locality and time period). The aspects
that are held fixed are the ones that correspond to the users
past/current preferences while the others correspond to the
way the users are open for diversification.

This problem has two different and possibly conflicting
objectives that need to be optimized for each user’s recom-
mendation list: (i) find the items that maximize the similar-
ity with the preferences of the user in terms of some set of
selected aspects, and (ii) find the items that minimize the
intra-list similarity (i.e. pairwise similarity of items in the
recommendation list) regarding a different set of selected
aspects. To generate recommendation lists that balance
these two objectives we propose Multiobjective Aspect Di-
versification (MOAD), a recommendation approach that
cast this problem as a multiobjective optimization prob-
lem. MOAD uses the Nondominated Sorting Genetic Al-
gorithm - NSGA-II, which is an efficient solver for this
kind of problem [5]. The main difference between our ap-
proach and other related work from the literature is that
we allow the explicit choice of the aspects to diversify and
hold constant.

Although music recommendation may refer to many
distinct entities in the literature, such as song tracks, al-
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bums and artists, in this paper we focus on artists due to
their relative abundance of aspects publicly available. In
order to assess the effectiveness of our proposed approach,
we collected artist listening historical data from Last.fm 1 ,
a large online radio portal, and enriched this collection
with artists metadata collected from Music Brainz 2 and
DBPedia 3 . We conduct several experiments by consider-
ing several switches between the fixed and variable aspects
and show that MOAD achieves the sought balance between
both objectives. We also compare our approach with sev-
eral diversification algorithms from the literature and show
that our recommendations are more diverse and relevant in
the chosen aspects in comparison to those.

2. PROBLEM FORMALIZATION

The problem that we address in this paper can be stated
as follows: given a target user u ∈ U (where U is the set
of users), her item consumption history Iu ⊆ I (where I
is the set of items) 4 , two disjoint sets X and Y of item
aspects (possibly provided by the user), we want to find
the top-n items that are more similar to Iu regarding X
and more dissimilar from each other regarding Y .

Items may have different kinds of metadata associated
to them, aka attributes, dimensions, contexts or side in-
formation. For example, if the recommendable item is a
music artist, we can think of each possible music genre as
a binary attribute. More formally, let G be the set of genres
and d : G × I → {0, 1} a function that indicates if genre
g ∈ G describes item i ∈ I . The set G is thus one aspect
of the item and represents the set of attributes of the kind
genre.

More generally, let A = {A1, A2 . . . , At} denote
the set of t possible aspects and fj : Aj × I → R
be a feature extractor for any attribute a ∈ Aj that
describes item i. An item may now be represented
as a feature vector regarding aspect j. For example,
~i = (f1(a1, i), f1(a2, i), . . . , f1(ap, i)) represents a fea-
ture vector of item i where a1, a2, . . . , ap ∈ A1.

The input for the algorithm is a user u ∈ U , her con-
sumption history Iu, the size n of the recommendation
list and two disjoint sets of aspects: X,Y ⊆ A where
X ∩ Y = ∅. We also consider two similarity functions:
ga(R) that returns the intra-list similarity (cf. Section 4.4)
of the items in the recommendation set R w.r.t aspect a;
and ha(R, Iu) that returns the similarity between R and
the user history Iu. Finally, let

diversity(R,X) = 1− 1

|X|
∑
a∈X

ga(R) (1)

denote the average intra-list distance for all aspects in X
and

affinity(R, Y ) =
1

|Y |
∑
a∈Y

ha(R, Iu) (2)

1 http://www.last.fm/
2 https://musicbrainz.org/
3 http://wiki.dbpedia.org/
4 Iu can also be thought as a query in terms of MIR

the average similarity between Ru and Iu for all aspects
in Y . Now, given the aforementioned inputs, we want to
find a set R \ Iu ⊆ I of n items (i.e. |R| = n) that max-
imize, at the same time, the objective functions defined in
equations 1 and 2, i.e.:

argmax
R

(diversity(R,X), affinity(R, Y )) (3)

3. RELATED WORK

Several works have appeared in recent years proposing rec-
ommender systems concerned with other metrics beyond
accuracy such as diversity, novelty or serendipity. Most
of these works aim to maximize such an alternative metric
without degrading accuracy. The seminal work of Ziegler
et al. [19] laid the foundations for achieving diversity based
on a re-ranking of collaborative filtering algorithms results.
Several other works appeared following similar principles
but based on different techniques such as graphs [8], ma-
chine learning [7, 18] and information retrieval [15].

Another strand of work considers this problem as a mul-
tiobjective optimization task. Realizing that accuracy, di-
versity and novelty might be conflicting objectives, Ribeiro
et al. [11] proposed a hybrid recommendation system that
combines algorithms through an evolutionary approach to
maximize one objective, without sacrificing the others.
Ouni et al. [9] proposed a genetic algorithm to recommend
software libraries, finding a trade-off between three objec-
tives. Wang et al. [16] developed a multiobjective solu-
tion to recommend accurate and unpopular items, called
long tail recommendations. Zuo et al. [20] proposed per-
sonalized recommendations by balancing accuracy and di-
versification. And finally, Pampalk and Goto [10] pro-
posed a graphic interface where users may adjust the rec-
ommendations received according to her desire by adjust-
ing music aspects. Our work also use multiobjective evo-
lutionary algorithms for promoting diversification, but dif-
ferently from the aforementioned related works, we enable
the explicit specification of the aspects that should be di-
versified.

4. MULTIOBJETIVE ASPECT DIVERSIFICATION

The main motivation for this research is to give users more
control on their recommendations. We do this by letting
the aspects that should be held constant and the ones that
should be diversified user-definable. In this section we de-
scribe in detail the components of our approach.

4.1 Pareto Optimality

In multiobjective optimization the best solutions are the
ones that cannot be improved in any of the objectives with-
out degrading at least one of the other objectives. This
property is known as Pareto optimality. In our case, a fea-
sible solution R ⊆ I (i.e. a recommendation list of size n)
is said to dominate another solution R′ ⊆ I if:

1. div(R,X) ≥ div(R′, X) ∧ aff(R, Y ) ≥ aff(R′, Y )

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 415



2. div(R,X) > div(R′, X) ∨ aff(R, Y ) > aff(R′, Y )

where div and aff are abbreviations for diversity and affin-
ity respectively. A solution R∗ ⊆ I is called Pareto op-
timal if there is no other solution that dominates it. The
set of Pareto optimal solution is also known as the Pareto
front.

4.2 Evolutionary Algorithm Approach

Determining the Pareto front is known to be a computa-
tionally intensive task [2, 11]. In our case it basically re-
quires an enumeration of all possible recommendation lists
for the objectives evaluation (i.e. O(2|I|)). Among the ap-
proaches used for addressing this kind of problem, evolu-
tionary algorithms appear as the most efficient and used
ones [4,12,16,20]. Thus, we have decided to adopt a Mul-
tiobjective Evolutionary Algorithm (MOEAs) for address-
ing our research problem.

The idea is to generate a population of recommendation
lists as individuals such that the dominating individuals are
considered the fittest and are kept for the next generation.
If the dominating individuals are insufficient to compose
the new generation, some dominated individuals are cho-
sen to compose the next generation. The crossing over -
switching the items between neighbor individuals - and the
mutation probability - used to replace some random items
in individuals for items still not considered - allow new in-
dividuals to approach the Pareto front throughout several
generations.

4.3 NSGA-II

Similarly to other related work, we have chosen the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) as the
MOEA solution [9, 20]. Besides giving guarantees of con-
vergence, it also offers a fast sorting function, called Fast
Non-dominated Sorting, with O(MN2) where M is the
number of objectives and N is the population size. This
sorting function separates individuals into levels of dom-
inance. For individuals in the same level, NSGA-II esti-
mates the density of solutions, privileging a set of solutions
that are spread on the objective space, in a process called
Crowding Distance Assignment.

Algorithm 1 presents NSGA-II pseudocode. The algo-
rithm starts by creating an initial population of size N (line
2). The following steps are repeated for each generation.
A new offspring is created based on the current popula-
tion (line 4) and the individuals are ordered and selected to
compose the population for the next generation (lines 5 to
11). This ordering considers first the selection of individu-
als whose objectives are not dominated by other individu-
als, made by fast-nondominated-sort (line 6), and second,
the density of individuals provided by crowding-distance-
assignment (line 8). If the non-dominated individuals are
not enough to complete N , then individuals on the second
level of dominance are chosen, and so on (lines 12 and 13).
The population Pt+1 is the output for the algorithm, and
we select the individual with the greater sum of objective
values as the final recommendation list.

Algorithm 1 NSGA-II
1: procedure NSGA-II(N,nGen,mProb, cProb)
2: P0 = create-initial-population[N ]
3: for t in 0 to nGen -1 do
4: Qt = create-new-offspring(Pt,mProb, cProb)
5: Rt = Pt +Qt

6: F = fast-nondominated-sort(Rt)
7: while |Pt+1|+ |Fi| 6 N do
8: crowding-distance-assignment(Fi)
9: Pt+1 = Pt+1 ∪ Fi

10: i = i+ 1
11: end while
12: Sort(Fi,≺)
13: Pt+1 = Pt+1 ∪ Fi[N − |Pt+1|]
14: end for
15: end procedure

4.4 Item Representation and Similarity Metrics

In order to compute the objective functions defined in
equations 1 and 2 we need to compute similarities between
items concerning the sets of aspects used as input. Thus,
we define feature extraction functions for each aspect such
that similarity measures can be applied.

4.4.1 Aspects Definition

First we need to instantiate the set A of aspects that we
consider in this paper:

• Contemporaneity (A1): refers to the year the artist
was born (if the artist is solo) or the year the band
was formed, in case the artist is a band.

• Locality (A2): refers often, but not always, to
artist’s birth/formation country.

• Gender (A3): refers to the artist gender (when ap-
plicable) together with its type (i.e. solo, band, or-
chestra, etc.). This aspect is a combination of two
aspects where if the artist type is person (i.e. a solo
artist) its gender is male or female. Otherwise, it has
no gender but has a type that can be one of the fol-
lowing: group, orchestra, choir, character or other.

• Music Genre (A4): refers to the artist music genres.

We have chosen this aspects for two main reasons: (i) they
are used recurrently in related works (not necessarily to-
gether) as side information for improving the preference
modeling of users; and (ii) they are publicly available in
MusicBraiz and DBpedia.

4.4.2 Similarity Metrics

Regarding A1, each item is represented as one-dimensional
vectors in which their single component is the year normal-
ized to the range [0, 1]. More formally, for a given contem-
poraneity (i.e. year) a ∈ A1 associated to artist i

f1(a, i) =
a−min(A1)

max(A1)−min(A1)
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where min(A1) and max(A1) returns the minimum and
maximum contemporaneity values of A1 respectively.
Now, the similarity of two items i and j regarding their
respective contemporaneities ai, aj ∈ A1 is simply com-
puted as the inverse of their distance, i.e.,

simA1(i, j) = 1− (~i−~j) (4)

where ~i = (f1(ai, i)) and ~j is defined analogously. The
intuition here is that artists from the same time epoch tend
to produce similar music.

Concerning A2, the feature extraction f2 is basically an
identity function, i.e., a function that returns the same value
found in the raw data. So, similarly to A1, items are rep-
resented as one-dimensional vectors whose single compo-
nent is a nominal value (e.g. country name). For com-
puting similarities between items under this representation
we used the Occurrence Frequency (OF) metric [1] which
besides being suitable for categorical data, exploits the fre-
quency of items with regard to the associated features. This
metric assigns 1 to items having the same feature value and
different scores to mismatches. A mismatch between less
frequent items regarding their features yields a lower value
than a mismatch between more frequent items. For ex-
ample, if we compare two artists from USA and England
respectively, two countries with a large number of artists
in the dataset, their similarity will be greater than artists of
USA and Costa Rica, since Costa Rica has probably much
less artists than USA. The idea is basically to avoid having
zero similarities whenever a mismatch occurs.

The equation below defines OF (which is used as
simA2

) of two items i, j regarding Locality:

OFA2
(i, j) =

1 if~i = ~j
1

1+log
|I|

freqA2
(i)
×log |I|

freqA2
(j))

otherwise.

(5)
where freqA2

(i) returns the number of artists having the
same feature value (country name in this case) as item i.

Regarding A3, f3 is analogous to f2, but the item rep-
resentation is slightly different. Since Gender is actually a
combination of two aspects, items are represented by vec-
tors containing two nominal values: (type,gender) where
gender can be male or female if the artist type is person,
and neither if the artist is associated to any other type. For
calculating the similarity between items i, j we apply equa-
tion 5 separately for type and gender and take the average.
More formally,

simA3
(i, j) =

OFtype(i, j) +OFgender(i, j)

2
(6)

As an example, the similarity between a male singer and
a female singer should return a greater similarity than be-
tween a male singer and a band.

As an artist can be associated to multiple music gen-
res, the feature extraction function for A4 is the function
f4 : A4 × I → {0, 1} that indicates the genres that are as-
sociated to a given artist. Each item is then represented by
a binary vector of genres. To measure similarity between

two items i, j regarding this aspect we use the well known
cosine similarity function, i.e.,

simA4
(i, j) = cos(~i,~j). (7)

Now, we can finally instantiate functions ga(·) and
ha(·) introduced in section 2. For a given aspect a ∈ A, a
recommendation list R and Iu:

ga(R) =
∑

(i,j)∈R×R|i 6=j

sima(i, j) (8)

ha(R, Iu) =
∑

(i,j)∈R×Iu|i 6=j

sima(i, j) (9)

5. EVALUATION

In this section we evaluate the effectiveness of MOAD
for music recommendation. All code for the evaluation is
available publicly online 5 .

5.1 Data Collection and Preparation

We used three publicly available data sources: Last.fm,
Music Brainz and DBpedia. Last.fm is a social network
where users share data about their listening habits. In par-
ticular, we have used a recent Last.fm dataset published
and made available by Schedl [13].

For extracting the aspects about the artists available in
the Last.fm dataset, we have used Music Brainz, a music
encyclopedia that provides rich metadata about artists and
albums. From Music Brainz we extracted Contemporane-
ity, Gender, and Locality. Finally, we used DBpedia to
extract the Music Genre(s) of each artist.

After enriching the artists with the aforementioned as-
pects, genres associated with less than 5 artists were re-
moved, as well as artists with no genre at all. Finally, a
sample of 1,000 users from the Last.fm dataset was ran-
domly selected for the experiments. This number of users
is in line with the size of other very well known and used
Last.fm datasets in the music recommendation community,
see for example the Last-fm - 1K users dataset 6 [3]. In our
sample, 3 users had no history and were thus discarded. We
also generated a train/test time split where the first 80% of
artists listened by each user was used for training and the
remaining 20% for testing.

Our sample includes the following statistics: 14,415
artists, a median of 140 artists listened per user, 10 genders,
437 localities, 847 genres, and contemporaneity ranging
from 1212 to 2014. Figure 1 shows a flow chart summa-
rizing our approach.

5.2 Evaluation Protocol and Metrics

Ideally, the aspects to keep and the ones to be diversified
should be provided by the users themselves. Since this
kind of online experiment can be very demanding, it will
be left for future work. In this paper, we will simulate some

5 https://github.com/ricooliveira/moad.git
6 http://www.dtic.upf.edu/˜ocelma/

MusicRecommendationDataset/lastfm-1K.html
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possible scenarios and evaluate the extent to which MOAD
can cope with them. The evaluation scenario is the follow-
ing: one aspect is chosen to be diversified while the others
are kept constant. Since we have four aspects, we end up
with four evaluation scenarios. For example, a given user
wants artist recommendations that are diverse regarding lo-
cality (artists countries) while maintaining genre, gender
and contemporaneity constant (i.e. similar to previous lis-
tened artists w.r.t. these aspects).

Regarding evaluation metrics, we use diversity and
affinity defined in equations 1 and 2 respectively. Diver-
sity is actually related to a popular diversity metric known
as ILD (Intra-List Diversity) [19] while affinity tries to as-
sess the relevance of the recommendations regarding the
aspects that were held constant. While diversity is only
evaluated on the final recommendation list, affinity is eval-
uated on the test set.

# Diversify Maintain affinity
1 Cont. Gender, Locality, Genre
2 Gender Cont., Locality, Genre
3 Locality Cont., Gender, Genre
4 Genre Cont., Gender, Locality

Table 1. Evaluated recommendation scenarios

Figure 1. Flow chart of MOAD.

5.3 Baseline Algorithms

We have chosen baselines that are well known for promot-
ing diversification without degrading accuracy. Since all of
them compute item similarities in order to select the items
that will compose the final recommendation list, we used
the same similarity measures defined in section 4.4. This
means that each baseline focused on the diversification of
the same aspect, depending on the recommendation sce-
nario chosen, as MOAD.

More specifically, we compare our approach to the fol-
lowing baselines:

• Topic Diversification (TD): Receives an initial rec-
ommendation list of 50 items where the first item of

this list goes to the recommendation final list in or-
der to preserve accuracy. Next, items are selected in
an iterative and greedy fashion based on their rank-
ings in the initial list and the similarity to the items
already in the final list regarding the aspect of inter-
est [19].

• Relevance-based eXplicit Query Aspect Diversi-
fication (RxQUAD): Performs a re-ranking over 50
precomputed items. During the greedy iterative step
each item receives a score based on two factors:
given an input aspect, the relevance of the aspect
for the user and the relevance of the aspect for the
item [15].

• User-Based Collaborative Filtering (UBCF): We
also included a standard user-based collaborative fil-
tering based on k-nearest neighbors. Notice that this
algorithm is not aimed to promoting diversification.

We have used the RankSys tool where these three algo-
rithm are implemented [14, 15].

5.4 Parameter Tuning

For determining suitable values to the NSGA-II parame-
ters such as the number of generations, size of the popula-
tion and probability of mutation, we extracted a subsample
of 30 users from the Last.fm experimental dataset and de-
termined a fixed scenario to perform some executions of
our approach. We use the third scenario of Table 1 and
N = 10, nGen = 10, mProb = 0.1 and cProb = 0.9
as default values. For tuning a particular parameter, we
fixed the other parameters to its default values and var-
ied the target parameter until no significant changes were
found in the evaluation metrics. Due to the non-normality
of the data, Wilcoxon non-parametric test was used. The
tests determined that the ideal values to the parameters are
N = 10, nGen = 50 and the default values to mProb and
cProb.

6. RESULTS AND DISCUSSION

For assessing MOAD variability across different execu-
tions, we run MOAD 10 times on scenario 3 of Table 1 and
performed a Kruskal-Wallis test, which reported that there
are no significant changes within the executions. We thus
assume that other scenarios will follow a similar trend and
thus only make one run of the algorithm for each subse-
quent scenario. The baseline algorithms are deterministic,
so running them multiple times is not necessary.

For assessing the results we calculated diversity and
affinity for all users in the experimental dataset. As men-
tioned earlier affinity was computed in the test set of each
user. The boxplots of the results for all scenarios in Table 1
are shown in Figure 2. Notice that MOAD achieved better
results than the baselines in all scenarios, considering both
evaluation metrics, with a small variability across users.
Wilcoxon tests are performed comparing MOAD to each
baseline and all the differences are statistically significant
albeit small in some cases.
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Figure 2. Comparison of MOAD and baselines

When diversifying contemporaneity, diversity shows
very low results for all algorithms. This may be explained
by the range of the aspect, mentioned on subsection 5.1,
which turns the time difference, even between artists from
different decades, very small when normalized. Gender
is the scenario where the smallest differences between
MOAD and the compared baselines are observed. A pos-
sible explanation to this is the fact that Gender aspect has
only 10 possible values which does not leave much room
for diversification. Locality and genre are the scenarios
where we observed the highest gains, which is probably
associated to the large number of possible values for these
aspects.

Table 2 shows an example of a real Last.fm experimen-
tal user, receiving recommendations of three algorithms,
based on scenario 3: UBCF; TD, the best baseline in sce-
nario 3 and MOAD. In the simulations, MOAD obtained
an improvement of 23.7% in diversity compared to TD.
This means that MOAD may bring from 2 to 3 more artists
from different countries than TD.

7. CONCLUSIONS AND FUTURE WORK

In this paper we proposed MOAD, an approach for music
recommendations that are at the same time diverse, regard-
ing certain aspects, and similar to user preferences con-
cerning other aspects. We cast this problem as a multi-
objective optimization task and use an efficient algorithm
based on evolutionary algorithms for solving it. We have
defined specific similarity functions for each considered
aspect and performed several simulations using real world
data to assess MOAD performance. We have compared
MOAD to other well known baselines from the literature
and show that it provides better results in all evaluated sce-
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U
B

C
F

Pink Floyd X
In Flames X
Dream Theater X
Iron Maiden X
Megadeth X
Coldplay X
Björk X
The Beatles X
The Cure X
Motörhead X

T
D

Pink Floyd X
Björk X
Johnny Cash X
In Flames X
Clint Mansell X
Zoë Keating X
Dream Theater X
Iron Maiden X
Megadeth X
Coldplay X

M
O

A
D

Films of Colour X
Ondskapt X
Beautiful Sin X
I Ribelli X
Planes Mistaken for Stars X
Banda Machos X
Jeff Healey X
Cole Swindell X
Mubarak Begum X
Fuck Buttons X

Table 2. Top-10 recommendations for a real Last.fm user

narios.
As future work, we intend to run MOAD in all possible

combinations of aspects to diversify and to hold constant
and with more generations. We also intend to perform an
online experiment with real users. Finally, we intend to ap-
proach the same problem under the perspective of MIR re-
placing the user’s history by a set of input artists, allowing
the user to discover new artists based on her instantaneous
information needs.
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ABSTRACT

Neural networks, and especially long short-term memory
networks (LSTM), have become increasingly popular for
sequence modelling, be it in text, speech, or music. In
this paper, we investigate the predictive power of simple
LSTM networks for polyphonic MIDI sequences, using an
empirical approach. Such systems can then be used as a
music language model which, combined with an acoustic
model, can improve automatic music transcription (AMT)
performance. As a first step, we experiment with synthetic
MIDI data, and we compare the results obtained in vari-
ous settings, throughout the training process. In particu-
lar, we compare the use of a fixed sample rate against a
musically-relevant sample rate. We test this system both
on synthetic and real MIDI data. Results are compared in
terms of note prediction accuracy. We show that the higher
the sample rate is, the better the prediction is, because self
transitions are more frequent. We suggest that for AMT, a
musically-relevant sample rate is crucial in order to model
note transitions, beyond a simple smoothing effect.

1. INTRODUCTION

Recurrent neural networks (RNNs) have become increas-
ingly popular for sequence modelling in various domains
such as text, speech or video [7]. In particular, long short-
term memory networks (LSTMs) [10] have helped make
tremendous progress in natural language modelling [15].
Those so-called language models can, in turn, be com-
bined with acoustic models to improve speech recogni-
tion systems. Many recent improvements in this field have
stemmed from better language models [8].

Automatic music transcription (AMT) is to music what
speech recognition is to natural language: it is defined as
the problem of extracting a symbolic representation from
music signals, usually in the form of a time-pitch repre-
sentation called piano-roll, or in a MIDI-like represen-
tation. Despite being one of the most widely discussed
topics in music information retrieval (MIR), it remains an
open problem, in particular in the case of polyphonic mu-

c© Adrien Ycart and Emmanouil Benetos. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Adrien Ycart and Emmanouil Benetos. “A Study on
LSTM Networks for Polyphonic Music Sequence Modelling”, 18th In-
ternational Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

sic [2]. While there has been extensive research on acous-
tic models for music transcription, music language models
(MLMs) have received little attention until quite recently.

In this paper, we propose a study on the use of LSTM
neural networks for symbolic polyphonic music modelling,
in the form of piano-roll representations. We evaluate
the impact of various parameters on the predictive perfor-
mance of our system. Instead of relying on ever more com-
plex architectures, we choose to use an LSTM with only
one layer, and see how each parameter influences the final
result, namely, the number of hidden nodes, the learning
rate, the sampling rate of the piano-roll, and doing data
augmentation. We also compare the use of time frames of
fixed length against the use of beat-quantised time frames
of fixed musical length (such as a 16th note). We evalu-
ate the predictive performance of our system in terms of
precision, recall and F-measure, and we monitor the evo-
lution of these metrics throughout the learning process. We
also conduct proof-of-concept experiments on AMT by
post-processing the output of an existing acoustic model
with our predictive models. We show that time-based time
steps yield better results in terms of prediction because
self-transitions are more frequent. This results in a simple
smoothing effect when used in the context of transcription.
On the other hand, note-based time steps perform worse for
prediction, but show interesting behaviour that might be
crucial for transcription, in particular the ability to model
note transitions and some basic rhythmic features. To the
best of our knowledge, such a study has not yet been done
in the context of polyphonic music prediction.

The remainder of the paper is organised as follows. In
section 2, we review existing works on symbolic music se-
quence modelling. In section 3, we describe the neural
network architecture chosen for the experiments. In sec-
tion 4, we describe the two employed datasets, one made
of synthetic MIDI data, the other of real-life MIDI data. In
section 6, we describe the various experiments performed
for prediction and their results. In section 7, we show pre-
liminary results on the application of the language model
in the context of AMT. Finally, in section 8, we discuss the
results obtained and their implications for future work.

2. STATE OF THE ART

Although MLMs have been discussed for quite a long time
[14], they have not been specifically used in audio anal-
ysis until quite recently. Temperley [18] was one of the
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first to propose a joint probabilistic model for harmony,
rhythm and stream separation, and suggested its use for
AMT. Since then, several other audio analysis systems,
such as [16], have used probabilistic models of high-level
musical knowledge in order to improve their performance.

More recently, some approaches have used neural net-
works to post-process the output of an acoustic model.
Indeed, it seems that neural networks are more suitable
to model polyphonic sequences compared to probabilistic
models such as hidden Markov models (HMMs). In [4], a
neural network architecture combining a RNN with a Re-
stricted Boltzman Machine (RBM) was proposed to esti-
mate at each time-step a pitch distribution, given the pre-
vious pitches. This architecture was later integrated in var-
ious systems. In [17], it was integrated in an end-to-end
neural-network for multi-pitch detection in piano music,
coupled with a variety of neural-network-based acoustic
models. In all these models, the time-step is of the order
of 10 ms, which is small compared to the typical duration
of a music note. Moreover, this time-step is constant, and
does not depend on the tempo of the input music signal.

Some systems have also modelled symbolic music se-
quences for other purposes. Pachet et al. [9] proposed an
architecture consisting of four joint neural networks in or-
der to generate Bach chorales. In [11], another architecture
using reinforcement learning to enforce musical rules in a
RNN was proposed for music generation.

All the above neural architectures rely on sophisticated
combinations of neural networks, and have many param-
eters, which means that they need a lot of training data,
and can be prone to over-fitting. In this study, we focus
on a simple architecture, and try to build from that us-
ing an experimental method to assess the importance of
various hyper-parameters. A study similar to the present
has been conducted in [13] on chord sequence modelling
(thus on modelling monophonic sequences instead of poly-
phonic ones). In this previous study, the advantage of
RNNs over HMMs is questioned in the context of chord
sequence modelling. In particular, it is argued that when
the frame rate is high (order of 10 fps), the RNN only has
a smoothing effect, and thus is no more efficient than sim-
pler models such as an HMM. On the other hand, it is sug-
gested that on the chord-level (ie. one symbol per chord,
no matter how long), the RNN used is significantly better
than an HMM. We aim at investigating similar questions in
the context of polyphonic note sequence modelling in the
current study.

3. MODEL

In this section, we describe the model we used in the exper-
iments. This model is trained to predict the pitches present
in the next time frame of a piano-roll, given the previous
ones.

3.1 Data Representation

The input is a piano-roll representation, in the form of an
88×T matrix M , where T is the number of timesteps, and
88 corresponds to the number of keys on a piano, between

MIDI notes A0 and C8. M is binary, such that M [p, t] = 1
if and only if the pitch p is active at the timestep t. In
particular, held notes and repeated notes are not differen-
tiated. The output is of the same form, except it only has
T−1 timesteps (the first timestep cannot be predicted since
there is no previous information). We use two different
timesteps:
• a fixed time step of 10 milliseconds, that we refer to

as time-based
• a variable time step with a fixed musical length of a

sixteenth note, referred to as note-based.

3.2 Network Architecture

Our primary goal is to study the influence of various pa-
rameters, namely the number of hidden nodes, the learning
rate, the use of data augmentation, and the time steps used.
In order to assess the influence of those parameters as ac-
curately as possible, without being influenced by other pa-
rameters, we deliberately choose to use the most simple
LSTM architecture possible. In particular, we choose not
to use multiple layers, nor to use dropout or any other reg-
ularisation method during training. These will be investi-
gated in future work.

We thus use an LSTM with 88 inputs, one single hid-
den layer, and 88 outputs. The number of hidden nodes is
chosen among: 64, 128, 256, 512. The network is trained
using the Adam optimiser [12], using the cross-entropy be-
tween the output of the network and the ground truth as
cost function. The learning rate is kept constant, and is
chosen among: 0.01, 0.001, 0.0001.

The output of the network is then sent through a sig-
moid, and thresholded to obtain a binary piano-roll. The
threshold is determined by choosing the one that gives the
best results on the validation dataset (see section 4).

4. DATASETS

We use two different datasets for training and testing our
models. One is a synthetic dataset, the other is a dataset
made of real music pieces. Both datasets were split into
training, validation and test datasets with the following re-
spective proportions: 70%-10%-20%.

4.1 Synthetic MIDI Dataset

The synthetic MIDI dataset used in this study consists of
combinations of notes and chords in the C major key. It
contains only notes on the C major scale, between C3 and
C5. The chords are either a note and the note a third above
(major or minor, such that the second note is also in C ma-
jor), or a note, the note a third above, and the note a fifth
above. All generated files are 3sec long, with a tempo of
60, so each file is 3-quarter-notes long. All notes have a
duration multiple of a quarter note, so note changes can oc-
cur after 1 second, 2 seconds, both or neither. We take all
possible combinations of 3 notes or chords and we allow
repetition. When a note or a chord is repeated we create
two distinct files, one corresponding to the note being held,
one corresponding to the note being played again. Overall,
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the dataset contains more than 36,000 files, representing
30 hours of data and will be referred to as Synth dataset.

4.2 Piano-midi.de Dataset

We use the Piano-midi.de dataset 1 as real-world MIDI
data. This dataset currently holds 307 pieces of classical
piano music from various composers. It was made by man-
ually editing the velocities and the tempo curve of quan-
tised MIDI files in order to give them a natural interpre-
tation and feeling. This mode of production is the main
reason why we chose it: it sounds real, with an expressive
timing, and at the same time, the rhythmic ground truth is
readily available. We can thus easily compute note-based
time steps, without having to rely on a beat and meter de-
tection algorithm.

This dataset holds pieces of very different durations
(from 20 seconds to 20 minutes). In order to avoid ex-
cessive zero-padding for neural network training and to
be more computationally efficient, we only keep the first
minute from each file (and we zero-pad the shorter files).
The resulting dataset is 5 hours long, and will be referred
to as the Piano dataset. We also augment our dataset by
transposing every piece in all keys from 7 semitones below
to 6 semitones above. This increases the size of the dataset
12-fold, up to 60 hours. That way, all tonalities are equally
represented, without shifting the range of notes too much.

5. EVALUATION METRICS

To evaluate the performance of our system, we compute
several metrics following the MIREX Multiple-F0 Estima-
tion task [1], namely the precision, recall and F-measure.
Those metrics are computed for each file, and then aver-
aged over a dataset. The progress throughout learning is
computed on the validation dataset, and the performance
of the trained model is computed on the test dataset.

6. PREDICTION

In this section, we compare the results obtained in various
configurations, both quantitatively and qualitatively.

6.1 Number of Hidden Nodes and Learning Rate

We trained on the Synth dataset a series of mod-
els, with various numbers of hidden nodes in the hid-
den layer (n hidden), and various learning rates (learn-
ing rate). We tried all possible combinations with
n hidden ∈ {64, 128, 256, 512} and learning rate ∈
{0.0001, 0.001, 0.01}. We trained each model for
50 epochs, with a batch size of 50. All the im-
plementations were made in Python, using Tensor-
flow [6]. The code necessary for the experiments
can be found at: http://www.eecs.qmul.ac.uk/
˜ay304/code/ismir17 .

In each case, the model converges to the same state:
at epoch 50, all the models get the same precision, recall
and F-measure with 10−2 precision. The only difference

1 http://piano-midi.de/

among all the models is the convergence speed. Similar
observations were made for the other numbers of hidden
nodes.

Quite expectedly, the parameter that has the most influ-
ence on convergence speed is the learning rate. Generally
speaking, the larger the number of nodes is, the quicker the
model converges (we could not compare when the learning
rate is 0.01 since all the models converge in one epoch).
Those empirical observations are consistently observed in
all the other experiments as well (on the Piano dataset, with
or without note-based time steps, with or without data aug-
mentation).

When inspecting the output of the network before go-
ing through the sigmoid, we can notice some interesting
features. All the notes that are outside the scale of C (that
never appear in the training set) have a very low output,
showing that the network is able to learn which notes might
appear. This can be double-edged: notes outside the key
are not mistakenly detected, but if they appear (which hap-
pens), they will not be detected either. In Section 7 we
attempt to run this model on a real-life input file, and those
findings are confirmed: the prediction clearly masks out
every note that was not in the set of notes seen during train-
ing.

Considering the results of this preliminary experiment,
we decide to keep for the rest of the experiments only
n hidden ∈ [128, 256] and learning rate ∈ [0.001, 0.01].
Indeed, 512 hidden nodes is too heavy computationally
(around 20% longer training time compared to all the other
configurations) without any clear improvement over 256
nodes. Similarly, a learning rate of 0.0001 converges too
slowly compared to the others, with no noticeable advan-
tage in the end result. We nevertheless choose to keep sev-
eral models, not only the best one, because the best model
on this dataset will not necessarily be the best one on an-
other.

6.2 Data Augmentation

On the Piano dataset, we compare the performance of
the model trained on the original 5-hour dataset, and on
the augmented 60-hour dataset. The evolution of the F-
measure on the validation dataset with and without data
augmentation can be found in Figure 1. Results show that
data augmentation improves greatly the results. All mod-
els trained on augmented data converge more quickly in
terms of number of epochs, which is understandable since
12 times more data is processed at each epoch. However,
in both cases, the results obtained after 50 epochs are ap-
proximately the same in terms of metrics.

6.3 Time Step

We compare the behaviour of the network when using
time-based and note-based time steps, on both datasets. A
comparison of the evolution of the F-measure on the Piano
validation dataset with time-based or note-based time steps
can be found in Figure 1.

With time-based time steps, we find that all the models
seem to achieve similar results: with data augmentation, all
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Figure 1. Comparison of the evolution of the F-measure across epochs, on the Piano validation dataset, with time-based or
note-based timesteps, with or without data augmentation. A threshold of 0.5 is used.

F-Measure Precision Recall
Without augmentation

128, 0.001 0.451 0.409 0.509
256, 0.001 0.513 0.484 0.549
128, 0.01 0.548 0.536 0.560
256, 0.01 0.553 0.544 0.562

With augmentation
128, 0.001 0.558 0.557 0.560
256, 0.001 0.571 0.552 0.592
128, 0.01 0.597 0.61 0.588
256, 0.01 0.601 0.615 0.592

Table 1. Prediction performance computed with note-
based time steps on the Piano test dataset.

the models achieve a F-measure score of 0.966. Without
data augmentation, the models trained with a learning rate
of 0.01 achieve the same performance, with a learning rate
of 0.001, the 128-hidden-node model achieves 0.917, and
the 256-hidden-node model achieves 0.944. This might be
due to the fact that they haven’t fully converged after 50
epochs. All those scores were computed with a threshold
of 0.5.

We also compute the precision, recall and F-measure on
the Piano test dataset with note-based time steps. These re-
sults can be found in Table 1. We observe that this time,
higher learning rate, higher number of nodes and data aug-
mentation not only lead to quicker convergence, but also to
better results.

For both datasets, the predictive accuracy is better in
time-based configurations, since the frame rate is much
higher, and thus there are more self-transitions (ie. notes
are prolongated from the previous time steps). It seems in-
deed that in both cases, the system is uncertain when there
are note changes, but learns to repeat the ongoing notes.

The difference in performance can thus be attributed to the
fact that note changes are much more frequent in the note-
based case (once every 4 time steps versus once every 100
timesteps for the Synth dataset).

However, the note-based model shows very interesting
behaviour at the uncertain time steps (ie. at each beat).
On the Synth dataset, when the note changes, it gives a
small probability to every note of the scale (the notes that
might appear in the next frame), and rules out all the out-
of-scale notes. Moreover, even when the note is kept for
more than one beat, the model still shows the same “un-
certain” behaviour, which does not happen with the time-
based model. This is an error (which partly explains the
worse scores), because the note should be held, but it
has some very interesting consequences in terms of mu-
sic modelling. This shows that the note-based model has
learned that periodically, notes have a strong probability to
change. This can be related to the rhythmic structure of
music, as note changes are more frequent on strong metric
positions. An example prediction output before threshold-
ing is shown in Figure 2. We can see those “uncertain”
time-steps in position 3 and 7, which correspond to time-
steps 4 and 8 in the input (ie note changes).

We also find this behaviour with the Piano dataset, how-
ever only appearing with data augmentation. It is not clear
if this is specific to data augmentation, or if it is simply
because models without data augmentation were under-
trained. In this case, the “uncertain” behaviour occurs at
every eighth note, and with stronger probabilities at each
quarter note. This suggests that the model behaves this
way at the smallest metrical level, and not only at strong
metrical positions. This might be a problem in the future,
since it might encourage transitions too frequently. How-
ever, a small probability is only given to notes of the cor-
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Figure 2. The prediction system output (n hidden = 256,
learning rate=0.01) with note-based time steps after going
through the sigmoid, before thresholding. The ground truth
is: E3, C4E4G4, F4A4. At each note change, a small prob-
ability is given to all notes in C major scale.

rect scale, which shows that the model is able to get the
tonal context of a piece to some extent. An example output
before thresholding is shown in Figure 3.

Figure 3. The output of the prediction system (n hidden
= 256, learning rate=0.01) with note-based time steps af-
ter going through the sigmoid, before thresholding. The
ground truth is Chopin’s Prelude, No. 7, Op. 28 in A Ma-
jor. At each eighth note, a small probability is given to
some notes in A major, the tonality of the piece.

7. AUDIO TRANSCRIPTION

A preliminary experiment on assessing the potential of pre-
diction models in the context of AMT is carried out. For
this experiment, we use a single piece taken from the Piano
dataset: Chopin’s Prelude No. 7, Op. 28 in A Major.

7.1 Acoustic Model

For the experiment on integrating AMT with polyphonic
music prediction, we use the system of [3], which is based
on Probabilistic Latent Component Analysis. The system
decomposes an input spectrogram into several probability
distributions for pitch activations, instrument contributions
and tuning deviations, using a dictionary of pre-extracted
spectral templates. For this experiment, a piano-specific
system is used, trained using isolated notes from the MAPS
database [5]. The output of the acoustic model is a poste-
riogram of pitch activations over time.

7.2 Method

We synthesise the MIDI file with GarageBand, using the
default Steinway Grand Piano soundbank. We analyse 3
different audio files:

Figure 4. The first 20 seconds of the thresholded output of
the baseline AMT system, compared with the ground truth.

• The full audio file, with expressive timing.
• The right-hand of the piece, transposed in C. In this

case, predictive models trained both on the Synth
and Piano dataset are evaluated.

• The full audio file, with quantised timing. The out-
put of the transcription system is then downsampled
to obtain a time step of a 16th note.

We take the posteriogram output by the previously de-
scribed acoustic model, and feed it to various polyphonic
prediction models, in various conditions:
• The raw posteriogram, with positive values theoreti-

cally unbounded (raw post)
• The raw posteriogram thresholded in order to have a

binary piano-roll (raw piano)
The output of our predictive model is then thresholded

using the value determined on the validation dataset in the
experiments described in Section 6.3. The resulting piano-
roll is compared to the ground truth using the accuracy
metrics described in Section 5. An example of output of
the baseline transcription system is shown in Figure 4.

7.3 Results

Results in terms of multi-pitch detection are shown in Ta-
ble 2. Although we tested every configuration with all our
models, we only report the results of the most meaningful
experiments.

In the vast majority of cases, the results with the pre-
dictive model are below those of the acoustic model only,
without post-processing. The only cases where the post-
processing step improves the results is when the prediction
is made on the whole piece, with time-based time steps,
in raw piano configuration. Otherwise, the results are at
best equivalent to those of the baseline system. In the case
where the results are improved, we inspect what improve-
ments are made by the predictive model. It seems that the
only improvements were few isolated frames that are tem-
porally smoothed. We do not notice any missing notes be-
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F-Measure Precision Recall
Full audio, raw piano

Baseline 0.455 0.960 0.299
128, 0.001 0.458 0.938 0.303
256, 0.001 0.458 0.941 0.303
128, 0.01 0.460 0.959 0.303
256, 0.01 0.460 0.961 0.303

Right hand in C,
raw post, Synth

Baseline 0.670 0.898 0.535
128, 0.001 0.556 0.955 0.393
256, 0.001 0.607 0.966 0.442
128, 0.01 0.522 0.834 0.380
256, 0.01 0.527 0.877 0.377

Full note-based, raw piano
Baseline 0.526 0.963 0.361

128, 0.001 0.434 0.624 0.332
256, 0.001 0.440 0.651 0.332
128, 0.01 0.478 0.852 0.332
256, 0.01 0.481 0.875 0.332

Table 2. Some results on transcription from audio, com-
pared to the output of the baseline acoustic model.

ing added, and very few spurious notes are removed.
When using the Synth-dataset-trained models on the

right hand transposed in C, the results are mixed. The pre-
cision measure is improved, due to the fact that many spu-
rious notes are removed. On the other hand, some notes
went completely missing because they were not in the C
major scale, which leads to a lower recall score. Overall,
the F-measure is lower than that of the acoustic model .

When using frame-based time steps, in every configura-
tion, the results are worse. We have identified two reasons
for that. The first is that sometimes, the system would add
evenly distributed noise at the beginning of the prediction.
This is probably due to the fact that the network takes a
few frames to build a memory good enough to make cor-
rect predictions. More training removes that problem (the
problem does not appear with models trained with a learn-
ing rate of 0.01). The second reason is that the system has
some latency: a note is only activated one frame after it is
seen in the input, and it is only deactivated one frame after
it disappears of the input. When comparing the output of
the system shifted one frame back with the output of the
baseline system, the results were very close, and in some
cases, identical (though never better).

8. DISCUSSION

In this study, we compare the influence of various parame-
ters of an LSTM network on modelling polyphonic music
sequences with respect to the training process and predic-
tion performance. Those parameters are: the learning rate,
the number of hidden nodes, the use of data augmenta-
tion by transposition, and the use of time-based time steps
against note-based time steps. We found that with a given
time step and a given dataset, the learning rate is the most
important factor for learning speed, and that the more hid-
den nodes there are, the quicker the convergence is. We
also found that data augmentation greatly improves both
the convergence speed and the final performance.

When it comes to the choice of the time steps, it appears
that time-based time steps yield a better prediction perfor-
mance, because self transitions are more frequent. On the
other hand, note-based time steps seem to show better mu-
sical properties. When trained on synthetic data containing
only notes of the scale, it seems rather evident that notes
that are have never been obeserved are very unlikely. More
interestingly, when trained with real data in all tonalities,
the system can still detect the scale of the piece : we can
see with the example in Figure 3 that only notes of the cor-
rect tonality are given a some probability. We can also see
that the system has learned the places where note changes
might occur, and that the note changes are more frequent
at beat positions than at half-beat positions.

We also use our system to post-process the output of
an acoustic model for multi-pitch detection, in a proof-of-
concept experiment. The first thing that we can notice from
this experiment is that a good prediction performance does
not necessarily translate to a good audio transcription per-
formance. However, the order of performance for predic-
tion seem to be kept for transcription: models with more
nodes and higher learning rate tend to perform better.

The poor performance of our the predictive model for
improving AMT performance is understandable: the in-
put presented to the system in the transcription process is
very different from those the models were trained on. Fu-
ture work will include training predictive models not with
piano-rolls, but with acoustic model posteriograms.

From all the above experiments, we can conclude that
with time-based time steps, what the LSTM does is a sim-
ple smoothing, albeit a good one, since it improves tran-
scription performance in some cases. The very fact that
post-processing the output of the acoustic model with our
system can improve the transcription performance, even
though our language model was trained on a completely
different kind of data, shows that it has in fact not learned
much from the data it was fed, except temporal smoothing
similar to e.g. a median filter. Since we aim at modelling
the complex vertical and horizontal dependencies that exist
within music, this behaviour is not sufficient.

On the other hand, we found some very interesting fea-
tures in the output of the note-based models: they are able
to learn when note changes might occur and what note
might be activated which is very promising in terms of
polyphonic music modelling. The downside of such mod-
els is that they would rely on meter detection algorithms
when applied to audio, which might lead to error propaga-
tion. Future work will focus on investigating the possibili-
ties of those models in the context of AMT, assuming that
the meter and tempo are given as a first step.

Finally, we will extend this study in future work by
gradually increasing the complexity of our model, and
studying how the performance varies. In particular, we will
study the result of adding more hidden nodes, and using
more sophisticated regularisation techniques. We will also
further investigate the results by visualising the learned pa-
rameters, as well as the activations of the hidden nodes.
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ABSTRACT

We approach the singing phrase audio to score matching
problem by using phonetic and duration information – with
a focus on studying the jingju a cappella singing case. We
argue that, due to the existence of a basic melodic con-
tour for each mode in jingju music, only using melodic
information (such as pitch contour) will result in an am-
biguous matching. This leads us to propose a match-
ing approach based on the use of phonetic and duration
information. Phonetic information is extracted with an
acoustic model shaped with our data, and duration in-
formation is considered with the Hidden Markov Models
(HMMs) variants we investigate. We build a model for
each lyric path in our scores and we achieve the match-
ing by ranking the posterior probabilities of the decoded
most likely state sequences. Three acoustic models are in-
vestigated: (i) convolutional neural networks (CNNs), (ii)
deep neural networks (DNNs) and (iii) Gaussian mixture
models (GMMs). Also, two duration models are com-
pared: (i) hidden semi-Markov model (HSMM) and (ii)
post-processor duration model. Results show that CNNs
perform better in our (small) audio dataset and also that
HSMM outperforms the post-processor duration model.

1. INTRODUCTION

The ultimate goal of our research project is to automat-
ically evaluate the jingju a cappella singing of a student
in the scenario of jingju singing education – see Figure 1.
Jingju, a traditional Chinese performing art also known as
Peking or Beijing opera, is extremely demanding in the
clear pronunciation and accurate intonation of each syl-
labic or phonetic singing unit. To this end, during the initial
learning stages, students are required to completely imitate
tutor’s singing. Therefore, the automatic jingju singing
evaluation system we envision is based on this training
principle and measures the intonation and pronunciation
similarities between the student’s and the tutor’s singings.
Before measuring similarities, the singing phrase should be
automatically segmented into syllabic or phonetic units in

c© Rong Gong, Jordi Pons and Xavier Serra. Licensed un-
der a Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Rong Gong, Jordi Pons and Xavier Serra. “Au-
dio to score matching by combining phonetic and duration information”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

Figure 1. System design framework of the entire research
project. The modules with bold border lines are addressed
in this paper.

order to capture the temporal details. Jingju music scores,
which contain the phonetic and duration information for
each singing syllable, will be beneficial for this segmenta-
tion. In the application scenario, the score of a query au-
dio could be selected from the database by the user itself.
However, to avoid manual intervention and improve the
user experience, we tackle the problem of automatically
finding the corresponding music score for a given query
audio (bold in Figure 1). Note that achieving successful
methods for audio to score matching might be beneficial
for several music informatics research (MIR) tasks, such
as score-informed automatic syllable/phoneme segmenta-
tion [5] or score-informed source separation [14]. The ob-
jective of this research task is to find the corresponding
score for a given singing audio query. We restrict this re-
search to the “matching” scope by pre-segmenting both the
singing audios and the music scores into the phrase units.

Xipi and erhuang are the main modes in jingju mu-
sic. Each has two basic melodic contours – an opening
phrase and a closing phrase. Each basic melodic contour
is constructed upon characteristic pitch progressions for
each mode [22]. Therefore, singing phrases from differ-
ent arias sharing the same mode are likely to have a sim-
ilar melodic contour. Figure 2 shows an example of this
fact. However, melodic information tends to be intuitively
used for such matching tasks. For example in Query-by-
Singing/Humming (QBSH) [15], melodic similarities can
be obtained by comparing the distance between the F0 con-
tour of the query audio and those synthesized from the can-
didate scores. Then, the best matched music score can
be retrieved by selecting the most similar melody. But
note that using this approach for jingju music would bring
matching errors since the melodic contours of the same
mode are similar in this sense. In this case, it is more ap-

428



Figure 2. An example of different phrases having a similar
Xipi melodic contour in our score dataset. The lengths of
these contours are normalized to a fixed sample size.

propriate to use another notion of similarity. We propose
using the lyrics since the stories narrated in different jingju
arias are distinctive and lyrics tend to change through dif-
ferent jingju arias – even when they share the same mode.
Therefore, phonetic information might be useful to iden-
tify a similar score given a query audio.

QBSH is the most related research task to our study,
which retrieves a song by singing a portion of itself. Most
of the studies use melody information as the only cue.
The typical process of such systems was introduced by
Molina et al. [15]: firstly, the F0 contour and/or a note-
level transcription for a given singing query are extracted;
and then, a set of candidate songs are retrieved from a large
database using a melodic matcher module. The most suc-
cessful QBSH system, which obtained the best results in
MIREX 2016 contest, is based on the method of multi-
ple similarity measurements fusion [21]. This system pro-
posed a melodic matcher which combines several simi-
larities that are note-based and frame-based. The authors
claim that the fusion mechanism improves the query per-
formance because no similarity measurement is perfect.
Therefore, information sources that are complementary to
each other might be beneficial for this approach. Very few
studies have explored the capability of the phonetic infor-
mation for QBSH. Guo et al. [8] and Wang et al. [20] both
used a lyric recognizer based on Hidden Markov Models
(HMMs). Their recognition networks 1 were constructed
with the phonetic information from the query candidates
database. They used frame-based MFCCs to create the
acoustic models with GMMs. Then, the Viterbi algorithm
was executed over the recognition networks to either ob-
tain the most likely phonetic state sequence (for Wang et
al. [20]) or the posterior probability of each possible de-
coding path (for Guo et al. [8]). The final score of a
query candidate is either based on semantic similarity [20]
or based on the posterior probability of its corresponding
lyrics [8].

Another research task related to our study is singing
keyword spotting. The main goal of this task is to
search for one or more keywords in a singing query. The
system proposed by Kruspe [12] searches for a specific
singing keyword on the resulting phoneme observations.
1 The topology of the HMM is defined by the recognition network.

A keyword-filler HMMs is employed for this purpose. She
used two phoneme duration models: the HSMM and the
post-processor duration model.

Finally, both phonetic and duration information ex-
tracted from the score have been extensively used in
alignment-related tasks, such as audio-to-score alignment
and audio-to-lyrics alignment. For example, Gong et al.
[4] construct a left-to-right HSMM using phonetic and du-
ration information. Or Dzhambazov et al. [3] use a simi-
lar approach for aligning polyphonic audio. Analogously,
the proposed approach explores the use of both phonetic
and duration information (available in scores) to tackle the
matching ambiguity problem existing in jingju music.

The remainder of this paper is organized as follows:
the used dataset is introduced in section 2, section 3 ex-
plains the modules of the proposed approach – detailing
how to incorporate phonetic and duration information. Ex-
periments and results are reported in section 4, and section
5 concludes and points out future work.

2. DATASET

The jingju a cappella singing dataset is composed of two
overlapping parts: (i) audio and (ii) score datasets.

The audio dataset [1] used for this study consists of two
role-types singing: dan (young woman) and laosheng (old
man). The dan part of this dataset has 42 recordings sung
by 7 singers and the laosheng part has 23 recordings sung
by 7 laosheng singers. The boundary annotations of the au-
dio dataset have been done in Praat format (textgrid) con-
sidering a hierarchy of three levels: phrase, syllable and
phoneme – using Chinese characters, pinyin notations and
X-SAMPA notations, respectively. 32 phoneme classes are
used in the phoneme-level annotation. Two Mandarin na-
tive speakers and a jingju musicologist have been devoted
to this annotating work. Annotations and more detailed in-
formation can be found online 2 . Some statistics about the
dataset are reported in Table 2. The average phrase, sylla-
ble and voiced phoneme length of dan singing are ostensi-
bly greater than those of laosheng singing (bold numbers
in Table 2), which might indicate that dan singing tends to
have more pitch variation and ornamentation – as we could
observe empirically by listening to the data.

Num. Avg. len (s) Std. len (s)

Phrases 325 16.42 14.11
Syllables 2933 1.58 2.82
Voiced phonemes 7198 0.61 0.97
Unvoiced phonemes 2014 0.10 0.67

Phrases 247 9.47 8.14
Syllables 2289 0.88 1.48
Voiced phonemes 4948 0.39 0.78
Unvoiced phonemes 1454 0.07 0.05

Table 1. Detailed information of the jingju a cappella
singing audio dataset: dan (top), laosheng (bottom).

2 http://doi.org/10.5281/zenodo.344932
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The audio dataset, along with their boundary annota-
tions, is split into three parts: training set, development
(dev) set and test set. We define the training set to be the
non-overlapping part with the score dataset, see Figure 3.
The training set will be used for calculating the phonetic
duration (duration information) and training acoustic mod-
els (phonetic information). After taking the training set
out, we define the development set to be the half of the re-
maining phrases in the audio dataset (randomly selected)
– it will be used for parameters optimization. The test set
consists on the remaining phrases of the audio dataset – it
will be used for testing the acoustic models performance
and the matching performance.

Figure 3. The intersection between the audio and the score
datasets. The partition of the audio dataset.

On the other hand, the score dataset contains 435 dan
phrases and 481 laosheng phrases. The scores have been
typed in stave notation (including lyrics in Chinese char-
acters) using MuseScore from different printed sources in
jianpu notation. Since tempo is usually not clearly noted in
the printed score, we do not include this information in the
dataset. The relative syllabic durations are indicated by the
note durations corresponding to the lyrics, which will be
used to calculate the phonetic duration (duration informa-
tion) and the matching network. The whole score dataset
will be used as candidates for testing the matching perfor-
mance and for parameter optimization.

3. APPROACH

The proposed approach aims to match the query audio to
its score by using phonetic and duration information. Dur-
ing the training process (red boxes in Figure 4): the acous-
tic models of each phoneme are shaped by using the au-
dio training set and its phonetic boundary annotations; the
score dataset is used to construct a matching network; and
phoneme duration distributions are estimated by using both
audio training set and scores. During the matching process
(green boxes in Figure 4): two duration models –HSMM
and post-processor– are explored for the Viterbi decoding
step. Finally, the best-matched phrase is found by ranking
the decoded state sequence probabilities.

3.1 Acoustic models

Here presented acoustic models aim to represent the re-
lationship between an audio signal and the 32 phoneme

Figure 4. Diagram of the proposed approach.

classes present in our dataset. The output of these models
yield probability scores for each phoneme class.

The most popular way to approach acoustic modeling
is by using GMMs and MFCCs features [8, 20]. For that
reason, we set as baseline a 40-component GMM with the
following input vector: 13 MFCCs, their deltas and delta-
deltas. Moreover, DNNs have been found very useful for
acoustic modeling [9, 13]. Therefore, we propose an addi-
tional baseline: a DNN with 2 hidden layers followed by
the 32-way softmax output layer – the input is set to be a
log-mel spectrogram.

However, DNNs are very prone to over-fitting and
the available dataset is relatively small. For that rea-
son we propose using CNNs since these are more robust
against over-fitting – note that CNNs allow parameter shar-
ing. Additionally, Pons et al. [17] have successfully used
spectrograms-based CNNs for learning music timbre rep-
resentations from small datasets. Given that timbre is an
important feature for acoustic modeling, we propose using
the same architecture: a single convolutional layer with
filters of various sizes [16, 17]. The input is set to be a
log-mel spectrogram. We use 128 filters of sizes 50×1 and
70×1, 64 filters of sizes 50×5 and 70×5, and 32 filters of
sizes 50×10 and 70×10 – where the first and second num-
bers denote the frequential and temporal size of the filter,
respectively. A max-pool layer of 2×N ′ is followed by a
32-way softmax output layer with 30% dropout – where
N ′ denotes the temporal dimension of the resulting feature
map. 2×N ′ max-pool layer was chosen to achieve time-
invariant representations while keeping the frequency res-
olution. And same padding is used to preserve the dimen-
sions of the feature maps so that these are concatenable.
Filter shapes are designed so that filters can capture the
relevant time-frequency contexts for learning timbre rep-
resentations – according to the design strategy proposed
by Pons et al. [17]

Log-mel spectrograms are of size 80×21 – the network
takes a decision for a frame given its context: ±10 frames,
21 frames in total. Activation functions are ELUs [2]
for all deep learning models and these are optimized with
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stochastic gradient descent (batch size: 64), using ADAM
[11] and early stopping – when validation loss (categorical
cross-entropy) does not decrease after 10 epochs.

Spectrograms are computed from audio recordings
sampled at 44.1 kHz. STFT is performed using a window
length of 25ms (2048 samples with zero-padding) with a
hop size of 10ms. The 80 log-mel bands energies are calcu-
lated on frequencies between 0Hz and 11000Hz and these
are standardized to have zero mean and unit variance.

The acoustic models are trained separately for each
role-type and their performance is reported in section 4.2.

3.2 Matching network

The matching network defines the topology of the hidden
Markov model. By using each candidate phrase in the
score dataset as an isolated unit, isolated-phrase matching
networks can be constructed. Figure 5 shows the structure
of this matching network, which has K = 916 lyric paths.

Figure 5. The structure of the K paths isolated-phrase
matching network. Path 3 shows an example of the left-
to-right state chain structure of an individual lyric path.

The matching network uses HMMs or HSMMs, de-
pending on how the internal duration is modeled. Each
path is a left-to-right state chain which represents the
phoneme transcription of its lyrics. In order to construct
the lyric path, pinyin lyrics are segmented into phonetic
units and transcribed into X-SAMPA notations by using
a predefined dictionary. For example, a path which has
the lyrics yan jian de hong ri in pinyin is a chain consist-
ing of 12 states: j, En, c, j, En, c, 7, x, UN, N, r\’, 1 in
X-SAMPA notation. When the decoding process has fin-
ished, each lyric path can get a posterior probability which
will be used as the similarity measure between the query
phrase and the candidate phrase.

3.3 Phonetic duration distributions

Phonetic duration information comes from two sources:
the boundary annotations of audio training dataset and the
score dataset. The phonetic duration is not directly indi-
cated in the score. However, it is indispensable for model-
ing the phonetic duration distribution for each state in the
matching network. The syllable, of which duration can be
deduced by the corresponding note(s), is used to restrict
the durations of the phonemes.

Figure 6. Flowchart example of estimating the phonetic
durations of a syllable.

In the following, we propose a method for estimating
the absolute phonetic duration given: (i) the score, and (ii)
the phonemes duration histograms computed from the au-
dio dataset annotations. First, we omit silence parts in the
query audio (with a simple voice activity detection method
[19]) and also in the score by removing the rest notes. Sec-
ond, we compute the duration histogram and its duration
centroid for each phoneme class – by aggregating the pho-
netic durations indicated in the boundary annotations of the
audio training dataset. Then, we segment each syllabic du-
ration in the score dataset into phonetic durations accord-
ing to the proportion of their duration centroids. Finally,
as the scores do not contain tempo, we normalize the pho-
netic durations of each phrase such that their summation is
equal to the duration of the query audio. See Figure 6 for
an equivalent graphic explanation. In Figure 6, the cen-
troid durations of these three phonemes are: 0.46s, 0.9s
and 0.1s, summing: 1.46s – alternatively, these can be ex-
pressed as a proportion of 1.46s: 0.32, 0.62 and 0.06. With
these proportions and the absolute syllable duration (2s),
we can compute the absolute phoneme durations: 0.32·2s
= 0.64s, 0.62·2s=1.24s and 0.06·2s=0.12s.

The phonetic duration distribution needs to be calcu-
lated for each state in the matching network in order to
incorporate the a priori phonetic duration information. We
model it by Gaussian distributions:

N (x;µl, σ
2
l ) =

1√
2πσl

exp

(
− (x− µl)

2

2σ2
l

)
. (1)

where µl is the duration of the phoneme l deduced by the
above method and the standard deviation σl is proportional
to µl: σl = γµl. The proportionality constant γ will be
optimized in section 4.3 for each role-type.
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3.4 Duration modeling

Standard Markovian state does not impose explicitly dura-
tion distribution, instead, imposing an implicit state occu-
pancy distribution which corresponds to a “1-shifted” geo-
metric distribution [6]:

dj(u) = (1− p̃jj)p̃u−1jj (2)

where u denotes the occupancy or sojourn time in a Marko-
vian state j and p̃jj denotes the self-transition probability
of the state j. Because of the implicity of the Markovian
state occupancy, the phonetic duration distribution intro-
duced in section 3.3 can not be imposed. Kruspe [12]
presents two duration modeling techniques for HMMs:
Hidden semi-markov model (HSMM) and post-processor
duration model.

3.4.1 Hidden semi-markov model

Guédon [6] defined a semi-Markov chain St with finite
state space 0, ..., J − 1 by the following parameters:

- initial probabilities πj = P (S0 = j) with
∑

j πj = 1

- transition probability of semi-Markovian state j: for
each k 6= j, pjk = P (St+1 = k|St+1 6= j, St = j)
with

∑
k 6=j pjk = 1 and pjj = 0

An explicit occupancy distribution is attached to each
semi-Markovian state:

dj(u) = P (St+u+1 6= j, St+u−v = j, v = 0, ..., u− 2

|St+1 = j, St 6= j), u = 1, ...,Mj

(3)
where Mj denotes the upper bound to the time spent in
state j. dj(u) defines the conditional probability of leaving
state j at time t+ u+ 1 and entering state j at time t+ 1.

To apply HSMMs to the matching network, we first use
the matching network as the HSMMs topology. Thus the
state occupancy distribution is set to its corresponding pho-
netic duration distribution. Then the probabilities of each
left-to-right state transition are set to 1 because all self-
transition probabilities in HSMMs are 0. The goal is to find
the most likely sequence of hidden states for each lyric path
and collect its posterior probability. The Viterbi algorithm
meets this specific goal and its complete implementation is
provided in [7].

3.4.2 Post-processor duration model

The post-processor duration model was first introduced by
Juang et al. [10]. It was then experimentally proved in
Kruspe’s paper [12] that this duration model works better
than HSMMs for the keyword spotting task in English pop
singing voice. The post-processor duration model uses the
original HMMs Viterbi algorithm – therefore, during the
decoding process, no explicit occupancy duration distribu-
tion is imposed.

The log posterior probability of the decoded most likely
state sequence is augmented by the log duration probabili-
ties:

log f̂ = log f + α
N∑
j=1

N (uj ;µj , σ
2
j ) (4)

where f is the HMMs posterior probability, α is a weight-
ing factor which will be optimized in section 4.3, j =
1, ..., N is the decoded state number in the most likely state
sequence, and N (uj ;µj , σ

2
j ) is the occupancy probability

of being in state j for the occupancy uj .

4. EXPERIMENTS AND RESULTS

4.1 Performance metrics

Two experiments 3 are performed: the first is to evalu-
ate the performance of the acoustic models, and the sec-
ond is to evaluate the proposed matching approaches. For
the first task, we use one simple evaluation metric: the
overall classification accuracy which is defined as the frac-
tion of instances that are correctly classified. For the sec-
ond task, our goal is to evaluate the ability to match the
ground-truth phrase in the score dataset to the query one,
which is almost identical to the goal of a QBSH system:
”finding the ground-truth song in a song database from
a given singing/humming query”. Therefore, we borrow
the standard performance metrics used in QBSH task to
evaluate our approaches: Top-M hit and Mean Recipro-
cal Rank (MRR) [8]. The Top-M hit rate is the proportion
of queries for which ri ≤ M , where ri denotes the rank
of the ground-truth score phrase. MRR is the average of
the reciprocal ranks across all queries, n is the number of
queries, and ranki is the posterior probability rank of the
ground-truth phrase corresponding to the i-th query.

MRR =
1

n

n∑
i=1

1

ranki
(5)

4.2 Acoustic models

CNN, DNN and GMM acoustic models yield probability
scores for each phoneme class. In order to evaluate the
classification accuracy, we choose the phoneme class with
the maximum probability score as the prediction. Table 4.2
reports the performance of CNN, DNN and GMM acoustic
models evaluated on the test set.

dan(#parameters) laosheng(#parameters)

CNNs 0.484(222k) 0.432(222k)
DNNs 0.284(481k) 0.282(430k)
GMMs 0.290(-) 0.322(-)

Table 2. Overall classification accuracies of CNN and
baseline acoustical models for dan and laosheng datasets.

The relatively low classification accuracies for all three
models show that modeling the phonetic characteristics of
jingju singing voice is a challenging problem. Our best
results are achieved with CNNs – and GMMs perform bet-
ter than DNNs. Interestingly, these results contrast with
the literature where Hinton et al. [9] describe that DNNs
acoustic models largely outperform GMMs for automatic
speech recognition, and Maas et al. [13] showed that CNNs

3 Code:https://goo.gl/1XB6j1
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perform worse than DNNs for building speech acoustic
models. First, we argue that in our case DNNs perform
worse than GMMs and CNNs because a small amount of
training data is available. DNNs require a lot of train-
ing data to achieve good performance and note that large
amounts of training data are typically not available for
most MIR tasks. And second, note the CNNs used here are
specifically designed to efficiently learn timbre representa-
tions [17] while Maas et al. [13] used small square filters,
which proved successful in computer vision tasks. These
results show that using CNN architectures designed for the
task at hand is especially beneficial in small data scenarios.
A CNN model is used in the following experiments.

4.3 Parameters optimization

The parameters which need to be optimized for dan and
laosheng role-types are: the weighting factor α for the
post-processor duration model, and the proportionality
constant γ for both models: HSMMs and post-processor
duration model. Table 4.3 reports the optimal values we
obtained by doing grid search on the development set –
MRR metric was maximized.

Search Optimal
Parameters bounds values

α [0.25, 2] with step 0.25 1.0 / 1.0
γ HSMMs [0.1, 2] with step 0.1 0.1 / 0.1
γ post-processor [0.1, 2] with step 0.1 0.7 / 1.5

Table 3. Parameters to be optimized, search bounds and
resulting optimal values (dan / laosheng).

4.4 Duration modeling

To highlight the advantage of using duration modeling
methods for audio to score matching, a standard HMM
without explicitly imposing the occupancy distribution is
used as a baseline. Results in Figure 7 show that its perfor-
mance is inferior to the HSMM duration model.

Figure 7. Phrase matching performance of HSMM and
post-processor duration model with CNN acoustic model:
dan (top), laosheng (bottom).

One can also observe in Figure 7 that HSMM performs
the best, improving the baseline MRR metric performance
by 13.2% for dan role-type and 15.1% for laosheng role-
type. This means that HSMMs explicit duration modeling

can help achieve a better audio to score matching by using
phonetic information.

The post-processor duration model does not signifi-
cantly improve the baseline performance. This result con-
trasts with the literature, where the post-processor dura-
tion model worked better than HSMMs for singing voice
keyword spotting [12]. This inconsistency might result
from (i) the length difference of the matching unit (singing-
words vs. singing-phrases), and (ii) the large standard de-
viation of the jingju singing phonemes length. First, in
Kruspe’s work [12], the matching unit is the singing key-
word – which usually contains fewer phonemes than a
singing phrase (as in our case). And second, the vowel
length standard deviation of the a cappella dataset used by
Kruspe [12] (around 0.3s) is much short than in our dataset
(dan: 0.97s, laosheng: 0.78s) – denoting less vowel du-
ration variance than in our study case. Moreover, a sig-
nificant deficiency of the post-processor duration model is
that it does not provide the most likely state sequence by
internally considering the durations, but it computes a new
weighted likelihood given the obtained sequence [12]. If
the most likely state sequence is decoded poorly, it can’t
be restored by the post-processor duration model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an audio to score matching ap-
proach that uses phonetic and duration information.

We explored two duration models: HSMM and post-
processor duration model. HSMMs achieved better results
than the post-processor duration model – probably due to
(i) the matching units length, (ii) the large standard devia-
tion of the considered phonemes, and (iii) because for the
post-processor duration model it is hard to recover a decod-
ing mistake. Moreover, HSMMs achieved a better match-
ing performance than the baseline-HMMs approach, which
only took into account phonetic information, denoting the
utility of using duration information.

We also compared CNN, DNN and GMM acoustic
models, and CNNs have shown to be superior in our small
singing voice audio dataset. The used CNN architecture
was specifically designed to learn timbral representations
efficiently [17] – this being the key factor for enabling
CNNs (a deep learning method requiring large amounts of
data) to perform so well on such a small dataset.

There are many possibilities to improve our approach.
It has been shown in the speech research field that LSTM
RNNs achieved the best acoustic modeling performance
[18]. However, this method requires a large training
dataset in order prevent from over-fitting. Another pos-
sibility to improve our acoustic model is to go deeper with
the current single-layer CNN architecture, but this will also
require more training data. We plan to collect more jingju
a cappella singing recordings and perform data augmenta-
tion to leverage the capability of the acoustic models. Fur-
thermore, in order to take advantage of the melodic infor-
mation existing in both audio and score datasets, we also
plan to investigate methods which can fuse melodic, pho-
netic and duration information.
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[2] Djork-Arné Clevert, Thomas Unterthiner, and Sepp
Hochreiter. Fast and accurate deep network learning
by exponential linear units (elus). arXiv:1511.07289,
2015.

[3] G. B. Dzhambazov and X. Serra. Modeling of
phoneme durations for alignment between polyphonic
audio and lyrics. In SMC, Maynooth, Ireland, 2015.

[4] R. Gong, P. Cuvillier, N. Obin, and A. Cont. Real-Time
Audio-to-Score Alignment of Singing Voice Based on
Melody and Lyric Information. In Interspeech, Dres-
den, Germany, September 2015.

[5] Rong Gong, Nicolas Obin, Georgi Dzhambazov, and
Xavier Serra. Score-informed syllable segmentation
for jingju a cappella singing voice with mel-frequency
intensity profiles. In International Workshop on Folk
Music Analysis, Málaga, Spain, June 2017.
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ABSTRACT

Annotations of musical structure usually provide a low le-
vel of detail: they include boundary locations and section
labels, but do not indicate what makes the sections similar
or distinct, or what changes in the music at each boundary.
For those studying annotated corpora, it would be useful to
know the rationale for each annotation, but collecting this
information from listeners is burdensome and difficult. We
propose a new algorithm for estimating which musical fea-
tures formed the basis for each part of an annotation. To
evaluate our approach, we use a synthetic dataset of music
clips, all designed to have ambiguous structure, that was
previously used and validated in a psychology experiment.
We find that, compared to a previous optimization-based
algorithm, our correlation-based approach is better able to
predict the rationale for an analysis. Using the best version
of our algorithm, we process examples from the SALAMI
dataset and demonstrate how we can augment the struc-
ture annotation data with estimated rationales, inviting new
ways to research and use the data.

1. INTRODUCTION

Listeners perceive structure in music, and trying to pre-
dict the structures they perceive is a popular task in the
MIR community [14]. Since the perception of structure
is a complex phenomenon, the community focuses on a
simpler, operational version: we imagine that structure,
as perceived, can be characterized as a set of time points
regarded as boundaries, and a set of labels that indicate
which of the intervening segments repeat similar material.
This simplification is not made naı̈vely: those who cre-
ate annotations of musical structure are aware of its limita-
tions, and the methodologies for annotating [1, 16, 21] and
evaluating [7, 9, 11] structural analyses have become their
own important subtopics in MIR.

Still, the simplification is unfortunate because musical
similarity is multi-dimensional. If a listener declares that

c© Jordan B. L. Smith, Elaine Chew. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Jordan B. L. Smith, Elaine Chew. “Automatic interpretation of
music structure analyses: A validated technique for post-hoc estimation
of the rationale for an annotation”, 17th International Society for Music
Information Retrieval Conference, 2016.

two excerpts are “similar”, they could mean with respect
to melody, contour, rhythm, timbre, or any combination of
these or other musical attributes. This is in addition to the
issue that structure itself is multi-dimensional; as pointed
out in [16], boundaries may be perceived for reasons of
musical similarity, musical function, or instrumentation.

Thus, in the transition from structure perception to struc-
ture annotation, we usually fail to capture why a listener
has included a boundary or chosen a label. This infor-
mation, if preserved (or reconstructed), would help us to
understand the content of the annotations, and could lead
to fairer evaluations of structure segmentation algorithms.
It would also provide more meaningful data to analyze in
musicology or music perception research.

How feasible is it to collect this information? As we
found in [23], to transcribe the rationale for every aspect
of an annotation is difficult and requires prolonged self-
interrogation. Even before that, it is difficult to decide what
information to collect, and how to collect it: should the
data be collected after a listener has provided the segmen-
tation, in the manner of music perception experiments [2]?
Or should each piece be annotated several times, each time
with a focus on a single feature [19]? No matter how it is
done, collecting this information is burdensome.

A more practical possibility is to estimate this informa-
tion automatically from existing annotations, which was
our motivation in [22]. Our algorithm compared self-dis-
tance matrices (SDMs) for different features to the ground
truth annotation, and found which parts of the feature-based
SDMs best re-created the annotation-based SDM. While
[22] presented some examples to demonstrate the plausi-
bility of the approach, we offered no experimental valida-
tion.

Validation requires paired responses: a set of listeners’
analyses, and the listeners’ justifications for each analysis.
Producing this data is time-consuming and burdensome for
the reasons described above. However, we recently pro-
duced data suited to this purpose for a music perception
study [20]. The goal of that study was to determine what
role attention plays in the perception of structure.

In this article, we make three main contributions: first,
we test whether the approach described in [22] can effec-
tively predict the attention of the listeners, based on the
dataset created for [20]. Second, we explain some short-
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comings of the previous approach, and suggest and test
two improvements. Third, we demonstrate how the val-
idated algorithm can be used to analyze and to augment
real-world data with new information layers.

The next two sections recap the studies on which this
article builds. In Section 2, we briefly recall [22]’s algo-
rithm, point out some shortcomings, and introduce a re-
fined approach. In Section 3, we summarize the results of
the experiment in [20], and describe in more detail the data
developed for that study and used in this one. In Sections
4 and 5, we outline the validation experiment and discuss
the results, and in Section 6 we use the algorithm to create
new information layers for examples from SALAMI [21].
We close with a few observations on the limitations of the
present work and recommendations for future research.

2. AN ALGORITHM FOR ESTIMATING
FEATURE RELEVANCE

In [22] we estimated the relevance of musical features to a
listener’s analysis section-by-section by finding the weigh-
ted sum of feature-derived SDMs that best matched the
analysis. The analysis is represented as a binary SDM,
expanded to the same timescale as the feature SDMs. A
number n of feature matrices are computed; from each, we
derive m single-section SDMs by taking only the rows and
columns associated with that single segment, as defined by
the annotation. (This row and column selection is done by
multiplying the SDM with a segment mask.) This gives
n · m component matrices. A quadratic program (QP) is
used to find the weights for these components whose sum
optimally reproduces the annotation-derived SDM; these
weights, the reconstruction coefficients, are taken to indi-
cate feature relevance.

The method is illustrated in Fig. 1. The sound exam-
ple has the form ABAB with respect to harmony, AABB
with respect to rhythm, and ABBA with respect to tim-
bre. If a listener gives the analysis ABAB, segmenting the
audio at the 1/4, 2/4 and 3/4 marks, we obtain the four seg-
ment masks given in the top row. We compute four audio
features, each related to a different musical attribute (see
Section 4.1 for details), which are pointwise multiplied by
the masks to give 8 potential components. The QP finds
the optimal combination of components to reproduce the
annotation in the top-left corner, and gives the coefficients
shown above each component. In this case, the algorithm
has successfully identified that bass chroma is the feature
that best justifies the analysis.

2.1 Algorithm Improvements

One limitation of this approach is that none of the feature
matrices may properly reflect the homogeneity of a given
section. We could include additional SDMs that have been
smoothed at different timescales (as demonstrated in [22]),
but the smoothing can blur the boundaries between sec-
tions even as they make the sections more homogeneous.
We could use stripe-based instead of block-based masks
in order to capture repetitions of feature sequences, but in

Figure 1. Illustration of component-building for QP al-
gorithm. Four beat-indexed feature matrices (at left) are
multiplied by the masks (top) given by the segmentation,
which here is ABAB. The number above each component
is the QP’s estimate of the component’s importance.

non-square blocks (which occur whenever two segments
have unequal lengths), it is not easy to guess the best ori-
entation or placement of the stripes.

A second problem is that it is unclear how to inter-
pret some aspects of the QP. Should the individual recon-
struction coefficients, or their sum, be bounded? Leaving
them unbounded can lead to unconstrained solutions, but
if bounds are imposed, how should they be interpreted?

A third problem is that by finding the single optimal
sum of matrix components, some good explanations may
be ignored. For example, if there are two matrix compo-
nents which both justify a particular part of the analysis,
the QP may find that only one is necessary. Thus, we can-
not conclude that features omitted from the solution are
necessarily irrelevant, which is a big limitation.

For the first problem, we propose that instead of using
the original SDMs, with all their heterogeneities, we re-
duce them to segment-indexed SDMs, a common practice
since [4]. Similar to [13], we may take the distance be-
tween each pair of segments to be the average distance of
all the pixels in the submatrix over which the segments in-
tersect. The segment-indexed SDM can then be analyzed
with the QP as before, although with a substantial reduc-
tion in complexity.

A second way to address the problem is to use a diago-
nal stripe-based mask instead of a block-based mask. Since
the diagonals are the most salient portions of the SDM,
it makes sense to focus on reconstructing this portion of
the SDM. Emphasizing stripes is a common SDM analy-
sis technique, and a comparison of block and stripe fea-
tures found that when boundaries were given, stripe fea-
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Figure 2. Illustration of proposed segment-indexed ap-
proach, with both QP- and correlation-based estimates of
feature relevance.

tures were more effective [12]. We remember the caveat
above, that repeated segments with different durations pose
a problem for creating a stripe-based mask, but we can still
test it in cases where this is not an issue.

A third proposal, which addresses the second and third
problems above, is to dispense with the QP altogether and
simply take the element-wise Pearson correlation between
the feature-derived and annotation-derived matrices. (The
same section-by-section method still applies.) Correlations
are perhaps more intuitive than QPs and reconstruction co-
efficients, and using them would permit second-place fea-
tures to be more readily identified in the solution.

Fig. 2 shows the output for an example of a three-part
stimulus, using the suggested improvement of segment-
indexing: the features have been averaged over the blocks
given by the segmentation. The sum of the reconstruction
coefficients obtained using the QP method are given in the
“QP sum” column, and the mean point-wise correlation be-
tween the masked regions is shown in the “Mean corr.”
column. Fig. 3 shows the output for the same example but
using the stripe-based mask. The mask is constructed by
drawing a diagonal line across each block of the original
beat-indexed SDM, and then applying a 2D convolution
with a Gaussian kernel of width 5 beats.

To sum up, we suggest three improvements to the algo-
rithm: (1) using the correlation between submatrices, in-
stead of QP, to estimate their relevance; (2) using a segment-
indexed version of the SDM; and (3) applying a stripe mask
to the SDM, instead of using the blocks.

3. A DATASET OF VALIDATED ANALYSES

Researchers in music psychology, like those in MIR, are
invested in modeling how listeners perceive structure. (For
one discussion, see [15].) The goal of [20] was to de-
termine whether listeners could be influenced to perceive

Figure 3. Illustration of proposed stripe approach with cor-
relation. Like in Fig. 2, QP coefficients are in the middle
column, correlations on the right.

different structures by manipulating the musical feature to
which they paid attention. In order to test this, we com-
posed a set of artificial musical stimuli in which four dif-
ferent features (harmony, melody, rhythm and timbre) were
systematically changed at different times, creating musical
passages with ambiguous forms. These four features were
chosen because they figured most prominently in studies
where listeners were asked to justify why they perceived a
given boundary, such as [2].

The three-part stimuli had two potential structures, AAB
or ABB, with different features changing at different times.
For example, the passage in Fig. 4a has form AAB with re-
spect to harmony, and form ABB with respect to melody.
The four-part stimuli had three potential structures, AABB,
ABAB or ABBA, so that at every boundary there were
two features that changed. For example, in the passage
in Fig. 4d, the rhythm and harmony both change after the
second measure.

As stated above, validating the algorithm requires musi-
cal examples where listeners’ analyses are paired with their
justifications—i.e., with the musical attributes to which they
were paying attention. Many datasets of structural analy-
ses exist, but none indicate which musical attributes justify
the analyses. Also, in typical pieces of music, attributes
change frequently, to different extents, and often simulta-
neously. To validate this algorithm we should use music
with known, controlled changes. Hence, artificial stimuli
such as these are valuable resources to validate the algo-
rithm: each passage contains precise change points related
to known musical attributes; and the link between the at-
tributes and the different forms has been affirmed by lis-
teners in an experimental setting.

More artificial stimuli could be generated and tested
in future work; this may be a convenient way to provide
deep-learning algorithms with the quantity of labelled data
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Figure 4. (a) Example stimulus with harmonic form AAB
and melodic form ABB. (b) Harmonic form AAB, timbral
form ABB. (c) Rhythmic form AAB, timbral form ABB.
(d) Example four-part stimulis with melodic form AABB,
rhythmic form ABAB, and harmonic form ABBA.

they require. However, it is not as simple as sonifying a
symbolic score, since scores must be annotated in order to
know the perceived structure and the musical features that
motivate that analysis. The stimuli in our study are rare in
that they were (1) composed so that musical features var-
ied systematically, and (2) used in a listening experiment
to validate that the intended structures were perceived, for
the intended reason.

3.1 Stimulus Details

For [20], we composed three sets of stimuli. Each stim-
ulus contains two voices, and in each set of stimuli, each
voice potentially expresses changes in two different fea-
tures. The examples in Fig. 4 are from the “HT-MR” set,
where one voice expresses changes in harmony and timbre,
and the other, changes in melody and rhythm. “HM-RT”
and “HR-MT” sets were also composed.

Since in each set of stimuli, certain features are “con-
volved,” some incorrect answers are less wrong than oth-
ers. For instance, the feature that changes at the second
boundary of the example in Fig. 4c is rhythm, but if an al-
gorithm said that the boundary was justified by melody, it
would be partially right.

The stems for the stimuli were composed using a Dig-
ital Audio Workstation with standard instrument patches.
The 8 stems for each set were systematically recombined
to generate 192 three-part stimuli and 384 four-part stim-
uli, for a total of 1728 stimuli among all sets. Efforts were
made to keep constant all musical features other than har-

mony, melody, rhythm and timbre: the tempo of all stimuli
is 140 bpm, and the loudness of each voice and each pas-
sage is approximately equal. The stimuli are now freely
available on Github. 1

4. EXPERIMENT

4.1 Features

The stimuli manipulated four different musical attributes
(in three environments): harmony, melody, rhythm and
timbre. We want to extract audio features that match each
of these attributes independently. Each audio feature should
change when the related musical feature changes, and be
robust to changes in other musical features. We selected
two audio features for each musical feature, all available
as Vamp plugins 2 and listed in Tab. 1. We used ground
truth beat locations, and median feature values were taken
for each beat. Each dimension was normalized (indepen-
dently for each stimulus) to zero mean, unit variance. All
features were extracted using Sonic Annotator [3] using
the default settings. For some features, we performed ad-
ditional processing:

Chords: Chord labels were estimated from Chordino
and reconverted back to a chroma-like representation. This
feature is thus based on the same information as bass chro-
ma, but refined with the chord-estimation algorithm.

Melody: The chroma of the estimated melody, and the
interval between the current steady-state note and the pre-
vious one, each a 12-dimensional feature per frame. We
also used the register of the melody: low, middle or high.

Autocorrelation: this was computed on an onset detec-
tion function with a sliding window.

Low level features: a concatenation of loudness, RMS
amplitude, rolloff, sharpness, smoothness, tristimulus, zero-
crossing rate, and the centroid, kurtosis, skewness, and
slope of the spectrum.

Feature Vamp plugins used to obtain feature

Harmony
Bass chroma, from Chordino and NNLS
Chroma plugin [8]
Chord notes [8]

Melody
Treble chroma [8]
Melody, based on MELODIA [18]

Rhythm
Cyclic tempogram [6]
Autocorrelation, based on UAPlugins’s
Note Onset Detector [17]

Timbre
MFCCs (2nd to 13th), from Chris Cannam
and Jamie Bullock’s LibXtract library
Low level features, a set of fifteen one-di-
mensional descriptors from LibXtract

Table 1. List of features chosen, and Vamp plugins used to
obtain them

1 https://github.com/jblsmith/
music-structure-stimuli.

2 vamp-plugins.org

438 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



4.2 Results

We applied the algorithms, discussed in Section 2, on the
stimuli discussed in Section 3. For each three-part stimu-
lus, we ran the algorithms twice: once with analysis AAB,
once with ABB. Likewise, we ran the algorithm thrice on
each four-part stimulus to find the best justifications for
forms AABB, ABAB and ABBA. Each algorithm takes
one of these analyses as input. The output of each algo-
rithm is a matrix of feature relevance values xi,j : one per
section i, per feature j. The importance of feature j is the
sum across all the sections: sj =

∑
i xi,j . The importance

of each musical attribute a is the sum of the two values sj
related to that feature: ya = sa1 + sa2. We end up with
four values ya.

We test whether the maximum value correctly predicts
the feature related to the analysis with argmaxa ya. The
fraction of trials with correct guesses is the accuracy. Each
trial has one focal pattern and three potential wrong an-
swers, so the random baseline performance is 25%.

The five algorithm options were: whether to use cosine
or Euclidean distance (in either case, the values were re-
scaled between 0 and 1); whether to compute beat-indexed
or segment-indexed SDMs; whether to apply stripe-based
masks to the SDMs; whether to use the QP or correlation-
based approach; and finally, if using QP, what constraint
to use. We tested three constraints: (a)

∑
i,j xi,j = C

(the sum of the coefficients over the entire piece has a
fixed value); (b)

∑
j xi,j = C (the sum of the coefficients

for each section in the piece has a fixed value); and (c)
0 ≤ xi,j ≤ 1. These options were tested in a full-factorial
design, replicated across three variables that were not part
of the algorithm: the relevant feature; the music environ-
ment; and the stimulus length (3 or 4 sections).

We fit a linear model to the results and used ANOVA
to interpret the eight factors. With 268,512 trials, three
factors were insignificant (p > 0.05): stimulus length,
distance metric, and QP constraint. The other five fac-
tors all had p < 0.0001, and main effect plots for each
are shown in Fig. 5. They show that performance varied
greatly among the music examples and features. However,
the three proposed changes to the original algorithm—using
correlation instead of QP, using stripe masks, and using
segment-indexed SDMs—all saw improvements, albeit a
minor one in the case of segment indexing.

Tab. 2 gives the accuracy for different parameter set-
tings. It shows that although the main effects appear mod-
est in Fig. 5, their impact is additive: the original approach
achieved 47% accuracy, and the three changes (using cor-
relation, segment-indexing, and applying a stripe mask) to-
gether raised the accuracy to nearly 70%.

These are the accuracies for choosing the most correct
answer, but not all errors are equally bad: guessing a fea-
ture that was convolved in the stimulus with the correct one
is sometimes a fair mistake. However, Tab. 2 shows that the
“convolved-with-correct” answer was not given any spe-
cial weight by the algorithms. There are 3 features besides
the correct one, so the chance of randomly guessing the
convolved feature is 33%. In all cases, fewer than a third

Figure 5. Main effect of significant factors on accuracy
(i.e., rate of correct guesses).

Method: Quad. Prog. Correlation
Settings: Correct Conv. Correct Conv.
Regular 47.1 13.7 52.3 12.8

Seg.-indexing 46.9 16.3 60.6 8.9
Stripe mask 52.4 13.5 62.4 11.9

Seg. and stripes 59.6 12.8 69.6 7.2

Table 2. Comparison of QP-based and correlation-based
algorithms. Columns indicate how often the guessed fea-
ture was correct (“Correct”) or convolved with the correct
feature (“Conv.”). For example, in the HT-MR environ-
ment, if the correct feature for a trial is timbre, guessing
harmony could be half-right.

of the incorrect answers related to the convolved feature.
Prediction accuracy varied greatly among the features,

as can be seen in the confusion matrices for the algorithms.
Three are shown in Fig. 6, one for each music environment.
These are the results for the best-performing algorithm.
For harmony, we can observe that chord notes were more
effective than bass chroma, the feature from which they
derive. Bass chroma were especially misled in the HM-
RT setting, possibly due to the difference in bass drum be-
tween the two timbre settings. With melody, it was also the
case that the 2nd-order feature (the estimated predominant
pitch and interval) was better than the lower-level feature
(treble chroma).

5. DISCUSSION

The results validate the algorithm proposed in [22]. How-
ever, they also show that a simpler correlation-based ap-
proach is better at predicting how best to justify an anal-
ysis: it outperformed the QP approach by roughly 10%.
Two other refinements, the stripe-based mask and the seg-
ment indexing, increased accuracy by roughly another 10%.

However, the confusion matrices revealed great dispar-
ities between the features we chose to use: some, such as
Chordino, were effective; others, such as the tempogram
and MFCCs, were often wrong. Arguably, it is naı̈ve for us
to presume that off-the-shelf features can detect the types
of musical changes we created in the stimuli. Perhaps it
is no accident that the four features we tweaked or assem-
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Figure 6. Confusion matrix for algorithm using correla-
tion, stripe masks, and segment-indexed SDMs. The rows
gives the correct musical attribute; the column indicates
the audio feature with maximum relevance.

bled for this purpose (chord notes, MELODIA-based fea-
ture, onset autocorrelation and low-level features) tended
to outperform their off-the-shelf rivals.

Still, the underperformance is surprising, since the stim-
uli are highly constrained: in the study for which the stim-
uli were created, listeners identified the attribute that chan-
ged at a boundary with 85% accuracy [20]. It seems rea-
sonable to expect that, say, MFCCs will change more when
a trumpet is swapped for a flute than when a trumpet plays
a different melody; or that when the harmony changes,
bass chroma will be more affected than the tempogram.
Yet these are among the errors made by the features in this
study. The results thus remind us of the utility of carefully-
designed features, such as timbre-invariant chroma [10].

An alternative to testing hand-crafted features is to learn
features with deep learning, but as mentioned earlier, this
would require building a much larger, more representative
stimulus set—more stimuli than can easily be validated in
a listener study. The small set used here is suitable for
testing existing features, but not learning new ones.

6. APPLICATION

The correlation algorithm can be used to interpret annota-
tions in the SALAMI corpus [21]. We used the segment-
indexing setting but not the stripe-masking, which (as noted
in Section 2.1) is not applicable when unequal segment
lengths give rectangular blocks. The audio processing was
the same except that BeatRoot [5] was used to locate beats.

Fig. 7 visualizes a listener’s analysis of “We Are The
Champions” by Queen at the long and short timescales.
Each vertical slice corresponds to a single section, and the
brightness of each cell indicates the correlation of that fea-

Figure 7. Example augmented annotation for the song
“We Are The Champions” by Queen. The letters and col-
ors both encode the section labels. Brightness indicates a
feature’s relevance to a section.

ture to that section. We can see that on a long timescale, the
verse sections (A) were characterized by their harmonic
and melodic content, while the chorus sections (B) were
characterized more by their timbre. However, on a short
timescale, subsection a was also characterized by timbre,
and many of the subsections of B were more strongly char-
acterized by harmony and melody compared to B itself.

This, it turns out, is an accurate description of the song:
in a, Freddie Mercury sings above a piano and bass only;
the electric guitar enters quietly in b, but the drums come
in with c in a raucous crescendo to the chorus. The tim-
bral inconsistency of A means that timbre would be a poor
feature to use to justify grouping the first four subsections
into a larger unit.

On the other hand, the timbre of the choruses is rela-
tively homogeneous; this makes it a good feature to justify
grouping the B sections together, but also makes it a poor
feature to justify giving the subsections of B different la-
bels. The fact that subsections d, e, f and g have different
labels must therefore reflect their pitch content.

7. CONCLUSION

We have validated the algorithm proposed by [22], and pro-
posed three modifications to improve its effectiveness. Al-
though we restricted this study to stimuli that were vali-
dated in a psychology experiment, it would be possible to
generate large amounts of artificial music, with more com-
plicated patterns of repetition and variation, and changes
in more musical parameters, like loudness, tempo, synco-
pation, dissonance, and so on.

The accuracy of the algorithms fell short of human per-
formance. Given the disparities among the features, this
must be due in part to the mismatch between the audio fea-
tures we chose and the musical attributes manipulated in
the stimuli. Despite this, the algorithm is useful for visual-
izing the structure of pieces in a new way: by highlighting
the musical features that explain the annotation.

440 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



8. REFERENCES

[1] Frédéric Bimbot, Emmanuel Deruty, Gabriel Sargent,
and Emmanuel Vincent. Semiotic structure labeling of
music pieces: Concepts, methods and annotation con-
ventions. In Proceedings of ISMIR, pages 235–240,
Porto, Portugal, 2012.

[2] Michael Bruderer, Martin McKinney, and Armin
Kohlrausch. The perception of structural boundaries
in melody lines of Western popular music. Musicæ-
Scientæ, 13(2):273–313, 2009.

[3] Chris Cannam, Michael O. Jewell, Christophe Rhodes,
Mark Sandler, and Mark d’Inverno. Linked data and
you: Bringing music research software into the seman-
tic web. Journal of New Music Research, 39(4):313–
325, 2010.

[4] Matthew Cooper and Jonathan Foote. Summarizing
popular music via structural similarity analysis. In Pro-
ceedings of the IEEE Workshop on Applications of
Signal Processing to Audio and Acoustics (WASPAA),
pages 127–30, New Paltz, NY, United States, 2003.

[5] Simon Dixon. Automatic extraction of tempo and beat
from expressive performances. Journal of New Music
Research, 30(1):39–58, 2001.

[6] Peter Grosche, Meinard Müller, and Frank Kurth.
Cyclic tempogram - a mid-level tempo representation
for music signals. In Proceedings of the IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, Dallas, TX, USA, 2010.

[7] Hanna Lukashevich. Towards quantitative measures of
evaluating song segmentation. In Proceedings of IS-
MIR, pages 375–380, Philadelphia, PA, USA, 2008.

[8] Matthias Mauch and Simon Dixon. Approximate note
transcription for the improved identification of diffi-
cult chords. In Proceedings of ISMIR, pages 135–140,
Utrecht, Netherlands, 2010.

[9] Brian McFee, Oriol Nieto, and Juan Pablo Bello. Hier-
archical evaluation of segment boundary detection. In
Proceedings of ISMIR, Málaga, Spain, 2015.

[10] Meinard Müller and Sebastian Ewert. Towards timbre-
invariant audio features for harmony-based music.
IEEE Transactions on Audio, Speech, and Language
Processing, 18(3):649–662, 2010.

[11] Oriol Nieto, Morwaread Farbood, Tristan Jehan, and
Juan Pablo Bello. Perceptual analysis of the f -measure
to evaluate section boundaries in music. In Proceedings
of ISMIR, Taipei, Taiwan, 2014.

[12] Jouni Paulus and Anssi Klapuri. Acoustic features
for music piece structure analysis. In Proceedings of
the International Conference on Digital Audio Effects
(DAFx), pages 309–312, Espoo, Finland, 2008.

[13] Jouni Paulus and Anssi Klapuri. Music structure anal-
ysis using a probabilistic fitness measure and a greedy
search algorithm. IEEE Transactions on Audio, Speech
& Language Processing, 17(6):1159–1170, 2009.

[14] Jouni Paulus, Meinard Müller, and Anssi Klapuri.
Audio-based music structure analysis. In Proceedings
of ISMIR, pages 625–636, Utrecht, The Netherlands,
2010.

[15] Marcus T. Pearce, Daniel Müllensiefen, and Geraint A.
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ABSTRACT

Professional music curators and DJs artfully arrange and
mix recordings together to create engaging, seamless, and
cohesive listening experiences, a craft enjoyed by audi-
ences around the world. The average listener, however,
lacks both the time and the skill necessary to create compa-
rable experiences, despite access to same source material.
As a result, user-generated listening sessions often lack the
sophistication popularized by modern artists, e.g. tracks
are played in their entirety with little or no thought given to
their ordering. To these ends, this paper presents methods
for automatically sequencing existing playlists and adding
DJ-style crossfade transitions between tracks: the former
is modeled as a graph traversal problem, and the latter as
an optimization problem. Our approach is motivated by
an analysis of listener data on a large music catalog, and
subjectively evaluated by professional curators.

1. INTRODUCTION

DJs are modern artists that carefully select, sort, and com-
bine recordings in order to enhance the music listening ex-
perience over simpler forms, such as albums or playlists.
They traditionally create mixes or sets that flow seamlessly
from one song to the next by sequencing styles, matching
keys and tempos, and smoothly transitioning between mu-
sical ideas. Importantly, the ordering of tracks or samples
and the quality of the transitions between them are funda-
mentally linked: it can be very difficult to create an enjoy-
able transition between songs that significantly differs in
style, tempo, or key. Transitioning between a slow, smooth
jazz piece and a high energy, fast electronic track, for ex-
ample, will likely feel awkward or unnatural and create an
abrupt change in the listening experience.

Though listening to DJ mixes is not a new phenomenon,
modern music streaming services indicate that there is sig-
nificant appetite among users for curating their own sets,
having produced over 2 billion playlists in the last decade
on Spotify alone. 1 To develop a vague sense of how many

1 https://press.spotify.com/us/about/

c© Rachel M. Bittner, Minwei Gu, Gandalf Hernandez, Eric
J. Humphrey,. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Rachel M. Bittner, Min-
wei Gu, Gandalf Hernandez, Eric J. Humphrey,. “Automatic Playlist Se-
quencing and Transitions”, 17th International Society for Music Informa-
tion Retrieval Conference, 2016.

users might be aspiring “DJs” in the home or car, we find
that roughly 1% of the public playlists available through
Spotify’s Web API contain “party” in the title. 2 Even
through coarse extrapolation, this suggests that some 20M
playlists are candidates for DJ-style production.

Therefore, given that so many users are actively exer-
cising their curatorial skills, the steady advance of machine
listening technology offers promise that the more technical
challenges of creating a DJ mix could be achieved compu-
tationally. In this paper we focus specifically on the two
hurdles faced in creating a DJ set from a given playlist:
compute an optimal sequencing, and create song-to-song
transitions between sequenced tracks. One of the chal-
lenges of building a model for these two tasks is defining
how to evaluate performance. Because quality of a song
sequence and of a song-to-song transition is highly subjec-
tive, we rely on user studies to evaluate the performance of
our systems.

2. RELATED WORK

Several commercial products (e.g., Serato DJ 3 and Na-
tive Instruments’ Traktor line 4 ) are designed to assist DJs
with digital mixing on a laptop. These are mainly tools
for enthusiasts and professionals who already have experi-
ence in mixing, and as such these tools tend to replicate
with software their original analog counterparts. Auto-
matic audio analysis techniques are sometimes exploited
to let the user sort playlists by tempo and key, however
by design it is up to the DJ to make a final selection and
decide on where to transition: the software’s role is to as-
sist with time-stretching and facilitating the execution of
beat-aligned transitions. This paper is concerned with the
automation of the entire experience, demanding less in-
volvement by the users; examples of commercial software
in this category include Algoriddim DJay 5 , Pacemaker 6 ,
and Serato Pyro 7 .

Sequential ordering is the primary concern of [6], that
uses an audio similarity metric built on Gaussian models
of MFCCs. However, the approach does not constrain the
problem to a pre-selected set of songs and instead gener-
ates playlists from a large pool. In analyzing the order-

2 https://developer.spotify.com/web-api/
playlist-endpoints/

3 https://serato.com/dj
4 https://www.native-instruments.com/en/

products/traktor
5 https://www.algoriddim.com/
6 https://pacemaker.net/
7 https://seratopyro.com/
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ing of songs in professionally-made DJ sets, [11] presents
evidence that timbral factors play an important role in se-
quencing. In [3], consideration is given to “tempo trajec-
tories” over time as a way of modeling human DJs’ ability
to structure the rise and fall of energy levels in the music
as the sequence of songs progresses. Ishizaki, et al. [9] fo-
cus on making smooth tempo adjustments to songs with
the goal of minimizing abrupt changes that could cause
listener discomfort. In choosing optimal mixing regions
between two songs, [8] employs section similarity met-
rics derived from chroma information, along with beat and
tempo features. Similarly, [7] proposes a model for mea-
suring the perceptual consonance for different transition
regions given two tracks. In [15], a more complete DJ
simulation method is proposed, which performs song se-
lection, ordering and cross-fading for electronic music. A
closely related problem is the automatic creation of mu-
sical “mash-ups”, for which a number of algorithms have
recently been proposed [5, 12].

3. SEQUENCING

Given a playlist, the goal of a sequencing algorithm is to
order the tracks it contains in a way as to make the music
“flow smoothly” from each song to the next. Cunningham
et al. performed an in-depth study of how individual users
sequence tracks, and concluded that the task is “more of an
art than a science” [4]. Thus, the notion of flow and its at-
tainment is ultimately an aesthetic phenomenon; a DJ may
want the tempo to stay relatively constant or neighboring
songs to be acoustically similar as a function of creative
intent, as illustrated in Figure 1. If songs are to be cross-
faded, proper sequencing can ensure that consecutive pairs
of songs have similar keys and tempos, allowing for less
abrupt transitions. Understandably, the scope of this work
entails a more calculated approach than that of an expert
DJ, and we identify artist-quality sequencing as a broader
aim of this research area. It is important to note that this
problem is related to, but different from the task of gener-
ating playlists, for example as in [2] – in this task we are
given a list of tracks and the task is to reorder them, rather
than to find a list of coherent tracks from a large corpus.

Examples of playlists sequenced using the proposed ap-
proach can be found online. 8 9

3.1 Method

The problem of sequencing tracks lends itself well to be
formulated in a graph theory setting. The central step con-
sists in mapping acoustic features into a Euclidean space so
that songs that are fit to be sequenced next to each other are
also close together in the feature space. Finding a good se-
quencing involves finding the shortest non-repeating path
between all the songs.

8 https://open.spotify.com/user/rabitt3/
playlist/6a4lxKlqWZwKQgV3VhRMjX

9 https://open.spotify.com/user/rabitt3/
playlist/0Cl1BNwnWxmLkfUn8YQZVS

Original Playlist

Title Artist Tempo

All Star Smash Mouth 104

...Baby One 
More Time

Britney Spears 92

Bills, Bills, Bills Destiny’s Child 127

Every Morning Sugar Ray 109

Genie In A 
Bottle

Christina 
Aguilera

175

I Want It That 
Way

Backstreet 
Boys

99

Livin’ la Vida 
Loca

Ricky Martin 178

Miami Will Smith 108

No Scrubs TLC 92

Smooth Santana, Rob 
Thomas

115

Sequenced by Timbre

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

I Want It That 
Way

Backstreet 
Boys

99

Genie In A 
Bottle

Christina 
Aguilera

175

No Scrubs TLC 92

Bills, Bills, Bills Destiny’s Child 127

Miami Will Smith 108

All Star Smash Mouth 104

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Livin’ la Vida 
Loca

Ricky Martin 178

Sequenced by Tempo & Timbre

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

I Want It That 
Way

Backstreet 
Boys

99

All Star Smash Mouth 104

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Livin’ la Vida 
Loca

Ricky Martin 178

Genie In A 
Bottle

Christina 
Aguilera

175

Bills, Bills, Bills Destiny’s Child 127

No Scrubs TLC 92

Miami Will Smith 108

Sequenced by Tempo

Title Artist Tempo

...Baby One 
More Time

Britney Spears 92

No Scrubs TLC 92

I Want It That 
Way

Backstreet 
Boys

99

All Star Smash Mouth 104

Miami Will Smith 108

Every Morning Sugar Ray 109

Smooth Santana, Rob 
Thomas

115

Bills, Bills, Bills Destiny’s Child 127

Genie In A 
Bottle

Christina 
Aguilera

175

Livin’ la Vida 
Loca

Ricky Martin 178

Title Artist Tempo Key

All Star Smash Mouth 104 F# major

...Baby One 
More Time

Britney Spears 92 C minor

Bills, Bills, Bills Destiny’s Child 127 B minor

Every Morning Sugar Ray 109 Ab major

Genie In A 
Bottle

Christina 
Aguilera

175 F minor

I Want It That 
Way

Backstreet 
Boys

99 F# minor

Livin’ la Vida 
Loca

Ricky Martin 178 C# minor

Miami Will Smith 108 Bb minor

No Scrubs TLC 92 Ab minor

Smooth Santana, Rob 
Thomas

115 A minor

Figure 1: Example playlist sequencing by tempo and tim-
bre.

3.1.1 Constructing the Feature Space

Several acoustic aspects of a song are exposed so that they
can be combined differently:

• acoustic vectors are created by first using a con-
volutional neural network [16] trained to repro-
duce collaborative-filtering vectors in (R2048). The
acoustic vectors are low dimensional embeddings
(R2048 ⇒ R8) of the output of the convolutional
neural network, where the embedding was trained
to minimize the Euclidean distance between artists.
These features mostly capture the timbral character
of a song.

• key and mode information from the Echonest ana-
lyzer is mapped into points in R3 so that adjacent
keys in the circle of fifths and relative major/minor
keys are equidistant, as pictured in Figure 2: Left.

• tempo (originally in beats per minute estimated from
the Echonest analyzer) is represented in a base-2
logarithmic scale. In certain applications it is de-
sirable to preserve tempo-octave invariance: in that
case tempo is represented as a unit vector whose po-
lar angle is mapped into a tempo octave, as in Fig-
ure 2: Right.

34, 68, 136 bpm
44, 88, 176 bpm
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Bbm Ebm G#m
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Gm

h

h

1

Figure 2: Left: key/mode mapping to Euclidean space.
Right: octave-invariant tempo mapping to Euclidean
space.
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A feature vector is finally constructed by concatenating
the above individual feature vectors, each feature is option-
ally weighted according to the application (e.g., in dance
playlist, tempo coherence is important, thus tempo would
have a large weight).

3.1.2 Solution as a Graph Problem

Let us consider the complete symmetric graph in which
each song is associated to a vertex, and edges are weighted
by the Euclidean distance between the corresponding
songs’ features.

A Hamiltonian Path is a path that visits each vertex
in a graph exactly once. The optimal sequencing of a
playlist corresponds to the Shortest Hamiltonian Path in
the (complete) graph, a problem which is unfortunately
NP-Complete (the total cost of an ordering is the sum of all
the weights of the edges in the path). Several approxima-
tion strategies, shown below, have been considered; their
computational cost is dominated by the construction of the
weight matrix, quadratic in the length of the playlist.

A straightforward greedy approximation (which we de-
note by HAM-1) consists of iteratively selecting the closest
non-visited vertex, starting from a given seed vertex. An
improvement (HAM-2) can be made by selecting the clos-
est non-visited vertex from either the tail or the head of the
partial sequencing.

Empirically, both methods give satisfying results; the
total cost of a HAM-2 sequencing is virtually always lower
(better) than its HAM-1 counterpart, although the seed
track does not end up as the head of the sequencing any-
more (which could be itself a desirable feature). An un-
desirable artifact is the presence of poor track pairings at
the tail of the sequencing for HAM-1 and at both ends for
HAM-2, due to the greedy nature of the algorithm.

A different solution is given by the Shortest Hamil-
tonian Cycle, an NP-complete problem (also known as
the Traveling Salesman Problem) which however admits
a polynomial 2-approximation [13]. The cost is usually
higher than either of the greedy Hamiltonian Path solu-
tions, but the resulting playlist will have smooth transi-
tions, even when repeated in a loop, and is free from the
head and tail artifacts described above.

3.2 Evaluation

To measure the effectiveness of the sequencing algorithm,
we ran a pilot study in which professional curators blindly
compared six sequenced vs. randomly sequenced playlists.
Each of the six playlists contained 30 “Discover Weekly”
playlists. The sequenced version of the playlist was created
using HAM-2 with acoustic vectors as features. For each
of the six playlist pairs, the curators were instructed to (1)
choose which playlist was sequenced better, and (2) list the
pairs of tracks in each playlist that were deemed “abrupt”
when played sequentially.

In the first task, for playlists 1, 2, and 5 the curators
unanimously chose the sequenced playlist over the random
playlist. For playlists 3 and 4, the curators were evenly

split showing no preference, and for playlist 6, half pre-
ferred the sequenced, and half had either no preference or
preferred the random playlist. Table 1 shows the average
number of “abrupt” pairs of tracks across curators for each
playlist. As expected there were more abrupt pairs in the
random versions than in the sequenced versions. This is
particularly drastic for playlist 5, probably due to the wider
range of genres.

Playlist Genres Random Sequenced

1
Folk Pop,
Country 2.8 (1.8) 1.2 (1.3)

2
Underground Hip-Hop,

Funk 3.8 (4.3) 1.2 (1.3)

3
Abstract Hip-Hop,

Indietronica 2.7 (2.0) 3.3 (2.2)

4
Indietronica,
Indie Rock 2.8 (1.9) 2.8 (3.7)

5
Jazz, Classical,

House 9.3 (1.5) 2.7 (1.2)

6
Folk Metal,
Death Metal 4.00 (3.6) 3.50 (2.3)

Average 4.2 (2.5) 2.4 (1.0)

Table 1: Average number of song pairs (out of a total of
29 pairs) marked as “abrupt” across curators. The standard
deviation is indicated in parentheses.

4. TRANSITIONS

Various streaming services provide, as a toggleable fea-
ture, a simple fixed-length crossfading between tracks; this
however does not take content into account. About 95% of
the users of Spotify forgo the option, and use standard end-
to-end playback. To motivate the inclusion of transitions in
a playlist, an A-B test was run on 10% of users of Spotify,
where DJ-curated transitions were added to several popu-
lar playlists for the test group. The results showed that the
percentage of people who returned to the playlists per day
was 1.4 percentage points higher for the test group than
control, suggesting that the listeners enjoyed the playlists
with DJ curated transitions more and were thus more likely
to listen again.

The goal of the algorithm we present is to create inter-
esting DJ-like transitions between pairs of songs, which
could be offered as an enhanced alternative to the existing
crossfade. This involves choosing where in each track the
transition will occur given a fixed transition length (in units
of number of beats).

4.1 Method

Given a pair of tracks and a target transition length, our
method selects transition start and end points in both songs,
and uses this information to render the transition. Transi-
tion locations are restricted to downbeats, and are heavily
weighted to occur on section boundaries, such as at the
intersaection of a verse and a chorus. Additionally, we as-
sume that regions of tracks that have similar timbre and
pitch distributions will yield the smoothest transition. In
this work, we only consider music in quadruple meter.
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A symmetric crossfade, depicted in Figure 3, is ar-
guably the most basic kind of transition: t

(A)
1 and t

(B)
1

denote the fade out start and end points in track 1, and
t
(A)
2 and t

(B)
2 denote the fade in start and end points in

track 2; the duration of the transition region, the interval
[t
(A)
i , t

(B)
i ], for track 1 and 2 need not be equal.

Figure 3: Sample crossfade transition. t(A)
1 and t

(B)
1 mark

the start and end points of the fade out for track 1. Sim-
ilarly, t(A)

2 and t
(B)
2 mark the start and end points of the

fade in for track 2.

4.1.1 Features

Unless otherwise stated, each of the following features are
computed for each track using the Echo Nest Analyzer,
which is largely based on [10]. Let b be a list of es-
timated beat positions in seconds. Given the beat posi-
tions of each track, we compute several different types of
event locations, each on the same time grid as the estimated
beats. Let M be the set of indices of b which are down-
beats. Similarly, let S be the set of indices of b which
are section boundaries, and D be indices which are “drop”
points. Section boundaries are computed using the method
described in [14], and the “drop” point estimation is de-
scribed in Section 4.1.2.

When choosing transition points, not all beats are cre-
ated equal: the best transition points occur at strong struc-
tural boundaries. Each type of event location has a dif-
ferent level of structural significance in the track. The
strongest structural boundaries, if they exist, are at the drop
points. The next strongest points are section boundaries,
followed by downbeats. Ideally, all drop points are section
boundaries, and all section boundaries are downbeats, but
this may not be the case.

In addition to these event locations, we compute several
beat-synchronous features. Let N be the number of beats.
Timbre features T are a (12 x N ) matrix describing the
spectral shape of each beat, and the chroma features C are
a (12 x N ) matrix giving the pitch class distribution for
each beat. Loudness features ` and “vocalness” features v
give the loudness and probability of vocals for each beat,
and are each size (1 x N ). Intuitively, transition regions
with low loudness can often sound awkward and abrupt,
and when vocals are present we risk overlapping vocals
with the other track, or cutting over mid-sentence.

4.1.2 Drop Point Estimation

The goal in drop point estimation is to find the points in a
track where the “drop” happens. The term “drop” is typ-
ically used in the context of specific types of electronic
dance music, and refers to the point(s) in time where a
drastic change in the song occurs following a large build.
In our context, we are looking for points in a song where
an exceptionally interesting event occurs. Rather than take
a content-based solution similar to [17], we use a crowd-
sourced approach following from the work described in
P. Lamere’s blog 10 . Lamere computes the points where
users moved (scrubbed) the playhead while listening to a
track. Typically users tend to move the playhead towards
the most interesting points in the track. Figure 4 (top)
shows an example of the aggregated playhead scrubbing
data (blue) for Skrillex: “First of the Year”. The large
peak occurring around 66 seconds accurately marks the
first big drop, and the second smaller peak around 145 sec-
onds marks the second big drop.

To identify these peak locations, we use a standard peak
picking approach from the onset detection literature [1]:
an adaptive threshold (shown in green) is computing us-
ing a median filter, then a detection function subtracts the
adaptive threshold from the normalized scrub ratio and se-
lects its peaks, as shown in Figure 4 (bottom). Choosing
the closest downbeat that occurs before each resulting peak
gives us our final drop index D. Note that in Figure 4 there
is a small peak near the start of the track which is not a
significant musical point. We correct for this by removing
peaks that occur within the first 15 seconds of the track.

Figure 4: Drop point estimation intermediate steps for
Skrillex: “First of the Year (Equinox)”. Top: Normal-
ized scrub ratio and adaptive threshold. Bottom: Detec-
tion function and detected drop points. The first peak in
the detection function is not a drop point because it occurs
within the first 15 seconds of the track.

10 http://musicmachinery.com/2015/06/16/
the-drop-machine/
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4.1.3 Selecting Transition Points

The procedure for selecting transition points between track
1 (T1) and track 2 (T2) of length n beats is outlined in
Algorithm 1. The functions beats and features are
described in Section 4.1.1.

Let t1 and t2 be the set of transition point candidates
from which t

(A)
1 and t

(A)
2 will be selected. Since we are

given a transition duration (in units of number of beats),
t
(B)
1 and t

(B)
2 can be determined from the values of t(A)

1

and t
(A)
2 . Initially, we set t1 = M1 and t2 = M2.

We prune these sets to ensure that the transition points
happen in reasonable portions of the track, removing ob-
vious “bad” regions. The pruning is performed using the
following rules:

• t
(B)
1 occurs before the fade out, t(A)

2 is after the fade in

• t
(B)
1 occurs within the last 25% of the track, t(A)

2 occurs
within the first 20% of the track.

After pruning, the remaining points in t1 and t2 are con-
sidered valid candidates. These pruned sets are the output
of the candidates function.

For each pair of points in t1 and t2, we compute pair-
wise comparisons along a series of different features over
the entire overlapping region. For a transition of length
n beats, the overlapping region begins at beats i and j,
and ends at beats i + n and j + n. In Algorithm 1 be-
ginning at line 9, we use the notation T1[i : in] to denote
features within the region beginning at beat i and ending at
beat in. Let Λ be the combined transition point cost ma-
trix, where one axis represents the beat indices of track 1
and the second of track 2. Let Λx be the transition cost
matrix for a particular feature comparison x. For timbre
and chroma features, we compute ΛT and ΛC as the Eu-
clidean distance between the features directly (Algorithm 1
lines 9, 10). Λ` (line 11) is computed as the sum of the av-
erage inverse loudness for each track, giving regions that
are loud in both tracks a low transition cost. Similarly, Λv

is the sum of the average “vocalness” probability, to assign
transitions that both have vocals a high cost. Finally, we
penalize transitions that do not end on a drop or a second
boundary in both tracks (lines 13, 14), with a score of 2 if
neither track’s region ends on a boundary, and a score of 1
if only one track’s region ends on a boundary.

Each feature’s individual cost matrix Λx is standardized
so that the minimum cost is 0 and the maximum cost is 1.
The final cost matrix Λ is computed as a weighted sum of
each feature’s cost matrix after standardization. An exam-
ple of each of feature’s standardized matrix is shown in
Figure 5, and the weighed combination is shown in Fig-
ure 6. The final transition points t(A)

1 and t
(B)
2 are chosen

as the times corresponding to the minimum cost entry in
Λ.

4.2 Rendering Transitions

Transitions are rendered such that the beats in the two
tracks occur at the same time. In virtually every case, the

Algorithm 1 Picking Transition Points

1: procedure TRANSITION-POINTS(T1, T2, n)
2: b1 ← beats(T1), b2 ← beats(T2)
3: T1, C1, `1, v1,M1, D1, S1 ← features(T1,b1)
4: T2, C2, `2, v2,M2, D2, S2 ← features(T2,b2)
5: t1 ← candidates(T1,M1, S1, D1, `1)
6: t2 ← candidates(T2,M2, S2, D2, `2)
7: for i ∈ t1, j ∈ t2 do
8: in ← i + n jn ← j + n
9: ΛT [i, j]← norm(T1[i : in]− S2[j : jn])

10: ΛC [i, j]← norm(C1[i : in]− C2[j : jn])
11: Λ`[i, j]← avg (2− (`1[i : in] + `2[j : jn]))
12: Λv[i, j]← avg(v1[i : in]) + avg(v2[j : jn])
13: ΛD[i, j]← 1in /∈D1

+ 1jn /∈D2

14: ΛS [i, j]← 1in /∈S1
+ 1jn /∈S2

15: end for
16: Λ← [ΛT ,ΛC ,Λ`,Λv,ΛD,ΛS ]
17: for k ∈ Λ do
18: k ← standardize(k)
19: end for
20: Λ← weightedAvg(ΛT ,ΛC ,Λ`,Λv,ΛD,ΛS)
21: i∗, j∗ ← argmin(Λ)

22: t
(A)
1 , t

(A)
2 ← b1[i∗],b2[j∗]

23: return t
(A)
1 , t

(A)
2

24: end procedure

tempos are not perfectly in sync, each beat is timestretched
such that the tempo slowly changes from the tempo of track
1 to the tempo of track 2. For an N beat transition, if the
nth beat in track 1 has duration d1 and the beat in track 2
has duration d2, the total duration of the new nth beat is
dout = N−n

N d1 + n
N d2. To achieve this, the nth beat in

track 1 is time stretched by a factor of d1/dout, and the nth

beat in track 2 by d2/dout.

4.3 Evaluation

A selection of rendered transitions were evaluated by sub-
jective human review. We randomly picked 48 pairs of
tracks from a selection of popular music across multiple
dance genres, using tempo constraints when picking the
tracks to make sure the tempo difference between pairs was
no more than 5 bpm.

For each of the pairs, we asked four professional cura-
tors to listen to the transition all the way through at least
once and rate the quality. For subjective measurement, the
overall quality is described as Good (3), OK (2) and Bad
(1). Additionally, curators were asked to describe any po-
tential problems they noticed within the transitions, such as
“beats do not align” or “key clash”. The results are shown
in Tables 2 and 3, respectively.

A fairly large number (15%) of transitions were marked
as “Bad” because the “beats do not align”. Since we con-
strain transitions to align along estimated beats, we con-
clude that the “beats do not align” transitions occur as a re-
sult of errors in the beat estimation algorithm. Transitions
labeled as “transitioning mid-vocals” are also likely a re-
sult of errors in our vocal activity detection algorithm. In
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Figure 5: Transition matrices for each feature for a pair of songs. The x-axis show beat indices in Track 1, and the y-axis
for Track 2. Many index pairs have no score because they are not part of the set of candidates. Dark blue points indicate
good transition pairs for the feautre, while red indicates a poor pair. In this example, no drops were detected, so ΛD is a
uniform matrix.

Figure 6: Weighted combination Λ of the individual fea-
ture matrices in Figure 5.The x-axis show beat indices in
Track 1, and the y-axis for Track 2. The point with the
lowest cost is circled in green.

Rating Percentage
3 - Good 64.13%
2 - OK 28.26%
1 - Bad 7.61%

Average (Std) Rating 2.56 (0.38)

Table 2: Average percentage of quality rating for all track
pairs and average rating of song pairs in rendered transition
test set. The standard deviation is indicated in parentheses.

Reason Percentage
Beats do not align 15.22%
Not on downbeat 2.17%

Key clash 0%
Awkward transition points 2.17%

Transitions mid-vocals 6.52%
Contrasting Songs 4.34%

Table 3: Average percentage of song pairs marked as the
stated reason for bad quality transitions by curators.

both of these cases, as beat tracking and vocal activity de-
tection algorithms improve, these transition quality issues
should be mitigated. An interesting finding is that “key
clash” is not marked as problematic by any of the curators
for a single transition in either transition types.

5. CONCLUSIONS

This paper has presented systems for automatically se-
quencing and generating DJ-style transitions for a playlist
of songs. Both systems were evaluated with the help of
professional curators. Beat and downbeat tracking errors
were found to be the primary bottleneck in the subjective
performance of automated transitions.

A possible alternative approach for tackling the se-
quencing and transitioning problems entails the usage of
Machine Learning approaches. Given a large number of
(carefully curated) playlists and transition points between
them, one might attempt to directly learn the mapping of
low-level audio representation of recordings into their op-
timal sequencing and transitions. Such an methodology
is certainly fascinating, and represents in fact a future re-
search direction. However, the experiments above prove
how just a few interpretable features are suitable for this
problem to a remarkable extent. We chose then to inves-
tigate an approach that is heuristic in nature, but whose
particular behavior can be customized by the user in an
extremely intuitive manner (e.g., weighting acoustic sim-
ilarity more than key and tempo might be preferred when
constructing a playlist for a radio show, while the reverse
is true in the case of a dancing playlist).

Finally, this work has focused on specific genres of mu-
sic – namely “party” music. The constraints we imposed
may not be necessary or sufficient for other genres of mu-
sic, for example rap. However, the same framework could
be applied substituting different features in the optimiza-
tion problem. The exploration of how to apply this model
to other genres is left as future work.
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ABSTRACT

This paper presents “BachBot”: an end-to-end automatic
composition system for composing and completing mu-
sic in the style of Bach’s chorales using a deep long
short-term memory (LSTM) generative model. We pro-
pose a new sequential encoding scheme for polyphonic
music and a model for both composition and harmoniza-
tion which can be efficiently sampled without expensive
Markov Chain Monte Carlo (MCMC). Analysis of the
trained model provides evidence of neurons specializing
without prior knowledge or explicit supervision to detect
common music-theoretic concepts such as tonics, chords,
and cadences. To assess BachBot’s success, we conducted
one of the largest musical discrimination tests on 2336 par-
ticipants. Among the results, the proportion of responses
correctly differentiating BachBot from Bach was only 1%
better than random guessing.

1. INTRODUCTION

Recent advances have enabled computational modeling to
provide novel insights into a range of musical phenomena.
One use case is automatic stylistic composition: the algo-
rithmic generation of music in a style similar to a particular
composer or repertoire. This study explores that goal, re-
stricting its attention to generative probabilistic sequence
models which are learned from data. This model is desir-
able because it can be applied to a variety of tasks, includ-
ing: harmonizing a melody (by conditioning the model on
the melody) and automatic composition (by sampling a se-
quence from the model).

The aim is to build a system capable of generating mu-
sic in the style of Bach chorales such that an average lis-
tener cannot distinguish it from original Bach. While the
method we develop is capable of modeling any multi-part
music, we limit the scope of this work to Bach’s chorales
because: they provide a relatively large corpus, by a single
composer, are well understood by music theorists, and are
routinely used in the teaching of music theory.

c© Feynman Liang, Mark Gotham, Matthew Johnson,
Jamie Shotton. Licensed under a Creative Commons Attribution 4.0 In-
ternational License (CC BY 4.0). Attribution: Feynman Liang, Mark
Gotham, Matthew Johnson, Jamie Shotton. “Automatic stylistic compo-
sition of Bach chorales with deep LSTM”, 18th International Society for
Music Information Retrieval Conference, Suzhou, China, 2017.

1.1 Related Work

Two well-known difficulties in automatic composition are
1) learning the long-term dependencies required for plau-
sible phrasing structure and motif distribution [31], and 2)
evaluating the model’s performance rigorously [34]. Ad-
dressing the first difficulty, more recent work has reported
improvements in learning long-term dependencies by us-
ing LSTM [14, 13, 18]. Eck and Schmidhuber [14] used
LSTM to model blues music and found that LSTM can in-
deed learn long-term aspects of musical structure such as
repeated motifs without explicit modelling.

Evaluating model performance has proven to be more
problematic. In recent work, researchers have begun con-
ducting larger-scale human evaluations. Quick [35] evalu-
ated her rule-based system’s outputs on 237 human partici-
pants from Amazon’s MTurk. Perhaps most relevant to the
present study is Collins et al. [6]: a Markov chain expert
system for automatic composition. The authors evaluated
on 25 participants with a mean of 8.56 years of formal mu-
sic training and found that only 20% of participants (5 out
of 25) performed significantly better than chance. While
these prior results are strong, both of these systems relied
upon a large amount of expert domain knowledge encoded
into the models. In contrast, BachBot leverages minimal
prior knowledge and is evaluated on a significantly larger
participant pool.

Bach chorales have been a popular corpus for previous
work on automatic composition. Early deterministic sys-
tems included rule-based symbolic methods [7, 8, 12, 36],
grammatical inference [9], and constraint logic program-
ming [39]. Probabilistic models learned from data include
the effective Boltzmann machine [3] as well as various
connectionist models [37, 38, 24, 31, 15, 27].

Allan and Williams [1] used hidden Markov models
to generate Bach chorale harmonizations and is one of
the first studies to evaluate model performance quantita-
tively using cross-entropy on held-out data. They intro-
duce the JSB Chorales dataset which has since become
a standard benchmark routinely used to evaluate the per-
formance of generative models on polyphonic music mod-
elling [4, 33, 2, 21, 41]. However, JSB Chorales quan-
tizes time to eighth notes, distorting 2816 notes (2.85% of
the corpus). In contrast, BachBot eliminates this problem
with 2× the time resolution (distorting no notes). Unfor-
tunately, the higher resolution time quantization of Bach-

449



Bot’s data as well as BachBot’s sequential encoding format
make direct comparison of cross-entropies against studies
using this dataset difficult. On this dataset, the current
state-of-the-art (as measured by cross-entropy validation
loss) by Goel and Vohra [20] uses a deep belief network
(DBN) which uses a LSTM to propagate temporal dynam-
ics. While BachBot also utilizes a LSTM for capturing
long range dependencies, BachBot uses a softmax distri-
bution rather than a DBN to parameterize the probability
distribution and hence does not require Monte Carlo sam-
pling at each time step of training and inference.

A recent approach developed concurrent to BachBot
was by Hadjeres and Pachet [23]. Their approach also uses
an encoding which accounts for note articulations and fer-
matas and is similarly capable of harmonization under ar-
bitrary constraints (e.g. a given Alto and Tenor part). How-
ever, their model utilizes LSTMs to summarize both past
and future context within ±16 time steps, limiting context
to a temporally local region and inhibiting the learning of
long-term structures such as motifs. Since future context
is not always available, to generate samples the authors
first randomly initialize a predetermined number of time
steps followed by multiple iterations of MCMC. In con-
trast, BachBot’s ancestral sampling method requires only
a single forward pass and does not require the number of
timestamps in the sample to be known in advance. The
authors also evaluate their model using an online discrimi-
nation test, but on a smaller participant pool of 1272.

2. THE BACHBOT SYSTEM

2.1 Corpus Construction and Preprocessing

We took the full set of Bach chorales in MusicXML format
as provided by Cuthbert and Ariza [10]. Following prior
work [31, 14, 16, 17] preprocessing transposed all scores to
C-major / A-minor and quantized time into sixteenth notes.
Time quantization at this resolution does not distort any
notes in the corpus.

2.2 Sequential Encoding of Polyphonic Music Scores

We encode the scores into sequences of tokens amenable
for sequential processing by recurrent neural networks
(RNNs). We limit the symbolic representation to pitch
and rhythm. This is consistent with previous work [4, 33]
and the practice of music theoretic pedagogy. Unlike some
prior work [15, 14, 1], we avoid explicitly encoding music-
theoretic concepts such as motifs, phrases, and chords /
inversions, instead tasking the model to learn musically
meaningful features with minimal prior knowledge (see
section 3.4).

Our encoding represents polyphonic scores with
sixteenth-note frames, encoding duration implicitly by the
number of frames processed. Such an encoding requires
the network to leverage memory to account for longer du-
rations notes, a counting and timing task which LSTM is
known to be capable of [19]. Consecutive frames are sep-
arated by a unique delimiter (||| in fig. 1).

Within each frame, we represent individual notes rather
than entire chords, reducing the vocabulary size from
O(1284) down to O(128). Prior work modeling charac-
ters versus words in language modeling tasks suggests that
this has negligible impact [22]. Each frame consists of
four (Soprano, Alto, Tenor, and Bass) 〈Pitch,Tie〉 tu-
ples where Pitch ∈ {0, 1, · · · , 127} represents the MIDI
pitch of a note and Tie ∈ {True,False} distinguishes
whether a note is tied with a note at the same pitch from the
previous frame or is articulated at the current timestep. We
order notes within a frame in descending MIDI pitch and
neglects crossing voices; potential consequences of doing
so are discussed in section 3.2.

For each score, a unique START symbol and END sym-
bol are added. This enables initialization of the trained
model prior to ancestral sampling of a token sequence by
providing a START token and also allows us to determine
when a sampled composition ends. In addition, our encod-
ing also includes fermatas (represented by (.)), which
Bach used to denote ends of phrases. Significantly, we
found that adding this additional notation to the input re-
sulted in more realistic phrase lengths in generated output.

2.3 Model Architecture, Training, and Sampling

We use a RNN with LSTM memory cells and the following
hyperparameters:

1. num layers – the number of memory cell layers

2. rnn size – the number of hidden units per mem-
ory cell (i.e. hidden state dimension)

3. wordvec – dimension of vector embeddings

4. seq length – number of frames before truncating
back-propagation through time (BPTT) gradient

5. dropout – the dropout probability

Our model first embeds the inputs xt into a wordvec-
dimensional vector-space, compressing the dimensionality
down from |V | ≈ 140 to wordvec dimensions. Next,
num layers layers of memory cells followed by batch
normalization [28] and dropout [26] with dropout proba-
bility dropout are stacked. The outputs y(num layers)

t are
followed by a fully-connected layer mapping to |V | = 108
units, which are passed through a softmax to yield a pre-
dictive distribution P (xt+1|ht−1,xt): the probability dis-
tribution over the next token xt+1 given the current token
xt and the previous RNN memory cell state ht−1.

Models were trained using the Adam optimizer [29]
with a minibatch size of 50 and an initial learning rate
of 2 × 10−3 decayed by 0.5 every 5 epochs. The back-
propagation through time gradients were clipped at ±5.0
[32] and truncated after seq length frames.

We minimize cross-entropy loss between the predicted
distributions P (xt+1|xt,ht−1) and the actual target dis-
tribution δxt+1 . During training, the correct token xt+1 is
treated as the model output even if the most likely predic-
tion argmaxP (xt+1|ht,xt) differs. Williams and Zipser
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(a) Three musical chords in traditional
music notation. The red arrows indicate
the order in which notes are sequentially
encoded.

START
(65, False)
(59, False)
(55, False)
(43, False)
|||
(64, False)

(59, True)
(55, True)
(43, True)
|||
(.)
(64, False)
(60, False)

(55, False)
(48, False)
|||
END

(b) A corresponding sequential encoding of the three chords in an eighth-note time-
quantization (for illustration, broken over three columns). Each line within a column
corresponds to an individual token in the encoded sequence. ||| delimit frames and
(.) indicate a fermata is present within the corresponding frame.

Figure 1: Example encoding of three musical chords ending with a fermata (“pause”) chord.

[40] refers to this as teacher forcing, which is performed
to aid convergence because the model’s predictions may
not be reliable early in training. During inference, we per-
form ancestral sampling and reuse the actual token x̂t sam-
pled from P (xt|ht−1,xt−1) to compute P (xt+1|ht,xt)
for sampling x̂t+1. Unlike MCMC, which requires run-
ning multiple iterations to obtain a single sample, ancestral
sampling requires only a single forward pass.

2.4 Harmonization with Greedy 1-best Search

Chorale harmonization involves providing accompaniment
parts to an existing melody. This is a musical task with eco-
logical validity undertaken by many composers including
Bach himself. Many of Bach’s chorales are harmoniza-
tions by Bach of pre-existing melodies (not by Bach) and
certain melodies (by Bach or otherwise) form the basis of
multiple chorales with different harmonizations.

We extend this harmonization task to the completion of
chorales for a wider number and type of given parts. Let
x(1:T ) be a sequence of tokens representing an encoded
musical score, α ⊂ {1, 2, . . . , T} a multi-index, and sup-
pose x̂α correspond to some fixed token values to be har-
monized (e.g. a provided Soprano line).

We are interested in solving the following optimization:

x∗(1:T ) = argmax
x(1:T )

P (x(1:T )|xα = x̂α) (1)

First, any proposed solution x̃1:T must satisfy x̃α = x̂α,
so the decision variables are x̃(1:T )\α. Hinton and Se-
jnowski [25] refer to this constraint as “clamping” the gen-
erative model. We propose a simple greedy strategy for
choosing x̃(1:T )\α:

x̃t =

{
x̂t if t ∈ α
argmaxxt

P (xt|x̃1:t−1) otherwise
(2)

where the tilde on the previous tokens x̃1:t−1 indicate that
they are equal to the actual previous argmax choices. This
corresponds to a greedy 1-best search at each time t with-
out any accounting of future constraints (e.g. xτ if τ > t
and τ ∈ α). This is sub-optimal, and we leave more so-
phisticated search strategies such as beam search [30] for
future work.

3. EXPERIMENTS

3.1 Sequence Modelling

With the BachBot model, we performed a grid search
through the parameter grid in table 1 and found
num layers = 3, rnn size = 256, wordvec = 32,
seq length = 128 dropout = 0.3 achieves the low-
est cross-entropy loss of 0.477 bits on a 10% held-out val-
idation corpus.

Parameter Values Searched

num layers {1, 2, 3, 4}
rnn size {128, 256, 384, 512}
wordvec {16, 32, 64}

seq length {64, 128, 256}
dropout {0.0, 0.1, 0.2, 0.3, 0.4, 0.5}

Table 1: The grid of hyperparameters searched over while
optimizing RNN structure

3.2 Harmonization

S A T B AT ATB
TER 0.532 0.442 0.235 0.241 0.686 0.718
FER 0.532 0.442 0.235 0.241 0.787 0.878
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Figure 2: Token error rates (TER) and frame error rates
(FER) for various harmonization tasks

For the parts to harmonize (i.e. x(1:T )\α), we consid-
ered the following test cases:

1. One part: Soprano (S), Alto (A), Tenor (T), or Bass
(B).
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2. The inner parts (AT). Completion of the inner
parts corresponds to a musically-valid exercise com-
mon in Baroque composition (including some Bach
chorales) where only the outer voices are specified
(with or without figured bass to indicate the chord
types).

3. All parts except Soprano (ATB): the most common
form of harmonization exercise.

It is widely accepted that these tasks successively increase
in terms of difficulty [11].

We deleted the different subsets of parts from a valida-
tion corpus and used eq. (2) to fill in the missing parts. Our
model’s error rates for predicting individual tokens (token
error rate, TER, % of errors in individual token predic-
tions) as well as all tokens within frames (frame error rate,
FER, % of errors in frame predictions where any token pre-
diction errors within a frame counts as a frame error) are
reported in fig. 2.

Surprisingly, error rates were higher for S/A than for
T/B. One possible explanation for this result is our design
decision in section 2.2 to order notes within a frame in
SATB order. As a result, the model must predict the So-
prano part for each frame without any knowledge of the
other parts. When predicting the Bass part, however, it has
already seen all of the other parts and can leverage this
harmonic context. To assess this idea, we propose as fu-
ture work an investigation of different part orderings in the
encoding.

3.3 Musical Discrimination Test

To measure BachBot’s success in this task, we devel-
oped a publicly accessible musical discrimination test at
bachbot.com. Unlike prior studies which leverage paid
services like Amazon MTurk for human feedback [35],
we offered no such incentive and promoted the study only
through social media.

Participants were first surveyed for their age group and
prior music experience (fig. 3a). Next, they are presented
five discrimination tasks which presented two audio tracks
(an original Bach composition and a synthetic composition
by BachBot) and ask them to identify the Bach original.
Each audio track contains an entire composition from start
to end. The music score for the audio was not provided.
Participants were granted an unlimited amount of time and
allowed to replay each track an arbitrary number of times.
Participants could only see the next question after submit-
ting the current one and were not allowed to modify their
responses after submitting.

The five questions comprised of three harmonizations
(S/A/T/B, one AT, one ATB), and two original composi-
tions. To construct the questions, harmonizations were
paired along with the original Bach chorales the fixed parts
were taken from. No such direct comparison is possible
for the SATB case, so these synthetic compositions were
paired with a randomly selected Bach chorale in a some-
what different comparative listening task. Harmonizations

under18 18to25 26to45 46to60 over60

novice 34 181 244 66 16

intermediate 36 387 565 85 18

advanced 17 176 233 23 5

expert 5 34 81 21 9

0

250

500

750

1000

C
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nt

Participant demographics

Music experience
novice
intermediate
advanced
expert

(a) Demographics of respondents; self-reported music experience
defined as follows — Novice: casual listener, Intermediate: plays
an instrument, Advanced: formally studied music composition,
Expert: music teacher/researcher.

S A T B AT ATB SATB

Proportion 0.82 0.58 0.49 0.39 0.73 0.65 0.51
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Performance by question type

(b) Proportion of responses correctly discriminating BachBot
from Bach for different question types. The SATB column shows
that BachBot’s generated compositions can be differentiated from
Bach only 1% better than random guessing.

S A T B AT ATB SATB
novice 0.7 0.6 0.42 0.44 0.62 0.65 0.46
intermediate 0.85 0.57 0.53 0.28 0.78 0.66 0.52
advanced 0.85 0.69 0.43 0.56 0.74 0.61 0.52
expert 0.92 0.44 0.57 0.6 0.79 0.72 0.61
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(c) Figure 3b segmented by self-reported music experience. As
expected, more experienced listeners generally produced more
correct responses, though not for the ‘B’ condition.

Figure 3: Results collected from a web-based musical dis-
crimination test.
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Figure 4: Activation profiles suggesting that neurons have specialized to become detectors of musically relevant features.
Layer 1, neuron 64: strongly correlates with the use of dominant seventh chords in the main, tonic key (C major, originally
D major). These are the main non-triadic harmony, are strongly key defining, and have a important function in the harmonic
closure of phrases in this style. Layer 1, neuron 151: fires with the equivalent dominant seventh chord for the two cadences
in the relative minor (a minor, originally b minor) that end phrases 2 and 4. These are the only two appearances in the
chorale of the pitch G# which is foreign to C major, and strongly key defining in a minor.

were synthesized by extracting part(s) from a randomly se-
lected Bach chorale and filling in the remaining parts of the
composition using the method previously described in sec-
tion 2.4. Original compositions (questions labelled SATB)
were generated by providing a START symbol followed by
ancestral sampling as previously described in section 2.3
until an END symbol is reached. The final audio provided
in the questions were obtained by rendering the composi-
tions using the Piano instrument from the Fluid R3 GM
SoundFont.

We only considered the first response per IP address of
participants who had played both choices in every question
at least once and completed all five questions. This totaled
2336 participants at the time of writing, making our study
one of the largest subjective listening evaluation of an au-
tomatic composition system to date.

Figure 3b shows the performance of BachBot on vari-
ous question types. The SATB column shows that, for the
novel synthetic compositions, participants on average suc-
cessfully discriminated Bach from BachBot only 51%: av-
erage human listeners could only perform 1% better than
random guessing. To assess statistical significance, we
choose significance level α = 0.05 and conducted a one-
tailed binomial test (446 successes in 874 trials) to find that
the probability of a discrimination rate higher than 51%
has p-value 0.282 > α. Thus, we conclude that there
does not exist sufficient evidence that the discrimination
rate between Bach and BachBot is significantly different
(at α = 0.05) than the rate achieved by random guessing

random guessing .

The weaker performance of BachBot’s outputs on most
harmonization questions (fig. 3b other than SATB) com-
pared to automatic composition questions (SATB) is coun-
terintuitive: one would expect the provided parts to aid the
model in creating more Bach-like music. This result may
be explained by the shortcomings of our greedy 1-best har-
monization method (discussed above) and/or by the pos-
sible benefit of consistent origins, with all-Bach and all-
BachBot being preferred over hybrid solutions.

Across the S/A/T/B and AT/ATB conditions, the results
vary significantly. The ease of discrimination appears to
correlate with the position in the texture from highest (S,
easiest) to lowest (B, hardest). This may be due to the S
part’s importance in carrying the melody in chorale style,
or (more likely) due once again to the BachBot’s lower er-
ror rates for completing bass parts as compared with other
parts (fig. 2), which in turn is probably due to the sequen-
tial encoding (fig. 1) of bass notes last within each frame,
giving it a harmonic context to work with. Another possi-
bility is that most listeners focus more on the top melody,
neglecting the bass part and any potential deviations there.
In any case, the relatively poor performance of expert lis-
teners for the B-only condition (see fig. 3c) is noteworthy,
and not explained by any aspect of the process.
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3.4 Do Neurons Specialize to Music-Theoretic
Concepts?

Research in convolutional networks has shown that neu-
rons within computer vision models specialize to detect
high-level visual features [42]. Similarly, convolutional
networks trained on audio spectrograms have been shown
to possess neurons which detect high-level aural features
[5]. Following these results, one might expect the Bach-
Bot model to possess neurons which detect features within
symbolic music which have music theoretic relevance.

To investigate this further, one could look at the acti-
vations over time of individual neurons within the LSTM
memory cells to see if neuron activity correlates with rec-
ognized musical processes. An informal analysis sug-
gests that while some neurons are ambiguous to interpreta-
tion, other neurons correlate significantly with recognized
music-theoretic objects, particularly chords (see fig. 4).
To our knowledge, this is the first reported evidence for
an LSTM optimized for automatic composition learning
music-theoretic concepts without explicit prior informa-
tion. This invites a follow-up study testing the statistical
significance of these observations.

4. DISCUSSION

The data generated by bachbot.com shows that subjects
distinguished BachBot from Bach only 51% of the time,
suggesting that BachBot successfully composes and com-
pletes music that cannot be distinguished from Bach sig-
nificantly above the chance level. Additionally, BachBot’s
design involves no explicit encoding of musical parame-
ters beyond the notation, so the results reflects its ability to
acquire music knowledge independently from data.

As discussed, the higher time resolution of our custom
encoding scheme enabled the model to learn about Bach’s
use of sixteenth notes, which is not possible for models
trained on JSB Chorales. Unfortunately, this improved en-
coding means that we are unable to compare quantitative
performance metrics such as log likelihood against other
literature values reported for polyphonic modeling on the
JSB Chorales [1] dataset.

Using this sequential encoding scheme, we train a deep
LSTM sequential prediction model and discover that it
learns music theoretic concepts without prior knowledge or
explicit supervision. We then propose a method to utilize
the sequential prediction model for harmonization tasks.
We acknowledge that our method is not ideal and discuss
better alternatives in future work. Our harmonization re-
sults reveal that this issue is significant and should be a
priority for any follow-up work.

Finally, we leveraged our model to generate harmoniza-
tions as well as novel compositions and used the generated
music in a web-based music discrimination test. Our re-
sults here confirm the success of our project.

While many opportunities for extension are highlighted,
we conclude that our stated research aims have been
reached. In other words, generating stylistically successful
Bach chorales is now a more closed (as a result of Bach-

Bot) than open problem.

5. CONCLUSION

In this paper, we:

• introduce a sequential encoding scheme for music
which achieves time-resolution 2× that of the com-
monly used JSB Chorales [1] dataset.

• performed the largest (to the best of our knowledge
at time of publication) musical discrimination test
of an automatic composition system, which demon-
strated that high quality data can be collected from
voluntary internet surveys.

• demonstrate that a deep LSTM sequential prediction
model trained on our encoding scheme is capable of
composing music that can be distinguished only 1%
better than random guessing, a statistically insignif-
icant difference

• provide the first evidence that neurons in the LSTM
model appear to model common music-theoretic
concepts without prior knowledge or supervision.

In addition, we have open sourced the code for Bach-
Bot 1 as well as our music discrimination test frame-
work 2 . The Magenta project of Google Brain has re-
cently implemented the BachBot model for their poly-
phonic RNN model 3 .
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ABSTRACT

Though many past works have tried to cluster expressive
timing within a phrase, there have been few attempts to
cluster features of expressive timing with constant dimen-
sions regardless of phrase lengths. For example, used as
a way to represent expressive timing, tempo curves can
be regressed by a polynomial function such that the num-
ber of regressed polynomial coefficients remains constant
with a given order regardless of phrase lengths. In this
paper, clustering the regressed polynomial coefficients is
proposed for expressive timing analysis. A model selec-
tion test is presented to compare Gaussian Mixture Models
(GMMs) fitting regressed polynomial coefficients and fit-
ting expressive timing directly. As there are no expect-
ed results of clustering expressive timing, the proposed
method is demonstrated by how well the expressive tim-
ing are approximated by the centroids of GMMs. The re-
sults show that GMMs fitting the regressed polynomial co-
efficients outperform GMMs fitting expressive timing di-
rectly. This conclusion suggests that it is possible to use
regressed polynomial coefficients to represent expressive
timing within a phrase and cluster expressive timing with-
in phrases of different lengths.

1. INTRODUCTION

In performed classical piano music, small variations of the
beat length serving music expression is known as expres-
sive timing. Expressive timing can be represented by tempo
curves that connects the value of tempo on each beat to for-
m a curve. A common method [3,5,8,11] of analysing ex-
pressive timing within a phrase in performed classical pi-
ano music is to cluster expressive timing. One of the possi-
ble unit used for clustering expressive timing is phrase [5]
that contains a certain beats forming a sensible music struc-
ture. The length of phrase, or phrase length (defined as
the number of beats contained in a phrase), is expected
to be identical throughout a piece of music by most algo-
rithms such as Li et al. [5]. Such strong restrictions make

c⃝ Shengchen Li, Simon Dixon, Mark D. Plumbley. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Shengchen Li, Simon Dixon, Mark D.
Plumbley. “Clustering expressive timing with regressed polynomial co-
efficients demonstrated by a model selection test”, 18th International So-
ciety for Music Information Retrieval Conference, Suzhou, China, 2017.

the large-scale applications of existing algorithms almost
impossible because the phrase lengths are not constant in
most pieces. This paper proposes a way to cluster expres-
sive timing regardless of phrase length.

In past research [14], polynomial functions, especial-
ly parabolic functions, are used to regress tempo curves.
Regressing a tempo curve, the coefficients of the resulting
polynomial function is called regressed polynomial coef-
ficients for a tempo curve. Given an order of polynomial
function to be regressed to, each tempo curve can be rep-
resented by a fixed number of regressed coefficients. In
this paper, we propose to cluster regressed polynomial co-
efficients instead of clustering expressive timing directly
in order to enable the clustering of expressive timing with-
out a pre-defined unit possible. A model selection test is
shown in this paper demonstrating the Gaussian Mixture
Models (GMMs) fitting regressed polynomial coefficients
outperform the GMMs fitting expressive timing directly.

For simplicity, the GMMs fitting the expressive tim-
ing are represented by GMMo, whereas the GMMs fitting
the regressed polynomial coefficients are represented as
GMMr. There are multiple ways to compare two GMMs.
Because the two types of GMMs fitting two different sets
of data in this paper, the traditional model selection criteria
(such as Bayesian Information Criterion [1, Ch. 3] used by
Li et al. [5]) based on model likelihood cannot be used. Al-
though comparing the clustering results with a ground truth
is a more general way to evaluate model performance, the
clustering of expressive timing has no consensus or well-
recognised “ground truth” by the musicologists. The per-
formance of GMMs is evaluated by the approximation of
each tempo curve by their corresponding centroids as this
principle is a general evaluation for clustering algorithms.

To make the clustering of expressive timing and the
regressed polynomial coefficients comparable, the pieces
we selected in this paper still have constant phrase length-
s. However, the expressive timing in various phrases can
be regressed to the polynomial function of a single order
regardless of phrase lengths. The three pieces of music
are two pieces of Chopin’s Mazurkas (Op. 24, No. 2 and
Op. 30, No. 2) used in the previous works [10, 11] and
Berekrev’s Islamey dataset, which Li et al [5] used. Al-
though the music analysed is classical music, the proposed
algorithm for clustering expressive timing may be poten-
tially used for other forms of music such as jazz music.

This paper is organised as follows: relevant literatures
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are reviewed first, then we describe how the standardised
tempo curves and the regressed polynomial coefficients are
clustered. Next, we will show how the performance of
models are represented and the results are presented. A
discussion comparing the differences of the GMMs pre-
cedes the conclusion of the paper.

2. BACKGROUNDS

Clustering is a widely used methodology for analysing ex-
pressive timing. As demonstrated by Li et al. [5], the stan-
dardised tempo curves within a phrase can be clustered.
Repp [8] used Principle Component Analysis (PCA) to
analyse expressive timing and found a certain number of
common patterns. Spiro et al. [11] used self-organising
maps to cluster expressive timing and expressive dynamic-
s patterns within a bar and asserted that expressive timing
and dynamics are affected by music structure. All these
works requested a pre-selected unit of analysis with an i-
dentical length, such as bars, phrases or the entire piece of
music. Such requirements, on the other hand, limit the us-
ability of the methods of analysis because the choice of a u-
nified unit for analysis is hard to find. Clustering regressed
polynomial coefficients instead of expressive timing di-
rectly relaxes the restriction of a constant phrase length in
the testing pieces; thus, more pieces of music can be anal-
ysed using different methodologies of clustering.

Using second-order polynomial function, or parabolic
function, to regress expressive timing tempo curves rep-
resenting expressive timing is a traditional way to model
expressive timing [14]. This method was widely used in
a range of past works [8, 9, 12, 15, 16]. Repp [8, 9] used
PCA to analyse expressive dynamics and timing in cer-
tain numbers of performances of a Chopin’s étude. Rep-
p asserted that the parabolic curves are particularly good
at modelling the expressive timing within a longer phrase
unit [8] and that parabolic curves are useful for regress-
ing the expressive dynamics [9]. Tobudic and Widmer
[13] used multi-level parabolic curves to learn how a con-
cert pianist varied both dynamics and tempo when play-
ing several Mozart pieces. The learned methods were then
used to automatically render performances of other pieces
with success. Timmers [12] suggested that using parabolic
curves to regress expressive parameters in performances is
useful in vocal performances. Despite the wide usage of
parabolic curves for modelling, it is rare to cluster expres-
sive timing with the regressed parabolic coefficients or re-
gressed polynomial coefficients. This paper intends to use
a model selection test to demonstrate that regressed poly-
nomial coefficients are a valid representation of expressive
timing for clustering.

GMMs are used to fit the distribution of expressive tim-
ing within a phrase and regressed polynomial coefficients.
The resulting GMMo and GMMr are compared in the pro-
posed model selection test. A model selection test is a
common method in machine learning research to test the
fitness of data with a mathematical model [1, Ch. 1]. Li
et al. [5] used this method to analyse expressive timing.
Model selection tests were used to demonstrate expressive

timing can be modelled by a clustered model [5] and to
determine the factors that affect the selection of cluster-
s of expressive timing [6]. Because GMMo and GMMr

model two different datasets, the approximation of expres-
sive timing by their corresponding centroids of GMMo and
GMMo is used for evaluation in this paper.

We adapt the dataset used by Li et al. [5] in which
each piece has a constant length phrase to make GMMo

and GMMr comparable. The three testing pieces of mu-
sic are Chopin’s Mazurkas (Op. 24, No. 2 and Op. 30,
No. 2) and Islamey, whose lengths of phrases are twelve
beats, twenty-four beats and eight beats throughout the en-
tire piece, respectively. For each testing piece, there are
sixty-four, thirty-four and twenty-five performances.

In each performance, the timing of each beat is record-
ed as {t1, t2, . . .} and the tempo value on each beat τi can
be calculated as the reciprocal of inter-beat interval, name-

ly τi =
1

ti+1 − ti
. The tempo value is then smoothed

by the method of moving window average with a window

size of 3 (i.e. τ̄i =
τi−1 + τi + τi+1

3
) to approximate hu-

man perception of tempo [2]. The expressive timing with-
in a phrase can then be represented as a vector of tempi
or tempo curve: T = {τ̄1, τ̄2, . . . , τ̄n}, where n repre-
sents the total number of beats. The resulting standard-
ised tempo curves T are obtained by setting the mean of
each tempo curve to 1, e.g. T = {τ̂1, τ̂2, . . . , τ̂n}, where

τ̂i =
nτ̄i∑n
j=1 τ̄j

. After the standardisation process, in each

data set there are m samples of n-dimensional data to be
clustered, where m represents the number of phrases in the
testing piece of music. These samples are the raw data for
clustering and regression.

3. MODEL EVALUATION

In this paper, a method to cluster expressive timing regard-
less of the length of phrase is proposed. As there are no
musicological ground truth available, the candidate model-
s are evaluated by a traditional way to assess unsupervised
machine learning algorithms: how well the original data
can be approximated by the centroids of clusters.

Before discussing how GMMo and GMMr are com-
pared in details, we will firstly brief how the GMMs are
trained to fit data with n dimensions. A traditional way to
train a GMM distribution is to use the Expectation Max-
imisation (EM) algorithm [7, Ch. 11] which attempts to
raise the model likelihood of the training data by adjusting
the parameters in GMM. Particularly in this paper, all the
GMMs are trained for ten times with random initialisation
and the best GMM is selected as the resulting GMM.

Next we will show how GMMo and GMMr are com-
pared. As these two types of GMMs fit different data, the
traditional measurements based on model likelihood such
as BIC (Bayesian Information Criterion) are not valid. As
a result, we evaluate how well the expressive timing within
a phrase is approximated by the centroids of the resulting
GMMo and GMMr. We will discuss how the approxima-
tion is measured in this section.
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3.1 Evaluation of the Clustered Standardised Tempo
Curves

Suppose the expressive timing in the ith phrase can be rep-
resented as Ti = {τ̂1, τ̂2, . . . , τ̂n}. The distribution of Ti

can be fitted to an A-component GMM (GMMo) as [5]

p(Ti) =

A∑
k=1

πkN (Ti|µ⃗k,Σk). (1)

The centroids of the resulting GMMo can be represent-
ed as µ⃗1, µ⃗2, . . . , µ⃗A. If µ⃗i = (µ1, µ2, . . . , µn) is used to
represent the centroids of the cluster that tempo curve of
the ith phrase (Ti = {τ̄1, τ̄2, . . . , τ̄n}) belongs to (where
µ⃗i ∈ {µ⃗1, µ⃗2, . . . , µ⃗A}), the correlation coefficient (ρ) and
Euclidean distance (D) between the corresponding cen-
troids µi and the expressive timing within a phrase Ti are
given by

ρ(Ti, µ⃗i) =

∑n
j=1(τ̄j −Ti)(µj − µ⃗i)√∑n

j=1(τ̄j −Ti)2
√∑n

j=1(µj − µ⃗i)2
(2)

D(Ti, µ⃗i) =

√√√√ n∑
j=1

(τ̄j − µj)2 (3)

where Ti =
1

n

∑n
k=1 τ̂k and µ⃗i =

1

n

∑n
k=1 µk.

3.2 Evaluation of the Regressed Polynomial
Coefficients

With the least square algorithm, the standardised tempo
curves can be regressed to a oth order polynomial func-
tion fo(x) =

∑o
i=0 bix

i. Thus the standardised tempo
curve representing expressive timing in phrase i (Ti =
{τ̄1, τ̄2, . . . , τ̄n}) can be represented by a vector of re-
gressed polynomial coefficients B⃗i = (b0, b1, b2, . . . , bo).
A GMM (GMMg) fitting the oth order of polynomial co-
efficients is represented by GMMo

g . For clarity, GMMg

represents the GMMs fitting the regressed parabolic coef-
ficient of any orders.

To prevent overfitting (e.g. the function used for regres-
sion is too complex to generalise the distribution of data),
the order of polynomial function o should be smaller than
the length of phrase n (o < n). The GMMo

g can be trained
to fit the distribution of B⃗i such that

p(B⃗i) =

A∑
k=1

πkN (B⃗i|m⃗k,Σk). (4)

If the expressive timing of phrase i (Ti) belongs to
cluster k whose centroid can be represented as m⃗k =
(bm0, bm1, . . . , bmo), the regressed polynomial curve of
the expressive timing within phrase i (Ti) can be repre-
sented as fo(x|m⃗i) =

∑o
j=0 bmjx

j = (x1, x2, . . . , xn).
Thus the correlation coefficient (ρ) and Euclidean distance
(D) between the regressed polynomial curve fo(x|m⃗i) and
the expressive timing Ti are given by

ρ(Ti, f
o(x|m⃗i)) =∑n

j=1(τ̄j −Ti)(fj − fo(x|m⃗i))√∑n
j=1(τ̄j −Ti)2

√∑n
j=1(fj − fo(x|m⃗i))2

(5)

D(Ti, f
o(x|m⃗i)) =

√√√√ n∑
j=1

(τ̄j − xj)2 (6)

where Ti =
1

n

∑n
k=1 τ̂k and fo(x|m⃗i) =

1

n

∑n
k=1 xk.

4. RESULTS

In this section, we will compare how the centroids of
GMMo and GMMg approximate expressive timing within
a phrase by showing the correlation coefficients and Eu-
clidean distance discussed in Section 3. To train a GMM
with the dataset selected, an important parameter should
be decided: the intended number of clusters. Follow-
ing the detailed discussion by Li et al. [5], we train G-
MMs with two Gaussian components for Islamey, eight
Gaussian components for Chopin Mazurka Op.24/2 and
four Gaussian components for Chopin Mazurka Op.30/2.
Moreover, the order of polynomial function for regression
is chosen between the second order and the tenth order
for both Chopin’s Mazurkas, whereas for Islamey whose
phrase length is 8 beats the chosen order of polynomial
function is between second order and the eighth order to
prevent overfitting.

Compared with the complexity of the proposed GMMo

and GMMg, the data we have is fairly limited. To preven-
t overfitting, cross validation is used in this experiment.
Rather than using the entire dataset to train the GMMo and
GMMg, only four-fifths of the performances form a train-
ing dataset, and the remaining performances form a testing
dataset. Specifically for the candidate pieces, there are 5,
13, 7 performances used for testing and the numbers of
performances for training are 20, 51, 27 for the candidate
pieces Islamey, Chopin’s Mazurka Op.24/2 and Chopin’s
Mazurka Op.30/2 respectively. To even out the possible
bias caused by the randomness of the formation of the test-
ing and training sets, cross validation tests are repeated for
100 times with the performances in the testing and train-
ing sets randomly selected. The performance of candidate
models are evaluated by the average performance in the
100 cross validation tests.

With the EM algorithm, a GMMo and a GMMg are
trained with each training dataset engaged. The re-
sulting GMMo and GMMg are used to cluster the test-
ing dataset. The centroids of the resulting clusters are
used to calculate ρ(Ti, µ⃗i), D(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i))
and D(Ti, f

o(x|m⃗i)) according to equations (2), (3), (5)
and (6) where Ti is in the testing dataset. To remove
the possible bias caused by the randomness of perfor-
mance selection, the experiment is repeated 100 times.
The resulting ρ(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i)), D(Ti, µ⃗i) and
D(Ti, f

o(x|m⃗i)) are compared pairwisely.
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(a) Islamey

(b) Mazurka Op.24/2

(c) Mazurka Op.30/2

Figure 1. Box plots of the resulting correlation coefficients
and Euclidean distance between the standardised tempo
curves and their corresponding cluster centroids. The box
shows 25th and 75th percentiles. The line in the box shows
the mean. Outliers are shown by a ‘+’ sign. A higher cor-
relation coefficients and a smaller Euclidean distance indi-
cates a better approximation of expressive timing by corre-
sponding centroids. The label ‘Org’ represents the results
of clustering expressive timing directly.

In Figure 1, box plots of the resulting ρ(Ti, µ⃗i),
D(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i)) and D(Ti, f
o(x|m⃗i)) in the

100 cross-validation tests for each testing piece are shown.
In the diagram, the label ‘Org’ represents the perfor-
mance of the centroids in GMMo (namely ρ(Ti, µ⃗i) and
D(Ti, µ⃗i),). The numbered labels represent the value of o
in ρ(Ti, f

o(x|m⃗i)) and D(Ti, f
o(x|m⃗i)). In each boxing

plot, the box indicates the 25th and 75th percentiles and
the line in the box shows the mean. The ‘+’ signs show
the outliers. A higher correlation coefficient and a smaller
Euclidean distance means better approximation of the ex-
pressive timing by the corresponding centroids in GMMo

and GMMg.

In the resulting diagram, GMMo
g outperforms GMMg

regardless of the value of o. As seen in Figure 1(b) and Fig-
ure 1(c), GMMo

g outperforms GMMr according to both the
correlation coefficients and Euclidean distance. In Figure
1(a), although the correlation coefficients does not show
that GMMo

g is better than GMMr, the Euclidean distance
shows that GMMo

g outperforms GMMr. This result con-

firms that using polynomial functions to regress expres-
sive timing within a phrase can help to improve the per-
formance of clustering expressive timing.

Next, we discuss about which value of o makes the
best performed GMMo

g . With an one-way ANOVA test [7,
Ch.8], we find that a higher value of o does not always
introduce a better performance of GMMo

g. To show the
significance of the difference between the means and cor-
relation coefficients of GMMo

g and GMMr, we perform a
Tukey’s Honest Significant Difference (HSD) test.

With a preference of a simpler model, the results of
Tukey’s HSD show the following facts. If two GMMo

g

have different values of o but no differences of perfor-
mance, the GMMo

g with lower o values will be preferred
due to lower complexity of GMMo

g. For Islamey, the
performance of GMM2

g to GMM8
g does not make signif-

icant differences thus GMM2
g is preferred. As a result,

the second order of polynomial function is the most suit-
able method regressing expressive timing in Islamey. For
Chopin Mazurka Op.24/2, GMM7

g to GMM10
g make no

significant differences according to correlation coefficients
whereas according to Euclidean distance, GMM10

g is worse
than GMM7

g to GMM9
g . So in general GMM7

g is the best
model amongst the candidate models and the seventh order
of polynomial function is the best function to regress ex-
pressive timing within a phrase for Mazurka Op.24/2. For
Chopin Mazurka Op.30/2, the best performed models are
GMM7

g to GMM10
g according to Euclidean distance where-

as GMM10
g is marginally better than other models accord-

ing to correlation coefficients. As a result, amongst the
candidate models, the tenth order of polynomial function
is the best model to regress the expressive timing within a
phrase.

Considering the fact the phrase length of Islamey,
Mazurka Op.24/2 and Mazurka Op.30/2 are 8 beats, 12
beats and 24 beats respectively and the most suitable
polynomial function to regress expressive timing within a
phrase is the second, the seventh and the tenth order, there
may be a potential relationship between the most suitable
order of polynomial function for regression and the phrase
length. Demonstrating this hypothesis is beyond the scope
of this paper but is possibly a future work.

5. DISCUSSION

5.1 Centroid Pairing

From the results of the model selection test, GMMr out-
performs GMMo. However, the resulting GMMr may not
be necessary to make musical sense. As GMMo makes
musical sense [4], the centroids of GMMr and GMMo are
compared. If the regressed polynomial curves recovered
from GMMr are correlated with the centroids of GMMo,
the GMMr will also make musical sense.

Recall that in Section 3, µ⃗i represented the centroids of
the GMMs for expressive timing within a phrase and m⃗j

represented the centroids of the GMMs for regressed poly-
nomial coefficients that can be recovered as a polynomial
curve fo(x|m⃗j). The similarity between centroids can be
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defined by the correlation coefficients (ρ) between µ⃗i and
fo(x|m⃗j), namely

ρ(µ⃗i, f
o(x|m⃗j))

=

∑n
k=1(µk − µ⃗i)(xk − fo(x|m⃗j))√∑n

k=1(µk − µ⃗i)2
√∑n

k=1(xk − fo(x|m⃗j))2
(7)

where µ⃗i =
1

n

∑n
k=1 µk and fo(x|m⃗i) =

1

n

∑n
k=1 xk.

Suppose there are A Gaussian components in the
GMMr and GMMo. The centroids in GMMr and GMMo

can be paired according to Algorithm 1. In Table 1, the re-
sults of pairing the centroids of the GMMs for the oth order
polynomial coefficients are shown. In Figure 2, we demon-
strate how the centroids of GMMo compared with the re-
gressed polynomial curves with the centroids of GMM2

r

and GMM7
r in Chopin’s Mazurka Op.24 No.2. From the

results we can see that the regressed polynomial curves re-
covered from the centroids of GMM2

r are highly correlated
with GMMo while the regressed polynomial curves recov-
ered from the centroids of GMM7

r are even more similar
to GMMo due to the higher model complexity. Thus the
results demonstrate that the GMMs for the regressed poly-
nomial coefficients are musically valid.

Algorithm 1 Pair centroids
Require: fo(x|m⃗)i,i ∈ [1, A]
Require: µ⃗j ,i ∈ [1, A]
C(i, j) = ρ(µ⃗i, f

o(x|m⃗j))
while max(C) ≥ −1 do

(r,c)=arg max (Crc)
pairs:=pairs ∪ {r,c}
Associate locr with locc
Cri = -2
Cjc = -2

end while

Islamey Op.24/2 Op.30/2
GMM2

r 0.99 0.83 0.75
GMM3

r 0.99 0.82 0.74
GMM4

r 0.99 0.84 0.72
GMM5

r 0.99 0.89 0.80
GMM6

r 1.00 0.90 0.78
GMM7

r 1.00 0.90 0.82
GMM8

r 1.00 0.90 0.76
GMM9

r N/A 0.90 0.79
GMM10

r N/A 0.90 0.86

Table 1. The correlation coefficients between the polyno-
mial curves recovered from the centroids of GMMo

r and
the centroids of GMMo.

5.2 GMMr with more clusters

With the results presented, we can conclude that with the
same Gaussian components in the model, GMMg outper-

forms GMMo when the intended number of Gaussian com-
ponents is decided by the GMMo provided by Li et al. [5].
In this section, we observe whether GMMr, which has
more Gaussian components, has a better performance. As
an example, we compare the performance of GMM2

r , mea-
sured by correlation coefficients with multiple Gaussian
components. In Table 2, we show how well the regressed
parabolic curves approximate the centroids of GMM2

g by
showing ρ(Ti, f

o(x|m⃗i)) calculated by equation (5).

Clusters Islamey Op.24/2 Op.30/2
2 0.5315 0.5872 0.7339
4 0.5411 0.6181 0.7399
8 0.5718 0.6877 0.7442
16 0.6261 0.6930 0.7635
32 0.6722 0.7165 0.7677
64 0.6857 0.7324 0.7585
128 0.6978 0.7298 0.7413
256 0.6940 0.7282 N/A
512 0.6467 0.7109 N/A

Table 2. The average value of ρ(Ti, f
o(x|m⃗i)) resulting

from GMM2
g with different numbers of Gaussian compo-

nents (labelled as clusters in the table). A larger number
means a better approximation and a better performance
(bold). The number of clusters we set in the previous
experiments are in italics. The training set of Mazurka
Op.30/2 has less than 256 samples because it is impossi-
ble to set 256 and 512 clusters in the experiments.

From the table, we can see that the numbers of Gaussian
components we engaged in the experiments in section 4 for
GMM2

g do not have the best performance. Thus the GMM2
g

with more Gaussian components can improve the model
performance further.

6. CONCLUSIONS

In this paper, we demonstrate whether regressing standard-
ised tempo curves within a phrase by a polynomial func-
tion is a valid method to analyse expressive timing by com-
paring Gaussian Mixture Models (GMMs) fitting expres-
sive timing (GMMo) and fitting regressed polynomial co-
efficients (GMMg). As the candidate models fit different
sets of data and there are no musicological ground truth for
the clustering of expressive timing, the approximation of
expressive timing by the centroids of GMMo and GMMr

is used to evaluate model performance.
Measured by correlation coefficients and Euclidean dis-

tance, the experiment shows that GMMg outperforms
GMMr when the same numbers of Gaussian components
are engaged. With more Gaussian components engaged,
GMMr performs even better. The distribution of regressed
polynomial coefficients has a lower degree of freedom
compared with the tempo curves representing expressive
timing within a phrase hence the regression of expressive
timing with polynomial function reduces data dimension.
The results demonstrate that regressing expressive timing
with polynomial functions may help the clustering process.
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Figure 2. The centroids of GMMo compared with the regressed polynomial curves with the centroids of GMM2
r and

GMM7
r in Chopin’s Mazurka Op.24 No.2.

When comparing the regressed polynomial curves re-
covered from the centroids of GMMg with the centroids
of GMMo, the two sets of centroids are highly correlated
with each other, which demonstrates that the centroids of
GMMg make similar musical sense with GMMo. As a re-
sult, the polynomial functions can be used to help cluster
expressive timing, which makes clustering expressive tim-
ing across phrases with various lengths possible.
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ABSTRACT

Lyrics play an important role in the semantics and the
structure of many pieces of music. However, while many
existing lyric analysis systems consider each sentence of
a given set of lyrics separately, lyrics are more naturally
understood as multi-sentence units, where the relations be-
tween sentences is a key factor. Here we describe a series
of experiments using discourse-based features, which de-
scribe the relations between different sentences within a
set of lyrics, for several common Music Information Re-
trieval tasks. We first investigate genre recognition and
present evidence that incorporating discourse features al-
low for more accurate genre classification than single-
sentence lyric features do. Similarly, we examine the prob-
lem of release date estimation by passing features to clas-
sifiers to determine the release period of a particular song,
and again determine that an assistance from discourse-
based features allow for superior classification relative to
single-sentence lyric features alone. These results suggest
that discourse-based features are potentially useful for Mu-
sic Information Retrieval tasks.

1. INTRODUCTION

Acoustic features have been used as the basis for a wide
variety of systems designed to perform various Music In-
formation Retrieval (MIR) tasks, such as classifying music
into various categories. However, a piece of music is not
entirely defined by its acoustic signal, and so acoustic fea-
tures alone may not contain sufficient information to allow
for a system to accurately classify audio or perform other
MIR tasks [24]. This has led to interest in analyzing other
aspects of music signals, such as lyrics [16, 22].

Although not all music contains lyrics, for songs that
do, lyrics have been proven to be useful for classifying au-
dio based on topic [17], mood [15], genre, release date, and
even popularity [7]. This is a natural result since humans
also consider lyrics when performing these classifications.

c© Jiakun Fang, David Grunberg, Diane Litman, Ye Wang.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Jiakun Fang, David Grunberg, Diane
Litman, Ye Wang. “Discourse Analysis of Lyric and Lyric-based Clas-
sification of Music”, 18th International Society for Music Information
Retrieval Conference, Suzhou, China, 2017.

But while lyric features have been used in previous MIR
studies, such works often use a bag-of-words or bag-of-
sentences approach which considers each sentence within
a set of lyrics independently. This approach sacrifices the
contextual information provided by the lyrical structure,
which often contains crucial information. As an example,
we consider lyrics from the theme of Andy Williams’ “A
Summer Place”:

• Your arms reach out to me.

• And my heart is free from all care.

The clause ‘and’ linking these two lines helps to set the
mood; the listener can observe a connection between the
subject reaching out to the singer, and the singer’s heart
consequently being at ease. But suppose the word ‘and’
were changed to the word ‘but’. In this case, the meaning
of these lyrics would be entirely different; now the singer’s
heart is at ease despite the subject reaching for him, not
implicitly because of it. A human would no doubt observe
this; however, this information would be lost with a bag-
of-words or bag-of-sentences approach. We therefore hy-
pothesize that lyrics features which operate on a discourse
level, taking into account the relations between textual el-
ements, will better represent the underlying structure of a
set of lyrics, and that systems using such features will im-
prove the performances of those using lyric features which
consider each sentence independently.

In this paper we consider two classical MIR tasks: genre
classification and release date estimation. Prior research
has already demonstrated that lyrics-based features can im-
prove accuracy for genre classification [22] as well as re-
lease date estimation [7]. This prior work considered indi-
vidual words without taking into account how those words
were linked together with discourse features or other con-
nectors. However, it is already known that the complexity
of lyrics often varies between different genres (e.g., rap
music tends to have more complex lyrics than other gen-
res [7]) as well as between different eras of music [9].
Lyrics of differing complexity are likely to have differ-
ing discourse connectors (e.g., very simple lyrics may only
consist of a few unrelated elements and so have almost no
discourse connectors, while dense, complicated lyrics may
contain many elements which are connected together via
discourse connectors), so we hypothesize that discourse
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connector features may also contribute to the above tasks.
As such, we investigate whether discourse features truly
improve the accuracy in genre recognition, release-date es-
timation, and popularity analysis.

2. RELATED WORKS

Discourse analysis is a process analyzing the meaning of a
text by examining multiple component sentences together,
rather than each sentence on its own [26]. One dimen-
sion of it is discourse relations, which describes how mul-
tiple elements of a text logically relate to each other, and
different discourse relation corpora and frameworks have
been devised, including Rhetorical Structure Theory [21],
Graphbank [27] and the Penn Discourse Treebank (PDTB)
[25]. We opted to use PDTB as it is relatively flexible com-
pared to these other frameworks [23] and more able to ac-
commodate a wider variety of lyrics structures.

Another aspect of discourse analysis is text segmenta-
tion. In prior MIR studies involving lyrics, acoustic el-
ements were used to help determine lyric segmentation
points [3]. However, this approach takes the risk that errors
in the audio analysis will propagate through to the lyric
segmentation step. In contrast, the algorithm TextTiling
takes only text as input and attempts to detect the bound-
aries of different subtopics within that text in order to per-
form meaningful segmentation [13]. Because lyrics can
change topics during a song, we determined that a topic-
based system like TextTiling could provide useful segmen-
tation for MIR systems operating on lyrics.

Coherence and cohesion of a text has been proven to be
important for human understanding [12] and writing qual-
ity [4]. While text coherence is a subjective property of
text based on human understanding, text cohesion is an ob-
jective property of explicit text element interpretation pat-
terns [12]. Various studies focused on elements of this spe-
cific text analysis, including entity grid [1] and coreference
resolution systems [18]. A study by Feng et al. [8] showed
the appearance pattern of entities may vary according to
different writing style. Therefore, we hypothesize that the
cohesion patterns in lyrics may vary according to differ-
ent categories, and we used entity density, entity grid and
coreference chain for lyric cohesion analysis.

Many music classification tasks have been investigated
in the field of MIR. However, most systems which incor-
porate lyrics do not incorporate discourse analysis; they in-
stead rely on approaches such as analyzing bags of words,
part-of-speech tags and rhyme [7, 16, 19]. There was still
little analysis of the discourse relations, topic shifts or de-
tailed cohesion analysis.

3. FEATURES

3.1 Discourse-based Features

PDTB-styled discourse relations: We used a PDTB-
styled parser 1 [20] to generate discourse relation features.
In this work, we only focus on explicit discourse relations,

1 http://wing.comp.nus.edu.sg/ linzihen/parser/

since implicit relations are both harder to accurately deter-
mine and more subjective. In order to find such explicit
relations, the parser first identifies all connectives in a set
of lyrics and determines whether each one serves as a dis-
course connective. The parser then identifies the explicit
relation the connective conveys. The system considers four
general relations and 16 specific relations which are sub-
categories of the 4 general relations.

As an example, we consider a lyric from John Lennon’s
“Just Like Starting Over”: “... I know time flies so quickly/
But when I see you darling/It’s like we both are falling in
love again...” All three of the underlined words are con-
nectives, but the first such word, ‘so,’ is not a discourse
connective because it does not connect multiple arguments.
The parser thus does not consider this word in its analysis.
The other two connectives, ‘but’ and ‘when’, are discourse
connectives and so are analyzed to determine what type
of relation they are; ‘when’ is found to convey a Tempo-
ral (general) and Synchrony (specific) relation, and ‘but’
is determined to convey a Comparison and a Contrast re-
lation. In this way, the connections between the different
elements of this lyric are understood by the system.

Once all the discourse connectives are found and cate-
gorized, we obtain features by counting the number of dis-
course connectives in each set of lyrics which corresponds
to a particular discourse relation. For instance, one song
might have 18 discourse connectives indicating a Tempo-
ral relation, so its Temporal feature would be set to 18. We
also count the number of pairs of adjacent discourse con-
nectives which correspond to particular relations and these
adjacent discourse connectives are not necessary consec-
utive tokens; the same song as before might have 5 in-
stances where one discourse connective indicates a ‘Tem-
poral’ relation and the next discourse connective indicates
a ‘Comparison’ relation, so its Temporal-Comparison fea-
ture would be set to 5. This process is performed indepen-
dently for the general and the specific relations. Ultimately,
we obtain 20 features corresponding to the 4 general re-
lations (4 individual relations and 16 pairs of relations),
and 272 features corresponding to the 16 specific relations
(16 individual relations, and 256 pairs of relations). Af-
ter removing features which are zero throughout the entire
dataset, 164 features corresponding to specific relations re-
main. Finally, we calculate the mean and standard devia-
tion of the sentence positions of all discourse connectives
in a set of lyrics, as well as all connectives in that set of
lyrics in general.

TextTiling segmentation: We ran the TextTiling algo-
rithm to estimate topic shifts within a piece of lyric, us-
ing the Natural Language Toolkit Library 2 , setting the
pseudo-sentence size to the average length of a line and
grouping 4 pseudo-sentences per block. Lyrics with fewer
than 28 words and 4 pseudo-sentences were set as one
segment, since they were too short for segmentation, and
lyrics with no line splits were arbitrarily assigned a pseudo-
sentence size of 7 words (average length in the dataset).
Features were then calculated by computing the mean and

2 http://www.nltk.org/api/nltk.tokenize.html
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standard deviation in the number of words in a lyric’s seg-
ments and the number of segments.

Entity-density features: General nouns and named en-
tities (i.e., locations and names) usually indicate concep-
tual information. Previous research have shown that named
entities are useful to convey summarized ideas [11] and we
hypothesized that entity distribution could vary between
song categories. We implemented features including: ratio
of the number of named entities to the number of all words,
ratio of the number of named entities to the number of all
entities, ratio of the number of union of named entities and
general nouns to the number of all entities, average number
of named entities per sentence, and average number of all
entities per sentence. We used OpenNLP 3 to find named
entities and Stanford Part-Of-Speech Tagger 4 to extract
general nouns.

Coreference inference features: Entities and their
pronominal references in a text which represent a same ob-
ject build a coreference chain [18]. The pattern of how an
entity represented by different text elements with same se-
mantic meanings through text may vary in different song
styles. We used Stanford Coreference Resolution System 5

to generate coreference chain. The total number of corefer-
ence chains, the number of coreference chains which span
more than half of lyric length, the average number of coref-
erences per chain, the average length per chain, the aver-
age inference distance per chain and the number of active
coreference chains per word were extracted. The inference
distance was computed as the minimum line distance be-
tween the referent and its pronominal reference. The chain
is active on a word if the chain passes its location.

Entity-grid features: Barzilay and Lapata’s [1] entity
grid model was created to measure discourse coherence
and can be used for authorship attribution [8]. We thus
hypothesized that subjects and objects may also be related
differently in different genres, just as they may be related
differently for artists. Brown Coherence Toolkit [6] was
used to generate an entity grid for each lyric. Each cell
in a grid represent one of the roles of subject (S), object
(O), neither of the two (X) and absent in the sentence (-)
of a entity in a sentence. We calculated the frequency of
16 adjacent entity transition patterns (i.e., ‘SS’, ‘SO’, ‘SX’
and ‘S-’) and the number of total adjacent transitions, and
computed percentage of each pattern.

3.2 Baseline: Previously Used Textual Features

We selected several lyric-based features from the MIR lit-
erature to form comparative baselines against which the
discourse-based features could be tested (Table 1) [7]:

Vocabulary: We used the Scikit-learn library 6 to cal-
culate the top 100 n-grams (n = 1, 2, 3) according to
their tf-idf values. When performing genre classification,
we obtained the top 100 unigrams, bigrams, and trigrams
for the lyrics belonging to each genre. When performing

3 https://opennlp.apache.org
4 http://nlp.stanford.edu/software/tagger.shtml
5 http://nlp.stanford.edu/projects/coref.shtml
6 http://scikitlearn.org/stable/modules/feature extraction.html

year classification, we obtained approximately 300 n-gram
features evenly from three year classes. These n-grams
were represented by a feature vector indicating the impor-
tance of each n-gram in each lyric. We also computed
the type/token ratio to represent vocabulary richness and
searched for non-standard words by finding the percentage
of words in each lyric that could be found in the Urban Dic-
tionary 7 , a dictionary of slang, but not in Wiktionary 8 .

Part-of-Speech features: We used Part-of-Speech tags
(POS tags) obtained from the Stanford POS Tagger 9 to
determine the frequencies of each super-tags (Adjective,
Adverb, Verb and Noun) in lyrics.

Length: Length features such as lines per song, tokens
per song, and tokens per line were calculated.

Orientation: The frequency of first, second and third
pronouns as well as the ratio of self-referencing pronouns
to non-self-referencing ones and the ratio of first person
singular pronouns to second person were used to model
the subject of given sets of lyrics. We also calculated the
ratio of past tense verbs to all verbs to quantify the overall
tense of songs.

Structure: Each set of lyrics was checked against it-
self for repetition. If the title appeared in the lyrics, the
title feature for that song was given a ‘True’ value, which
was otherwise set to false. Similarly, if there were long
sequences which exactly matched each other, the ‘Chorus’
feature was set to ‘True’ for a given song. Table 1 shows
the number of elements in each feature set in the classifi-
cation tasks.

Dimension Abbreviation Length
discourse-based features DF 250
PDTB-based discourse relation DR 204
TextTiling segmentation TT 3
entity density ED 5
coreference inference CI 5
entity grid EG 33
textual baseline features TF 318
vocabulary VOCAB 303
POS tags POS 4
length LEN 3
orientation OR 6
structure STRUC 2

Table 1: Features used in classification tasks.

3.3 Normalization

Since features used for these tasks are not on the same
scale, we then performed normalization on features. Each
feature was normalized by its maximum value and mini-
mum value to range from 0 to 1 (Equation 1). Then all
normalized features were put into classification tasks. This
normalization step was expected to improve the results of

7 http://www.urbandictionary.com
8 https://www.wiktionary.org
9 http://nlp.stanford.edu/software/tagger.shtml
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combination of different feature sets, as differences in vari-
able ranges could potentially affect negatively to the per-
formance of classification algorithm.

vn =
v − vmin

vmax − vmin
(1)

4. DATASET AND ANNOTATION

A previously collected corpus of 275,905 sets of full lyrics
was used for these experiments and we pre-processed the
dataset in 6 different types to clean up lyrics [5], including
splitting of compounds or removal of hyphenated prefixes,
elimination of contractions, restoration of dropped initial,
abbreviation elimination, adjustment to American English
spellings, and correction of misspelled words. Unlike other
corpora, such as musiXmatch lyrics dataset for the Million
Song Dataset [2], lyrics from the selected corpus are not
bags-of-words but are stored in full sentences, allowing for
the retention of discourse relations. We split song lyrics by
punctuations and lines to make sentences and paragraphs
to run discourse analysis algorithm in this work. We also
downloaded corresponding genre tags and album release
years for the songs represented in this dataset from Rovi 10 .
The specific number of lyrics for each experiment is shown
in Table 2.

Genre classification: We kept all 70,225 songs with
a unique genre tag from Rovi for this specific task. The
tags indicated that songs in the dataset came from 9 dif-
ferent genres: Pop/Rock (47,715 songs in the dataset),
Rap (8,274), Country (6,025), R&B (4,095), Electronic
(1,202), Religious (1,467), Folk (350), Jazz (651) and Reg-
gae (446). All of these songs were then used for the genre
classification experiments.

Release date estimation: Rovi provided release dates
for 52,244 unique lyrics in the dataset. These release dates
ranged from 1954-2014. However, some genres were not
represented in certain years; no R&B songs, for instance,
had release dates after 2010, and no rap songs had release
dates before 1980. To prevent this from biasing our re-
sults we chose to just use one single genre and settled on
Pop/Rock, for which we had 46,957 songs annotated with
release dates throughout the 1954-2014 range. We then ex-
tracted all the songs labeled as having been released in one
of three time ranges: 1969-1971 (536 songs total), 1989-
1991 (3,027), and 2009-2011 (4,382). We put gaps of sev-
eral years between each range on the basis that, as indi-
cated in prior literature, lyrics are unlikely to change much
in a single year [7].

5. GENRE CLASSIFICATION

We ran SVM classifiers using 10-fold cross-validation.
These classifiers were implemented with Weka 11 using
the default settings. We chose SVM classifiers because
they have been proven to be of use in multiple MIR tasks
[7, 15]. Because each genre had a different number of

10 http://developer.rovicorp.com
11 http://cs.waikato.ac.nz/ml/weka

Classification Task Number of lyric used
(after undersampling)

Genre Pop/Rock: 45,020; Rap: 16,548;
Country: 12,050; Jazz: 1,302;
R&B: 8,190; Electronic: 2,404;
Religious: 2,934; Folk: 700;
Reggae: 892

Release Period 1,608 sets of lyrics,
split evenly into three time spans

Table 2: Data sizes for experiments.

samples, undersampling [10] was performed for both train-
ing and testing to ensure that each genre was represented
equally before cross-validation classification. Each song
was classified in a 2-class problem: to determine if the
song was of the correct genre or not. The undersampling
and classification process was repeated 10 times and we
present the averages of F-score for each independent clas-
sification task. The value of F-score by random should be
0.5.

We first implemented previously-used textual features
to generate a baseline for the genre classification task.
Models were built based on vocabulary (VOCAB), POS
tags (POS), length (LEN), orientation (OR), structure
(STRUC) and all combined baseline features (TF) sepa-
rately. The average F-scores are depicted in Table 3. It is
apparent that using vocabulary features can achieve high
performance in average, but one thing to be noted is that
it heavily depends on which corpus the language model
trains on to generate the n-gram vector. Here we used
all lyrics from each genre to get top n-grams. Orientation
features were useful for R&B recognition since we found
more first pronouns in such genre. We then used these fea-
tures to compare with proposed discourse-based features.

We then evaluated the utility of discourse-based fea-
tures for this specific task. Table 3 presents the results
from using discourse relation (DR), TextTiling topic seg-
mentation (TT), entity density (ED), coreference inference
(CI), and entity grid (EG) features to perform genre clas-
sification with the SVM classifiers. Because the discourse
relation and TextTiling features showed very promising re-
sults, we also tested a system which combined those fea-
tures (DR+TT). Finally, we tested all discourse features
together (DF), and then all discourse and all baseline fea-
tures together. Statistical significance were computed us-
ing a standard two-class t-test between the highest F-score
and each result from other feature set for each genre, and
each column’s best result were found to be significant with
p < 0.01.

First, we note that, for every single genre as well as the
overall average, the system’s classification accuracy when
using DR+TT discourse features is better than its accuracy
using any and all baseline features. In fact, DR features
alone outperform any and all baseline features for 7 of
the 9 genres as well as overall. This serves to demon-
strate the utility of these particular discourse features for
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Feature Set R&B Folk Country Rap Elect. Reli. Jazz Reggae Pop Avg.
VOCAB 58.5 51.4 59.4 90.8 53.7 53.5 55.3 60.7 65.7 61.0
POS 55.4 47.3 53.6 73.1 49.9 50.3 56.3 47.4 60.0 54.8
LEN 55.2 49.3 55.4 85.8 48.6 50.0 50.3 48.8 59.2 55.4
OR 66.0 54.7 58.1 84.6 54.4 52.6 58.7 54.9 63.4 60.8
STRUC 45.0 46.4 44.5 45.6 46.0 45.7 45.3 47.0 44.6 45.6
TF (All) 62.5 56.5 60.1 81.3 50.7 51.8 58.1 56.5 63.6 60.1
DR 64.9 61.7 65.7 89.8 59.1 56.2 62.8 64.0 66.7 65.7
TT 63.3 51.1 58.2 90.4 53.1 53.0 58.0 55.9 65.9 61.0
ED 55.4 58.3 53.2 76.5 53.8 53.7 46.8 57.1 61.2 57.3
CI 59.1 47.8 62.7 82.4 50.5 52.8 55.7 54.1 63.7 58.8
EG 58.7 48.3 57.1 83.9 50.5 52.6 54.9 51.4 62.9 57.8
DR + TT 67.4 59.1 66.6 91.0 58.3 55.3 62.3 62.3 67.7 65.6
DF (All) 58.2 53.3 60.9 75.8 49.9 54.0 57.5 49.1 61.5 57.8
All 50.0 34.5 35.7 49.6 45.2 48.3 41.1 49.4 45.8 44.4

Table 3: Accuracy of classifier using different unnormalized feature sets to estimate genre (F-Score*100).

Feature Set R&B Folk Country Rap Elect. Reli. Jazz Reggae Pop Avg.
VOCAB 59.3 55.6 61.0 91.3 52.7 63.0 61.8 65.1 66.5 64.4
POS 63.5 57.8 55.9 90.9 49.4 48.9 61.8 61.6 65.3 62.4
LEN 61.9 50.5 59.4 86.7 49.2 49.1 61.1 59.4 63.5 60.2
OR 68.2 55.8 55.1 85.4 47.3 46.6 60.0 55.7 64.3 60.4
STRUC 46.9 45.1 45.8 45.8 46.9 44.8 43.8 47.1 44.6 45.6
TF (All) 71.1 59.6 67.4 93.3 55.4 65.0 65.6 68.7 68.3 68.4
DR 60.9 59.0 62.3 88.4 54.9 54.6 61.1 61.0 64.7 63.1
TT 64.1 49.8 54.6 90.9 48.7 51.0 62.7 60.6 66.0 61.7
ED 37.5 45.2 38.3 65.5 45.1 45.5 47.8 47.3 51.6 48.2
CI 63.5 53.2 61.5 84.5 50.5 55.1 62.2 63.7 62.2 61.9
EG 63.7 55.5 64.5 94.1 57.8 49.5 65.5 62.1 64.4 64.1
DF (All) 71.2 61.3 67.3 94.5 58.5 58.5 64.5 66.5 66.3 67.7
All 73.7 60.6 71.5 94.8 58.9 65.6 66.9 69.6 69.4 69.9

Table 4: Accuracy of classifier using different normalized feature sets to estimate genre (F-Score*100).

this task, since they consistently outperform the baseline
features. Second, we note that the entity and coreference
features did not enable the classifier to achieve maximal
results in this task, indicating that these features may not
vary as much between genres compared to the DR and TT
features. Third, we note that the system’s accuracy when
all features was used decreased relative to the DR+TT and
DR features in every case. We then performed the normal-
ization and each feature was normalized by its maximum
value and minimum value to range from 0 to 1.

Table 4 shows the results and the combination of all fea-
ture outperformed all baseline features, while the combina-
tion of all discourse-based features can achieve higher per-
formance than all baseline feature sets in 3 classes. Best
result for each genre were found to be significant with p <
0.01. This further emphasized the importance of discourse-
based features in this specific task.

One interesting trend in these results is in the ‘Rap’ col-
umn, which shows that not only was the classification ac-
curacy for Rap songs far higher than the other classes, but
it was also the one genre where TT features outperformed

DR features. Although the discourse-based features did
not outperform the baseline features in this genre, it should
be noted that the TextTiling segmentation features did ob-
tain virtually identical performance to the best baseline
features with only a 3-dimensional feature vector; the VO-
CAB features, by contrast, encompassed hundreds of di-
mensions. We investigated this further and found that Rap
music tended to have more topic segments (5.9/song on
average, while the average for other genres was 4.9), and
more varied adjacent discourse relations as well (for in-
stance, each rap song had on average 6.6 different types of
adjacent discourse relations; non-rap songs averaged 4.0).
This suggests that TextTiling segmentation features may be
a more compact way to accurately represent topic-heavy
lyrics, such as those commonly found in rap music.

We finally analyzed the portion of each type of dis-
course connective for the four first-level PDTB-styled dis-
course relations of all discourse connectives in each genre.
We found that Religious songs use more expansion rela-
tions than other genres (42% and 37% in average), while
less expansion relations are written in Rap songs (34%).
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Connectives standing for temporal relations present more
in Rap songs (26% and 23% in average). R&B songs con-
tains more contingency connectives (24% and 26% in av-
erage).

6. RELEASE DATE ESTIMATION

We investigated whether discourse-based features can help
to estimate the release date of a song, on the basis that
the lyric structure of song texts is likely to change over
time [7, 14]. We first formed a subset of all the Pop/Rock
songs in our dataset, since as mentioned before these songs
spanned a greater time period than the other genres. We
then extracted all the songs labeled as having been released
in one of three time ranges: 1969-1971 (536), 1989-1991
(3,027), and 2009-2011 (4,382). Based on the idea from
prior study [7], we made gaps since that the lyrics would be
unlikely to change very much in a single year. Undersam-
pling was used to balance the dataset building a sub-dataset
before each classification with an SVM with 10-fold cross
validation for three-class classification. The process was
repeated 10 times.

Table 5 shows results. As can be seen from the table,
discourse relation features alone outperformed the baseline
feature sets in average F-score for each three year class
(p < 0.001), which indicates that the sentence relations
in lyrics likely vary over years, and that discourse rela-
tion features are useful at indicating this. Although not
as much as the discourse relation features, the topic seg-
ments and coreference inference features contribute to this
specific classification task as well, showing topic presenta-
tion and cohesion structure changed over time. TextTiling
features proved to increase accuracy for one year range,
2009-2011, indicating that the number and relations of top-
ics of music released in this era likely varied as compared
to previous eras, and also that text segmentation-based fea-
tures are useful in noting this change. The number of top-
ics and the number of words in each topics in average in-
creases over time. As for the coreference inference fea-
tures, the number of coreference chains and the number of
long coreference chains showed raising values according to
release periods. More coreference chains and long coref-
erence appeared more often in the recent years, indicating
a fluent and centric content. The other discourse features
were again shown to be less useful than these ones. Fi-
nally, the early ages and recent ages were more likely to
be recognized, while the middle ages generally achieved
the lowest F-scores among all feature sets except structure
features. This result is intuitive; music will likely be more
similar to music that were produced closer together.

We then normalized to 0 to 1 for all features and re-
peated the task to show whether discourse features can im-
prove the performance of baseline features for this task.
Table 6 shows that the combination of all features outper-
formed the other feature sets in this three-class classifica-
tion task (p < 0.001).

Feature 1969-1971 1989-1991 2009-2011 Avg.
VOCAB 46.8 33.7 34.9 38.5
POS 30.0 24.5 52.8 35.8
LEN 34.6 26.7 50.6 37.3
OR 43.4 32.0 50.6 42.0
STRUC 0.00 29.1 50.7 26.6
TF (All) 42.2 27.6 53.6 41.2
DR 59.7 43.0 55.0 52.6
TT 46.5 34.8 47.6 43.0
ED 40.4 29.5 41.7 37.2
CI 47.7 29.3 53.8 43.6
EG 41.2 32.5 44.3 39.4
DR + TT 58.5 40.7 56.3 51.8
DF (All) 43.3 28.3 53.8 41.8
All 36.2 30.6 30.4 32.4

Table 5: Accuracy of classifier using different unnormal-
ized feature sets to estimate release date (F-Score*100).

Feature 1969-1971 1989-1991 2009-2011 Avg.
VOCAB 51.4 41.6 42.3 45.1
POS 58.7 24.5 46.7 43.3
LEN 61.4 27.9 45.8 45.0
OR 58.1 17.4 48.3 41.3
STRUC 0.0 22.0 87.3 36.4
TF (All) 63.4 42.0 53.1 52.8
DR 57.6 34.5 47.7 46.6
TT 59.9 29.9 37.8 42.5
ED 30.0 16.3 47.4 31.2
CI 62.0 27.2 52.3 47.2
EG 57.4 46.6 42.0 48.7
DF (All) 57.0 44.9 48.8 50.3
All 61.0 48.8 54.7 54.7

Table 6: Accuracy of classifier using different normalized
feature sets to estimate release date (F-Score*100).

7. CONCLUSION AND FUTURE WORK

We investigated the usefulness of discourse-based features
and demonstrated that such features can provide useful in-
formation for two MIR classification tasks. Genre classi-
fication and release date estimation were all enhanced by
incorporating discourse features into the classifiers. How-
ever, since discourse-based features rely on passages with
multiple text elements, it may be noisy when used on music
with short lyrics. As this work is an exploration work, fur-
ther analysis is required. For instance, we split song lyrics
by lines and punctuations in this work, which fitted most
of the cases in our dataset. The split rules of sentences can
influence the results from discourse analysis algorithms.It
will be potentially useful to use these features for other
MIR tasks such as keyword extraction and topic classifi-
cation. In the future, we will explore all these discourse-
based features on other MIR tasks and find sensible sets of
features and fusion strategies for further improving perfor-
mance for these tasks.
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ABSTRACT

This work addresses the Optical Music Recognition
(OMR) task in an end-to-end fashion using neural net-
works. The proposed architecture is based on a Recurrent
Convolutional Neural Network topology that takes as input
an image of a monophonic score and retrieves a sequence
of music symbols as output. In the first stage, a series of
convolutional filters are trained to extract meaningful fea-
tures of the input image, and then a recurrent block models
the sequential nature of music. The system is trained us-
ing a Connectionist Temporal Classification loss function,
which avoids the need for a frame-by-frame alignment be-
tween the image and the ground-truth music symbols. Ex-
perimentation has been carried on a set of 90,000 synthetic
monophonic music scores with more than 50 different pos-
sible labels. Results obtained depict classification error
rates around 2 % at symbol level, thus proving the po-
tential of the proposed end-to-end architecture for OMR.
The source code, dataset, and trained models are publicly
released for reproducible research and future comparison
purposes.

1. INTRODUCTION

Large-scale analysis of music is of great interest, and so
many computational tools have been developed for such
purpose. Quite often, the bottleneck for exploiting these
ideas is the lack of large corpora of symbolic music.

The transcription of sheet music into some machine-
readable format can be carried out manually. However, the
complexity of music notation inevitably leads to burden-
some software for music score editing, which makes the
whole process very time-consuming and prone to errors.
As a consequence, the development of automatic transcrip-
tion systems for musical documents is gaining importance
over the last years.

The field devoted to address this task is known as Opti-
cal Music Recognition (OMR) [1]. Typically, an OMR tool
takes an image of a music score and provides its symbolic

c© Jorge Calvo-Zaragoza, Jose J. Valero-Mas, Antonio Per-
tusa. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Jorge Calvo-Zaragoza, Jose J.
Valero-Mas, Antonio Pertusa. “End-to-end Optical Music Recognition
using Neural Networks”, 18th International Society for Music Informa-
tion Retrieval Conference, Suzhou, China, 2017.

content encoded in some structured digital format such as
MEI or MusicXML. Unfortunately, OMR is a challeng-
ing problem, and results have not been very promising so
far [18].

The process of automatically recognizing the content of
a music score is complex, and therefore the workflow of an
OMR system is very extensive. Previous proposals related
to this task focus on specific aspects of the pipeline, such
as the binarization of the image [14], the detection of the
staves [2], the separation between lyrics and music [3], the
staff-line removal [8]—which may be even considered as
a task by itself [7]—or the classification of isolated sym-
bols [17]. It therefore comes as no surprise that no work
have directly addressed the whole OMR process for mod-
ern western notation. We only find full recognition propos-
als for old music [5,15,16] that, in spite of involving music
notation, entails a very different challenge.

One of the practical aspects that constrains end-to-end
OMR research is the difficulty of obtaining an aligned
dataset containing the labeled music symbols along with
their exact position in the image of the score. Note that,
from a musical perspective, it is not necessary to retrieve
the exact position of each music symbol in the image since
the important information is the succession of the music
figures. Thus, it seems interesting to tackle the OMR task
in an holistic fashion, in which the output is directly the se-
quence of symbols present in the score image disregarding
their exact position in pixels.

Our work aims at setting the basis towards the develop-
ment of systems that can directly work with a greater part
of the OMR workflow. For that, we propose the use of
recurrent neural networks, which have been applied with
great success to many sequential recognition task such as
speech recognition [11], handwriting recognition [12], or
automatic music transcription [20]. The premise is that
the network works on a single staff section, much in the
same way as most Optical Character Recognition systems
focuses on recognizing words appearing in a given line im-
age [21, 23].

The traditional limitation of such type of networks is
that they require a strongly-aligned training set, i.e., the
network has to be provided with the desired output of the
recurring block for every single input frame of the im-
age. This constraint has typically led to consider other
sequential models such as hidden Markov Models, which
can be trained with just pairs of input images and tran-
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script sequences. Nonetheless, Graves et al. [10] proposed
a method to train recurrent networks with unaligned data
known as Connectionist Temporal Classification (CTC).
The CTC is actually a loss function that focuses on the de-
sired output sequence, regardless of which frames output
each symbol.

For the precise case of this work, we rely on the Convo-
lutional Recurrent Neural Network (CRNN) architecture
for scene text recognition proposed by Shi et al. [19]. A
CRNN is a deep neural network that comprises a series
of convolutional layers, which focus on learning a suitable
representation of the input image, followed by recurrent
layers, which deal with the sequential nature of the task.
In order to jointly train the network in an end-to-end fash-
ion, the CTC loss function is considered.

Besides text recognition, Shi et al. also evaluated
CRNN with a small number of music scores, just to as-
sess its capabilities for any sequence-based task. Taking
this work as a starting point, we further study the poten-
tial of the mentioned end-to-end CRNN model for the case
of OMR. More precisely, our contributions are: (i) the re-
design and optimization of the original CRNN architecture
for this particular task; (ii) a thorough and quantitative as-
sessment of the proposed architecture in terms of a large
collection of more than 90,000 monophonic music scores.

The rest of the paper is structured as follows: Section 2
describes the details of the corpus created for this work;
Section 3 describes the end-to-end model proposed; the
evaluation procedure as well as the results obtained are
shown and discussed in Section 4; finally, Section 5 con-
cludes the work and proposes future lines to address.

2. CORPUS GENERATION

For assessing the proposed scheme we generated a set of
monophonic score images together with their ground-truth
annotations disregarding any frame-level alignment for the
case of end-to-end training. This set contains 94,984 ran-
dom sequences from a vocabulary of 52 Common Western
Music Notation symbols: music notes from C4 to E5 (10
pitches), four possible note durations (half, quarter, eighth,
and sixteenth) and their four respective silences, three time
signatures (3/4, 4/4, and 6/8), accidentals (sharp, flat, and
natural), the treble clef, and the bar line.

All the scores follow this structure: an initial clef; a
set of alterations for the key of the piece; the time signa-
ture; the music content, being always the bar line annotated
as it constitutes a symbol to be recognized. Note that bar
lines are not randomly placed in the score but in their cor-
responding positions at the end of each complete bar.

The length of the generated sequences is random, with
a minimum length of 4 symbols and a maximum of 37.
Figure 1 shows a histogram of the length of the produced
sequences.

The generation of the music content is random, i.e., no
restriction is imposed about the pitch interval between two
consecutive notes or their respective duration. Similarly,
accidentals are randomly applied to further increase the
variability in the scores. Given a sequence of music sym-
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Figure 1. Histogram of the length of the sequences of the
corpus.

bols we generated the image scores with the music engrav-
ing software Lilypond 1 . Figure 2 shows two examples of
music scores along with their ground-truth annotations.

(a) Simple score (8 symbols)

(b) Challenging score (34 symbols)

Figure 2. Example of scores depicting different levels
of difficulty from our collection, along with its associated
ground-truth.

3. FRAMEWORK

Our OMR approach is based on a Convolutional Recur-
rent Neural Network (CRNN) which takes as input an im-
age of a monophonic staff section and directly outputs
the sequence of music symbols, with no previous symbol
segmentation or staff-line removal process. A conceptual
scheme is illustrated in Figure 3.

Before the actual CRNN, we assume that a preprocess-
ing step identifies and segments the different monophonic
staff sections from the initial image for processing them in-
dependently. While this may be seen as a strong assump-
tion, there exist algorithms in the literature that success-
fully address this task [6]. Once this monophonic staff sec-
tion is segmented, the resulting image is normalized (pixel
values between 0 and 1), rescaled to an aspect ratio of 1:4

1 http://lilypond.org/
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Figure 3. Conceptual scheme of the proposed approach. The input score is processed with a series of convolutional filters;
the resulting features are then processed by the recurrent layers to model the temporal context of the piece; a frame-wise
transcription using CTC is performed to obtain the estimation in an end-to-end fashion.

(i.e., the width is four times the height), and used as input
to the CRNN. We established that this ratio is adequate for
the task at issue by means of informal testing.

Table 1 shows the specific details of the proposed
CRNN architecture, whose configuration and parameter-
ization were determined experimentally. First, the im-
age is processed with a series of convolutional layers
which use Rectifier Linear Unit (ReLU) activation func-
tions, followed by max pooling layers. Then, the out-
put of the convolutional block is reshaped to serve as in-
put to a recurrent neural network block, which is com-
posed of three Bidirectional Long-Short Term Memory
(BLSTM) networks [9, 13] with 256 hidden units. Finally,
a fully-connected layer with a SoftMax activation function
is added to retrieve the most likely class of each frame.

The CRNN model is trained using a batch size of 32
samples (i.e., 32 monophonic staff sections), RMSprop as
the gradient descent method, and the aforementioned CTC
as the loss function. We set 20 epochs for the training of
the model and selecting the configuration that minimizes
the validation error.

Note that the output of the CRNN is a framewise pre-
diction that must be processed to obtain the actual output
symbol sequence. However, this process is very straight-
forward because the CTC loss function forces the network
to predict a blank symbol to indicate the separation be-
tween consecutive symbols [10].

4. EVALUATION

4.1 Partitions

We split the generated corpus in three fixed partitions:
training and validation, which are meant to train the model
and select the most appropriate hyper-parameters of the
network, and a test partition to eventually assess the per-
formance of the system. These sets represent the 60 %,
20 %, and 20 % out of the total set of available scores,
respectively.

Table 2 describes these partitions in terms of the number
of scores, measures, and running symbols in each of them.
It must be noted that at least one element of the vocabulary
appears in all the partitions, and so there are no out-of-
vocabulary elements.

4.2 Metrics

In order to assess the performance of the proposed method
we consider three metrics which allow the evaluation at
different levels:

• Score-level error rate (Se): ratio of scores that are
not correctly recognized in their entirely (i.e., con-
tain at least one error amongst the estimated ones).

• Edit distance (Ed): average number of edit oper-
ations to convert the predicted sequence into the
ground-truth one.

• Normalized edit distance (EdN
): same as the Edit

distance metric but normalizing each sequence by
its length.

Note that the relevance of each metric depends on the fi-
nal scenario. If a totally autonomous system is pursued, it
is important to pay attention to the score-level error. How-
ever, quite often it is assumed that an expert user will su-
pervise the output of the system because guaranteeing a
error-free model is not feasible [4]. In this case, therefore,
it is more interesting to measure the errors at the symbol
level, which is more related to the number of corrections
to be made.

4.3 Results

Input images must be resized to fixed dimensions for the
input of the network. As mentioned earlier, an aspect ra-
tio of 1:4 was chosen. Thus, we have experimented with
values involving 40× 160, 50× 200, and 60× 240.

For each case, network parameters are optimized by
means of the training set, while the validation set is used
to find the most appropriate epoch to stop. The metric cho-
sen to determine the performance after each epoch during
training is the normalized edit distance (EdN

).
Once a model is trained, predictions are made on the

samples of test set. Table 3 shows the results of our se-
ries of experiments in terms of the three figures of merit
previously described.

An initial remark to begin is that all input sizes behave
similarly. In all the cases, a remarkable performance at
symbol level is attained, with figures lower than 0.6 and
4% for Ed and EdN

, respectively. It is true, however, that
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Block Configuration

Convolutional
Conv(64,3,3)

MaxPool (2,2)

Conv(128,3,3)

MaxPool (2,2)

Conv(256,3,3)

Conv(256,3,3)

MaxPool(2,1)

Conv(512,3,3)

Conv(512,3,3)

MaxPool(2,1)

Recurrent BLSTM (256) BLSTM (256) BLSTM (256) FC (52)

Table 1. Description of the CRNN architecture considered. Notation Conv(f,w,h) stands for a layer with f convolution
operators of size w× h pixels followed by a ReLU activation function. MaxPool(w,h) stands for the max-pooling operator
of dimensions w × h pixels, BLSTM(n) represents a Bidirectional Long-Short Term Memory unit with n hidden layers,
and FC(n) is a fully-connected layer of n neurons followed by a SoftMax activation function.

Training Validation Test

Scores 56 991 18 996 18 997

Measures 125 971 41 883 41 986

Symbols 989 744 329 802 330 092

Table 2. Statistics of the partitions used in this work, re-
porting the number of scores, the number of measures, and
the number of running symbols.

Metric

Input image Se (%) Ed EdN
(%)

40× 160 27.30 0.52 3.01

50× 200 29.79 0.54 3.12

60× 240 22.37 0.37 2.16

Table 3. Performance achieved on the test partition with
respect to the shape of the input image.

the score-level error rates are much higher. That is, quite
often there is at least one incorrectly recognized symbol in
each score sequence.

Best results are obtained using images of 60 × 240.
In that case, a symbol-level error rate of 22.37 % is at-
tained, with an average of 0.37 symbol-level errors per
score (2.16% of the symbols if lengths are taken into ac-
count). This means that less than one symbol has to be
corrected to obtain the actual score, on average. An exam-
ple of prediction results depicting representative transcrip-
tion errors is illustrated in Figure 4. Note how some of
these error change the arrangement of the beamed groups,
as the predicted sequence does not fulfill time signature
constraints.

Clearly, these results reflect that the proposed frame-
work allows recognizing accurately the symbols of mono-
phonic scores in an end-to-end manner. In turn, the ap-
proach is not so reliable to optimize the number of per-
fectly recognized images, regardless of the number of er-
rors. However, it has to be considered that some music
symbols of the generated scores have vertical overlapping,

(a) Input score

(b) Prediction of the CRNN

Figure 4. An example of prediction with errors (Ed = 3,
EdN

= 11.53) obtained in our experiments.

as can be seen in the first note C from Figure 2. When
this happens, the order of the symbolic sequence might not
perfectly align with the order of the symbols in the image,
thereby introducing noise in the samples.

As discussed in Sect. 1, there are no previous ap-
proaches dealing with the OMR task in an end-to-end way
and, therefore, there is no feasible comparison in this work.
Nevertheless, it is our hope that these results will establish
a new way of approaching OMR.

4.4 Further Analysis

In this section we further analyze some details of the ex-
periments carried out.

First we intend to measure the performance of the mod-
els with respect to the size of the input sequence. Clearly,
the size of the sequence has a direct impact on the abil-
ity of the models to recognize all their symbols. It is ex-
pected that the greater the number of symbols in the score,
the worse performance the models attain. Figure 5 shows
the performance curves as a function of the size of the se-
quences. On the one hand, Figure 5(a) reports the error rate
curve, which depicts that the performance gets dramati-
cally worsen from sequences of 10-15 symbols, depending
on the model. On the other hand, Figure 5(b) shows the
curve of the edit distance, for which it is observed that the
average number of editing operations to correct a sequence
predicted by the model is less than 1 up to 25 symbols. The
interesting remark about these curves is that they allow us
to conclude that in relatively short sequences, the models
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can obtain an almost optimal performance. Fortunately,
the scores can be further subdivided into bars, which have
a limited number of symbols. Therefore, it might be in-
teresting to address the problem by first performing a seg-
mentation of measures, for which there already exists suc-
cessful algorithms [22] as previously mentioned.
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Figure 5. Performance attained by the models with respect
to the length of the input sequences.

Finally, it is interesting to analyze the convergence for
each considered model, since that is an indicator of the
representation capacity and the difficulty with which they
learn the task. Figure 6 shows the normalized edit distance
on the validation set as a function of the number of train-
ing epochs. It is observed that all models follow a simi-
lar trend, in which there is a drastic decrease in the first 6
epochs. After that, models begin to need more epochs to
improve their results, reaching convergence (except for mi-
nor fluctuations) around 12 epochs. We can therefore say
that all models have a similar representation capabilities,
although it has been demonstrated in the previous section
that the model that accepts 60 × 240 images has a greater
generalization ability. In addition, the low number of re-
quired epochs indicate that the models are able to learn the
task quickly.

5. CONCLUSIONS

This work addresses the Optical Music Recognition task in
an end-to-end fashion with the use of a Convolutional Re-
current Neural Network (CRNN). We have redesigned the
architecture from Shi et al. [19] for OMR using a large col-
lection of over 90,000 synthetic scores generated through
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Figure 6. Validation performance (normalized edit dis-
tance) with respect to the number of training epochs.

Lilypond, a music engraving system. As the network is
trained using a Connectionist Temporal Classification loss
function, the music symbols do not need to be aligned with
the pixels of the original images.

The CRNN topology and hyper-parameters were exper-
imentally adjusted for the task at hand, obtaining remark-
ably low error rates with the evaluated corpus. The net-
work converges quickly and an average edit distance of
0.37 is obtained using as input 60× 240 images.

In order to increase the accuracy of the proposed
method, those scores containing temporal overlappings
could be removed from the corpus. However, the ultimate
goal of OMR is to detect music symbols in polyphonic
scores. This is a challenging task using CRNN as it im-
plies to extend CTC for multi-label classification, which
stands as future work to explore and study.

Another evident future work line is to train the network
with real scores. Synthetic data could be used as a basis
by adding noise and transformations such as rotation or
scaling for a preliminary experimentation as in [19], but
ideally a large real corpus should be used instead. Cur-
rently there are no large datasets containing labeled images
of real scores, but an end-to-end annotation of the data is
straightforward as it does not requires the symbols to be
aligned with the image pixels.

Finally, note that one of the main advantages of the pro-
posed neural-based approach is that alternative notations
could be recognized by just changing the corpus and re-
training the model. This opens a path for research in re-
search of ancient music recognition written in, for instance,
mensural or neume notation, among others.

6. REPRODUCIBILITY

For reproducibility purposes, the source code, trained
models, and considered data have been publicly re-
leased at http://grfia.dlsi.ua.es/gen.php?
id=software.
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ABSTRACT 

As a result of the growth of online music streaming 

services, a large number of playlists have been created by 

users and service providers. The title of each playlist 

provides useful information, such as the theme and 

listening context, of the songs in the playlist. In this paper, 

we investigate how to exploit the words extracted from 

playlist titles for text-based music retrieval. The main 

idea is to represent songs and words in a common latent 

space so that the music retrieval is converted to the 

problem of selecting songs that are the nearest neighbors 

of the query word in the latent space. Specifically, an 

unsupervised learning method is proposed to generate a 

latent representation of songs and words, where the 

learning objects are the co-occurring songs and words in 

playlist titles. Five metrics (precision, recall, coherence, 

diversity, and popularity) are considered for performance 

evaluation of the proposed method. Qualitative results 

demonstrate that our method is able to capture the 

semantic meaning of songs and words, owning to the 

proximity property of related songs and words in the 

latent space.  

1. INTRODUCTION 

Online music streaming services, such as Spotify, Apple 

Music, and KKBOX, create various playlists for the 

convenience of music listening for users. Meanwhile, 

users may create their own playlists for replay or music 

sharing with friends [1–5]. The use of playlist makes 

music retrieval and organization simple and easy, largely 

because the title of a playlist carries significant thematic 

information of the songs contained in the playlist [1–3]. 

The theme can be about an artist, genre, mood, or context 

of the playlist. Therefore, the thematic information is 

useful for music retrieval. The goal of this paper is to 

exploit playlists for text-based music retrieval. 

One critical issue of text-based music retrieval is 

how to identify and quantify the relationship between 

words and songs (i.e. which songs and words are relevant 

to each other and how much is the relevance). Most 

previous approaches to text-based music retrieval rely on 

human-labeled datasets [6, 7] or social tags [8, 9] which 

normally have a limited size of vocabulary (word set). 

The web-based approach [10, 11] has been considered a 

good alternative because web documents have rich text 

information. However, its performance may degrade in 

the presence of noisy text [12]. In contrast, the playlist-

based approach has the following appealing features: 1) 

The rich text information conveyed by the succinct 

playlist title is highly relevant to the songs in the playlist 

and 2) Songs wrapped in one playlist must be related to 

each other in a certain way. If the relationship can be 

determined from the playlist, additional efforts on audio 

signal analysis [6, 7, 11] can be saved. 

Our main idea is to represent songs and words in a 

common latent space so that music retrieval can be 

converted to the problem of selecting songs sufficiently 

near the query word in the latent space. Specifically, we 

propose an unsupervised learning method to generate a 

representation of songs and words extracted from playlist 

titles, in which the learning function is optimized based 

on the co-occurrence of songs and words in playlists. As 

each song or word (an object) is represented as a vector in 

a latent space, the semantic similarity between two 

objects can be easily determined by the distance between 

the two corresponding vectors. By exploiting this 

property, we can improve the performance of text-based 

music retrieval.  

Our contributions can be summarized as follows: 

 We propose an unsupervised learning method to 

model the relevance between songs and words of 

playlists and to represent these two kinds of objects in 

a common latent space. 

 We make text-based music retrieval easier to solve by 

formulating it as a nearest neighbor search problem in 

the latent space. 

 Both qualitative and quantitative evaluations are 

conducted to demonstrate the effectiveness of the 

proposed method. 

2. RELATED WORK 

In this section, we review previous work related to 

playlist understanding, text-based music retrieval, and 

representation learning. 

2.1 Playlist Understanding 

To understand the use of playlist, Hagen [1] and 

Cunningham et al. [2] conducted user interviews to 

analyze various themes and contexts of playlists. The 

results motivated Pichl et al. [3] to mine common 

listening contexts using playlist titles for context-aware 
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music recommendation. In our work, we take a step 

further and investigate how to exploit the words 

extracted from playlist titles for text-based music 

retrieval.  

A related issue is playlist quality measurement. 

Motivated by the observation that the songs in a playlist, 

although diverse, are related to each other in a certain 

way, Fields [4] introduced coherence and diversity as 

metrics of playlist quality. It was found that popularity 

and freshness of songs in a playlist are also important 

metrics [5]. Considering that the response to a text query 

is in the form of playlist, we apply coherence, diversity, 

and popularity as metrics for performance evaluation.  

2.2 Text-Based Music Retrieval 

To allow the retrieval of music pieces by text query, the 

relevance between words and songs has to be identified. 

Turnbull et al. [6] and Chechik et al. [7] developed a 

multi-class classification approach to predict the 

relevance of a music piece to a query. To address the 

issue that the perception of relevance is subjective, Hariri 

et al. [8] and Cheng et al. [9] used a probabilistic model 

and listening records to personalize text-based music 

retrieval. To extend the coverage of text queries, Knees 

et al. [10–12] crawled web documents relevant to a 

music piece and represented the music piece by the text 

extracted from the web documents. However, most of the 

body of words contained in web documents can be 

irrelevant to the theme of the music pieces. To solve the 

problem, we develop an alternative approach that seeks 

relevant words from the playlist titles. 

2.3 Representation Learning 

Representation learning has been widely applied to 

music recommendation [13, 16, 29], playlist recommen-

dation [17], music annotation and retrieval [18], playlist 

generation [19, 20], and listening behavior analysis [21, 

22]. The popularity of representation learning is due to 

its two appealing features. First, it can efficiently handle 

large scale dataset [23, 24] because of low model 

complexity. Second, it makes information retrieval or 

recommendation an easy task that can be efficiently 

accomplished. However, little attention has been paid to 

exploit representation learning for text-based music 

retrieval. In this paper, we extend the idea of embedding 

learning [16–24], which is a typical representation 

learning approach, to model the relevance between songs 

and words of playlists.  

3. PROPOSED METHOD 

We first introduce the notations used in this paper. Then, 

we describe the proposed method for learning a 

representation of songs and words and the detail of the 

training processing, including optimization and data 

sampling. Finally, we describe how the learned 

representation is applied to text-based music retrieval. 

3.1 Notations 

Let 𝐿 = {𝑙1, 𝑙2, … , 𝑙I}  be a set of playlists and 𝑇 =

{𝑡1, 𝑡2, … , 𝑡I} be the set of corresponding playlist titles. 

Each playlist  𝑙𝑖 , 1 ≤ 𝑖 ≤ I, as illustrated in Table 1, is 

associated with a set of songs 𝑆𝑖 = {𝑠1
𝑖 , 𝑠2

𝑖 , … , 𝑠|𝑙𝑖|
𝑖 } and a 

set of words 𝑊𝑖 = {𝑤1
𝑖 , 𝑤2

𝑖 , … , 𝑤|𝑡𝑖|
𝑖 }  extracted from 𝑡𝑖 . 

Let 𝑆 = {𝑠1, 𝑠2, … , 𝑠N} be the union of all 𝑆𝑖 , and 𝑊 =

{𝑤1, 𝑤2, … , 𝑤M} be the union of all 𝑊𝑖 . The goal is to 

learn a representation 𝜃(∙) to map each 𝑠𝑛 ∈ 𝑆 or 𝑤𝑚 ∈

𝑊 to a vector. 

3.2 Representation Learning for Songs and Words 

We extend the idea of embedding learning to songs and 

words. In its basic form, the embedding learning 

generates a representation for a set of objects based on 

the co-occurrence of the objects [23]. It consists of two 

stages. In the first (or initialization) stage, the 

representation 𝜐(∙) assigns a vector of random values to 

each object. In second (or update) stage, the vector is 

progressively updated in two steps. In the first step, a 

conditional probability 𝑃(𝑜𝑐|𝜐(𝑜))  for each pair of 

objects 𝑜 and 𝑜𝑐  is created, where 𝑜𝑐  is the co-occurring 

Playlist Title Words Songs (Artists) 

Summer's Over summer 

The Boys of Summer  (The Ataris) 
So Long, So Long (Dashboard Confessional) 

Last Days of Summer (Silverstein) 

Close To Home (The Get Up Kids) 
Always Summer (Yellowcard) 

… 

Happy Morning 

Chill 

happy 

morning 

chill 

Snap Out Of It (Arctic Monkeys) 
Unbelievers (Vampire Weekend) 

Demons (Imagine Dragons) 

The Mother We Share (Chvrches) 
Everybody Wants To Rule The World (Lorde) 

… 

George Michael - 

For the Heart 

george_michael 

heart 

Don't Let the Sun Go Down on Me (George Michael) 

Careless Whisper (George Michael) 
Heal The Pain (George Michael) 

A Different Corner (George Michael) 

I Can't Make You Love Me (George Michael) 
… 

Table 1. Illustration of words extracted from playlists.  Only the first five songs of a playlist are shown. 
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object of 𝑜 . In the second step, 𝜐(𝑜)  is optimized by 

maximizing the conditional probability. The two steps are 

repeated until the maximization for every pair of 𝑜 and 𝑜𝑐 

is completed. 

To extend the basic idea of embedding learning to 

songs and words, we need to define the co-occurring 

relationship between songs and words. If two songs 

(words) belong to the same playlist (playlist title), we say 

that they are co-occurring in the playlist (playlist title). 

Likewise, any word of a playlist title and any song in the 

playlist have a co-occurring relationship. In our method, 

co-occurring pairs of songs, words, or song and word are 

considered positive pairs.  

Once the songs, words, and positive pairs of all 

playlists are in place, a learning process that consists of 

two stages is applied. In the first stage, the representation 

𝜃(∙) for each song or word is randomly initialized. In the 

second stage, 𝜃(∙)  is optimized. Specifically, we go 

through every positive pair and randomly select a word 

(or song), denoted as 𝑠 (or 𝑤) from it. Then, we optimize 

the representation 𝜃(𝑠) (or 𝜃(𝑤)) in two steps. In the first 

step, we construct a conditional probability which can be 

expressed in one of the following four formats: 

𝑃(𝑠𝑐|𝜃(𝑠)), 𝑃(𝑤𝑐|𝜃(𝑠)), 𝑃(𝑤𝑐|𝜃(𝑤)), or 𝑃(𝑠𝑐|𝜃(𝑤)), 

where 𝑠𝑐 or 𝑤𝑐  is the remainder song or word in the 

positive pair. In the second step, we optimize the 

representation 𝜃(𝑠)  (or 𝜃(𝑤) ) by maximizing the 

conditional probability. The two steps, as illustrated in 

Figure 1, are repeated until the maximization for every 

positive pair is completed (e.g. an epoch is completed).  

We formulate the entire learning process by the 

following object function: 

ℒ = ∑ (∑ (∑ log𝑃(𝑠𝑐|𝜃(𝑠))𝑠𝑐∈𝑆𝑖 +𝑠∈𝑆𝑖𝑙𝑖∈𝐿

             ∑ log𝑃(𝑤𝑐|𝜃(𝑠))𝑤𝑐∈𝑊𝑖 ) +

∑ (∑ log𝑃(𝑠𝑐|𝜃(𝑤))𝑠𝑐∈𝑆𝑖 +𝑤∈𝑊𝑖

               ∑ log𝑃(𝑤𝑐|𝜃(𝑤))𝑤𝑐∈𝑊𝑖 )).      (1) 

Note that the natural logarithm converts a conditional 

probability to a log likelihood for the convenience of 

update stage [24]. The conditional probability 

𝑃(𝑠𝑐|𝜃(𝑤)) is modeled by a softmax function [23] and 

can be rewritten as: 

𝑃(𝑠𝑐|𝜃(𝑤)) =
exp (𝜑(𝑠𝑐)∙𝜃(𝑤))

∑ exp (𝜑(𝑠𝑐
′)∙𝜃(𝑤))

𝑠𝑐
′ ∈𝑆

,             (2) 

where 𝜑(∙)  maps 𝑠𝑐  into a vector space. Likewise, 

𝑃(𝑤𝑐|𝜃(𝑤)), 𝑃(𝑠𝑐|𝜃(𝑠)), and 𝑃(𝑤𝑐|𝜃(𝑠))  are modeled 

in the same way. Finally, 𝜃(∙) and 𝜑(∙) is optimized by 

maximizing Equation (1). 

3.3 Training 

There are 2 × (N + M) × D  parameters, including 𝜃(∙) 

and 𝜑(∙) , to be optimized, where N is the number of 

songs, M is the number of words, and D is the dimension 

of the representation. The parameters are optimized by 

maximizing Equation (1) using the Adam algorithm [25]. 

However, the computation cost of the optimization is 

proportional to N  and M  because of the normalization 

term in the softmax function. As an alternative, we adopt 

the negative sampling approach [24] to reduce the 

computational cost, where 30 negative pairs are randomly 

sampled for each positive pair.  

In our experiments, the dimension of the 

representation was set to 32, and the hyper-parameters of 

the Adam algorithm were α = 0.025, β1 = 0.9, β2 =

0.999, and ϵ = 1𝑒−08. The training was repeated for five 

epochs. 

3.4 Text-based Music Retrieval 

The response to a text query 𝑞 ∈ 𝑊 is the songs that are 

the nearest neighbors of 𝑞 in the latent space. Specifically, 

the cosine similarity between each 𝑠𝑛 ∈ 𝑆  and 𝑞  is 

calculated: 

𝑐𝑜𝑠𝑖𝑛𝑒 𝑠𝑖𝑚𝑖𝑎𝑟𝑖𝑡𝑦 =
𝜃(𝑠𝑛)∙𝜃(𝑞)

‖𝜃(𝑠𝑛)‖2‖𝜃(𝑞)‖2
,            (3) 

where ‖∙‖2 denotes the Euclidean norm of a vector. The 

songs having high cosine similarity are the response to 𝑞. 

4. EXPERIMENTS 

In this section, we describe the experiments conducted to 

evaluate the performance of the proposed method against 

matrix factorization, which is another typical approach to 

representation learning. We first describe the dataset used 

in the experiments and the pre-processing step applied to 

the dataset. Then, we describe the implementation details 

of matrix factorization. Finally, we describe the results of 

performance evaluation. 

4.1 Dataset and Pre-processing 

The dataset was collected by Pichl et al. [3] using Spotify 

API1. It contains 21,485 playlists created by 1,500 users, 

and each playlist contains a title and a list of songs. 

Standard natural language processing techniques were 

applied to process the playlist titles. First, all characters in 

playlist titles were converted to lowercase, and 

punctuations and stop words, such as “the”, “of”, and “a”, 

were removed. Then, each playlist title was segmented 

into a set of words using the NLTK toolkit2, and single 

                                                           
1 https://developer.spotify.com/web-api/ 
2 http://www.nltk.org/ 

 
Figure 1. Representation learning for songs and words. 

Given a song or a word, the representation is optimized 

based on its co-occurring song or word. 
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characters or digits were removed from the resulting 

word set. As many playlists titles contain artist names, 

the name entity recognition implemented in the NLTK 

toolkit was applied to identify artist names. Such artist 

names were considered one entity. The space in an artist 

name was replaced with the symbol “_” for the 

convenience of data processing. As shown in Table 1, the 

words extracted from the playlist title “George Michael - 

For the Heart” are “george_michael” and “heart”.  

However, like in other popularity studies [26], we 

found a serious long tail phenomenon: Few songs and 

words appear frequently while many others appear rarely. 

Both kinds of songs and words may affect representation 

learning. Therefore, we removed songs and words that 

appear less than 4 times or more than 100 times in the 

dataset. Interestingly, similar to stop words, words like 

“radio”, “liked”, and “music” are not useful for music 

retrieval but they were automatically removed because 

they appear many times in playlist titles. At the end of 

this filtering processing, 33,625 songs and 1,623 words 

were left (a playlist was removed if its songs and words 

were all removed). The statistics of the final dataset is 

listed in Table 2, and the song popularity (the number of 

times a song appears in playlists) and word frequency 

(the number of times a word appears in playlist titles) are 

shown in Figure 2. Note that the entire dataset was used 

for representation learning, and the performance of the 

representation for music retrieval was evaluated. 

4.2 Matrix Factorization 

Matrix factorization (MF) [14, 15] is compared with the 

proposed method. In MF, the vector 𝒙𝑤 for word 𝑤 and 

the vector 𝒚𝑠  for song 𝑠  are learned by solving the 

optimization problem  

    min
𝑞∗,𝑝∗

∑ (𝑐𝑤𝑠 − 𝒙𝑤
𝑇 𝒚𝑠)2 + 𝜆(‖𝒙𝑤‖2 + ‖𝒚𝑠‖2)𝑤,𝑠 ,    (4) 

where 𝑐𝑤𝑠 is the number of times 𝑤 and 𝑠 co-occur in the 

playlists, and λ is a regularization parameter to avoid 

overfitting. The inner product of a query vector and each 

song vector is calculated to determine which music piece 

to retrieve. A song with a higher inner product value is 

considered a better response to the query. 

We adopted the implementation by MyMediaLite3. 

The dimension of the vectors learned by MF was set to 

32, and λ was set to 0.015.  

4.3 Performance Evaluation 

We measure the quality of the response to a text query by 

the following five metrics: 

Precision and recall: We use these two standard 

performance evaluation metrics to measure the relevance 

of a response to a query as follows:  

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
|𝑆𝑟∩𝑆𝑡|

|𝑆𝑟|
,                         (5) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
|𝑆𝑟∩𝑆𝑡|

|𝑆𝑡|
,                             (6) 

where 𝑆𝑟  is the set of retrieved songs (the songs in the 

response) and 𝑆𝑡 is the set of relevant songs (the songs in 

the playlists that have the query in the titles). A high 

precision means that most of the retrieved songs are 

relevant, and a high recall means that most relevant songs 

are retrieved.  

Coherence: This metric measures the coherence of 

the songs in the response to a query. Specifically, we 

obtain social tags of songs from Allmusic4 and calculate 

pointwise mutual information (PMI) for every pair of the 

songs in a response. The coherence is defined as the 

average of the PMIs, 

𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 =
1

L
∑ log

𝑃(𝑠𝑖,𝑠𝑗)

𝑃(𝑠𝑖)𝑃(𝑠𝑗)𝑖<𝑗 ,               (7) 

where L is the number of the song pairs, 𝑃(𝑠) denotes the 

probability of 𝑠  having tags and 𝑃(𝑠𝑖 , 𝑠𝑗)  denotes the 

probability of 𝑠𝑖  and 𝑠𝑗  having the same tags. The 

coherence would be high if the songs in the response 

have the same social tags. 

Diversity: This metric measures how diverse the 

songs in a response are [4, 27]. The diversity is defined as 

the cross entropy of artists appearing in the response: 

𝑑𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦 = ∑ 𝑃(𝑎)log(𝑃(𝑎))𝑎∈𝐴 ,            (8) 

where 𝐴 represents the set of artists in the response, and 

𝑃(𝑎) denotes the probability of artist a appearing in the 

response. The diversity would be high if various artists 

appear in the response. 

                                                           
3 http://www.mymedialite.net/ 
4 http://www.allmusic.com/discover 

Number of playlists 18,417 

Number of songs 33,625 

Number of words 1,623 

Average number of songs per playlist 20.37 

Average number of words per playlist 1.10 

Table 2. Data statistics. 

 
Figure 2. Song popularity and word frequency.  
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Popularity: We calculate the average popularity of 

the songs in a response [27], 

𝑝𝑜𝑝𝑢𝑙𝑎𝑟𝑖𝑡𝑦 =
1

K
∑ 𝑃𝑆𝑘𝑘≤K ,                    (9) 

where K is the number of songs in the response, and 𝑃𝑆𝑘  

represents how many times a song appears in the dataset. 

A low-popularity response is desired for a music retrieval 

and recommendation system because users may discover 

songs they have never heard before. 

The response quality of the proposed method is 

compared with that of MF by the five metrics. Every 

word in the vocabulary (𝑊 ) is considered a query to 

retrieve k relevant songs using a method. The average 

results are shown in Figure 3. We can see from Figures 

3(a) and 3(b) that the precision and recall of the proposed 

method are higher than those of MF. It shows the 

effectiveness of the proposed method for preserving the 

relevance between songs and words. In Figure 3(c), we 

can see that the proposed method outperforms MF in 

terms of coherence. As more songs are retrieved, our 

method provides a stable coherence while MF has a 

descending coherence. In Figure 3(d), we can see that our 

method has a large variation in terms of diversity. It is 

because many responses of our method contain only the 

songs of one artist (zero diversity) if the query is an artist 

name. In Figure 3(e), we can see that the responses of the 

proposed method tend to have lower popularity than the 

responses of MF. It implies that MF favors popular songs.  

We compare the responses of queries with different 

word frequencies. As shown in Figure 4, queries are 

divided into four groups according to the word frequency. 

We can see from Figures 4(a) and 4(b) that the proposed 

method has higher precision and recall than MF for each 

group. We can also see from Figure 4(c) that our method 

provides a stable coherence regardless of the frequency of 

query words while MF favors queries with high word 

frequency. In Figure 4(d), it is interesting to see that our 

method yields a low diversity for some queries with low 

word frequency. It is because part of the words with low 

frequency are artist names. Figure 4(e) shows that the 

proposed method provides responses with low popularity 

regardless of the word frequency of queries. 

4.4 Qualitative Study 

We show the responses of the two methods under 

comparison to five queries (“christmas”, “punk”, “60s”, 

“coldplay”, and “miles_davis”) in Table 3. The five 

queries are selected manually to cover various semantic 

meanings and word frequencies. Additional results and 

visualization of the learned latent space are provided on 

our website5. 

The first query “christmas” has a high word 

frequency, which means this word is frequently used in 

playlist titles. We can see that both the proposed method 

and MF can find songs relevant to Christmas. However, 

we note that the response of MF contains only two artists 

(actually, four of the five songs in Table 3 belong to the 

same artist) and has a high popularity. In contract, our 

method can find songs with high diversity and low 

popularity. The second query “punk” has a lower word 

frequency than the first query. We can see that the 

proposed method still provides a good response, while 

the response of MF is not very relevant to “punk”. It 

implies that MF may fail when the query has a low word 

frequency.  

                                                           
5 http://mpac.ee.ntu.edu.tw/chiahaochung/textMR.php 

     
(a) (b) (c) (d) (e) 

Figure 3. Performance comparison of the proposed method and MF. The results are shown as box plots [28], where the 

bottom and top of a box are the first and third quartiles, and the band inside the box is the second quartile (the median). 

Please refer to [28] for the details of box plot. 

     
(a) (b) (c) (d) (e) 

Figure 4. Performance comparison of the proposed method and MF for queries with different word frequency. The 

number of retrieved songs is set to 15. 
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The query “60s” is interesting, as it is related to the 

songs or artists in 1960s. We can see that our method can 

find the songs of artists who were popular in 1960s, 

including Bobby Vee, The Tremeloes, Sam The Sham & 

The Pharaohs, The Lovin' Spoonful, and Bobby Vinton. 

MF fails in this case because “60s” has a low frequency. 

The last two queries “coldplay” and “miles_davis” 

are both artists, where the former has higher word 

frequency than the latter. We can see that our method 

provides good responses to the two queries, while MF 

fails in the case of “miles_davis”. It can be expected that 

the response to this kind of query should contain only the 

songs of the artist specified in the query. Note that there 

are many artist names in our vocabulary, and most of 

them have low word frequency. Because the proposed 

method works for these artist queries as well as other 

queries, the diversity of the proposed method has a large 

variation, as shown Figures 3(d) and 4(d). 

5. DISCUSSION 

We first discuss the difference between the proposed 

method and MF in terms of the learning function. As 

described in Equation (4), MF considers only the co-

occurrence of song-word pairs. In contrast, our method 

exploits three types of co-occurrence between songs and 

words of playlists. Although an improved MF [29] can be 

applied to factorize multiple co-occurrence matrices, we 

believe that the property of MF (i.e. the favor of popular 

songs and words) would make MF unsuitable for text-

based music retrieval. 

Our method is related to the embedding method 

proposed by Moore et al. [20] for representation learning 

of songs and tags for playlist prediction. The difference 

between our method and their method lies in the function 

used to model the conditional probability: a softmax 

function vs a logistic function that uses the Euclidean 

distance between two vectors as input. Besides, we 

applied two modern approaches, the Adam algorithm [25] 

and the negative sampling [24], to improve the efficiency 

of representation learning. 

Finally, we discuss two possible directions to extend 

the proposed method. One direction is to enlarge song set 

and word set. As song titles and lyrics also contain rich 

text information, they can be incorporated to expand 

word set. Besides, the approach proposed by Oord et al. 

[30] can be applied to map new songs into the latent 

space learned by our method. This approach also solves 

the cold start problem [27]. The other direction is to 

develop a music retrieval system which allows multiple 

words as a query, because people may use multiple words 

or even a sentence to retrieve music. There are simple 

solutions, for example, combining the responses to 

multiple single-word queries [6]. However, such 

combination may not truly capture the semantic meaning 

of a multiple-words query. To deal with such query, a 

better solution, such as the approach proposed by 

Mikolov et al. [24], can be incorporated into the proposed 

method. We can see the potential and high extendability 

of our method. 

6. CONCLUSION 

In this paper, we have proposed an unsupervised learning 

method to generate the latent representation of songs and 

words of playlists for text-based music retrieval. Such 

representation captures the relevance between songs and 

words, owning to the proximity property of the latent 

space. Both qualitative and quantitative evaluations show 

the effectiveness of the proposed method compared 

against the matrix factorization method for text-based 

music retrieval. 

Query Matrix factorization Proposed method 

christmas 

(98a) 

It's Beginning To Look A Lot Like Christmas (Michael Bubléb, 38c) 

All I Want For Christmas Is You (Mariah Carey, 40) 

White Christmas (Michael Bublé, 23) 

Santa Claus Is Coming To Town (Michael Bublé, 15) 

All I Want For Christmas Is You (Michael Bublé, 25) 

Queen Of The Winter Night (Trans-Siberian Orchestra, 5) 

O Come All Ye Faithful/ O Holy Night (Trans-Siberian Orchestra, 6) 

Rudolph The Red Nosed Reindeer (Burl Ives, 6) 

Rockin' Around The Christmas Tree (She & Him, 5) 

Christmas Is Going To The Dogs (Eels, 6) 

punk  

(23) 

Sing (Ed Sheeran, 68) 

Shirtsleeves (Ed Sheeran, 17) 

Don't Let It Go (Beck, 30) 

Somewhereinamerica (JAY Z, 24) 

Bloodstream (Ed Sheeran, 29) 

I Want To Conquer The World (Bad Religion, 6) 

Story of My Life (Social Distortion, 19) 

Monosyllabic Girl (NOFX, 6) 

Generator (Bad Religion, 10) 

Leave It Alone (NOFX, 8) 

60s 

(13) 

Together (Calvin Harris, 8) 

The Card Cheat (The Clash, 6) 

Bowery (Local Natives, 14) 

You Make Loving Fun (Fleetwood Mac, 34) 

Second Hand News - Early Take (Fleetwood Mac, 6) 

Take Good Care Of My Baby (Bobby Vee, 5) 

Silence Is Golden (The Tremeloes, 5) 

Wooly Bully (Sam The Sham & The Pharaohs, 8) 

Daydream (The Lovin' Spoonful, 11) 

Blue Velvet (Bobby Vinton, 10) 

coldplay 

(40) 

Charlie Brown (Coldplay, 51) 

Major Minus (Coldplay, 17) 

Mylo Xyloto (Coldplay, 19) 

Hurts Like Heaven (Coldplay, 36) 

Every Teardrop Is a Waterfall (Coldplay, 42) 

U.F.O. (Coldplay, 19) 

Prospekt's March/Poppyfields (Coldplay, 12) 

White Shadows (Coldplay, 15) 

Mylo Xyloto - Live (Coldplay, 7) 

 Twisted Logic (Coldplay, 9) 

miles_davis 

(7) 

Scarborough Fair / Canticle (Simon & Garfunkel, 14) 

Is She Weird (Pixies, 6) 

Shoes Upon the Table (Blood Brothers - 1995 London Cast, 5) 

I Would For You (Nine Inch Nails, 13) 

Love Is The Answer (Aloe Blacc, 13) 

Fran-Dance (Miles Davis, 7) 

On Green Dolphin Street (Miles Davis, 7) 

Spanish Key (Miles Davis, 5) 

Flamenco Sketches (Miles Davis, 13) 

Love For Sale (Miles Davis, 8) 

Table 3. Qualitative Study. Only the top five songs to a query are shown. (a word frequency, b artist, c song popularity)  
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ABSTRACT

Openly available datasets are a key factor in the advance-
ment of data-driven research approaches, including many
of the ones used in sound and music computing. In the
last few years, quite a number of new audio datasets have
been made available but there are still major shortcom-
ings in many of them to have a significant research impact.
Among the common shortcomings are the lack of trans-
parency in their creation and the difficulty of making them
completely open and sharable. They often do not include
clear mechanisms to amend errors and many times they are
not large enough for current machine learning needs. This
paper introduces Freesound Datasets, an online platform
for the collaborative creation of open audio datasets based
on principles of transparency, openness, dynamic charac-
ter, and sustainability. As a proof-of-concept, we present
an early snapshot of a large-scale audio dataset built using
this platform. It consists of audio samples from Freesound
organised in a hierarchy based on the AudioSet Ontology.
We believe that building and maintaining datasets follow-
ing the outlined principles and using open tools and collab-
orative approaches like the ones presented here will have a
significant impact in our research community.

1. INTRODUCTION

Machine learning has a prominent role in data-driven ap-
proaches nowadays for many research fields, including
sound and music computing. Because of this, having well
curated datasets is essential for allowing solid research out-
comes. The ImageNet dataset powered most recent ad-
vances in computer vision research [5, 27]. This was pos-
sible because ImageNet is a large-scale, openly available
dataset with a solid ground truth. Despite quite a few
datasets being available in the sound and music comput-
ing field, there are still major shortcomings in many of
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c© Eduardo Fonseca, Jordi Pons, Xavier Favory, Frederic
Font, Dmitry Bogdanov, Andres Ferraro, Sergio Oramas, Alastair Porter,
Xavier Serra. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Eduardo Fonseca, Jordi
Pons, Xavier Favory, Frederic Font, Dmitry Bogdanov, Andres Ferraro,
Sergio Oramas, Alastair Porter, Xavier Serra. “Freesound Datasets: A
platform for the creation of open audio datasets”, 18th International So-
ciety for Music Information Retrieval Conference, Suzhou, China, 2017.

them. What follows is a list of some of the most relevant
datasets from the sound and music computing community
along with some observations. We put a special focus on
music and environmental sounds datasets. Table 1 shows
some general statistics about them.

• GTZAN [39]. Its online availability 1 has enabled
easy benchmarking of music genre recognition tasks in the
music information retrieval (MIR) field [35]. Despite its
popularity, this dataset has been criticized for its small size,
its faults and its commonly used data partitions [36]. How-
ever, its faults (repetitions, mislabelings, and distortions)
were not identified until 2012, ten years after its release.
In addition, commonly used data partitions were found to
provide an over-optimistic view of the state-of-the-art. Re-
cent work shows that performance is much worse when
using a “fault-filtered” GTZAN partition [13].

• Ballroom [10]. This music dataset contains beat,
tempo and genre annotations [10, 14] and can therefore be
used for more than one task. It has also been highly criti-
cized for its small size, its repeated songs (thirteen replicas
were found 2 ), and the strong relationship between tempo
and genre labels (even though the dataset was designed to
assess rhythmic descriptors) [10]. Recently, an extension
was proposed [20] and 4180 audio clips are now available
for 13 unbalanced classes.

• The Million Song Dataset [2] was released to pro-
vide a large-scale dataset for MIR benchmarking. It con-
tains audio features and metadata for a million contempo-
rary popular music tracks, with a bias towards pop/rock
songs. 3 Audio features can be linked to resources use-
ful for several MIR disciplines: lyrics, CD artwork, tags,
similarity measures, user data, cover songs or genre la-
bels. This makes it perfect for exploring multimodal ap-
proaches. However, the audio files are not available, and
the provided audio features were extracted with proprietary
software which is neither debuggable nor inspectable [31].

• The MagnaTagATune [17] dataset includes music
data released under Creative Commons (CC) licenses,
which simplifies data sharing, and annotations (tags and
similarity) were made by engaging users in playing a
game. Since gamification was a research goal in itself, the

1 http://marsyasweb.appspot.com/download/data_
sets/

2 http://media.aau.dk/null_space_pursuits/2014/
01/ballroom-dataset.html

3 http://www.ifs.tuwien.ac.at/mir/msd/MAGD.html
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annotation tool is well documented [16]. This makes this
dataset more transparent than others in terms of its creation
process. As main drawbacks, it is highly unbalanced and
its annotations are noisy and inconsistent. 4 To alleviate
these issues, researchers typically use top-50 tags [25, 6],
or a cleaner and pre-processed version (Magtag5k [21]).

• AudioSet [9] is, to date, the largest audio dataset
available. It is structured with an ontology containing
632 classes, including music and environmental sound
concepts. AudioSet provides a web-interface to navigate
and listen to examples from the dataset, which helps giv-
ing researchers an overview of its contents. However, even
though the dataset annotations have been manually vali-
dated, ≈15% of the categories present a quality estimate
with a score below 50%. 5

• TUT Acoustic Scenes [23] is a publicly available
dataset released for the DCASE 2016 challenge. 6 It is
composed of high quality real-world binaural recordings
for environmental sound research. A subset of this dataset
is also annotated with timestamps and labels for individual
sound events. A cross-validation setup is provided together
with a baseline. Data collection procedures are explained
for possible extension by other parties, and identified er-
rors are listed. The dataset was recorded and annotated by
two people, each annotating half of it.

• UrbanSound8K [30] includes a taxonomy and two
audio collections for urban sounds research. UrbanSound
includes variable length recordings with timestamps for
sound events and salience annotations. UrbanSound8K
contains labeled slices from these events provided in folds
for benchmarking with a baseline. The authors compared
several classification models on this dataset and observed
that deep models only outperformed shallow models when
applying data augmentation techniques [29], suggesting
that current machine learning approaches require large and
varied datasets.

• ESC [24] is an open dataset for environmental sound
classification that includes an estimation of human-level
performance, a baseline, and code for reproducing author’s
original classification results. This dataset is composed
of two main parts. ESC-50 contains 2000 annotated clips
manually annotated by a single person, while ESC-US is a
compilation of 250k unlabeled clips. The substantial scale
difference between them exemplifies how unscalable an-
notation procedures can limit the size of datasets.

Based on the observations made in this review, we
draw a number of conclusions which could be understood
as requirements to consider when creating a dataset: (i)
small datasets may limit the application of certain ma-
chine learning techniques, thus larger datasets are desir-
able; (ii) dataset creation processes must be scalable and
sustainable to be able to create large datasets; (iii) datasets
are sometimes re-annotated and complemented with new

4 For example, the following tags are equivalent: beat/beats or female
singer/female singing/female vocals/woman singing.

5 See https://research.google.com/audioset/
dataset/index.html for further details on how quality is es-
timated, accessed 26th April 2017.

6 http://www.cs.tut.fi/sgn/arg/dcase2016/

data which makes them suitable for new tasks; (iv) ways
to amend existing datasets and turn them into something
dynamic should be established; (v) it is important to doc-
ument the workflows of the dataset creation process and
make them transparent; (vi) intuitive interfaces for navi-
gating the contents of a dataset are useful for gaining in-
sight; (vii) providing data splits facilitates reproducibility
and benchmarking; and (viii) open licenses allowing for
the free distribution of the audio content are desirable for
higher research impact.

In this paper we introduce Freesound Datasets, an
online platform for the collaborative creation of audio
datasets which, based on the requirements above, follows
principles of transparency, openness, dynamic character,
and sustainability. This paper describes our vision of this
platform as a long term project and the first steps that we
have carried out as a proof-of-concept. The remainder of
this paper is organized as follows. In section 2 we outline
the core ideas of our vision and the creation of open au-
dio datasets. Section 3 describes the current state of the
platform, which at the time of this writing already allows
community contributions through validation of existing an-
notations. In section 4 we present an early snapshot of
a large-scale audio dataset built using this platform and
which includes audio samples from Freesound 7 organised
in a hierarchy based on the AudioSet Ontology. We end
this paper with a summary and future work in section 5.

2. FREESOUND DATASETS VISION

We envision a collaborative process for creating audio
datasets 8 built by a community of users that can contribute
in different aspects of the dataset creation process. After
the observations reported in section 1 and by embracing
the ideas described in [22] and [33] for sustainable MIR
evaluation and reproducibility of computational methods,
we define the following principles that apply to our vision
of Freesound Datasets and the creation of datasets with the
online platform:

• Transparency. It is important that workflows in
the dataset creation process are transparent so that dataset
users are aware of them. This will allow a better under-
standing of the dataset itself, its potential and limitations.
In this respect, facilitating the exploration of the content
through intuitive interfaces is a useful functionality that is
often overlooked. Moreover, splits of datasets (e.g., train
and test) should be proposed and made publicly available
for system benchmarking and reproducibility, so that re-
searchers can carry out experiments whose results are di-
rectly comparable.

• Openness. It is necessary that datasets are completely
open, including audio data and ground truth. Both should
be available under open licenses that allow the free distri-
bution and reuse of their content. Further, other relevant
data generated during the dataset creation process could be

7 https://freesound.org/
8 By audio datasets we mean datasets that can include not only audio

waveforms but also other audio-related data, e.g., tags or descriptions
corresponding to the audio samples.
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clip dataset do authors provide audio? /
Dataset (release year) #clips length duration #classes license type

GTZAN (2002) 1000 30s 8.33h 10 – balanced yes / questionable c© permission
Ballroom (2006) 698 ≈30s ≈5.81h 8 – unbalanced yes / questionable c© permission

Million Song Dataset (2011) 1M - - external resources no
MagnaTagATune (2009) 25,856 ≈30s 215.46h 188 – unbalanced yes / open license

AudioSet (2017) ≈2.1M 10s ≈5833h 527 – (un)balanced∗ no
TUT Acoustic Scenes (2016) 1560 30s 13h 15 – balanced yes / open license

UrbanSound8k (2014) 8732 ≤4s 8.75h 10 – balanced yes / open license
ESC-50 (2015) 2000 5s 2.78h 50 – balanced yes / open license

FSD early snapshot (2017) 23,519 ≤90s 119h 398 – unbalanced yes / open license

Table 1: Characteristics of the reviewed datasets and presented early snapshot of FSD. ∗Different partitions are provided.

made available (e.g., annotation procedures and the actual
raw annotations). Keeping this information as open as pos-
sible aids in the detection of potential issues or biasses in
the collection process.

• Dynamism. It is desirable that the dataset and the
procedures carried out in its collection can be the subject
of discussion. We have seen that in some previous works
criticism of specific datasets is made [36] and alternative
versions or subsets of a dataset are proposed [13]. We envi-
sion such criticism and proposals happening in a collabora-
tive online platform where detected faults and issues can be
discussed and adequately addressed. This would imprint
a dynamic character to datasets which could be versioned
and updated with contributions from the community.

• Sustainability. For such a vision to stand in the long
term, a sustainable approach is required not only in terms
of gathering audio content and annotations, but also in
terms of maintenance. In the envisioned scenario the com-
munity acts as a continuous source of information at differ-
ent levels. Ideally, the community would be self-sufficient
as a source of audio-related content by uploading and shar-
ing open content at large scale. Indeed, some previous
works have adopted similar approaches for gathering huge
amounts of data based on user-provided content, (e.g., Au-
dioSet, based on YouTube videos [9], or ImageNet, based
on Flickr and other search engines [5]). In order to con-
struct corresponding ground truth at a large scale level, it is
likely that a substantial part of the annotations needs to be
gathered through crowdsourcing. Finally, technical main-
tenance requirements should be kept as low as possible.

2.1 Objectives

Based on the aforementioned principles, the main goals
of the Freesound Datasets platform are: (i) to allow the
creation and sharing of open audio datasets containing
audio and/or metadata that the community can leverage,
be them of general purpose or tailored to specific research
problems. And (ii) to allow room for discussion around
the datasets with the purpose of gaining insight and iden-
tifying potential improvements. The discussion will ide-
ally be focused not only on the dataset content but also
on the workflow of the data collection process. With re-
spect to the content, datasets are intended to be dynamic
in the sense that they can evolve over time at multiple lev-

els. Firstly, detected errors, e.g., mislabelings or distorted
sounds, should be amended. Secondly, we also consider
the possibility of expanding the datasets when more anno-
tated content is generated. Finally, major modifications of
a dataset could also be addressed if firm agreement by the
research community exists, e.g., modifications of the tax-
onomy when applicable. As a result, datasets created in
such framework may improve over time in terms of qual-
ity (better ground truth annotations), and quantity (larger
amounts of data). This concept of time-evolving datasets
triggers the need for appropriate dataset versioning, lead-
ing to consecutive releases of every dataset. Assigning per-
manent identifiers, e.g., Digital Object Identifiers (DOIs),
to releases can help to enhance their unique identification
and proper citation, e.g., using a tool like Zenodo 9 [26].

2.2 Two Key Factors

The success of a platform like the one we envision relies
on two key factors: (i) the need of substantial and regular
sources of open and diverse audio-related information, and
(ii) the need of a community of users able to enrich datasets
by providing annotations. In regards to the first factor,
we plan to leverage Freesound, an online collaborative au-
dio sample sharing site that has been supporting diverse
research and artistic purposes since 2005 [7]. Freesound
has 6.5 million registered users and over 340,000 sounds.
More than 3000 new sounds are added every month. 10

The most obvious type of content is audio samples, cov-
ering a wide range from music samples to environmental
sounds, including human sounds, audio effects, etc. Also,
users complement the sounds with metadata, e.g., tags, de-
scriptions and comments. A remarkable characteristic is
that quality is prioritized over quantity in terms of sound
quality and metadata associated to the sound files. All of
the content is released under CC licenses. A number of
openly available datasets containing Freesound clips have
already been used for research [24, 30, 34], showing that it
is already a useful source for the creation of datasets.

Regarding the second factor, we need a community
around the datasets to enrich their data. Freesound already
has a highly engaged community who contributes to the
ecosystem by uploading, rating and discussing sounds. We

9 https://zenodo.org/
10 Data from 26th April 2017.
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believe that part of this community will be interested in
contributing to a platform like Freesound Datasets. We
also hope that a broader community will form around this
initiative, consisting of members of the research commu-
nity and other sound enthusiasts who share our principles.

3. FREESOUND DATASETS PLATFORM

A working prototype of the Freesound Datasets platform
has been already deployed and is available at https:
//datasets.freesound.org. For each hosted
dataset, 11 the platform provides a number of tools which
are described in the following subsections.

3.1 Annotation Tools

This is the set of tools which allows us to provide annota-
tions about the contents of a dataset (i.e., about its audio
resources). These annotations could be labels or any sort
of information to be used as ground truth. The current ver-
sion of the platform only implements one way for users
to provide annotations. This is a validation task in which
users are presented with a number of audio samples and,
for each sample, have to assess the presence of a particu-
lar sound category. In future iterations of the platform we
intend to support other annotation tasks, e.g., adding la-
bels to audio samples or annotating timestamps of specific
acoustic events happening within an audio file.

Several options exist for collecting annotations, such
as relying on experts or leveraging annotation effort from
volunteers in a controlled environment, e.g., a university
campus. However, these options seem neither scalable nor
sustainable when collecting large-scale datasets. In this
case, regardless of the nature of the annotation task, we
expect the bulk of annotations to be provided by the com-
munity of platform users in a crowdsourced fashion. Many
existing datasets have been built via crowdsourcing, Ima-
geNet being an iconic example due to its impact in the im-
age processing field [27]. Different kinds of crowdsourc-
ing approaches have been explored, which mainly vary in
the way users are rewarded by their contributions, includ-
ing volunteering-based approaches, games with a purpose,
and paid-for crowdsourcing [28]. In the sound and mu-
sic computing field, a number of initiatives have already
explored the use of volunteering-based crowdsourcing ap-
proaches [11, 37, 22]. The audio community has also ex-
tensively explored the gamification approach, where the
annotation task is presented as an engaging and entertain-
ing experience. Examples of this include games with the
purpose of collecting tag annotations, e.g., TagATune [18],
the Listen Game [38] and MajorMiner [19]; or games to
collect similarity measurements like Spot the Odd Song
Out [41]. Finally, a few paid-for crowdsourcing experi-
ences exist in the audio field, e.g., ESC dataset [24] and
the VU Sound Corpus [40]—both of which contain anno-
tations for Freesound content—or MoodSwings Turk [32]
and SocialFX [42] datasets.

11 The current version of the platform is hosting an early snapshot of the
dataset described in section 4, and is, at present, the only dataset available.

Effective quality control plays an important role in de-
termining the success of any data collection venture, es-
pecially for crowdsourcing annotations. A common solu-
tion to ensure good quality in the gathered annotations is to
rely on redundancy. For instance, correct answers can be
identified by applying majority voting, or a quality score
for each user or worker that contributed annotations can
be estimated [12]. To ensure that workers are qualified
enough to successfully contribute to an annotation task,
a proper training phase is typically designed along with
a simple task design with clear guidelines [28, 27]. These
aspects are considered in the implementation of the annota-
tion tools of the platform. In particular, in our implemented
validation task, the training phase shows descriptions and
representative audio samples of the sound category to be
assessed and its related categories, in order to help the
worker form a judgment before proceeding with the task.
The mechanisms of quality control used are inspired by
those of CrowdFlower 12 and good-sounds.org [1], and in-
clude, among other measures, the periodic usage of verifi-
cation clips to ensure that submitted responses are reliable.

3.2 Other Tools

As described in the principles presented in section 2, it is
important to provide an environment for intuitively explor-
ing the content of a dataset, reporting mistakes, making
available alternative versions of the dataset, and discussing
any of the elements involved in the creation workflow. To
this end, we envision a number of tools for the Freesound
Datasets platform which provide such functionalities:

• Audio exploration. Dataset content can be explored
by browsing the audio samples organized by sound cate-
gories and samples can be played while visualizing their
waveforms. During this process, it is possible to report
faulty audio samples or wrong annotations. Systematically
flagged examples can be reallocated in a post-processing
stage and, for example, marked for further validation.

• Data downloading. A single dataset can be made
available for download in different releases which include
updated ground truth and contents. Audio samples in
their original format are provided, thereby allowing re-
searchers to compute any kind of audio features and to
adopt any type of machine learning approach. In addi-
tion, audio features 13 pre-computed with the Essentia li-
brary [3] are available. Along with the audio content, ex-
isting Freesound metadata for audio samples (e.g., user-
provided title, tags, textual description, etc.), and collected
ground truth data can be retrieved. We plan to link specific
releases of datasets with DOIs to facilitate referencing.

• Discussion tools. The platform encourages discus-
sion 14 about several aspects of the datasets, including
but not limited to: faulty audio samples, wrong annota-
tions, annotation tasks protocol (including aspects such as

12 https://www.crowdflower.com/
13 A list of pre-computed audio features can be found in https://

freesound.org/docs/api/analysis_docs.html.
14 Discussion can be joined at https://github.com/MTG/

freesound-datasets/issues.
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a ground truth target taxonomy), and the platform itself.
We decided to host discussions in GitHub, since issues can
be created and labeled to organize the discussion in topics,
and functionalities to track their evolution are available.

4. EARLY SNAPSHOT OF THE FIRST DATASET

As a proof-of-concept of the use of the Freesound Datasets
prototype, we present an early snapshot of a dataset that
is being created using the platform. We call this dataset
the FreesoundDataset (FSD). Similarly to the recently in-
troduced AudioSet [9], FSD aims to be a general-purpose
and large-scale audio dataset. Audio samples in FSD are
therefore labeled using the same hierarchical ontology of
AudioSet, which includes 632 audio classes. In the fol-
lowing subsections we describe how this dataset is being
created and discuss its status at the time of this writing.

4.1 Data Gathering and Preprocessing

We started building the FSD by automatically populating it
with a number of candidate audio samples from Freesound
for each category in the AudioSet Ontology. The selection
of candidate audio samples was done based on a process of
tag matching in which we manually assigned a number of
Freesound tags to each category in AudioSet. Then, each
category was automatically populated with all sounds from
Freesound that contained the selected tags. Suitable tags
were found by considering category descriptions provided
in AudioSet and obtaining most frequent Freesound tags
that co-occur with the target label. After this first selec-
tion of tags, a refinement process was performed in some
categories by defining tags to be rejected when needed.

After this initial process, which was carried out by three
of the authors, we were able to map more than 300,000
Freesound clips to the AudioSet classes. Because sounds
in Freesound can widely vary in length, we decided to filter
out all samples longer than 90s, which left us with a total of
268,261 candidate samples in the FSD. Each sample was
annotated with an average of 2.62 AudioSet categories.

In order to assess the quality of the selected candidates,
we conducted an Internal Quality Assessment (IQA). It
consisted of a validation task which was carried out us-
ing the Freesound Datasets interface. For each sound cat-
egory, 12 randomly chosen audio samples were presented
and a single rater validated the presence of that category
in each sample, with possible responses being “Present”,
“Not Present”, and “Unsure”. A quality value for each cat-
egory could be estimated as the percentage of “Present”
responses. The IQA, performed by 11 subjects, was use-
ful to (i) determine categories with very low quality, likely
due to mapping errors to be improved, and (ii) to collect
feedback about the Freesound Datasets validation task in-
terface and incorporate improvements for next phases.

Finally, we discarded sound categories for which there
were less than 40 assigned audio samples and for which the
rate of “Not present” responses from the IQA was larger
than 75%. Since this process removed half of the musi-
cal genre categories, we decided to omit the rest of them

too. 15 This left a total of 398 sound categories, with an
average of 1553 candidate audio samples per category.

4.2 Validating Annotations

Having the automatic annotations provided by the tag
matching algorithm for each sound category, the goal was
then to manually validate these annotations at a signifi-
cantly larger scale than in the IQA. To this end, we re-
cruited 31 participants (mostly masters and PhD students
from our department) and asked them to carry out a valida-
tion task very similar to that of the IQA for the selected 398
audio categories. To facilitate the task of validating annota-
tions, participants were asked to validate groups of related
categories (e.g., sibling categories). In this way they could
get familiarized with specific sections of the ontology and
provide more consistent validations [28].

Raters were first instructed to access the online platform
and choose one of the available groups of categories. Then,
for every category, they had an initial training phase where
they acclimatized themselves with the category by look-
ing at its location in the hierarchy and a provided textual
description, together with representative sound examples.
After that, they were presented with 12 randomly chosen
audio samples from that category and asked to rate its pres-
ence as: “Present and predominant” (PP), “Present but
not predominant” (PNP), “Unsure” (U) or “Not Present”
(NP). They were instructed that PP means that the type of
sound is either isolated from other types of sounds or with
low background noise, whereas PNP implies that the au-
dio clip also contains other salient types of sound and/or
strong background noise. We added these two levels of
“presentness” as during IQA we observed that, in some au-
dio samples, several sound sources and/or acoustic events
co-existed with different salience levels and this made the
Present option rather ambiguous. A similar approach was
used in [30]. Hereafter, “Present” = PP + PNP.

After 12 clips were validated, participants could con-
tinue validating annotations of the same sound category
and 12 new (non-validated) samples were presented. Au-
dio samples were presented using headphones and in a
quiet classroom environment. Along with the playable au-
dio and its waveform, participants were also given links to
the specific Freesound page for each audio sample. In case
of doubt, they could open the page to take their decision
based on the sound metadata provided there. Likewise,
they could leave general feedback for every audio category
through a text box. After two annotation sessions, we gath-
ered more than 42k validations from our 31 participants.

4.3 Characteristics of the FSD

The early snapshot of FSD consists of a list of audio sam-
ples together with labels that determine the sound cate-
gory/ies they belong to, (out of the 398 previously se-
lected). The main statistics of the current snapshot can be
seen in Table 2. The table shows, from left to right, (i)
the number of candidates/annotations that were generated

15 This was expected as Freesound does not host music content in the
traditional sense of “songs”.
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Mapped Validated∗ Present∗ PP∗ PNP∗

Annot. 703,359 42,575 25,365 21,526 3839
Clips 268,261 37,398 23,519 20,206 3679
Hours 986 176 119 92.5 30

Table 2: Main statistics of the current snapshot of FSD:
number of annotations, audio clips and hours of audio for
several sets of data. Columns with ∗ refer to the 398 se-
lected categories. “Present” is the union of PP and PNP.
Despite PP and PNP responses being complementary, an
audio clip annotated in several categories could receive dif-
ferent subjective ratings for each annotation. This is why
“Present” ≤ PP + PNP.

using the tag-based mapping, (ii) the amount of them that
have been validated through the conducted experiments,
and (iii) the amount that has been validated as “Present”,
(split into (iv) PP and (v) PNP). Since the sound categories
are non-exclusive, the number of annotations is larger than
that of audio samples (as mentioned above, the average
number of annotations per sample is 2.62). We consider
annotations rated as “Present” (PP + PNP) as the most rel-
evant for building the ground truth of a dataset. Our early
snapshot contains 23,519 audio clips (119h of audio) with
25,365 annotations. The lengths of the audio clips in the
snapshot are irregularly distributed up to a maximum of
90s (40% of the samples are shorter than 6s and around
78% last less than 30s). The number of validated anno-
tations varies among the 398 sound categories, but all of
them have at least 72 validated annotations, as designed in
the conducted experiments. 75% of the sound categories
contain at least 40 valid audio samples (i.e., with anno-
tations rated as “Present”), whereas 20% of them contain
more than 80 valid audio samples.

While audio samples come with labels expressing the
presence of a sound category, exact start and end times
of event occurrences are not given, (i.e., weakly labeled
data [15]). However, 7015 clips with annotations rated as
PP are also shorter than 4s. 16 Based on these two condi-
tions, we can assume that most of those audio clips are just
examples for those acoustic events, and can be considered
strongly labeled data [15]. Thus, we can estimate that the
snapshot is composed mainly of weakly labeled data and a
small amount of strongly labeled data, in a rough propor-
tion of 70%/30%. Finally, Figure 1 depicts the number of
validated annotations gathered for each of the seven fami-
lies of sounds, according to the first layer of the AudioSet
Ontology [9].

4.4 Discussion

The FSD snapshot comprises a wide range of audio sam-
ples in terms of content, recording scenarios and sources,
which presumably makes it representative of real world sit-
uations. The differentiation between PP and PNP allows us
to have two different subsets of audio presenting different
conditions (see section 4.2). Among the shortcomings, the
mapping used to generate candidates for AudioSet cate-

16 4s is taken as a reference length [30] since it was found to be enough
for humans to recognize environmental sounds with 82% accuracy [4].

Figure 1: Number of validated annotations (PP, PNP, U,
NP) for the different families of sounds according to the
first layer of the AudioSet Ontology.

gories is not optimal, but it is a starting point that will en-
able future improvements, e.g., a content-based mapping.
Another issue is that, for this early snapshot, annotations
were only validated by a single rater. While we believe that
annotator agreement is required for defining ground truth
based on human-sourced annotations [8], it is also true that
a number of datasets do not meet this condition [24,23,39].

Compared to AudioSet, from which FSD takes its on-
tology, the presented early snapshot is much smaller (Ta-
ble 1). Currently, AudioSet offers more categories (527)
with available content. However, FSD is accompanied
by audio waveforms and metadata. Furthermore, FSD
includes a mixture of strongly and weakly labeled data
whereas in AudioSet only weakly labeled data is provided.

We believe that there exist several applications for FSD
within the field of machine listening such as audio event
recognition, which enable a variety of specific tasks, e.g.,
multimedia description, semantically assisted annotation
or wildlife monitoring. It also allows a number of ap-
proaches like the usage of strongly and weakly labeled
data or multimodality, e.g., using audio and metadata for
classification. Moreover, future snapshots of the FSD will
include improved ground truth data which will further in-
crease its value for research.

5. SUMMARY AND FUTURE WORK

In this paper we have introduced Freesound Datasets, an
online platform for the collaborative creation of open au-
dio datasets. We have outlined the core ideas of our vision
on the creation of open audio datasets. The current state of
the online platform has been described and we have also
presented an early snapshot of a large-scale audio dataset
built using this platform. This being a long term project,
only first steps have been carried out. Next milestones in-
clude enhancing the platform functionalities and adding
new ones that allow us to crowdsource annotations reli-
ably for new annotation tasks, while promoting discussion
around the datasets. After gathering more validated anno-
tations for FSD, we will make the first release including
data splits and a baseline for reproducibility and bench-
marking. We hope that our platform can serve as an inspi-
ration for creating datasets of completely different nature.
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ABSTRACT

Tonal structure is in part conveyed by statistical regularities
between musical events, and research has shown that com-
putational models reflect tonal structure in music by cap-
turing these regularities in schematic constructs like pitch
histograms. Of the few studies that model the acquisi-
tion of perceptual learning from musical data, most have
employed self-organizing models that learn a topology of
static descriptions of musical contexts. Also, the stimuli
used to train these models are often symbolic rather than
acoustically faithful representations of musical material.
In this work we investigate whether sequential predictive
models of musical memory (specifically, recurrent neural
networks), trained on audio from commercial CD record-
ings, induce tonal knowledge in a similar manner to listen-
ers (as shown in behavioral studies in music perception).
Our experiments indicate that various types of recurrent
neural networks produce musical expectations that clearly
convey tonal structure. Furthermore, the results imply that
although implicit knowledge of tonal structure is a neces-
sary condition for accurate musical expectation, the most
accurate predictive models also use other cues beyond the
tonal structure of the musical context.

1. INTRODUCTION AND RELATED WORK

Computers are increasingly being used to perform music-
related tasks (automated music analysis, music recommen-
dation, composition, etc). To perform such tasks reliably,
there is a need for computers to grasp concepts that are rel-
evant to our perception and understanding of music [37].
Empirical findings from music psychology are valuable in
this respect, since they shed light on the process of human
music perception and cognition.

c© Carlos Cancino-Chacón, Maarten Grachten, Kat Agres.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Carlos Cancino-Chacón, Maarten
Grachten, Kat Agres. “From Bach to the Beatles: The simulation of
human tonal expectation using ecologically-trained predictive models”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

We know from extensive research in music psychology
that listeners implicitly extract statistical properties gov-
erning tonal structure through exposure to music [3,19,29].
The tonal stability, or relative importance, of notes in a
key may be largely due to the frequency of occurrence
of pitches in a piece of music. The more foundational
pitches (e.g., C, E, and G in the key of C major) will tend
to be anchor points in the music, and will often occur on
metrically-important positions [21, 26].

Through exposure to these kinds of melodic (and
harmonic) statistical properties, listeners form an im-
plicit mental model of tonality. Evidence for this has
been provided, for example, through the seminal work
of Krumhansl and colleagues employing a ‘probe-tone
paradigm’, in which listeners rate how well the last pitch,
or probe-tone, of a musical sequence fits in with the previ-
ous context. When provided with a tonal context, such as
an ascending or descending musical scale, listeners per-
ceive certain pitches as sounding more appropriate than
others [19, 21, 22]. The profile of listeners’ ratings of
probe-tones reflects a tonal hierarchy, and it is this hier-
archy of pitch stabilities that plays a large role in govern-
ing tonal perception. The extent to which different music
listening behaviors and one’s musical ‘culture’ influence
tonal perception is an open question, although evidence ex-
ists that Western classical music training results in differ-
entiated, and often more nuanced, pitch expectations and
probe-tone profiles [4, 10, 20, 34].

To model these types of findings, computational mod-
els of tonal perception typically aim to provide methods
that, given a musical context, compute a response that can
be judged to be more or less appropriate for the implicit
tonality of that context. Given the predominance of the
probe-tone paradigm for studies of human tonal percep-
tion, a common practice is to elicit a quasi-goodness-of-fit
response from the model for a probe-tone given a musical
stimulus, such that the responses can be compared to hu-
man probe-tone ratings (e.g. [6, 23, 25, 35]). Another way
to judge the responses is to define a metric over the re-
sponses and compare the resulting topology to geometric
constructs from music theory, such as the Tonnetz [36], a
toroidal representation of key distance [18], or the circle of
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fifths [6].

The computational models proposed in the literature
tend to emphasize one of various different factors that are
thought to play a role in tonal perception. Whereas some
works seek to explain empirical results mainly by a com-
putational account of the lower levels of the auditory sys-
tem [23,25], others focus more strongly on the role of long-
term memory in tonal perception [6, 24, 35].

Of the models that involve some representation of long-
term memory, most do not account for that representation
in an ecologically plausible manner, meaning that there is
no plausible simulation of how the long-term memory rep-
resentations come about as a result of long-term exposure
to music. First, long-term memory is usually modeled by
some form of self-organization of static representations of
musical contexts or events, producing a low-dimensional
map of musical stimuli, in which the neighborhood re-
lationship captures semantic information (such as tonal
affinity) [6, 24, 35, 36]. Although the principle of self-
organization has been used to account for the structure of
cortical maps such as those in the visual cortex [12], there
is no evidence that this principle also underpins long-term
memory. Moreover, the fact that musical contexts are be-
ing mapped as static entities is at odds with the fundamen-
tally temporal nature of the music listening process. As
formalized in the predictive coding framework [13], an in-
creasingly prominent idea in cognitive science is that of an-
ticipation as a universal driving force for cognition [8, 11].

Music researchers have also focused on the temporal
dynamics of tonal and harmonic expectations (e.g., [32]
and [30]), and some models based on self-organizing maps
(SOMs) [17] do account for effects of temporal order in
musical listening [25, 35]. A limitation, however, is that
these effects are not taken into account in the training of
the maps, representing the learning process that forms long
term memory of music. Toiviainen and Krumhansl [36]
also employ a SOM, but, as they state, use it for visualiza-
tion purposes, and not “to simulate any kind of perceptual
learning that would occur in listeners through, for instance,
the extraction of regularities present in Western music.”
Although the model offered by [9] does learn from musi-
cal sequences to predict tonal expectation in listeners, the
model itself does not use sequential tonal information to
learn and drive its predictions.

Another limitation of most long-term memory models
for tonal learning is that they work with stimuli that are re-
duced in one or more ways. For example, the input may
consist of discrete representations of tones such as MIDI
note numbers [6], pitch classes [35], artificial harmonic
representations [2], or of artificial harmonic sounds such
as Shepard tones [25]. Furthermore, the musical mate-
rial that a model is exposed to may be limited to mono-
phonic melodic lines [6], sets of chords or harmonic ca-
dences [25], or even a set of probe-tone profiles [36]. A no-
table exception to this is [24], which uses an audio record-
ing of Bach’s Well Tempered Clavier (WTC), performed
on a harpsichord, to train a SOM by converting the acous-
tic signal to auditory images. The work of [9] also takes an

ecological approach by using real audio and plausible psy-
chological representations, with multiple representations
along the sensory-cognitive spectrum, to better account for
human tonal expectation.

The central question of this work is whether sequen-
tial predictive models of musical memory induce memory
representations that convey tonal structure, similar to the
static self-organizing models that are predominant in com-
putational modeling of tonal learning. To answer this ques-
tion, we employ Recurrent Neural Networks (RNNs) and
variants such as Long Short Term Memory (LSTM) [16],
which provide a common and effective modeling approach
to the task of predicting future input from a history of past
inputs. A further objective is to see whether tonal expec-
tations can also be elicited in the models by training on
ecologically valid musical data rather than artificial data.
The present work approaches ecological validity in four
ways: 1) using commercial audio recordings rather than
symbolic or reduced music, 2) employing a psychoacous-
tically plausible input representation (the Constant-Q rep-
resentation), 3) training corpora that span more than one
genre (Bach and the Beatles) to better reflect a lister’s mu-
sical experience, and 4) using more than one key to train
the model (much related research transposes the training
dataset to one key, e.g. [1, 6]). We test the effect of the
training data on the strength and character of the tonal ex-
pectations of the model. Furthermore we measure the im-
pact of shuffling the training data to gauge the importance
of the sequential order of the music. Finally, we investigate
the relationship between the training objective of the mod-
els (to predict the immediate future based on the present
and past), and the strength of tonal hierarchy in the model
expectations.

The paper is structured as follows. In Section 2, we
provide a brief description of both the audio representa-
tion and of the predictive RNN models used in our experi-
ments. Section 3 briefly reviews the datasets used to train
the RNN models, and presents and discusses a comparison
of model predictions to the results of probe-tone experi-
ments. Finally, conclusions and future work are presented
in Section 4.

2. METHOD

In this Section we describe the predictive models we use
for our experiment (Section 2.2), and the audio representa-
tion used to present the data to the models (Section 2.1).

2.1 Constant-Q Transform

The Constant-Q Transform (CQT) [5] is a discrete fre-
quency domain representation of audio. Although the
CQT was not conceived explicitly as a model of the hu-
man auditory periphery, it shares an important character-
istic with such models in that it samples the frequency
axis logarithmically—a psychoacoustically plausible fea-
ture, since human listeners tend to perceive pairs of tones
as equidistant when their respective frequency ratios are
equal. The CQT is widely used in applications involving
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musical audio, since its frequency bins can be configured
to match the 12 tone octave division of Western music. To
obtain a CQT spectrogram, conveying the change in fre-
quency content of audio over time, the CQT can be com-
puted over series of consecutive short, windowed segments
of the audio, analogous to the Short-Time Fourier Trans-
form.

2.2 Recurrent Neural Networks

An RNN is a neural architecture that allows for modeling
dynamical systems [15]. Let x1, . . . ,xt be a sequence of
N -dimensional (normalized) input vectors and y1, . . . ,yt

be its corresponding sequence of outputs. An RNN pro-
vides a natural way to model xt+1, the next event in the se-
quence, by using the outputs of the network to parametrize
a predictive distribution given by

p(xt+1,i | xt, . . . ,x1) = yt,i (1)

where xt+1,i and yt,i are the i-th component of xt+1 and
yt respectively.

The basic component of an RNN is the recurrent layer,
whose activation at time t depends on both the input at
time t and its activation at time t − 1. Although theo-
retically very powerful, in practice RNNs with vanilla re-
current layers are known to have problems learning long
term dependencies due to a number of problems, includ-
ing vanishing and exploding gradients [27]. Other recur-
rent layers such as LSTM layers [16] and gated recurrent
units (GRUs) [7] try to address some of these problems
by introducing special structures within the layer, such as
purpose-built memory cells and gates to better store infor-
mation. More recently, recurrent layers with multiplicative
integration (MI-RNNs) [38] have been shown to extend the
expressivity of traditional additive RNNs by changing the
way the information from different sources is aggregated
within the layer while introducing just a small number of
extra parameters.

Given a training set consisting of inputs and targets, the
parameters of an RNN can be learned in a supervised fash-
ion by minimizing the cross entropy (CE ) between its pre-
dictions and the targets.

A more thorough description of RNNs lies outside of
the scope of this paper. For a more mathematical formula-
tion of LSTMs and GRUs, we refer the reader to [7,15]. A
more detailed description of MI-RNNs can be found in the
Appendix of [38].

3. EXPERIMENTS

In this Section we describe the two datasets used for the
experiments in this paper (Section 3.2) and briefly review
the theoretical framework of probe-tone experiments (Sec-
tion 3.1), as well as a description of the training procedure
(Section 3.3). In Section 3.4 the results of the probe-tone
experiments are presented and discussed.

3.1 Probe-Tone Experiments

A probe-tone test is an experimental framework to quan-
titatively assess the hierarchy of tonal stability [19]. This
experimental framework consists of a set of musical stim-
uli like scales or cadences that unambiguously instantiate
a specific musical context, such as a key. After presenting
the stimulus, a participant hears a set of probe-tones, usu-
ally the set of 12 pitch classes, and the participant, either
a human participant or a computer model, is asked to rate
on quantitatively how well the probe-tones fit the musical
stimulus.

Let X = {x1, · · ·xT } be an input musical stimulus,
and T = {τ 1, . . . , τ 12} the set of probe-tones each cor-
responding to one of the 12 pitch classes. In order to
quantitatively assess how well a probe-tone τ fits the mu-
sical stimulus, we compare y∗, the predictions of the RNN
given the input stimulus, and the probe-tone using the
Kullback-Leibler (KL) divergence.

In this paper, we use the above described model to re-
produce the classic Krumhansl and Kessler (KK) probe-
tone experiment [18]. This study is interesting for us
mainly because 1) the probe tone contexts are polyphonic,
featuring scales, chords, and cadences, thus highlighting
capability of the proposed model to process polyphonic
data, and 2) only expert listeners were tested (the partic-
ipants of this experiment had an average of 11 years of
formal music education), allowing us to directly compare
the expectations of the model to those of an expert listener.
The setup for this experiment requires a set of 14 tonal
contexts 1 : ascending major and (harmonic) minor scales,
three chord cadences (II-V-I, IV-V-I, VI-V-I) in both ma-
jor and minor and individual chords (major triad, minor
triad, dominant seventh chord and diminished chord). In
our experiments, we transpose each context to every key,
yielding 12 variants of each context. In order to aggregate
the results over all keys, we average the KL divergence for
each context.

Following the original experimental setup, both stimuli
and probe-tones are generated using Shepard-tones, which
consists of five sine wave components in a five-octave
range from 77.8 Hz to 2349 Hz, with an amplitude en-
velope such that the low and high ends of the range ap-
proached hearing threshold [19].

We use Pearson’s correlation coefficient to compare the
goodness-of-fit of the probe-tones learned by the models
with the KK probe-tone ratings.

3.2 Datasets

The WTC is a collection of 96 pieces for solo keyboard,
consisting of two sets of 24 Preludes and Fugues in each
key. Composed by Johann Sebastian Bach, the WTC is
widely recognized as one of the most important works in
Western music. We use a performance of the WTC by
renowned Canadian pianist Angela Hewitt 2 . The total
duration of this recording is 4.5 hours. We perform data

1 See Table 1 in [18].
2 Hyperion CDS44291/4 1998
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augmentation on the WTC dataset by pitch shifting each
recording between −6 and +5 semitones using pyrubber-
band 3 . We thus obtain 1152 pieces for the WTC, equiva-
lent to nearly 53 hours of music.

Additionally, we use a second dataset consisting of 12
Albums by The Beatles, with a total of 179 songs with an
approximate duration of 7.5 hours. We do not perform data
augmentation on the Beatles data 4 .

To facilitate the exposure of the models to regularities
in the change of pitch content over time, we do not com-
pute the CQT spectrograms by taking equidistant frames
in absolute time, but instead link the spectrogram frame
rate to the musical time, such that the instantaneous frame
rate is always an integer multiple or submultiple of the
beat rate. For the Beatles data, we do so by using pub-
licly available beat annotations 5 . For the WTC record-
ing by Hewitt no such annotations were available, but ver-
sions in Humdrum format of the pieces were obtained from
KernScores 6 . The Humdrum files were converted into
MIDI files, which were manually edited using MuseScore
to match the repetitions as performed by Hewitt. By align-
ing piano-synthesized audio renderings of the MIDI files to
the Hewitt recordings using the method described in [14],
beat times were automatically inferred for the recordings.

Based on the typical temporal densities of musical
events in the two datasets, we chose a temporal resolution
of a quarter beat for the CQT spectrogram in the case of
the Beatles, and a sixteenth beat in the case of WTC. We
will return to this issue in Section 3.3.1.

Each slice of the CQT spectrogram is a 334-
dimensional vector that represents frequencies between
27.5 and 16744.04 Hz with a resolution of 36 frequency
bins per octave. This configuration was chosen to avoid
spectral leakage between adjacent frequency bins, and is
similar to the one used by Purwins et. al. [28]. Addition-
ally, this configuration is also able to accommodate at least
the fundamental frequency plus at least three harmonics to
the highest note of a piano. We normalize each slice of the
CQT to lie between 0 and 1.

3.3 Training

For the experiments in this paper we use RNNs as de-
scribed in Section 2.2 as a sequential alternative to the
static models typically used for tonal learning, such as
SOMs and RBMs. To get an impression of the perfor-
mance of sequential models in general for this task, we
test five different variants of the recurrent layer, namely
a vanilla RNN (vRNN), an LSTM, a GRU, and two mod-
els with multiplicative integration: a vanilla recurrent layer
(vRNN/MI) and an LSTM/MI 7 . In all variants, the model

3 https://github.com/bmcfee/pyrubberband Accessed April 2017.
4 Exploratory experiments showed that using pitch shifting on the

Beatles songs worsened the predictions of the RNNs. This worsening
might be due to the fact that most of these recordings include several in-
struments and voices, including unpitched percussion instruments.

5 http://isophonics.net/content/reference-annotations-beatles.
Accessed April 2017.

6 http://kern.ccarh.org. Accessed April 2017.
7 In the current experiments the GRU/MI yielded pathological results,

possibly due to an implementation problem.

has a single hidden recurrent layer with 75 tanh units and
an output layer with sigmoid units. The use of different
model variants also allows us to investigate the relationship
between the prediction error and the similarity of model
expectations to human goodness-of-fit ratings of probe-
tones.

In order to investigate the kind of statistical regularities
in music that produce human-like probe-tone results, we
train each model on two different versions of each dataset,
namely training the model using the original data, and
training the model shuffling the spectrograms in a piece-
wise fashion. Randomizing inputs per piece preserves the
global pitch distribution of the piece but disrupts temporal
cues to musical expectations, like harmonic progressions
and voice-leading.

We split each dataset into 5 equally sized non-
overlapping folds, resulting in 4 RNN architectures × 2
orderings of the CQT spectrograms (original vs. random-
ized spectrograms) × 5 folds × 2 datasets = 80 trained
models. For each fold, 80% of the pieces (ca. 184 pieces
for the WTC and 29 for the Beatles) are randomly se-
lected to be used for training and 20% for testing (ca. 46
pieces for the WTC and 7 for the Beatles). The predictive
accuracy of each model is measured by the mean cross-
entropy (MCE) on the test set. The models are trained us-
ing RMSProp [33], a variant of stochastic gradient descent
that adaptively updates the step-size using a moving av-
erage of the of the magnitude of the gradients. The initial
learning rate is set to 10−3. The gradients are computed us-
ing truncated back propagation through time, where com-
putation of the gradients is truncated after 100 steps and are
clipped at 1. Each training batch consists of 20 sequences
of 100 CQT slices. Each sequence is selected randomly
out of the training data. Thus, an epoch of training cor-
responds to the model seeing roughly the same number of
time steps as in the whole fold. Early stopping is used af-
ter 100 epochs without any improvement in the test set.
All RNNs are implemented using Lasagne 8 . We provide
online supplementary materials describing all of the tech-
nical details for performing the probe-tone experiments in
this paper 9 .

3.3.1 Biasing Learning Towards Predicting Change

A crucial question when applying discrete time recurrent
models to a continuous stream of data such as audio is how
to choose the rate of discrete time steps with respect to the
absolute time of the data. This choice depends on the ap-
proximate rate or temporal density of relevant events in the
data—in our case the notes that make up the musical ma-
terial. Ideally, we would like the discrete time steps to be
small enough to capture the occurrence of even the short-
est notes individually, but if the discrete time step is cho-
sen much smaller than the median event rate, this leads to
strong correlations between data at consecutive time steps.
A result of this is that training models to predict the data
at time step t+ 1 teaches them to strongly expect the data

8 https://github.com/Lasagne/Lasagne. Accessed April 2017.
9 http://carloscancinochacon.com/documents/online_extras/

ismir2017/sup_materials.html.
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at t+ 1 to be approximately equal to the data at t. Choos-
ing a larger discrete step size for the model alleviates this
problem, but has the disadvantage that the data the model
sees at a particular time may actually be an average over
consecutive events that happened within that larger step.

We slightly revise the training objective of the models as
a remedy to this unfortunate trade-off. This revised objec-
tive biases the models to care more about correctly predict-
ing the data at t+1 when the change from t to t+1 is large
(e.g. the start of a new note) than when it is small (e.g a
transition without any starting or ending note events). This
allows us to use a relatively small step size without caus-
ing the models to trivially learn to expect the data to stay
constant between consecutive time steps.

More specifically, we modify the original cross-entropy
objective CE t by multiplying it with a time-varying weight
wt as follows:

C̃E t ← wtCE t, (2)

where wt is given by

wt =

{
1 if

∑N
i |xt+1,i − xt,i|> ε

β otherwise
(3)

where ε ∈ R acts as a threshold distinguishing small and
large change transitions, and β ∈ R controls the relative
influence of prediction errors on the training in the case of
small change transitions 10 .Based on an informal inspec-
tion of the model predictions in a grid search on β and ε,
we choose β = 10−3, and ε such that

Ptraining(
N∑
i

|xt+1,i − xt,i| ≤ ε) = 0.505 (4)

where Ptraining(X) denotes the empirical probability
of event X under the training data.

3.4 Results and Discussion

Figure 1 compares the aggregation of the probe-tone rat-
ings (see Section 3.1) for both major and minor contexts
with the expectations of the best predictive models (as in
lowest MCE in the test set) for each dataset, which in both
cases is the GRU trained without shuffling the data. Table
1 shows the correlation between the KK profiles and the
model expectations. All of the correlations are statistically
significant (p < 0.0002). Although the values obtained for
the models trained on the Beatles data are slightly lower,
the strength of the correlations between the empirical data
and the model simulation is on a par with those reported in
the literature [24, 35]. Pairwise two-sample Kolmogorov–
Smirnov tests (KK vs. Hewitt/WTC, KK vs. Beatles and
WTC/Hewitt vs. Beatles) reveal that the three profiles are
not significantly different from one another (p ≥ 0.19).

The above result shows that the expectations of the pro-
posed models reflect the tonal characteristics of the mu-
sical context that evoked those expectations. This is ex-
pected but not trivial, since the training objective of the

10 We empirically found a binary distinction between small and large
change transitions to be more effective than a gradual weighting scheme
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Figure 1. Expectations of the models trained on WTC and
Beatles datasets compared to average probe-tone ratings by
expert listeners for major and minor contexts [18]

KK major KK minor

WTC/Hewitt 0.915 0.940
Beatles 0.900 0.885

Table 1. Pearson’s correlation between normalized predic-
tions of the model with the lowest mean cross-entropy for
each dataset and KK major and minor profiles

models is solely to predict how a given sequence of musi-
cal information (in the form of CQT spectrograms) will
continue. An interesting question is therefore whether
there is any relation between the predictive accuracy of a
model (that is, how successfully it predicts future musical
events based on the music up to now), and the correlation
of its probe-tone response to that of human subjects. In
the plots of Figure 2, the vertical axis measures the Pear-
son correlation coefficient of the probe-tone responses of
different models with the KK profiles, and the horizontal
axis measures predictive accuracy of the models, in terms
of their MCE over the test data. For each model type in
the legend, there are five different scatter points, represent-
ing models trained on each of five non-overlapping folds of
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the data (see Section 3.3). The vertical coordinate of each
scatter point is the result of averaging the correlation coef-
ficients of responses to all transpositions of the probe-tone
stimuli (see Section 3.1).

The scatterplots for the WTC and Beatles show that on
average, MCE is higher for models trained the Beatles data
than for those trained on WTC. This is likely due to the fact
that the WTC data are single instrument recordings (piano)
with relatively homogeneous CQT spectrograms, whereas
the Beatles recordings are multi-instrumental, leading to
more dense and complex CQT spectrograms.

For the WTC data, training models on shuffled CQT
data has a noticeable negative impact on both predictive
accuracy and tonal expectations. For the Beatles data this
effect is less pronounced. There may be multiple explana-
tions for this. First, even if the WTC data, being solo piano
recordings, are spectrally simpler, they are probably more
complex both harmonically and melodically than the Bea-
tles data. As such, shuffling the data temporally is more
of a disruption to the WTC data than to the Beatles data.
Secondly, the WTC pieces tend to include brief modula-
tions away from the main key of the piece. This means
that shuffling the data within a piece may mix data from
different keys, making prediction more dificcult.

Despite these differences, both WTC- and Beatles-
trained models roughly show the same overall pattern:
models with low predictive error have high KK correla-
tions, whereas models with high predictive error may or
may not have high KK correlations. This suggests that
in order to form accurate musical expectations, it is in-
dispensable to have a notion of tonal structure. But con-
versely, having a notion of tonal structure by itself is not
a sufficient condition for accurate musical expectations.
This implies that there are other factors beyond tonality,
such as voice leading, rhythm, and cadential structure, that
help predict how a given musical context will continue
(see [31] and [32] for behavioral evidence to this effect).

4. CONCLUSION

In this paper we showed that the expectations of eco-
logically trained predictive models of music exhibit tonal
structure very similar to that observed in humans through
probe-tone experiments. We believe this finding is rel-
evant, since most computational modeling approaches to
tonal perception that involve a representation of statistical
regularities in musical data do not account for the percep-
tual learning of such regularities in a plausible way. The
musical expectations of the models used here are formed
by training the model to reduce the prediction error for fu-
ture musical events based on the musical context up to the
present—a cognitively plausible task according to the pre-
dictive coding theory of the brain [8]. Furthermore, we
demonstrate that tonal learning within such models is not
only possible based on training data known to exhibit rich
tonal qualities (Bach’s WTC, artificial cadences), but also
occurs as an effect of exposure to audio representations of
“real-world” popular and harmonically simpler music (The
Beatles). This more accurately mirrors the kind of musical
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Figure 2. Similarity of model expectations to human
probe-tone ratings (Pearson correlation coefficient) plotted
versus the mean cross-entropy of the models over a test set;
shuf denotes models trained on shuffled data

exposure people have, even if real-world musical encultur-
ation would typically involve a wider range of music.

An analysis of the relation between the predictive ac-
curacy of the model and the degree of tonal structure ex-
hibited by model expectations shows that tonal expecta-
tions are a necessary but not a sufficient condition for ac-
curate musical expectations. This suggests that there are
other—presumably temporal—cues to musical expectation
beyond tonal structure. Evidence for this is the fact that
models trained on temporally shuffled WTC data form less
accurate expectations than models trained on the ordered
data. This effect is not observed for the Beatles data, possi-
bly because of its simpler melodic and harmonic structure.

The empirical validation of the models we presented
here offers various further avenues of research that we have
not yet pursued. For example, a qualitative analysis of the
learned representations of the models may provide further
insights into the cues that influence musical expectations.
In models with multiple hidden layers, an interesting ques-
tion is where the different learned representations lie along
the sensory-cognitive spectrum of tonal representations, as
hypothesized by [9].
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ABSTRACT
This paper presents an automatic harmonization method

that, for a given melody (sequence of musical notes), gen-
erates a sequence of chord symbols in the style of exist-
ing data. A typical way is to use hidden Markov models
(HMMs) that represent chord transitions on a regular grid
(e.g., bar or beat grid). This approach, however, cannot
explicitly describe the rhythms, harmonic functions (e.g.,
tonic, dominant, and subdominant), and the hierarchical
structure of chords, which are supposedly important in tra-
ditional harmony theories. To solve this, we formulate a hi-
erarchical generative model consisting of (1) a probabilis-
tic context-free grammar (PCFG) for chords incorporating
their syntactic functions, (2) a metrical Markov model de-
scribing chord rhythms, and (3) a Markov model generat-
ing melodies conditionally on a chord sequence. To esti-
mate a variable-length chord sequence for a given melody,
we iteratively refine the latent tree structure and the chord
symbols and rhythms using a Metropolis-Hastings sampler
with split-merge operations. Experimental results show
that the proposed method outperformed the HMM-based
method in terms of predictive abilities.

1. INTRODUCTION
Creation of chord sequences plays a key role in music com-
position and arrangement since harmony affects the mood
of music and characterizes the impression of a certain mu-
sical style. Our aim is automatic melody harmonization, or
automatic generation of a sequence of chord symbols for a
given melody (a sequence of musical notes). In this paper,
we restricted our focus to the automatic harmonization in
the style of popular music. Instead of manually describing
music theories for the style such as jazz and classical mu-
sic, we take a statistical approach to automatically learn
model architectures and parameters from a music corpus
and harmonize in the style of that data. We formulate a
probabilistic model that represents how likely a chord se-
quence is to be generated and another model that represents

c⃝ Hiroaki Tsushima, Eita Nakamura, Katsutoshi Itoyama,
Kazuyoshi Yoshii. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Hiroaki Tsushima,
Eita Nakamura, Katsutoshi Itoyama, Kazuyoshi Yoshii. “Function- and
Rhythm-Aware Melody Harmonization Based on Tree-Structured Parsing
and Split-Merge Sampling of Chord Sequences”, 18th International Soci-
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Figure 1: The hierarchical generative model for chord
symbol, chord rhythms, and melodies.

how likely a melody is to be generated conditionally on a
chord sequence.

Since chord sequences are usually described by Markov
models [21, 25], a standard way to statistical harmoniza-
tion is to use a hidden Markov model (HMM) that has a
latent Markov chain of chord symbols and assumes a mu-
sical note sequence to be generated conditionally on the
chords. This approach, however, does not consider the
syntactic roles and hierarchical structure of chords. In
traditional harmony theories (e.g., [14, 22]), such syntac-
tic roles are often referred to as harmonic functions (e.g.,
tonic, dominant, and subdominant), which are similar to
parts-of-speech in language theories. Another problem of
the conventional HMMs lies in the description of the chord
rhythms (onset score times or durations of chords). Since
chord durations are described by self-transition probabili-
ties on a regular time grid (e.g., beat or bar grid), the chord
rhythms are not explicitly described.

To solve these problems, we propose a tree-structured
hierarchical generative model that consists of (1) a proba-
bilistic context-free grammar (PCFG) that generates chord
symbols, (2) a metrical Markov model that generates chord
rhythms, and (3) a Markov model that generates a melody
from a chord sequence (Fig. 1). The use of the PCFG was
inspired by Steedman’s pioneering work [27] that uses a
context-free grammar (CFG) for representing the hierar-
chical structure of chords. A key advantage of our study
is that the rule probabilities and tree structure of the PCFG
can jointly be estimated in an unsupervised manner from
a corpus of chord sequences, expecting that the syntactic
roles of chords are captured by the non-terminal symbols.
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The metrical Markov model is used for explicitly describ-
ing transition probabilities between the onset beat positions
of succeeding chords.

Using the tree-structured hierarchical generative model,
we propose a statistical harmonization method based on a
sophisticated Metropolis-Hasting (MH) sampler with split-
merge operations. To estimate a variable-length chord se-
quence with appropriate chord rhythms for a given melody,
we stochastically search for the most likely latent tree
structure, symbols, and onset score times of chords from
their posterior distributions. In this search, our sampler has
four types of proposals: the whole latent tree structure is
updated using a variant of the Viterbi algorithm, one of the
chords is split or two adjacent chords are merged according
to the latent tree structure, and one of the chord onset score
time is moved back or forth. Such stochastic global or lo-
cal updates can be interpreted as a repeated trial-and-error
process of finding an optimal chord sequence.

2. RELATED WORK

This section introduces related studies on the automatic
harmonization and on the music language model for chords
and notes.

2.1 Automatic Harmonization

Some studies on harmonization aim to generate sequences
of chord symbols (as in this paper) and other studies aim
to generate several (typically four) voices of musical notes.
In the former direction, Chuan and Chew [3] proposed a
hybrid method that consists of three processes: selection
of chord tones (constituent tones of chords) from given
melodies with a support vector machine (SVM), construc-
tion of triad chords from chord tones, and generation of
chord progressions by a rule-base method. Simon et al.
[25] developed a method based on HMMs in which chord
transitions are described by Markov models. This method
has been implemented in a commercial system MySong.
Raczyński et al. [21] proposed similar Markov models
in which chords are conditioned by melodies and time-
varying keys. To our knowledge, PCFG has not been used
for melody harmonization.

In the latter direction, Ebcioğlu [5] proposed a rule-
based method for generating four-part chorales in Bach’s
style. Methods by using variants of genetic algorithms
(GAs) based on music theories have also been studied
[18, 19, 28]. Allan and Williams et al. [1] proposed a
method based on HMMs which represent chords as hidden
states and musical notes as observed outputs. A hidden
semi-Markov model (HSMM) [9] has been used for ex-
plicitly representing the durations of chords. Paiement et
al. [17] proposed a hierarchical tree-structured model that
describes chord movements from the viewpoint of hierar-
chical time scales by dividing the notations of chords.

2.2 Music Language Modeling

Several language models for musical notes have been stud-
ied for music structure analysis [10, 11, 13, 15]. According
to the Generative Theory of Tonal Music (GTTM) [13], a
note sequence is assumed to have a hierarchical structure

that describes which notes are important. This theory con-
sists of rules for recursively reducing a note sequence into a
single note. Computational implementation of GTTM and
the analysis of musical pieces using it have been studied
[10, 11]. A probabilistic formulation of GTTM based on
PCFG has been proposed and enabled unsupervised learn-
ing of production rules directly from note sequences [15].

Various language models for chord sequences have been
proposed in the context of automatic chord recognition for
music audio signals [16, 24, 29], music analysis [23, 27],
and music arrangement [6, 20]. The conventional lan-
guage model for chord sequences is n-gram models [6,24].
To avoid the sparseness problem with a large value of n,
smoothing methods have been studied for improving the
predictive ability of the language model [2]. Yoshii et
al. [29] proposed a vocabulary-free infinity-gram model in
which each chord depends on a variable-length history of
chords. Paiement et al. [16] introduced several hidden lay-
ers of state transitions that represent the hierarchical struc-
ture of chords. Some studies attempted to explicitly de-
scribe the generative grammar to represent the hierarchi-
cal structure of chords [20, 23, 27]. Steedman [27] and
Rohrmeier [23] proposed a description of the production
rules for chord sequences. A probabilistic extension is later
studied in the context of music arrangement and unsuper-
vised learning of the probabilities has been performed [20].
In these studies, the lists of non-terminals and production
rules were manually given based on music theories or mu-
sical intuition.

3. PROBABILISTIC MODELING
This section explains how to formulate and train our hi-
erarchical generative model of chords and melodies. In
our model, the PCFG for chord symbols is trained by
unsupervised learning from a corpus of chord sequences
while estimating the latent tree structures behind these se-
quences. The metrical Markov model for chord rhythms
is trained by supervised learning from a corpus including
chord rhythms. The Markov model for pitch sequences
is also trained by supervised learning from paired data of
melodies and chord sequences.

3.1 Model Formulation
The PCFG stochastically generates a sequence of chord
symbols (or simply chords in the following) z = {zn}Nn=1

and the metrical Markov model generates the correspond-
ing onset score times ϕ = {ϕn}Nn=1 described in units of
16th notes, where N is the number of chords. A subse-
quence of pitches in the melody xn = {xn,i}Ini=1 in the
time span of each chord zn is then generated, where In
is the number of pitches in that time span. Concatenat-
ing all such subsequences, the whole sequence of pitches
x = {xn}Nn=1 is obtained. I =

∑N
n=1 In denotes the

number of melody notes. Let ψn,i be the onset score
time of the melody note corresponding to xn,i and let
ψ = {{ψn,i}Ini=1}Nn=1. ϕn and ψn,i can take integer val-
ues from 0 to 16L − 1, where L is the total number of
measures in the whole melody. Although in the training
phase, we have multiple sequences of chords sequences
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and melodies, we formulate here the case of a single se-
quence for notational simplicity. Extension for multiple
sequences is straightforward.

The PCFG G is defined by

G = (V,Σ, R, S), (1)

where V is a set of non-terminal symbols, which are
expected to represent hierarchical structure and syntactic
roles of chords, Σ is a set of terminal symbols (chord sym-
bols), R is a set of rule probabilities, and S is a start sym-
bol (a non-terminal symbol located on the root of a syn-
tax tree). Rule probabilities consist of the following three
types. θA→BC is the probability that a non-terminal sym-
bol A ∈ V branches to non-terminal symbols B ∈ V and
C ∈ V . ηA→α is the probability that A ∈ V emits termi-
nal symbol α ∈ Σ. Each non-terminal symbol A ∈ V has
a coin-toss probability λA that stochastically determines
whether A emits (otherwise A branches). These probabili-
ties should be normalized properly as follows:∑

B,C∈V

θA→BC = 1,
∑
α∈Σ

ηA→α = 1. (2)

We define θA = {θA→BC}B,C∈V , ηA = {ηA→α}α∈Σ,
θ = {θA}A∈V , η = {ηA}A∈V , etc. Similar notations are
used throughout this paper.

The metrical Markov model describes the transition
probabilities for chord onset beat positions (16th-note level
relative score time in a measure) as

p(ϕn|ϕn−1) = πϕ̄n−1,ϕ̄n
, (3)

where ϕ̄n = ϕn mod 16 and πab (0 ≤ a, b < 16) indicates
the transition probability from beat position k to beat po-
sition l. When ϕ̄n ≤ ϕ̄n−1, we interpret that the onset of
chord n is in the next measure.

The Markov model is described with the following tran-
sition probability:

p(xn,m|xn,m−1, zn) = τznxn,m−1,xn,m
, (4)

where τznxn,m−1,xn,m
is the transition probability from pitch

xn,m−1 to pitch xn,m under chord zn. In addition, the
probability of the first pitch in xn is given by p(xn,1|zn).

We put conjugate priors on the parameters of the PCFG
as

θA ∼ Dirichlet(ξA), (5)

ηA ∼ Dirichlet(ζA), (6)

λA ∼ Beta(ιA), (7)

where ξA, ζA and ιA are hyperparameters. Similarly, we
put conjugate priors on the parameters of the Markov mod-
els as follows:

πa ∼ Dirichlet(β), (8)

τ z
x ∼ Dirichlet(γ), (9)

where β and γ are hyperparameters.
To complete the generative model of chords and

melodies, we need to specify a model generating ψ. This
model can be formulated as for the model ofϕ and we omit
the details here since melodies are given as inputs for our
harmonization problem.

3.2 Bayesian Learning

We obtain the model parameters Θ = {θ,η,λ,π, τ} by
the maximum posterior (MAP) estimation. To estimate
the parameters θ, η, and λ of the PCFG, we use a vari-
ant of Gibbs sampling called the inside-filtering-outside-
sampling algorithm [12]. We assume that a chord sequence
z was derived from a latent syntactic tree t. t can be repre-
sented by a set of non-terminal nodes {tn:m}1≤n≤m≤N ,
where tn:m is the root node of a subtree that derives a
subsequence of chords zn:m = {zn, zn+1, · · · , zm}. The
latent tree t and the parameters θ, η, and λ are alter-
nately sampled from the conditional posterior distribu-
tions p(t|θ,η,λ, z) and p(θ,η,λ|t, z). This algorithm is
proven to yield samples of t, θ, η, λ following the true
posterior distribution p(θ,η,λ, t|z).

In the inside filtering step, we focus on the conditional
probability (inside probability) that a subsequence zn:m is
derived from a subtree whose root node is A

pAn,m = p(zn:m|tn:m = A). (10)

This probability can be calculated recursively from the leaf
nodes to the root node as follows:

pAn,n = λAηA→zn , (11)

pAn,n+k =
∑

B,C∈V

[
(1−λA)θA→BC

∑
1≤l≤k

pBn,n+l−1p
C
n+l,n+k

]
.

In the outside sampling step, we recursively sample a
latent tree t from a start symbol S to the leaf nodes ac-
cording to p(t|θ,η,λ, z) by using the inside probabilities.
When a node tn:n+k = A is already sampled, the two non-
terminal symbols B and C into which tn:n+k branches are
sampled as follows:

p(l, B,C)

= p(tn:n+l−1 = B, tn+l:n+k = C | tn:n+k = A, zn:n+k)

= (1− λA)θA→BC p
B
n,n+l−1 p

C
n+l,n+k/p

A
n,n+k, (12)

where 1 ≤ l ≤ k indicates a split position.
Finally, we sample parameters θ, η, and λ according to

p(θ,η,λ|t, z) = p(θ|t, z)p(η|t, z)p(λ|t, z) given by

θA ∼ Dirichlet(ξA + uA), (13)

ηA ∼ Dirichlet(ζA + vA), (14)

λA ∼ Beta(ιA +wA), (15)

where uA→BC (vA→α) is the number of times the binary
production rule θA→BC (the emission rule ηA→α) is used
in t, andwA,0 (wA,1) is the number of times a non-terminal
symbol A branches (emits) and t.

The parameters π and τ of the Markov models are ob-
tained by supervised learning. Given ϕ, the posterior dis-
tribution of π can be calculated easily because of the con-
jugacy between the Dirichlet and categorical distributions.
Similarly, given paired data of z,ϕ, x, andψ, the posterior
distribution of τ can be calculated.
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4. AUTOMATIC HARMONIZATION

This section explains how to generate sequences of chords
for a given melody by using the model in Section 3.

4.1 Problem Specification

Given a melody with pitchesx and onset score timesψ and
trained model parameters Θ, we aim to estimate a variable-
length sequence of chords z and their onset score times ϕ
that are not restricted to bar lines. Note that the number of
chords N is not fixed and should be estimated and that a
latent tree t for chords is considered and estimated unlike
conventional harmonization methods.

4.2 Metropolis-Hastings Sampling

We propose a Metropolis-Hastings (MH) sampler with
split-merge operations for generating samples of t, z, and
ϕ from the posterior distribution p(t, z,ϕ|x,ψ,Θ) based
on the following four types of proposals:

• Global update: Update chords z and latent tree t
with a Viterbi algorithm for the PCFG, keeping the
number and score times of chords unchanged.

• Split operation: Randomly choose one of the
chords and split it into two adjacent chords.

• Merge operation: Randomly choose two adjacent
chords in z that form a subtree with two leaves in t
and merge them.

• Rhythm update: Randomly choose one chord n
and move its onset score time ϕn back or forth.

Although it is more proper to use the inside-filtering-
outside-sampling algorithm for the global update, the
Viterbi algorithm is used for efficient optimization in the
posterior space.

In the MH sampling, one of these proposals is randomly
selected. More specifically, the sampler proposes a sam-
ple s∗ = (t, z,ϕ)∗ from a current sample s = (t, z,ϕ).
The sampler then judges whether s∗ is accepted as the next
sample or not according to the acceptance ratio given by

g(s∗, s) = min

{
1,
p(s∗)p(s|s∗)
p(s)p(s∗|s)

}
, (16)

where p(s) is the complete joint likelihood of s based on
the proposed model and p(s∗|s) is a proposal distribution
that should be set appropriately. If the proposal is rejected,
t, z, and ϕ are not updated. In our method, there are three
types of proposal distributions for the second to fourth pro-
posals in the above list. We estimate the most plausible z
and ϕ by iterating the MH sampling a sufficient number of
times and then getting the latent variables that maximize
the likelihood of complete data.

4.3 Updating Chord Symbols

We describe how to update the chord symbols z and the
corresponding latent tree t according to the conditional
posterior distribution p(t, z|ϕ,x,ψ,Θ).

4.3.1 Viterbi Algorithm

Given a melody with pitches x and onset score times ψ,
we can efficiently sample a sequence of chord symbols z

Figure 2: The split-merge operations of the MH sampling.

and the corresponding latent tree t by using the Viterbi al-
gorithm. Our algorithm differs from a standard Viterbi al-
gorithm used for estimating t for a given z because both t
and z are the latent variables to be estimated in this paper.

We first recursively calculate the inside probabilities
from the layer of terminal symbols z to the start symbol
S according to

pAn,n = λA max
c∈Σ

ηA→c p(xn|c)1/In , (17)

pAn,n+k = (1− λA) max
B,C∈V
1≤l≤k

θA→BCp
B
n,n+l−1p

C
n+l,n+k,

where p(xn|c) is the probability that a pitch subsequence
xn is generated conditionally on a chord c:

p(xn|c) = p(xn,1|c)
In∏
i=2

p(xn,i|xn,i−1, c). (18)

The most likely t and z are obtained by recursively back-
tracking the most likely paths from the start symbol S.

4.3.2 Split-Merge Operations

Using the MH sampler, we can split a chord or merge ad-
jacent chords by considering the underlying tree t and the
emission probability of the melody. Note the split and
merge operations are inverse to each other and that the la-
tent tree t is locally updated by these operations (Fig. 2).

In the split operation, a new sample s∗ is proposed
by stochastically selecting a chord zn from z, splitting
zn into zL and zR, selecting the new onset score time
ϕ∗ ∈ (ϕn, ϕn+1) = [ϕn + 1, ϕn+1 − 1], and splitting the
non-terminal symbol tn:n into two non-terminal symbols
tL and tR. The proposal distribution p(s∗|s) is thus

p(s∗|s) =

{
θtn:n→tLtRηtL→zLηtR→zR

N(ϕn+1−ϕn−1) , ϕn+1 ≥ ϕn + 1;

0, otherwise.
(19)

The reverse proposal distribution p(s|s∗), on the other
hand, is same as the proposal distribution for the merge
operation in which a sample s is proposed by stochasti-
cally selecting a pair of adjacent chords zL and zR, merg-
ing those chords into zn, by selecting a chord zn according
to the probability ηtn:n→zn . Thus we have

p(s|s∗) = ηtn:n→zn

#MergeableNodes(s∗)
, (20)

where #MergeableNodes(s∗) is the number of pairs of ad-
jacent chords that can be merged in s∗, i.e., those chords
forming a subtree with two leaves.
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The likelihood ratio of p(s∗) to p(s) is then given by

p(s∗)

p(s)
=
(1− λtn:n

)θtn:n→tLtRλtLηtL→zLλtRηtR→zR

λtn:n ηtn:n→zn

· p(x
L|zL)p(xR|zR)p(ϕ∗|ϕn)p(ϕn+1|ϕ∗)

p(xn|zn)p(ϕn+1|ϕn)
,

(21)

where xL and xR are the subsequences of pitches obtained
by splitting xn at the score time ϕ∗. Using Eqs. (19), (20),
and (21), we can calculate the acceptance ratio of s∗ ac-
cording to Eq. (16).

In the merge operation, on the other hand, a new sample
s∗ is proposed in a similar way to the split operation. More
specifically, the acceptance ratio of s∗ given by Eq. (16)
can be calculate by exchanging s and s∗ in Eqs. (19), (20),
and (21). Through the split-merge operations, the number
of chords N is optimized stochastically.

4.4 Updating Chord Rhythms

We describe how to update the chord rhythms ϕ according
to the conditional posterior distribution p(ϕ|t, z,x,ψ,Θ).
A new sample s∗ is proposed by stochastically selecting
a chord n and moving ϕn to a new score time ϕ∗n ∈
(ϕn−1, ϕn+1). The proposal distribution p(s∗|s) and the
reverse proposal distribution p(s|s∗) are given by

p(s∗|s) = p(s|s∗) = 1

N − 1

1

ϕn+1 − ϕn−1 − 1
. (22)

The likelihood ratio of p(s∗) to p(s) is given by

p(s∗)

p(s)
=
p(x∗

n−1|zn−1)p(x
∗
n|zn)p(ϕ∗n|ϕn−1)q(ϕn+1|ϕ∗n)

p(xn−1|zn−1)p(xn|zn)p(ϕn|ϕn−1)p(ϕn+1|ϕn)
,

(23)

where x∗
n−1 and x∗

n are the subsequences of pitches in the
time spans of chords n−1 and n with the new onset score
time ϕ∗n. Using Eqs. (22) and (23), we can calculate the
acceptance ratio of s∗ according to Eq. (16).

5. EVALUATION

In this section, we report two experiments conducted to
quantitatively evaluate the proposed generative model and
the proposed method of automatic harmonization based on
the model and discuss examples of chord sequences gener-
ated by the method.

5.1 Experimental Conditions

To learn the PCFG unsupervisedly, we extracted 1002
chord sequences corresponding to sections (e.g., verse,
bridge, and chorus) from 468 pieces of popular music in-
cluded in the SALAMI dataset [26]. Only those sequences
with a length between 8 and 32 were chosen. The vocab-
ulary of chord symbols was given by the combinations of
12 root notes {C, C#, D, ..., B} and 2 chord types {major,
minor}, and a special “other”. The values of the hyperpa-
rameters were all set to 0.1.

To train the two Markov models in a supervised manner,
we extracted 9902 pairs of melodies and the correspond-
ing chord sequences from 194 pieces of popular music in-
cluded in Rock Corpus [4]. The values of the hyperparam-
eters were all set to 0.1.

In the testing phase, we extracted 339 pairs of melodies
and the corresponding chord sequences as ground-truth
data for evaluation from 69 pieces of popular music in-
cluded in the RWC music database [7, 8]. Note that all the
data (SALAMI, Rock Corpus, and RWC) were transposed
to C major or C minor.

5.2 Evaluating Ability of Melody Prediction
To evaluate the hierarchical generative model based on the
PCFG in terms of the ability of melody prediction, we cal-
culated the marginal likelihood for the melodies extracted
from the RWC music database. The number of kinds of
non-terminal symbols, or the complexity of the PCFG, K
was changed from 1 to 20. In each of cases for K, we ob-
tained different PCFG’s parameters with Gibbs sampling
and calculated the marginal likelihood for each parameter
set. The number of different parameter sets were between
37 and 50 depending on the computational complexity. We
assumed that the chord onsets were completely synchro-
nized with bar lines such that the chord sequences were
marginalized analytically. The proposed model was com-
pared with an HMM that learns the chord-symbol tran-
sition between adjacent units which were either musical
notes or measures. When minimum time units were mu-
sical notes, each note was assumed to be generated con-
ditionally on the chord symbol at the time. When mini-
mum time units were musical measures, notes accompa-
nying each chord were assumed to be generated according
to the probability described in Eq. (4).

The marginal likelihood of the trained model parame-
ters Θ for an unseen melody X with ψ can be calculated
with the inside algorithm in Section 3.2. To sum over all
possibilities of a latent chord sequence Z and a latent tree
T , pAi,i in Eq. (11) is replaced with

pAi,i = λA
∑
c∈Σ

ηA→c p(Xi|c), (24)

where p(Xi|c) is given by Eq. (18). The average marginal
likelihood L per note for the melody is given by

L =
1

I
log p(X|ψ,Θ) =

1

I
log pS0,N−1, (25)

where I (N ) is the number of notes (chords).
The experimental results are shown in Fig. 3. The pro-

posed model outperformed the HMM, whether the mini-
mum time unit is a musical note (L = −3.2813) or a mea-
sure (L = −2.3218). The likelihood tended to decrease as
the value ofK increased to eight, and the likelihood tended
to increase as the value of K increased beyond eight.

5.3 Evaluating Predictive Ability of Chord Sequences
To evaluate the proposed harmonization method in terms
of the predictive ability of unseen chord sequences, we
generated chord sequences for the melodies of the RWC
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Figure 3: Marginal likelihood for melodies per note. In the
box plots, the red line, the black cross and the red crosses
indicate the median, the mean and outliers, respectively.

Figure 4: Accuracy of harmonization per note. Indicators
in the box plots are the same as those in Fig. 3

music database and calculated the accuracy at a 16th-note
level compared with the ground-truth. The complexity of
the PCFG, K was changed from 1 to 20. The proposed
method was compared with a conventional HMM-based
method that represents chord transitions on a 16th-note-
level grid.

The experimental result are shown in Fig. 4. The
proposed model clearly outperformed the HMM-based
method with an accuracy of 16.6 %. While a certain range
of K showed much higher accuracy (e.g., 26 %) than the
HMM-based method, there was little correlation between
K and the median values of accuracies.

5.4 Generated Example and Discussion

Fig. 5 shows how the proposed MH sampling method with
split-merge operations worked for automatic harmoniza-
tion1 . The number of kinds of non-terminal symbols, K,
was set to 12. The chord sequence at the top shows an ini-
tial sample in which the chord symbols were optimized by
the Viterbi algorithm, but the chord onsets were located at
the bar lines. The second chord sequence shows a sam-
ple proposed by moving the onset positions of 5th and
6th chords (G major and C major). The third chord se-
quence shows a sample proposed by merging the 7th and
8th chords (F major and C major) into one chord (C ma-
jor). The bottom chord sequence shows the best sample
that maximizes the likelihood for the given melody. In
each of the processes, the likelihood increased. The result
indicates that the proposed method can successfully gen-

1 Some chord sequences generated in this experimental are available
online: http://sap.ist.i.kyoto-u.ac.jp/members/tsushima/ismir2017/

Figure 5: Sampling-based estimation of the most likely
chord sequence for a given melody.

erate a variable-length sequence of chords by considering
the latent tree structure behind the chord sequence.

We found some problems to be tackled in the future.
The proposed method tended to generate simple chords
(e.g., C major and A minor). This is because the chord
symbols were refined by using the Viterbi algorithm. In
addition, the number of the most plausible chord sequences
selected in our experiment was rarely more than those ini-
tialized at the beginning of sampling. This is because the
proposals of the split operation were accepted less fre-
quently than the proposals of the merge operation.

6. CONCLUSION

This paper presented an automatic harmonization method
that generates a variable-length chord sequence for a given
melody based on music rules hidden in corpora of popular
music. The experimental results showed that the proposed
model outperformed the HMM-based method in terms of
predictive ability and has a large potential for statistical
music composition or arrangement.

Since our method is based on statistical learning, it was
found to prefer simpler and basic chord sequences. More
specifically, the number of generated chords tends to be
less than the number of measures. This problem could be
solved by giving more chances to the split operation in
MCMC sampling. To increase the diversity of generated
chord symbols, a sampling or beam-search method is con-
sidered to be effective instead of the Viterbi algorithm that
tends to find a popular chord sequence that has the highest
posterior probability from the statistical viewpoint.

We still need further studies on our model. In this pa-
per, one measure with the time signature of 4/4 is divided
into 16 time units. It is therefore important to investigate
the best time resolution and extend the model to deal with
other kinds of time signatures. In addition, to evaluate the
musical appropriateness of generated chord sequences, we
plan to conduct a subjective listening test and evaluate how
consistent our model is with music theories or musical in-
tuition.
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ABSTRACT

Although Convolutional Neural Networks (CNNs) and
Long Short Term Memory (LSTM) have yielded
impressive performances in a variety of Music Information
Retrieval (MIR) tasks, the complementarity among the
CNNs of different architectures and that between CNNs
and LSTM are seldom considered. In this paper, multi-
channel CNNs with different architectures and LSTM are
combined into one unified architecture (Multi-Channel
Convolutional LSTM, MCCLSTM) to extract high-level
music descriptors. First, three channels of CNNs with
different shapes of filter are applied on each spectrogram
image chunk to extract the pitch-, tempo-, and bass-
relevant descriptors, respectively. Then, the outputs of
each CNNs channel are concatenated and then passed
through a fully connected layer to obtain the fused
descriptor. Finally, LSTM is applied on the fused
descriptor sequence of the whole track to extract its
long-term structure property to obtain the high-level
descriptor. To prove the efficiency of the MCCLSTM
model, the obtained high-level music descriptor is applied
to the music genre classification and emotion prediction
task. Experimental results demonstrate that, when
compared with the hand-crafted schemes or conventional
deep learning (Multi Layer Perceptrons (MLP), CNNs,
and LSTM) based ones, MCCLSTM achieves higher
prediction accuracy on three music collections with
different kinds of semantic tags.

1. INTRODUCTION

The amount of online music tracks is constantly growing,
which makes it difficult to tag them manually. Without
accurate labels, most of the tracks cannot be accessed.
So, auto-tagging technique has become a hot topic in the
field of Music Information Retrieval (MIR) for the past
two decades. It can be used in music classification, music
retrieval, and music recommendation systems.

c© Ning Chen, Shijun Wang. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY
4.0). Attribution: Ning Chen, Shijun Wang. “HIGH-LEVEL
MUSIC DESCRIPTOR EXTRACTION ALGORITHM BASED ON
COMBINATION OF MULTI-CHANNEL CNNS AND LSTM”, 18th
International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

In the past ten years, deep learning models, such as
Deep Neural Networks (DNNs), Convolutional Neural
Networks (CNNs), and Long Short Term Memory (LSTM)
[9] have achieved tremendous success for a variety of MIR
tasks, such as onset detection [20], emotion recognition
[13], chord estimation [5], rhythm stimuli recognition
[22], auto-tagging [3,16], source separation [10], or music
recommendation [25], etc. It has been proved that deep
learning based models are superior to hand-crafted ones
in music content analysis because [16]: i) The nonlinear
mapping in deep learning model (e.g. CNNs) is suitable
for describing the time-varying nonlinear property of
music signal. ii) The hierarchical architecture of deep
learning model is fit for representing the hierarchical
nature of music in both time domain (onset, rhythm)
and frequency domain (note, chord) [16]. iii) Long-
term dependencies property of music (music structure or
recurrent harmonies), which is important for human music
perception and understanding, can be modeled by deep
learning model (e.g. LSTM) very well [11].

Despite the rich potential of CNNs and LSTM in
describing music properties, they are individually limited
in their modeling capability [19]. In [16], the CNNs
were adopted to learn high-level descriptor from the
spectrogram image of the music signal, and the filter
shape of CNNs was studied to make it suitable for
representing different music relevant descriptors. It was
verified that wider filters and higher filters may be capable
of learning longer temporal dependencies and more spread
timbral features, respectively. This scheme achieved
competitive results in auto-tagging on the Ballroom dataset
[8]. However, as shown in [16, 19], CNNs may only
model the local context, such as instrument’s timbre or
musical units, well, but not the long-term dependencies,
such as music structure or recurrent harmonies, of the
music. As for the LSTMs based schemes, their main issues
are two aspects. On the one hand, the temporal modeling
is usually done on the low-level descriptor, which makes
it difficult to disentangle underlying factors of variation
within the input [12]. On the other hand, as shown in [15],
there is no intermediate nonlinear hidden layer in LSTM,
so the history of previous inputs cannot be summarized
efficiently.

To take advantage of the complementarity between
CNNs and LSTM, some researchers proposed to combine
them in a unified architecture [2, 4]. In [2], LSTM
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and CNNs are combined in parallel to exploit sequential
correlation and local spectro-temporal information. Then,
the outputs of the CNNs and LSTM are combined
by the fully connected layers to obtain the fused
descriptor. Experimental results demonstrated that this
scheme outperformed the conventional DNNs, CNNs, or
LSTM based ones in acoustic scene classification task.
In [19], considering that: ”CNNs are good at reducing
frequency variations, LSTMs are good at temporal
modeling, and DNNs are appropriate for mapping features
to a more separable space”, the three models are combined
into one unified architecture to take advantage of the
complementarity among them. This scheme achieved
better performances than the LSTM based one in the voice
search task.

In this paper, a new deep learning based architecture
(called Multi-Channel Convolutional LSTM, MCCLSTM)
is proposed for high-level music descriptor extraction.
MCCLSTM is different from the methods discussed above
as it takes advantage of the complementarity among CNNs
with different architectures and that between CNNs and
LSTM in modeling music properties. Considering that
different musical properties correspond to different time-
frequency resolutions [16], the descriptor extracted by one
CNN with a specific filter may not characterize the music
property comprehensively. So, in the proposed scheme,
three channels of CNNs with different shapes of filters
are adopted to extract pitch-, tempo-, and bass-relevant
descriptors from the spectrogram image, respectively.
Then, the outputs of each CNNs are concatenated and
then passed trough a fully connected layer to map to the
fused descriptor. Finally, since it has been verified in [15]
that the performance of LSTM can be improved greatly
when provided with high-level descriptor, the LSTM is
put as a higher level of the fully connected layer in the
proposed scheme to learn the time dependency in the fused
descriptor sequence to extract the long-term structure of
the whole track. Since the obtained high-level descriptor
contains both local context based and long-term structure
based information of the music, it may describe the music
property more comprehensively. Experimental results
demonstrate that the proposed model is superior to the
hand-crafted schemes [14, 18] and the conventional deep
learning (Multi Layer Perceptrons (MLP) [21], CNNs [16],
and LSTM) based ones in music auto-tagging task on three
music collections with different kinds of semantic tags.

The rest of this paper is organized as follows. The
proposed scheme is described in detail in Section 2.
The performances of the proposed scheme in music
auto-tagging task in comparison with other state-of-the-
art schemes are evaluated and discussed in Section 3.
Conclusions and prospects on future work are given in
Section 4.

2. MCCLSTM MODEL

The MCCLSTM architecture is shown in Figure 1.

Figure 1: Multi-Channel Convolutional LSTM (MCCLSTM)
architecture.

2.1 Preprocessing

The same preprocessing procedure shown in [16] is
adopted in the proposed scheme. First, the Short-Time
Fourier Transform (STFT) is applied to the input music
audio signal, whose sampling rate is 44100 Hz, to obtain
the spectrum of it. In STFT, a Blackman-Harris window
of 2048 samples is chosen, and the hop size is 1024
samples. Next, the 40-band Mel filter-bank is applied
on the obtained spectrum to generate the corresponding
spectrogram image of it. Then, the whole spectrogram
image is split into L chunks without overlapping. The size
of each spectrogram chunk is M × N , where M and N
stand for the number of frequency bins and that of frames,
respectively.

2.2 Multiple Musical Descriptors Extraction and
Fusion

There is no one universal deep learning architecture
or hand-crafted scheme that performs well in modeling
multiple music properties at the same time. To solve
this problem and describe the music content more
comprehensively, three channels of CNNs with different
shape of filters are adopted and combined in the proposed
scheme to obtain fused descriptor, which contains tempo-
, pitch-, and bass-relevant information of the input music.
This idea was first proposed in [16] to combine the tempo-
and pitch-relevant information and was modified in this
paper by adding another bass-relevant information.

• Pitch-channel CNNs: in this channel, a m ×
1(m � M) frequency filter is chosen. This type
of filter is designed for modeling frequency features.
The upper layer can represent some temporal
dependencies from the resulting activations as well
[16]. In the proposed scheme, this channel of
CNNs are responsible for extracting pitch, timbre, or

510 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



equalization setups relevant descriptor of the music.

• Tempo-channel CNNs: in this channel, a 1×n(n �
N) temporal filter is adopted. This kind of filter
will be suitable for learning temporal dependencies
but not frequency dependencies. Also, the upper
layer may exploit the frequency relations [16]. In
the proposed scheme, this channel of CNNs try to
learn rhythmic/tempo relevant patterns of the music.

• Bass-channel CNNs: in this channel, a m× n(m �
M,n � N) filter is taken. This type of filter is
capable of learning time and frequency features at
the same time. Different musical aspects can be
learned by such filters with different combination of
m and n. Considering that the task of this channel of
CNNs is to model the bass- or kick-relevant feature,
which most entails finding changes over time, a filter
that is wide in time and narrow in frequency (i.e.
m < n) is adopted [16].

To take advantage of the complementarity among the
obtained pitch-, tempo-, and bass-relevant descriptors, they
are concatenated on the fusion layer and then passed
through a fully connected layer to generate the fused
descriptor.

2.3 Long-Term Structure Analysis

Although CNNs may model the local context in the
spectrogram chunk well, it may not model the long-term
structure (music structure or recurrent harmonies) of the
whole track, which is quite important for human music
perception and understanding [11]. To solve this problem,
a LSTM layer is added on top of the fully connected
layer. It will help to learn the time dependence in the
fused descriptor sequence of the whole track. The number
of the nodes in LSTM is equal to that of the chunks
included in the whole track. Since the obtained high-
level descriptor contains the information of different music
properties (pitch, tempo, and bass) and that of long-term
structure of the music as well, it may be more suitable for
auto tagging of music with different kinds of semantic tags.

3. EXPERIMENTS

In the experiment, the input of the architecture is 40-
dimensional log-mel filterbank based spectrogram images,
computed every 3.712s (i.e., M = 40, N = 80). As
shown in Figure 1, all three CNNs channels are composed
of 1 convolutional layer and 1 max-pooling layer. The size
of each kernel in the multi-channel convolutional neural
network is listed in Table 1. When 2 (or 3) CNNs channels
are fused, the fully connected layer and the LSTM layer
contain 200 (or 400) and 100 (or 200) units, respectively.
The number of nodes in LSTM is equal to that of the
chunks included in the whole spectrogram. The weights
for all CNN and LSTM layers are randomly initialized to
be Gaussian, with a variance of 1. And a softmax layer
is added upon the LSTM layer to discriminate the tag of

the overall input music. Six kinds of architectures based
on different combinations of CNNs and LSTM (see Table
2) are studied in the experiment. To verify the efficiency
of the proposed high-level musical descriptor extraction
scheme, its performances in music auto-tagging task are
tested on three music collections with different kinds of
semantic tags, in comparison with those obtained by the
hand-crafted schemes or conventional deep learning-based
ones.

The whole architecture shown in Figure 1 is trained
together with the categorical cross-entropy criterion, using
the asynchronous stochastic gradient descent optimization
strategy. The weights for all CNN and LSTM layers are
randomly initialized to be Gaussian, with a variance of 1.
The prediction accuracies obtained by deep learning-based
schemes are computed using 10-fold cross validation with
a randomly generated train-validation-test split of 80%-
10%-10%.

Layer name P-channel T-channel B-channel
Convolutional layer (32,1) (1,60) (13,9)
Max-pooling layer (1,80) (40,1) (4,4)

Table 1: Size of each kernel in the multi-channel convolutional
neural network.

ID Architecture
R0 CNNs (T)
R1 LSTM only
R2 [16] CNNs (T+P)
R3 CNNs (T+P+B)
R4 CNNs (T+P)+LSTM
MCCLSTM CNNs (T+P+B)+LSTM

Table 2: Six architectures studied in the experiments.

3.1 Datasets

The following three music collections with different kinds
of semantic tags are adopted to test the performances of the
proposed scheme in auto-tagging task.

• GTZAN genre collection [24]: Although GTZAN
dataset suffers from some repetitions, mislabelings
and distortions problems [17], it is often adopted to
evaluate genre classification accuracy. This dataset
is composed of 1000 audio tracks, each 30 seconds
long. It contains 10 genres (blues, classical, country,
disco, hiphop, jazz, metal, pop, reggae, and rock),
each of which is represented by 100 tracks.

• Ballroom dataset: This dataset comprises 698 audio
tracks, each around 30 seconds long. It contains
8 ballroom dancing genres (cha-cha-cha 111, jive
60, quickstep 82, rumba 98, samba 86, tango 86,
viennese valtz 65, and slow waltz 110).

• Soundtracks dataset [7] for music and emotion: This
dataset contains 470 film music excerpts, each 15-30
seconds long. The tag of each excerpts is one of the
five discrete emotions: anger 61, fear 116, sadness
108, happiness 89, and tenderness 96 [6].
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3.2 Experimental Results

To verify the efficiency of the MCCLSTM model in
music auto-tagging task, its performance, in terms of
prediction accuracy, is compared with those obtained by
the conventional hand-crafted schemes and other deep
learning-based ones (MLP, CNNs, and LSTM) on each of
above datasets.

3.2.1 Baselines

In the experiment, as shown in Table 3-5, two hand-crafted
schemes [14, 18] and four deep learning-based ones (MLP
[21], R0, R1, and CNNs-3) are included as baselines.
In R0, the output of the tempo-channel CNNs is used
for tag prediction, directly. While, in R1, the LSTM
is learned directly on the spectrogram chunk sequence.
The CNNs-3 scheme is composed of two convolutional
levels, two max-pooling levels, and one fully connected
level (200 units). The sizes of the two convolutional
layers are (5,5) and (3,3), respectively. The sizes of the
two max-pooling layers are both (2,2). The two max-
pooling layers are alternated with convolutional layers.
It should be noted that, since the codes of the schemes
in [14], [18], and [21] are not available, we just include
the prediction accuracies obtained by them on specific
music collections. As shown in Table 3-5, when compared
with the hand-crafted schemes [14, 18], the MCCLSTM
scheme can enhance the prediction accuracy from 3.50% to
16.95%. As for the deep learning-based ones (MLP [21],
R0, R1, and CNNs-3), MCCLSTM scheme can achieve
a higher prediction accuracy of 1.69%-32.99%, 4.90%-
27.90%, and 9.85%-22.35%, on GTZAN, Ballroom, and
Soundtracks datasets, respectively. So, it is verified that the
proposed scheme is superior to the hand-crafted schemes
and conventional deep learning-based ones in auto tagging
task across the datasets included.

Schemes Accuracy: mean%±std
[14] 72.80
[21] (3 layers) 83.00± 1.10
CNNs-3 79.80± 1.70
R0 51.70± 2.60
R1 59.30± 2.20
R2 [16] 78.40± 1.90
R3 82.90± 2.11
R4 83.70± 1.10
MCCLSTM 84.69± 1.76

Table 3: Performance comparison on GTZAN dataset.

Schemes Accuracy: mean%±std
[14] 88.40
CNNs-3 87.00± 1.32
R0 81.79± 4.72
R1 64.00± 1.50
R2 [16] 87.68± 4.44
R3 89.45± 2.18
R4 90.32± 1.12
MCCLSTM 91.90± 2.33

Table 4: Performance comparison on Ballroom dataset.

Schemes Accuracy: mean%±std
[18] 57.40± 5.50
CNNs-3 60.87± 3.76
R0 52.00± 2.20
R1 64.50± 2.00
R2 [16] 57.28± 2.85
R3 63.04± 2.16
R4 73.70± 2.47
MCCLSTM 74.35± 1.63

Table 5: Performance comparison on Soundtracks dataset.

3.2.2 Multi-Channel CNNs Based Schemes

In [16] (denoted as R2 in this paper), the outputs of
the pitch-channel CNNs and the tempo-channel CNNs in
Figure 1 were concatenated to obtain the fused musical
descriptor, which then contains both pitch- and tempo-
relevant information. To make the fused descriptor contain
bass relevant information also, a bass-channel CNNs is
added in R2 to obtain the three-channel CNNs based one
(denoted as R3). As shown in Table 3-5, R3 achieves
higher prediction accuracy than [16] on all three datasets.
Especially, for the music mood auto-tagging (see Table
5), R3 enhances the prediction accuracy by 5.76% when
compared with [16]. The latent reason may be that the
bass relevant information plays a crucial role in mood
classification [1].

3.2.3 Multi-Channel CNNs + LSTM Based Schemes

Music can be described as sequences of events that are
structured in pitch and time [23]. So, how to learn
and represent such complex event sequences (or long-
term structure) is very important for music perception
and cognition. However, CNNs may only model the
local context well but not the long-term dependencies
contained in the whole track [16], which will affect the
accurate describing of the music properties. Considering
that LSTM is good at extracting the sequential information
from the consecutive features, a LSTM layer is added
on the top of the fully connected layer (as shown in
Figure 1) to model the long-term structure property
of the music. To show the benefits of LSTM, it is
applied on the two-channel and three-channel CNNs fused
descriptor, respectively, to construct R4 and MCCLSTM
schemes. The experimental results shown in Table 3-
5 indicate that for the two-channel CNNs based scheme
(R2), the introducing of LSTM layer can help to enhance
the prediction accuracy of 5.30%, 2.64%, and 16.42%
on GTZAN, Ballroom, and Soundtracks, respectively.
For the three-channel CNNs based scheme (R3), the
adding of LSTM layer can help to enhance the prediction
accuracy of 1.79%, 2.45%, and 11.31% on GTZAN,
Ballroom, and Soundtracks, respectively. So, it is verified
that adopting LSTM to analyze the time dependencies
contained in the fused descriptor sequence further may
help to describe the musical characteristic more accurately
and comprehensively.
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4. CONCLUSIONS AND FUTURE WORK

In this paper, we present a unified deep learning
architecture (MCCLSTM) for high-level musical
descriptor extraction. First, the CNNs with different
resolutions are utilized to analyze each spectrogram
chunk of the input music to extract different music
property-relevant descriptors, respectively. Then, the
outputs of each CNNs channels are concatenated and
then passed through a fully connected layer to obtain
the fused descriptor. Finally, the LSTM is performed
on the fused descriptor sequence to model the long-term
structure of the input music. To verify the efficiency of
the MCCLSTM scheme, its performance in music auto
tagging are compared with those obtained by the hand-
crafted schemes and the conventional deep learning (MLP,
CNNs, and LSTM) based ones on three music collections
with different kinds of semantic tags. Experimental results
demonstrate that the proposed scheme is superior to hand-
crafted schemes in [14, 18] and other deep learning-based
ones ( [16, 21], R0, R1, R3, R4, and CNNs-3). However,
since the fused descriptor is obtained by concatenating
the outputs of each CNNs channel, the complementarity
among these three descriptors cannot be fused efficiently.
So, our future work is to study new fusion mechanism,
which can utilize the common as well as complementary
aspects of each musical descriptors more efficiently.
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ABSTRACT

Identifying similarities between ragas in Hindustani mu-
sic impacts tasks like music recommendation, music in-
formation retrieval and automatic analysis of large-scale
musical content. Quantifying raga similarity becomes ex-
tremely challenging as it demands assimilation of both in-
trinsic (viz., notes, tempo) and extrinsic (viz. raga singing-
time, emotions conveyed) properties of ragas. This pa-
per introduces novel frameworks for quantifying similar-
ities between ragas based on their melodic attributes alone,
available in the form of bandish (composition) notation.
Based on the hypothesis that notes in a particular raga
are characterized by the company they keep, we design
and train several deep recursive neural network variants
with Long Short-term Memory (LSTM) units to learn dis-
tributed representations of notes in ragas from bandish
notations. We refer to these distributed representations
as note-embeddings. Note-embeddings, as we observe,
capture a raga’s identity, and thus the similarity between
note-embeddings signifies the similarity between the ragas.
Evaluations with perplexity measure and clustering based
method show the performance improvement in identifying
similarities using note-embeddings over n-gram and uni-
directional LSTM baselines. While our metric may not
capture similarity between ragas in their entirety, it could
be quite useful in various computational music settings that
heavily rely on melodic information.

1. INTRODUCTION

Hindustani music is one of the Indian classical music tradi-
tions developed in northern part of India getting influences
from the music of Persia and Arabia [17]. The south Indian
music tradition is referred to as Carnatic music [30]. The
compositions and their performances in both these classi-
cal traditions are strictly based on the grammar prescribed

c© Joe Cheri Ross, Abhijit Mishra, Kaustuv Kanti Ganguli,
Pushpak Bhattacharyya, Preeti Rao. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Joe Cheri Ross, Abhijit Mishra, Kaustuv Kanti Ganguli, Pushpak Bhat-
tacharyya, Preeti Rao. “Identifying Raga Similarity Through embeddings
learned from Compositions’ notation”, 18th International Society for Mu-
sic Information Retrieval Conference, Suzhou, China, 2017.

by the raga framework. A raga is a melodic mode or tonal
matrix providing the grammar for the notes and melodic
phrases, but not limiting the improvisatory possibilities in
a performance [25].

Raga being one of the most prominent categorization
aspect of Hindustani music, identifying similarities be-
tween them is of prime importance to many Hindustani
music specific tasks like music information retrieval, mu-
sic recommendation, automatic analysis of large-scale mu-
sical content etc. Generally similarity between ragas is
inferred through attributes associated with the ragas. For
instance, in Hindustani music, classification of ragas based
on the tonal material involved is termed as thaat. There are
10 thaats in Hindustani music [8]. prahar, jati, vadi, sam-
vadi etc. are the other important attributes. Most of the
accepted similarities between ragas encompass the simi-
larities in many of these attributes. But these similarities
cannot always be derived exclusively from these attributes.
Melodic similarity is a strong substitute and close to per-
ceived similarity. The melodic similarity between Hindus-
tani ragas is not largely available in documented form. This
necessitates systems for raga similarity measurement to be
devised, even though the number of ragas in the Hindustani
classical framework is fixed.

A composed musical piece termed as bandish is writ-
ten to perform in a particular raga, giving ample freedom
to the performer to improvise upon. As the literal mean-
ing suggests, bandish is tied to its raga, tala (rhythm) and
lyrics. Bandish is taken as the basic framework for a per-
formance which gets enriched with improvisation while
the performer renders it. Realization of a bandish in a per-
formance brings out all the colors and characteristics of
a raga. Given this fact, audio performances of the ban-
dishes can be deemed to be excellent sources for analyzing
raga similarities from a computational perspective. How-
ever, methods for automatic transcription of notations from
audio performances have been elusive; this restricts the
possibilities of exploiting audio-resources. Our work on
raga similarity identification, thus, relies on notations hav-
ing abstract representation of a performance covering most
dimensions of the composition’s raga. We use bandish no-
tations dataset available from swarganga.org [16].

Our proposed approach, based on deep recursive
neural network with bi-directional LSTM as recurrent
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units, learns note-embeddings for each raga from the
bandish notations available for that raga. We partition
our data by raga and train the model independently
for each raga. It produces as many note-embeddings, as
many different ragas we have represented in the dataset.
The cosine similarity between the note-embeddings serves
for analyzing the similarity between the ragas. Our evalu-
ations with perplexity measure and clustering based meth-
ods show the performance improvement in identifying sim-
ilarities using note-embeddings using our approach over
(a) a baseline that uses n-gram overlaps of notes in ban-
dish for raga similarity computation (b) a baseline that uses
pitch class distribution (PCD) and (c) our approach with
uni-directional LSTM. We believe, our approach can be
seamlessly adopted to the Carnatic music style as it fol-
lows most of the principles as Hindustani music.

2. RELATED WORK

To the best of our knowledge no such attempts to identify
raga similarity have been made so far. The work closest
to ours is by Bhattacharjee and Srinivasan [5] who dis-
cuss raga identification of Hindustani classical audio per-
formances through a transition probability based approach.
Here they also discuss about validating the raga identifica-
tion method through identifying known raga relationship
between 10 ragas considered for this work. A good num-
ber of research works have been carried out pertaining to
raga identification in Hindustani music using note intona-
tion [3], chromagram patterns [11], note histogram [12].
Pandey et al. [22] proposed an HMM based approach on
automatically transcribed notation data from audio. There
has been quite a few raga recognition attempts in Carnatic
music also [28, 4, 27, 24].

3. RAGA SIMILARITY BASED ON NOTATION:
MOTIVATION AND CENTRAL IDEA

While the general notion of raga similarity is based on var-
ious dimensions of ragas like thaat, prahar, jati, vadi, sam-
vadi etc., the similarities perceived by humans (musicians
and expert listeners) is predominantly substantiated upon
the melodic structure. A raga-similarity method solely
based on notational (melodic) information can be quite rel-
evant to computational music tasks involving Indian clas-
sical music.

Theoretically, the identity of a raga lies in how certain
notes and note sequences (called phrases) are used in its
compositions. We hypothesize that capturing the semantic
association between different notes appearing in the com-
position can possibly reveal the identity of a raga. More-
over, it can also provide insights into how similar or dis-
similar two ragas can be, based on how similar / dissimilar
the semantic associations of notes in the compositions are.
We believe , notes for a specific raga can be represented in
distributed forms (such as vectors), reflecting their seman-
tic association with other notes in the same raga (analogous
to words having distributed representations in the domain
of computational linguistics [18]). These representations
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Figure 1. Bi-directional LSTM architecture for learning
note-embeddings

could account for how notes are preceded and succeeded
by other notes in compositions.

Formally, in a composition, a note x ∈ V (where V rep-
resents a vocabulary all notes in three octaves) can be rep-
resented as a d dimensional vector that captures semantic-
information specific to the raga that the compositions be-
long to. Such distributed note-representations, referred to
as note-embeddings (|V | × d matrix) can be expected to
capture more information than other forms of sparse rep-
resentations (like presenting notes with unique integers).
We propose a bi-directional LSTM [14] based architecture
that is motivated by the the work of Huang and Wu [15] to
learn note-embeddings characterizing a particular style of
music. We learn note-embeddings for each raga separately
from the compositions available for the raga.

How can note-embeddings help capture similarities be-
tween ragas? We hypothesize that embeddings learned for
a given note for similar ragas will have more similarity. For
example, the representation for note Ma-elevated (equiva-
lent note F# in C-scale) in raga Yaman can be expected to
be very similar to that of Yaman Kalyan as both of these
ragas share very similar melodic characteristics.

4. NEURAL NETWORK ARCHITECTURE FOR
LEARNING NOTE-EMBEDDINGS

We design a deep recurrent neural network (RNN), with
bi-directional LSTMs as recurrent units, that learns to pre-
dict the forth-coming notes that are highly likely to ap-
pear in a bandish composition, given input sequences of
notes. This is analogous to neural language models built
for speech and text synthesis [19]. While our network tries
to achieve this objective, it learns distributed note repre-
sentations by regularly updating the note-embedding ma-
trix. The choice of this architecture is due to the facts that
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(a) for sequence learning problems like ours, RNNs with
LSTM blocks have proven useful [29, 13], and (b) in Hin-
dustani music a note rendered at a moment has dependence
on patterns preceding and succeeding it, motivating us to
use bi-directional LSTM.

The model architecture is shown in Figure 1. Suppos-
ing that a sequence in a composition has n notes (n to be
kept constant by padding wherever necessary), denoted as
x1, x2, x3, ..., xn, where ∀i ∈ n, xi ∈ V . The note xi

can be represented in one-hot format, with the jth com-
ponent of a |V | dimensional zero-vector set to 1, if xi is
the jth element of vocabulary V . Each note is input to a
note-embedding layer W of dimension |V | × d where d is
the note-embedding dimension. The output of this layer
is a sequence of embeddings ei of dimension d, obtained
by performing a matrix multiplication between xi with W .
The embedding sequences e1, e2, e3, ..., en are input to two
layers of bi-directional LSTMs.

For each time-step (i ∈ n), the context-representations
learned by the outer-bidirectional LSTM layer (Ci) is
passed through a softmax layer that computes the con-
ditional probability distribution of all possible notes given
the context representations given by LSTM layers.

For each time-step, the prediction of the forthcoming
note in the sequence is done by choosing the note that max-
imizes the likelihood given the context i.e.

x̂ = argmax
j∈|V |

P (xi+1 = vj |Ci) (1)

where Ci is the merged context representations learned by
the forward and backward sequences in the bi-directional
LSTM layers. Probability of a note at a time-step is com-
puted by the softmax function as,

P (xi+1 = vj |Ci) =
exp(Uj

TCi + bj)∑|V |
k=1 exp(Uk

TCi + bk)
(2)

where U is the weight matrix in the softmax layer and
bj is bias term corresponding to note vj .

The embedding layer is initialized randomly and during
training, errors (in terms of cross-entropy) are back prop-
agated upto the embedding layer, resulting in the updation
of the embedding-matrix. Cross-entropy is computed as,

1

M × T

M∑
i=1

T∑
t=1

cross entropy(yit, ŷ
i
t) (3)

cross entropy(y, ŷ) = −
|V |∑
p=1

yp log ŷp (4)

Where M is the number of note sequences in a raga and T
is the sequence length. yit denotes the expected distribution
of ith note sequence at time-step t (bit corresponding to
the expected note set to 1 and rest to 0s) and ŷit denotes the
predicted distribution. Since our main objective is to learn
semantic representation of notes through note-embeddings
(and not predict note sequences), we do not heavily reg-
ularize our system. Moreover, our network design is in-
spired by Mikolov et al. [18], who also do not heavily
regularize their system while learning word-embeddings.

4.1 Raga Similarities from Note-embeddings

For each raga our network learns a |V | × d matrix repre-
senting |V | note-embeddings. We compute (dis)similarity
between two ragas by computing pairwise cosine distance
between embedding vectors of every note in V and then
averaging over all notes. This is based on the assump-
tion that distributed representations of notes (as captured
by the embeddings) will be similar across ragas that are
similar. The choice of cosine similarity (or cosine distance)
for computing the similarity between the note-embeddings
is driven by its robustness as a measure of vector similarity
for vectors and its predominant usage for measuring word
embedding similarity [20]. Appropriate distance measures
have been adopted for non-LSTM based baselines.

5. BASELINES FOR COMPARISON

To confirm the validity, we compare our approach with a
few baseline approaches.

5.1 N-gram Based Approach

The N-gram based baseline creates an n-gram profile based
on the count of each n-gram from the available compo-
sitions in a raga. We compute the n-gram for n ranging
from 1 to 4. The distance between two ragas is computed
using the out-of-place measure described in Cavnar et al.
[7]. Out-of-place measure depends on the rank order statis-
tics of the two profiles. It computes how far 2 profiles are
out-of-place w.r.t the n-gram rank order statistics. The dis-
tance is taken as the l2 norm of all the n-gram rank differ-
ences, normalized by the number of n-grams. Intuitively,
the more similar two ragas are, more would the N-gram
profiles overlap, reducing the l2 norm.

5.2 Pitch Class Distribution (PCD)

This method computes the distribution of notes from the
count of notes in a raga’s bandish dataset. 36 notes(across
3 octaves) are considered separately for computing PCD.
As the method describes, sequence information is not cap-
tured here. The similarity distance between two ragas is
computed by taking the euclidean distance between the
corresponding pitch class distributions; the assumption is
that each pitch class two similar ragas will share similar
probability value, thereby reducing the euclidean distance.
For the raga recognition task by Chordia et al. [9], eu-
clidean distance is used for computing the distance be-
tween pitch class distributions in one of their approaches.
This baseline is to verify the relevance of sequence infor-
mation in capturing raga similarity.

5.3 Uni-directional LSTM

The effectiveness of a bi-directional LSTM for modeling
Hindustani music is verified with this baseline. The ar-
chitecture is same as described in Figure 1, except for the
replacement of bi-directional LSTMs with uni-directional
LSTMs. Since there is only forward pass in uni-directional
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LSTM, the merge operation in bi-directional LSTM design
is not required here.

6. DATASET

Our experiments are carried out with the Hindustani ban-
dish dataset available from swarganga.org, created by
Swarganga music foundation. This website is intended to
support beginners in Hindustani music. This has a large
collection of Hindustani bandishes, with lyrics, notation,
audio and information on raga, tala and laya. Figure 2

Figure 2. A bandish instance from swarganga website.

shows a bandish instance from swarganga. The name of
this bandish is ‘jaane naa jaane haree’ in raga Adana and
in teen taal (16 beats cycle). The first row contains the bol
information which details the tabla strokes corresponding
to the tala of the bandish. Other rows have lyrics (bottom)
along with the notes (top) corresponding to the lyrical sec-
tions. Each row corresponds to a tala cycle. In Hindustani
notation system S r R g G m M P d D n N corresponds to C
C# D D# E F F# G G# A A# B notes in western music no-
tation system, when the tonic is at C. A note followed by
a single quotation at the right shows it is in the higher oc-
tave and a single quotation at the left implies lower octave.
Notes mentioned within parenthesis are kan notes (grace
notes). Each column represents a beat duration.

From this dataset we have considered 144 ragas for our
study which are represented well with sufficient number of
bandishes. Table 1 presents dataset statistics.

#bandishes #ragas #notes #kan swaras
(grace notes)

2955 144 2,95,411 50,749

Table 1. Dataset

6.1 Data Pre-processing

We take all bandishes in a raga for training the note-
embeddings for the raga. Kan notes are also treated in
the same way as other notes in the composition, since the
kan notes also follow the raga rules. The notes are en-
coded into 36 unique numbers. The notes corresponding
to a tala (rhythm) cycle is taken as a sequence. The input

sequence length is determined by taking the average length
of the sequences in a raga dataset; zero-padding (to the left)
and left-trimming of sequences are applied to sequences
shorter and longer than the average length respectively. If
the length of a sequence is more than double the defined
sequence length, it is split into 2 separate sequences.

7. EXPERIMENTS

7.1 Evaluation Methods

We rely on 2 different evaluation methods to validate our
approach. The first one is based on perplexity that eval-
uates how well a note-sequence generator model (neural-
network based, n-gram based etc.) can predict a new se-
quence in a raga. Since note-embeddings are an integral
part of our architecture, a low-perplexed note-sequence
generator model should learn more accurate note embed-
dings. The second method relies on clustering of ragas
based on different raga-similarity measures computed us-
ing our approach and baselines.

7.1.1 Perplexity

Perplexity for a language model [2], is computed based on
the probability values a learned model assigns to a vali-
dation set [10]. For a given model, perplexity (PP) of a
validation set with notes N1, N2, ..., Nn is defined as

PP (N1, N2, ..., Nn) =
n

√
1

P (N1, N2, ..., Nn)
(5)

where P (N1, N2, ..., Nn) is the joint probability of notes
in the validation set. A better performing model will
have a lower perplexity over the validation set. For each
raga dataset, perplexity is measured with a validation set
taken from the dataset. For the LSTM based methods,
the learned neural model provides the likelihood of a note,
whereas the n-gram baseline uses the learned probabilities
for different n-grams.

7.1.2 Clustering

For this evaluation, we take 14 ragas for which similari-
ties between all the ragas and subsets of these ragas are
known. These similarities are determined with the help of
a professional Hindustani musician. The selected ragas are
Shuddha Kalyan, Yaman Kalyan, Yaman, Marwa, Puriya,
Sohni, Alhaiya Bilawal, Bihag, Shankara, Kafi, Bageshree,
Bhimpalasi, Bhairav and Jaunpuri. The first clustering
(Clustering 1) checks if all the 14 ragas are getting
clustered according to their thaat. Thaat wise grouping of
these 14 ragas are shown in Table 2. Since there are 6 dif-
ferent thaats, k is taken as 6 for this clustering. For the
other clusterings, different subsets of ragas are selected ac-
cording to the similarities to be verified. Other similarities
and the ragas chosen (from the 14 ragas) to verify that are
as listed below

• Clustering 2: Sohni is more similar to Ya-
man and Yaman Kalyan compared to ragas in other
thaats because they share the same characteristic
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Thaat Ragas

Kalyan Shuddha Kalyan, Yaman Kalyan, Yaman
Marwa Marwa, Puriya, Sohni
Bilawal Alhaiya Bilawal, Bihag, Shankara

Kafi Kafi, Bageshree, Bhimpalasi
Bhairav Bhairav
Asavari Jaunpuri

Table 2. Thaat based grouping of the selected ragas

phrase (MDNS). To verify this, Sohni, Yaman, Ya-
man Kalyan, Kafi, Bhairav are considered taking
k=3 and we expect the first 3 ragas to get clustered
together and, Kafi and Bhairav in 2 different clus-
ters.

• Clustering 3: Within Kafi thaat, Bhimpalasi
and Bageshree are more similar compared to their
similarity with Kafi because of the similarity in these
ragas’ characteristic phrases (mDnS, mPnS). To ver-
ify this, these 3 ragas are considered for clustering
taking k=2 and we expect Bhimpalasi and Bageshree
to get clustered together and Kafi in another cluster.

• Clustering 4: Raga Jaunpuri is more similar to
Kafi thaat ragas because they differ only by a note.
To verify this, Jaunpuri, Kafi, Bageshree, Bhim-
palasi, Bhairav, Shuddha Kalyan, Puriya, Bihag are
considered taking k=5. We expect Jaunpuri to be
clustered together with Kafi, Bageshree and Bhim-
palasi and the other ragas in 4 different clusters.

We apply these four clustering methods on our test dataset
and evaluation scores pertaining to each clustering method
is averaged to get a single evaluation score.

7.2 Setup

For the experiments, we consider notes from 3 octaves,
amounting to a vocabulary size of 37 (including the null
note). The common hyper-parameters for the LSTM based
methods (our approach and one of the baselines) are kept
the same. The number of LSTM blocks used in the LSTM
layer is set to the sequence length. Each LSTM block has
24 hidden units, mapping the output to 24 dimensions. For
all our experiments, embedding dimension is empirically
set to 36. We use tensorflow (version: 0.10.0) [1] for the
LSTM implementations. Note sequences are picked from
each raga dataset ensuring the presence of ∼100 notes in
total for the validation set. This size is made variable in
order to accommodate variable length sequences. While
training the network, the perplexity of the validation set
is computed during each epoch and used for setting the
early-stopping criterion. Training stops on achieving min-
imum perplexity and the note-embeddings at that instance
are taken for our experiments.

For the clustering baseline, we employ one of the hierar-
chical clustering methods, agglomerative clustering (link-
age:complete). In our setting, a hierarchical method is
preferred over K-means because, K-means work well only
with isotropic clusters [21] and it is empirically observed

that our clusters are not always isotropic. Also when exper-
imented, the clustering scores with K-means are less com-
pared to agglomerative clustering for all the approaches.
For implementing the clustering methods (both agglomer-
ative and k-means) we use scikit-learn toolkit [23].

8. RESULTS

Before reporting our qualitative and quantitative results, to
get a feel of how well note-embeddings capture raga simi-
larities, we first visualize the 37× 36 note-embedding ma-
trices by plotting their heatmaps, higher intensity indicat-
ing higher magnitude of the vector component. Figure 3
shows heatmaps of embedding matrices for three ragas viz.
Yaman Kalyan, Yaman and Pilu. Yaman Kalyan and Ya-
man are more similar to each other than Pilu. This is quite
evident from the embedding heatmaps.

Figure 3. Note-embeddings visualization of (a) Yaman
Kalyan (b) Yaman (c) Pilu

The results of quantitative evaluation is now reported
with the evaluation methods described in Section 7.1. Fur-
ther, a manual evaluation is done with the help of trained
Hindustani musician considering all the 144 ragas men-
tioned in the dataset, to better understand the distinctions
between bi-LSTM and uni-LSTM. Table 3 shows perplex-

Experiment Perplexity

N-gram 6.39
uni-LSTM 6.40
bi-LSTM 2.31

Table 3. Results: Comparison with perplexity on valida-
tion set (Best performance in bold)

ity values (averaged across all the ragas in the dataset)
with the validation set for our approach (bi-LSTM) and
the baseline approaches with n-gram and uni-directional
LSTM (uni-LSTM). We can not report perplexity for the
PCD approach as the likelihood of the notes (and hence,
the perplexity of the model) can not be determined with
PCD. We observe that the perplexity values of n-gram and
uni-LSTM are quite similar. The lower perplexity value
with bi-LSTM shows its capability in generating a new
notes sequence adhering to the raga rules. This shows
the performance advantage of bi-LSTM over the base-
lines on note-sequence generation task, thereby provid-
ing indications on the goodness of the note-embeddings
learned. Moreover, the bi-LSTM model, having the lowest
perplexity, is able to capture the semantic association be-
tween notes more accurately, yielding more accurate note-
embeddings.
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Experiment Homogeneity Completeness V-measure

N-gram 0.3973 0.4036 0.4004
PCD 0.6430 0.6488 0.6451

uni-LSTM 0.7828 0.7858 0.7843
bi-LSTM 0.9008 0.9069 0.9038

Table 4. Results: Comparison of clustering results with
different clustering metrics (Best performance in bold)

Table 4 shows the results of clustering using a stan-
dard set of metrics for clustering, viz. homogeneity, com-
pleteness and V-measure [26]. The clustering scores with
n-gram and PCD baselines show their inability towards
identifying the known similarities between the ragas. The
bi-LSTM approach performs better compared to the base-
lines; the performance of uni-LSTM baseline is compara-
ble with bi-LSTM approach. On analyzing each individual
clustering, we observed,

• N-gram approach does not do well for all the indi-
vidual clusterings, resulting in poor clustering scores
compared to other approaches. A relatively better
performance is observed only with Clustering
4.

• PCD has better scores compared to n-gram
as it out-performs n-gram with a huge mar-
gin in Clustering 1. PCD’s performance in
Clustering 1 is superior to the LSTM ap-
proaches as well. However, its performance is quite
inferior to that of other approaches in the other three
clustering settings. PCD’s ability in modeling notes
distribution efficiently helps in thaat based cluster-
ing (Clustering 1), because thaat based clas-
sification quite depends on the distribution of tonal
material.

• uni-LSTM performance is better than bi-LSTM in
Clustering 1 where the ragas are supposed to
be clustered according to the thaat. But it fails
to cluster Sohni, Yaman and Yaman Kalyan in
the same cluster, leading to poor performance in
Clustering 2

• Even though bi-LSTM gives slightly lower scores
with Clustering 1, it does perfect clustering for
the other three clustering schemes. This gives an in-
dication on the capability of bi-LSTM approach for
identifying melodic similarities beyond thaat.

Overall, these observations show the practicality of both
the LSTM based methods to learn note-embeddings with
the aim of identifying raga similarity.

Figures 4 show Multi-Dimensional Scaling (MDS)
[6] visualizations showing the similarity between note-
embeddings of the selected 14 ragas (same color speci-
fies same thaat) with bi-LSTM approach. These visual-
izations give an overall idea on how well the similarities
are captured. The finer similarities observed in the clus-
tering evaluations are not clearly perceivable from these
visualizations.

Figure 4. MDS visualization of bi-LSTM note-
embeddings similarities

We have also carried out separate experiments by in-
cluding note duration information along with the notes by
pre-processing the data, but the performance is worse com-
pared to the reported results. Chordia [9] has also reported
that weighting by duration had no impact on their raga
recognition task.

To confirm the validity of our approach, one expert
musician checked the MDS visualizations of similarities
between all 144 ragas with bi-LSTM and uni-LSTM ap-
proaches 1 . The musician identified clusters of similar ra-
gas in both the visualizations matching with his musical
notion. A few observations made are: Asavari thaat ragas
appear to be closer to each other with bi-LSTM compared
to uni-LSTM. Also Miyan ki todi, Multani, Gujari Todi
which are very similar ragas are found closer in bi-LSTM.
But the same thaat ragas Marwa, Puriya and Sohni are
found to be more similar to each other with uni-LSTM.

9. CONCLUSION AND FUTURE WORK

This paper investigated on the effectiveness of note-
embeddings for unveiling the raga similarities and on
methods to learn note-embeddings. The perplexity
based evaluation shows the superior performance of bi-
directional LSTM method over unidirectional-LSTM and
other baselines. The clustering based evaluation also con-
firms this, but it also shows that the performance of unidi-
rectional approach is comparable to the bi-directional ap-
proach for certain cases.

The utility of our approach is not confined only to raga
similarity; it can also be extended to verify if a given ban-
dish complies with the raga rules. This immensely ben-
efits to Hindustani music pedagogy; for instance, it helps
to select the right bandish for a learner. In future, for bet-
ter learning of note-embeddings, we plan to design a net-
work to handle duration information effectively. The cur-
rent experiments take one line in the bandish as a sequence.
We plan to experiment with more meaningful segmentation
schemes like lyrical phrase delimited by a long pause.

1 The note-embeddings of all 144 ragas are available for
download from https://github.com/joecheriross/
raga-note-embeddings
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ABSTRACT

Many methods for automatic piano music transcription in-
volve a multi-pitch estimation method that estimates an
activity score for each pitch. A second processing step,
called note segmentation, has to be performed for each
pitch in order to identify the time intervals when the notes
are played. In this study, a pitch-wise two-state on/off
first-order Hidden Markov Model (HMM) is developed
for note segmentation. A complete parametrization of the
HMM sigmoid function is proposed, based on its orig-
inal regression formulation, including a parameter α of
slope smoothing and β of thresholding contrast. A com-
parative evaluation of different note segmentation strate-
gies was performed, differentiated according to whether
they use a fixed threshold, called “Hard Thresholding”
(HT), or a HMM-based thresholding method, called “Soft
Thresholding” (ST). This evaluation was done following
MIREX standards and using the MAPS dataset. Also, dif-
ferent transcription and recording scenarios were tested us-
ing three units of the Audio Degradation toolbox. Results
show that note segmentation through a HMM soft thresh-
olding with a data-based optimization of the {α, β} pa-
rameter couple significantly enhances transcription perfor-
mance.

1. INTRODUCTION

Work on Automatic Music Transcription (AMT) dates
back more than 30 years [21], and has known numerous
applications in the fields of music information retrieval, in-
teractive computer systems, and automated musicological
analysis [16]. Due to the difficulty in producing all the in-

c© Dorian Cazau, Yuancheng Wang, Olivier Adam, Qiao
Wang, Grégory Nuel. Licensed under a Creative Commons Attribu-
tion 4.0 International License (CC BY 4.0). Attribution: Dorian
Cazau, Yuancheng Wang, Olivier Adam, Qiao Wang, Grégory Nuel. “IM-
PROVING NOTE SEGMENTATION IN AUTOMATIC PIANO MUSIC
TRANSCRIPTION SYSTEMS WITH A TWO-STATE PITCH-WISE
HMM METHOD”, 18th International Society for Music Information Re-
trieval Conference, Suzhou, China, 2017.

formation required for a complete musical score, AMT is
commonly defined as the computer-assisted process of an-
alyzing an acoustic musical signal so as to write down the
musical parameters of the sounds that occur in it, which
are basically the pitch, onset time, and duration of each
sound to be played. In this study, we will restrict our-
selves to this task of “low-level” transcription. Despite this
large enthusiasm for AMT challenges, and several audio-
to-MIDI converters available commercially, perfect poly-
phonic AMT systems are out of reach of today’s technol-
ogy.

The diversity of music practice, as well as supports
of recording and diffusion, makes the task of AMT very
challenging. These variability sources can be partitioned
based on three broad classes: 1) instrument based, 2) mu-
sic language model based and 3) technology based. The
first class covers variability from tonal instrument tim-
bre. All instruments possess a specific acoustic signa-
ture, that makes them recognizable among different instru-
ments playing a same pitch. This timbre is defined by
acoustic properties, both spectral and temporal, specific
to each instrument. The second class includes variability
from the different ways an instrument can be played, that
vary with the musical genre (e.g. tonality, tuning, rhythm),
the playing techniques (e.g. dynamics, plucking modes),
and the personal interpretations of a same piece. These
first two classes induce a high complexity of note spec-
tra over time, whose non-stationarity is determined both
by the instrument and the musician playing characteris-
tics. The third class includes variability from electrome-
chanics (e.g. transmission channel, microphone), environ-
ment (e.g. background noise, room acoustics, distant mi-
crophone), data quality (e.g. sampling rate, recording qual-
ity, audio codec/compression). For example, in ethnomu-
sicological research, extensive sound datasets currently ex-
ist, with generally poor quality recordings made on the
field, while a growing need for automatic analysis appears
[9, 18, 20, 25].

Concerning AMT methods, many studies have used
rank reduction and source separation methods, exploiting
both the additive and oscillatory properties of audio sig-
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nals. Among them, spectrogram factorization methods
have become very popular, from the original Non-negative
Matrix Factorization (NMF) to the recent developments
of the Probabilistic Latent Component Analysis (PLCA)
[2, 5]. PLCA is a powerful method for Multi-Pitch Esti-
mation (MPE), representing the spectra as a linear com-
bination of vectors from a dictionary. Such models take
advantage of the inherent low-rank nature of magnitude
spectrograms to provide compact and informative descrip-
tions. Their output generally takes the form of a pianoroll-
like matrix showing the “activity” of each spectral basis
against time, that is itself discretized into successive time
frame of analysis (of the order of magnitude of 11 ms).
From this activity matrix, the next processing step in view
of AMT is note segmentation, that aims to identify for each
pitch the time intervals when the notes are played. To per-
form this operation, most spectrogram factorization-based
transcription methods [11, 15, 22] use a simple threshold-
based detection of the note activations from the pitch activ-
ity matrix, followed by a minimum duration pruning. One
of the main drawback of this PLCA method with a simple
threshold is that all successive frame are processed inde-
pendently from one another, and thus temporal correlation
between successive frames is not modeled. One solution
that has been proposed is to jointly learn spectral dictionar-
ies as well as a Markov chain that describes the structure
of changes between these dictionaries [5, 22, 23].

In this paper, we will focus on the note segmentation
stage, using a pitch-wise two-state on/off first-order HMM,
initially proposed by Poliner et al. [24] for AMT. This
HMM allows taking into account the dependence of pitch
activation across time frames. We review the formalism of
this model, including a full parametrization of the sigmoid
function used to map HMM observation probabilities into
the [0, 1] interval, with a term α of slope smoothing and
β of thresholding contrast. After demonstrating the rel-
evance of an optimal adjustment of these parameters for
note segmentation, a supervised approach to estimate the
sigmoid parameters from a learning corpus is proposed.
Note that Cheng et al. [8] explicitly modeled the different
stages of a piano sound for note tracking, while we rather
focus on more general musical features such as dynam-
ics. Also, the Audio Degradation toolbox [19] was used
to build three “degraded” sound datasets that have allowed
to evaluate transcription performance on real life types of
audio recordings, such as radio broadcast and MP3 com-
pressed audio, that are almost never dealt with in transcrip-
tion studies.

2. METHODS

2.1 Background on PLCA

PLCA is a probabilistic factorization method [26] based
on the assumption that a suitably normalized magnitude
spectrogram, V , can be modeled as a joint distribution over
time and frequency, P (f, t), with f is the log-frequency
index and t = 1, . . . , T the time index with T the number
of time frames. This quantity can be factored into a frame

probability P (t), which can be computed directly from the
observed data (i.e. energy spectrogram), and a conditional
distribution over frequency bins P (f |t), as follows [7]

P (f |t) =
∑
p,m

P (f |p,m)P (m|p, t)P (p|t) (1)

where P (f |p,m) are the spectral templates for pitch p =
1, . . . , Np (with Np the number of pitches) and playing
mode m, P (m|p, t) is the playing mode activation, and
P (p|t) is the pitch activation (i.e. the transcription). In
this paper, the playing mode m will refer to different play-
ing dynamics (i.e. note loudness). To estimate the model
parameters P (m|p, t) and P (p|t), since there is usually
no closed-form solution for the maximization of the log-
likelihood or the posterior distributions, iterative update
rules based on the Expectation-Maximization (EM) algo-
rithm [10] are employed (see [4] for details). The pitch
activity matrix P (p, t) is deduced from P (p|t) with the
Bayes’ rule

P (p, t) = P (t)P (p|t) (2)

PLCA note templates are learned with pre-recorded iso-
lated notes, using a one component PLCA model (i.e. m =
1 in Eq. (1). Three different note templates per pitch are
used during MPE. In this paper, we use the PLCA-based
MPE system developed by Benetos and Weyde [6] 1 .

In the following, for p = 1, . . . , Np and t = 1, . . . , T ,
we define the logarithmic pitch activity matrix as

Xp,t = log
(
P (p, t)

)
(3)

2.2 Note Segmentation Strategies

2.2.1 HT: Hard Thresholding

The note segmentation strategy HT consists of a sim-
ple thresholding βHT of the logarithmic pitch activity ma-
trix X(p, t), as it is most commonly done in spectrogram
factorization-based transcription or pitch tracking systems,
e.g. in [11, 15, 22]. This HT is sometimes combined with
a minimum duration constraint with typical post filtering
like “all runs of active pitch of length smaller than k are set
to 0”.

2.2.2 ST: Soft Thresholding

In this note segmentation strategy, initially proposed by
Poliner and Ellis [24], each pitch p is modelled as a two-
state on/off HMM, i.e. with underlying states qt ∈ {0, 1}
that denote pitch activity/inactivity. The state dynamics,
transition matrix, and state priors are estimated from our
“directly observed” state sequences, i.e. the training MIDI
data, that are sampled at the precise times corresponding
to the analysis frames of the activation matrix.

For each pitch p, we consider an independent HMM
with observationsXp,t, that are actually observed, and hid-
den binary Markov sequenceQ = q1, . . . , qT , illustrated in
figure 1. The Markov model then follows the law:

1 Codes are available at https://code.soundsoftware.ac.
uk/projects/amt_mssiplca_fast.
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Xp,1 Xp,2 Xp,3 Xp,T

q1 q2 q3 qT

. . . .

Figure 1. Graphical representation of the two-state on/off
HMM. qt ∈ {0, 1} are the underlying states label at time t,
and ot the the probability observations.

P (Q,X) ∝ P (q1)
T∏
t=2

P (qt|qt−1)
T∏
t=1

P (qt|Xp,t) (4)

where ∝ means “proportional to”, as the probabilities do
not sum to 1. For t = 1, . . . , T , we assume that:

P (qt = 0|qt = 0) = 1−τ0 P (qt = 1|qt = 0) = τ0 (5)

P (qt = 0|qt = 1) = τ1 P (qt = 1|qt = 1) = 1−τ1 (6)

with τ0, τ1 ∈ [0, 1] the transition probabilities, and the con-
vention that q0 = 0 because all notes are inactive at the
beginning of a recording. The transition probabilities τ
correspond to the state transitions: on/on, on/off, off/on,
off/off. Parameter τ0 (resp. τ1) is directly related to the
prior duration of inactivity (resp. activity) of pitch p. With-
out observation, the length of an inactivity run (resp. activ-
ity run) would be geometric with parameter τ0 (resp. τ1)
with average length 1/τ0 (resp. 1/τ0).

The observation probabilities are defined as follows, us-
ing a sigmoid curve with the PLCA pitch activity matrix
Xp,t as input,

P (qt = 0|Xp,t) ∝ 1/Z (7)

P (qt = 1|Xp,t) ∝ e[e
α(Xp,t−β)]/Z (8)

with α, β ∈ R, and Z defined such as
∑
qt
P (qt|Xp,t) =

Z. The parameter of the model is denoted θ = (τ, α, β)
which includes the specific value for all pitches. The HMM
model is solved using classical forward-backward recur-
sions for all t = 1, . . . , T , i.e. Pθ(qt = s|Xp,t) = ηs(t) ∝
Ft(s)Bt(s).

Note that the HMM definition combines both the spa-
tial pitch dependence (the Markov model) with a PLCA
generative model. As a result of this combination, the re-
sulting model is defined up to a constant factor, but this is
not a problem since we will exploit this model to compute
posterior distribution. In contrast, in the initial model [24],
one should note that a similar model is suggested where the
PLCA generative part is associated with the so-called “vir-
tual observation”. We here preferred the fully generative
formulation presented above, but both models are totally
equivalent.

Using logarithmic values, the parameters {α, β}, ex-
pressed in dB, are directly interpretable by physics. β is an

offset thresholding parameter, which allows separating sig-
nal from noise (or in other words, i.e. the higher its value,
the more pitch candidates with low probability will be dis-
carded.), while α is a contrast parameter, a value superior
to 0 is used for a fast switch from noise to signal (i.e. low
degree of tolerance from threshold), and a value inferior
to 0 for a smoother switch. Figure 2 shows a sigmoid
curve with different values of β and α. This suggested
parametrization {α, β} can therefore be seen as a general-
ization of the initial [24]’s model.

Figure 2. Effects of the parameters β (top) and α (bottom)
on the theoretical sigmoid given by Eq. (8). On top, a fixed
value of 0 is set to α, and on bottom, a fixed value of -5 is
set to β.

For this note segmentation strategy ST, we use the set of
parameters {α, β} = {0, βHT}, as used in previous studies
[5, 24].

2.2.3 OST: Optimized Soft Thresholding

The note segmentation strategy OST is based on the same
HMM model as the ST strategy, although the parameters
{α, β} are now optimized for each pitch. Given the ground
truth of a musical sequence test, we use the Nelder-Mead
optimizer of the R software to iteratively find the optimal
{α, β} parameters that provide the best transcription per-
formance measure. The Nelder-Mead method is a simplex-
based multivariate optimizer known to be slow and impre-
cise but generally robust and suitable for irregular and dif-
ficult problems. For optimization, we use the Least Mean
Square Error (LMSE) metric between ground truths and
marginal posterior probabilities of pitch activation, as it al-
lows to take into account the precise shape of activation
profiles. Figure 3 provides an example of this optimization
through the contour graph of the log10(LMSE) function.
However, classical AMT error metrics (see Sec. 2.3.3) will
be used as display variables for graphics as they allow di-
rect interpretation and comparison in terms of transcription
performance.

In real world scenarios of AMT, the ground truth of a
musical piece is never known in advance. A common strat-
egy to estimate model or prior knowledge parameters is to
train them on a learning dataset that is somewhat similar to
the musical piece to be transcribed. This was done in this
study for the {α, β} parameters, through a cross-validation
procedure with the LMSE-optimization (see Sec. 2.3.2).
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Figure 3. Example of a data-based optimization of
the {α, β} parameters through the contour graph of
the log10(LMSE) function, using the musical piece
MAPS MUS-alb esp2 AkPnCGdD. The dashed white
lines point to the local minimum.

2.3 Evaluation Procedure

2.3.1 Sound Dataset

To test and train the AMT systems, three different sound
corpus are required: audio musical pieces of an instrument
repertoire, the corresponding scores in the form of MIDI
files, and a complete dataset of isolated notes for this in-
strument. Audio musical pieces and corresponding MIDI
scores were extracted from the MAPS database [12], be-
longing to the solo classical piano repertoire. The 56 musi-
cal pieces of the two pianos labelled AkPnCGdD and EN-
STDkCl were used, and constituted our evaluation sound
dataset called Baseline. The first piano model is the virtual
instrument Akoustik Piano (concert grand D piano) devel-
oped by the software Native Instruments. The second one
is the real upright piano model Yamaha Disklavier Mark
III. Three other sound datasets of musical pieces have then
been defined as follows:

• MP3 dataset. It corresponds to the same musical
pieces of the dataset Baseline, but modified with
the Strong MP3 Compression degradation from the
Audio Degradation toolbox [19]. This degradation
compresses the audio data to an MP3 file at a con-
stant bit rate of 64 kbps using the Lame encoder ;

• Smartphone dataset. It corresponds to the same mu-
sical pieces of the dataset Baseline, but modified
with the Smartphone Recording degradation from
the Audio Degradation toolbox [19]. This degrada-
tion simulates a user holding a phone in front of a
speaker: 1. Apply Impulse Response, using the IR
of a smartphone microphone (“Google Nexus One”),
2. Dynamic Range Compression, to simulate the
phone’s auto-gain, 3. Clipping, 3 % of samples, 4.
Add Noise, adding medium pink noise ;

• Vinyl dataset. It corresponds to the same musical
pieces of the dataset Baseline, but modified with
the Vinyl degradation from the Audio Degradation
toolbox [19]. This degradation applies an Impulse
Response, using a typical record player impulse re-
sponse, adds Sound and record player crackle, a

Wow Resample, imitating wow-and-flutter, with the
wow-frequency set to 33 rpm (speed of Long Play
records), and adds Noise and light pink noise.

For all datasets, isolated note samples were extracted
from the RWC database (ref. 011, CD 1) [14].

2.3.2 Cross-validation

During a cross-validation procedure, the model is fit to a
training dataset, and predictive accuracy is assessed using
a test dataset. Two cross-validation procedures were used
for training the {α, β} parameters of the OST strategy, and
testing separately the three thresholding strategies. The
first one is the “leave-one-out” cross-validation procedure,
using only one musical piece for parameter training and
testing all others. This process is iterated for each musical
piece. The second one is a repeated random sub-sampling
validation, also known as Monte Carlo cross-validation. At
each iteration, the complete dataset of musical pieces is
randomly split into training and test data accordingly to a
given training/test ratio. The results are then averaged over
the splits. The advantage of this method (over k-fold cross
validation) is that the proportion of the training/test split is
not dependent on the number of iterations (folds). A num-
ber of 20 iterations was used during our simulations. We
also tested different training/test ratio, ranging from 10/90
% to 80/20 % in order to evaluate the influence of the train-
ing dataset on transcription performance.

2.3.3 Evaluation Metrics

For assessing the performance of our proposed transcrip-
tion system, frame-based evaluations are made by com-
paring the transcribed output and the MIDI ground-truth
frame by frame using a 10 ms scale as in the MIREX
multiple-F0 estimation task [1]. We used the frame-based
recall (TPR), precision (PPV), the F-measure (FMeas) and
the overall accuracy (Acc)

TPR =

∑T
t=1 TP[t]∑T

t=1 TP[t] + FN[t]
(9)

PPV =

∑T
t=1 TP[t]∑T

t=1 TP[t] + FP[t]
(10)

FMeas =
2.PPV.TPR
PPV + TPR

(11)

Acc =

∑T
t=1 TP[t]∑T

t=1 TP[t] + FP[t] + FN[t]
(12)

where T is the total number of time frames, and TP[t],
TN[t], FN[t] and FP[t] are the numbers of true positive, true
negative, false negative and false positive pitches at frame
t. The recall is the ratio between the number of relevant
and original items; the precision is the ratio between the
number of relevant and detected items; and the F-measure
is the harmonic mean between precision and recall. For all
these evaluation metrics, a value of 1 represents a perfect
match between the estimated transcription and the refer-
ence one.
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2.3.4 MPE Algorithms on the Benchmark

In this study, we tested the four following MPE algorithms:

• Tolonen2000, this algorithm 2 [27] is an efficient
model for multipitch and periodicity analysis of
complex audio signals. The model essentially di-
vides the signal into two channels, below and above
1000 Hz, computes a “generalized” autocorrelation
of the low-channel signal and of the envelope of the
high-channel signal, and sums the autocorrelation
functions ;

• Emiya2010, this algorithm 3 [12] models the spec-
tral envelope of the overtones of each note with a
smooth autoregressive model. For the background
noise, a moving-average model is used and the com-
bination of both tends to eliminate harmonic and
sub-harmonic erroneous pitch estimations. This
leads to a complete generative spectral model for
simultaneous piano notes, which also explicitly in-
cludes the typical deviation from exact harmonicity
in a piano overtone series. The pitch set which max-
imizes an approximate likelihood is selected from
among a restricted number of possible pitch combi-
nations as the one ;

• HALCA, the Harmonic Adaptive Latent Compo-
nent Analysis algorithm 4 [13] models each note in
a constant-Q transform as a weighted sum of fixed
narrowband harmonic spectra, spectrally convolved
with some impulse that defines the pitch. All param-
eters are estimated by means of the EM algorithm,
in the PLCA framework. This algorithm was evalu-
ated by MIREX and obtained the 2nd best score in
the Multiple Fundamental Frequency Estimation &
Tracking task, 2009-2012 [1] ;

• Benetos2013, this PLCA-based MPE system 5 [3]
uses pre-fixed templates defined with real note sam-
ples, without updating them in the maximization
step of the EM algorithm. It has been ranked first
in the MIREX transcription tasks [1].

2.4 Setting the HT Threshold Value

We need to define the threshold value βHT used in the note
segmentation strategies HT and ST. Although most studies
in AMT literature [11, 15, 22] use this note segmentation
strategy, threshold values are barely reported and proce-
dures to define them have not yet been standardize. Most
of the time, one threshold value is computed across each
evaluation dataset, which is dependent on various parame-
ters of the experimental set-up, such as the used evaluation
metric, input time-frequency representation, normalization

2 We used the source code implemented in the MIR toolbox [17],
called mirpitch(..., ’Tolonen’).

3 Source code courtesy of the primary author.
4 Source codes are available at http://www.benoit-fuentes.

fr/publications.html.
5 Source codes are available at https://code.

soundsoftware.ac.uk/projects/amt_mssiplca_fast.

of input waveform. In this paper, we will use a similar
empirical dataset-based approach to define the HT thresh-
old value. ROC curves (True Positives against False Pos-
itives) are computed over the threshold range [0 ; -5] dB
so as to choose the value that maximizes True Positive and
minimizes False Positives, i.e. that increases transcription
performance at best over each dataset.

3. RESULTS AND DISCUSSION

All following results on transcription performance have
been obtained using the Benetos2013 MPE system, ex-
cept for figure 6 where all MPE systems are comparatively
evaluated. Figure 4 represents the boxplots of the optimal
{α, β} values obtained for each pitch. The “leave-one-out”
cross-validation procedure has been applied to the different
datasets, from top to bottom. For each dataset, we can see
that the data-based pitch-wise optimization leads to β val-
ues drastically different from the threshold value βHT used
in the ST and HT thresholding strategies (represented by
the horizontal red lines). Differences range from 0.5 to 2
dB, that have an important impact for note segmentation.
Slighter differences are observed in values of α, although
slightly positive values of α (around + 1 dB) tend to con-
tribute to reduce the LMSE metric used in optimization.
Also, note that optimal βHT values are also dependent on
the datasets, varying from -1.8 to -2.8 dB.

Now, let’s see how this optimization of {α, β} in the
method OST impacts real transcription performance. Ta-
ble 1 shows transcription results obtained with the “leave-
one-out” cross-validation procedure, applied to the differ-
ent thresholding strategies. In comparison to the meth-
ods HT and ST, important gains in transcription perfor-
mance are brought by the proposed method OST. These
gains are the highest for the baseline dataset D1, in the or-
der of magnitude of 5 to 8 % for the two metrics Acc and
FMeas. They remain systematically positive for the other
datasets, with a minimum gain of 4 % whatever the dataset,
error metric and compared thresholding strategy. Alto-
gether, these gains are very significant in regards to com-
mon gains in transcription performance reported in litera-
ture, and demonstrate the validity of our proposed method.

In Figure 5, we evaluated the dependency of transcrip-
tion performance on the training dataset size, through
a Monte Carlo cross-validation procedure with different
training/test ratios, ranging from 10 to 60 % of the com-
plete dataset of musical pieces, plus the “leave-one-out”
(labelled LOM) ratio. This figure shows that increasing
the size of the training set directly induces average tran-
scription gains from 0.5 to 6 % of the metric FMeas with
the OST method, in comparison to the HT method. We
note that once the curves reach the 60/40 % training/test
ratio, all systems find a quick convergence to the gain ceil-
ing achieved with the LOM ratio.

Eventually, we studied the dependency of OST tran-
scription performance on the MPE system used, in com-
parison to the method HT. Figure 6 shows the differences
between the FMeas obtained with the methods OST and
HT. We can observe that these differences are relatively
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Figure 4. Boxplots of the optimal {α, β} values obtained
for each pitch, and for each evaluation dataset. The hor-
izontal red lines in each boxplot represents the parameter
values used in the ST and HT thresholding strategies.

Figure 5. Difference between the F-measures obtained
with the OST and HT note segmentation methods, using
20 iterations of the repeated random sub-sampling valida-
tion method with training/test ratio ranging from 10/90 %
to 60/40 %, plus the “leave-one-out” (labelled LOM) ratio.

Datasets
Note segmentation

strategies
Acc (%) Fmeas (%)

Baseline
HT 54.9 53.3
ST 57.6 55.3

OST 62.3 59.2

MP3
HT 51.9 52.6
ST 52.2 50.1

OST 55.6 56.7

Smartphone
HT 52.2 51.9
ST 53.1 51.3

OST 58.4 56.5

Vinyl
HT 50.8 48.8
ST 51.1 49.2

OST 57.8 54.1

Table 1. Averages of error metrics FMeas and Acc ob-
tained with the different thresholding strategies, i.e. ST,
OST and HT, using a leave-one-out cross-validation pro-
cedure.

small, i.e. inferior to 2 %. This demonstrates that the pro-
posed OST method improves transcription performance in
a rather universal way, as independent from the character-
istics of activation matrices as long as MPE system spe-
cific training datasets are used. Only MPE system Tolo-
nen2000 shows higher transcription gains (especially for
the datasets D3 and D4) brought by the OST method as
this system outputs the worst activation matrices.

Figure 6. Difference between the F-measures obtained
with the OST and HT note segmentation methods, using
different MPE systems.

4. CONCLUSION

In this study, an original method for the task of note seg-
mentation was presented. This task is a crucial process-
ing step in most systems of automatic music transcription.
The presented method is based on a two-state pitch-wise
Hidden Markov Model method, augmented with two sig-
moid parameters on contrast and slope smoothing that are
trained with a learning dataset. This rather simple method
has brought significant results in transcription performance
on piano music datasets with different characteristics. It
can also be used as a universal post-processing block after
any pitch-wise activation matrix, showing great promise
for future use, although it remains to be tested on different
instrument repertoires.
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ABSTRACT

This paper presents a large vocabulary automatic chord es-
timation system implemented using a bidirectional long
short-term memory recurrent neural network trained with
a skewed-class-aware scheme. This scheme gives the un-
common chord types much more exposure during the train-
ing process. The evaluation results indicate that: compared
with a normal training scheme, the proposed scheme can
boost the weighted chord symbol recalls of some uncom-
mon chords and significantly improve the average chord
quality accuracy, at the expense of the overall weighted
chord symbol recall.

1. INTRODUCTION

Automatic chord estimation (ACE) is one of the central
problems in music informatics. It asks for an algorithm
to extract the harmonic progression within a piece of tonal
music and label each harmony region with a chord sym-
bol and a time stamp. For any artificial intelligence that
is able to perform music analysis, an ACE algorithm will
definitely be an important part of it.

For around two decades, ACE researches have been fo-
cusing around a very small vocabulary such as major and
minor (or majmin) [1, 7, 16, 18, 22, 25, 30, 31]. Larger vo-
cabularies are mostly only considered in some early works
[12, 19, 26, 29]. Until recently, the large vocabulary issue
has been brought back to the field [6, 9, 20], but except for
the bass-treble chromagram proposed by Mauch and Dixon
[21], the pre-segmented large vocabulary chord classifica-
tion proposed by Deng and Kwok [8], and the Bayesian
scaled likelihood estimation proposed by Humphrey [15],
there is no technique specially designed for large vocabu-
lary automatic chord estimation (LVACE).

Recently there has been a trend of using deep neural
nets to solve ACE problems. Notable examples are: a con-
volutional neural network (CNN) based system [16], a hy-
brid fully connected neural network (FCNN) + recurrent
neural network (RNN) system [3], a hybrid deep belief

c© Junqi Deng and Yu-Kwong Kwok. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Junqi Deng and Yu-Kwong Kwok. “Large Vocabulary
Automatic Chord Estimation with an Even Chance Training Scheme”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

network (DBN) + RNN system [27], and a hybrid DBN
+ hidden Markov model (HMM) system [33]. They all
show promising results comparable with or better than the
state-of-the-art in terms of metrics that are based on ma-
jor and minor triads. While last year there is a hybrid
DBN + Gaussian-mixture-hidden-Markov-model (GMM-
HMM) system [9] that tries to address the LVACE prob-
lem, it does not really pay special attention to the uncom-
mon chords during the training process.

This paper, on the other hand, proposes a scheme that
is dedicated to the uncommon and long-tail chords in the
large vocabulary. The LVACE system is implemented
with a standard feature extraction process and a bidirec-
tional long short-term memory recurrent neural network
(BLSTM-RNN) sequence decoder. Unlike the scaled like-
lihood estimation [15] that incorporates the prior distribu-
tion of chords into the estimation system, our large vo-
cabulary strategy is to make sure each chord type has an
uniform probability of being “seen” by the network at the
start of each training case. This is called the “even chance”
training scheme. Compared with a normal scheme that
picks training cases at random, evaluation results show that
the even chance training scheme can achieve much bet-
ter uncommon weighted chord symbol recalls and signifi-
cantly better average chord quality accuracy.

This paper is organized as follows: Section 2 elabo-
rates on the LVACE system design; Section 3 describes
the experimental setup, which contains the details of the
proposed even chance training scheme; Section 4 reports
and discusses the evaluation results; and finally Section 5
concludes the paper with the key findings and gives some
possible future directions of LVACE.

2. THE LVACE SYSTEM

Figure 1 shows an overview of the LVACE system,
which mainly contains a feature extraction module and
a BLSTM-RNN sequence segmentation and classification
module. In the following we will first elaborate on the
feature extraction process, and then discuss the working
mechanisms of the BLSTM-RNN.

2.1 Feature Extraction

The feature extraction process resembles the one described
by Deng and Kwok [9]. It starts by resampling the raw
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Figure 1. BLSTM-RNN LVACE system overview. The
raw audio is transformed by a feature extraction process
into a piece of notegram, and then decoded by a BLSTM-
RNN into a segmented chord sequence.

audio input at 11025 Hz, which is followed by a short-
time-Fourier-transform (STFT) with 4096-point Hamming
window and 512-point hop size. It then proceeds to trans-
form the linear-frequency spectrogram (2049-bin) to the
log-frequency spectrogram (252-bin, 3 bins per semitone
ranging from MIDI note 21 to 104) using the two cosine
interpolation kernels proposed by Mauch [20]. The output
at this step is a log-spectrogramXk,m, where k is the index
of frequency bins, and m is the index of time frames. The
total number of frames is M , and the total number of bins
in each spectrum is K (in this context K = 252).

The process then estimates the amount of deviation
from standard tuning using the algorithm in [10], where
the amount of detuning is estimated as:

δ =
wrap(−ϕ− 2π/3)

2π
, (1)

where wrap is a function wrapping its input to [−π, π)
and ϕ is the phase angle at 2π/3 of the discrete-Fourier-
transform (DFT) of

∑
mXk,m/M . The tuning frequency

τ is then given by:

τ = 440 · 2δ/12, (2)

and the original tuning is thus updated by interpolating the
original spectrogram Xk,· at Xk+p,·, where:

p = (log(τ/440)/ log(2))× 36, (3)

since there are 36 bins per octave (3 bins per semitone)
in Xk,·. The interpolation results will update the origi-
nal Xk,m, and the new Xk,m spectrogram will be referred
to as “notegram”, which will be the input feature of the
BLSTM-RNN sequence decoder.

2.2 Recurrent Neural Network

An RNN is a neural network with cyclical connections, so
that the network can be recurrently unrolled into multiple
frames [11, 17]. It can be used to model the conditional
probability of an output sequence Y (Y 1, Y 2, ...) given an
input sequence X(X1, X2, ...), where the superscripts de-
note time steps. With a forward hidden layer, it models

this relationship in a sequential manner, so that every out-
put frame Y t is conditioned on not only the current input
frame Xt but also all previous input frames X1:t. Besides,
if a backward hidden layer is added to the model, Y t will
be conditioned on the whole input sequence X . This mod-
ified network is called bidirectional recurrent neural net-
work (BRNN).

When the training sequence is long, the learning signal
may die down gradually via the back-propagation-through-
time (BPTT) [24]. This gradient vanishing phenomenon
[2] often makes the training ineffective or unsuccessful.
Using LSTM [13] units instead of normal non-linearities
within a (B)RNN is a useful way to circumvent this unde-
sirable effect.

2.3 BLSTM-RNN Architecture

The proposed LVACE system uses a BRNN with LSTM
units, or a BLSTM-RNN. It has a forward and a backward
hidden layer both with 800 LSTM units. The input layer
has 252 real-value nodes, connected to a notegram spec-
trum. The output layer is a #-chord-way softmax layer. In
this implementation, we use a typical LSTM configuration,
that all LSTM gates employ sigmoid activations, and that
both the LSTM cell and the LSTM output use hyperbolic
tangent activations. Note that this network is different from
the one in [9], in that this BLSTM-RNN could take a vari-
able length input sequence and generate multiple outputs,
but the other one is designed to handle a fixed length of
input with a single softmax regression output.

3. EXPERIMENTAL SETUP

This section describes the vocabulary, datasets and
training-validation schemes used in the experiments.

3.1 Vocabulary

The large vocabulary supported by the proposed system
is the SeventhsBass introduced in MIREX ACE 2013 1 . It
contains the “NC” chord 2 , all maj and min triads, all maj7,
min7, and 7 chords, and all of their inversions.

3.2 Datasets and Data Augmentation

Six datasets of 546 tracks are used during the experiments.
They contain both eastern and western pop/rock songs.
They are: 20 tracks from the Chinese pop song dataset
(CNPop20, or C) 3 ; 29 tracks from the JayChou dataset
(JayChou29, or J) 3 ; 26 tracks from the Carole King +
Queen dataset (K) dataset 4 ; 191 songs from the USPop
dataset (U) 5 ; 100 tracks from the RWC dataset (R) 6 ; and
180 tracks from the TheBeatles180 (B) dataset [14]. The
combination of datasets is notated by concatenating their

1 music information retrieval exchange:http://www.music-ir.
org/mirex/wiki/MIREX\_HOME

2 means “not a chord”, or “no chord”
3 http://tangkk.net/label/
4 http://isophonics.net/datasets
5 https://github.com/tmc323/Chord-Annotations
6 https://staff.aist.go.jp/m.goto/RWC-MDB/
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letter codes. For example, a combination of all datasets is
denoted as “CJKURB”.

To generate the training data, all raw audios are trans-
formed to notegram representations. The original segment-
wise ground truth annotations are upsampled to become
frame-wise annotations with 1-to-1 mappings to the note-
gram frames. Due to the absence of phase information in
notegram, all data can be transposed to 12 keys to yield 12
times the original amount of data [16].

3.3 Training and Cross-validation

Two different training schemes are used. The only differ-
ence between them are the way of choosing training cases
at each iteration:

• completely random (CR): a random training case is
chosen.

• even chance (EC): a training case starting with a cer-
tain chord type is chosen, and each chord type has an
even chance to be chosen as the start.

The EC training scheme is inspired by the skewed class
sensitive training methods [5]. Considering a skewed dis-
tribution of chords in the training set [4], a random sam-
pling scheme like CR will inevitably draw samples based
on that same distribution, which causes lack of exposure of
uncommon chords. The EC scheme, however, gives each
uncommon chord much more exposure during the training
process. Concretely, the EC scheme is formalized as fol-
lows in Algorithm 1:

Algorithm 1 EvenChanceTraining
Require: training data set - (X, y); number of chord

classes - nclass; early stopping flag - es.

od = BalancedOrderedDict(y, nclass)
iter = 0
while not early-stopping do

if mod(iter, nclass) is 0 then
coidx = random shuffle(0:nclass-1)

tclist = od(coidxmod(iter,nclass))
draw a random item e from tclist
update network with (X, y)e
iter++

The core of this procedure is the “BalancedOrdered-
Dict” which generates a dictionary of (track index, chord
change position) tuples indexed by chord classes. It is for-
malized in Algorithm 2, where each entry of od contains a
list of (track index, chord change position) tuples.

It should be pointed out that, besides chord classifica-
tion, the BLSTM-RNN has to also perform segmentation,
which means the training samples have to contain chord
segmentation boundaries for the network to learn from. As
a result, we set the length of each training case to be 500
frames, which contains multiple chords. Because of this,
there is still uneven distribution of common and uncom-
mon chords during the training process. The EC scheme

Algorithm 2 BalancedOrderedDict
Require: labels of training data set - y; number of chord

classes - nclass.

for each class i from 0 to nclass− 1 do
initialize an empty list od[i]

for each track index j in y do
for each frame poistion k in y[j] do

if k is a chord change position then
append (j,k) to od[y[j][k]]

return od

can guarantee a uniform chord distribution at the start of
each training case, but it does not try to alter the sampling
of the other chords. In effect, it only boosts the exposure of
uncommon chords to a certain level, but could not make the
chances of common and uncommon chords totally even.

The following describes the remaining training proce-
dures that apply throughout the experiments. We try to
report the precise settings of every parameter so that the
readers may reproduce the results:

• Each training case contains 500 frames of audio con-
tent with ground truth labels;

• The network update signal is computed by an
Adadelta optimizer [32];

• The training is regularized with dropout [28] and
early-stopping [23];

• All dropout probabilities are set to 0.5;

• All early-stopping criteria are monitored using the
validation error of the CNPop20 dataset, which is
not in any cross-validation set; The validation cycle
is 100 iterations;

• The model with the lowest validation loss will be
saved; If the current validation loss is smaller than
0.996 of the best one, the early-stopping patience
will increase by 0.3 times the current number of it-
erations;

• Training stops when the early-stopping patience is
less than the current number of iterations.

For evaluation, five-fold cross-validation (CV) is per-
formed throughout all experiments. Each fold is a combi-
nation of approximately 1/5 tracks of each dataset. Every
model is trained on four folds and cross-validated on the re-
maining fold, resulting in a total number of five validation
scores, the average of which will be the final scores to be
reported in Section 4. For this research to be reproducible,
all implementation details are made available online 7 .

4. RESULTS AND DISCUSSIONS

Throughout this section, we use the MIREX ACE stan-
dard evaluation metric, “weighted chord symbol recall”

7 https://github.com/tangkk/tangkk-mirex-ace
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(WCSR), to report system performances. The “chord sym-
bol recall” (CSR) is defined as follows:

CSR =
|S ∩ S∗|
|S∗|

, (4)

where S and S∗ represents the automatic estimated seg-
ments, and ground truth annotated segments, respectively,
and the intersection of S and S∗ is the part where they
overlap and have equal chord annotations. WCSR is the
weighted average of all tracks’ CSRs by the lengths of
these tracks:

WCSR =

∑
Length(Tracki) ∗ CSRi∑

Length(Tracki)
, (5)

where the subscript i denotes the ith track. Likewise, the
WCSR of a specific chord type is:

WCSRC =

∑
Length(Ci) ∗ CSRi∑

Length(Ci)
, (6)

where the subscript i denotes the ith instance of chord C
within the data set.

To measure the balanced performance of a system, we
report “average chord quality accuracy” (ACQA) [6]:

ACQA =

∑
WCSRC

# of chords
. (7)

which sums up the WCSRs of all chord types in the vocab-
ulary. Systems that over-fit a few chord types or neglect
uncommon chords tend to get lower ACQAs, while those
well balanced systems will have higher ACQAs.

The original scores in this section are computed using
the MusOOEvaluator 8 .

4.1 Sevenths, Inversions and ACQA

Table 1 shows the comparison between CR and EC train-
ing schemes on some uncommon (non-majmin) [4] chords’
WCSRs as well as the ACQA. The six chord types in the ta-
ble are chosen because they have relatively more weights
in pop/rock songs than the more long-tail ones such as
min/5 and min/b3. Note that maj/5 and maj/3 are also in-
cluded in two other large vocabularies proposed by Mauch
[20] and Cho [6].

maj7 7 min7 maj/5 maj/3 7/b7 ACQA
CR 7.3 6.6 24.1 4.5 24.5 0.0 10.8
EC 14.6 9.9 30.9 12.0 32.4 7.8 13.2

Table 1. Comparison between CR and EC: seventh chords,
inversions and ACQA scores; Dataset: JKURB

The results show that EC outscores CR in all categories,
some of which by very large amount such as maj/5 and
maj/3. Although not all chord types’ results are shown, the
ACQA results suggest that the EC training scheme could
lead to a much more balanced LVACE system under a
skewed class distribution.

8 https://github.com/jpauwels/MusOOEvaluator

1.4 1.45 1.5 1.55 1.6
Friedman test with Tukey HSD: on ACQA

CR-JKURB

EC-JKURB

Figure 2. Multiple comparison test on ACQAs

We perform a Friedman test on the track-wise ACQA
results of both systems. After that we use the Tukey HSD
(honest significant difference) to perform a multiple com-
parison test on the Friedman test’s statistics with a signifi-
cance level of 0.05. The results as shown in Figure 2 con-
firm that EC is significantly better than CR in ACQA.

4.2 Major, Minor and WCSR

The EC trained system has a more balanced performance
than the CR’s, however, it scarifies common chords’
WCSRs. Table 2 shows the comparison between CR and
EC on some common (majmin) [4] chords’ WCSRs as well
as on the overall SeventhsBass WCSR.

maj min WCSR
CR 74.2 52.2 52.0
EC 67.8 51.4 50.6

Table 2. Comparison between CR and EC: major, minor
and WCSR scores; Dataset: JKURB

Although the two schemes have very close scores on
min, there is a large difference in maj. Due to the domi-
nantly large weight of maj chords in the JKURB dataset
combination, it eventually leads to CR’s much higher
WCSR, despite EC performs better in most of the other
chord types. CR’s much higher maj WCSR is not unex-
pected: since it draws each training case at random, the
probability that each chord type gets “seen” by the neu-
ral net is subject to the distribution of chord types in the
training dataset, and therefore the maj chords are “learned”
much more than the other chords.

1.35 1.4 1.45 1.5 1.55 1.6 1.65
Friedman test with Tukey HSD: on WCSR

CR-JKURB

EC-JKURB

Figure 3. Multiple comparison test on WCSRs
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We perform a Friedman test on the track-wise WCSR re-
sults of both systems. After that we use the Tukey HSD to
perform a multiple comparison test on the Friedman test’s
statistics with a significance level of 0.05. The results as
shown in Figure 3 confirm that CR is significantly better
than EC in WCSR.

4.3 On Different Datasets

For more convincing comparison results, the same exper-
iment is run 4 times using different dataset combinations.
Table 3 shows the results of JK, JKU, JKUR and JKURB.
We only report the WCSR and ACQA for brevity.

CR-WCSR EC-WCSR CR-ACQA EC-ACQA
JK 46.4 46.4 13.5 15.5

JKU 50.4 49.1 11.2 13.5
JKUR 50.1 49.6 12.8 14.5

JKURB 52.0 50.6 10.8 13.2

Table 3. Comparison between CR and EC: WCSR and
ACQA on different datasets.

In all these experiments, the EC systems get higher
ACQAs, but lower or equal WCSRs, than the CR systems.
It is sufficient to say that EC is better at training a bal-
anced performing LVACE system under skewed class dis-
tribution, while CR is better at training an LVACE system
with higher overall performance.

For both training schemes, the increment of training
data will lead to the increase of WCSR, but the same thing
does not happen in ACQA. Assuming that every dataset
contains a certain amount of noise (i.e., mis-labeled or mis-
segmented chord regions), this observation could be tenta-
tively explained as follows. WCSR is mostly relying on the
quality of majmin chord labels, which are on average eas-
ier to be labeled. Therefore the increment of data will also
increase the WCSR score. ACQA, however, is mostly rely-
ing on the quality of non-majmin chord labels, which are
on average more difficult to be labeled. Therefore the in-
crement of data could not guarantee the increase of ACQA
score, since it is hard to guarantee the proportion of non-
majmin noise in the incremental data is smaller than those
of the original data.

5. CONCLUSIONS

This paper presents a BLSTM-RNN based LVACE sys-
tem, trained using a skewed class oriented “even chance”
scheme. This scheme is compared with a more intuitive
“completely random” scheme that chooses training case
randomly at each iteration. Evaluation results demonstrate
that the EC training scheme is superior in both the uncom-
mon (non-majmin) chords’ WCSRs and the ACQA, at the
expense of the common (majmin) chords’ WCSRs and the
overall WCSR.

A successful LVACE system is marked by both high
WCSR and high ACQA, because human chord recognition
experts are able to achieve both of them. The EC training
scheme is a technique to improve a system’s ACQA, thus

it is a valuable approach to consider when we design an
LVACE system in the future.

The fundamental driving force of LVACE research
should be the ground-truth data and their qualities, espe-
cially the qualities of the uncommon or long-tail chords.
As we see in the discussion above, ACQA is very vulner-
able to uncommon chords’ quality. Therefore, it might
be possible that in the future as we gradually increase the
amount of ground-truth data, we could use ACQA in a way
to perform sanity check on the quality of the incremental
data.
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ABSTRACT

The interpretability of a machine learning model is es-
sential for gaining insight into model behaviour. While
some machine learning models (e.g., decision trees) are
transparent, the majority of models used today are still
black-boxes. Recent work in machine learning aims to
analyse these models by explaining the basis of their de-
cisions. In this work, we extend one such technique, called
local interpretable model-agnostic explanations, to music
content analysis. We propose three versions of explana-
tions: one version is based on temporal segmentation, and
the other two are based on frequency and time-frequency
segmentation. These explanations provide meaningful
ways to understand the factors that influence the classifi-
cation of specific input data. We apply our proposed meth-
ods to three singing voice detection systems: the first two
are designed using decision tree and random forest classi-
fiers, respectively; the third system is based on convolu-
tional neural network. The explanations we generate pro-
vide insights into the model behaviour. We use these in-
sights to demonstrate that despite achieving 71.4% classifi-
cation accuracy, the decision tree model fails to generalise.
We also demonstrate that the model-agnostic explanations
for the neural network model agree in many cases with the
model-dependent saliency maps. The experimental code
and results are available online. 1

1. INTRODUCTION

Music content analysis (MCA) research aims to build sys-
tems with the sensitivity and intelligence required to work
with information in acoustic environments. Recent ad-
vances in this domain have been made by leveraging large
amounts of data with statistical machine learning, e.g.,
[5, 6]. The complexity of the resulting systems, however,
makes it extremely difficult to understand their behaviours,
or to predict their success in the real world.

Recent work seeks to ascribe certain functions or sen-
sitivities to architectural elements of a trained system. For
instance, analyses of deep computer vision systems find
the first layer to be sensitive to edges, points and colour

1 https://code.soundsoftware.ac.uk/projects/SoundLIME

c© Saumitra Mishra, Bob L. Sturm, Simon Dixon. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0). Attribution:
Saumitra Mishra, Bob L. Sturm, Simon Dixon. “Local Interpretable Model-agnostic
Explanations for Music Content Analysis”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

MFCC_0 <= X

 Class = A

MFCC_3 <= Y

 Class = B

True

MFCC_5 <= Z

 Class = A

False

Class = A Class = B Class = A Class = B

Figure 1: A binary decision tree for classifying audio us-
ing the values of three MFCC feature dimensions.

gradients, and deeper layers appear sensitive to higher-
level concepts like faces, trees and cars [23,25,26]. Similar
work for deep MCA systems has found that the first layer
is sensitive to frequency bands, and deeper layers appear
sensitive to timbres and temporal patterns, e.g., [3, 6]. In a
different direction, other research focuses on approaches to
explain individual predictions. One approach to explain in-
dividual predictions substitutes complex black-box models
with inherently interpretable models whose predictions can
be summarised by simple if-else rules [11,24]. Other meth-
ods use sensitivity analysis [7] or Taylor series expansion
[15] to analyse the prediction function locally. Sensitiv-
ity analysis aims to capture the local behaviour of the pre-
diction function when the input dimensions are perturbed.
Variants of this approach include saliency maps [20], ex-
planation vectors [1], “horse” detection [22] and local in-
terpretable model-agnostic explanations (LIME) [17]. In
this paper, we focus on extending LIME for MCA.

LIME is an algorithm that provides instance-based ex-
planations to predictions of any classifier. These expla-
nations are locally faithful to the instance, independent of
the classifier model type, and are learned over interpretable
representations of the instance. For example, for an e-mail
classification system, LIME generates a list of words of an
e-mail as an explanation for its classification to some cate-
gory. To produce the explanation, LIME approximates the
classifier locally with an interpretable model (e.g., sparse
linear models, decision trees).

We introduce three different versions of explanations
to apply LIME to MCA. We call this extended frame-
work as Sound LIME (SLIME). Each version works in
the time, frequency and time-frequency domains, respec-
tively. SLIME pinpoints the time or time-frequency re-
gion that contributes most to a decision. This transforms a
non-intuitive feature-based classifier decision into a more
intuitive temporal and spectral description. We demon-
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Figure 2: Schematic representation of LIME explaining
why an MCA system S applies label j to instance xi with
probability yij .

strate SLIME for three trained singing voice detection sys-
tems, and show how the generated explanations are useful
in gaining insight into model behaviour, and in identifying
an untrustworthy model that fails to generalise.

2. MOTIVATION

Consider a simple MCA system, the classification compo-
nent of which is the binary decision tree (BDT) shown in
Fig. 1. The input to this system is a T -sec excerpt of audio,
from which the system extracts D Mel-frequency cepstral
coefficients (MFCC) [4]. This D-dimensional feature vec-
tor is labeled by the system as either “class A” or “class B”
based on the values in specific dimensions. The particular
dimensions, and the thresholds of the decisions, are found
through training.

A binary decision tree is a transparent classifier because
one can trace the reason for a particular outcome - in this
case in terms of the MFCC coefficients and thresholds. As
shown in Fig. 1, if the value of the zeroth MFCC is less
than X and that of the third MFCC is less than Y, then this
system classifies the instance as “class A”. What does this
mean in terms of the qualities of the input sound, however?
Why X? Is this a real-world general principle? Or does it
arise from a peculiarity of the training dataset?

MFCCs were introduced for speech recognition [4], but
have been argued as suitable for machine music listen-
ing [9,12]. Extracting MFCC features from audio involves
windowing (typically on the order of 10-100 ms), a Mel-
scale based smoothing of the log magnitude spectrum, and
discrete cosine transform (DCT)-based compression. Al-
though MFCC features are pseudo-invertible [2], they are
difficult to interpret in terms of the qualities of the underly-
ing sound. This comes in part from frequency bin grouping
and the log magnitude operations, which destroy the bijec-
tive mapping between the audio and its spectrum.

One might still roughly approximate the meaning of
particular MFCCs: low MFCC dimensions relate to broad
spectral structures (e.g., formants); high MFCC dimen-
sions relate to fine spectral structures (e.g., pitch and har-
monics); and the zeroth MFCC relates to the energy of
a signal. But, as shown in Fig. 1, values along several
MFCC dimensions and their thresholds jointly contribute
to a prediction. This combination makes interpretation
even harder. It is hard to understand what audible qualities
are captured by the combination of the zeroth MFCC with
either the third or the fifth MFCC. Thus, though the deci-
sion tree has clear decision rules, they are not easy to relate
to audible qualities of inputs. With other machine learning

systems, e.g., deep neural networks or support vector ma-
chines, this task becomes harder still. This motivates the
use of “interpretable representations” for explaining sys-
tem behaviours for specific inputs.

3. INTERPRETABLE EXPLANATIONS FOR
MUSIC CONTENT ANALYSIS

We first present the local interpretable model-agnostic ex-
planations (LIME) proposed in [17]. We then extend it to
working with MCA systems.

3.1 Summary of LIME [17]

Section 2 shows how the rules guiding a classifier’s out-
put can be difficult to interpret in terms of content, even
for transparent classifiers. This interpretability becomes
increasingly difficult when the model becomes complex
(e.g., support vector machine) or the feature extraction is
replaced by feature learning (e.g., convolutional neural net-
work). LIME uses an interpretable representation of data
to maintain interpretability in the generated explanations.
Such explanations are easier because they show a more di-
rect mapping between the input and its prediction.

LIME is an algorithm that generates interpretable, lo-
cally faithful and model-agnostic explanations to predic-
tions of any classifier. Fig. 2 depicts a high-level overview
of what LIME aims to perform. LIME helps illuminate
reasons for a system S applying label j to instance xi with
probability yij . For example, for the input xi, LIME lists
three reasons: R1, R2 and R3, to explain the prediction.
R1 and R2 are positively correlated with the decision and
R3 is negatively correlated.

Locally faithful explanations refer to capturing the clas-
sifier behaviour in the neighbourhood of the instance to be
explained. To learn a local explanation, LIME approxi-
mates the classifier’s decision boundary around a specific
instance using an interpretable model. LIME is model-
agnostic, i.e., it considers the model as a black-box and
makes no assumptions about the model behaviour. This
makes LIME applicable to any classifier.

Formally, let C : Rn → R be a classifier, mapping
a feature vector to a class label. For a feature vector
xi = ε(xi), denote yij = C(xi) as the probability that
xi takes the class label j. Define a sequence Xi, which is
composed of elements that are in some sense meaningful
with respect to the classification of the instance xi. For
example, for a text classification system, Xi could be the
sequence of unique words in e-mail. LIME defines an in-
terpretable space T = {0, 1}|Xi|, where its kth dimension
corresponds to the kth element of Xi. Then x′i ∈ T is the
interpretable representation of xi. Thus, LIME transforms
the input instance xi to a binary vector x′i whose elements
correspond to presence and absence of elements of Xi.

LIME defines an interpretable explanation as a model
g ∈ G, where G denotes a class of interpretable models
(e.g., linear models, decision trees). LIME learns a model
g over the interpretable space by the optimisation:

min
g∈G

L(C, g, ρxi) + ∆(g) (1)
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super samples (Ti), each of duration 50 ms. (b) Time-
frequency segmentation of instance xi into 8 blocks (Bi).

where L(C, g, ρxi
) is a locally-weighted loss function that

for an instance xi measures how well the model g approxi-
mates the classifierC in the neighbourhood defined by ρxi

,
and ∆(g) is a measure of model complexity (e.g. sparsity
in linear models). Thus, LIME minimises this function to
explain why C maps xi to class label j.

3.2 Extending LIME to MCA

Fig. 3 depicts the functional block diagram of SLIME.
This consists of two components: the first one is our con-
tribution (dotted box in Fig. 3), which defines interpretable
sequences for an input audio. The second one is the LIME
algorithm that uses the defined representations to generate
explanations.

The first step in SLIME is to define a sequence denoted
Xi from an input instance xi. We define three kinds of
sequences: temporal X t

i , spectral X f
i and time-frequency

X tf
i . We call each element of X t

i a super sample, which
we generate by temporal partitioning of xi. For example,
the instance shown in Fig. 4(a) is uniformly segmented
into four super samples each notated Ti. Hence, X t

i =
(T1, T2, T3, T4). Similarly, each element of X f

i , notated
Ai is a spectral magnitude in a corresponding frequency
bin, obtained by the Fourier transform of xi. Hence,
X f

i = (A1, A2, A3, ...). Lastly, each element of X tf
i , no-

tated Bi is obtained by segmenting the magnitude spectro-
gram of the input instance, both along the time and fre-
quency axes. For example, in Fig. 4(b) the spectrogram of
the instance is non-uniformly segmented into eight time-
frequency blocks. Hence, X tf

i = (B1, B2, ......., B7, B8).
We call each element of a sequence as an interpretable
component. Thus, for a temporal sequence each inter-

pretable component is a supersample and for spectral and
time-frequency sequences each interpretable component is
a spectral bin and time-frequency block, respectively.

The next step is to map the input instance with fea-
ture representation denoted as xi ∈ Rn to its interpretable
representation denoted as x′i ∈ {0, 1}|Xi|. Thus, each of
the above mentioned sequences is used to define an inter-
pretable space T and an interpretable representation x′i.
This creates three interpretable representations for the in-
put instance xi. We denote temporal, spectral and time-
frequency interpretable representations as xt

i
′, xf

i

′
and xtf

i

′

respectively. These representations provide us three ways
of understanding a prediction, each highlighting the tem-
poral, spectral or time-frequency segments of the instance
influencing the prediction most.

To find an explanation, SLIME approximates the classi-
fier C : Rn → R with a linear model {g(z′) = wT z′; z′ ∈
T }. To do this SLIME first generates Ns samples from
T in a way that depends on x′i, i.e., randomly setting to
zero the dimensions of x′i. Hence, for the interpretable se-
quence X t

i in Fig. 4(a), one possible zti
′ = (1, 0, 1, 0).

This synthetic sample indicates the absence of super sam-
ples T2 and T4. Formally, for an instance with Ns super
samples, a total of 2Ns synthetic samples exists. With an
assumption that there exists a surjective map from Rn to
T , each synthetic sample is projected to Rn, weighted us-
ing an exponential kernel learned over cosine distance (we
used the same ρxi

as in [17]) and mapped to its correspond-
ing probability C(z). SLIME learns the linear model gt by
minimising the squared loss and model complexity as in
(1) over this dataset of synthetic samples and their proba-
bilities. Formally, denote the kth sample as z′k and its pro-
jection zk. Define a weight function ρxi

: Rn × Rn → R.
The locally-weighted loss used by SLIME is given by

L(C, g, ρxi) =
∑

(z′
k,zk)∈Z

ρ(xi, zk)[C(zk)− g(z′k)]2 (2)

Similarly, SLIME randomly samples xf
i

′
and xtf

i

′
to learn

the linear models gf and gtf , respectively. Each of these
models provides interpretable explanations in terms of
their learned weights. The magnitude of the coefficients
relates to the importance of the temporal segment (super
sample) or the spectral component (bin frequency) or the
time-frequency block in the classification of xi. Thus, if
w1 and w2 denote the coefficients of super samples T1 and
T2 respectively, then |w1| ≥ |w2| implies super sample T1
has more influence on a classification prediction than T2.
Similarly, the polarity of regression weights refers to the
correlation between the segment and the classifier predic-
tion. For example, if w1 < 0 and w2 > 0, then the tempo-
ral segments T1 and T2 are negatively and positively cor-
related with the classifier prediction. The weight function
ρxi

controls the contribution each synthetic sample has in
the learned model g. Thus, a distant sample in interpretable
space T will have lower contribution to g facilitating bet-
ter learning in cases where the random sampling produces
samples with highly imbalanced class distributions.
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Classifier Acc[%] Prec. Recall F- score
Decision tree 71.4 0.72 0.81 0.75

Random forest 76.3 0.75 0.88 0.79

Table 1: Singing voice class evaluation results for the two
selected shallow SVD systems (a) Binary decision tree of
depth 8 and information gain as the split criterion (b) Ran-
dom forest of 64 trees, each with depth 16.

4. DEMONSTRATION

We now use SLIME to explain the predictions of three
singing voice detection (SVD) systems that classify an au-
dio excerpt into two categories: music without singing
voice, and music with singing voice. Two systems are
based on a shallow architecture proposed in [10]. The other
one is based on hierarchical feature learning [19].

4.1 Explaining Predictions of Shallow Vocal Detectors

Several shallow vocal detection systems have been pro-
posed [10, 13, 16, 18]. We adapt the method proposed
in [10] that uses only MFCC features to reach state of the
art performance. Our system calculates FFTs on a frame
size of 200 ms with 50% overlap at a sampling frequency
of 22050 Hz. It uses a set of 30 Mel-filters to extract 30
MFCC coefficients (including the 0th) and their first-order
derivatives from each audio frame using Librosa [14]. The
system performs classification over a 1 sec excerpt, hence
it calculates the median and standard deviation of the 60
dimensional vector over five frames [18], constructing a
feature vector of 120 dimensions.

We train two systems: the first (S1) combines a binary
decision tree (BDT) with the feature vector from above and
the second (S2) replaces the BDT with a random forest
(RF) classifier. The Jamendo dataset, introduced in [16]
is used to train, validate and evaluate both the models on
three non-overlapping sets. Table 1 reports the results of
the evaluation for singing voice class. The vocal detection
systems designed using the BDT and RF classifiers achieve
an overall accuracy of 71.4% and 76.3%, respectively. The
vocal class occupies 57.5% of the test dataset which sug-
gests that these two systems may have learnt some rep-
resentation of singing voice that helps to detect vocals.
We now apply SLIME to determine if these systems are
trustworthy [22]. In other words, are the vocal predictions
caused by content where there actually is voice?

In order to generate temporal explanations, we segment
the instance (1 sec) into ten super samples, each of 100
ms duration. We first generate 1000 samples in the inter-
pretable space. We then approximate each classifier’s deci-
sion boundary in a neighbourhood of the instance by a lin-
ear model learnt over the interpretable space. The number
of interpretable components needed to explain an instance
may vary from one instance to the other, but to reduce the
model complexity (∆(g) in (1)), we generate explanations
with a fixed number of components. To do this we first use
the synthetic dataset of perturbed samples and their proba-
bilities to select the top-3 super samples by forward selec-
tion, and then learn a linear model [17].

Id. Dur.
(s)

Prob-Vocal SS-Pred.
SS-True

BDT RF BDT RF
41 1.0 0.97 0.85 6,7,9 2,0,7 0-9

178 1.0 0.86 0.86 9,8,4 9,6,0 0-9
58 0.4 0.80 0.76 6,5,3 0,2,6 0-3

124 0.4 0.92 0.84 0,4,6 6,9,8 6-9

Table 2: Instance-based temporal explanations generated
by SLIME. Id: instance index, Dur: vocal duration, SS: su-
per samples, Prob-Vocal: probability assigned by the SVD
system that the instance contains singing voice, SS-Pred:
super sample indices that are the most influential upon the
classification of the input instance to vocal class, SS-True:
super sample indices that actually contain singing voice.

Table 2 reports the temporal explanations generated by
SLIME for four instances extracted from the “03 - Say me
Good Bye.mp3” test file in the Jamendo dataset. The super
samples are arranged in the decreasing order of influence
on the prediction. The magnitude of the weights learned
for each super sample determines the influence it has on
the prediction. This analysis of the temporal explanations
helps to gain insight about how the models are forming
their predictions. For example, instance 41 is correctly pre-
dicted by both the models (true positive). But, the tempo-
ral explanations for both the models are very different. The
same is the case with another instance 178. Listening to all
the predicted super samples for instances 41 and 178, high-
lights an interesting observation. For most of the predicted
super samples for the decision tree model there is a pres-
ence of ‘strong’ instrumental onset along with the singing
voice. Thus, it might be the case that instead of “listening”
to the singing voice in the super sample, the decision tree
model is paying attention to instrumental onset.

To verify the above hypothesis, we select true positive
instances that have instrumental music and singing voice as
separate temporal sections. We apply SLIME to two such
instances: 58 and 124, which have singing voice in the
first and last 400 ms, respectively. The temporal explana-
tions generated for the BDT highlight that even though the
prediction score is high for the model, the super samples
it believes to contain singing voice have only instrumen-
tal music in most of the explanations. This raises ques-
tions about the generalisation capability of such a model.
Based on the explanations generated for the RF model, it
appears that the model is looking at the right temporal sec-
tions to form a prediction. Thus, the temporal explanations
are helpful in identifying an untrustworthy model.

Temporal explanations help to understand the predic-
tions but under some limitations. First, for the explana-
tions to be clearly audible super samples should be at least
100ms long. Second, for the cases as in instance 41, where
singing voice and instrumental music are present for com-
plete duration, temporal explanations do highlight which
temporal sections are useful for prediction but not what in
that section is important. One way to solve this problem
is to use SLIME to generate the spectral or time-frequency
explanations as demonstrated below.
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Figure 5: Comparing the positive explanation from
SLIME with the positive saliency map for a 1.6s excerpt.

4.2 Explaining Predictions of a Deep Vocal Detector

We now demonstrate SLIME working with the convolu-
tional neural network (CNN)-based system proposed in
[19]. We generate time-frequency explanations for the pre-
dictions of the system and compare the generated explana-
tions with the saliency maps [20, 21, 26]. Due to space
restriction we have skipped the demonstration of spectral
explanations, but such explanations can be easily derived
from time-frequency explanations by expanding the tem-
poral analysis window to full length of the excerpt.

The system proposed in [19] takes in a Mel-spectrogram
representation of a 1.6 second audio excerpt and returns
the probability that it contains singing voice. In order to
explain the predictions of the system, we map the Mel-
spectrogram to the time-frequency interpretable represen-
tation proposed in subsection 3.2. We segment the time-
frequency axis of the input in 6 and 4 segments, respec-
tively. Thus, the temporal axis of each of the first 5 seg-
ments is 266 ms in duration and that of the last segment
is 280 ms. We aim to keep the temporal axis of the re-
sulting interpretable components long enough to facili-
tate audition in the temporal domain. Similarly, segmen-
tation along the frequency axis results in 4 spectral sec-
tions, each with 20 spectral bins. Thus, the input Mel-
spectrogram is mapped to a sequence of time-frequency
blocks X tf

i = (B1, ..., B24), where each block represents
a dimension in the interpretable space. Fig. 5(a), (b) depict
the Mel-spectrogram and its time-frequency segmentation,
respectively for an input excerpt from “03 - Say me Good
Bye.mp3” file from the Jamendo test dataset.

SLIME generates 2000 samples in the neighbourhood
of the input, approximates the non-linear decision bound-
ary by a linear model, and selects the top-3 interpretable
components (time-frequency blocks) with the highest pos-
itive weights. Fig. 5(c) depicts the positive explanation
for the prediction of the audio excerpt. We call an expla-
nation positive if the weights of the interpretable compo-
nents in the explanation are positive. The input excerpt

chosen for analysis has singing voice with musical accom-
paniment for the first 900 ms and only musical accompa-
niment for the last 700 ms. We invert the time-frequency
blocks in the explanation to temporal domain and on lis-
tening find that all the components in the explanation have
the presence of singing voice. This raises confidence in the
predictions of the model. Moreover, all the components in
the negative explanation (not shown due to space restric-
tion), fall in the temporal sections after 1s. This indicates
that the time-frequency segments containing only instru-
mental music are negatively correlated with the classifier
prediction. This also seems to be correct behaviour. Thus,
the time-frequency explanations help to understand what
sections in the input are influencing the prediction most.

We now compare SLIME-based explanations with
saliency maps. Saliency maps, like time-frequency ex-
planations, are tools to analyse black-box neural network
models. They highlight how each input dimension influ-
ences the prediction. The gradient of the output prediction
with respect to each input dimension is calculated to com-
pute the saliency maps [20]. Thus, they depict the effect
of modifying the input along any dimension, on the net-
work prediction. Instead of allowing all the gradients to
flow back, techniques proposed in [21, 26] only allow the
positive gradient to flow back resulting in cleaner visuali-
sations. Using the technique proposed in [26], we employ
a leaky-ReLU non-linearity [8] in the backward path to re-
duce the magnitude of the negative gradients flowing back.
We compare the positive time-frequency explanations with
the positive saliency map. This map will highlight the
input dimensions that are positively correlated with the
classifier prediction. Not all the dimensions influence the
predictions equally, thus we select only those dimensions
whose normalised gradient is more than 0.5. We generate
such maps for the output layer of the network. Fig. 5(d)
shows the thresholded positive saliency map.

It is important to note that saliency maps highlight in-
dividual dimensions in the input while SLIME based ex-
planations are time-frequency blocks. One way to com-
pare the two is by visually verifying whether all the di-
mensions highlighted by the saliency maps are captured
in the explanations created by SLIME. A visual compar-
ison for the example in Fig. 5 shows that SLIME’s ex-
planation includes most of the key dimensions highlighted
by the saliency map. Numerically we measure how many
dimensions highlighted by the saliency map are enclosed
in the explanation generated by SLIME. For the audio ex-
cerpt shown in Fig. 5, this agreement is 62.5%. We ex-
pand this analysis to a set of 1349 randomly chosen ex-
cerpts from the Jamendo test dataset. We found that on
an average SLIME achieves 46.50 % numerical agreement
when compared with the positive saliency maps. Instance-
based analysis reveals that in some instances the numerical
agreement is 100%, but there are cases where this number
is less than 10%. One possible explanation for this is the
shape of decision boundary near the instance. If the deci-
sion boundary is highly non-linear, approximating it with a
linear model will result in poor explanations from SLIME.

We have not performed an exhaustive comparison (by

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 541



2

4

6

8

10

12

14

U
n

(a)

top-5

top-3

2000 4000 6000 8000 10000

Ns

0

50

100

150

200

250

300

350

T
s 

(s
e

c)

(b)

top-5

Figure 6: Plotting the effect of the number of samples (Ns)
on (a) the stability of generated explanations (b) the time
taken to generate them.

varying the preset factors, e.g. threshold, number of com-
ponents) between the two techniques. The above analy-
sis aims to provide an estimate about the performance of
model-agnostic SLIME against a model-dependent tech-
nique for some preset values. It is obvious that the numer-
ical agreement will be high if the constraints are softer and
vice versa. Although saliency maps are accurate in high-
lighting the input dimensions that are influential to a classi-
fier’s output, they can suffer from lack of temporal context
around the dimensions. On the other hand, SLIME-based
explanations can be readily inverted to an acoustic form for
audition, which may provide additional insights into how a
classifier is forming its prediction for an input.

4.3 Discussion on the Number of Samples (Ns)

As discussed in subsection 3.2, to explain a prediction
LIME generates Ns samples in the interpretable space
(T ). In [17] there is no discussion about how many sam-
ples should be used to generate each explanation. We
believe that exploring this is important for two reasons.
First, it affects the time taken (Ts) to generate an expla-
nation. Second, it affects the stability of the generated ex-
planation. Ideally, an explanation should remain the same
(at least the interpretable components, but their order and
weights might change) even on multiple iterations of ap-
plying LIME to the same instance. But, empirically we
find that the generated explanations do change on multiple
iterations. This happens because LIME samples randomly
in T . In this section we seek to understand the effect of
Ns on the stability of the explanations and on the time to
generate one explanation.

For the experiment, we use the trained model, dataset
and SLIME set-up from subsection 4.2. We randomly se-
lect 5 excerpts from each test file in the Jamendo dataset.
We apply SLIME to generate explanation for the predic-
tion of each excerpt in a batch of 80 and select the top-k
interpretable components per explanation (we try k = 3 and
5). We iterate this process 5 times, each time randomly

sampling 80 excerpts, generating explanations and select-
ing the top-k interpretable components.

We define the stability of an explanation to be inversely
proportional to the number of unique interpretable com-
ponents (Un) from the sequence Xi that appear in expla-
nations generated with m iterations. For example, if we
apply SLIME m = 2 times to an instance and select
the top-3 interpretable components in each iteration. Say
the selected time-frequency segments are denoted as sets
ξ1 = {B1, B2, B3} and ξ2 = {B2, B6, B5}. Then Un = 5,
as B2 appears twice in 6 components. To understand the
effect of Ns on the stability of explanations, we generate
5 explanations for each of the 80 excerpts in the randomly
sampled batches. We calculate the value of Un in all the
5 explanations for each excerpt and plot the average result
over 5 batches for a given value of Ns. Fig. 6(a) reports
the results of the experiment. The result shows that Un is
inversely related to Ns, and thus the stability of the gen-
erated explanations is proportional to Ns. The result also
shows that exhaustive search of the interpretable space T
is not needed to generate stable explanations.

We also record the average time taken to generate one
explanation for a given value of Ns. Results are gener-
ated by running SLIME on a computer with 1.6 GHz Intel
core i5 processor and 8 GB memory and are reported in
Fig. 6(b). Results show that Ts increases linearly with Ns,
reaching to a maximum of around 5 mins for an explana-
tion generated with Ns = 10k. The reported time includes
the time taken for prediction by the CNN. These results
suggest that selecting a suitable Ns depends on the trade-
off between the stability of an explanation and the time-
taken to generate it. In our experiment Ns = 1000 seems
to be a good trade-off.

5. CONCLUSION

In this work we proposed SLIME, an algorithm that ex-
tends the applicability of LIME [17] to MCA systems.
We proposed three versions of SLIME and demonstrated
them with three types of singing voice detection systems
to generate temporal and time-frequency explanations for
the predictions of specific instances. We see that the tem-
poral explanations generated by SLIME are helpful for re-
vealing how the BDT is making decisions based on content
that does not contain singing voice despite possessing high
classification accuracy for the selected instances. Such is-
sues cast doubt on the generalisability of the model. We
also demonstrated that the analysis of time-frequency ex-
planations is helpful to gain trust in the CNN based SVD
system. We compared SLIME based explanations with
saliency maps for the neural network model and the re-
sults suggest that model-agnostic SLIME based explana-
tions agree in many cases with saliency maps.

In future we would like to apply SLIME to other MCA
systems. We also plan to experiment with improved inter-
pretable representations that will be created around audio
“objects”. We believe that the improved representations
will assist in better understanding of the behaviour of the
underlying machine learning model.
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ABSTRACT

Each artist has their own taste for topics of lyrics such as
“love” and “friendship.” Considering such artist’s taste
brings new applications in music information retrieval:
choosing an artist based on topics of lyrics and finding un-
familiar artists who have similar taste to a favorite artist.
Although previous studies applied latent Dirichlet alloca-
tion (LDA) to lyrics to analyze topics, LDA was not able
to capture the artist’s taste. In this paper, we propose a
topic model that can deal with the artist’s taste for topics
of lyrics. Our model assumes each artist has a topic dis-
tribution and a topic is assigned to each song according
to the distribution. Our experimental results using a real-
world dataset show that our model outperforms LDA in
terms of the perplexity. By applying our model to estimate
topics of 147,990 lyrics by 3,722 artists, we implement a
web service called Lyric Jumper that enables users to ex-
plore lyrics based on the estimated topics. Lyric Jumper
provides functions such as artist’s topic taste visualization
and topic-similarity-based artist recommendation. We also
analyze operation logs obtained from 12,353 users on Lyric
Jumper and show the usefulness of Lyric Jumper especially
in recommending topic-related phrases in lyrics.

1. INTRODUCTION
Different artists have different tastes in lyrics. Some
artists tend to sing about “love,” while other artists tend
to sing about “friendship.” When listening to music, peo-
ple choose artists according to not only musical audio con-
tent, such as music genre, mood, melody, vocal timbre, and
rhythm, but also the topics of lyrics [2, 21]. However, the
potential of using the topics of lyrics has not yet been fully
exploited in the field of music information retrieval (MIR).
For example, it is difficult to choose an artist based on the
topics of their lyrics, find unfamiliar artists that are simi-
lar to the user’s favorite artist in terms of the topics of the
lyrics, and listen to a song that has the user’s favorite topic
of lyrics. The goal of this research is to achieve lyrics-
based MIR that can leverage the topics of lyrics at both
artist and song levels.

One approach for lyrics-based MIR is to directly use the

c⃝ Kosetsu Tsukuda, Keisuke Ishida, Masataka Goto.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Kosetsu Tsukuda, Keisuke Ishida,
Masataka Goto. “Lyric Jumper: A Lyrics-based Music Exploratory
Web Service by Modeling Lyrics Generative Process”, 18th International
Society for Music Information Retrieval Conference, 2017.

words in lyrics. Users input some words as a query [5, 27]
or can find the same phrase in the lyrics of another song
while they are listening to music [9]. Another approach is
to use a topic model because it can deal with the underlying
meanings of lyrics. The topic is usually represented by a
distribution over the vocabulary, and the meaning of topics
(e.g., “love” or “friendship”) is determined based on the
distribution. In lyrics-based MIR, it has been popular to
use latent Dirichlet allocation (LDA) [1] as a topic model.
LDA models each song as a mixture of topics and assigns
a topic to each word in the song’s lyrics. Since LDA does
not take the set of songs of each artist into account, it is not
able to capture the artist’s taste for topics of lyrics.

In light of the above, we propose a topic model that
considers the artist’s taste for topics of lyrics. In the lyrics
generative process of our model, each artist has a distribu-
tion over topics that reflects the artist’s taste for topics in
their lyrics. In addition, since it is common to decide the
theme for a song before starting to write its lyrics [4, 36],
our model assigns one topic to each song. That is, given a
topic k assigned to a song, topic k is also assigned to the
words in its lyrics. We also use the background word dis-
tribution because not all the words in lyrics are related to
the topic.

By using our proposed model, we implemented a
lyrics-based music exploratory web service, called Lyric
Jumper1 2 . Lyric Jumper aims to enable users to explore
lyrics and enjoy music in a more flexible way by consid-
ering songs’ topics. Our proposed model automatically as-
signs 1 of 20 topics for each song, where the 20 topics are
also automatically estimated by our model. Lyric Jumper
provides several topic-based functions such as visualiza-
tion of the topic tendency for a given artist, artist ranking
based on topics, and artist recommendation based on the
topic distribution similarity.

Our main contributions in this paper are as follows.

• To the best of our knowledge, this is the first study
modeling a lyrics generative process by considering
the artist’s taste for topics of lyrics and assuming
each song has one topic. (Section 3)

• We quantitatively evaluated our model by using a
real-world song dataset provided by a lyrics distri-
bution company. Our experimental results show that
our proposed model outperformed the conventional
LDA in terms of the perplexity. (Section 4)

1 https://lyric-jumper.petitlyrics.com
2 The demonstration video: https://youtu.be/5V9kHnelSAk
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• By using our proposed model, we implemented a
web service, called Lyric Jumper, that enables users
to search for songs based on the topics of their lyrics.
We also analyzed the search logs obtained from
more than 12,000 users and showed the impact of
Lyric Jumper on users’ search behavior. (Section 5)

2. RELATED WORK
Previous studies have used lyrics for various objectives
such as lyrics-to-audio alignment [7, 22, 35], analyzing
lyrics characteristics [8, 13, 16, 29, 34], accurately finding
lyrics [11, 19, 24], genre or mood classification [15, 25,
26, 38–40], songwriting support [30], and video genera-
tion [10]. This section describes more related studies in
terms of (1) lyrics-based music retrieval/browsing systems
and (2) topic-based lyrics analysis and applications.

2.1 Lyrics-Based Music Retrieval/Browsing Systems
Brochu and de Freitas [5] modeled music and text jointly
so that users can search song databases using music and/or
text as input. Müller et al. [27] automatically annotated au-
dio recordings of a given song with its corresponding lyrics
and realized a query-by-lyrics retrieval system. When a
user selects a query result, the system can directly navigate
to the corresponding matching positions within the audio.
Detecting songs from the user’s singing lyrics is also a pop-
ular research topic [14,37]. Fujihara et al. [9] proposed the
concept of a “Music Web” where songs were hyperlinked
to each other based on the phrases of lyrics. This enables
users to jump to the same phrase in the lyrics of another
song by clicking a linked phrase while they are listening to
music. Visualization is also a useful approach to browse a
music collection. SongWords [3], which is an application
for tabletop computers, displays a music collection on a
two-dimensional canvas based on self-organizing maps for
lyrics and tags. Lyricon [23] is a system that automatically
selects and displays icons that match the word sequences
of lyrics so that users can intuitively understand the lyrics.

Although these studies directly use the words in lyrics,
we consider topics that are automatically estimated from
lyrics. Our approach has an advantage in that users can ex-
plore lyrics based on the underlying meanings of the lyrics.

2.2 Topic-Based Lyrics Analysis and Applications
Since a topic model can learn the underlying meanings of
lyrics, it has been used in various studies, including lyrics
analysis [17, 31, 33], lyrics retrieval applications [32], and
a music player [28]. In terms of lyrics analysis, Sharma
and Murty [33] analyzed the hidden sentimental structure
behind lyrics by using LDA and revealed that some of the
detected topics correspond to sentiments. Similarly, by ap-
plying LDA to rap lyrics, not only expected topics such
as “street life” and “religion” but also unexpected ones
such as “family/childhood” can be discovered [17]. Ren
et al. [31] tackled the problem of predicting the popular-
ity of a music track by considering lyrics topics and found
that more than half of the popular tracks are related to the
topic of “love.” Regarding applications, LyricsRadar [32]

is a lyrics retrieval system that visualizes the topic ratio
for each song by using the topic radar chart and enables
users to find their favorite lyrics interactively. Nakano and
Goto [28] presented a music playback interface LyricList-
Player that enables users to see word sequences of other
songs similar to the sequence currently being played back,
where the similarity is computed based on the topic.

In these studies, LDA is used as a topic model, where
it is assumed that each song has a topic distribution and
a topic is assigned to each word in the lyrics. We pro-
pose a new topic model that assumes each artist has a topic
distribution and a topic is assigned to each song. Since
our model outperforms LDA (see Section 4), there is the
potential for improving previous studies on lyrics analysis
and applications by using our model.

The study closest to ours is that of Kleedorfer et al. [18],
who applied non-negative matrix factorization to lyrics for
clustering them and manually labeled the cluster names.
Our study differs from theirs in that we consider the artist’s
taste for topics of lyrics, and this enables users to find their
favorite lyrics based on the relationships between artists
and topics. Moreover, we not only propose a new model
but also implement a web service so that everyone can ex-
plore lyrics with a real world dataset.

3. MODEL AND INFERENCE
In this section, after summarizing the notations used in our
model in Section 3.1, we first describe LDA in Section 3.2
and then propose our model in Section 3.3.

3.1 Notations
Given a lyrics dataset, let A be the set of artists in the
dataset. Let Ra be the number of songs of artist a ∈ A in
the dataset; then the set of a’s songs is given by {Sar}Ra

r=1,
where Sar represents the rth song of a. Moreover, let Var
be the number of words in the lyrics of Sar; then Sar can
be represented by Sar = {varj}Var

j=1, where varj is the jth
word in Sar. Hence, the set of words of all artists’ lyrics is
given by D = {{{varj}Var

j=1}
Ra
r=1}a∈A.

3.2 LDA (Latent Dirichlet Allocation)
When LDA is used as a generative process of lyrics, it is as-
sumed that (1) each song has a distribution over topics, (2)
a topic is assigned to each word in the song’s lyrics accord-
ing to the distribution, and (3) a word is generated from
the topic’s distribution over words. Figure 1(a) shows the
graphical model of LDA, where the shaded and unshaded
circles represent the observed and unobserved variables,
respectively. In the figure, K is the number of topics, θ is
the song-topic distribution, and ϕ is the topic-word distri-
bution. We assume that θ and ϕ have Dirichlet priors of
α and β, respectively. The generative process of LDA is
described in Algorithm 1.

3.3 Artist’s Taste (AT) Model
Although previous studies reported the usefulness of ap-
plying LDA to lyrics [17, 28, 31–33], LDA does not take
artist information into account in the generative process.
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(a)

(b)

Figure 1. Graphical models of (a) baseline LDA and (b)
proposed artist’s taste (AT) model.

It is reasonable to assume that each artist has their own
taste for topics of lyrics. For example, one artist may tend
to sing lyrics related to the topic of “love,” while another
artist may tend to sing lyrics related to the topic of “life.”

In light of the above, we propose a model that considers
the artist’s taste for topics. Figure 1(b) shows the graphi-
cal model of our proposed model. In our model, each artist
has a distribution over topics (θ). When people write lyrics,
the writer typically decides the theme (i.e., the topic) be-
fore starting to write the lyrics [4, 36]. Hence, we assume
each song has a topic z that is generated from θ. However,
not all of the words in the lyrics are related to the topic. For
example, although “thing” and “this” frequently appear in
many lyrics, usually these words do not represent a spe-
cific topic. To solve this problem, we use the idea of back-
ground words [6]. In Figure 1(b), ψ represents the back-
ground word distribution, where words that are not related
to any topic have high occurrence probabilities. Each artist
has a Bernoulli distribution λ that controls the weights of
influence for a song topic and background words. To be
more specific, when artist a chooses a word in a song, we
assume that the choice is influenced by the song topic with
probability λa0 (x = 0) and by background words with
probability λa1 (x = 1), where λa0 + λa1 = 1. When
x = 0, a word is generated from the topic’s distribution
over words, while when x = 1, a word is generated from
the background word distribution ψ. The generative pro-
cess of the AT model is described in Algorithm 2.

3.4 Inference

To learn the parameters of our proposed model, we use
collapsed Gibbs sampling [12] to obtain samples of hid-
den variable assignment. Since we use a Dirichlet prior
for θ, ϕ, and ψ and a Beta prior for λ, we can ana-
lytically calculate the marginalization over the parame-
ters. The marginalized joint distribution of D, latent vari-
ables Z = {{zar}Ra

r=1}a∈A, and latent variables X =
{{{xarj}Var

j=1}
Ra
r=1}a∈A is computed as follows:

Algorithm 1 LDA generative process
for each topic k ∈ {1, · · · ,K} do

Draw ϕk ∼ Dirichlet(β)
end for
for each artist a in A do

for each song Sar do
Draw θar ∼ Dirichlet(α)
for each word varj in Sar do

Draw a topic zarj ∼ Multinomial(θar)
Draw a word varj ∼ Multinomial(ϕzarj )

end for
end for

end for

Algorithm 2 AT model generative process
for each topic k ∈ {1, · · · ,K} do

Draw ϕk ∼ Dirichlet(β)
end for
Draw ψ ∼ Dirichlet(γ)
for each artist a in A do

Draw θa ∼ Dirichlet(α)
Draw λa ∼ Beta(ρ).
for each song Sar do

Draw a topic zar ∼ Multinomial(θa)
for each word varj in Sar do

Draw switch x ∼ Bernoulli(λa)
if x = 0 then

Draw a word varj ∼ Multinomial(ϕzar )
else if x = 1 then

Draw a word varj ∼ Multinomial(ψ)
end if

end for
end for

end for

P (D,Z,X|α, β, γ, ρ)

=

∫∫∫∫
P (D,Z,X|Θ,Φ, ψ,Λ)P (Θ|α)

× P (Φ|β)P (ψ|γ)P (Λ|ρ)dΘdΦdψdΛ, (1)

where Θ = {θa}a∈A, Φ = {ϕk}Kk=1, and Λ = {λa}a∈A.
By integrating out those parameters, we can compute
Equation (1) as follows:

P (D,Z,X|α, β, γ, ρ)

∝
∏
a∈A

Γ(ρ+Na0)Γ(ρ+Na1)

Γ(2ρ+Na)

∏
v∈V Γ(N1v + γ)

Γ(N1 + γ|V |)

×
K∏

k=1

∏
v∈V Γ(Nkv + β)

Γ(Nk + β|V |)
∏
a∈A

∏K
k=1 Γ(Rak + α)

Γ(Ra + αK)
. (2)

Here, Na0 and Na1 are the number of words in a’s songs
such that x = 0 and x = 1, respectively, and Na =
Na0 +Na1. The term N1v represents the number of times
that word v was chosen under the condition of x = 1, and
N1 =

∑
v∈V N1v where V is the set of unique words inD.

Furthermore, Nk =
∑

v∈V Nkv where Nkv is the number
of times word v is assigned to topic k under the condition
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of x = 0. Finally, Rak is the number of times topic k is
assigned to a’s song, and Ra =

∑K
k=1Rak.

For the Gibbs sampler, given the current state of all but
one variable zar, the new latent assignment of zar is sam-
pled from the following probability:

P (zar = k|D,X,Z\ar, α, β, γ, ρ)

∝
Rak\ar + α

Ra − 1 + αK

Γ(Nk\ar + β|V |)
Γ(Nk\ar +Nar + β|V |)

×
∏
v∈V

Γ(Nkv\ar +Narv + β)

Γ(Nkv\ar + β)
, (3)

where \ar represents the procedure excluding the rth song
of a. Moreover, Nar and Narv represent the number of
words in the rth song of a and the number of times word v
appears in the rth song of a, respectively.

In addition, given the current state of all but one variable
xarj , the probability at which xarj = 0 is given by:

P (xarj = 0|D,X\arj , Z, α, β, γ, ρ)

∝
ρ+Na0\arj

2ρ+Na − 1

Nzarvarj\arj + β

Nzar\arj + β|V |
, (4)

where \arj represents the procedure excluding the jth
word in the rth song of a. Similarly, the probability at
which xarj = 1 is computed as follows:

P (xarj = 1|D,X\arj , Z, α, β, γ, ρ)

∝
ρ+Na1\arj

2ρ+Na − 1

N1varj\arj + γ

N1\arj + γ|V |
. (5)

Finally, we can make the point estimates of the inte-
grated out parameters as follows:

θak =
Rak + α

Ra + αK
, ϕkv =

Nkv + β

Nk + β|V |
, ψv =

N1v + γ

N1 + γ|V |
,

λa0 =
Na0 + ρ

Na + 2ρ
, λa1 =

Na1 + ρ

Na + 2ρ
. (6)

4. EVALUATION
In this section, we carry out a quantitative evaluation to
answer the following research question: is adopting the
artist’s taste for topics effective to model the lyrics gen-
erative process?

[Dataset] We used the lyrics of commercially available
popular music. Those lyrics with the song’s title and artist
name were provided by one of the largest companies for
commercial lyrics distribution. We collected data on the
top 1,000 artists in terms of the number of lyrics that are
available as of the end of December 2016; this gave us
93,716 songs in total. We then extracted Japanese nouns
from each song’s lyrics by using MeCab [20], which is a
Japanese morphological analyzer. Nouns that appeared in
less than 10 lyrics were eliminated. Although our proposed
model is language-independent, we used only Japanese
words because of the understandability of the estimated
topics for Japanese users of Lyric Jumper that we will de-
scribe in Section 5. From each of lyrics, we randomly
sampled 80% of the nouns for training data and used the
remaining 20 % for test data.

[Settings] In terms of hyperparameters, in line with
other topic modeling work, we set α = 1

K and β = 50
|V |

P
e
rp
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Number of topics (K)

1100
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1400

0 10 20 30 40 50
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Figure 2. Perplexity for baseline LDA and proposed AT
model (the lower, the better).

in LDA and the artist’s taste (AT) model. In addition, in
the AT model, we set γ = 50

|V | and ρ = 0.5. To com-
pare the performance of LDA and the AT model, we use
the perplexities of the two models. Perplexity is widely
used to compare the performance of statistical models [1],
and the lower value represents the better performance. In
terms of the number of topics, we compute the perplexity
for K = 2, 4, 6, 8, 10, 20, 30, 40, and 50.

[Results] Figure 2 shows the perplexity. As can be seen,
regardless of the number of topics, the AT model outper-
forms LDA. In both methods, the perplexity reaches a min-
imum when the number of topics is eight. The difference
of perplexity between the two models becomes larger as
the number of topics increases. From these results, we can
conclude that the AT model is superior to LDA for model-
ing a lyrics generative process and confirmed the effective-
ness of modeling a topic distribution for each artist.

5. LYRIC JUMPER
By using the AT model, we implemented a lyrics-based
music exploratory web service called Lyric Jumper that
anyone can use for free without registration. In this section,
we describe the implementation and functions of Lyric
Jumper followed by the log analysis based on the users’
operation logs obtained from the web service.

5.1 Implementation
For Lyric Jumper, the lyrics are provided by the aforemen-
tioned company for commercial lyrics distribution. We
used all the lyrics that are available as of the end of De-
cember 2016 and extracted Japanese nouns. To guaran-
tee the topic quality, we eliminated artists who had < 10
songs and nouns that appeared in < 10 songs. This gave
us 147,990 songs by 3,722 artists.

As for the number of topics K, if K is too small, users
would soon get bored of using Lyric Jumper, while if K
is too large, it would be difficult to understand the differ-
ence between topics since many similar topics are gener-
ated. Hence, after comparing the topic qualities for sev-
eral K values, we set K = 20 for Lyric Jumper, although
K = 8 achieved the best result in terms of the perplexity
in Section 4. After automatically estimating the 20 topics
by using the AT model, we manually labeled topic names
so that users can easily understand the characteristics of
each topic. Examples of topic names are “life,” “sentimen-
tal,” and “adolescence.” Although five topics are related
to “love,” our model was able to distinguish between sub-
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Click “Ar�st Ranking by Topic” bu�on

A 20 topics B Ar�st ranking related to “Devoted love” topic E Recommended ar�sts C Top 5 characteris�c

topics for ar�st “ClariS”

D Doughnut chart represen�ng topic tendency of ar�st “ClariS”

Figure 3. Overview of Lyric Jumper.

tle differences of love: “eternal love,” “devoted love,” “ro-
mantic love,” “sexual love (female subject),” and “sexual
love (male subject).”

5.2 Function
Lyric Jumper mainly provides six functions. The following
sections describe the functions one by one.

5.2.1 Artist Ranking

Lyric Jumper displays 20 topic names as shown in Fig-
ure 3 A⃝. By clicking one of the 20 topics, Lyric Jumper
shows up to 100 artists related to the topic (Figure 3 B⃝).
This enables the user to see many artists related to the topic
of his/her interest. The user can also find that unexpected
artists are related to the topic.

Intuitively, given a topic k, artists are ranked based on
both their topic ratio of k (θak) and the number of songs
assigned to k (Rak) so that artists more closely related to
the topic are ranked higher. To be more specific, we sort
all the artists in A by using the rank of topic k in θa as the
first key (the smaller the better) and using the number of
songs assigned to k (Rak) as the second key (the larger the
better). Note that artists whose rank of k in θa is lower than
five are not included in the ranking because Lyric Jumper
shows the top five topics for each artist as we will describe
in Section 5.2.2. Finally, we select the top 100 artists in the
sorted list and show them to the users.

5.2.2 Topic Tendency Visualization

When a user clicks an artist, Lyric Jumper visualizes the
topic tendency of the artist. In this function, given artist a,
the top five topics in terms of the occurrence probability in
θa are displayed in rectangles (Figure 3 C⃝). The size of a
rectangle corresponds to the topic probability: the larger it
is, the higher the probability is. With this function, a user
can not only understand the topic tendency of the artist’s
lyrics but also find out that the artist sings songs with un-
expected topics. We also manually selected four charac-
teristic words for each topic and displayed them below the
topic name so that users can more easily understand the
meaning of the topic. In addition, Lyric Jumper visualizes

the topic tendency using a doughnut chart where the cir-
cle is divided according to the ratio of the top five topics
(Figure 3 D⃝).

5.2.3 Artist Recommendation

Since similar artists are one of the important information
needs in MIR [21], Lyric Jumper provides a similar artists
recommendation function. Lyric Jumper recommends 10
artists in terms of the topic similarity (Figure 3 E⃝). Among
the 10 artists, eight artists are popular and two artists are
minor. By displaying minor artists as well as popular ones,
Lyric Jumper aims to encourage the user to listen to unfa-
miliar artists’ songs that are related to his/her favorite artist
by the topic similarity. By clicking a recommended artist’s
graph, the user can jump to the artist’s search result.

Given a selected artist a, we compute the similarity be-
tween a and each artist a′ ∈ A \ {a} based on Jensen-
Shannon divergence (JSD) between θa and θa′ . The
smaller the JSD value is, the higher the similarity between
artists is. After computing the similarities, we select the
top eight similar artists who have ≥ m songs in the dataset
(i.e., popular artists) and the top two artists who have < m
songs (i.e., minor artists) and show those 10 artists to the
users. On Lyric Jumper, m is set to 100.

5.2.4 Phrase Emphasized Lyrics Visualization

When a user clicks a topic of the selected artist, Lyric
Jumper shows the list of song titles of the artist that are
assigned to the topic (the song ranking method will be de-
scribed in Section 5.2.5). When the user clicks a title in
the list, the song’s lyrics are displayed (Figure 4). In the
lyrics, lines3 related to the topic are displayed with em-
phasis: the stronger the relation is, the larger the font size
becomes and the darker the color becomes. This enables
a user to easily understand the characteristics of the lyrics
such as “the latter half of the lyrics is strongly related to
the topic.” Users can also watch the song’s videos on Lyric
Jumper by clicking the “YouTube Search” button. Lyric
Jumper shows the search results obtained from YouTube4

3 We use the terms “phrase” and “line” interchangeably.
4 https://www.youtube.com/
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A Song ranking related to topic “Roman!c love” for ar!st “ClariS” 

Lyrics of song 

“Surely”

Figure 4. Phrase emphasized lyrics visualization.

where the query is the artist name and the song title.
The relevance score between a line in the lyrics and the

topic is computed as follows. We first assign scores for
the nouns in ϕk. Let rank(k, v) be the occurrence prob-
ability rank of noun v in ϕk. The score of v is given by
w rel(k, v) = 101 − rank(k, v) if rank(k, v) ≤ 100 and
w rel(k, v) = 0 otherwise. Line l consists of n ≥ 0
nouns and can be represented by l = (v1, · · · , vn). The
relevance score of l with topic k is given by l rel(k, l) =∑n

i=1 w rel(k, vi). After computing the scores of all lines
in a song’s lyrics, the scores are normalized to fit into the
interval [0, 1] by min-max normalization. The font size lin-
early changes from 16 pt for a score of 0 to 36 pt for a score
of 1; the color density also linearly changes from #FFFFFF
for a score of 0 to the topic color for a score of 1.

5.2.5 Artist’s Songs Ranking

As mentioned in Section 5.2.4, when a user clicks a topic
of the selected artist, Lyric Jumper returns the ranked list
of songs in the topic (Figure 4 A⃝). Songs are sorted in de-
scending order of relevance to the topic so that the user can
easily access songs that are strongly related to the topic.

The relevance score between song s and topic k is given
by s rel(k, s) = 1

|Ls|
∑

l∈Ls
l rel(k, l), where Ls is the

set of lines in s’s lyrics. That is, we assume that the relat-
edness between s and k can be represented by the average
relevance between k and each line in s’s lyrics.

5.2.6 Phrase Recommendation

By clicking the “Phrase” button after selecting an artist’s
topic, Lyric Jumper recommends phrases related to the
topic in the artist’s songs (Figure 5). Moreover, every time
the user clicks the “PUSH!” button, a new phrase is recom-
mended. This function enables users to understand there
are various expressions to deliver messages about the topic.
When the user clicks a phrase, Lyric Jumper shows the cor-
responding lyrics in the same way as in Section 5.2.4.

Given artist a and topic k, the recommended phrases
are selected as follows. In the ith round (i = 1, 2, · · · ), we
pool lines that have the ith highest score of l rel(k, l) from
a’s songs in order of decreasing s rel(k, s). This round is
repeated until the number of pooled lines is equal to 100.
Lyric Jumper recommends phrases from the pooled list in
random order so that users can see different phrases every
time the user accesses Lyric Jumper.

Recommended phrases

Figure 5. Phrase recommendation.

Function PC Smartphone
Artist ranking 2,092 30,295
Artist recommendation 1,706 4,016
Artist’s songs ranking 5,399 14,665
Phrase recommendation 4,997 253,430

Table 1. Statistics of use frequency of each function.

5.3 Log Analysis

We released Lyric Jumper as a web service open to the pub-
lic on 2/21/2017. To analyze users’ exploratory behavior
on Lyric Jumper, we obtained operation logs for 30 days
(2/21 to 3/22). The numbers of unique PC users and smart-
phone users are 1,288 and 11,065, respectively. The use
frequencies of each function are summarized in Table 1.
We can see that the use frequencies of the artist ranking
and artist’s songs ranking are high. These results indicate
that exploratory search for artists and songs based on top-
ics can stimulate the user’s interest. It can also be observed
that for smartphone users in particular, the phrase recom-
mendation function was used frequently: the push button
was clicked as many as 253,430 times. This data shows
the user’s high information needs regarding finding lyrics
using phrases related to a topic. Compared to these func-
tions, the recommended artists were not clicked very often.
To encourage the artist-similarity-based lyrics exploratory
search, a more sophisticated interface for the recommenda-
tion deserves to be explored; we leave this as future work.

6. CONCLUSION

In this paper we proposed a topic model that incorporates
the artist’s taste for topics of lyrics. Our experimental re-
sults showed that our model outperformed the state-of-the-
art LDA model regardless of the number of topics in terms
of the perplexity. We also released a lyrics-based music
exploratory web service called Lyric Jumper, where we ap-
plied our model to 147,990 lyrics by 3,722 artists. Our
log analysis results show that the phrase recommendation
function, which recommends phrases from the lyrics of the
artist’s songs related to the selected topic, achieved a par-
ticularly high use frequency.

For future work, since our model is language-
independent, we plan to apply our model to English lyrics
and implement an English version of Lyric Jumper. We
are also interested in combining topics obtained by our
model with other features such as audio content and tags.
This would enable users to explore songs by adapting their
search intent with increased flexibility.
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ABSTRACT

This paper presents a multi-pitch detection and voice as-
signment method applied to audio recordings containing a
cappella performances with multiple singers. A novel ap-
proach combining an acoustic model for multi-pitch detec-
tion and a music language model for voice separation and
assignment is proposed. The acoustic model is a spectro-
gram factorization process based on Probabilistic Latent
Component Analysis (PLCA), driven by a 6-dimensional
dictionary with pre-learned spectral templates. The voice
separation component is based on hidden Markov mod-
els that use musicological assumptions. By integrating the
models, the system can detect multiple concurrent pitches
in vocal music and assign each detected pitch to a specific
voice corresponding to a voice type such as soprano, alto,
tenor or bass (SATB). This work focuses on four-part com-
positions, and evaluations on recordings of Bach Chorales
and Barbershop quartets show that our integrated approach
achieves an F-measure of over 70% for frame-based multi-
pitch detection and over 45% for four-voice assignment.

1. INTRODUCTION

Automatic music transcription is defined as the process of
converting an acoustic music signal into some form of mu-
sic notation [3]. In the past years, several signal processing
and machine learning approaches have been proposed for
automatic music transcription, with applications in music
information retrieval, music education, computational mu-
sicology, and interactive music systems. A core problem
of automatic transcription is multi-pitch detection, i.e. the
detection of multiple concurrent pitches.

For multi-pitch detection, spectrogram factorization
methods have been used extensively in the last decade [3].

* Authors 1 and 2 contributed equally to this work.
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However, despite promising results of template-based
techniques [4, 11, 17], the considerable variation in the
spectral shape of pitches produced by different sources can
still affect generalization performance. Recent research on
multi-pitch detection has also focused on deep learning ap-
proaches: in [13, 22], feedforward, recurrent and convolu-
tional neural networks were evaluated towards the problem
of automatic piano transcription.

On approaches for automatic transcription of vocal mu-
sic, Bohak and Marolt [5] proposed a method for tran-
scribing folk music containing both instruments and vo-
cals, which explores the repetitions of melodic segments
using a musicological model for note-based transcription.
A less explored type of music is a cappella; in particular,
vocal quartets constitute a traditional form of Western mu-
sic, typically dividing a piece into multiple vocal parts such
as soprano, alto, tenor, and bass (SATB). In [21], an acous-
tic model based on spectrogram factorisation was proposed
for multi-pitch detection of such vocal quartets.

A small group of methods have attempted to go be-
yond multi-pitch detection, towards instrument assignment
(also called timbre tracking) [1, 8, 11], where a system de-
tects multiple pitches and assigns each pitch to a specific
source that produced it. Bay et al. [1] tracked individual in-
struments in polyphonic instrumental music using a spec-
trogram factorisation approach with continuity constraints
controlled by a hidden Markov model (HMM).

An emerging area of automatic music transcription at-
tempts to combine acoustic models (i.e. based on audio in-
formation only) with music language models, which model
sequences of notes and other music cues based on knowl-
edge from music theory or from constraints automatically
derived from symbolic music data. This is in direct anal-
ogy to automatic speech recognition systems, which typi-
cally combine an acoustic model with a spoken language
model. An example of such an integrated system is the
work by Sigtia et al. [22] which combined neural network-
based acoustic and music language models for multi-pitch
detection in piano music.

Combining instrument assignment with this idea of
using a music language model, it is natural to look at
the field of voice separation, which is the separation of
pitches into monophonic streams of notes, called voices,
mainly addressed in the context of symbolic music pro-
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cessing [6, 14, 16]. Several voice separation approaches
are based on voice leading rules, which were investigated
in [12,23,24] from a cognitive perspective. Among the nu-
merous rules pointed out by these authors, common char-
acteristics are that large melodic intervals between consec-
utive notes within a single voice should be avoided and that
two voices should not cross in pitch. A third principle sug-
gested by [12] is the idea that the stream of notes should
be relatively continuous within a single voice, and not have
too many gaps of silence, ensuring temporal continuity.

The overarching aim of this work is to create a system
able to detect multiple pitches in polyphonic vocal music
and assign each detected pitch to a single voice of a spe-
cific voice type (e.g. soprano, alto, tenor, bass). Thus, the
proposed method is able to perform both multi-pitch detec-
tion and voice assignment. Our approach uses an acoustic
model for multi-pitch detection based on probabilistic la-
tent component analysis (PLCA), which is modified from
the model proposed in [21], and a music language model
for voice assignment based on the HMM proposed in [16].
Although previous work has integrated musicological in-
formation for note event modelling [5, 19, 22], to the au-
thors’ knowledge, this is the first attempt to incorporate an
acoustic model with a music language model for the task of
voice or instrument assignment from audio, as well as the
first attempt to propose a system for voice assignment in
polyphonic a cappella music. The approach described in
this paper focuses on recordings of singing performances
by vocal quartets without instrumental accompaniment; to
that end we use two datasets containing a capella record-
ings of Bach Chorales and Barbershop quartets. The pro-
posed system is evaluated both in terms of multi-pitch
detection and voice assignment, where it reaches an F-
measure of 70% and 45% for the two respective tasks.

2. PROPOSED METHOD

In this section, we present a system for multi-pitch detec-
tion and voice assignment from audio recordings of poly-
phonic vocal music where the number of voices is known
a priori, that integrates an acoustic model with a music
language model. First, we describe the acoustic model,
a spectrogram factorization process based on probabilistic
latent component analysis (PLCA). Then, we present the
music language model, an HMM-based voice assignment
model. Finally, a joint model is proposed for the integra-
tion of these two components. Figure 1 illustrates the pro-
posed system pipeline.

2.1 Acoustic Model

The acoustic model is a variant of the spectrogram
factorisation-based model proposed in [21]. The model
uses a fixed dictionary of log-spectral templates and aims
to decompose an input time-frequency representation into
several components denoting the activations of pitches,
voice types, tuning deviations, singer subjects, and vow-
els. As time-frequency representation we use a normalised
variable-Q transform (VQT) spectrogram [20] with a hop

AUDIO TIME/FREQUENCY
ACOUSTIC MODEL

Multi-Pitch Detection

DICTIONARY

Voice Assignment

MUSIC LANGUAGE

MODEL

REPRESENTATION

Figure 1: Proposed system diagram.

size of 20 msec and 20 cent resolution.
The input VQT spectrogram is denoted as Xω,t ∈

RΩ×T , where ω denotes log-frequency and t time. In the
model,Xω,t is approximated by a bivariate probability dis-
tribution P (ω, t), which is in turn decomposed as:

P (ω, t) = (1)

P (t)
∑

s,p,f,o,v

ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)

where P (t) is the spectrogram energy (known quantity).
Φ = P (ω|s, p, f, o, v) is the fixed pre-extracted spectral
template dictionary (for details about the dictionary con-
struction, refer to [21]). Variable p ∈ {21, ..., 108} denotes
pitch in MIDI scale, s denotes the singer index (out of the
collection of singer subjects used to construct the input dic-
tionary), o denotes the vowel type, v denotes the voice type
(e.g. soprano, alto, tenor, bass), and f denotes tuning de-
viation from 12-tone equal temperament in 20 cent resolu-
tion (f ∈ {1, . . . , 5}, with f = 3 denoting ideal tuning).
Unlike in [21], this model decomposes the probabilities
of pitch and voice type as P (v)Pt(p|v). That is, Pt(p|v)
denotes the pitch activation for a specific voice type (eg.
SATB) over time and P (v) can be viewed as a mixture
weight that denotes the overall contribution of each voice
type to the whole input recording. The contribution of spe-
cific singer subjects from the training dictionary is mod-
elled by Pt(s|p), i.e. the singer contribution per pitch over
time. Pt(f |p) is the tuning deviation per pitch over time
and finally Pt(o|p) is the time-varying vowel contribution
per pitch 1 .

The factorization can be achieved by the expectation-
maximization (EM) algorithm [7], where the unknown
model parameters Pt(s|p), Pt(f |p), Pt(o|p), Pt(p|v), and
P (v) are iteratively estimated. In the Expectation step we
compute the posterior as:

Pt(s, p, f, o, v|ω) = (2)

ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)∑
s,p,f,o,v ΦPt(s|p)Pt(f |p)Pt(o|p)P (v)Pt(p|v)

In the Maximization step, each unknown model param-
eter is then updated using the posterior from Eqn (2):

1 Although Pt(o|p) is not explicitly used in this proposed approach, it
is kept to ensure consistency with the RWC audio dataset structure.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 553



Pt(s|p) ∝
∑

f,o,v,ω

Pt(s, p, f, o, v|ω)Xω,t (3)

Pt(f |p) ∝
∑

s,o,v,ω

Pt(s, p, f, o, v|ω)Xω,t (4)

Pt(o|p) ∝
∑

s,f,v,ω

Pt(s, p, f, o, v|ω)Xω,t (5)

Pt(p|v) ∝
∑

s,f,o,ω

Pt(s, p, f, o, v|ω)Xω,t (6)

P (v) ∝
∑

s,f,o,p,ω,t

Pt(s, p, f, o, p|ω)Xω,t (7)

The model parameters are randomly initialised, and the
EM algorithm iterates over Eqns (2)-(7). In our experi-
ments we use 30 iterations.

The output of the acoustic model is a semitone-scale
pitch activity tensor for each voice type and a pitch shift-
ing tensor, given by P (p, v, t) = P (t)P (v)Pt(p|v) and
P (f, p, v, t) = P (t)P (v)Pt(p|v)Pt(f |p) respectively. By
stacking together slices of P (f, p, v, t) for all values of p,
we can create a 20 cent-resolution time-pitch representa-
tion for each voice type v:

P (f ′, t, v) = [P (f, 21, v, t)...P (f, 108, v, t)] (8)

where f ′ = 1, ..., 880 denotes pitch in 20 cent resolu-
tion. The overall multi-pitch detection without voice as-
signment, is given by P (p, t) =

∑
v P (p, v, t). Finally,

the voice-specific pitch activation output P (p, v, t) is bi-
narized and post-processed through a refinement step de-
scribed in [21], where each pitch is aligned with the nearest
peak to it in the input log-frequency spectrum.

2.2 Music Language Model

The music language model attempts to assign each de-
tected pitch to a single voice based on musicological con-
straints. It is a variant of the HMM-based approach pro-
posed in [16], where the main change is to the emission
function (here it is probabilistic, while in the previous work
it was deterministic). The model separates sequential sets
of multi-pitch activations into monophonic voices (of type
SATB) based on three principles: (1) consecutive notes
within a voice tend to occur on similar pitches; (2) there
are minimal temporal gaps between them; and (3) voices
are unlikely to cross.

The observed data for the HMM are notes generated
from the acoustic model’s binarised multi-pitch activations
P (p, t), where each generates a note n with pitch ρ(n) =
p, onset time δ(n) = t, and an offset time τ(n) = t + 1.
Ot represents this observed data at frame t.

2.2.1 HMM: State Space

In the HMM, a state St at frame t contains a list of M
monophonic voices Vi, 1 ≤ i ≤ M . The initial state S0

contains M empty voices, and at each frame, each voice
is assigned either no note, or a note with pitch ρ(n) ∈
{21, ..., 108}. Each voice contains the entire history of the

notes which have been assigned to it from frame 1 to t. The
state space of our model blows up exponentially (though it
is reduced significantly when the model is run discrimi-
natively as we do),, so instead of precomputed transition
and emission probabilities, we use transition and emission
probability functions, presented in the following sections.

Conceptually, it is helpful to think of each state as sim-
ply a list of M voices, rather than to consider each voice
to also be a list of notes. Thus, each state transition is cal-
culated based on each voice in the previous state (though
some of the probability calculations require knowledge of
individual notes).

2.2.2 HMM: Transition Function

A state St−1 has a transition to state St if and only if each
voice Vi ∈ St−1 can be transformed into the corresponding
Vi ∈ St by assigning to it up to 1 note with onset time t.

This transition from St−1 to St can be represented by
the variable TSt−1,Nt,Wt

, where St−1 is the original state,
Nt is a list of those notes n contained by any voice in St

where δ(n) = t, andWt is a list of integers, each represent-
ing the voice assignment index for a single note n ∈ Nt.
For each index i, 1 ≤ i ≤ |Nt| = |Wt|, note ni is as-
signed to voice Vwi

∈ St. Here, Nt only contains those
observed notes which are assigned to a voice in St, not all
observed notes. Since all of our voices are monophonic,
no two elements in Wt may be equal.

We now define the HMM transition probability
P(St|St−1) as P(TSt−1,Nt,Wt

):

P (TSt−1,Nt,Wt
) = Ψ(Wt)

∏
1≤i≤|Nt|

Θ(St−1, ni, wi)Λ(Vwi
, ni).

(9)
The first term in this product is defined as

Ψ(W ) =
∏

1≤j≤M

{
Υ j ∈W
1−Υ j /∈W

(10)

where the parameter Υ represents the probability that a
given voice contains any note in a frame.

Θ(St−1, n, w) is a penalty function used to minimize
the voice crossings. It returns by default 1, but its output is
multiplied by a parameter θ—representing the probability
of a voice being out of pitch order with an adjacent voice—
for each of the following cases that applies:

1. w > 1 and χ(Vw−1) > ρ(n)

2. w < |M | and χ(Vw+1) < ρ(n)

χ(V ) represents the pitch of a voice, calculated as a
weighted sum of the pitches of its most recent notes. Cases
1 and 2 apply when a note is out of pitch order with the pre-
ceding or succeeding voice in the state respectively.

Λ(V, n) is used to calculate the probability of a note n
being assigned to a voice V , and is the product of a pitch
score ∆p and a gap score ∆g:

Λ(V, n) = ∆p(V, n)∆g(V, n) (11)

The pitch score, used to minimise melodic jumps within a
voice, is computed as shown in Eqn (12), where N (µ, σ)

554 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



represents a normal distribution with mean µ and standard
deviation σ, and σp is a parameter. The gap score is used to
prefer temporal continuity within a voice, and is computed
using Eqn (13), where τ(V ) is the offset time of the most
recent note in V and σg and gmin are parameters. Both ∆p

and ∆g return 1 if V is empty.

∆p(V, n) = N (ρ(n)− χ(V ), σp) (12)

∆g(V, n) = max
(

ln
(
−δ(n)− τ(V )

σg
+ 1
)
+1, gmin

)
(13)

2.2.3 HMM: Emission Function

A state St emits a set of notes containing only those which
have an onset at frame t, and a state containing a voice with
a note at frame t must emit that note. The probability of
a state St emitting the note set Ot is shown in Eqn (14),
using the voice posterior Pt(v|p) from the acoustic model.

P(Ot|St) =
∏
n∈Ot

{
Pt(v = i|p = ρ(n)) n ∈ Vi ∈ St

1 otherwise
(14)

A state is not penalised for emitting notes not assigned to
any of its voices. This allows the model to better handle
false positives from the multi-pitch detection. For exam-
ple, if the acoustic model detects more than M pitches,
we allow a state to emit the corresponding notes without
penalty. We do, however, penalise a state for not assign-
ing a voice any note during a frame, but this is handled by
Ψ(W ) from Eqn (10).

2.2.4 HMM: Inference

To find the most likely final state given our observed note
sets, we use the Viterbi algorithm [26] with beam search
with beam size b. That is, after each iteration, we save only
the b = 50 most likely states given the observed data to that
point, in order to handle the complexity of the HMM.

2.3 Model Integration

In this section, we describe the integration of the acous-
tic model and the music language model into a single sys-
tem which jointly performs multi-pitch detection and voice
assignment from audio. This integration is done in two
stages. First, using only the acoustic model from subsec-
tion 2.1, the EM algorithm is run for 15 iterations, when
the multi-pitch detections converge. Next, the system runs
for 15 more EM iterations, this time also using the music
language model from subsection 2.2. In each iteration, the
acoustic model is run first, and then the language model is
run on the resulting multi-pitch detections. To intergrate
the two models, we apply a fusion mechanism inspired by
the one used in [9] to improve the acoustic model’s pitch
activations based on the resulting voice assignments.

The output of the language model is introduced into the
acoustic model as a prior to Pt(p|v). During the acoustic
model’s EM updates, Eqn (6) is modified as:

Pnew
t (p|v) = αPt(p|v) + (1− α)φt(p|v), (15)

where α is a weight parameter controlling the effect of the
acoustic and language model and φ is a hyperparameter
defined as:

φt(p|v) ∝ P a
t (p|v)Pt(p|v). (16)

P a
t (p|v) is calculated from the most probable final

HMM state Stmax
using the pitch score ∆p(V, n) from the

HMM transition function of Eqn (12). For V , we use the
voice Vv ∈ Stmax

as it was at frame t − 1, and for n, we
use a note at pitch p. The probability values are then nor-
malised over all pitches per voice. The pitch score returns
a value of 1 when the V is an empty voice (thus becoming
a uniform distribution over all pitches). The hyperparam-
eter of Eqn (16) acts as a soft mask, reweighing the pitch
contribution of each voice regarding only the pitch neigh-
bourhood previously detected by the model.

The final output of the integrated system is a list of the
detected pitches at each time frame which are assigned to
a voice in the most probable final HMM state Stmax

, along
with the voice assignment for each. Figure 2 shows an
example output of the integrated system.

3. EVALUATION

3.1 Datasets

We evaluate the proposed model on two datasets of a
capella recordings 2 : one of 26 Bach Chorales and another
of 22 Barbershop quartets, in total 104 minutes. These
are the same datasets used in [21], allowing for a direct
comparison between it and the acoustic model proposed
in Section 2.1. Each file is in wave format with a sample
rate of 22.05 kHz and 16 bits per sample. Each record-
ing has four distinct vocal parts (SATB), with one part per
channel. The recordings from the Barbershop dataset each
contain four male voices, while the Bach Chorale record-
ings each contain a mixture of two male and two female
voices. A frame-based pitch ground truth for each vocal
part was extracted using a monophonic pitch tracking al-
gorithm [15] on each individual monophonic track. Exper-
iments are conducted using the mix down of each audio
file (i.e. polyphonic content), not the individual tracks.

3.2 Evaluation Metrics

We evaluate the proposed system on both multi-pitch de-
tection and voice assignment using the frame-based pre-
cision, recall and F-measure as defined in the MIREX
multiple-F0 estimation evaluations [2], with a frame hop
size of 20 ms. The F-measure obtained by the multi-pitch
detection is denoted as Fmp , and for this, we combine the
individual voice ground truths into a single ground truth for
each recording. For voice assignment, we simply use the
individual voice ground truths and define voice-specific F-
measures of Fs, Fa, Ft, and Fb for each respective SATB
vocal part. We also define an overall voice assignment F-
measure Fva for a given recording as the arithmetic mean
of its four voice-specific F-measures.

2 Original recordings available at http://www.pgmusic.com/
{bachchorales.htm|barbershopquartet.htm}.
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Figure 2: Multi-pitch detection and voice assignment for
a 10-sec excerpt of “O Sacred Head Sore Wounded” from
the Bach Chorales dataset. Each vocal part is shown in a
distinct shade of grey. (a) Ground truth. (b) Pitch activa-
tion P (p, t). (c) Output of the integrated system.

3.3 Training

To train the acoustic model, we use recordings from the
RWC dataset [10] to generate the 6-dimensional dictionary
of log-spectral templates specified in Section 2.1, follow-
ing the procedure described in [21]. The recordings used
to generate the dictionary contain sequences of notes fol-
lowing a chromatic scale, in five distinct English vowels
(/a/, /æ/, /i/, /6/, /u/). The dictionary contains templates
generated from 15 distinct singers (9 male and 6 female,
consisting of 3 human subjects for each voice type: bass,
baritone, tenor, alto, soprano).

For all parameters in the music language model, we use
the values reported in [16] that were used for voice sepa-
ration in fugues. We also introduce two new parameters
to the system: the voice order probability θ and the voice
probability Υ. We use MIDI files of 50 Bach Chorales 3

(none of which appear in the test set), splitting the notes
into 20 ms frames, and measure the proportion of frames
in which a voice was out of pitch order with another voice,
and the proportion of frames in which each voice contains
a note. This results in values of θ = 0.006 and Υ = 0.99,
which we use for testing.

To train the model integration weight α, we use a grid
search on the range [0.1, 0.9] with a step size of 0.1, max-
imising Fva for each dataset. This results in a value of
0.6 when trained on the Chorale recordings and 0.3 when
trained on the Barbershop recordings. To avoid overfitting,

3 MIDI files available at http://kern.ccarh.org/.

we employ cross-validation, using the α value that max-
imises the Chorales’ Fva when evaluating the Barbershop
quartets, and vice versa.

3.4 Results

We compare our model’s multi-pitch detection results with
those of three baseline methods: VINC+ [25], which uses
an adaptive spectral decomposition based on unsupervised
NMF; PERT+ [18], which selects candidates among spec-
tral peaks, validating candidates through additional au-
dio descriptors; and MSINGERS†+ [21], a PLCA model
for multi-pitch detection from multi-singers, similar to the
acoustic model of our proposed system, although it also
includes a binary classifier to estimate the final pitch de-
tections from the pitch activations. To the authors’ knowl-
edge, there is no existing system for multi-pitch detection
and voice assignment that can be used as a baseline for
our model’s voice assignment. However, for the sake of
comparison, we include results from voice assignments
derived from the model proposed in [21], which we call
MSINGERS-VA, despite the fact that the original model
was not designed for the task.

We evaluate the above systems against two versions of
our proposed model: VOCAL4-MP, using only the acous-
tic model described in Section 2.1; and VOCAL4-VA, us-
ing the fully integrated model. From the multi-pitch detec-
tion results in Table 1, it can be seen that MSINGERS†+
achieves the highest Fmp on the Bach chorales, narrowly
edging out VOCAL4-VA, but VOCAL4-VA achieves state-
of-the-art results on the Barbershop quartets. In both
datasets, VOCAL4-VA outperforms VOCAL4-MP sub-
stantially, indicating that the music language model is able
to drive the acoustic model to a more meaningful factori-
sation. The voice assignment results are shown in Table 2,
where it is clear that VOCAL4-VA outperforms the other
models, suggesting that perhaps a language model is al-
most necessary for the task. Also interesting to note is that
it performs significantly better on the bass voice than on
the other voices. Overtones are a major source of errors
in our model, and the bass voice avoids these since it is
almost always the lowest voice.

A further investigation into our model’s performance
can be found in Figure 3, which shows all of the VOCAL4-
VA model’s F-measures, averaged across all songs in the
corresponding dataset after each EM iteration. The first
thing to notice is the large jump in performance at itera-
tion 15, when the language model is first integrated into
the process. This jump is most significant for voice assign-
ment, but is also clear for multi-pitch detection. The main
source of the improvement in multi-pitch detection is that
the music language model helps to eliminate many false
positive pitch detections using the integrated pitch prior.
In fact, the multi-pitch detection performance continues to
improve until it finally converges after iteration 30.

The voice assignment results, however, are less straight-
forward. After the significant improvement on the 15th it-
eration, the results either remain relatively stable (in the
Barbershop quartets) or even drop slightly (in the Bach
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Model Bach Chorales Barbershop Quartets
VINC+ 53.58 51.04
PERT+ 67.19 63.85
MSINGERS†+ 70.84 71.03
VOCAL4-MP 63.05 59.09
VOCAL4-VA 69.66 73.46

Table 1: Multi-pitch detection results.

Model Bach Chorales
Fva Fs Fa Ft Fb

MSINGERS-VA 18.02 15.37 17.59 26.32 12.81
VOCAL4-MP 21.84 12.99 10.27 22.72 41.37
VOCAL4-VA 45.31 26.07 37.63 49.61 67.94

Model Barbershop Quartets
Fva Fs Fa Ft Fb

MSINGERS-VA 12.29 9.70 14.03 27.93 9.48
VOCAL4-MP 18.35 2.40 10.56 16.61 43.85
VOCAL4-VA 46.92 40.01 35.57 29.76 82.34

Table 2: Voice assignment results.

chorales) before convergence. This slight drop is due to
the fact that the language model initially receives noisy
multi-pitch detections that include false positives (mainly
overtones). Incorporating these overtones into the voice as-
signment can cause the removal of correct pitch detections,
which in turn reduces the voice assignment F-measures.

As mentioned earlier, the bass voice assignment outper-
forms all other voice assignments in almost all cases, since
false positive pitch detections from the acoustic model of-
ten correspond with overtones from lower notes that occur
in the same pitch range as the correct notes from higher
voices. Another common source of errors (for both multi-
pitch detection and voice assignment) is vibrato. The
acoustic model can have trouble detecting vibrato, and the
music language model prefers voices with constant pitch
over voices alternating between two pitches, leading to
many off-by-one errors in pitch detection. An example of
both of these types of errors can be found in Figure 4.

4. CONCLUSION

In this paper, we have presented a system for multi-pitch
detection and voice assignment for a cappella recordings
of multiple singers. It consists of two integrated compo-
nents: a PLCA-based acoustic model and an HMM-based
music language model. To our knowledge, ours is the first
system to be designed for the task 4 .

We have evaluated our system on both multi-pitch de-
tection and voice assignment on two datasets: one of Bach
chorales, and another of Barbershop quartets. Our model
outperforms baseline multi-pitch detection systems on the
Barbershop quartets, and achieves near state-of-the-art per-
formance on the chorales. We have shown that integrating
the music language model improves multi-pitch detection
performance compared with a simpler version of our sys-
tem with only the acoustic model. This suggests, as has
been shown in previous work, that incorporating such mu-
sic language models into other acoustic MIR tasks might

4 Supporting material for this work is available at
http://inf.ufrgs.br/~rschramm/projects/msingers
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Figure 3: The VOCAL4-VA model’s F-measures after
each EM iteration, averaged across all songs in each
dataset: (a) Bach Chorales. (b) Barbershop Quartets.

Figure 4: Pitch detections (red) and ground truth (black)
for the soprano voice at the beginning of the excerpt from
Figure 2, showing errors from both overtones and vibrato.

also be of some benefit, since they can guide acoustic mod-
els using musicological principles.

We also presented results for voice assignment, and
show that while our model performs well given the diffi-
culty of the task, there is certainly room for improvement.
Avenues for future work include a better handling of over-
tones in the acoustic model, and better recognition of vi-
brato in both the acoustic and the music language model.
We will also investigate the use of timbral information for
further improving voice assignment performance. Addi-
tionally, our model could be applied to different styles of
music (e.g., instrumental, or those containing both instru-
ments and vocals) by learning a new dictionary for the
acoustic model and retraining the parameters of the music
language model, and we intend to investigate the generality
of our model in that context.
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ABSTRACT

Complex rhythmic patterns associated with Carnatic music
are revealed from the stroke locations of percussion instru-
ments. However, a comprehensive approach for the detec-
tion of these locations from composition items is lacking.
This is a challenging problem since the melodic sounds
(typically vocal and violin) generate soft-onset locations
which result in a number of false alarms.

In this work, a separation-driven onset detection ap-
proach is proposed. Percussive separation is performed us-
ing a Deep Recurrent Neural Network (DRNN) in the first
stage. A single model is used to separate the percussive
vs the non-percussive sounds using discriminative train-
ing and time-frequency masking. This is then followed by
an onset detection stage based on group delay (GD) pro-
cessing on the separated percussive track. The proposed
approach is evaluated on a large dataset of live Carnatic
music concert recordings and compared against percussive
separation and onset detection baselines. The separation
performance is significantly better than that of Harmonic-
Percussive Separation (HPS) algorithm and onset detec-
tion performance is better than the state-of-the-art Con-
volutional Neural Network (CNN) based algorithm. The
proposed approach has an absolute improvement of 18.4%
compared with the detection algorithm applied directly on
the composition items.

1. INTRODUCTION

Detecting and characterizing musical events is an impor-
tant task in Music Information Retrieval (MIR), especially
in Carnatic music, which has a rich rhythm repertoire.
There are seven different types of repeating rhythmic pat-
terns known as tālas, which when combined with 5 jātis
give rise to 35 combinations of rhythmic cycles of fixed
intervals. By incorporating 5 further variations called
gati/nadai, 175 rhythmic cycles are obtained [13]. A tāla
cycle is made up of mātrās, which in turn are made up of
aksharās or strokes at the fundamental level. Another com-
plexity in Carnatic music is that the start of the tāla cycle
and of the composition need not be synchronous. Never-

c© Jilt Sebastian, Hema A. Murthy. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Jilt Sebastian, Hema A. Murthy. “ONSET DETECTION IN
COMPOSITION ITEMS OF CARNATIC MUSIC”, 18th International
Society for Music Information Retrieval Conference, Suzhou, China,
2017.

theless, percussion keeps track of rhythm. The detection
of percussive syllable locations aids higher level retrieval
tasks such as aksharā transcription, sama (start of tāla) and
ed. uppu (start of composition) detection and tāla tracking.

Various methods have been proposed for detecting on-
sets from music signals using a short-term signal, the lin-
ear prediction error signal, spectral magnitude or phase,
energy and their combination [1, 3, 11, 14, 15]. In [2], var-
ious acoustic features are analyzed for this task and in [7],
spectral methods are modified to enable onset detection.
These and other algorithms are analyzed in detail in [5].
Recent efforts include the use of Recurrent (RNN) [17] and
Convolutional Neural Networks (CNN) [19] for onset de-
tection. All of the above techniques are primarily for the
detection of monophonic musical onsets.

Every item in Carnatic music has, at its core, a compo-
sition. Every item in a concert is characterized by three
sections. A lyrical composition section that is performed
together by the lead performer, accompanying violinist and
the percussion artist. This section is optionally preceded
by a pure melody section (ālāpana) in which only the lead
performer and the accompanying violinist perform. The
composition section is optionally followed by a pure per-
cussion section (tani āvarthanam). Onset detection and
aksharā transcription in tani āvarthanams are performed
in [15], and [16] respectively. Percussive onset detection
for an entire concert that is made up of 10-12 items, each
associated with its own tāla cycle, is still challenging as
the composition items are made up of ensembles of a lead
vocal, violin/ensembles of the lead instrument(s) and per-
cussion.

Onset detection in polyphonic music/ensemble of per-
cussion either use audio features directly [4], or performs
detection on the separated sources. Dictionary learning-
based methods using templates are employed in the sep-
aration stage in certain music traditions [10, 22]. Har-
monic/percussive separation (HPS) from the audio mixture
is successfully attempted on Western music in [8] and [9].
Onset detection of notes is performed on polyphonic music
in [4] for transcription. Efficient percussive onset detection
on monaural music mixtures is still a challenging prob-
lem. The current approaches lead to a significant number
of false positives, owing to the difficulty in detecting only
the percussive syllables with varying amplitudes and the
presence of melodic voices.

In a Carnatic music concert, the lead artist and all the
accompanying instruments are tuned to the same base fre-
quency called tonic frequency and it may vary for each
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concert. This leads to the overlapping of pitch trajec-
tories. The bases do not vary over time in the case of
dictionary-based separation methods, leading to a limited
performance in Carnatic music renderings. HPS model [8]
does not account for the melodic component and variation
of tonic across the concerts. The state-of-the-art solo on-
set detection techniques, when applied to the polyphonic
music, perform poorer (≈ 20% absolute) than on the solo
samples [22].

In this paper, a separation-driven approach for percus-
sive onset detection is presented. A deep recurrent model
(DRNN) is used to separate the percussion from the com-
position in the first stage. It is followed by the onset detec-
tion based on signal processing in the final stage. The pro-
posed approach achieves significant improvement (18.4%)
over the onset detection algorithm applied to the mixture
and gracefully degrades (about 4.6% poorer) with respect
to onset detection on solo percussion. The proposed ap-
proach has better separation and detection performance,
when compared to that of the baseline algorithms.

2. DATASETS

Multi-track recordings of six live vocal concerts (' 14
hours) are considered for extracting the composition items.
These items contain composition segments with vocal
and/or violin segments in first track and percussive seg-
ments in the second track. To create the ground truth,
onsets are marked (manually by the authors) in the per-
cussive track. These onsets are verified by a professional
artist 1 . Details of the datasets prepared from various con-
certs are given in Table 1. The composition items consist
of recordings from both male and female artists sampled at
44.1 kHz. Some of the strokes in the mridangam are de-
pendent on the tonic, while others are not. The concerts
SS and KD also include ghatam and khanjira, which are
secondary percussion instruments. Recordings are also af-
fected by nearby sources, background applauses and the
perpetual drone.

Concert Total Length Comp. Segments No. of Strokes
hh:mm:ss mm:ss (Number)

KK 2:15:50 1:52 (3) 541
SS 2:41:14 0:38(4) 123
MH 2:31:47 1:16 (3) 329
ND 1:15:20 1:51 (3) 330
MO 2:00:15 7:14 (3) 1698
KD 2:20:23 5:32 (3) 1088

Total 13:41:59 18:23 (19) 4109

Table 1: Details of the dataset

Training examples for the percussion separation stage
are obtained from the ālāpana (vocal solo, violin solo) and
mridangam tani āvarthanam segments. These are mixed to
create the polyphonic mixture. A total of 12 musical clips
are extracted from four out of six recordings, to obtain the
training set (17min and 5s), and the validation set (4min
and 10s). Hence, around 43% of the data is found to be suf-

1 Thanks to musician Dr. Padmasundari for the verification

ficient for training. 10% of the dataset is used for the val-
idation of neural network parameters and the rest for test-
ing the separation performance. The concert segments KK
and ND are only used for testing the proposed approach
to check the generalizability of the approach across vari-
ous concerts. The composition segments shown in Table 1
column 3 (with ground truth) are used as the test data. On-
set detection is then performed on the separated percussive
track.

Figure 1: Block diagram of the proposed approach.

3. PROPOSED APPROACH

The proposed method consists of two stages: percussive
separation stage and solo onset detection stage. Initially,
the time-frequency masks specific to percussive voices
(mainly mridangam) are learned using a DRNN frame-
work. The separated percussion source is then used as in-
put to the onset detection algorithm. Figure 1 shows the
block diagram of the overall process which is explained
subsequently in detail.

3.1 Percussive Separation Stage

A deep recurrent neural network framework originally pro-
posed for singing voice separation [12] is adopted for sep-
arating the percussion from the other voices. Ālāpana seg-
ments are mixed with tani āvarthanam segments for learn-
ing the timbral patterns corresponding to each source. Fig-
ure 2 shows the time-frequency patterns of the composi-
tion mixture segment, melodic mixture and the percussive
source in Carnatic music. The patterns associated with dif-
ferent voices are mixed in composition segments leading
to a fairly complex magnitude spectrogram (Figure 2 left)
which makes separation of percussion a nontrivial task.
The DRNN architecture for percussive separation stage is
shown in Figure 3. The network takes the feature vec-
tor corresponding to the composition items (xt ) and esti-
mates the mask corresponding to the percussive (y

′1
t ) and

non-percussive (y
′2
t ) sources. The normalized mask corre-

sponding to the percussive source (M1( f )) is used to filter
the mixture spectrum and then combined with the mixture
phase to obtain the complex-valued percussive spectrum:

Ŝp( f ) = M1( f )Xt( f ) (1)

Sp(t) = IST FT (Ŝp 6 Xt) (2)
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Figure 2: Spectrograms of a segment of composition (left) ob-
tained from the mixture (KK dataset) containing melodic sources,
vocal and violin (middle) and the percussive source (right).

where, ISTFT refers to inverse short-time Fourier trans-
form, Ŝp is the estimated percussive spectrum, 6 (Xt) is the
mixture phase at time t and, Sp(t) is the percussive signal
estimated for tth time frame.

We use the short-time Fourier transform (STFT) feature
as it performs better than conventional features in musical
source separation tasks [21]. The regression problem of
finding the source specific-magnitude spectrogram is for-
mulated as a binary mask estimation problem where each
time-frequency bin is classified as either percussive or non-
percussive voice. The network is jointly optimized with the
normalized masking function (M1( f )) by adding an extra
deterministic layer to the output layer. We use a single
model to learn both these masks despite the fact that only
percussive sound is required in the second stage. Thus, dis-
criminative information is also used for the learning prob-
lem. The objective function (Mean Squared Error) that is
minimized is given by:

||ŷ1t−y1t ||2 + ||ŷ2t−y2t ||2−γ(||ŷ1t−y2t ||2 + ||ŷ2t−y1t ||2)
(3)

where ŷt and yt are the estimated and original magnitude
spectra respectively. The γ parameter is optimized such
that more importance is given to minimizing the error for
the percussive voices than maximizing the difference with
respect to the other sources. This is primarily to ensure
that the characteristics of percussive voice are not affected
significantly by separation, as the percussive voice will be
used later for onset detection. The recurrent connections
are employed to capture the temporal dynamics of the per-
cussive source which are not captured using the contextual
windows. The network has a recurrent connection at the
second hidden layer and is parametrically chosen based on
the performance on development data. The second hidden
layer output is calculated from the current input and output
of the same hidden layer in the previous time-step as:

h2(xt) = f (W 2h2(xt)+b2 +V 2h2(xt−1)) (4)

where, W and V are the weight matrices, V being the tem-
poral weight matrix and the function f (·) is the ReLU ac-
tivation [12].

A recurrent network trained with Ālāpana and tani
āvarthanam separates the percussion from the voice by
generating a time-frequency percussive mask. This mask

2 Example redrawn from [12]

Figure 3: Percussive separation architecture 2

is used to separate the percussive voice in the composition
segment of a Carnatic music item. The separated signal is
used for onset detection in the next stage (Figure 1).

3.2 Onset Detection Stage

The separated percussive voice is used as the source sig-
nal for the onset detection task. Note that this signal has
other source interferences, artifacts and other distortions.
The second block in Figure 1 corresponds to the onset de-
tection stage. Onset detection consists of two steps. In the
first step a detection function is derived from the percus-
sive strokes which is then used in onset detection in the
second step.

It is observed that the percussive strokes in Carnatic mu-
sic can be modeled by an AM-FM signal based on am-
plitude and frequency variations in the vicinity of an on-
set [15]. An amplitude and frequency modulated signal
(x(t)) is given by,

x(t) = m1(t)cos(ωct + k f

∫
m2(t)dt) (5)

where, k f is the frequency modulation factor, ωc is the car-
rier frequency and, m1(t) and m2(t) are the message sig-
nals. The changes in the frequency are emphasized in the
amplitude of the waveform by finding the differences of
the time-limited discrete version of the signal, x[n]. The
envelope function e[n] is the amplitude part of x

′
[n]. The

real-valued envelope signal can be represented by the cor-
responding analytic signal defined as:

ea[n] = e[n]+ ieH [n] (6)

eH [n] is the Hilbert transform of the envelope function.
The magnitude of ea[n] is the detection function for the
onsets. The high-energy positions of the envelope signal
(e[n]) corresponds to the onset locations. However, these
positions have a large dynamic range and the signal has
a limited temporal resolution. It has been shown in [20]
that minimum-phase group delay (GD) based smoothing
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Figure 4: Solo onset detection algorithm. (a) Percussion signal (b) Derivative of (a). c) Envelope estimated on (b) using Hilbert
transform. (d) Minimum phase group delay computed on (c).

leads to a better resolution for any positive signal that is
characterized by peaks and valleys. The envelope is a non-
minimum phase signal and it needs to be converted to a
minimum phase equivalent to apply this processing.

It is possible to derive such an equivalent representation
with a root cepstral representation. The causal portion of
the inverse Fourier transform of the magnitude spectrum
raised to a power of α is always minimum phase [18].

e
′
[k] = {s[k] |k>0, s[k] = IFT ((e(n)+ e[−n])α)} (7)

Note that e
′
[k] is in root cepstral domain and k is the que-

frency index. This minimum-phase equivalent envelope is
then subjected to group delay processing.

The group delay is defined as negative frequency deriva-
tive of the unwrapped phase function. It can be computed
directly from the cepstral domain input signal e

′
[k] as:

τ(ω) =
XR(e jω)YR(e jω)+XI(e jω)YI(e jω)

|X(e jω)|2
(8)

where, X(e jω) and Y (e jω) are the discrete Fourier trans-
forms of e

′
[k] and ne

′
[k] respectively. Also, R and I denote

the real and imaginary parts respectively. The high reso-
lution property of the group delay domain emphasizes the
onset locations. Onsets are reported as instants of signifi-
cant rise, above a threshold.

Figure 4 illustrates the different steps in the algorithm
using a mridangam excerpt taken from a tani āvarthanam
segment. It is interesting to note that in the final step, the
group delay function emphasizes all the strokes approx-
imately to an equal amplitude, and even those onsets in

which there is no noticeable change in amplitude are also
obtained as peaks (highlighted area in Figure 4).

4. PERFORMANCE EVALUATION

The proposed percussive onset detection approach is de-
veloped specifically for rhythm analysis in Carnatic music
composition items. However, it is instructive to compare
the performance with other separation and onset detection
algorithms. Also, it is important to note that the proposed
approach could be applied to any music tradition with
enough training musical excerpts to extract the onset lo-
cations from the polyphonic mixture. The dataset for these
tasks is described in Section 2. The vocal-violin channel
(ālāpana) and the percussion channel (tani āvarthanam)
are mixed at 0 dB SNR. The STFT with a window length
of 1024 samples and hop size of 512 samples is used as the
feature for training a DRNN with 3 hidden layers (1000
units/layer) and temporal connection at the 2nd layer. This
architecture shows a very good separation for the singing
voice separation task [12]. The dataset consists of seg-
ments with varying tempo, loudness and number of sources
at a given time. The challenge lies in detecting the onsets
in the presence of the interference caused by other sources
and the background voices.

4.1 Evaluation Metrics

Since the estimation of percussive onsets also depends on
the quality of separation, it is necessary to evaluate the sep-
arated track. We measure this using three quantitative mea-
sures based on BSS-EVAL 3.0 metrics [23]: Source to Ar-
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tifacts Ratio (SAR), Source to Interference Ratio (SIR) and
Source to Distortion Ratio (SDR). The artifacts introduced
in the separated track is measured by SAR. The suppres-
sion achieved for the interfering sources (vocal and violin)
is represented in terms of SIR which is an indicator of the
timbre differences between the vocal-violin mixture and
percussive source. SDR gives the overall separation qual-
ity. The length-weighted means of these measures are used
for representing the overall performance in terms of global
measures (GSAR, GSIR and GSDR).

The conventional evaluation metric for the onset detec-
tion is F-measure, which is the harmonic mean of precision
and recall. An onset is treated as correct (True Positive)
if it is reported within a ±50ms threshold of the ground
truth [6] as strokes inside this interval are usually unre-
solvable. Additionally, this margin accounts for the pos-
sible errors in the manual annotation. The F-measure is
computed from sensitivity and precision. Since it is im-
possible to differentiate between simple and composite 3

strokes for mridangam, the closely spaced onsets (within
30 ms) are not merged together unlike in [5].

4.2 Comparison Methods

The performance of the separation stage is compared with
a widely used Harmonic/Percussive Separation (HPS) al-
gorithm [8] for musical mixtures. It is a signal processing-
based algorithm in which median filtering is employed on
the spectral features for separation. Other supervised per-
cussive separation models were specific to the music tra-
ditions. We have not considered the Non negative Matrix
Factorization (NMF)-based approaches since the separa-
tion performance was worse on Carnatic music, hinting the
inability of a constant dictionary to capture the variability
across the percussive sessions and instruments.

The onset detection performance is compared with the
state-of-the-art CNN-based onset detection approach [19].
In this approach, a convolutional network is trained as a
binary classifier to predict whether the given set of frames
has an onset or not. It is trained using percussive and
non percussive solo performances. We evaluate the per-
formance of this algorithm on the separated percussive
track and, on the mixture . The onset threshold amplitude
is optimized with respect to the mixture and percussive
solo channel for evaluating the performance on the sepa-
rated and mixture tracks respectively for both of these al-
gorithms.

5. RESULTS AND DISCUSSION

5.1 Percussive Separation

The results of percussive separation are compared with that
of the HPS algorithm in Table 2. The large variability
of the spectral structure with respect to the tonic, strokes
and the percussive instruments (different types of mridan-
gam as well) cause the HPS model to perform poorly with
respect to the proposed approach. The DRNN separa-
tion benefits from the training whereas the presence of the

3 both left and right strokes co-occurring in the mridangam

DRNN HPS
Concert GSDR GSIR GSAR GSDR GSIR GSAR

SS 7.00 13.70 8.61 3.39 6.73 7.93
ND 7.54 17.30 8.98 0.46 3.05 7.67
KK 7.37 13.93 8.93 0.66 2.04 10.09
MH 6.40 15.64 7.63 0.82 3.31 7.79
KR 7.37 13.93 8.93 1.32 2.43 9.09
MD 6.40 15.64 7.63 2.40 8.06 4.78

Average 7.01 15.02 8.45 1.50 4.27 7.89

Table 2: Percussive separation performance in terms of BSS
evaluation metrics for the proposed approach and HPS algorithm

melodic component with rich harmonic content adds to the
interference in HPS method. This results in a poor sep-
aration of melodic mixture and percussive voice in HPS
approach as indicated by an overall difference of 5.51 dB
SDR with respect to DRNN approach. Although DRNN is
not trained on the concerts KK and MD, separation mea-
sures are quite similar to other concerts. This is an indi-
cator of the generalization capability of the network since
each concert is of a unique tonic (base) frequency, and is
recorded under a different environment. Separated sound
examples are available online 4 .

5.2 Onset Detection

Concert Proposed Direct Solo CNN CNN Sep.
SS 0.747 0.448 0.864 0.685 0.656
ND 0.791 0.650 0.924 0.711 0.740
KK 0.891 0.748 0.972 0.587 0.636
MH 0.874 0.687 0.808 0.813 0.567
KR 0.891 0.748 0.972 0.859 0.848
MD 0.874 0.687 0.808 0.930 0.919

Average 0.845 0.661 0.891 0.764 0.727

Table 3: Comparison of F-measures for the proposed approach,
direct onset detection on the mixture, solo percussion channel,
CNN on the mixture and on the separated percussive channel.

The accuracy of onset detection is evaluated using F-
measure in Table 3. The performance varies with the
dataset and the results with the maximum average F-
measure is reported. The degradation in performance with
respect to the solo source is only about 4.6%, while the
improvement in performance compared to the direct onset
detection on the composite source is 18.4%. The separa-
tion step plays a crucial role in onset detection of the com-
position items as the performance has improved for all the
datasets upon separation. It should be noted that the al-
gorithm performs really well for solo percussive source.
This is reason for making comparisons with solo perfor-
mances. For SS data (Table 1) with fast tempo (owing to
multiple percussive voices) and significant loudness vari-
ation (Example online 4 ), the direct onset method causes
a large number of false positives resulting in lower preci-
sion whereas the proposed approach results in a reduced
number of false positives. Figure 5 shows an example of a

4 https://sites.google.com/site/
percussiononsetdetection
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Figure 5: An excerpt from SS dataset illustrating the performance of the proposed approach with respect to the direct onset
detection method. Red dotted lines represent the ground truth onsets, violet (b) and green (c) lines represent the onsets
detected on the mixture signal and the separated percussive signal respectively.

composition item taken from the SS dataset. It compares
the performance of the proposed approach with that of the
onset detection algorithm applied directly on the mixture.
By adjusting the threshold of onset, the number of false
positives can be reduced. However, it leads to false neg-
atives as shown in Figure 5(b). The proposed approach is
able to detect almost all of the actual onset locations (5(c)).

The proposed approach is then compared with the CNN
algorithm. The optimum threshold of the solo algorithm
for the Carnatic dataset [15] is used to evaluate the per-
formance. The proposed method performs better than the
CNN algorithm applied on the mixture (Table 3). This
is because the CNN method is primarily for solo onset
detection. The performance of the baseline on the sepa-
rated channel is also compared with the group delay-based
method. The threshold is optimized with respect to the per-
formance of the baseline algorithm on the mixture track.
The average F-measure of the proposed approach is 11.8%
better than that of the CNN-based algorithm. This is be-
cause CNN-based onset detection requires different thresh-
olds for different concert segments. This suggests that
the GD based approach generalizes better in the separated
voice track and is able to tolerate the inter-segment vari-
ability. A consistently better F-measure is obtained by the
GD based method across all recordings. This separation-
driven algorithm can be extended to any music tradition
with sharp percussive onsets and having enough number

of polyphonic musical ensembles for the training. These
onset locations can be used to extract the strokes of per-
cussion instruments and perform tāla analysis.

6. CONCLUSION AND FUTURE WORK

A separation-driven approach for percussive onset detec-
tion in monaural music mixture is presented in this paper
with a focus on Carnatic music. Owing to its tonic depen-
dency and improvisational nature, conventional dictionary-
based learning methods perform poorly on percussion sep-
aration in Carnatic music ensembles. Vocal and violin seg-
ments from the ālāpana and mridangam phrases from the
tani āvarthanam of concert recordings are used to train a
DRNN for the percussive separation stage. The separated
percussive source is then subjected to onset detection. The
performance of the proposed approach is comparable to
that of the onset detection applied on the solo percussion
channel and achieves 18.4% absolute improvement over its
direct application to the mixture. It compares favourably
with the separation and onset detection baselines on the
solo and separated channels. The onset locations can be
used for analyzing the percussive strokes. Using repeat-
ing percussion patterns, the tāla cycle can be ascertained.
This opens up a plethora of future tasks in Carnatic MIR.
Moreover, the proposed approach is generalizable to other
music traditions which include percussive instruments.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 565



7. ACKNOWLEDGEMENTS

This research is partly funded by the European Research
Council under the European Unions Seventh Framework
Program, as part of the CompMusic project (ERC grant
agreement 267583). Authors would like to thank the mem-
bers of Speech and Music Technology Lab for their valu-
able suggestions.

8. REFERENCES

[1] Juan P Bello, Chris Duxbury, Mike Davies, and Mark
Sandler. On the use of phase and energy for musical
onset detection in the complex domain. IEEE Signal
Processing Letters, 11(6):553–556, 2004.

[2] Juan Pablo Bello, Laurent Daudet, Samer Abdal-
lah, Chris Duxbury, Mike Davies, and Mark B San-
dler. A tutorial on onset detection in music signals.
IEEE Transactions on Speech and Audio Processing,
13(5):1035–1047, 2005.

[3] Juan Pablo Bello and Mark Sandler. Phase-based note
onset detection for music signals. In International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 5, pages V–441. IEEE, 2003.

[4] Emmanouil Benetos and Simon Dixon. Polyphonic
music transcription using note onset and offset de-
tection. In Proc. of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 37–40. IEEE, 2011.

[5] Sebastian Böck, Florian Krebs, and Markus Schedl.
Evaluating the online capabilities of onset detection
methods. In Proc. of the 13th International Society
for Music Information Retrieval Conference (ISMIR),
pages 49–54, 2012.

[6] Sebastian Böck and Gerhard Widmer. Local group de-
lay based vibrato and tremolo suppression for onset
detection. In Proc. of the 14th International Society
for Music Information Retrieval Conference (ISMIR),
pages 361–366, Curitiba, Brazil, November 2013.

[7] Simon Dixon. Onset detection revisited. In Proc. of the
9th Int. Conference on Digital Audio Effects (DAFx),
pages 133–137, 2006.

[8] Derry Fitzgerald. Harmonic/percussive separation us-
ing median filtering. In Proceedings of the 13th Inter-
national Conference on Digital Audio Effects (DAFx),
pages 15–19, 2010.

[9] Derry Fitzgerald, Antoine Liukus, Zafar Rafii, Bryan
Pardo, and Laurent Daudet. Harmonic/percussive sep-
aration using kernel additive modelling. In Proc. of
the 25th IET Irish Signals & Systems Conference 2014
and 2014 China-Ireland International Conference on
Information and Communications Technologies (ISSC
2014/CIICT 2014), pages 35–40, 2014.

[10] Masataka Goto and Yoichi Muraoka. A sound source
separation system for percussion instruments. Trans-
actions of the Institute of Electronics, Information
and Communication Engineers (IEICE), 77:901–911,
1994.

[11] Masataka Goto and Yoichi Muraoka. Beat tracking
based on multiple-agent architecture a real-time beat
tracking system for audio signals. In Proc. of 2nd In-
ternational Conference on Multiagent Systems, pages
103–110, 1996.

[12] Po-Sen Huang, Minje Kim, Mark Hasegawa-Johnson,
and Paris Smaragdis. Singing-voice separation from
monaural recordings using deep recurrent neural net-
works. In Proc. of International Society for Music In-
formation Retrieval (ISMIR), pages 477–482, 2014.

[13] M Humble. The development of rhythmic organization
in indian classical music. MA dissertation, School of
Oriental and African Studies, University of London.,
pages 27–35, 2002.

[14] Anssi Klapuri. Sound onset detection by applying psy-
choacoustic knowledge. In Proc. of International Con-
ference on Acoustics, Speech, and Signal Processing
(ICASSP), volume 6, pages 3089–3092. IEEE, 1999.

[15] Manoj Kumar, Jilt Sebastian, and Hema A Murthy.
Musical onset detection on carnatic percussion instru-
ments. In Proc. of 21st National Conference on Com-
munications (NCC), pages 1–6. IEEE, 2015.

[16] Jom Kuriakose, J Chaitanya Kumar, Padi Sarala,
Hema A Murthy, and Umayalpuram K Sivaraman. Ak-
shara transcription of mrudangam strokes in carnatic
music. In Proc. of the 21st National Conference on
Communications (NCC), pages 1–6. IEEE, 2015.

[17] Erik Marchi, Giacomo Ferroni, Florian Eyben, Stefano
Squartini, and Bjorn Schuller. Audio onset detection:
A wavelet packet based approach with recurrent neural
networks. In Proc. of the International Joint Confer-
ence on Neural Networks (IJCNN), pages 3585–3591,
July 2014.

[18] T Nagarajan, V K Prasad, and Hema A Murthy. The
minimum phase signal derived from the magnitude
spectrum and its applications to speech segmentation.
In Speech Communications, pages 95–101, July 2001.

[19] Jan Schlüter and Sebastian Böck. Improved Musical
Onset Detection with Convolutional Neural Networks.
In Proc. of the IEEE International Conference on
Acoustics, Speech, and Signal Processing (ICASSP),
pages 6979–6983, Florence, Italy, May 2014.

[20] Jilt Sebastian, Manoj Kumar, and Hema A Murthy. An
analysis of the high resolution property of group delay
function with applications to audio signal processing.
Speech Communications, pages 42–53, 2016.

566 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



[21] Jilt Sebastian and Hema A Murthy. Group delay based
music source separation using deep recurrent neural
networks. In Proc. of International Conference on Sig-
nal Processing and Communications (SPCOM), pages
1–5. IEEE, 2016.

[22] Mi Tian, Ajay Srinivasamurthy, Mark Sandler, and
Xavier Serra. A study of instrument-wise onset detec-
tion in beijing opera percussion ensembles. In Proc. of
the International Conference on Acoustics, Speech and
Signal Processing (ICASSP), pages 2159–2163, 2014.

[23] Emmanuel Vincent, Rémi Gribonval, and Cédric
Févotte. Performance measurement in blind audio
source separation. IEEE Transactions on Audio,
Speech, and Language Processing, 14(4):1462–1469,
2006.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 567



SONG2GUITAR: A DIFFICULTY-AWARE ARRANGEMENT SYSTEM FOR
GENERATING GUITAR SOLO COVERS FROM POLYPHONIC AUDIO OF

POPULAR MUSIC

Shunya Ariga
The University of Tokyo
ariga@iis-lab.org

Satoru Fukayama
AIST

s.fukayama@aist.go.jp

Masataka Goto
AIST

m.goto@aist.go.jp

ABSTRACT

This paper describes Song2Guitar which automatically
generates difficulty-aware guitar solo cover of popular
music from its acoustic signals. Previous research has
utilized hidden Markov models (HMMs) to generate
playable guitar piece from music scores. Our Song2Guitar
extends the framework by leveraging MIR technologies
so that it can handle beats, chords and melodies extracted
from polyphonic audio. Furthermore, since it is important
to generate a guitar piece to meet the skill of a player,
Song2Guitar generates guitar solo covers in consideration
of playing difficulty. We conducted a data-driven
investigation to find what factor makes a guitar piece
difficult to play, and restricted Song2Guitar to use certain
hand forms adaptively so that the player can play the
piece without experiencing too much difficulty. The
user interface of Song2Guitar is also implemented and
is used to conduct user tests. The results indicated that
Song2Guitar succeeded in generating guitar solo covers
from polyphonic audio with various playing difficulties.

1. INTRODUCTION

A guitar solo cover version of an original song adds new
pleasure to the music experience of the song. Various
musical elements such as beats, melodies, and harmonies
in an original song are represented in a uniform but
expressive timbre of a guitar. However, a guitar solo
cover of one’s favorite song is not always available, and
creating guitar arrangements requires advanced skills and
knowledge and takes a lot of time. If such a guitar solo
cover of any song can be generated from music audio
signals, music listeners can enjoy their favorite songs in
a different way, and guitarists who do not have skills for
playing by ear can also enjoy performing any songs on
their guitars.

The goal of this research is to develop a system that
can automatically generate a guitar solo cover version from

c© Shunya Ariga, Satoru Fukayama, Masataka Goto.
Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Shunya Ariga, Satoru Fukayama,
Masataka Goto. “Song2Guitar: A Difficulty-Aware Arrangement System
for Generating Guitar Solo Covers from Polyphonic Audio of Popular
Music”, 18th International Society for Music Information Retrieval
Conference, Suzhou, China, 2017.

Figure 1: Overview of the Song2Guitar system.

audio signals. By leveraging Music Information Retrieval
(MIR) technologies, we propose a guitar arrangement
system, Song2Guitar, that generates guitar solo covers
from polyphonic audio signals of popular music, which
contain sounds of various instruments. We also aim
at creating difficult-aware guitar arrangements — i.e.,
generating guitar tablatures having different levels of
playing difficulty for guitarists. There are three issues that
should be considered:

(1) Generate from polyphonic audio of popular music

(2) Difficulty-aware arrangement

(3) Interface to perform the arrangement result

An overview of our solutions to address these issues
is shown in Fig. 1. As for issue (1), even if we use
the state-of-the-art MIR technologies, we cannot obtain
completely-transcribed musical scores from such complex
audio signals. We therefore directly extract important
musical elements, such as melody lines represented as
F0 (fundamental frequency) contour, beats, and chords,
from polyphonic audio. We then reflect the extracted
elements in generating guitar solo covers by using a novel
extension of a hidden Markov model. As for issue (2), we
conducted a data-driven survey to find what factors make
a guitar tablature difficult to play. Based on the survey,
Song2Guitar controls the movement of an index finger and
the number of fingers to press the strings. Finally, as for
issue (3), we designed and implemented an interface that
enables a guitarist to change the degree of difficulty to
perform the result. In this paper, we will also discuss
a desirable interface for generating various arrangement
results and providing training materials for guitarist. The
design of the interface and the results generated by our
system are available on the web 1 .

1 https://youtu.be/fN4-ibh7ZDI
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2. RELATED WORK

2.1 Creative MIR

Our research is addressed in a Creative MIR approach.
MIR researchers have recently explored creativity-oriented
music technologies by applying technologies developed
in the MIR community. This emerging field is
named Creative MIR [11] where music analysis and
transformation technologies are used in various creative
applications. For example, AutoMashUpper [4] is
an interactive system that creates music mashups by
automatically selecting and mixing chosen songs. They
achieved automatic mashup by estimating mashability,
which is calculated by using MIR technologies to estimate
various musical elements such as beats, downbeats, and
chromagram. Song2Quartet [18] generates a cover song
in the style of string quartet by combining probabilistic
models estimated from a corpus of symbolic classical
music with the target audio file of a song.

2.2 Generating playable guitar Solo

In order to generate a playable guitar covers, Hori et
al. [7–9] used a hidden Markov model (HMM) to generate
guitar arrangements from a symbolic musical score while
considering natural fingerings. Audio signals, however,
were not used as the input. By taking audio signals of
an individual separated guitar part as the input, Yazawa
et al. [25] developed an automatic transcription system
specialized for a guitar performance and generated a guitar
tablature by using multi-pitch analysis and playability
constraints. Yazawa et al. [24] then extended their previous
work to transcribe a guitar tablature while considering
acoustical reproducibility and fingering easiness. Even
though guitarist’s proficiency was considered, creating
guitar arrangements from polyphonic music including
multiple instruments was not tackled so far.

Research of automatic fingering decision can also be
regarded as related work of ours. This is because fingering
decision is a sub-problem to generate playable guitar solo,
and the existence of a fingering for a song is a necessary
condition for the song to be playable. Radicioni discussed
in his thesis how to computationally model the fingering in
music performance [19]. The fingering is often determined
by searching the fingering sequence as an optimal path
search problem [20, 21].

Fingerings are represented in a tablature score or
tabs, and they are often utilized to analyze and generate
playable scores. A method to analyze and search
valuable information in the tablature database has been
proposed [14]. AutoGuitarTab [15–17] generates guitar
music according to different styles of various guitarists by
training individual probabilistic model using a tablature
database. Genetic algorithms have been used to search
the fingering sequence efficiently to generate an guitar solo
arrangement [22].

Tablature transcription from music audio are also the
related work. MIR technologies such as multi-pitch
analysis and chord recognition have been used to capture

Figure 2: Average movement of an index finger and difficulty
rating of 50 tablatures. The correlation coefficient was 0.55. The
line indicates the linear regression result and the R-squared value
was 0.30.

Figure 3: Average number of finger pressuring strings and
difficulty rating of 50 tablatures. The correlation coefficient
was 0.51. The line indicates the linear regression result and the
R-squared value was 0.26.

notes and chords in the audio signal. Given those music
elements, dynamic programming or Viterbi decoding
with HMM has been leveraged to output reasonable
fingerings [1, 10, 12].

3. PLAYING DIFFICULTY OF A GUITAR SOLO

3.1 Analysis of guitar tablatures

We first investigated what are the factors that affect the
playing difficulty. We collected tablatures from a web
site distributing classical guitar music 2 . These tabs were
written in a plain text format and did not have uniformity
in data structure. We therefore implemented a parser to
retrieve structured tab information. Since Song2Guitar
assumes only the standard tuning (E-A-D-G-B-E), we
excluded tabs that were instructed to play in another
tuning. Furthermore, we also excluded scores for guitar
duo as we focus on guitar solo covers.

2 http://www.classtab.org
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For each tablature, we considered and calculated two
factors: the average movements of the index finger of
a hand to hold the guitar, and the average number of
fingers to press the strings. The position of index finger
is determined as follows: if the fingering contains a barre,
we use the fret position of the barre, otherwise the position
of the index finger is set to be the minimum fret number
among the frets being pressed. We hypothesized that these
two factors affect the playing difficulty of a guitar solo.

3.2 Subjective test to evaluate the playing difficulty

We verified our hypothesis by asking proficient guitarists
to rate the difficulty of the tabs. Five independent
raters subjectively evaluated the difficulty with a 7-point
Likert scale (1: easiest – 7: most difficult). The raters
were instructed to consider only the complexity of the
fingerings of the left hand. As they respectively rated
randomly-selected 10 tabs, we consequently obtained
50 ratings. Fig. 2 and Fig. 3 show the plots of our
hypothesized features (average movement of an index
finger, average number of fingers to press strings) and the
result of difficulty ratings. The correlation coefficients
calculated with these two features and the ratings were
0.55 and 0.51, respectively. We also conducted a linear
regression on data. The regression results are also shown
in Fig. 2 and Fig. 3. R-squared values for these two
regressions were 0.30 and 0.26, respectively. These results
indicated that the tabs were evaluated to be more difficult
when the values of both features get larger.

4. CREATING DIFFICULTY-AWARE GUITAR
ARRANGEMENTS FROM MUSIC SIGNALS

4.1 Our problem setting

In solving the problem of generating guitar solo covers
from audio signals of popular music, we want to maintain
and reproduce major characteristics of an original song in a
generated guitar solo cover. The followings are the major
characteristics that most songs in popular music have in
common.

• It contains a clear melody line that is performed by
a vocal part.

• It contains a bass line corresponding to a chord
sequence.

• It gives a rhythmic groove emerged from sounds of
rhythmic instruments.

Although previous work of generating guitar arrangements
from symbolic musical scores [7] formulates the problem
by using HMM, it have not tested with audio input. To
generate from polyphonic music audios of popular music,
we formulate the problem by a novel extension of HMM.
We also propose how we can generate various results with
different levels of playing difficulty for guitarists.

4.2 Guitar Arrangement by using HMM

We start from reviewing how HMM can be applied to
the fingering decision problem. Suppose we have a
collection of guitar music scores, and we want to model
this collection statistically. This means that we need to
obtain a function that returns high probability if the music
seems to be included in the guitar music collection, and
low probability when the music is obviously not a guitar
music. Designing a generative model is one method to
achieve this.

The generative process of a guitar music is apparently
the process of performing a guitar instrument. When the
guitar is played, one hand holds the neck and its fingers
press strings on the frets. Fingers of the other hand pluck
the strings, and eventually a sound is generated. We can
see that the output sound is determined when the states of
both hands are determined.

In terms of the hand to press the strings, it is less likely
to observe a drastic change of the hand form in a very
short duration because of physical constraints of the human
body. It is also unlikely to observe a long distance move of
position of a hand to hold the neck of a guitar. Since these
two aspects are relationships between the current and the
previous state of holding the neck, we can model them by
the first-order Markov chain. Let Xt be the fingering at
time t. We can define a probability for observing fingering
Xt+1 as P (Xt+1|Xt). Xt contains four components each
of which corresponds the state of each finger of the left
hand. Each component has two values: one indicates the
string index of a guitar to put pressure on, and the other
indicates the fret number to put the finger on. Fret number
0 indicates that the finger does not touch any string.

The output sound is audible when strings are plucked.
The sounding notes are biased by the fingering. Let Yt
be the set of notes played at time t, such as set consisting
of C3, E4 and G4. Yt follows a probability distribution
P (Yt|Xt) which models the playing notes biased from the
fingering.

A guitar performance can be realized as a time sequence
of both the fingering (XT

1 = X1 · · ·XT ) and the plucking
of strings at each fingering (Y T

1 = Y1 · · ·YT ). Note
that T indicates the length of a sequence, not indicating
transposition. The probability of generating notes from
the given fingering is calculated by the product of these
probabilities as:

P
(
Y T
1 |XT

1

)
=

T∏
t=1

P (Yt|Xt)P (Xt|Xt−1) . (1)

Since the fingering cannot be observed from the
guitar music afterwards, XT

1 is hidden and therefore
this probabilistic model is called as hidden Markov
model. P (Yt|Xt) is called as emission probability, and
P (Xt|Xt−1) is called as transition probability. By using
Viterbi decoding, we can efficiently estimate the most
likely fingerings which maximize the likelihood in terms
of XT

1 [23].
Now we can extend the generative model discussed

above to let the model generate music that is not necessary
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to be guitar music, but could be arranged into guitar music.
In particular, the emission probability is revised so that the
model can output notes which are octave higher or lower
than the notes of the actually played pitches by plucking
the string. As Hori et al. formulated in their works [7–9],
the emission probability is set to allow the number of notes
more than the guitar can perform simultaneously.

By executing the Viterbi algorithm with this extension,
we can obtain a sequence of fingering from not only
guitar music but also from any music which is not
originally composed for a guitar. Since the existence of
proper fingering is the necessary condition for a guitar
arrangement, we can generate a guitar solo cover by the
above extension of fingering decision formulation.

4.3 Creative MIR Approach to Guitar Arrangement

4.3.1 Leveraging MIR technologies

One of the novelties of this research is the further extension
of the generative model so that it can generate guitar
solo covers from polyphonic music audios by leveraging
MIR technologies. Since the melody, beats, and chords
are main elements that can be reflected in a guitar solo
arrangement, it is not necessary to try to obtain all notes
by using multi-pitch analysis. We therefore use methods
that can estimate the melody (F0 contour), beats, and
chords in polyphonic audio including drums. We show that
these methods developed in the MIR community largely
contribute to generating a guitar solo cover.

The melody estimation here assumes that the melody
is sung by a singer. We first extract a singing voice track
by using an existing singing voice extraction method. We
then applied a melody estimation method proposed by
Goto [5] to obtain the F0 contour. We also smooth the F0
contour by using an FIR low-pass filter with 5 Hz cutoff
frequency in order to remove the vibrato. To discretize
the F0 contour into musical notes, we used beat estimation
results to approximately obtain what musical note is played
as the melody line at every 16th note.

Chord estimation provides chord labels (chord names).
Since the label contains “on-chords” such as “C/E” or “C
on E”, we literally use the bass note described in the chord
label. We used a chord estimation method developed by
Korezeniowski et al. [13], which is available in Madmom
or an audio signal processing library written in python [2].

Finally, the beat estimation plays an important role in
generating a guitar solo cover. The beat estimation results
give us a set of segments corresponding to quarter notes.
By dividing every quarter note into four parts, we obtain
a finer set of segments with the resolution of 16th notes.
These 16th-note segments can be used to quantize the
F0 contour of the melody line as explained above, and
also quantize chord estimation results. In other words, all
note lengths extracted from the audio are quantized into
integer multiples of the 16th-note duration. We used a beat
estimation method proposed by Böck et al. [3] which is
also available in Madmom [2].

4.3.2 Emission probability

Based on the results of these estimation methods, we set
the emission probability as follows so that the HMM can
handle music audio to generate a guitar solo cover:

P (Yt|Xt) ∝ Pchord (Ct|Xt) + Pmelody (Mt|Xt)

+ Pbass (Bt|Xt) (2)

The subscript t denotes the index of the onset. Since the
onsets are not apparent in audio signals, we regard the
timing of a sudden increase of power in singing voice and
the timing of every chord change as onset timings. The
onset timings are discretized by using the beat estimation
result. Y denotes the audio segment with 16th-note
duration. C, M , and B are the chord label, melody pitch,
and bass pitch, respectively. X denotes the fingering to
press the fret, which is a set of the pressing position of each
finger including open strings. Open strings are represented
as pressing the imaginary 0th position of the fret.

Probability Pchord is set based on how the current
fingering achieves the chord observed at the time. For
example, when the fingering is given to play “C, E, G”,
the probability for observing “C maj7” would be high, but
the probability for observing “F# maj” would be low. This
can be measured by the number of elements in intersection
between the set of notes derived from the fingering and the
chord label. In this example, the set of notes for “C maj7”
is “C, E, G, B”, and the set of notes for “F# maj” is “F#,
A#, C#”. The probability for observing “C maj7” is higher
since the intersection has “C, E, G” (3 elements) whereas
“F# maj” has no elements as intersection. We implemented
this as follows:

Pchord (Ct|Xt) ∝ exp (−α ·# (N (Ct) ∩N (Xt))) (3)

where N (·) denotes the set of consisting notes of chord
label or guitar fingering. We adjusted the parameter to be
α = 3.0 in our experiments.

Probability Pmelody is designed by considering how
the highest note of the playing notes with the fingering
is relevant to the melody pitch observed in the acoustic
signal. Let M (Xt) be the highest note could be played
from the current fingering. The probability can be designed
as:

Pmelody (Mt|Xt) ∝

{
1.0 (Mt = M (Xt))
ε1 (Mt = M (Xt) + 12n (n 6= 0))
ε2 otherwise

(4)
where the parameters are set as ε1 = 0.3 and ε2 = 10−5.
These parameters were set heuristically by iteratively
generating and subjectively evaluating the results.

Finally, probabilityPbass is set similarly toPmelody. Let
B (Xt) be the lowest note that could be played from the
current fingering Xt. The probability is designed as:

Pbass (Bt|Xt) ∝

{
1.0 (Bt = B (Xt))
ε1 (Bt = B (Xt) + 12n (n 6= 0))
ε3 otherwise

(5)
where the parameter ε1 shared the same value as in
Pmelody, and ε3 was set as ε3 = 0.0027 in our experiment.
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Figure 4: User interface of the Song2Guitar system.

4.3.3 Transition probability

For setting transition probability P (Xt+1|Xt), we
basically followed the formulation by Hori et al. [7]. We
defined the transition probability given the time interval dt
between onsets as:

P (Xt+1|Xt) ∝
1

2dt
exp

(
−λm

|I (Xt+1)− I (Xt) |
dt

)
× 1

1 + I (Xt+1)
× 1

1 +W (Xt+1)

× 1

1 +N (Xt+1)
(6)

where I (X) denotes the position of an index finger when
holding the fret of a guitar with a fingering X . W (X)
denotes the length between the leftmost fret used and the
rightmost fret used under the fingering X . N(X) denotes
the number of fingers used to achieve the fingering X .

4.4 Controlling the Degree of Difficulty

Based on the survey described in section 3, we determined
the following two parameters to control the playing
difficulty for generating a guitar solo cover: the average
movement of the index finger of a hand to hold the guitar,
which is denoted as amove, and the average number of
fingers to press the strings, which is denoted as astring.

Song2Guitar supports three different levels of playing
difficulty: EASY, NORMAL, and HARD. To create these
levels by changing amove and astring, we adaptively
restricted the use of fingeringX according to the following
constraints:

EASY : amove ≤ 2.0 && astring ≤ 2.0

NORMAL : amove ≤ 4.0 && astring ≤ 3.0

HARD : use all available fingerings.

(7)

5. INTERFACE DESIGN OF SONG2GUITAR

Song2Guitar aims at not only generating a guitar solo
cover automatically but also enabling a guitarist to easily
practice and perform the generated result. Fig. 4 shows the

main interface of Song2Guitar. The design of the interface
and the results generated by our system are available on the
web 3 .

Because the tablature form is more intuitive than the
music score, Song2Guitar visualizes the tablature score
of the generated cover song. This tablature score scrolls
automatically while playing since a guitarist uses both
hands to perform the guitar and no hands are left to control
the system.

We also implemented an interface to control the playing
difficulty of the results. When we aim at creating playable
arrangements for human guitarists, it is important to
control how difficult the generated score is. Guitarists
would be discouraged if the score is too difficult or too
easy for them.

The tablature shown in the interface contains additional
notations to make the practice and performance easier.
Numbers in colored circles on the strings indicate the fret
that the guitarist should press on the string. The indicator
with a purple vertical line (in the left of Fig. 4) shows the
timing to pluck the string.

The interface of Song2Guitar also supports
non-proficient guitarists to find the position to press
the indicated frets. Usually a guitarist needs to prepare
the hand form to press the fret in advance of plucking the
strings. Even though the tablature score is shown, a novice
guitarist often gets stuck in keeping finding where to put
their left hand to hold the neck of a guitar. This is because
the tablature usually indicates only the fingerings on the
frets, but does not indicate the position of the left hand to
hold the neck of the guitar. Therefore we implemented
to show small diagrams (shown below of the tablature in
Fig. 4) representing how to place the fingers in a similar
fashion to a guitar fingerboard. The diagram is shown
when there is a position change in a hand to hold the frets.

The Song2Guitar interface also supports a
demonstration mode which playbacks the generated
tablature by using synthesized guitar sounds so that music
listeners can simply enjoy the system output.

3 https://youtu.be/fN4-ibh7ZDI
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6. EVALUATION

To evaluate how the performing difficulty varied among the
generated guitar solo covers, we conducted an experiment
in a qualitative evaluation approach.

6.1 Experimental setting

We asked a guitarist who is proficient in playing the
classical guitar to participate in the evaluation. The
guitarist was male and 24 years old, and had an experience
in playing the acoustic guitar (both steel and nylon strings)
for around six years.

We used RWC-MDB-P-2001 No.7 from the RWC
Music Database [6] to generate a guitar solo cover.
We generated three different covers with different levels
of difficulty (EASY, NORMAL, and HARD) by using
Song2Guitar. To focus on evaluating varying difficulty,
we manually corrected estimated beats and chords before
generating them.

The guitarist was first asked to practice each score for
15 minutes. Since the duration of generated pieces were
about five minutes long and it was too long to practice
the entire song, we asked the guitarist to practice only
the intro, the first verse, and the chorus section. After
the practice, we asked the guitarist to play all designated
sections of each cover. Finally, we conducted a short
interview to obtain comments on Song2Guitar. The
obtained comments were originally in Japanese, and they
were translated into English as shown in this paper.

6.2 Evaluation results

We obtained a comment indicating that the participant
enjoyed using the system:

I think this is a really great app.. I can play a song
endlessly, and it was like some kind of a game.

We also found a comment to indicate that our system
generated covers in three different levels of playing
difficulty (EASY, NORMAL, and HARD):

Well, playing difficulties were appropriate, difference
between NORMAL and HARD makes sense.
Although we intended to make three covers as getting

gradually difficult, the participant commented that the
playing difficulty of EASY and NORMAL were reversed:

EASY score was not easy, it was more difficult than
NORMAL one, for me. The HARD score was like in
the middle of NORMAL and EASY.

The participant reported why “EASY score was not easy”
as follows:

I guess that it’s easier when it consists of chords
(multiple notes) moderately than full of simple notes.
Chords are the basic form, and I can figure out how to
do fingering in my mind. When only two notes appear
in the tab, of course, I can figure out the fingerings,
however, it didn’t go well [...]

This comment indicated that smaller number of notes are
not always easy to play. The fingering of chords provides a
basic form, and a guitarist is more familiar with it than the
other irregular fingerings for fewer notes.

The participant also pointed out the playing difficulty
comes from the note value of the generated results.

The difficulty is, I think it’s easy if all notes were
eighth note. Sixteenth note is difficult to figure out the
timing.

He also indicated the issue in the interface design:
It’s hard to understand beats and timings of notes with
the interface. I appreciate if every half beat were
highlighted, somehow.

7. DISCUSSION

We confirmed that Song2Guitar was able to generate
guitar solo covers from polyphonic audio of popular music
by leveraging MIR technologies. We found that the
HMM formulation to generate guitar solo combined with
estimation of melody (F0), beats, and chords was effective
even from music audio which multi-pitch analysis cannot
be sufficiently applied to.

We also found that Song2Guitar was able to generate
output with different playing difficulties. We introduced
two parameters: the average movement of an index finger
and the average number of fingers to press the strings,
to control the playing difficulty. The evaluation results,
however, suggested that there would be more factors that
affect the playing difficulty. One possible factor for
determining the difficulty is the familiarity of particular
fingerings such as chords.

The interface of Song2Guitar enabled the player to
practice and perform the generated result. The comments
obtained in the experiment revealed that the rhythms of the
generated covers were sometimes hard to recognize. The
interface did not visualize the timing except for showing
the indicator bar. Highlighting half beats would help the
player recognize the rhythm much easier.

The future work of this research is to enable
Song2Guitar to generate cover songs in real time
considering the player’s proficiency. Conducting an
objective evaluation is also included in future work.
Since the generative model is designed as a probabilistic
model, we can verify the fingering model by calculating
cross-entropy.

8. CONCLUSION

We proposed Song2Guitar that generates guitar solo
covers from polyphonic music signals of popular songs.
The formulation using HMM was combined with MIR
technologies so that it can generate covers considering
the melody, bass and rhythm of the songs. Furthermore,
Song2Guitar generated covers with different levels of
playing difficulty. The interface was implemented and a
guitarist succeeded in playing different guitar solo covers.
In the future, cover song generation from music audio
signals will be further improved by leveraging other MIR
technologies.
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ABSTRACT

The automatic analysis of notated Renaissance music is re-
stricted by a shortfall in codified repertoire. Thousands
of scores have been digitised by music libraries across
the world, but the absence of symbolically codified infor-
mation makes these inaccessible for computational eval-
uation. Optical Music Recognition (OMR) made great
progress in addressing this issue, however, early notation
is still an on-going challenge for OMR. To this end, we
present the Symbolically Encoded Il Lauro Secco (SEILS)
dataset, a new dataset of codified scores for use within
computational musicology. We focus on a collection of
Italian madrigals from the 16th century, a polyphonic
secular a cappella composition characterised by strong
musical-linguistic synergies. Thirty madrigals for five un-
accompanied voices are presented in modern and early no-
tation, considering a variety of digital formats: Lilypond,
Music XML, MIDI, and Finale (a total of 150 symbolically
codified scores). Given the musical and poetic value of the
chosen repertoire, we aim to promote synergies between
computational musicology and linguistics.

1. INTRODUCTION

Since scores are the only remaining source of Renaissance
music, they are essential for replication and analysis of
this repertoire. Through the analysis of an early score it
is possible to identify musical similarities between com-
posers [24], as well as correlations between poetry and
music [32]. Due to this, libraries and museums spend great
effort in the digitisation of early documents. This practice
allows for easier dissemination of the repertoire and pre-
serves it from the inevitable degradation.

Nevertheless, since this mass of scores have been
scanned manually, no symbolically codifiable information
is available, which makes them meaningless for computa-
tional procedures (e. g., automatic analysis). Furthermore,

© Emilia Parada-Cabaleiro, Anton Batliner, Alice Baird,
Björn W. Schuller . Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Attribution: Emilia Parada-
Cabaleiro, Anton Batliner, Alice Baird, Björn W. Schuller . “The SEILS
dataset: Symbolically Encoded Scores in Modern-Early Notation for
Computational Musicology”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

in digital libraries of symbolically encoded scores, tran-
scriptions in modern notation of early musical repertoire
are restricted, and early notation is almost completely ig-
nored.

To resolve this issue, Optical Music Recognition
(OMR) has been applied to early music [6, 10, 26, 28].
However, the degraded conditions of early documents
(some times unreadable), and the linguistic inconsistencies
between the different voices (common in vocal polyphonic
music), make expert intervention essential, in some cases.
Therefore, despite obtaining promising results, early no-
tated music is still an open challenge for OMR [3]. With
this in mind, we present the Symbolically Encoded Il
Lauro Secco (SEILS) dataset 1 . The SEILS dataset is a
corpus of scores encoded in a variety of digital formats
(Lilypond [22] 2 , Music XML, MIDI and Finale 3 ) and
musical notation styles (white mensural notation [2] and
modern Western notation) deliberately selected to max-
imise computational possibilities. Furthermore, consider-
ing the strong synergies between poetry and music typ-
ical of the chosen repertoire, the presented dataset aims
to promote, from a musicological, linguistic and historic
perspective, further understanding of the artistic manifes-
tations of the ‘Humanism Renaissance’.

In particular, the SEILS dataset is suitable for musical-
linguistic pattern recognition, given the prominent rela-
tionship between music and lyrics that characterise the Il
Lauro Secco anthology. Furthermore, since each madri-
gal (piece) of the considered repertoire is composed by a
different composer, the SEILS dataset will also allow for
automatic identification of composers’ similarities. In ad-
dition, by presenting a codified version in white mensu-
ral notation (ground truth), OMR technology will be able
to evaluate its performance. In section 2 we will evaluate
previous studies related to the presented issue. In section
3 the considered repertoire will be described. An overview
of the criteria for symbolic codification and an evaluation
of the considered digital formats will be given in sections
4 and 5. Finally, the conclusions in Section 6.

1 https://github.com/SEILSdataset/SEILSdataset
2 http://lilypond.org/
3 http://www.finalemusic.com
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2. RELATED WORK

Even though scores are a great source of knowledge, cod-
ified symbolic information is missing for many. Some at-
tempts have been made to improve this, mainly through
OMR systems [4, 23, 31]. OMR has also been applied
for processing early music by several initiatives: SIMSSA
[10] 4 , ARUSPIX [26] 5 , and GAMERA [6]. OMR, when
used with early notation, examines tablature and mensural
notation [25], as well as primitive notation [15] and lyric
recognition [3]. Nevertheless, the degraded conditions of
the original source and the inconsistencies in the lyrics for
vocal polyphonic music make human intervention crucial
in many cases.

The score collections available online consider an in-
creasing variety of digital formats. The most commonly
found formats are Music XML and MIDI; however, other
digital formats are becoming more popular: e. g., the
**kern format [17] (available in the ELVIS database [1] 6 ,
music21 [5] 7 , and the kernscores database [29] 8 ); Lily-
pond files [22] 9 (available in the Petrucci Music Library –
IMSLP 10 and the MUTOPIA project database 11 ); or files
encoded through the professional music notation software
Finale 12 (available in IMSLP). Nevertheless, despite rare
exceptions like Tasso in Music Project [27] 13 , The Maren-
zio Online Digital Edition – MODE 14 , Josquin Research
Project 15 , or the Liber Usualis [16] encoded in MEI 16 ,
early music in such a variety of formats is still limited.

3. THE SEILS DATASET REPERTOIRE

The musical repertoire considered for the presented dataset
is the Italian madrigal of the 16th century, a secular poly-
phonic vocal composition in the Italian language, com-
monly for five to six unaccompanied voices. This kind of
madrigal is characterised by meticulous musicalisation of
poetic texts, a strategy known as madrigalism [14]. To-
wards the end of the 16th century, this composition tech-
nique was refined and flourished into a rich and virtuous
music [7], characterised by its use of lyrics from great po-
ets of the time [21]. The synergy between poetry and mu-
sic, prominent within these madrigals, makes them an icon
of the ‘Humanism Renaissance’ [13]. Given the relevance
of this intellectual movement to Western Europe, the con-
sidered repertoire has great importance not only to Italian
heritage [9], but also to musicological, linguistic, and his-
torical research.

4 https://simssa.ca/
5 http://www.aruspix.net/
6 https://database.elvisproject.ca/
7 http://web.mit.edu/music21/
8 http://kern.ccarh.org/
9 http://lilypond.org/

10 http://imslp.org/
11 http://www.mutopiaproject.org/
12 http://www.finalemusic.com
13 http://www.tassomusic.org/
14 https://d2q4nobwyhnvov.cloudfront.net/

86940d50-206f-4db3-9b88-754dddb3486f/
92KX7friyUw0WA/index.html

15 http://josquin.stanford.edu/
16 http://music-encoding.org/

Figure 1: Distribution of the 30 madrigals utilised, considering:
number of madrigals (#M), measure length (#ms), time signature
(4 / 4 and 2 / 2), and key signature (B flat and no key signature).

3.1 Il Lauro Secco Anthology

The presented dataset is a codified version of the madrigal
anthology Il lauro Secco (The dry laurel) [18], a collection
of 31 Italian madrigals written by a variety of highly rep-
utable composers from the end of the 16th century. For
consistency, only 30 of these madrigals (for five a cappella
voices, each written by a different composer), are avail-
able in the presented dataset. The 31st (and last) madrigal
in the anthology has been excluded from the dataset, as it is
starkly different from the others (for ten voices, and com-
posed by one of the previously considered composers).

The presented anthology has been chosen for its high
level of musical–linguistic consistency, i. e., composed
with both music and lyrics expressively written for the an-
thology [20]. Such content is unique, as a standard for
anthologies was to be created from pre-existing compo-
sitions, without musical or linguistic relationships. This
homogeneity across the anthology allows for an inter-
score musical-linguistic analysis, which will enable for a
deeper understanding of composer similarities via auto-
matic recognition methods.

Both the music and lyrics of Il lauro Secco have been
written by some of the most important Italian figures of this
period. Several composers belong to the Compagnia Ro-
mana, also known as Eccellenti Musici di Roma (Excellent
Musicians of Rome) [24], a congregation of composers fa-
mous for their proficiency. Furthermore, even though the
authorship of the lyrics is not declared in the anthology,
many have attributed this to the great Italian poet, Torquato
Tasso [8, 12, 30].

3.2 The SEILS Dataset Statistic Evaluation

Considering the modern notated transcriptions, the pre-
sented madrigals display a mean average length of 79.5
measures (with a standard deviation of 15.7). Of the 30
madrigals, 21 are in 4 / 4 time signature and 9 in 2 / 2; 13
have a B flat in the key signature and 17 do not have alter-
ations declared. In Figure 1, an overview of the distribution
of madrigals is given, considering number of measures as
well as key and time signature.

Although there is a high level of musical-linguistic con-
sistency, the considered anthology is prominently charac-
terised by its varying rhythms that differ between madri-
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16th 8th 4th . 2nd breve acc
Belli 0 42 17 251 4 63

Eremita 0 127 61 167 7 34

Fiorino 8 62 19 295 0 25

Luzzaschi 0 65 15 348 5 11

Macque 0 265 48 170 1 34

Massaino 0 173 40 248 12 36

Perue 2 35 11 168 0 21

Spontone 2 73 28 269 2 7
Strigio 0 252 85 271 2 29

Zoilo 0 27 2 187 2 25

30M 60 3222 958 7399 117 817

mean (30M) 2 107.4 31.9 246.6 3.0 27.3

sd (30M) 2.4 66.8 19.7 52.8 3.6 14.4

Table 1: Occurrence of sixteenth- (16th), eighth- (8th), quarter
dotted- (4th .), half- (2nd), and double whole- (breve) notes, as
well as accidentals (acc) within the madrigals (identified by com-
poser name). Max. and min. values, for occurrences across the
dataset, are highlighted in bold. Mean and standard deviation
(sd), are given considering all madrigals together (30M).

gals. Some madrigals are virtuosic, i. e., showing more
‘syncopation’ (rhythms off-beat generally represented in
music by dotted-notes), and fast notes (sixteenth- and
eighth-notes). Others are more ‘sustained’, i. e., show-
ing more long notes (double whole-notes), or are ‘har-
monically’ more unstable, i. e., showing more ‘accidentals’
(notes of a pitch that do not belong to the scale declared in
the key signature). To illustrate the distributions of notes
and accidentals, in Table 1 statistics for specific madrigals
are given which include extreme occurrences (maximum
and minimum values), as well as across all madrigals in
the data set.

The considered anthology presents a balanced distribu-
tion of voice types: 15 of the 30 madrigals are composed
for ‘medium’ vocal range (range from baritone to mezzo-
soprano); the other 15 are composed for ‘extreme’ vocal
range, i. e., 7 for ‘high’ range (tenor to soprano), and 8
for ‘low’ range (bass to contralto). Two of the 15 madri-
gals for ‘medium voices’ (those composed by Marenzio
and Luzzaschi), display the maximum ‘extension’ (i. e.,
vocal range considering all five voices) of the anthology
(between G2 – 97.9 Hz, and G5 – 783.9 Hz). The high-
est note performed is A5 – 880 Hz, being present only in
Massaino’s madrigal; whereas the lowest is E2 – 82.4 Hz,
performed in the madrigal composed by Spontone.

4. SYMBOLIC SCORE CODIFICATION

4.1 Original Notation and Modern Transcription

The original notation in which the madrigals of Il Lauro
Secco have been written in the 16th century is the white
mensural notation (cf. Figure 2) [2]. Two editions of this
musical source in early notation are available [18], both
digitised and freely available online. The first was printed
in 1582 by Vittorio Baldini in Ferrara (Italy) and is avail-
able from the Music Library of Bologna 17 as well as from

17 http://www.bibliotecamusica.it/cmbm/scripts/
gaspari/scheda.asp?id=7156

Figure 2: First staff of Marenzio’s madrigal of the first edition
(1582) of Il Lauro Secco written in white mensural notation.

IMSLP 18 . The second, printed in 1596 by Angelo Gar-
dano in Venice, is available from the Gallica Digital Li-
brary 19 . Both editions have been used in the codification
of the symbolic scores, collecting missing information of
the first from the second when necessary and vice versa.

Based on the original source, two transcriptions have
been made: one in white mensural notation (early nota-
tion), and another in modern notation. Both types have
been chosen for their inherent advantages, and are avail-
able in Lilypond format. Since proficiency in early nota-
tion requires a level of musicological expertise, rare even
in subjects from the musical field, symbolically codified
transcriptions in modern notation are essential, offering a
more understandable version of the repertoire.

On the other hand, the codified transcriptions in early
notation, having the same notation as in the original source,
provide the ground truth necessary to evaluate the perfor-
mance of OMR systems (cf. Figure 3). Furthermore, since
early notation do not split the notated music in ‘measures’
(segments within the ‘staff’ delimited by bar lines), ‘ties’
(the symbol used to link notes with the same pitch across
different measures), are not required. This means that the
symbolic representation of rhythm is always exactly the
same, and never made of different note symbols, some-
thing typical of modern notation (cf. Figure 4). Since in
modern notation, the codification of a given rhythm within
a measure is different from the one across two measures,
scores encoded in early notation would be more suitable
for musical pattern recognition.

4.2 Musical Criteria

Even though in the original scores the individual vocal
lines are written on different sheets, when engraving visu-
ally the proposed codified versions in Lilypond format (for
both modern and early notation), the five voices are placed
vertically superimposed (cf. Figure 3); the same holds for
the modern transcription encoded in Finale. Computation-
ally this does not make any difference, but we chose this ar-
rangement because, from the musicological and linguistic
point of view, vertical alignment is essential for effective
analysis.

As early notation does not present ‘bar lines’, these are
not considered in the scores encoded in Lilypond format,
neither for early nor for modern notation (to allow for a
visual comparison between both). Nevertheless, since bar
lines are typical (if not mandatory) for modern notation,
dashed bar lines have been considered incorporated in the

18 http://imslp.org/wiki/Il\_Lauro\_secco\
_(Various)

19 http://gallica.bnf.fr/ark:/12148/
btv1b8449068j
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Figure 3: Visual representation of the transcription in white mensural notation (early notation) of the first staff of Marenzio’s madrigal
encoded by Lilypond. Unlike the original source, the voices are visually superimposed.

Figure 4: Two symbolic representations of the same rhythm. A)
within a measure (encoded in Lilypond by: g4. a8 b8 c8); B)
across two measures (in Lilypond: g4 ∼ g8 a8 b8 c8).

modern notated scores encoded in Finale (as commonly
applied for modern transcription of early repertoire).

In early notation, accidentals are not always clearly in-
dicated. Due to this, in critical editions of early reper-
toire, a ‘cautionary accidental’ (accidental placed above
the note), is usually given by the musicologist as a sugges-
tion. However, even these suggestions are given based on
musical rules, such as consonances and dissonances cre-
ated by the vertical collisions between notes, many times
there is no full agreement between musicologists. Indeed,
‘cautionary accidentals’ can be displayed even by the mu-
sicologists themselves in two different ways, i. e., enclosed
in parentheses above the note (when suggested), or without
parentheses (when strongly suggested).

Based on these considerations, in the scores encoded
in Lilypond, Music XML, and MIDI format, only the ac-
cidentals shown in the original source will be taken into
account; whereas in the scores encoded in Finale, cau-
tionary accidentals (both enclosed within parentheses or
not), have been included to assist musicological analysis
and potential musical performance. Furthermore, the sym-
bols given for the accidentals in the original source (sharps
and flats), had been respected in the early notated transcrip-
tions, whereas these have been changed into naturals, when
necessary, in the modern notated transcriptions (according
to modern notation rules).

In mensural notation, ‘ligatures’ are groups of notes en-
coded with a unique graphical symbols. The interpreta-
tion of ligatures is made according to specific rules, and
the notes involved are at least semibreve, i. e., only ‘long’
notes are involved [2]. Ligatures are relatively rare in the
presented repertoire, being only 18 in the 30 madrigals
(consider that each madrigal has at least 550 note sym-
bols). Moreover, ligatures are never involved in musical-
linguistic patterns (since these are made up of shorter

notes). For these reasons, we encoded ligatures as single
notes instead of a unique graphical symbol. In the scores
encoded in Finale, a square bracket has been used to indi-
cate the notes originally involved in the ligature (as is usual
in modern transcriptions of early repertoire).

Finally, long rests (e. g., maxima rest), have been codi-
fied differently lasting a maximum of the whole rest, i. e.,
whole measure. This is the normal practice in modern no-
tation, but not in early notation, where values are not de-
termined by measure length. However, in order to save en-
coding time, and given that neither long rests nor graphical
appearance have a role for musical analysis purposes, this
practice has been adopted for the encoding in both early
and modern notation.

4.3 Linguistic Criteria

In the original source, lyrics are placed in two locations of
the score: under the notated music (for each one of the five
voices), and in a poem format at the left of each music-
sheet. Differences between these lyrics are typical of this
repertoire, e. g., random use of abbreviations, missing ac-
cents and punctuation, or different spelling of the same
word (cf. Figure 5). These inconsistencies create a chal-
lenge for OMR, and make automatic analysis an extensive
task (since no musical-linguistic patterns can be identified
in a non-unified text). For this reason, to encode this reper-
toire according to a uniform version, considering musical-
linguistic criteria is essential.

Differences between the first edition of the source
(1582) and the second (1596) have been found as well, the
reprinted version being characterised by the use of more
‘textual contractions’ (e. g., verd’io instead of verde io, or
sott’ai instead of sotto ai). Evaluating this, in the presented
dataset, the standardisation of the lyrics has been made ac-
cording to the first edition of the anthology (1582), and the
lyrics have been presented only under the musical notation.
The following linguistic criteria have been considered [11]:

I. Linguistic aspects faithful to the Italian language of
the 16th century:

A) The etymological ‘h’ that does not produce pronun-
ciation changes (e. g., in ‘hor’), has been conserved;
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Figure 5: First staff of the Marenzio’s madrigal for Alto (shown above) and Basso (shown below) voices. The inconsistencies of the
lyrics between both voices are highlighted: uerde vs verde, lauro vs Lauro, and fù vs fu, between Alto and Basso, respectively.

B) The graphical symbol ‘ti’, that must be pronounced
‘zi’ according the modern Italian phonetic rule, has been
conserved;

C) The tironian symbol ‘&’ has been transcribed as ‘et’,
according the Italian orthographic rule of the 16th century;

D) In the cases where contracted and not contracted
textual versions have been presented (e. g., altrov’adopra
and altrove adopra), the not contracted version has been
considered. Nevertheless, in the musical performance, the
synalepha, i. e., to merge two syllables into one, has to be
made.

II. Linguistic aspects faithful to the modern Italian lan-
guage:

A) The diacritic mark has been normalised according to
the modern rule (e. g., ‘più’ instead of ‘piu’, and ‘a’ instead
of ‘à’, cf. Figure 5);

B) The arbitrary use of ‘u’ and ‘v’ in the different voices
has been normalised according to the modern rule (e. g.,
verde instead of uerde, cf. Figure 5);

C) The abbreviation of ‘n’ and ‘m’ as superscripts
on vowels with ∼ has been normalised by the complete
spelling (e. g., hanno instead of hãno);

D) The abbreviation of ‘per’ through ‘~p’ has been nor-
malised by the complete spelling (e. g., perché instead of

~pche);

E) The abbreviation ‘ij’, referring to the repetition of
sentences or words, has been substituted by the complete
form;

F) Separated words have been normalised according to
the modern rule (e. g., invano instead of in vano, or poiché
instead of poi che).

III. Linguistic aspects considered in order to allow au-
tomatic musical-linguistic pattern recognition:

A) The punctuation has been standardised in all the
voices, considering the prosody of the text but at the
same time encouraging its simplification in order to allow
musical-linguistic pattern recognition (where normalised
punctuation between the different voices is essential);

B) The use of capital- and minor-letters has been stan-
dardised in all the voices, considering capital–case at the

beginning of each verse and personification (cf. Figure 5).
In order to prioritise the coherence between the different
voices, vertical collisions between musical-linguistic pat-
terns have been considered. According to this, the starting
word of the repetitions of verses has been also capitalised.

Finally, melismatic prosody between syllables of the
same word (i. e., a single syllable of text is sung through
several different notes), has been graphically identified by
dashes for both early and modern notation, as in the orig-
inal source. However, when the melisma is placed at the
end of the word, no graphical indication has been given in
the early notated scores, following the original source. On
the contrary, for the transcription in modern notation (both
encoded in Lilypond and Finale), the length of the melisma
has been indicated by an underscore.

5. DIGITAL FORMATS EVALUATION

As mentioned, the 30 madrigals have been encoded in four
digital formats: Lilypond, Music XML, MIDI, and Finale.
Early and modern notation are available in Lilypond for-
mat (a total of 60 files), whereas the Finale format has been
considered only to encode modern notated transcriptions
(30 files), and from these, Music XML and MIDI files have
been automatically created (30 for each).

Each format has differing pros and cons for computa-
tional musicology. For example, Music XML files show
clear links between linguistic information and associated
notes, which helps for the automatic identification of
musical-linguistic connections. In the following, we show
the Music XML code (Code 1), used to indicate the first
note of the Alto voice in the transcription in modern no-
tation of Marenzio’s madrigal (the original early notated
version of this is shown in the top staff of Figure 5).

Code 1: Music XML syntax

1 < n o t e d e f a u l t−x ="121" >
2 < p i t c h >
3 < s t e p >B</ s t e p >
4 < a l t e r >−1</ a l t e r >
5 < oc t ave >4 </ oc t ave >
6 </ p i t c h >
7 < d u r a t i o n >8 </ d u r a t i o n >
8 < vo ice >1 </ vo ice >
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9 < type >whole < / type >
10 < l y r i c d e f a u l t−y="−80" number ="1" >
11 < s y l l a b i c > begin < / s y l l a b i c >
12 < t e x t >Men</ t e x t >
13 </ l y r i c >
14 </ note >

As we can see, each line of the code indicates a specific
musical parameter (e. g., line 3 the pitch, line 9 the note,
line 12 the syllable). Nevertheless, this disposition breaks
up the continuity of the musical patterns, complicating the
performance of automatic analysis.

In contrast, Lilypond files have a clearer distribution of
the musical patterns over the code lines, according to each
measure (indicated in the following Lilypond code, i. e.,
Code 2, by “ | % ”). This facilitates computational opera-
tions such as automatic identification of rhythmic-melodic
patterns, especially in scores encoded in early notation
(where a given rhythm never indicates different shapes). In
the following, we show the Lilypond code (Code 2) used to
indicate the first staff of the Alto voice in the transcription
in modern notation of Marenzio’s madrigal (the original
version of this, is shown in the top staff of Figure 5).

Code 2: Lilypond syntax

1 \ key f \ major
2 \ t ime 4 / 4
3 \ autoBeamOff
4 bes ’1 | % 1
5 a4 bes4 . bes8 c4 | % 2
6 d bes a8 g f e | % 3
7 d4 bes ’ a2 | % 4
8 a bes | % 5
9 c4 . c8 c4 d | % 6

As we can see, in each line of Lilypond, a whole mea-
sure is encoded, giving a more compact and meaningful
distribution of the music. Indeed, whereas in 14 lines of
Music XML, only one note is encoded, in the 9 lines of
Lilypond, 20 notes are encoded, i. e., the whole first staff.
In these 9 lines, not only the note length is encoded but
also the pitch, accidentals, and octave (e. g., “4” means
quarter-note, “bes” means B flat, and “ ’ ” indicates the 4th

octave), as well as additional graphical information (e. g.,
“ \autoBeamOff ” indicates not to link the eighth-notes by
a beam, typical of modern notation).

However, in Lilypond format, the lyrics are described
in a different section of the code respectively to the notes,
and without measure wise alignment. The link between
notes and syllables is given by a single space to indicate
that the following syllable is aligned to the following note
and does not belong to the same word. To link syllables
of the same word that are aligned to different notes the
command “−− ” is used (rests are not considered). In a
melismatic passage, to indicate that an extra note must be
skipped, the command “ \skip4 ” is used. Following this,
the first verse sung by the Alto voice in the Marenzio’s
madrigal is encoded in Lilypond as follows (the original
early notated version of this, is shown in the top staff of
Figure 5):

Men −− tre l’au −− ra spi −− rò nel ver −− \skip4
\skip4 \skip4 \skip4 de lau −− ro

MIDI is probably the most common digital format for
music dissemination in the web, being also used in compu-
tational approaches as pattern identification on polyphonic
music [19]. Nevertheless, early music is almost completely
overlooked in the repertoire presented in this digital for-
mat. As well as MIDI files, Finale files are also a standard
format always more common in digital music libraries.
However, again this format is popular in sharing codified
scores from other ‘classical’ musical periods but not for
Renaissance music. With this in mind, we included in the
presented dataset MIDI and Finale files.

Beyond the symbolically codified files, a total of 180
pdf files have also been included. From these, 30 pdf are
the modern notated transcriptions of the Finale encoded
madrigals (to gain an easier evaluation of the repertoire).
The other 150 pdf are scanned copies of the first edition
of the original source (5 pdf files for each madrigal, one
for each voice). In total, the SEILS dataset encompasses
330 files: 180 of them are pdf files; whereas the remaining
150 are symbolic files digitally encoded in different for-
mats. Of these 150 symbolic files: 60 are encoded by Lily-
pond (.ly), 30 in each of the considered notations (early
and modern); 30 are encoded by Music XML (.xml); 30 by
MIDI (.mid); and 30 by Finale (.musx).

6. CONCLUSIONS

The presented dataset of codified scores aims to encourage
automatic musical analysis in Renaissance music. Con-
sidering the strong connections between music and poetry
of the chosen repertoire, the presented dataset is specif-
ically suitable for creating synergies between musicology
and linguistics. We present symbolically encoded scores of
the Il Lauro Secco anthology considering the original white
mensural early notation, which will allow for the evalua-
tion of OMR performance.

Since each digital format has some advantages and dis-
advantages, it is our belief that through this combination,
each limitation found in the formats can be overcome (e. g.,
by combining Lilypond and Music XML files, it is possi-
ble to clearly identify lyrics with musical patterns). With
this in mind, the SEILS dataset makes available a variety of
digital formats: Lilypond, Music XML, MIDI, and Finale.

Our next priority is to complete the analytic annotation
of the presented dataset in **kern format, through the iden-
tification of different types of madrigalisms (e. g., based on
contrapuntal and homorhythmic textures, or in consonant
and dissonant vertical sonorities, among others), within
each madrigal.
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ABSTRACT 

It has become common practice for audience members to 
use social media to connect, share, and communicate with 
each other during events (e.g., sport events, elections, 
award ceremonies). But how is this backchannel used 
during a musical event and what does it say about how 
people engage with the music and the artists performing 
it? In this paper, we present the result of a study of a da-
taset composed of 31,140 tweets posted during and 
around the 10th edition of Osheaga, an important music 
festival held annually in Montreal. A combination of sta-
tistics and qualitative content analysis is used to examine 
the postings. This allows us to describe the content of 
these postings (i.e., topics, shared media), the type of 
message being shared (i.e., opinion, expression, infor-
mation), and who the authors of these tweets are.   

1. INTRODUCTION 

Music tastes are for many an important dimension of 
their sense of self, particularly during adolescence and 
young adulthood. People often use their music tastes as a 
‘social badge’ of their identity [1, 2], which tells others 
who they are or who they aspire to be. Disclosing our 
music preferences is therefore an exercise of taste and 
discrimination. This is certainly one of the reasons music 
recordings have not displaced live musical performances; 
attending a music show is one of the strongest ways of 
showing others our love of music and/or of a particular 
music artist [3]. It is also the occasion to buy T-shirts, 
posters, or other mementos to testify that we were there. 
Music tastes also play an important role in the construc-
tion of group identity. Concert going, as a social outing, 
is therefore also an opportunity to share an experience 
that could reinforce a friendship or a romantic relation-
ship.  

Social media have further amplified the role of music 
tastes in identity formation. By providing tools that allow 
their users to share their cultural preferences in various 
ways, users can now display their ‘social badge’ to a 
broader audience composed of friends, relatives, co-
workers, acquaintances, or even unknown people. By do-
ing so, they make a ‘taste statement’ that is used for ‘taste 
performance’, as an expression of prestige [4]. Further-

more, social media afford users a means of connecting 
with other concert-goers and potentially even with the 
performing music artists. It has become common for the 
organizers of important events to provide an official 
hashtag so that audience members can connect and partic-
ipate in a shared conversation about the event. But how 
do people use these affordances?   

Music appears to be a common topic on Twitter; the 
hashtag #nowplaying, used to indicate the music a user is 
currently listening to, was the 6th most popular hashtag 
from 26 March to 25 April 20171. Several musical events, 
from televised music award ceremonies and contests to 
music festivals now propose their own official hashtag. 
However, very few studies have examined the content of 
these tweets.  

This study focuses on the use of Twitter during an 
important musical event, the 10th edition of Montreal’s 
Osheaga festival. Using both quantitative and qualitative 
methods, we analyzed 31,140 tweets with the aim of ex-
ploring the following research questions: 

RQ1. Who tweeted during the event and who were 
they speaking to? 
RQ2. What is the content of these messages (i.e., top-
ic, media)?  
RQ3. Are these messages objective or subjective? 
RQ4. Which events, shows, or artists during the festi-
val generated the most tweets?  

Garnering more information about the content and the 
authors of these tweets could provide some insights into 
how people engage with music and what they have to say 
about it, about the artists performing it, and about the 
fans. Since our reception of music depends not only on 
the inherent characteristics of the music itself but also on 
its social and cultural context, it seems relevant to exam-
ine what type of information user-generated content relat-
ed to music could provide and how it could help us better 
understand how music tastes are shaped. Moreover, ac-
cording to surveys conducted by The Nielsen Company 
[5, 6], large music festivals have been gaining in popular-
ity in Canada and in the United States. American music 
festival-goers were 98% more likely than the average 
American to discover new music on Spotify, the music 
streaming service, and nearly half of them shared photos 
and/or texted friends while attending a concert. This sug-
gests that having a better understanding of the music con-

                                                             
1Hashtagify. http://hashtagify.me 
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sumption and perception of this growing user group could 
be particularly relevant for the design of music recom-
mender systems.    

2. RELATED WORK 

2.1 Twitter As a Backchannel 

Social media provide a fertile ground for research. These 
online contexts offer a public or semi-public space where 
people can connect and share a conversation in real time. 
Therefore, despite the recency of these platforms, there 
are already numerous studies that have focused on the use 
of Twitter for various purposes, including its use for con-
necting with other audience members during major 
events. Researchers have looked at Twitter use during 
televised events [7-9]. Wohn and Na [8] examined the 
messages posted on Twitter during two televised events, a 
talent show and a political speech. They manually coded 
the postings into four categories: emotion, attention, in-
formation, and opinion. Their analysis revealed that the 
most popular category was Opinion, in which more than 
30% of the postings were coded for both programs. Also 
using a qualitative approach to content analysis, Giglietto 
and Selva [7] looked at Twitter activity during a full sea-
son of a political talk show. Again, opinion expression 
was the most important tweet category: it accounted for 
59% of the postings. Their study also revealed that Twit-
ter could be useful in identifying the most engaging mo-
ments of such shows. Bruns and Stieglitz [9] employed 
statistical methods to examine the audience activity on 
Twitter, minute per minute, during the television broad-
cast of the British Royal Wedding. This allowed them to 
determine that there was a strong correlation between 
Twitter activity and key moments during the ceremony.  

These studies suggest that, thanks to the affordances 
of Twitter and other social media platforms, the audience 
has taken a more active role. Twitter serves as a back-
channel—or as a ‘second screen’ [7]—that complements 
the broadcasting media and allows the broadcasters to 
receive audience feedback in real time [10].   

2.2 Music-Related Twitter Studies 

In the same line of research, Highfield et al. [11] used a 
combination of quantitative and qualitative methods to 
examine Twitter activity during a major musical event 
that is broadcasted internationally: the Eurovision Song 
Contest. They found that broadcasters encouraged the use 
of Twitter, for example by promoting an official hashtag 
for the event and, in some cases, by selectively showing 
user tweets on screen. This indicates that there is a real 
interest from broadcasters and the organizers to receive 
live feedback from the audience and to facilitate audience 
engagement. Their study also showed the potential of 
Twitter for establishing and supporting fan communities.  

A few studies have also been conducted within the 
MIR community. Hauger et al. [12] presented the ‘Mil-
lion Musical Tweets Dataset’ (MMTD), a dataset com-
posed of tweets collected using music-related hashtags. 
Since all tweets have geo-location data, the researchers 
used the dataset to geographically represent listening 

preferences. The MMTD has been used other researchers. 
Moore et al. [13] employed probabilistic embedding 
methods to uncover geographic and cultural patterns in it, 
and Farrahi et al. [14] explored the potential of Twitter 
data for improving the collaborative filtering approaches 
used by music recommender systems. Zangerle et al. [15] 
presented another dataset, the ‘#nowplaying Music Da-
taset’. Kim et al. [16] used this dataset to examine the re-
lationship between the Billboard rank and play counts 
extracted from Twitter postings. A strong correlation be-
tween the two was found. Finally, Iren et al. [17] released 
the ‘Top 2000 Dataset’ composed of tweets posted in 
connection with the Top 2000, a yearly event broadcasted 
on the radio in the Netherlands for which the public is 
invited to vote for the greatest 2000 songs of all times.  

The interest the MIR community has already demon-
strated for Twitter data is an indication of the potential it 
has in helping us better understand users’ music behav-
iour and music tastes, with the objective of improving 
music recommender systems.   

3. OSHEAGA 

Created in 2006 by Evenko, the Festival Musique et Arts 
Osheaga is one of the most important music festival in 
Canada. Held annually in Montreal during the summer, 
the festival hosts more than 100 music artists across three 
days each year. While it focused on local underground 
music artists in the beginning, Osheaga has been hosting 
international artists for several years now. The festival 
offers a varied programme that covers different music 
genres, including rap, indie, and electronic music. In ad-
dition to the concerts, the festival offers on-site activities 
as well as visual art installations. Gaining in popularity, 
Osheaga attracts visitors from all over the world each 
year, most of whom are between 20 and 25 years old. In 
2016, 65% of the 135,000 festival-goers came from out-
side Quebec [18, 19]. 

4. METHODS 

4.1 The Dataset 

To examine how people used Twitter during and around 
the Osheaga music festival, we collected the tweets relat-
ed to the 2015 edition of the festival, which was held 
from July 31 to August 2, 2015. Although the festival it-
self did not promote the use of any official hashtag on its 
website, the hashtag #Osheaga2015 was included in 
many postings made by the festival on Twitter. People 
also used the more generic #Osheaga hashtag. Therefore, 
from July 24, 2015 to August 13, 2015, we collected the 
tweets that contained at least one of these two hashtags, 
as well as tweets that contained the Twitter handle of the 
festival, @osheaga (i.e., the username of the official ac-
count of Osheaga on Twitter). The final dataset was com-
posed of 31,140 tweets.  

4.2 Data Analysis 

A mixed-methods approach was used to analyse the data. 
With our research questions in mind, we calculated de-
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scriptive statistics, to which we added the activity, visibil-
ity, and temporal metrics defined in [9].  

To capture the richness of the postings, we employed 
a grounded theory approach to content analysis, which 
means that we let the categories emerge from the data, 
without imposing any preconceived model on it [20]. For 
this part, we focused on the tweets posted during the fes-
tival (from July 31 to August 2). We also limited our 
analysis to original tweets, which means that retweets 
were excluded. These will be analysed separately but, due 
to the limited length of this paper, this analysis is not in-
cluded here. Since manual coding is time consuming, we 
chose to focus on a random sample stratified by date. 
More specifically, we randomly selected 5% of the post-
ings published on each of the three days of the festival. In 
total, 712 postings were manually coded (see Table 1).  

 
Posting date No. of original 

tweets 
No of postings 

analyzed 
July 31 3,377 169 
Aug. 01 4,778 239 
Aug. 02 6,084 304 
Total: 14,239 712 

Table 1. Description of the dataset that was manually 
coded. 

Qualitative content analysis is a multi-step and itera-
tive process. The first step consisted in developing the 
codebook, which was done by coding 100 postings that 
were not included in the final sample [21]. In the next 
step, two researchers used the codebook to independently 
code the first 100 postings of the sample in order to test 
it. The analyses of the two coders were then compared 
and discussed. This led to a revised and final version of 
the codebook, which was composed of 66 categories. The 
coding of the first 100 postings was revised and the 612 
remaining postings were coded. Coding each posting took 
time. For each posting, the coder accessed the user profile 
to determine what type of user it was (e.g., individual, 
broadcaster, promoter). If the tweet contained URLs, the 
coder had to follow them to see where they led. Moreo-
ver, the coder had to make sense of the content of the 
text. Multiple codes could be applied to one message.  

5. RESULTS 

5.1 Who Participates in the Conversation? 

As mentioned before, Twitter affordances invite users to 
connect and converse with other people attending the 
concert, with people who could not or did not want to be 
there, and even with the performing artists. But in reality, 
who participates in this shared conversation?  

Visibility. Our dataset was composed of 31,140 
tweets. These tweets were posted by 12,294 distinct us-
ers, for an average of 2.5 tweets by user. However, a 
closer look shows an uneven distribution: a very small 
number of users accounted for a large proportion of the 
postings. More specifically, the top 1% of most active 
users accounted for 17.5% of the tweets, and the top 10%, 

for 44.8%. Conversely, we find a long tail of users with 
little activity. Indeed, 7,202 (58.6%) of users had posted 
only one message during the festival. 

Categories of users. The coding process for content 
analysis included accessing the Twitter account of the 
author of each message in order to categorize it (see Ta-
ble 2). Individuals accounted for 74.2% of the postings. 
The next two most important categories were reporters, 
bloggers, TV/radio hosts, and photographers, who au-
thored 10.8% of the tweets, and magazines, newspapers, 
blogs, and TV/radio stations, who posted 4.9% of the 
tweets. Different types of societies (e.g., restaurants, 
clothing companies) posted some tweets, usually for 
promotional purposes. The festival itself posted 2.5% of 
the messages of our sample.  

Category of users No. of 
tweets 

% 
(n=712) 

Individuals 530 74.4% 
Reporters, bloggers, 
TV/radio hosts, and pho-
tographers 77 10.8% 
Magazines, newspapers, 
blogs, and TV/radio sta-
tions 35 4.9% 
Societies 23 3.2% 
Osheaga 18 2.5% 
Music artists (performing 
during the festival or not) 13 1.8% 
Promoters 9 1.3% 
Music producers and la-
bels 7 1.0% 
Total 712 100.0% 

Table 2. Tweets by user category. 

5.2 Who Are They Speaking To? 

Mentions. In the language of Twitter, a mention is a ref-
erence to a user in a tweet using his or her Twitter handle 
(e.g., @osheaga). Of the 31,140 tweets in our dataset, 
16,773 (53.9%) included at least one mention. There was 
a total of 25,746 mentions. Postings included between 0 
and 9 mentions, for an average of 0.83 mention and a 
median of 1 mention per posting.  

Mentions were used in different ways, sometimes for 
addressing a tweet to a specific user: 
Hey @b### are you at #OSHEAGA2015 this week-
end? 

to tag someone in a photo or in a posting: 
#day1 @osheaga with my main girl @L###### 
#stayhydratedfolks #osheaga #ootd @ Parc 
Jean-Drapeau [followed by a link to a photo 
of the two friends] 

or to tag the performing artists of the concerts they are 
attending: 
#OSHEAGA2015 Day 3 Wrap-up @GaryClarkJr 
@Bobmosesmusic @SylvanEsso @sanferminband 
@charli_xcx @TheWarOnDrugs @Hot_Chip @alt_J 
@theblackkeys 

The number of mentions a user receives is an indication 
of his or her visibility. In our dataset, 3,023 distinct users 
received at least one mention. A few users received a 
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high number of mentions. With 6,360 mentions (24.7%), 
the Twitter account of the festival received the most men-
tions, which is not surprising considering that this was 
one of the criteria for collecting the tweets. If we put the 
festival mentions aside and examine the remaining 
19,286 mentions, we notice that the top 1% of most men-
tioned users accounted for 32.7% of the tweets. They had 
received between 109 and 701 mentions each. Half of 
these top users were artists who performed during the fes-
tival (e.g., Kendrick Lamar, James Bay, Of Monsters and 
Men). Among these users were also online magazines and 
blogs (e.g., Sidewalk Hustle, Much), and music streaming 
services (e.g., Stingray Music, Spotify Canada). We also 
find two celebrities who attended the festival but had no 
official role to play in it: a local pop signer (i.e., Marie-
Mai) and an international top model (i.e., Cara 
Delevingne) whose agency had posted several photos of 
her at the festival on Twitter.  

Artists. But what role did the performing artists take 
in the conversation? Users regularly mentioned the names 
of the artists that were performing in their tweets. Among 
the postings that were manually coded, 231 or 32.4% 
contained a reference to a performing artist. However, the 
users did not always used the Twitter handle of the artist 
to do so. More precisely, they used the Twitter handle 
40.7% of the time. This suggests that most of the time, 
the user was not expecting any reaction from the artist. 
But even when a Twitter handle was used, the user did 
not always explicitly address his/her message to the artist. 
Indeed, if some users talked directly to the artist, as in 
this message: 
@MarinasDiamonds we loved your set at 
#OSHEAGA2015 and we would love to hug you 
and wish you well :) you're the best 

most talked about the artist at the 3rd person, as in this 
message: 
@flo_tweet has the most amazing voice. I’m 
in awe of this woman #OSHEAGA2015 [followed 
by a link to a photo] 

Among the 123 singers and groups who performed 
during the festival, two had no Twitter account. Accord-
ing to our sample, a large majority (81 or 66.9%) of those 
who were Twitter users had not posted any tweets about 
Osheaga during the data collection period; they may have 
tweeted about the festival, but they did not use the 
hashtags or mentions we queried in the collection pro-
cess. The remaining 40 artists (33.1%) had posted be-
tween 1 and 14 tweets each, for an average of 3.2 and a 
median of 2 postings per artist. In total, our dataset in-
cluded 129 postings from performing artists. These 
tweets were all manually coded. Eighty-five (65.9%) of 
these messages were retweets. As we can expect, the 
original tweet often consisted of a positive review of the 
artist’s performance. The tweets came mostly from blogs, 
radio/TV stations, newspapers, music services, report-
ers/bloggers, or the festival itself, but there were a few 
cases (12) where the artists retweeted a fan’s posting.  

Among the 44 postings that were not retweets were 13 
thank you notes to the festival or the fans in general, such 
as: 

That was one of our favourite shows this 
summer @osheaga Thank you! #OSHEAGA2015 

Some (10) used Twitter to announce that they were per-
forming at the festival or doing their sound check. One 
music group shared a photo of its set list for the concert. 
There were only three postings that showed a direct inter-
action between an artist and a fan. For example, a fan had 
asked a music group (using its Twitter handle) to play a 
specific song, a request to which the band drily replied: 
Not gonna happen 

In another case, the tweet was a personal thank you to a 
fan. And in the final case, the singer shared a fan’s video 
showing a blooper from his show and commented on it: 
Hahaha that was such a fail [followed by the 
link to the fan’s tweet with the video] 

This particular tweet was then retweeted 128 times by 
other users.  

The low number of tweets that show a direct interac-
tion between the artists and their fans should however be 
interpreted with caution: our dataset was composed of 
tweets containing two specific hashtags and one Twitter 
handle. It is possible that some artists replied to their fans 
without including those in their reply.   

5.3 What Do They Tweet About? 

Topics. The qualitative content analysis allowed us to 
closely look at the content of the messages that were 
posted on Twitter. The main topics are presented in Table 
3. By far, the most common message was to announce 
that one was going to Osheaga. However, we must stress 
that many of these messages were not posted at the initia-
tive of their author. The festival was encouraging festival-
goers to register their bracelet online in order to win priz-
es and be able to take part in some activities on site. They 
could create a new account to sign up, or they could use 
Facebook or Twitter. Using Twitter apparently resulted in 
the application posting the following message on Twitter: 
I’m at #Osheaga2015 Day 1 - powered by Sam-
sung Galaxy S6 

Some changed it slightly. It could apparently also be done 
on site since many added to the message a photo taken in 
a dedicated space. These messages accounted for 29.6% 
of the dataset and 31.1% of the sample used for content 
analysis. Although these messages may appear to be 
spam, the fact that many users added a photo and/or did 
not make the effort to create a new account for the festi-
val suggest that perhaps they wanted to share these 
tweets. Moreover, these messages were part of the con-
versation about the festival on Twitter: people reacted to 
and commented on these tweets, and they certainly creat-
ed a ‘hype’ on Twitter considering the volume. For this 
reason, we decided to keep them for the analysis.  

Registering the bracelet online was not the only in-
centive for sharing that one was attending the festival. 
Many did that on their own initiative, oftentimes adding a 
photo of their bracelet: 
Off to osheaga #Osheaga #OSH15 [followed by 
a link to a photo of the Osheaga bracelet] 

A few users (25) also explicitly announced attending a 
concert: 
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I’m so excited today I’m gonna see two of my 
favorite artists live! @MarinasDiamonds and 
@twentyonepilots <3 #OSHEAGA2015 

Questions, comments, and complaints were addressed 
to the festival, who would then reply to the users. Some 
people also shared personal experiences during the festi-
val, like hurting themselves or stumbling upon a singer or 
musician: 
Casually met the band of Florence & The Ma-
chine in the lobby of my hotel tonight 
#OSHEAGA2015 

In 12 cases, people commented on or complained about 
other festival-goers, about their appearance or their be-
haviour, as in: 
Festival etiquette breach number one. 
#osheaga #get #down #now @ parc jean drapeau 
[accompanied by a photo of a person sitting 
on someone else’s shoulders]   

all I see at #Osheaga is fake Kylie-Jenner-
styled people 

Other topics, such as fashion, food, weather, and even 
books were also occasionally discussed, sometimes in 
combination: 
Tacos in the rain? Why not! #osheaga #tacos 
#festival #food [accompanied by a photo of 
the tacos] 

Topics No. of 
tweets  

% 
(n=712) 

Presence at festival 271  38.1% 
Performing artists and their 
music 

231  32.4% 

Festival (e.g., schedule, lo-
gistic, transport) 

50  7.0% 

Promotion of work, products, 
or services 

46  6.5% 

Presence at concert 25  3.5% 
Fashion 17  2.4% 
Personal experience 17  2.4% 
Other festival-goers’ behaviour 12  1.7% 
Food 11  1.5% 
Weather 10  1.4% 
On-site activities 8  1.1% 

Table 3. Main topics discussed in tweets posted dur-
ing the festival 

As seen in Section 5.1, festival-goers were not the on-
ly ones to take part in the conversation. Various societies 
used Twitter to promote their work, products, or services. 
For instance, some on-site restaurants and shops used 
Twitter as an advertising venue: 
We are at #Osheaga! Come and see us 
@C####### near the Scène des Arbres [accom-
panied by a photo of the food truck] (trans-
lated from French) 

Some other retailers who were not on site, such as cloth-
ing companies, tailored their promotional message for the 
Osheaga festival-goers: 
Dress it up or dress it down! This look is 
easy to take from day to night. #ootd #toms 
#friday #osheaga [accompanied by a photo of 
an outfit from the clothing company] 

Reporters, bloggers, photographers, and radio and TV 
hosts promoted their work differently, some by directly 
sharing the link to the result of their work—be it an 
newspaper article, a blog post, or a photo—others by an-
nouncing that they were covering the festival, such as in 
the following tweet posted by a TV reporter: 
#C##### backstage at #osheaga with #patrick-
watson and string quartet #mommasontherun 
[accompanied by a photo of the members of 
the string quartet] 

Media. Close to half (42.7%) of the 712 tweets that 
were manually coded contained or pointed to a non-
textual resource (i.e., photo, video) (see Table 4). By far, 
the most often shared media type was the photo: 34% of 
the postings analyzed contained a photo taken by the au-
thor. Amongst the main categories of photos shared by 
users, whether their own or someone else’s, were the fol-
lowing: photos of concert (36.4% of photos), selfies with 
others (26.3%), photos of festival site (12.3%), other fes-
tival-goers (7.2%), and selfies alone (5.5%). The vast ma-
jority of the videos shared were videos of a live perfor-
mance taken during the festival.  

Type of media shared No. of 
tweets 

% 
(n=712) 

Personal photo 242 34.0% 
Personal video  41 5.8% 
Someone else’s with photo 15 2.1% 
Shares someone else’s video  6 0.8% 
Tweets with media in total: 304 42.7% 

Table 4. Types of media shared in tweets posted dur-
ing the festival 

5.4 Are the Messages Objective or Subjective? 

As mentioned in the introduction, research shows that 
people used their music tastes as a social badge that tells 
other people who they are, a phenomenon that has been 
exacerbated by social media who provide the sounding-
box for such messages. Therefore, it seems reasonable to 
expect a large number of people using Twitter to express 
an opinion about the music they are listening to.  

Of the 712 messages that were manually coded, 153 
(21.5%) were explicit expression of an opinion, which is 
quite high considering the large proportion of tweets that 
were automatically generated when participants regis-
tered their bracelet online (see Section 5.3). Moreover, 
when people used Twitter to announce publically that 
they were attending a concert, although they were not ex-
plicitly expressing an opinion about the artist and his/her 
music, it seems very likely that for many, this was a form 
of implicit expression of their love for the artist. Howev-
er, since it was impossible to know with certainty what 
the user had in mind while posting these tweets, they 
were not included in the Opinion Expression category.  

In addition to expressing their opinion through their 
tweets, subjectivity also took the form of emotion expres-
sion. A small proportion of the tweets (45 or 6.3%) fell in 
that category. Most of the time, the emotion conveyed 
was excitement:  
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So excited to see @runjewels today at 
#Osheaga today, it's gonna be hype! 

Mikey & brian of #Weezer. #VIP I feel like a 
16 year old Asian girl #OSHEAGA [accompanied 
by a photo of self with friends]    

Sometimes, the emotion was not named but it transpired 
from the interjections, the emojis, or the repetition of 
some letters in a word: 
KENDRICKKKKKKKK #WEGONBEALRIGHT #OSHEAGA2015 
[accompanied by a photo of Kendrick Lamar on 
stage]  

@youngthegiant 50 mins untill you guys 
play!!! @youngthegiant #osheaga!  

Sharing pure information, as in the tweet below, was not 
common.  
New adult 'play' area complete with jumping 
castles and swings #osheaga2015 #cbcmtl [ac-
companied by a photo of the area]  

More often, information and opinion or emotion were 
combined in one tweet:  
The charming George Ezra is playing on the 
Mountain Stage #OSHEAGA2015 [accompanied 
by a photo of the singer on stage] 

 No. of 
tweets  

% 
(n=712) 

Opinion expression (all) 153  21.5% 
About concerts or artists 96  13.5% 
About festival 37  5.2% 
About on-site activities 3  0.4% 
Other 17  2.4% 

Emotion expression 45  6.3% 
Subjective tweets in total: 207 29.1% 

Table 5. Opinion and emotion expression in tweets post-
ed during the festival 

5.5 How Do the Festival Events Influence Twitter Ac-
tivity?  

To identify how the activity on Twitter relates to the fes-
tival events, we looked at the number of tweets per hour 
during the three days of the festival, from 7 AM to 11 
PM. Figure 1 shows the distribution of the tweets per 
hour for these days.  

The program started at 1 PM to finish at 11 PM. We 
notice a first peak on each day at 12 PM, which certainly 
corresponds to the time at which people would arrive on 
site. Two other peaks are noted on July 31, which coin-
cide with the beginning of shows by headliners artists of 
the festival. The first peak occurred at 3 PM, the time at 
which the Run The Jewels show started, and the second 
occurred at 8 PM, the time at which the show of two im-
portant artists simultaneously started: FKA Twigs and Of 
Monsters and Men. 

On August 2, two clear bursts of activity on Twitter 
are observed, one at 4 PM, during the Father John Misty 
show, and another at 6 PM. This last peak is harder to ex-
plain. It might be due to the fact that it corresponds with 
the end of the The War On Drugs show and the beginning 
of the Hot Chip’s. The activity on Twitter is more stable 
on August 1st, which is surprising since this was the day 
the most awaited show—Kendrick Lamar’s—was sched-

uled. This concert, which started at 9:20 PM, only trig-
gered a modest burst. A closer look at the tweets posted 
during this show could help better explain why it did not 
led to more activity on Twitter.  

 
Figure 1. Number of tweets per hour during the festival 

6. CONCLUSION 

In this paper, we presented a study on the tweets posted 
during and around a major music festival, Osheaga 2015. 
A combination of quantitative and qualitative methods 
allowed us to better understand how Twitter was used by 
festival-goers, broadcasters, other societies, and perform-
ing artists. The analysis confirmed the results of previous 
studies, which revealed that Twitter [22] and other social 
media platforms [4] are used for taste performance or for 
what Papacharissi calls ‘performances of the self’. In-
deed, the high proportion of opinion expression tweets 
and the even higher number of tweets users wrote to an-
nounce that they were going to the festival or attending a 
specific concert suggest a desire to perform in this semi-
public space. The content analysis also indicated that 
some users wanted the music artists they loved to take 
part in the conversation. Many users included the Twitter 
handle of the artists they were talking about in their 
tweets; some even spoke directly to them, even though 
we found little evidence that such interactions were 
common. This echoes the work of Litt and Hargittai [23] 
on the ‘imagined audience’ of Twitter users. In addition 
to the personal, communal, and professional ties people 
envision as their audience when posting a tweet, some 
people imagine ‘phantasmal ties’, which represent the 
famous people they hope to reach with their tweets and 
with whom they have an ‘illusionary relationship’. 

This study shows how rich the backchannel conversa-
tion of a music festival can be on Twitter. This conversa-
tion could provide interesting avenues for the refinement 
of music recommender systems. Since people use Twitter 
to express their opinion about music artists, this channel 
could be used to better understand the temporal dynamics 
of individuals’ music tastes. Also, since Twitter allows us 
to follow the music reception of festival-goers in real-
time, music recommender systems could potentially use 
hashtags of musical events to retrieve tweets that could 
allow them to identify music trends in a specific location.   
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ABSTRACT

This article introduces the Projective Orchestral Database
(POD), a collection of MIDI scores composed of pairs
linking piano scores to their corresponding orchestrations.
To the best of our knowledge, this is the first database of
its kind, which performs piano or orchestral prediction, but
more importantly which tries to learn the correlations be-
tween piano and orchestral scores. Hence, we also intro-
duce the projective orchestration task, which consists in
learning how to perform the automatic orchestration of a
piano score. We show how this task can be addressed using
learning methods and also provide methodological guide-
lines in order to properly use this database.

1. INTRODUCTION

Orchestration is the subtle art of writing musical pieces for
the orchestra by combining the properties of various instru-
ments in order to achieve a particular musical idea [11,23].
Among the variety of writing techniques for orchestra, we
define as projective orchestration [8] the technique which
consists in first writing a piano score and then orchestrating
it (akin to a projection operation, as depicted in Figure 1).
This technique has been used by classic composers for cen-
turies. One such example is the orchestration by Maurice
Ravel of Pictures at an Exhibition, a piano work written by
Modest Mussorgsky. This paper introduces the first dataset
of musical scores dedicated to projective orchestrations. It
contains pairs of piano pieces associated with their orches-
tration written by famous composers. Hence, the purpose
of this database is to offer a solid knowledge for studying
the correlations involved in the transformation from a pi-
ano to an orchestral score.

The remainder of this paper is organized as follows.
First, the motivations for a scientific investigation of or-
chestration are exposed (section 2). By reviewing the
previous attempts, we highlight the specific need for a

c© Léopold Crestel, Philippe Esling, Lena Heng, Stephen
McAdams. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Léopold Crestel, Philippe
Esling, Lena Heng, Stephen McAdams. “A database linking piano and
orchestral MIDI scores with application to automatic projective orches-
tration”, 18th International Society for Music Information Retrieval Con-
ference, Suzhou, China, 2017.

Piano
score

Orchestra
score

Orchestration

Figure 1. Projective orchestration of the first three bars
of Modest Mussorgsky’s piano piece Pictures at an Exhi-
bition by Maurice Ravel. Piano notes are assigned to one
or several instruments, possibly with doubling or harmonic
enhancement.

symbolic database of piano and corresponding orchestral
scores. In an attempt to fill this gap, we built the Projective
Orchestral Database (POD) and detail its structure in sec-
tion 3. In section 4, the automatic projective orchestration
task is proposed as an evaluation framework for automatic
orchestration systems. We report our experiment with a
set of learning-based models derived from the Restricted
Boltzmann Machine [26] and introduce their performance
in the previously defined evaluation framework. Finally, in
section 5 we provide methodological guidelines and con-
clusions.

2. A SCIENTIFIC INVESTIGATION OF
ORCHESTRATION

Over the past centuries, several treatises have been written
by renowned composers in an attempt to decipher some
guiding rules in orchestration [11, 21, 23]. Even though
they present a remarkable set of examples, none of them
builds a systemic set of rules towards a comprehensive the-
ory of orchestration. The reason behind this lack lies in
the tremendous complexity that emerges from orchestral
works. A large number of possible sounds can be created
by combining the pitch and intensity ranges of each instru-
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ments in a symphonic orchestra. Furthermore, during a
performance, the sound produced by a mixture of instru-
ments is also the result of highly non-linear acoustic ef-
fects. Finally, the way we perceive those sounds involves
complex psychoacoustic phenomena [14, 16, 25]. It seems
almost impossible for a human mind to grasp in its entirety
the intertwined mechanisms of an orchestral rendering.

Hence, we believe that a thorough scientific investiga-
tion could help disentangle the multiple factors involved in
orchestral works. This could provide a first step towards
a greater understanding of this complex and widely un-
charted discipline. Recently, major works have refined our
understanding of the perceptual and cognitive mechanisms
specifically involved when listening to instrumental mix-
tures [15, 22, 25]. Orchids, an advanced tool for assisting
composers in the search of a particular sonic goal has been
developed [8]. It relies on the multi-objective optimiza-
tion of several spectro-temporal features such as those de-
scribed in [20].

However, few attempts have been made to tackle a sci-
entific exploration of orchestration based on the study of
musical scores. Yet, symbolic representations implicitly
convey high-level information about the spectral knowl-
edge composers have exploited for timbre manipulations.
In [6] a generative system for orchestral music is intro-
duced. Given a certain style, the system is able to generate
a melodic line and its accompaniment by a full symphonic
orchestra. Their approach relies on a set of templates and
hand-designed rules characteristic of different styles. [19]
is a case study of how to automatically transfer the Ode
to joy to different styles. Unfortunately, very few details
are provided about the models used, but it is interesting to
observe that different models are used for different styles.
Automatic arrangement, which consists in reducing an or-
chestral score to a piano version that is can be played by
a two-hand pianist, has been tackled in [10] and [24]. The
proposed systems rely on an automatic analysis of the or-
chestral score in order to split it into structuring elements.
Then, each element is assigned a role which determines
whether it is played or discarded in the reduction. To the
best of our knowledge, the inverse problem of automati-
cally orchestrating a piano score has never been tackled.
However, we believe that unknown mechanisms of orches-
tration could be revealed by observing how composers per-
form projective orchestration, which essentially consists in
highlighting an existing harmonic, rhythmic and melodic
structure of a piano piece through a timbral structure.

Even though symbolic data are generally regarded as
a more compact representation than a raw signal in the
computer music field, the number of pitch combinations
that a symphonic orchestra can produce is extremely large.
Hence, the manipulation of symbolic data still remains
costly from a computational point of view. Even through
computer analysis, an exhaustive investigation of all the
possible combinations is not feasible. For that reason, the
approaches found in the literature rely heavily on heuristics
and hand-designed rules to limit the number of possible
solutions and decrease the complexity. However, the re-

cent advents in machine learning have brought techniques
that can cope with the dimensionality involved with sym-
bolic orchestral data. Besides, even if a wide range of
orchestrations exist for a given piano score, all of them
will share strong relations with the original piano score.
Therefore, we make the assumption that projective orches-
tration might be a relatively simple and well-structured
transformation lying in a complex high-dimensional space.
Neural networks have precisely demonstrated a spectac-
ular ability for extracting a structured lower-dimensional
manifold from a high-dimensional entangled representa-
tion [13]. Hence, we believe that statistical tools are now
powerful enough to lead a scientific investigation of pro-
jective orchestration based on symbolic data.

These statistical methods require an extensive amount
of data, but there is no symbolic database dedicated to or-
chestration. This dataset is a first attempt to fill this gap
by building a freely accessible symbolic database of piano
scores and corresponding orchestrations.

3. DATASET

3.1 Structure of the Database

The database can be found on the companion website 1

of this article, along with statistics and Python code for
reproducibility.

3.1.1 Organization

The Projective Orchestral Database (POD) contains 392
MIDI files. Those files are grouped in pairs containing a
piano score and its orchestral version. Each pair is stored
in a folder indexed by a number. The files have been col-
lected from several free-access databases [1] or created by
professional orchestration teachers.

3.1.2 Instrumentation

As the files gathered in the database have various origins,
different instrument names were found under a variety of
aliases and abbreviations. Hence, we provide a comma-
separated value (CSV) file associated with each MIDI file
in order to normalize the corresponding instrumentations.
In these files, the track names of the MIDI files are linked
to a normalized instrument name.

3.1.3 Metadata

For each folder, a CSV file with the name of the folder
contains the relative path from the database root directory,
the composer name and the piece name for the orches-
tral and piano works. A list of the composers present in
the database can be found in table 1. It is important to
note the imbalanced representativeness of composers in the
database. It can be problematic in the learning context we
investigate, because a kind of stylistic consistency is a pri-
ori necessary in order to extract a coherent set of rules.
Picking a subset of the database would be one solution,
but another possibility would be to add to the database this
stylistic information and use it in a learning system.

1 https://qsdfo.github.io/LOP/database
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Composer
Number of
piano files

Percentage
piano frames

Number of
orchestra files

Percentage
orchestra frames

Arcadelt. Jacob 1 0.07

Arresti. Floriano 3 0.57

Bach. Anna Magdalena 3 0.43

Bach. Johann Sebastian 9 4.57 4 0.81

Banchieri. Adriano 1 0.32

Beethoven. Ludwig Van 1 0.60 38 42.28

Berlioz. Hector 1 0.14

Brahms. Johannes 3 0.28

Buxtehude. Dietrich 1 0.21

Byrd. William 1 0.13

Charpentier. Marc-Antoine 2 0.38

Chopin. Frederic 2 0.44

Clarke. Jeremiah 1 0.23

Debussy. Claude 1 0.59 6 0.90

Dvorak. Anton 6 2.42

Erlebach. Philipp Heinrich 1 0.10

Faure. Gabriel 1 0.60

Fischer. Johann Caspar Ferdinand 1 0.10

Gluck. Christoph Willibald 1 1.61

Grieg. Edvard 1 2.10

Guerrero. Francisco 1 0.12

Handel. George Frideric 4 1.00 1 0.75

Haydn. Joseph 6 1.01

Kempff. Wilhelm 1 1.58

Leontovych. Mykola 2 0.22

Liszt. Franz 34 39.98

Mahler. Gustav 1 0.85

Mendelssohn. Felix 2 1.41

Moussorgsky. Modest 1 0.04

Mozart. Wolfgang Amadeus 1 0.71 8 1.45

Okashiro. Chitose 3 1.09

Pachelbel. Johann 1 0.15

Praetorius. Michael 2 0.14

Purcell. Henry 1 0.08

Ravel. Maurice 6 6.49 8 6.69

Rondeau. Michel 2 0.25 1 0.14

Schonberg. Arnold 1 0.21

Schumann. Robert 1 0.05

Shorter. Steve 1 0.26

Smetana. Bedrich 1 0.61

Soler. Antonio 1 0.54

Strauss. Johann 1 0.04

Strauss. Richard 1 0.22

Stravinsky. Igor 4 0.94

Tchaikovsky. Piotr Ilyich 36 20.08

Telemann. Georg Philipp 2 1.04

Unknown. 107 40.18 28 7.47

Vivaldi. Antonio 4 2.94

Walther. Johann Gottfried 1 0.14

Wiberg. Steve 1 0.75

Zachow. Friedrich Wilhelm 1 0.32 2 0.23

Table 1. This table describes the relative importance of the
different composers present in the database. For each com-
poser, the number of piano (respectively orchestral) scores
in the database are indicated in the second (respectively
fourth) column. The total number of files is 184 x 2 = 392.
As the length of the files can vary significantly, a more
significant indicator of a composer’s representativeness in
the database is the ratio of the number of frames from its
scores over the total number of frames in the database.

Figure 2 highlights the activation ratio of each pitch in
the orchestration scores ( #{pitch on}

#{pitch on}+#{pitch off} , where # is
the cardinal of an ensemble) over the whole dataset. Note
that this activation ratio does not take the duration of notes
into consideration, but only their number of occurrences.
The pitch range of each instrument can be observed be-
neath the horizontal axis.

Two different kinds of imbalance can be observed in
figure 2. First, a given pitch is rarely played. Second,
some pitches are played more often compared with others.
Class imbalance is known as being problematic for ma-
chine learning systems, and these two observations high-
light how challenging the projective orchestration task is.

Vln. (40,101)

Fl. (38,101)

Tba. (21,66)Bsn. (21,77)

Org. (35,88)

Ob. (54,94)

Picc. (59,111) Horn (25,93)

Vc. (21,85) Tbn. (25,81)

Vla. (40,92) Voice (31,88)

Db. (8,68)

Tpt. (42,92)

Clar. (35,98)

Hp. (20,107)

pitch

Figure 2. Activation ratio per pitch in the whole orches-
tral score database. For one bin on the horizontal axis, the
height of the bar represents the number of notes played by
this instrument divided by the total number of frames in
the database. This value is computed for the event-level
aligned representations 4.2. The different instruments are
covered by the pitch axis, and one can observe the peaks
that their medium ranges form. The maximum value of the
vertical axis (0.06), which is well below 1, indicates that
each pitch is rarely played in the whole database.

More statistics about the whole database can be found on
the companion website.

3.1.4 Integrity

Both the metadata and instrumentation CSV files have been
automatically generated but manually checked. We fol-
lowed a conservative approach by automatically rejecting
any score with the slightest ambiguity between a track
name and a possible instrument (for instance bass can refer
to double-bass or voice bass).

3.1.5 Formats

To facilitate the research work, we provide pre-computed
piano-roll representations such as the one displayed in
Figure 3. In this case, all the MIDI files of piano (respec-
tively orchestra) work have been transformed and concate-
nated into a unique two-dimensional matrix. The starting
and ending time of each track is indicated in the meta-
data.pkl file. These matrices can be found in Lua/Torch
(.t7), Matlab (.m), Python (.npy) and raw (.csv) data for-
mats.

3.1.6 Score Alignment

Two versions of the database are provided. The first
version contains unmodified midi files. The second
version contains MIDI files automatically aligned us-
ing the Needleman-Wunsch [18] algorithm as detailed in
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Figure 3. Piano-roll representation of orchestral scores.
The piano-roll pr is a matrix. A pitch p at time t played
with an intensity i is represented by pr(p, t) = i, where 0
is a note off. This definition is extended to an orchestra by
simply concatenating the piano-rolls of every instrument
along the pitch dimension.

Section 3.2.

3.2 Automatic Alignment

Given the diverse origins of the MIDI files, a piano
score and its corresponding orchestration are almost never
aligned temporally. These misalignments are very prob-
lematic for learning or mining tasks, and in general for any
processing which intends to take advantage of the joint
information provided by the piano and orchestral scores.
Hence, we propose a method to automatically align two
scores, and released its Python implementation on the
companion website 2 . More precisely, we consider the
piano-roll representations (Figure 3) where the scores are
represented as a sequence of vectors. By defining a dis-
tance between two vectors, the problem of aligning two
scores can be cast as a univariate sequence-alignment prob-
lem.

3.2.1 Needleman-Wunsch

The Needleman-Wunsch (NW) algorithm [18] is a dynamic
programming technique, which finds the optimal align-
ment between two symbolic sequences by allowing the in-
troduction of gaps (empty spaces) in the sequences. An
application of the NW algorithm to the automatic align-
ment of musical performances is introduced in [9]. As
pointed out in that article, NW is the most adapted tech-
nique for aligning two sequences with important structural
differences like skipped parts, for instance.

The application of the NW algorithm relies solely on
the definition of a cost function, which allows the pairwise

2 https://qsdfo.github.io/LOP/code

comparison of elements from the two sequences, and the
cost of opening or extending a gap in one of the two se-
quences.

3.2.2 Similarity Function

To measure the similarity between two chords, we propose
the following process:

• discard intensities by representing notes being
played as one and zero otherwise.

• compute the pitch-class representation of the two
vectors, which flattens all notes to a single octave
vector (12 notes). In our case, we set the pitch-class
to one if at least one note of the class is played. For
instance, we set the pitch-class of C to one if there is
any note with pitch C played in the piano-roll vector.
This provides an extremely rough approximation of
the harmony, which proved to be sufficient for align-
ing two scores. After this step, the dimensions of
each vector is 12.

• if one of the vectors is only filled with zeros, it rep-
resents a silence, and the similarity is automatically
set to zero (note that the score function can take neg-
ative values).

• for two pitch-class vectors A and B, we define the
score as

S(A,B) = C ×
∑12

i=1 δ(Ai +Bi)

max(||A+B||1, 1)
(1)

where δ is defined as:

δ(x) =


0 if x = 0
−1 if x = 1
1 if x = 2

C is a tunable parameter and ||x||1 =
∑

i |xi| is the
L1 norm.

Based on the values recommended in [18] and our own
experimentations, we set C to 10. The gap-open parameter,
which defines the cost of introducing a gap in one of the
two sequences, is set to 3 and the gap-extend parameter,
which defines the cost of extending a gap in one of the two
sequences, is set to 1.

4. AN APPLICATION : PROJECTIVE
AUTOMATIC ORCHESTRATION

In this section, we introduce and formalize the automatic
projective orchestration task (Figure 1). In particular, we
propose a system based on statistical learning and define
an evaluation framework for using the POD database.

4.1 Task Definition

4.1.1 Orchestral Inference

For each orchestral piece, we define as O and P the aligned
sequences of column vectors from the piano-roll of the or-
chestra and piano parts. We denote as T the length of the
aligned sequences O and P.
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The objective of this task is to infer the present orches-
tral frame knowing both the recent past of the orchestra
sequence and the present piano frame. Mathematically, it
consists in designing a function f where

Ô(t) = f [P (t), O(t− 1), ..., O(t−N)] ∀t ∈ [N, ...T ]
(2)

and N defines the order of the model.

4.1.2 Evaluation Framework

We propose a quantitative evaluation framework based on a
one-step predictive task. As discussed in [5], we make the
assumption that an accurate predictive model will be able
to generate original acceptable works. Whereas evaluating
the generation of a complete musical score is subjective
and difficult to quantify, a predictive framework provides
us with a quantitative evaluation of the performance of a
model. Indeed, many satisfying orchestrations can be cre-
ated from the same piano score. However, the number of
reasonable inferences of an orchestral frame given its con-
text (as described in equation 2) is much more limited.

As suggested in [4,12], the accuracy measure [2] can be
used to compare an inferred frame Ô(t) drawn from (2) to
the ground-truth O(t) from the original file.

Accuracy(t) = 100 .
TP (t)

TP (t) + FP (t) + FN(t)
(3)

where TP (t) (true positives) is the number of notes cor-
rectly predicted (note played in both Ô(t) and O(t)).
FP (t) (false positive) is the number of notes predicted that
are not in the original sequence (note played in Ô(t) but
not in O(t)). FN(t) (false negative) is the number of un-
reported notes (note absent in Ô(t), but played in O(t)).

When the quantization gets finer, we observed that a
model which simply repeats the previous frame gradu-
ally obtains the best accuracy as displayed in Table 2.
To correct this bias, we recommend using an event-level
evaluation framework where the comparisons between the
ground truth and the model’s output is only performed for
time indices in Te defined as the set of indexes te such that

O(te) 6= O(te − 1)

The definition of event-level indices can be observed in
Figure 4.

In the context of learning algorithms, splitting the
database between disjoint train and test subsets is highly
recommended [3, pg.32-33], and the performance of a
given model is only assessed on the test subset. Finally,
the mean accuracy measure over the dataset is given by

1

K

∑
s∈Dtest

∑
te∈Te(s)

Accuracy(te) (4)

where Dtest defines the test subset, Te(s) the set of
event-time indexes for a given score s, and K =∑

s∈Dtest
|Te(s)|.

4.2 Proposed Model

In this section, we propose a learning-based approach to
tackle the automatic orchestral inference task.

4.2.1 Models

We present the results for two models called condi-
tional Restricted Boltzmann Machine (cRBM) and Fac-
tored Gated cRBM (FGcRBM). The models we explored
are defined in a probabilistic framework, where the vec-
tors O(t) and P (t) are represented as binary random vari-
ables. The orchestral inference function is a neural net-
work that expresses the conditional dependencies between
the different variables: the present orchestral frame O(t),
the present piano frame P (t) and the past orchestral frames
O(t− 1, ..., t−N). Hidden units are introduced to model
the co-activation of these variables. Their number is a
hyper-parameter with an order of magnitude of 1000. A
theoretical introduction to these models can be found in
[26], whereas their application to projective orchestration
is detailed in [7].

4.2.2 Data Representation

In order to process the scores, we import them as piano-
roll matrices (see Figure 3). Their extension to orchestral
scores is obtained by concatenating the piano-rolls of each
instrument along the pitch dimension.

Then, new events te ∈ Te are extracted from both
piano-rolls as described in Section 4.1. A consequence is
that the trained model apprehends the scores as a succes-
sion of events with no rhythmic structure. This is a sim-
plification that considers the rhythmic structure of the pro-
jected orchestral score to be exactly the same as the one of
the original piano score. This is false in the general case,
since a composer can decide to add nonexistent events in
an orchestration. However, this provides a reasonable ap-
proximation that is verified in a vast majority of cases.
During the generation of an orchestral score given a piano
score, the next orchestral frame is predicted in the event-
level framework, but inserted at the temporal location of
the corresponding piano frame as depicted in Figure 4.

Automatic alignment of the two piano-rolls is per-
formed on the event-level representations, as described in
Section 3.2.

In order to reduce the input dimensionality, we sys-
tematically remove any pitch which is never played in the
training database for each instrument. With that simplifi-
cation the dimension of the orchestral vector typically de-
creases from 3584 to 795 and the piano vector dimension
from 128 to 89. Also, we follow the usual orchestral sim-
plifications used when writing orchestral scores by group-
ing together all the instruments of a same section. For in-
stance, the violin section, which might be composed by
several instrumentalists, is written as a single part. Finally,
the velocity information is discarded, since we use binary
units that solely indicate if a note is on or off.

Eventually, we observed that an important proportion of
the frames are silences, which mathematically corresponds
to a column vector filled with zeros in the piano-roll rep-
resentation. A consequence of the over-representation of
silences is that a model trained on this database will lean
towards orchestrating with a silence any piano input, which
is statistically the most relevant choice. Therefore, orches-
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Frame level Event level

Piano

Orchestra

Pitch
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Figure 4. From a piano score, the generation of an or-
chestral score consists in extracting the event-level repre-
sentation of the piano score, generating the sequence of
orchestral events, and then injecting them at the position
of the event from the piano score. Note that the silence in
the fourth event of the piano score is not orchestrated by
the probabilistic model, but is automatically mapped to a
silence in the orchestral version.

tration of silences in the piano score (P (t) = 0) are not
used as training points. However, it is important to note
that they are not removed from the piano-rolls. Hence, si-
lences could still appear in the past sequence of a training
point, since it is a valuable information regarding the struc-
ture of the piece. During generation time, the silences in
the piano score are automatically orchestrated with a si-
lence in the orchestra score. Besides, silences are taken
into consideration when computing the accuracy.

4.2.3 Results

The results of the cRBM and FGcRBM on the orchestral
inference task are compared to two naı̈ve models. The first
model is a random generation of the orchestral frames ob-
tained by sampling a Bernoulli distribution of parameter
0.5. The second model predicts an orchestral frame at time
t by simply repeating the frame at time t − 1. The results
are summed up in Table 2.

Model
Frame-level

accuracy (Q = 4)
Frame-level

accuracy (Q = 8)
Event-level
accuracy

Random 0.73 0.73 0.72
Repeat 61.79 76.41 50.70
cRBM 5.12 34.25 27.67

FGcRBM 33.86 43.52 25.80

Table 2. Results of the different models for the projective
orchestration task based on frame-level accuracies with a
quantization of 4 and 8 and event-level accuracies.

4.3 Discussion

As expected, the random model obtains very poor results.
The repeat model outperform all three other models, sur-
prisingly even in the event-level framework. Indeed, we
observed that repeated notes still occur frequently in the
event-level framework. For instance, if between two suc-
cessive events only one note out of five is modified, the
accuracy of the repeat model on this frame will be equal to
66%.

If the FGcRBM model outperforms the cRBM model
in the frame-level framework, the cRBM is slightly better
than the FGcRBM model in the event-level framework.

Generations from both models can be listened to on the
companion website 3 . Even though some fragments are
coherent regarding the piano score and the recent past or-
chestration, the results are mostly unsatisfying. Indeed, we
observed that the models learn an extremely high probabil-
ity for every note to be off. Using regularization methods
such as weight decay has not proven efficient. We believe
that this is due to the sparsity of the vectors O(t) we try to
generate, and finding a more adapted data representation
of the input will be a crucial step.

5. CONCLUSION AND FUTURE WORK

We introduced the Projective Orchestral Database (POD),
a collection of MIDI files dedicated to the study of the re-
lations between piano scores and corresponding orchestra-
tions. We believe that the recent advent in machine learn-
ing and data mining has provided the proper tools to take
advantage of this important mass of information and in-
vestigate the correlations between a piano score and its or-
chestrations. We provide all MIDI files freely, along with
aligned and non-aligned pre-processed piano-roll repre-
sentations on the website https://qsdfo.github.
io/LOP/index.html.

We proposed a task called automatic orchestral infer-
ence. Given a piano score and a corresponding orchestra-
tion, it consists in trying to predict orchestral time frames,
knowing the corresponding piano frame and the recent past
of the orchestra. Then, we introduced an evaluation frame-
work for this task based on a train and test split of the
database, and the definition of an accuracy measure. We
finally present the results of two models (the cRBM and
FGcRBM) in this framework.

We hope that the POD will be useful for many re-
searchers. Besides the projective orchestration task we de-
fined in this article, the database can be used in several
other applications, such as generating data for a source-
separation model [17]. Even if small errors still persist, we
thoroughly checked manually the database and guarantee
its good quality. However, the number of files collected
is still small with the aim of leading statistical investiga-
tions. Hence, we also hope that people will contribute to
enlarge this database by sharing files and helping us gather
the missing information.

3 https://qsdfo.github.io/LOP/results
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ABSTRACT

Unaccompanied ensemble singing is common in many mu-
sical cultures, yet it requires great skill for singers to listen
to each other and adjust their pitch to stay in tune. The
aim of this research is to investigate interaction in four-part
(SATB) singing from the point of view of pitch accuracy
(intonation). In particular we compare intonation accuracy
of individual singers and collaborative ensembles. 20 par-
ticipants (five groups of four) sang two pieces of music
in three different listening conditions: solo, with one vocal
part missing and with all vocal parts. After semi-automatic
pitch extraction and manual correction, we annotated the
recordings and calculated the pitch error, melodic interval
error, harmonic interval error and note stability. We ob-
served significant differences between individual and in-
teractional intonation, more specifically: 1) Singing with-
out the bass part has less mean absolute pitch error than
singing with all vocal parts; 2) Mean absolute melodic in-
terval error increases when participants can hear the other
parts; 3) Mean absolute harmonic interval error is higher in
the one-way interaction condition than the two-way inter-
action condition; and 4) Singers produce more stable notes
when singing solo than with their partners.

1. INTRODUCTION AND BACKGROUND

Voice is our original instrument [8], even from prehistoric
times [13], and it is one of the defining features of human-
ity [26]. This instrument communicates emotion, express-
ing joy and sadness, hope and despair. Throughout the his-
tory of vocal performance, various theories have been set
forth on vocal aesthetics and intonation in both individual
and ensemble settings. This paper investigates the influ-
ence of interaction between singers on the intonation of
singing ensembles.

Intonation describes how a pitch is played or sung in
tune [7]. Its extreme importance in Western music arises
from the fact that it relates to both melody and harmony,
two central aspects of tonal music. The accuracy of into-
nation is determined by culturally specific tuning systems

c© Jiajie Dai, Simon Dixon. Licensed under a Creative
Commons Attribution 4.0 International License (CC BY 4.0). Attribu-
tion: Jiajie Dai, Simon Dixon. “Analysis of interactive intonation in
unaccompanied SATB ensembles”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

such as the equal tempered tuning system in Western mu-
sic [25].

Without interaction or accompaniment, it is extremely
difficult to sing with accurate pitch. Only 0.01% of people
have absolute pitch [22], which is the ability to identify
or reproduce any given note on demand [2]. Others must
rely on relative pitch for tuning, comparing current audi-
tory feedback with the memory of recently heard tones. As
this memory fades, singers may sing out of tune or exhibit
pitch drift, where intonation moves away from the refer-
ence pitch during a performance [9, 12, 20]. Singers also
use their muscle memory, a learnt relationship between
muscle strength and pitch, to tune their pitch [1].

Although the intonation of singers in individual and
group settings has been investigated, very little of this re-
search addresses interaction between singers in vocal en-
sembles. In Western music, one common configuration
for singing ensembles and choirs comprises four musical
voices or parts: soprano, alto, tenor and bass (SATB); so
we chose the SATB ensemble as the research target for this
paper.

Music ensembles are well-characterised examples of in-
teractive work groups [28]. Every member of a musical en-
semble needs to execute his or her own part flawlessly as
well as contribute to the overall performance in a manner
that produces a cohesive, unified sound [3]. This means
that individual singers have to stay in tune with their own
part (their previous notes) and with other singers’ parts
(concurrent and previous notes) [18, p. 151]. This creates
a practical difficulty for SATB singers, because they have
multiple potentially conflicting reference pitches, as well
as their own tonal reference, on which they could base their
relative pitch, and attending to any specific one of these
may be difficult.

Interaction plays an important role in ensemble perfor-
mance, but its effects can be negative. Terasawa and Hi-
roko [23] claimed that the intonation accuracy of choral
members was influenced by the progression of chord roots.
Brandler and Peynircioglu [3] observed that participants
learned new pieces of music more efficiently when learn-
ing it individually than with companions. Mürbe et al. [15]
observed that singers’ intonation accuracy is reduced in
the absence of auditory feedback. When singers cannot
hear themselves, they have to rely on their muscle mem-
ory to tune which leads to an inaccurate intonation. Dai
and Dixon [4] noted that even the presence of an in-tune
stimulus during singing reduced singers’ accuracy.
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Although many publications give guidelines to keep
singers in tune by training them as excellent soloists [1,2],
the interaction in SATB ensemble performance as it un-
folds in real-time has not been fully researched. The tar-
get of this study is to test the influence of the various vo-
cal parts and how the singers interact with each other, es-
pecially how hearing other singers influences the perfor-
mance of each vocal part. These effects are tested in terms
of their effect on intonation.

In the next section, we describe the research questions,
hypotheses and experimental design. The methodology
section follows, covering musical materials, experimental
procedure and intonation metrics. Then in section 4 we
present results in terms of pitch error, melodic interval er-
ror, harmonic interval error and note variability in different
experimental conditions. This is followed by a discussion
in section 5, and a conclusion in section 6. The recordings,
annotated data and software are made freely available for
research; details are given in section 8.

2. EXPERIMENTAL DESIGN

2.1 Research Questions and Hypotheses

This study of interactive intonation in unaccompanied
SATB singing is driven by a number of research questions.
Firstly, we wish to determine whether singers rely on a
particular vocal part for intonation, which we test by sys-
tematically isolating each vocalist so that the other singers
cannot hear them. We expect that the bass part, which of-
ten contains the root notes of chords, is more important
as a tonal reference [23], leading to our first hypothesis:
pitch error will be higher when the bass part is missing
than when other voices are isolated.

The second research question involves the effect of
hearing other voices on intonation. Previous work suggests
that singers are distracted by simultaneous sounds when
they are singing (see section 1), and they are less able to
attend to their auditory feedback loop in order to sing ac-
curately. This leads to hypothesis 2, that the conditions in
which singers hear no other voice will have less melodic
interval error than the conditions in which they hear other
singers. This effect might be strengthened by conscious
adjustment of singers to the other parts in order to improve
the harmonic intervals. Thus as a corollary we frame our
third hypothesis, that we expect to see less harmonic in-
terval error when singers can hear each other than when
they are isolated. An additional effect of interaction should
be that singers adjust their pitch more during notes where
they hear other singers (who might also be adjusting). Thus
our fourth hypothesis is that within-note variability in pitch
will be higher (note stability will be lower) when singers
hear each other than when they do not.

2.2 Design

To test these hypotheses, a novel experiment was designed
and implemented, by which we investigate the interaction
between the four vocal parts. We define three different lis-
tening conditions, based on what the singer can hear as
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Figure 1: Listening and test conditions. The arrows indi-
cate the direction of acoustic feedback.

they sing. In the closed condition, the singer hears no
other voice than their own, thus they are effectively singing
solo. In the partially-open condition (or partial condition
for short), the singer can only hear some, but not all of
the other vocal parts. This is achieved by isolating one
singer from the other three, and allowing acoustic feedback
(via microphones and loudspeakers) in one direction only,
either from the isolated singer to the other three singers
(one-to-three condition), or from the three singers to the
isolated one (three-to-one condition). Finally, in the open
condition, all singers can hear each other.

For testing the partial condition, there are four pairs of
test conditions corresponding to the vocal part that is iso-
lated and the direction of feedback. For example, one test
condition is called the soprano isolated one-to-three condi-
tion, where the soprano sings in a closed condition, but all
other parts hear each other (the soprano’s voice being pro-
vided to the others via a loudspeaker). In such a case the
isolated singer is called the independent singer as they are
not able to react to the other vocal parts to choose their tun-
ing. In other cases the singer can hear all (open condition)
or some (partial condition) of the other voices, and thus is
called a dependent singer. Figure 1 gives an overview of
the listening and test conditions.

3. EXPERIMENTAL METHODS

3.1 Participants

20 adult amateur singers (10 male and 10 female) with
choir experience volunteered to take part in the study. The
age range was from 20 to 55 years old (mean: 27.95, me-
dian: 26.50, std.dev.: 7.84). Participants were compen-
sated £10 for their participation. The participants were
able to sing their parts comfortably and they were given
the score and sample audio files at least 2 weeks before
the experiment. They came from the music society and a
capella society of the university and a local choir.

Training is a crucial factor for intonation accuracy. For
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testing the effect of training, all the participants were given
a questionnaire based on the Goldsmiths Musical Sophis-
tication Index [14]. The participants had an average of 3.3
years of music lessons and 5.8 years of singing experience.

3.2 Materials

Two contrasting musical pieces were selected for this
study: a Bach chorale, “Oh Thou, of God the Father”
(BWV 164/6) and Leo Mathisen’s jazz song “To be or not
to be”. Both pieces were chosen for their wide range of
harmonic intervals (see section 3.5.2): the first piece has
34 different harmonic intervals between parts and the sec-
ond piece has 30 harmonic intervals. To control the dura-
tion of the experiment, we shortened the original score by
deleting the repeat. We also reduced the tempo from that
specified in the score, in order to make the pieces easier to
sing and compensate for the limited time that the singers
had to learn the pieces. The resulting duration of the first
piece is 76 seconds and the second song is 100 seconds.
Links to the score and training materials can be found in
section 8.

The equipment included an SSL MADI-AX converter,
five cardioid microphones and four loudspeakers. All the
tracks were controlled and recorded by the software Logic
Pro 10. The metronome and the four starting reference
pitches were also given by Logic Pro. The total latency of
the system is 4.9 ms (3.3 ms due to hardware and 1.6 ms
from the software).

3.3 Procedure

A pilot experiment with singers not involved in the study
was performed to test the experimental setup and minimise
potential problems such as bleed between microphones.
Then the participants in the study were distributed into 5
groups according to their voice type, time availability and
collaborative experience (the singers from the same music
society were placed in the same group). Each group con-
tained two female singers (soprano and alto) and two male
singers (tenor and bass). Each participant had at least two
hours practice before the recording, sometimes on sepa-
rate days. They were informed about the goal of the study,
to investigate interactive intonation in SATB singing, and
they were asked to sing their best in all circumstances.

For each trial, the singers were played their starting
notes before commencing the trial, and a metronome ac-
companied the singing to ensure that the same tempo was
used by all groups. Each piece was sung 10 times by each
group. The first and the last trial were recorded in the open
condition. The partial and closed condition trials, consist-
ing of 8 test conditions, 4 (isolated voice)× 2 (direction of
feedback), were recorded in between. The order of isolated
conditions was randomly chosen to control for any learn-
ing effect. For each isolated condition, the three-to-one
condition always preceded the one-to-three condition. We
use the performance of isolated singers in the one-to-three
conditions as the data for the closed condition.

The singers were recorded in two acoustically isolated
rooms. For the partial and closed conditions, the isolated

singers were recorded in a separate room from the other
three singers. Loudspeakers in each room provided acous-
tic feedback according to the test condition. There was no
visual contact between singers in different rooms. With the
exception of warm-up and rehearsal, but including all the
trials and the questionnaire, the total duration of the exper-
iment for each group was about one hour and a half.

3.4 Annotation

The experimental data comprises 5 (groups) × 4 (singers)
× 2 (pieces) × 10 (trials) = 400 audio files, each contain-
ing 65 to 116 notes. The software Tony [10] was chosen
as the annotation tool. Tony performs pitch detection us-
ing the PYIN algorithm, which outperforms the YIN algo-
rithm [11], and then automatically segments pitch trajec-
tories into note objects, and provides a convenient inter-
face for manual checking and correction of the resulting
annotations. For each audio file, we exported two .csv
files, one containing the note-level information (for calcu-
lating pitch and interval errors) and the other containing the
pitch trajectories (for calculating pitch variability). All the
intonations were measured by twelve-tone equal tempera-
ment, expressed in semitones according to MIDI standard
pitch numbering. It took about 67 hours to manually check
and correct the 400 files, resulting in 49200 annotated sin-
gle notes, to which we added information on the singer
(anonymised), score notes and metrics of accuracy.

3.5 Intonation Metrics

To quantify the effects of interaction on intonation, we
measure pitch accuracy in terms of pitch error, melodic
interval error, harmonic interval error and note stability,
defined below.

3.5.1 Pitch Error

Assuming that a reference pitch has been given, pitch error
can be defined as the difference between observed pitch
and score pitch [12]:

epi = p̄i − ps
i (1)

where p̄i is the median of the observed pitch trajectory of
note i (calculated over the duration of an individual note),
and ps

i is the score pitch of note i.
To evaluate the pitch accuracy of a sung part, we use

mean absolute pitch error (MAPE) as the measurement.
For a group of M notes with pitch errors ep1 , . . . , epM, the
MAPE is defined as:

MAPE =
1
M

M∑
i=1

|epi | (2)

3.5.2 Melodic and Harmonic Interval Error

A musical interval is the difference between two pitches
[19], which is proportional to the logarithm of the ratio of
the fundamental frequencies of the two pitches. We distin-
guish two types of interval in this experiment: in a melodic
interval, the two notes are sounded in succession; while in

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 601



a harmonic interval, both notes are played simultaneously
(Figure 2).

Figure 2: A melodic interval and harmonic interval of a
major third (four semitones).

We thus calculate the melodic interval error as the dif-
ference between the observed and score intervals:

emi = (p̄i+1 − p̄i) − (ps
i+1 − ps

i ) (3)

where ps
i and ps

i+1 are the score pitches of two sequenced
notes, and p̄i and p̄i+1 are their observed median pitches.
Similarly, harmonic interval error is defined as:

ehi,A,j,B = ( ¯pi,A − p̄j,B) − (ps
i,A − ps

j,B) (4)

where ps
i,A and ps

j,B are the score pitches of two simulta-
neous notes from singers A and B respectively, and p̄i,A

and p̄j,B are their observed median pitches.
The mean absolute melodic interval error (MAMIE) for

M intervals is calculated as follows:

MAMIE =
1
M

M∑
i=1

|emi |. (5)

The mean absolute harmonic interval error (MAHIE)
is calculated similarly (where we simplify the notation and
assume M harmonic intervals in total, indexed by i):

MAHIE =
1
M

M∑
i=1

|ehi |. (6)

Harmonic intervals were evaluated for all pairs of notes
which overlap in time. If one singer sings two notes while
the second singer holds one note in the same time period,
two harmonic intervals are observed. Thus indices i and j

in Eq. (4) are not assumed to be equal.

3.5.3 Note Stability

Pitch stability has been defined as the mean square pitch
error of the note trajectory [17, 24], annotated using a fine
time resolution, in this case Tony’s default hop size of
5.8ms (section 3.4). We prefer to call this pitch variabil-
ity, as higher values correspond to less stable notes. For
a note trajectory for note i consisting of N frames, if the
pitch of frame n is pf

i,n and the median pitch p̄i, the note
variability vi is given by:

vi =
1
N

N∑
n=1

|pf
i,n − p̄i|

2 (7)

The mean note variability (MNV) is the mean variabil-
ity of M notes:

MNV =
1
M

M∑
i=1

vi (8)

4. RESULTS

The primary aim of this study was to test experimentally
whether, and under what conditions, interaction is benefi-
cial or detrimental to SATB intonation accuracy. We tested
the intonation accuracy of individuals by pitch error (sec-
tion 4.1), melodic interval error (section 4.2) and note sta-
bility (section 4.4); and tested the intonation of pairs of
singers by harmonic interval error (section 4.3). In order
to avoid biasing mean errors by outliers, where a partici-
pant sang a wrong note rather than an out-of-tune attempt
at the correct pitch, all the tests exclude notes with pitch
error or interval error larger in magnitude than one semi-
tone. 96.4% of observed notes had an absolute pitch error
less than one semitone.

4.1 Pitch Error

The first task is to investigate whether the ensemble de-
pends on a certain vocal part to tune their pitch. After ex-
cluding the notes which have an absolute pitch error larger
than one semitone (3.6%), most of the observed notes are
relatively accurate (mean: 0.25 semitones; median: 0.26;
std.dev.: 0.07).

We compute pitch error for the three non-isolated
singers in each three-to-one condition and open condition,
and analyse results by test condition. The MAPE was com-
puted as an average across the three non-isolated singers
and the five groups. For example, in the soprano isolated
three-to-one condition, we average the pitch errors of alto,
tenor, bass parts from each group and report the resulting
MAPE. We compare these results with the performance of
the same three singers in the open conditions.

A correlated samples analysis of variance (ANOVA)
showed a significant difference in MAPE between three-
to-one and open conditions (F(1,21625)=13, p<.001).
The MAPE of the three-to-one condition is less than the
MAPE of the open condition. We then performed separate
ANOVAs for each isolated voice type (Table 1), and found
that the results vary across test conditions. The bass and
tenor isolated three-to-one conditions both showed signif-
icant differences, while the results for the other two voice
types were not significant.

Test condition Partial vs open condition
Soprano isolated F(1,9391)=2.86, p=0.09
Alto isolated F(1,9614)=0.61, p=0.11
Tenor isolated F(1,9742)=5.07, p=0.02*
Bass isolated F(1,10223)=14.39, p<.001***

Table 1: Results of correlated samples ANOVAs for
three-to-one and open listening conditions (***p<.001;
**p<.01; *p<.05))
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These results suggest that the bass part is the most in-
fluential vocal part in all observed groups. However, the
direction of influence is the opposite of that hypothesised:
removing the bass vocal part from the ensemble reduces
the observed pitch error on average.

The next ANOVA shows that the MAPE is significantly
different between the test conditions in the three-to-one
listening condition (F(3,12948)=28.67, p<.001). Table 2
shows the 95% confidence intervals, which demonstrate
that the bass and tenor isolated conditions are significantly
different from all other three-to-one conditions. The bass
isolated condition has 4 cents MAPE less than soprano and
alto isolated conditions, and 2 cents MAPE smaller than
the tenor isolated condition.

Test condition MAPE Confidence interval
Soprano isolated 0.2484 [0.2420, 0.2548]
Alto isolated 0.2483 [0.2422, 0.2545]
Tenor isolated 0.2328 [0.2271, 0.2385]
Bass isolated 0.2082 [0.2028, 0.2135]

Table 2: Mean absolute pitch error (MAPE) and 95% con-
fidence intervals for three-to-one test conditions, for all
non-isolated singers and all groups.

These results contradict hypothesis one: when singers
do not hear the bass part, they sing more accurately on av-
erage, as shown by comparisons within the three-to-one
conditions and between the three-to-one and open condi-
tions.

4.2 Melodic Interval Error

To test the influence of interaction on adjacent notes within
a voice (hypothesis two), melodic interval error was cal-
culated. 91.9% of the note pairs have a melodic interval
error smaller than one semitone (mean:0.21; median:0.21;
std.dev.:0.07).

We performed a correlated-samples ANOVA to test
the effect of listening condition on MAMIE. The
MAMIE is significantly different across listening condi-
tions (F(2,18333)=27.96, p<.001). The listening condi-
tion of singing without hearing any partners (closed) has
smaller MAMIE than the listening conditions with part-
ners (partial and open). Table 3 shows the mean and con-
fidence intervals for the three listening conditions where
the closed listening condition has 3 cents smaller MAMIE
than the open listening condition.

Listening condition MAMIE Confidence interval
Closed condition 0.1874 [0.1828, 0.1919]
Partial condition 0.2001 [0.1953, 0.2049]
Open condition 0.2138 [0.2102, 0.2174]

Table 3: Mean absolute melodic interval error (MAMIE)
and 95% confidence intervals for each listening condition.

The acoustic feedback from other vocal parts increases

MAMIE, which concurs with findings from previous re-
search [15] and supports hypothesis two. The accompa-
niment from other vocal parts may mask the singer’s own
voice or distract the singer’s attention from their own into-
nation. Alternatively, the increase in melodic interval error
could be a side effect of deliberate adjustment of intonation
to reduce harmonic interval error.

4.3 Harmonic Interval Error

Beside the intonation accuracy of individual singers, the
accuracy of pairs of singers was also tested. There are four
individual singers and up to six harmonic intervals simul-
taneously present at any point in time. All the harmonic in-
tervals were observed under two circumstances: one-way
interaction and two-way interaction.

In the partial conditions, some of the communication is
only in one direction, so that any deliberate adjustment in
harmonic interval must be attributed to the singer who can
hear their partner. In this case, we have a one-way inter-
action. In the open conditions, both singers in a pair are
able to adjust to each other, creating a two-way interac-
tion. Taking soprano isolated conditions as an example,
the harmonic intervals involving soprano are one-way in-
teractions, and the harmonic intervals between alto, tenor
and bass are two-way interactions (Figure 3).

soprano

alto

tenor

bass

Harmonic interval with
one‐way interaction:
one‐to‐three condition
three‐to‐one condition

Harmonic interval with 
two‐way interaction

Isolated singer

Figure 3: Interaction in the soprano isolated conditions

We compare the MAHIE for two-way interactions
with those for one-way interactions in the three-to-one
test conditions. MAHIE is significantly smaller for
the two-way interactions than for one-way interactions
(F(1,23659)=10.94, p<.001). This supports the third hy-
pothesis, and indicates that acoustic feedback helps singers
to interactively tune harmonic intervals.

However, no significant difference was found between
MAHIE for different directions of intonation, that is the
three-to-one condition versus the one-to-three condition
(F(1,23524)=0.39, p=0.53). When one side of interactive
intonation is without acoustic feedback, the direction of the
feedback does not appear to influence the harmonic inter-
val.

4.4 Note Stability

The note stability is measured by its converse, note vari-
ability (Eq. 7). The acoustic feedback of other singers not
only has an influence on intonation accuracy (section 4.2)
but also has an influence on note variability.

The note variability in the closed condition is signifi-
cantly different from that in the partial and open condi-
tions (F(1,23659)=41.23, p<.001), but no significant dif-
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ference was found between the partial and open conditions
(F(1,22514)=1.37, p=0.24). Note trajectories become less
stable when singers can hear other singers in addition to
their own voice, which is further evidence of interaction in
intonation. This agrees with previous studies, which show
that singers perform worse when singing with an unstable
reference pitch [4, 16].

Moreover, the note variability is weakly positively cor-
related to the MAPE of individual notes (r=0.18, p<.001),
but it is not obviously related to the singer (r=0.01, p=0.01)
or training experience (r=0.08, p<.001).

The fourth hypothesis has been tested, and the results
confirm that there is a relationship between the listening
condition and note stability. This complements results
from other research which assert that note stability of in-
dividual singers depends on emotional expression [5, 21].
Other possible relationships, such as a connection between
musical training and note stability, were not supported by
the experimental results.

5. DISCUSSION AND FUTURE WORK

This study tested four hypotheses using various metrics of
singing accuracy and statistical tests. In each case, signif-
icant results were found. In three of the four cases, the
results supported the hypotheses, however for the first hy-
pothesis, the direction of the observed effect was the oppo-
site of what was predicted.

Participants noted that the bass part (male singer) is the
most difficult vocal part to recruit. It is possible that this
leads to a lower average standard among bass singers. A
comparison of pitch error by vocal type reveals that the
bass vocal part has a larger MAPE than the other vocal
parts. This may be the cause of the unexpected result for
the bass isolated condition: i.e. because the bass voice had
greater pitch error, other parts which tuned to the bass also
increased their pitch error.

The factor of interaction, that is when singers can hear
each other, increases the pitch error of the individual
singers but decreases the harmonic interval error between
the singers. Although these results may appear to be con-
tradictory, this can occur when interval errors accumulate,
and the sung pitches drift away from the initial tonal refer-
ence, as has been demonstrated by Howard [6].

Many factors of influence have been researched which
are crucial for singing, such as age and gender (boys are
more likely to sing out of tune than girls), and individual
differences [27]. As it is not possible to cover all aspects in
this paper, we leave the analysis of results from the ques-
tionnaire to future work, including the investigation of the
relationships between intonation accuracy and active en-
gagement with music, perceptual abilities, musical training
and singing ability.

6. CONCLUSIONS

For analysis of the effect of interaction on intonation in un-
accompanied SATB singing, we designed a novel experi-
ment and tested the intonation accuracy of five groups of

singers in a series of test and listening conditions. The re-
sults confirm that interaction exists between singers and in-
fluences their intonation, and that intonation accuracy de-
pends on which other singers each individual singer can
hear.

In particular, we observed that the three-to-one bass iso-
lated test condition had a significantly lower MAPE com-
pared with other three-to-one conditions, and compared
with the open condition. In other words, singers were more
accurate when they could not hear the bass. This surpris-
ing result might be due to the fact that the bass singers were
less accurate on average than other singers in this experi-
ment.

We observed increases in pitch error and melodic inter-
val error when singers could hear each other. The closed
condition had the smallest MAMIE, while the open condi-
tion had the largest. At the same time, acoustic feedback
decreased the harmonic interval error, while the direction
of the feedback did not influence the harmonic interval er-
ror.

Interaction also has the effect of reducing the note sta-
bility, or increasing its variability. Pitch within a note
varies more when singers hear each other, as one might
expect if the singers are adjusting their intonation to be in
tune with each other.

In conclusion, this paper addresses a gap in singing in-
tonation studies, by investigating the effects of interaction
between singers. We found that interaction significantly
influences the pitch accuracy, leading to increases in the
pitch error, melodic interval error, and note stability but a
decrease in the harmonic interval error. Although many as-
pects of the data remain to be explored, we hope the current
results provide useful information and better understand-
ing of interactive intonation.
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ABSTRACT

Automatic drum transcription is the process of generating
symbolic notation for percussion instruments within audio
recordings. To date, recurrent neural network (RNN) sys-
tems have achieved the highest evaluation accuracies for
both drum solo and polyphonic recordings, however the ac-
curacies within a polyphonic context still remain relatively
low. To improve accuracy for polyphonic recordings, we
present two approaches to the ADT problem: First, to cap-
ture the dynamism of features in multiple time-step hidden
layers, we propose the use of soft attention mechanisms
(SA) and an alternative RNN configuration containing ad-
ditional peripheral connections (PC). Second, to capture
these same trends at the input level, we propose the use
of a convolutional neural network (CNN), which uses a
larger set of time-step features. In addition, we propose the
use of a bidirectional recurrent neural network (BRNN) in
the peak-picking stage. The proposed systems are evalu-
ated along with two state-of-the-art ADT systems in five
evaluation scenarios, including a newly-proposed evalua-
tion methodology designed to assess the generalisability
of ADT systems. The results indicate that all of the newly
proposed systems achieve higher accuracies than the state-
of-the-art RNN systems for polyphonic recordings and that
the additional BRNN peak-picking stage offers slight im-
provement in certain contexts.

1. INTRODUCTION

Music notation, which portrays the instrumentation and
playing techniques used within a musical recording, is pro-
duced through the process of automatic music transcription
(AMT). Fast and accurate production of music notation
would benefit multiple areas including the creative, analyt-
ical and educational industries. The majority of previous
AMT systems has been developed to address pitched in-
strumentation, while relatively few systems have focussed

c© Carl Southall, Ryan Stables and Jason Hockman. Li-
censed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0). Attribution: Carl Southall, Ryan Stables and Jason
Hockman. “Automatic Drum Transcription for Polyphonic Recordings
Using Soft Attention Mechanisms and Convolutional Neural Networks”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

on the transcription of percussive instruments. Automatic
drum transcription (ADT) systems soley focus on produc-
ing notation for drum instruments, which strongly portray
the rhythm, groove and feel of the piece. High ADT ac-
curacies have been achieved on audio recordings contain-
ing only basic drum classes such as kick drum, snare drum
and hi-hats [15, 19]. However, accuracies are significantly
lower in a polyphonic context—in which the recordings
contain either additional percussion (e.g., toms, cymbals)
or pitched instrumentation (e.g., guitar, piano) [20].

1.1 Background

Several early ADT systems have been proposed that per-
form well on solo drum recordings [3, 5, 10, 13, 18, 23],
however a relatively small number of systems have demon-
strated the capacity for high performance in a polyphonic
context. Wu and Lerch [21] proposed a non-negative ma-
trix factorisation technique with a specialised basis func-
tion to capture harmonic activity outside of those for the
drum classes under observation. Paulus et al. [12] used a
hidden Markov model to detect the presence of individual
drum onsets within frames of a spectrogram. Southall et
al. [15] and Vogl et al. [19] also formalise ADT as a frame-
wise drum onset detection problem, using recurrent neural
networks (RNN) for classification. Southall et al. [15] pre-
sented a bidirectional RNN (BRNN) system and Vogl et
al. [19] presented a RNN system with time-shifted clas-
sification labels. RNN systems have achieved the best
drum solo performance to date, however their accuracies
in the polyphonic context has been marginalised. Vogl et
al. [20] later proposed the incorporation of gated recurrent
unit (GRU) cells, which incorporate more time-step infor-
mation into the RNN model, resulting in the highest ADT
accuracies to date in a polyphonic context.

1.2 Motivation

The increase in accuracy achieved by the GRU RNN in
[20] over the standard RNN in [19] demonstrates the ef-
fect of storing additional information on classification per-
formance. In a solo drum context, instrumentation over-
lap is limited to the drums under observation, whereas in
a polyphonic context, drums are present along with other
instruments. This may obscure the presence of features be-
longing to the drums under observation, and is mitigated by
the incorporation of additional time-step information in the
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Figure 1: Overview of the proposed SA and PC systems.
Solid lines depict connections of a standard BRNN con-
figuration and dashed lines depict additional SA and PC
connections when attention number a = 1. xt and ỹ are in-
put features and output activation function at time step t. �
in the SA system represents element-wise multiplication.

GRU RNN. Inclusion of additional information in previous
RNN ADT systems however, is still restricted by a bottle-
neck at the output layer, which is determined by the hidden
state sizes. Additionally, larger input feature sizes can not
be used at each time step, due to the computational cost of
fully-connected layers. We present two approaches in an
attempt to overcome the above-stated limitations to ADT
in a polyphonic context: First, to capture the dynamism of
features in multiple time-step hidden layers, we propose
the use of soft attention mechanisms (SA) and an alter-
native RNN configuration containing additional peripheral
connections (PC). Second, to capture these same trends at
the input level, we propose the use of a convolutional neu-
ral network (CNN), which uses a larger set of time-step
features. To further improve the accuracy of the systems,
we also propose the use of an additional BRNN for select-
ing drum onsets from the output activation functions, as
peak-picking within a polyphonic context has proven to be

more difficult than that of drum solos [15, 19, 20].
The remainder of this paper is structured as follows:

Section 2 presents our three newly proposed systems and
our new peak-picking technique. The evaluation is out-
lined in Section 3 and the results are presented in Section
4. Conclusions and future work are provided in Section 5.

2. METHOD

For the three new proposed systems, we use the same
frame-wise classification ADT technique outlined in [15].
Input features are fed into a separate pre-trained neural net-
work for each instrument under observation. Peak-picking
is then performed on the resulting activation functions to
determine onset locations.

2.1 Soft Attention BRNN (SA)

Attention mechanisms allow the network to focus on dif-
ferent parts of the data stored within a RNN for different
tasks. This is achieved by enabling the information fed
to the output layer to be created from multiple time-step
final hidden layers. This was initially achieved through bi-
nary connections in hard attention mechanisms and then by
weighted connections in soft attention mechanisms (SA).
They have improved RNN results in multiple fields includ-
ing: machine translation [1] and image caption genera-
tion [11, 22]. An overview of the implemented SA ADT
system based on [6] is given at the top of Figure 1. We use
a BRNN with each hidden layer containing 100 long short-
term memory cells with peephole connections (LSTMP) as
the basis of the system. This is due to its ability to pass in-
formation through its memory cell c, which is updated us-
ing the input i, forget f and output o gates. The equations
for a LSTMP cell layer are:

itl = σ(Wil
[
xt, ht−1

l , ct−1
l

]
+ bil) (1)

f tl = σ(Wfl
[
xt, ht−1

l , ct−1
l

]
+ bfl) (2)

c̃tl = tanh(Wcl
[
xt, ht−1

l , ct−1
l

]
) (3)

ctl = f t � ct−1
l + it � c̃tl + bcl) (4)

otl = σ(Wol
[
xt, ht−1

l , ctl
]

+ bol) (5)

htl = otl � tanh(ctl), (6)

where htl is the hidden layer of layer l at time step t, the
weights W , and the biases b. x is the input feature where
xt = htl−1 if l > 1. After each hidden layer dropouts
[16] are implemented with a probability of p. Based on
preliminary tests, we use 2 hidden layers as using more
did not improve performance.

The SA feeds the LSTM BRNN output into the output
layer as a weighted combination of 2a + 1 time-step final
hidden layers, centred on the current time-step t, where a
is the attention number. First, an intermediate variablem is
determined for each attention step i (i = t−a : t+a) using
the concatenated outputs of the forwards and backwards
directional LSTMs Q (Q =

[
y→L , y←L

]
) and a context U :
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Figure 2: Overview of the proposed CNN. Information flows through the network from left to right; solid lines represent
connections, with dashed lines representing convolution and dash-dotted lines representing max pooling.

mi = tanh(WqQ
i +WUU). (7)

The aim of U is to feed the SA mechanism information
regarding the wider scope of the current data. We first at-
tempted to use the the cell state of the final hidden layer
cL as in [8], however using the outputs of the first hidden
layer (U =

[
ht→1 , ht←1

]
) resulted in better performance

during preliminary testing. The attention weights s are de-
termined using a softmax function across i:

si ∝ expW T
m mi, (8)

so that
∑
i s
i = 1. The output layer input z is then calcu-

lated using Q and s and fed into an output layer similar to
the BRNN architecture in [15]:

z =
∑
i

si �Qi (9)

ỹt = softmax(Wzz + bz). (10)

s can be thought of as percentage determining how much
information from each of the time-step final hidden layers
Q is used in the input to the output layer z.

2.2 BRNN with Peripheral Connections (PC)

Although the SA system allows the information fed into
the output layer to be determined directly from multiple
time-step hidden layers, the amount of information is still
limited by the hidden layer size. We propose an increase in
the amount of information passed to the output layer by in-
cluding direct connections from multiple time-step hidden
layers to the output layer, which we term peripheral con-
nections (PC). An overview of the PC system is presented
at the bottom of Figure 1. The PC system is the same as
the SA system in eqns. 1–6. However, these connections
are implemented in the output layer using:

ỹt = softmax(WvQ
t−a:t+a + bv), (11)

where v highlights the weights and biases belonging to the
PC output layer and Qt−a:t−a is the concatenation of mul-
tiple LSTM time-step outputs:

Q =
[
h→t−aL , .... , h→t+aL , h←t−aL , .... , h←t+aL

]
. (12)

If a = 0, then both the SA and PC systems are the same as
a standard BRNN network with LSTMP cells.

2.3 Convolutional Neural Network (CNN)

As RNNs contain fully-connected layers, large input fea-
ture sizes can not be used as they become extremely com-
putationally expensive. Convolutional neural networks
(CNN) overcome this problem by combining feature learn-
ing, dimensionality reduction and classification stages in a
single trainable network. This ability has enabled CNNs
to achieve higher accuracies than RNNs in the closely re-
lated fields of onset detection [14] and downbeat detec-
tion [4]. We propose to use a convolutional neural network
to enable multiple time-step features to be used as input for
each frame classification. An overview of the implemented
CNN ADT system is outlined in Figure 2 where j frames
on either side of the current frame t are included in the in-
put features and different values of v and e are used as j
is increased. It consists of two sets of convolutional, max
pooling, dropout [16], and batch normalisation [7] layers
before a 100-neuron fully-connected layer and a two neu-
ron softmax output layer.

2.4 Implementation

The newly proposed models are implemented using the
Tensorflow Python library. Four SA and PC systems (SA1,
SA2, SA3 and SA5) and (PC1, PC2, PC3 and PC5) are im-
plemented where a = [1, 2, 3, 5] and four CNN systems
(CNN2, CNN5, CNN10, and CNN20) are implemented where
j = [2, 5, 10, 20]. These values are chosen as they cover
various ranges of important information regarding the typ-
ical envelope length of drums.

2.4.1 Input Features

In order for an audio file to be processed by the neural
networks, it must be procedurally segmented into frame-
wise spectral features. First, the input audio (16-bit .wav
file sampled at 44100 kHz) is segmented into T frames
using a Hanning window of n samples (n = 2048) with
a n

4 hopsize. A frequency representation of each of the
frames is then created using the magnitudes of a discrete
Fourier transform resulting in a n

2 x T spectrogram. The
spectrogram is input into the SA systems in a frame-wise
manner and as a combination of frames (j frames either
side of the current frame t) for the CNN systems.

2.4.2 Peak Picking

Once the activation functions Ỹ are output from the sys-
tems, peak-picking is used to identify the onset candidates.
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In this paper, we implement two peak-picking strategies
for each of the systems. The first approach, termed mean
threshold (MT), is an updated version of the technique used
in [15], in which a threshold is determined for each frame
(τ t) using:

τ t = mean(ỹt−θ : ỹt+θ) ∗ λ (13)

τ t =

{
tmax, τ > tmax
tmin, τ < tmin,

(14)

where θ sets the number of frames in each direction to cal-
culate the mean, λ is a constant and tmax and tmin are
the possible maximum and minimum values. The current
frame of ỹ is accepted as an onset if it is the maximum of a
surrounding number of frames and above the threshold τ :

Ot =

{
1, ỹt == max(ỹt−Ω : ỹt+Ω) & ỹt > τ t

0, otherwise,
(15)

where O(t) represents an onset at time step t and Ω is the
number of frames on either side of the current frame t used
to calculate the maximum.

For the second approach we train an additional neural
network using the activation functions from the training
data in an attempt to learn to identify the drum onsets more
difficult to detect. To do this we use a BRNN, with a single
10 LSTMP-cell hidden layer and a softmax output layer.
The output of the new BRNN is then processed by the MT

technique (eqns. 10–12), we refer to this second technique
as BRNN-MT.

2.4.3 Training

The three models and the BRNN-MT peak-picking networks
are trained using the Adam optimiser [9] with a learning
rate of 0.003. The training data is created by generating
a feature matrix from input features x and an associated
class vector from the target activation functions Y . Mini-
batch gradient descent (batch size = 1000) created from
10 segments (segment length = 100) is used. The activa-
tion function output from the models Ỹ are used as the
input to the BRNN-MT networks which are trained using the
same targets used to train the systems. A new BRNN-MT

network is trained independently for each system in an at-
tempt to increase adaptability, similar to [2]. Training is
stopped when the following criteria have been met: (1) a
minimum of 10 epochs have commenced; and (2) the vali-
dation set accuracy has not increased between epochs. To
ensure training commences correctly, the weights are ini-
tialised using a random uniform distribution scaled to keep
constant variance [17] and the biases are initialised to zero.
Cross entropy is used as the loss function.

3. EVALUATION

To evaluate the newly proposed methods along with the
current state-of-the-art systems, we implement four eval-
uations similar to those carried out in [15, 19, 20], along
with an additional evaluation to test the generalisability

of the systems. The systems are trained to identify kick
drum, snare drum and hi-hat onsets. The first evalua-
tion, termed drum solo, aims to demonstrate system perfor-
mance on drum solo recordings that contain only the three
drum instruments under observation. The second evalu-
ation, termed drum mixture, aims to demonstrate system
performance in a drum-only polyphonic context, where
the recordings contain additional drum instrumentation to
those under observation (e.g., toms and cymbals). The
third evaluation, termed multi-instrument mixture, aims
to demonstrate system performance in a fully-polyphonic
context where multiple instruments are present in addi-
tion to the drum instruments under observation (e.g., pi-
ano and guitar) and the fourth evaluation, termed cross-
context, aims to test the systems adaptability to before
unseen timbres. The newly proposed evaluation, termed
multi-context, aims to test the ability of a single system to
be trained and used in multiple contexts.

3.1 Evaluation Methodology

F-measure is used as the evaluation metric with preci-
sion and recall determined using the onset candidates from
the peak-picking stage. Detected onsets are accepted as
true positives if they fall within 50ms of the ground truth
annotations. The individual instrument F-measures are
calculated as the mean F-measure across test tracks and
the mean instrument F-measure is calculated as the mean
F-measure across the individual instruments. The peak-
picking parameters (θ, λ, tmax, tmin and Ω) are found
using a grid-search on the validation set and the dropout
probability p is set to 0.25.

3.1.1 Drum Solo Evaluation

To test the capability of the systems in the drum solo eval-
uation, we use the updated version of the IDMT-SMT-
Drums dataset [3]. This dataset contains 104 tracks di-
vided into three subsets (20 real drum tracks, 14 techno
drum tracks, and 70 wave drum tracks) with an average
track length of 15 seconds. The dataset is divided by track
in equal distributions across the three subsets into 70%
training 15% validation and 15% test sets. The training
set is used to train the neural network systems, the vali-
dation set to prevent overfitting during training and to op-
timise the peak-picking parameters, and the test subset is
used as unseen data for testing. The four SA systems, the
four PC systems and the four CNN systems are evaluated
along with two current state-of-the-art ADT systems: (1)
tanhB, a BRNN system containing tanh cells [15] and (2)
lstmpB, a BRNN system containing LSTMP cells. The
LSTMP architecture was chosen as it outperformed GRU
cells in preliminary testing on the same datasets. Drum on-
sets are selected from the output activation functions using
the two peak-picking techniques.

3.1.2 Drum Mixture and Multi-instrument Evaluations

To determine system performance in a polyphonic context
we use the minusone subset of the ENST Drums dataset
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Figure 3: Mean instrument F-measures for drum solo
(top), drum mixture (middle) and multi-instrument mixture
(bottom) evaluations. Previous state-of-the-art RNN sys-
tems are on left and the SA, PC and CNN systems on right.
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Figure 4: Mean instrument F-measure results with MT

peak-picking for the cross-context evaluation: drum solo
combinations (top); drum mixture combinations (middle);
and multi-instrument mixture combinations (bottom).

[5]. The dataset contains 64 tracks divided into three dif-
ferent drummers (21 tracks by drummer 1, 22 tracks by
drummer 2, and 21 tracks by drummer 3) with an aver-
age track length of 55 seconds. The dataset is composed
of drum-only recordings which contain multiple drum in-
struments as well as accompaniment files. The drum only
recordings are used for the drum mixture evaluation and the
drum-only recordings are mixed with the accompaniment
files using a ratio of 2/3 to 1/3 respectively for the multi-
instrument mixture evaluation. The same training, valida-
tion and evaluation procedures are used as in the drum solo
evaluation (Section 3.1.1).

3.1.3 Cross-context Evaluation

To test the adaptability of the trained systems to before un-
seen contexts we use the three systems trained in the previ-
ous evaluations (i.e., drum solo, drum mixture, and multi-
instrument mixture) to process the datasets from the other
two evaluations. This results in six cross-context evalu-
ation combinations (e.g., train with drum solo test with
multi-instrument mixture).

3.1.4 Multi-context Evaluation

To test how well a single system can be trained to adapt
and perform in multiple contexts, we combine the training
and validation data from the drum solo, drum mixture and
multi-instrument mixture evaluations. The test data from
the three evaluations is then processed using the single
newly trained systems. Of the five evaluations this is the
most realistic scenario.

4. RESULTS AND DISCUSSION

4.1 Drum Solo, Drum Mixture and Multi-instrument
Mixture Results

Figure 3 highlights the mean instrument F-measure results
of the SA, PC, CNN, and two previous state-of-the-art sys-
tems with both of the peak-picking strategies for the drum
solo, drum mixture and multi-instrument mixture evalua-
tions. The SA systems achieve the highest mean instru-
ment F-measure in all three evaluations; 0.9880 (SA3),
0.9287 (SA1) and 0.9274 (SA2) respectively. The PC sys-
tems achieve higher F-measures in the drum mixture and
multi-instrument mixture evaluations and the CNN sys-
tems achieve higher F-measures than the state-of-the-art
systems in the multi-instrument mixture evaluation. This
demonstrates that within the harder polyphonic contexts,
allowing the output layer to access multiple hidden states
and including the input features of multiple frames does
enable higher performance to be achieved. The BRNN-MT

peak-picking strategy improves the results of some of
the SA and PC systems in both the drum mixture and
multi-instrument mixture evaluations, demonstrating that
the BRNN-MT strategy is able to improve performance in
some contexts by learning to identify peaks within the
noisier activation functions. For both the SA and PC sys-
tems the systems where a ≤ 3 achieved the highest F-
measures, we believe this is because of the extra informa-
tion in the SA5 and PC5 systems is beyond the scope of the
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Figure 5: Results of the multi-context evaluation. For each system using the MT peak-picking technique the drum solo,
drum mixture, multi-instrument mixture, and mean-context F-measures are shown in addition to the mean-context precision
and mean-context recall.

onset and so has a negative effect on the performance. A
similar trend is seen with the CNN systems which again
can be explained by the larger input feature sizes reduc-
ing the impact of the relevant features. We believe that
due to the drum solo evaluation being a relatively simple
task, the less-complex RNN systems are able to achieve
similar accuracies to the newly proposed systems and the
CNN performs poorly on this same task due to noisy out-
put activation functions which are the result of not passing
information between time steps. This would also explain
why the BRNN-MT strategy did not improve the results for
the CNN systems and for any of the systems in the drum
solo evaluation.

4.2 Cross-context Results

For each cross evaluation combination the top performing
configuration of the existing state-of-the-art RNN, SA, PC
and CNN systems using the MT peak-picking technique is
displayed in Figure 4. The highest performing CNN sys-
tem achieves a higher mean instrument F-measure than
the highest performing current state-of-the-art RNN sys-
tem (lsmtpB) in three out of the six combinations, the
highest performing SA system only outperforms the cur-
rent state-of-the-art RNN system in one of the combina-
tions and the PC doesn’t out perform the RNN system in
any combinations. This suggests that the CNN system is
more adaptable than the SA and PC systems even though
the SA and PC systems achieve higher mean instrument
F-measures than the CNN systems in the previous three
evaluations. None of the highest accuracies were achieved
by systems that used the BRNN-MT peak-picking strategy,
which suggests that it is not suited for adapting to unseen
situations.

4.3 Multi-context Results

Figure 5 highlights the drum solo, drum mixture, multi-
instrument mixture, and mean-context F-measures using
the MT peak-picking technique. Also included are the
mean-context precision, and recall for each of the sys-
tems in the multi-context evaluation. The SA and CNN
systems outperform the existing state-of-the-art and PC
systems, further demonstrating the high performance of

the SA systems and the adaptability of the CNN systems.
This is achieved through higher recall, but not necessarily
higher precision, suggesting that the improvement made
by these systems is due to their ability to produce fewer
false spikes within the resulting activation functions. All
of the highest context F-measures were lower than the F-
measures achieved by the systems trained in the single con-
text focused evaluations (i.e., drum solo, drum mixture, and
multi-instrument mixture evaluation) demonstrating that a
system trained in multiple contexts can not outperform sys-
tems trained solely in one situation. The BRNN-MT peak-
picking strategy again does not improve the performance
of any of the systems in this evaluation.

5. CONCLUSIONS AND FUTURE WORK

We have presented three new neural network based sys-
tems for ADT in a polyphonic context: First, SA and PC
systems that enable multiple time-step hidden states to be
accessed by the output layer; and second, a CNN system
that allows larger input feature sizes to be used. The re-
sults from the conducted evaluations demonstrate that all
of the newly proposed systems achieve higher accuracies
than the current state-of-the-art systems in polyphonic con-
texts, highlighting the effect of increased access to more
information. Of all the tested systems, the SA performs
best in either the single or multi-context, while the CNN
systems perform best in situations in which the context is
unseen. A possible future step would be to combine the
SA and CNN systems into a single system possibly allow-
ing the system to work in both situations (i.e., single and
multiple contexts). An open source version of the newly
proposed ADT systems can be found within the ADT li-
bray (ADTLib). 1
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[13] Axel Röbel, Jordi Pons, Marco Liuni, and Mathieu La-
grange. On automatic drum transcription using non-
negative matrix deconvolution and itakura saito diver-
gence. In Proceedings of the IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 414–418, Brisbane, Australia, 2015.

[14] Jan Schlüter and Sebastian Böck. Improved musical
onset detection with convolutional neural networks.
In Proceedings of the 2014 IEEE International Con-
ference on Acoustics, Speech and Signal Processing
(ICASSP), pages 6979–6983. IEEE, 2014.

[15] Carl Southall, Ryan Stables, and Jason Hockman. Au-
tomatic drum transcription using bi-directional recur-
rent neural networks. In Proceedings of the Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR), pages 591–597, New York City, United
States, August 2016.

[16] Nitish Srivastava, Geoffrey E. Hinton, Alex
Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-
dinov. Dropout: a simple way to prevent neural
networks from overfitting. Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

[17] David Sussillo and Laurence F. Abbott. Training very
deepnonlinear feed-forward networks with smart ini-
tialization. arXiv preprint arXiv, 1412, 2014.

[18] Lucas Thompson, Simon Dixon, and Matthias Mauch.
Drum transcription via classification of bar-level rhyth-
mic patterns. In Proceedings of the International So-
ciety for Music Information Retrieval Conference (IS-
MIR), pages 187–192, Taipei, Taiwan, 2014.

[19] Richard Vogl, Matthias Dorfer, and Peter Knees. Re-
current neural networks for drum transcription. In Pro-
ceedings of the International Society for Music Infor-
mation Retrieval Conference (ISMIR), pages 730–736,
New York City, United States, August 2016.

[20] Richard Vogl, Matthias Dorfer, and Peter Knees. Drum
transcription from polyphonic music with recurrent
neural networks. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech, and Signal
Processing (ICASSP), pages 201–205, New Orleans,
Louisiana, United States, March 2017.

[21] Chih-Wei Wu and Alexander Lerch. Drum transcrip-
tion using partially fixed non-negative matrix factor-
ization with template adaptation. In Proceedings of the
International Society for Music Information Retrieval
Conference (ISMIR), pages 257–263, Malaga, Spain,
October 2015.

[22] Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhudinov, Rich Zemel,
and Yoshua Bengio. Show, attend and tell: Neural
image caption generation with visual attention. In In-
ternational Conference on Machine Learning, pages
2048–2057, 2015.

[23] Kazuyoshi Yoshii, Masataka Goto, and Hiroshi G.
Okuno. Drum sound recognition for polyphonic au-
dio signals by adaptation and matching of spectrogram
templates with harmonic structure suppression. IEEE
Transactions on Audio, Speech, and Language Pro-
cessing, 15(1):333–345, 2007.

612 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



AUTOMATIC DRUM TRANSCRIPTION USING THE STUDENT-TEACHER
LEARNING PARADIGM WITH UNLABELED MUSIC DATA

Chih-Wei Wu, Alexander Lerch
Georgia Institute of Technology, Center for Music Technology
{cwu307, alexander.lerch}@gatech.edu

ABSTRACT

Automatic drum transcription is a sub-task of automatic
music transcription that converts drum-related audio events
into musical notation. While noticeable progress has been
made in the past by combining pattern recognition methods
with audio signal processing techniques, the major limita-
tion of many state-of-the-art systems still originates from
the difficulty of obtaining a meaningful amount of anno-
tated data to support the data-driven algorithms. In this
work, we address the challenge of insufficiently labeled
data by exploring the possibility of utilizing unlabeled mu-
sic data from online resources. Specifically, a student neural
network is trained using the labels generated from multiple
teacher systems. The performance of the model is evalu-
ated on a publicly available dataset. The results show the
general viability of using unlabeled music data to improve
the performance of drum transcription systems.

1. INTRODUCTION

Data availability, listed by Schedl et al. as one of the
open challenges in the field of Music Information Retrieval
(MIR) [21], is an important problem that concerns a large
variety of data-driven MIR systems. To create intelligent
music (analysis) systems, music data with detailed anno-
tations is crucial as training input for machine learning
algorithms. However, multiple constraints impede the avail-
ability of large datasets, including (i) the complexity and va-
riety of music in terms of genres, instrumentation, tonality,
etc., (ii) the difficult and time-consuming process of manu-
ally adding annotations which —- for most tasks — might
also depend on perception and thus require multiple anno-
tators, and (iii) intellectual property laws, restricting the
compilation and sharing of music datasets. Many laudable
efforts have been made to address (some of) these problems,
leading to the release of new datasets or the extension of
existing datasets. Nevertheless, the majority of the com-
monly used datasets for various MIR tasks is still limited
in different aspects, which can impact research focus. For
example, Benetos et al. pointed out that a large subset of

c© Chih-Wei Wu, Alexander Lerch. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). Attri-
bution: Chih-Wei Wu, Alexander Lerch. “Automatic drum transcription
using the student-teacher learning paradigm with unlabeled music data”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

Automatic Music Transcription (AMT) approaches only
performed experiments on piano data for which the audio
aligned ground truth was easily obtained [1]. This empha-
sis on piano may lead to models that are strongly biased
towards piano-like instruments and cannot be generalized
to other melodic instruments.

Automatic Drum Transcription (ADT), a sub-task in
AMT that involves the extraction of drum events from au-
dio signals, is also confined to the scope of the existing
labeled datasets. Wu observed [30] that most of the ADT
related datasets focus on collecting recordings of single
drum hits [18, 24] and simple drum sequences without ac-
companiment [5]. Although these datasets provide the es-
sential ingredients for building basic ADT systems, they
cannot properly represent the real-world scenario of drum
sounds embedded in a continuous stream of polyphonic au-
dio sources. Thus, they might fail in addressing real-world
use cases. The ENST drum dataset [8] partly compensates
these drawbacks by offering more realistic and complex
drum sequences with accompaniments, however, its size
and diversity of music styles are still limited. Previous stud-
ies attempt to alleviate these issues through data augmen-
tation [26, 30], but the inherent limitations of the datasets
continue to impede the advancement of ADT systems.

One potential solution to addressing this challenge in
a scalable way without introducing the additional cost of
manual annotations is to explore the usefulness of the vast
collection of unlabeled music data; this can be formulated
as a Semi-supervised Learning problem as defined in the
field of machine learning [3]. The general goal of this
type of problem is to find the optimal solution given both
labeled and unlabeled examples, and it has been applied
successfully to different applications such as music genre
classification [19], music genre tagging [13], and music
emotion recognition [28].

Inspired by the above-mentioned approaches, this paper
aims to address the issue of data availability in ADT systems
by harnessing the information from the unlabeled music
data. Specifically, this paper focuses on improving ADT
performance on polyphonic mixtures. The contributions of
this paper include: (i) new insights into the viability of using
unlabeled music data in ADT tasks, (ii) a general scheme for
integrating unlabeled data into ADT and other MIR systems,
and (iii) the demonstration of potential improvements of
ADT systems using the proposed method. The remainder
of the paper is structured as follows: Sect. 2 provides an
overview of ADT research and the student-teacher learning
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paradigm. In Sect. 3, we introduce our approach; the results
and discussion are presented in Sect. 4. Sect. 5 provides a
summary, conclusion, and directions of future work.

2. RELATED WORK

In the broadest definition of ADT, it can be described as
the process of converting drum related audio events, such
as drum onset times and playing techniques, into musical
representations such as a score or sheet music. To simplify
this task while still capturing the essence, most of the ex-
isting systems mainly focus on detecting the onset times
of Hi-Hat (HH), Snare Drum (SD) and Bass Drum (BD).
In many of the early systems, which are summarized by
FitzGerald and Paulus [6], the focus was on transcribing
signals containing only drum sounds.

Gillet and Richard propose to categorize automatic drum
transcription systems into three categories [9]: (i) segment
and classify [7, 9], which follows the basic pattern recog-
nition approach by segmenting the signals into individual
instances, and subsequently classifying each instance with
pre-trained classifiers, (ii) separate and detect [5, 20, 29],
in which the signal is converted into separated activation
functions that represent the activities of different drums,
followed by a simple peak picking process to identify their
corresponding onset times, and (iii) match and adapt [31],
which identifies the drum events by template matching us-
ing a set of pre-trained drum templates and customized
distance measures; the templates are iteratively adapted
throughout the process. In addition to these three categories,
a language-model-based approach using Hidden Markov
Models (HMM) [17] and a pattern-matching approach us-
ing bar information [23] have also been applied to ADT
tasks in previous work.

Following the recent success in deep learning [10], sev-
eral state-of-the-art ADT systems utilize Deep Neural Net-
works (DNNs). Specifically, Recurrent Neural Networks
(RNNs), a DNN variant modeling the temporal dependency
of the input using recurrently connected nodes, have been
adopted for this task [22, 25, 26]. Although this method is
capable of learning complicated representations of drums
from the audio signals, it is extremely demanding in terms
of the required amount of training data and computing
power. To reach their full potential, DNNs require large
amounts of training data; the sizes of currently available
datasets appear to be insufficient, as exemplified by the
performance degradation in polyphonic mixtures reported
in several ADT systems [22, 26, 29]

To overcome the problem of possibly insufficient input
data for data-hungry approaches such as DNNs, the idea of
utilizing the unlabeled data seems very appealing. Recently,
the concept of the student-teacher learning paradigm has
emerged as an interesting way of incorporating unlabeled
data in the training of DNNs. Originally proposed as a
model compression method [2], the basic idea of student-
teacher learning is to transfer the knowledge of a large
teacher model into a small and concise student model with
minimum performance loss; this process, referred by Hin-
ton et al. as ”knowledge distillation” [11], is achieved by
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Figure 1. The flowchart of the proposed method

training the student model with the soft targets generated
from the teacher model. In other words, instead of learning
from the hard targets (i.e., the ground truth), the student
model indirectly acquires the knowledge by mimicking the
output from the teacher model. As demonstrated by Li et
al. [16], this process can use labeled as well as unlabeled
data. Successful applications of this paradigm can be found
in tasks such as speech recognition [27] and multilingual
models [4], in which superior performances from the stu-
dent model have also been reported.

3. METHOD

3.1 System Overview

The processing steps of the proposed method, as shown in
Figure 1, can be split into two phases, namely the training
and testing phase. In the training phase, the unlabeled mu-
sic data are passed through the teacher models in order to
generate the soft targets. Specifically, these teacher models
are ADT systems that will convert the audio signals into
drum-related activation functions (i.e., soft targets). The
same unlabeled music data and the generated soft targets
will then be used to train a student model, which is a re-
gression model that minimizes the differences between its
output and the soft targets. In the testing phase, the trained
student model predicts the drum activations of the test mu-
sic data. Finally, a simple peak picking algorithm with an
adaptive threshold will be used to identify the drum onset
times from each activation function, producing the final
transcription output. More elaborate descriptions of the
teacher and student models can be found in the following
sections.

3.2 Teacher Model

The teacher model used in this paper is the drum transcrip-
tion system presented by Wu and Lerch [29]. This NMF-
based ADT system is chosen for its simplicity, its lack of
need for substantial amounts of training data, as well as the
adaptability in polyphonic mixtures; it extends the basic
NMF model to Partially-Fixed Non-negative Matrix Fac-
torization (PFNMF) by assuming the co-existence of both
percussive and harmonic components in the audio signals.
More specifically, the template matrix is split into a pre-
defined part containing the drum templates which kept fixed
and not iteratively updated and a randomly initialized part

614 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



Template 
Extraction

Training 
data

Testing 
data

Input 
Preparation

PFNMF Drum 
Activation 
Functions

𝐻"Template
Adaptation

𝑊"

𝑋

Figure 2. The flowchart of PFNMF [29]

for modeling the remaining harmonic components in the
signal. Formally, this can be expressed as

X ≈WDHD +WHHH, (1)

with X being a m× n magnitude spectrogram matrix with
m frequency bins and n blocks, WD and WH representing
the drum and harmonic dictionary matrices with a dimen-
sionality of m × rD and m × rH, and HD and HH their
corresponding activation matrices with dimensionality of
rD × n and rH × n, respectively. rD usually corresponds
to the number of drums to detect (e.g., rD = 3 for the
detection of HH, BD, and SD), and rH is an user-defined
parameter that varies according to the complexity of the
target signal.

The basic flowchart of PFNMF is shown in Figure 2. It
firstly decomposes the magnitude spectrogram of the poly-
phonic mixtures with a fixed pre-trained drum dictionary
WD and a randomly initialized harmonic dictionary WH.
Once the signal is decomposed, the NMF based activation
function HD(r, :) of each individual drum can be extracted,
in which r = {1, 2, 3} is the instrument index that corre-
sponds to HH, BD, and SD, respectively. These activation
functions can be interpreted as the activity level of each in-
strument over time, and a sharp peak indicates the presence
of a single drum hit.

The conversion of the resulting activation functions into
the soft targets takes another step of standard min-max
scaling across the training data for each instrument; this
process scales the soft targets to a numerical range between
0 and 1 and ensures the compatibility between the soft
targets and the student model output (see Sect. 3.3). Finally,
to introduce diversity into the soft targets, two PFNMF
systems are created by initializing the algorithm with two
different sets of drum dictionaries, forming an ensemble-
like scenario that could potentially lead to better student
performance.

3.3 Student Model

The proposed student model is a fully connected, feed-
forward DNN with three hidden layers. A neural network
is a graphical model that comprises multiple layers of in-
terconnected non-linear units (i.e., neurons). The basic
formulation of a neuron can be expressed in Eq. (2)

alk = g

 M∑
j=1

Wja
l−1
j + bl−1

j

 , (2)

in which a is the activation of the neuron, W is the weight
matrix, b is the bias matrix, l is the layer index, j is the
index of input neuron, and k is the index of output neuron;

g() is usually a non-linear function such as a sigmoid, tanh
or relu. When multiple layers of neurons are stacked, the
model creates a non-linear transformation from the input
to the output, which allows the model to approximate any
arbitrary function with great flexibility.

The architecture of the DNN in this paper is as follows:
the input layer contains 1025 neurons that correspond to
the size of the input representation. The first hidden layer
comprises of 1025 neurons of tanh units with Batch Nor-
malization [12]. The second and third hidden layers have
512 and 32 neurons with relu units, respectively. Finally,
the output layer consists of 3 neurons with sigmoid units
that represent the activities of three different drums (i.e.,
HH, SD, and BD). The architecture and type of neurons are
selected based on the results of smaller-scale preliminary
experiments, and the fully connected layers are chosen for
their simplicity and generality. To solve the optimization
problem of learning the weights W in a DNN, a stochastic
gradient descent based optimization method, Adam [14],
is selected as the optimizer. The student neural network is
configured as a regressor that minimizes the mean squared
error between its output and the soft targets. A mini-batch
consisting of 640 instances is used for training, and the
early stopping technique is applied to stop the training pro-
cess when the loss decrease is less than 10−6 for three
consecutive epochs.

3.4 Implementation

The input representation to both the teacher and student
models is the magnitude spectrogram of the Short Time
Fourier Transform (STFT) computed using a block size of
2048 and hop size of 512 samples with a Hann window
applied to each block. Prior to the calculation of STFT,
the audio signals are down-mixed to mono and resampled
to a sampling rate of 44.1 kHz. The resulting magnitude
spectrogram is a m× n matrix, in which m = 1025 and n
equals the number of blocks.

For PFNMF, the authors’ open source Matlab imple-
mentation 1 is used in our experiments. Since both the
unlabeled music data and the test data are polyphonic mix-
tures, the harmonic rank rH for the PFNMF is set to 50 as
suggested [29]. To speed up the process, template adapta-
tion is deactivated. The extraction of the pre-defined (fixed)
drum templates takes place on two publicly available drum
datasets, namely the SMT-DRUM dataset [5] and 200 drum
machines. 2

Preliminary experiments show that these two sets of
templates exhibit capabilities of capturing different types
of drum sounds, thus adding diversity to this learning
paradigm. The construction of the drum dictionary involves
the concatenation of all the spectra and the extraction of the
median spectrum for each individual instrument. It should
be noted that, since the ENST drum dataset is the main test
dataset for evaluation, no single drum hits from ENST are

1 https://github.com/cwu307/NmfDrumToolbox Last accessed:
2017/04/26

2 http://www.hexawe.net/mess/200.Drum.Machines Last accessed:
2017/04/26
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Experiments Averaged F-measure
Role Method # Training Data HH BD SD

Teacher Baseline PFNMF (SMT) N/A 0.69 0.80 0.50
Teacher Baseline PFNMF (200D) N/A 0.68 0.85 0.48

Baseline PFNMF (SMT + 200D) N/A 0.69 0.83 0.48
Student Baseline Linear SGD Regressor 200 * 4 = 800 0.43 0.69 0.43
Student Proposed DNN 200 * 4 = 800 0.78 0.86 0.45

Table 1. A comparison of the averaged F-measures between the proposed method and the baseline methods

used for template extraction in order to ensure the generality
of the proposed approach.

The DNN is implemented in Python using Keras 3 with
the Tensorflow 4 backend. The parameters of the optimizer
are set to default.

To get the final transcription results for evaluation, a
standard peak picking method with a signal adaptive median
threshold is used [15]. The median threshold t(n) can be
computed using Eq. (3):

t(n) = λ ∗max(x) +median(x(n), p), (3)

in which x is a vector of novelty function, λ is the offset
coefficient relative to the maximum value, p is the order
(length) of the median filter, and the n is the block index. All
systems are using the peak picking parameters p = 0.1 s and
λ = 0.12 as described in [29]. No grid search is performed.

4. EXPERIMENTS

4.1 Dataset Description

The collection of the unlabeled data is a crucial step for
ensuring a successful learning process. Generally speak-
ing, the unlabeled dataset should have following attributes:
(i) the collection should contain drums whenever possible,
(ii) the collection should be diverse in terms of music gen-
res or playing styles, (iii) the collection should contain no
duplicates, and (iv) the collection should be as consistent
as possible in terms of audio quality. To build a collection
that meets the above-mentioned criteria, we compile a list
from the Billboard Charts. 5 In particular, we start with
an uniform distribution across a set of 4 genres selected
for commonly featuring strong drum beats or rhythmic pat-
terns, namely R&B/HipHop, Pop, Rock, and Latin. For
this study, 200 songs from each genre has been selected. All
the songs are cross-checked for duplicates, and a final list of
800 songs has been compiled and retrieved from Youtube 6

using open source Python library pafy. 7

All songs are converted into mp3 files with a sampling
rate of 44.1 kHz using ffmepg. 8 The source code for con-
structing the unlabeled music dataset is available online on
Github. 9 In order to speed up the process while retaining

3 https://keras.io Last accessed: 2017/04/27
4 https://www.tensorflow.org Last accessed: 2017/04/27
5 http://www.billboard.com/charts Last accessed: 2017/04/25
6 https://www.youtube.com Last accessed: 2017/04/25
7 https://pypi.python.org/pypi/pafy Last accessed: 2017/04/25
8 https://ffmpeg.org/download.html Last accessed: 2017/04/25
9 https://github.com/cwu307/unlabeledDrumDataset

diversity, only a segment of 30 s from each song is used for
training. This segment starts at 30 s into the song in order to
avoid possible inactivity at the beginning. Since the same
unlabeled data is trained twice with two different sets of
soft targets generated from two different teachers, the total
duration of the training audio is 800 mins (approximately
13.5 hours), which is significantly larger than any existing
drum dataset.

The most popular labeled drum dataset, ENST drum [8],
is used as the test set for evaluation. This dataset consists
of recordings from three different drummers performing
on their own drum kits. The recordings from each drum-
mer contain individual hits, short phrases of drum beats,
drum solos, and short excerpts played with accompaniments.
Since this paper focuses on ADT in polyphonic mixtures
of music, only the minus one subset is used for evaluation.
This subset has 64 tracks of polyphonic music with a sam-
pling rate of 44.1 kHz. Each track in this subset has a length
of approximately 50–70 s with a variety of playing styles.
More specifically, the subset contains various drum playing
techniques such as ghost notes, flam, and drag, which is
close to a real-world setting [30]. The accompaniments are
mixed with their corresponding drum tracks using a scaling
factor of 1/3 and 2/3 in order to be consistent with prior
studies [17, 22, 29]. Only the wet mix recordings of the
dataset are used.

4.2 Experiment Setup

The performance of the following systems is evaluated and
compared:

(i) PFNMF (SMT): a PFNMF system initialized with a
drum dictionary matrix extracted from SMT-DRUM
dataset. This baseline system is used as a teacher
model to generate the soft targets

(ii) PFNMF (200D): a PFNMF system initialized with
a drum dictionary matrix extracted from 200 drum
machines dataset. This baseline system is the second
teacher model for generating the soft targets

(iii) PFNMF (SMT + 200D): another baseline system by
simply taking the averaged activation functions of the
above systems as the prediction output

(iv) Linear SGD Regressor: a baseline student model us-
ing a simple linear regression with stochastic gradi-
ent descent optimization. A Python implementation
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Experiments Averaged F-measure
Role Method Genres # Training Data HH BD SD

Student DNN Rock 200 * 1 = 200 0.76 0.83 0.44
Student DNN Pop 200 * 1 = 200 0.78 0.85 0.45
Student DNN RnB 200 * 1 = 200 0.74 0.83 0.48
Student DNN Latin 200 * 1 = 200 0.78 0.83 0.44
Student DNN All 50 * 4 = 200 0.77 0.85 0.45

Table 2. A comparison of different student models trained with unlabeled music data of different genres

of this method from the open source library scikit-
learn 10 is used with all parameters set to default val-
ues.

(v) DNN: the proposed student model

4.3 Metrics

The evaluation metrics follow the standard calculation of
the precision (P), recall (R), and F-measure (F). To be con-
sistent with [9, 22, 29], an onset is considered to be a match
with the ground truth if the time deviation between refer-
ence and detected onset time is less or equal to 50 ms. It
should be noted that some authors use more restrictive set-
tings, compare, for instance, the 30 ms and 20 ms tolerance
windows as used in [17] and [26], respectively.

4.4 Results

The experiment results are shown in Table 1. The reported
accuracies are the averaged F-measures across all 64 tracks
from the ENST minus-one subset. Since the proposed
method does not use the ENST drum dataset for training
purposes, a three-fold cross validation scheme as reported
in [17, 22, 25, 26, 29] is not necessary; this ensures the gen-
erality of the proposed method, but prohibits the direct
comparison of the results with other publications.

The evaluation results show that both teacher systems
PFNMF (SMT) and PFNMF (200D) perform similarly ex-
cept for BD. This could be due to the discrepancy of the
pre-defined drum dictionaries. The 3rd simple baseline sys-
tem PFNMF (SMT+200D) averaging the teacher outputs
gives almost identical performance as the teacher systems.
This result shows that a simple combination of the two
teacher systems does not result in any improvement. This
means either that the performance cannot be improved given
the teacher information or that a more sophisticated method
is required for combining the outputs. The student baseline
system is a simple linear regression model trained using the
student-teacher learning paradigm as described in Sect. 3.
This baseline serves as a sanity check for the necessity of
a complex model such as DNN. As expected, the perfor-
mance of the linear regression model is the worst among
all the evaluated systems, indicating the need of deploying
a non-linear model in order to benefit from this training
scheme. Finally, the proposed DNN-based student model
is actually able to outperform both teachers with higher
F-measures for both HH and BD. The results for the SD

10 http://scikit-learn.org Last accessed: 2017/04/25

are somewhat inconclusive; here, one teacher outperforms
all other systems. This could imply the similarity between
the SD sounds in SMT and ENST dataset, but the infe-
rior performance from the student model still needs further
investigation.

Based on these results, another interesting question
arises: does music genre play a role in the preparation
of unlabeled data? To answer this question, a follow-up
experiment has been conducted by training the DNN model
with unlabeled data of each individual genre. The experi-
ment results are shown in Table 2. In this experiment, the
number of training samples is fixed at 200 in order to elimi-
nate the influence of data size. For the All case, 50 songs
from each genre are randomly selected. Interestingly, the
best performance of different instruments, as highlighted
in the table, belongs to different genres. This implies the
advantage of having various genres in the training data, for
they could potentially complement each other and boost the
performance of the student model.

Although the cross-genre model trained on the equally
distributed data does not achieve the highest accuracy in
every individual instrument, it is still better than majority of
the single-genre models and generally well-balanced. Over-
all, providing diverse unlabeled training data in terms of mu-
sic genre seems to be beneficial in this learning paradigm.

From all of the above experiment results, the results for
HH show the most obvious and consistent improvement
over the teacher models. This observation leads to another
question: where do these improvements come from? A
closer look at the experiment results reveals the strength of
the DNN student model. As shown in Table 3, the DNN
student model outperforms the teacher models on both pre-
cision and recall for HH. The DNN student model also
achieves the highest BD precision. Since these improve-
ments in precision are achieved without sacrificing recall,
they suggest a reduction in false positives from the student
model output. One possible explanation is that the songs
presented in the unlabeled music data have a higher agree-
ment on HH sound; this allows the student model to acquire
a more consistent internal representation of HH that leads
to a more accurate estimation during testing.

It is noticeable that the DNN student model seems to
consistently have problems detecting SD. Since the snare
drum tends to have larger spectral overlap with the other
instruments, it is conceivable that DNN student model will
have difficulties learning a robust internal representation
for this instrument. A collection of unlabeled data with
a stronger presence of snare drum might be possibly able
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Method
HH BD SD

P R P R P R
PFNMF (SMT) 0.77 0.69 0.74 0.91 0.67 0.49
PFNMF (200D) 0.75 0.68 0.82 0.90 0.60 0.49
DNN 0.87 0.72 0.83 0.89 0.60 0.44

Table 3. A comparison of precision (P) and recall (R) between student and teacher models

to alleviate the problem, however, this issue requires fur-
ther investigation before any conclusion can be drawn. In
general, this deficiency in SD is also consistent with the pre-
vious studies [17, 22, 25, 29], where the detection of Snare
Drum in polyphonic mixtures has been reported as the most
difficult task in ADT. It is also possible that the Snare Drum
is for some reason particularly hard to detect in the ENST
set that is commonly used for evaluation.

5. CONCLUSION

This paper presents a system for Automatic Drum Transcrip-
tion based on the student-teacher learning paradigm with
the unlabeled music data. The proposed method integrates
two NMF-based ADT teacher systems with a DNN-based
student model by transferring knowledge using unlabeled
music data, and the evaluation results indicate the possi-
bility of obtaining a student model that outperforms the
teacher model based on this approach. This result is gen-
erally encouraging and demonstrates the great potential of
using unlabeled music data in ADT tasks. The experiment
results also imply the benefit of having relevant music gen-
res in the unlabeled training data, which could lead to the
construction of an improved unlabeled dataset in the future
studies. The proposed method has the following advantages:
first, the approach allows for complete separation between
training and test data, therefore reducing the likelihood of
over-fitting and supporting the claim of generality of this
approach. Second, the proposed method is able to support
data-driven approaches with the need of large amounts of
training data given the availability of existing teacher mod-
els. Third, the proposed method could not only be easily
applied to other ADT systems but also inform data-hungry
systems from other transcription tasks or MIR problems in
general. Last but not least, this learning scheme has the
potential of summarizing multiple complicated teacher sys-
tems, providing competitive performance with one concise
student model.

The possible future directions of this work are:

(i) Increasing the number and diversity of teacher sys-
tems. Since the proposed training scheme does not tie
to any particular ADT approach, the teacher models
can be easily swapped with other ADT expert sys-
tems. Intuitively, more teacher models should lead to
a more versatile student model. However, the influ-
ence of having a more diverse pool of teacher systems
still requires further investigation.

(ii) Varying architectures and approaches of the student
models. In addition to DNNs, other neural networks

architecture may have great potential of achieving
better student performance as well. For instance, the
RNN based model that incorporates the temporal in-
formation could be a good fit in the context of ADT
tasks.

(iii) Evaluating different input representations. As re-
ported by Cui et al. [4], the student model is able
to outperform the teacher model especially when it
is trained on the same soft targets but with a stronger
input representation. Following this observation, one
possible future direction of this work is to investigate
the effectiveness of other input representations, such
as CQT, Cepstrum, or Wavelet transforms.

(iv) Evaluating alternative approaches for using unla-
beled data. To fully benefit from the unlabeled data, it
is also worth investigating how the proposed method
compares to other approaches such as unsupervised
feature learning [19].

The presented work represents only a preliminary study
of what the authors see as a likely path for the future of
training MIR systems as the issue of an insufficient amount
of annotated data is likely to get worse with increasing
complexity of machine learning systems applied to MIR
tasks. Drawing on the vast potential of using existing state-
of-the-art MIR-systems as teachers and the overwhelming
public availability of unlabeled music data might enable
exciting ways of creating new and more powerful MIR
systems.
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[9] Olivier Gillet and Gaël Richard. Transcription and sep-
aration of drum signals from polyphonic music. IEEE
Transactions on Audio, Speech and Language Process-
ing, 16(3):529–540, March 2008.

[10] Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh.
A Fast Learning Algorithm for Deep Belief Nets. Neural
computation, 18:1527–1554, 2006.

[11] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean.
Distilling the Knowledge in a Neural Network.
arXiv:1503.02531, pages 1–9, 2015.

[12] Sergey Ioffe and Christian Szegedy. Batch Normaliza-
tion: Accelerating Deep Network Training by Reducing
Internal Covariate Shift. arXiv:1502.03167, pages 1–11,
2015.

[13] Ping-Keng Jao and Yi-Hsuan Yang. Music Annotation
and Retrieval using Unlabeled Exemplars: Correlation
and Sparse Codes. IEEE Signal Processing Letters,
22(10):1771–1775, 2015.

[14] Diederik P. Kingma and Jimmy Lei Ba. Adam: a
Method for Stochastic Optimization. In Proc. of the
International Conference on Learning Representations
(ICLR), pages 1–15, 2015.

[15] Alexander Lerch. An Introduction to Audio Content
Analysis: Applications in Signal Processing and Music
Informatics. John Wiley & Sons, 2012.

[16] Jinyu Li, Rui Zhao, Jui Ting Huang, and Yifan Gong.
Learning small-size DNN with output-distribution-
based criteria. In Proc. of the Conference of the Inter-
national Speech Communication Association (INTER-
SPEECH), pages 1910–1914, 2014.

[17] Jouni Paulus and Anssi Klapuri. Drum Sound Detec-
tion in Polyphonic Music with Hidden Markov Models.
EURASIP Journal on Audio, Speech, and Music Pro-
cessing, 2009:1–9, 2009.

[18] Matthew Prockup, Erik M. Schmidt, Jeffrey Scott, and
Youngmoo E. Kim. Toward Understanding Expressive
Percussion Through Content Based Analysis. In Proc. of
the International Society of Music Information Retrieval
Conference (ISMIR), 2013.

[19] Rajat Raina, Alexis Battle, Honglak Lee, Benjamin
Packer, and Andrew Y Ng. Self-taught learning: trans-
fer learning from unlabeled data. In Proc. of the Interna-
tional Conference on Machine Learning (ICML), pages
759–766, 2007.

[20] Axel Roebel, Jordi Pons, Marco Liuni, and Mathieu
Lagrange. On Automatic Drum Transcription Using
Non-Negative Matrix Deconvolution and Itakura Saito
Divergence. In Proc. of the International Conference
on Acoustics, Speech and Signal Processing (ICASSP),
2015.

[21] Markus Schedl, Emilia Gómez, and Julián Urbano. Mu-
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ABSTRACT 

Generating a chord progression from a monophonic 
melody is a challenging problem because a chord 
progression requires a series of layered notes played 
simultaneously. This paper presents a novel method of 
generating chord sequences from a symbolic melody using 
bidirectional long short-term memory (BLSTM) networks 
trained on a lead sheet database. To this end, a group of 
feature vectors composed of 12 semitones is extracted 
from the notes in each bar of monophonic melodies. In 
order to ensure that the data shares uniform key and 
duration characteristics, the key and the time signatures of 
the vectors are normalized. The BLSTM networks then 
learn from the data to incorporate the temporal 
dependencies to produce a chord progression. Both 
quantitative and qualitative evaluations are conducted by 
comparing the proposed method with the conventional 
HMM and DNN-HMM based approaches. Proposed 
model achieves 23.8% and 11.4% performance increase 
from the other models, respectively. User studies further 
confirm that the chord sequences generated by the 
proposed method are preferred by listeners. 
 

1. INTRODUCTION 

Generating chords from melodies is an artistic process for 
musicians, which requires knowledge of chord progression 
and tonal harmony. While it plays an important role in 
music composition studies, the implementation of its 
process can be difficult especially for individuals who do 
not have prior experience or domain knowledge in musical 
studies. For this reason, the chord generation process often 
serves as an obstacle for novices who try to compose music 
based on a melody. 
    To overcome this limitation, automatic chord generation 
systems have been implemented based on machine 
learning methods [1, 2]. One of the most popular 
approaches for this task is probabilistic modelling, which 
commonly applies the hidden Markov model (HMM). A 
single-HMM is used with 12-semitone vectors of melody 

as observations and corresponding chords as hidden states 
[3, 4]. Allan and Williams trained a first-order HMM 
which learns from pieces composed by Bach, to generate 
chorale harmonies [5]. A more complex method is 
presented by Raczyński et al. [6], using time-varying 
tonalities and bigrams as observations with melody 
variables. In addition, a multi-level graphical model using 
tree structures and HMM is proposed by Paiement et al. 
[7]. Their model generates chord progressions based on the 
root note progression predicted from a melodic sequence. 
Forsyth and Bello [8] also introduced a MIDI based 
harmonic accompaniment system using a finite state 
transducer (FST).  
    Although the HMM has been successfully used for 
various tasks, it has several drawbacks. According to one 
of the assumptions of the Markov model, observations 
occur independently of their neighbors, depending only on 
the current state. Moreover, the current state of a Markov 
chain is only affected by its previous state. These 
drawbacks are also observable in chord generation from 
melody tasks because long-term dependencies exist in 
chord progressions and melodic sequences of Western 
tonal music [6]. 
    Meanwhile, deep learning based approaches have 
recently shown great improvements in machine learning 
tasks of large datasets. Especially for temporal sequences, 
recurrent neural networks (RNN) and long short term 
memory (LSTM) networks have proven to be more 
powerful models than HMM in the field of handwriting 
recognition [9], speech recognition [10], and emotion 
recognition [11]. Nowadays, even music generation 
researches have increasingly adapted RNN/LSTM models 
in two major stream – one that aims to generate complete 
music sequences [12, 13], and the other which 
concentrates on generating music components such as 
melody, chord and drum sequence [14, 15]. We attempt an 
extended approach to the latter stream by implementing a 
chord generation system with a melody input.  
    In this paper, we implement a chord generation 
algorithm based on bidirectional LSTM (BLSTM) and 
evaluate its performance on reflecting temporal 
dependencies on melody/chord progressions by comparing 
with two HMM-based methods: a simple HMM, and deep 
neural networks-HMM (DNN-HMM). We then present 
the quantitative analysis and the accuracy results of the 
three models. We also describe the qualitative results 
based on subjective ratings provided by 25 non-musicians. 
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    The remainder of the paper is organized as follow. In 
Section 2, we explain the preprocessing step and the details 
of the machine learning methods we apply. Section 3 
describes the experimental setup for evaluating the 
proposed approach. The experimental results are presented 
in Section 4, with additional discussions. Finally, we draw 
a conclusion followed by limitations and future works in 
Section 5. 
 

2. METHODOLOGY 

The method proposed in this paper can be divided into two 
main parts. The first part is a preprocessing procedure to 
extract input/output features from lead sheets. The other 
part consists of model training and a chord generation 
processes. We apply BLSTM networks for the proposed 
model and two types of HMM for the comparable models. 
The overall framework of our proposed method is shown 
in Figure 1. 

2.1 Preprocessing 

To extract appropriate features for this task, we first collect 
musical features such as time signature, measure (bar), key 
{fifths, mode}, chord {root, type} and note {root, octave, 
duration} from the lead sheets. These features are then 
represented in a matrix by concatenating rows, which 
respectively represent the musical features of a single note 

as shown in Figure 2. 
    The generated data is then preprocessed in order to make 
an acceptable relation between melody input and chord 
output. All songs are in major key in the database and are 
transposed to C major key for data consistency. In other 
words, all roots of chords and notes are shifted to C major 
key to normalize different characteristics of melodies and 
chords in different songs. 
    Each song contains a time signature, which has a variety 
of meters such as 4/4, 3/4, 6/8, etc. The variety in time 
signature causes the imbalance of total note durations in a 
bar among different songs, so note durations are 
normalized by multiplying them with the reciprocal 
number of each time signature. After that, every note in a 
bar is stored into 12 semitone classes, without the octave 
information. Each class consists of a single value that 
accumulates the duration of the corresponding semitone in 
the bar. 
    Since the total number of chord types is quite large, if 
all of these chord types exist as independent classes, then 
each chord may not have enough samples. For such reason, 
all types of chords are mapped into one of two primary 
triads: major and minor. Each chord is represented with a 
binary 24-dimensional class to indicate the 24 major/minor 
chords. 
 

2.2 BLSTM Networks 

Recurrent neural networks (RNN) is a deep learning model, 
which learns complex networks not only by reconstructing 
the input features in a nonlinear process, but also by using 
the parameters of previous states in its hidden layer. A 
concept of “time step” exists in RNN, which is able to 
control the number of feedbacks on a recurrent process. 
This property enables the model to incorporate temporal 
dependencies by storing the past information in its internal 
memory, in contrast to a simple feedforward deep neural 
networks (DNN). 
    Despite such advantages of RNN models, there still 
exist problems regarding the long-term dependency. This 
is caused by vanishing gradient during the back 
propagation through time (BPTT) [16]. In the process of 
calculating the gradient of the loss function, the error 
between the estimated value and the actual value 
diminishes as the number of hidden layers increases. Thus, 
we instead use long short-term memory (LSTM) layers, 

Figure 2. An example of extracted data from a single bar. 

 

Figure 1. The overview of proposed system 

622 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



  
 

which improve the limitation of storing long-term history 
with three multiplicative gates [17].  
    Generally, chords and melodies are formed in a 
sequential order, which is affected by both the previous 
and next order. Based on this, we can predict that if we 
reverse the lead sheet and train the musical progressions, a 
meaningful sequential context similar to the originals will 
appear. Hence, we apply a BLSTM so that the network can 
reflect musical context not only in forward but also in 
backward directions. 
    As shown in Figure 1, the input semitone vectors from 
each bar enter the network sequentially during the time 
step (i.e. a fixed number of bars) and emit the 
corresponding output chord classes in the same order. This 
is possible because the hidden layer in the network returns 
the output for each input. In order to train this sequence of 
multiple bars, we reconstruct our dataset by applying the 
window with the size of the time step and overlapping the 
window with the hop size of one bar. Each window, 
composed of multiple bars, is then used as a sample to train 
the network. 
    For our model, we build a time distributed input layer 
with 12 units, which represents the sequence of semitone 
vectors, 2 hidden layers with 128 BLSTM units, and a time 
distributed output layer with 24 units, which represents the 
sequence of chord classes. We empirically choose the 
number of hidden layers and units that yield the best result. 
We use hyperbolic tangent activation function for the 
hidden layers to reconstruct the features in a nonlinear 
process. We then apply the softmax function for the output 
layer to generate values corresponding to the probability 
of each class. Dropout is also employed with a rate of 0.2 
on all hidden layers to prevent overfitting. We use mini-
batch gradient descent with categorical cross entropy as 
the cost function and Adam as the optimizer. In addition, 
for the model training process, we use a batch size of 512 
and early stopping for 10 epoch patience. 
 

2.3 Hidden Markov Model 

We apply two types of supervised HMM as baseline 
models. First is a simple HMM which is a generative 
model and the other is hybrid deep neural network–HMM 
(DNN-HMM) which is a sequence-discriminative model 
[18].  

2.3.1 Simple HMM 

The simple HMM consists of three parameters: initial state 
distribution, transition probability and emission 
probability. In our case, the initial state distribution is the 
histogram of each chord in our train set. The transition 
probability is computed using the bigram of chord 
transition and it is assumed to follow the rule of general 
first-order Markov chains. A higher-order transition 
probability is not taken into account because the fixed 
length of an input bar in our task is not long enough. The 
emission probability is determined by a multinomial 

distribution of semitone observations from each chord 
class.  

Once the parameters are learned, the model can generate 
a sequence of hidden chord states from a melody with three 
steps. First, the probabilities of 24 chord classes in each 
bar are determined by the melody distribution in each bar. 
As mentioned above, the simple HMM is a generative 
model. Hence, it uses not only the emission probability but 
also a class prior to calculate posterior probability with the 
Bayes rule. We define the class prior same as the initial 
probability, which is the histogram of each chord. 
Secondly, in order to reflect sequential effects, transition 
probability is applied to adjust the probabilities of the 
chord classes. In case of the first chord state, since there is 
no previous state to consider the transition, the initial 
probability is applied instead. After that, a Viterbi 
decoding algorithm is implemented to find the optimal 
chord sequence that is most likely to match along with the 
observed melody sequence [19]. 

2.3.2 DNN-HMM 

The hybrid DNN-HMM is a popular model in the field of 
speech recognition [20]. It is a sequence-discriminative 
model, which adapts the advantage of sequential modeling 
method of HMM, but does not require the class prior and 
the emission probability to get posterior probability. DNN 
makes it possible because the probability result from a 
softmax output layer can be assumed as a posterior 
probability. Then the two of HMM parameters - initial 
state distribution and transition probability – are applied 
identically with the simple HMM to employ the Viterbi 
decoding algorithm. 
    We build an input layer with 12 units, 3 hidden layers 
with 128 units that are all identical and an output layer with 
24 units. We use hyperbolic tangent activation function for 
the hidden layer and softmax for the output layer. Other 
features such as dropout, loss function, optimizer and 
batch size are applied in the same settings of BLSTM. 
 

3. EXPERIMENTS 

In this section, we first introduce our dataset, which is 
parsed from digital lead sheets. Then we present the 
experimental setup for evaluating the performance of 
chord generation models. We conduct both quantitative 
and qualitative evaluations for this task. 

3.1 Dataset 

We use the lead sheet database provided by Wikifonia.org, 
which was a public lead sheet repository. The site unfortu-
nately stopped service in 2013, but some of the data, which 
consists of 5,533 Western music lead sheets in MusicXML 
format, including rock, pop, country, jazz, folk, R&B, chil-
dren’s song, etc., was obtained before the termination and 
we extracted features from the data for only academic pur-
pose. From the obtained database, we collect 2,252 lead 
sheets, which are all in major key, and the majority of the 
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bars in the lead sheets have a single chord per bar. If a bar 
consists of two or more chords, we choose the first chord 
in the bar. Then we extract musical features and convert 
them to a CSV format (see Section 2.1). The set is split 
into two sets – a training set of 1802 songs, which consists 
of 72,418 bars and a test set of 450 songs, which consists 
of 17,768 bars. Since musical features in this dataset can 
be useful for not only chord generation but also for other 
kinds of symbolic music tasks, the dataset is shared on our 
website (http://marg.snu.ac.kr/chord_generation/) 
for public access. 
 

3.2 Quantitative Evaluation 

We perform a quantitative analysis by comparing the 
accuracies of chord estimation from each model using the 
test set. The accuracy is calculated by counting the number 
of matching samples between the predicted and the true 
chords and by dividing it by the total number of samples. 
We mainly apply a 4-bar melody input for our task, but 
also experiment with 8-, 12- and 16-bar inputs to analyze 
the influence on the length of a melody sequence. 
    Determining the “right” chord is a difficult process 
because chord selection can vary among people based on 
their musical styles and tastes. However, the 
aforementioned accuracy calculation is often used to 
evaluate the capability of incorporating the long-term 
dependency in the musical progression [6, 8]. Therefore, 
we use it for measuring which model reflects the 
relationship between chord and melody most adequately. 
 

3.3 Qualitative Evaluation 

As mentioned above, there is a limit to evaluate the model 
performance only by a quantitative analysis. Thus, we also 
conduct qualitative evaluation based on subjective rating 
from actual user. This assessment allows us to determine 
the validity of each model by comparing how the chords 
generated from different models are perceived by actual 
users. For the experiment, we collect eighteen 4-bar-length 
melodies from lead sheets of thirteen K-pop songs and five 
Western pop songs. Every melodic sequence is converted 
into a vector of 12 semitones as described in Section 2.1. 
HMM, DNN-HMM, and BLSTM then generate chord 
sequences from each vector. Those sequences are 
evaluated by 25 musically untrained participants (13 males 
and 12 females) through a web-based survey.  

The participants complete 18 sets of surveys in their 
own pace. At the beginning of each set, participants listen 
to a melody. After that, participants listen to the four types 
of chord progressions, including the one from the original 
song, along with the melody. Participants are asked to rate 
each chord progression on a five-point scale (1 – ‘not 
appropriate’; 5 – ‘very appropriate’). At the end of each set, 
participants also are asked to answer a question whether 
they have pre-existing familiarity with the original songs. 
The audio samples used for experiment are available on 
our website. 

4. RESULTS 

4.1 Chord Prediction Performance 

Table 1 presents the accuracy results of three models for 
four instances of different bar lengths. The results show 
that the BLSTM method achieves the best performance on 
the test set followed by DNN-HMM and HMM. According 
to the average scores of models, BLSTM has 23.8% and 
11.4% performance increase from the HMM and DNN-
HMM, respectively. The results also demonstrate that the 
number of input bars is not an important factor affecting 
the accuracy for all models since they don’t show obvious 
linear variations. 

To examine the quality of predicted chords from each 
model more in depth, we compute the results of each 
model into a confusion matrix. This allows us to easily 
analyze the results through visualization. We normalize 
the matrix with the number of samples in respective chords 
so that each row represents the distribution of predicted 
chords on each true chord class. In Figure 3, we display 
this normalized confusion matrix of each model.  
    A number of noteworthy findings from each matrix are 
observed. First, HMM yields a skewed result that shows 
severe misclassification of chords especially on C, F and 
G as shown in Figure 3(a). We hypothesize this is resulted 
from the lack of complexity of the model. Emission 
probability, one of the parameters of the model, does not 
properly capture the accurate correlation between the 
chords and corresponding melodies. Moreover, the fact 
that the training data contains more frequent occurrences 
of C, F and G chords (over 60% in total samples) reduced 
the accuracy of the HMM model which uses the prior 
probability to obtain the posterior as mentioned in Section 
2.3.1. Lastly, a noticeable bias in transition matrix moving 
to C chord also seems to lower the precision of the model.  

The result of DNN-HMM is similar to HMM but the 
skewness on C chord spreads out little bit to F and G 
chords. Despite our initial expectation that the DNN would 
perform better since it is a discriminative model that 
calculates posterior directly, still many misclassifications 
on three chords exist as shown in Figure 3(b). To find the 
reasoning behind this observation, we test simple DNN 
with 1-bar input without the sequential parameter of HMM. 
The accuracy is higher than DNN-HMM (46.93%) and the 
confusion matrix produces more diagonal elements as 
shown in Figure 4. This finding supports that the transition 

Table 1. Chord prediction performance using different 
number of input bar. 
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probability of HMM forces the model to generate limited 
classes and also that the model is not adequate to train 
various chord progressions.  
    In contrast to the HMM based method, the confusion 
matrix of the BLSTM shows a less skewed distribution and 
clearer diagonal elements as shown in Figure 
3(c). BLSTM has much more complex parameters in 
hidden layers, which train the sequential information of 
both melodies and chords. We believe this property 
makes the performance better compared to the others.  
 

4.2 User Preference 

In the user subjective test, evaluation scores are obtained 
from 450 sets (18 sets x 25 participants). Each set contains 
chord sequences from HMM, DNN-HMM, and BLSTM. 
An original chord sequence is also included for relative 
comparison of the generated results to the original. These 
four chord sequences are evaluated as described in Section 
3.3. Figure 5 shows the example of melody and chord 
sequences which is used in the user test and more examples 
are available to listen on our website. 

The average score of each model is shown in Figure 6. 
The original chord progression is preferred the most 
followed by BLSTM, DNN-HMM, and HMM. To 
investigate whether differences on scores between the 
results are critical, we conduct one-way repeated measure 
ANOVA setting each model as a variable. The result 
shows that at least one out of four scores is significantly 
different from the others. (F(3, 1772) = 310, p < 0.001). 
We then conduct a pairwise t-test with Bonferroni 
correction on the mean scores between each pair of models 
for a post-hoc analysis. As a result, differences between all 
pairs are proven to be significant (p < 0.01). Therefore, it 
can be concluded that the BLSTM produces the most 
satisfying chord sequences among the other computational 
models but it produces less satisfying results than the 
original. Moreover, since the difference between BLSTM 
and DNN-HMM is bigger than other pairs, it seems there 
is a big quality difference between them.  
    To verify our hypothesis that having familiarity with the 
original song affects the result we perform a further 
analysis. We separate 450 evaluation sets into two, 248 
sets marked as known and the rest as unknown, and 
conduct further analysis. A simple comparison of those 
two sets based on the evaluation scores shows that 
awareness of the songs does not affect the preference rank 
of the models. We also perform one-way repeated measure 

Figure 3. Normalized confusion matrix of HMM(a), 
DNN-HMM(b), and BLSTM(c) using 4-bar melody 
input. 

Figure 4. Normalized confusion matrix of simple DNN 
using single bar melody input. 

Figure 5. An example of generated chord progressions 
from three different models and the original progression. 
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ANOVA for each group of awareness (group of known 
songs: F 3, 964 	=	286, p	<	0.001 ; group of unknown 
songs: F 3, 780 	=	72, p	<	0.001) and pairwise t-test with 
Bonferroni correction. The results are presented in Figure 
7. As shown in the figure, when songs are unknown, the 

preference for HMM based models increases while it 
decreases for BLSTM generated and original chords. A 
plausible explanation for this observation can be that when 
the listener knows the song, he/she is more perceptive of 
the monotonous chord sequences generated from HMM 
and DNN-HMM which tend to produce more of C, F and 
G than other chords. However, when the listener does not 
know the song, he/she is less aware of the monotonous 
progression of the chords and tend to give more generous 
scores to those two models. For BLSTM, the result is the 
opposite. Listeners who are more used to the dynamic 
chord progression of the original song tend to give 
relatively higher scores to BLSTM than to HMM based 
methods probably because BLSTM often generates a more 
diverse chord sequences. On the other hand, when the 
songs are unknown, relative preference towards both 
BLSTM and the original chords is less strong. The reduced 
gap among four different options when the songs are 
unknown may be explained by the assumption that when 
the songs are not familiar, all four options are relatively 
equally acceptable to the listeners. Regardless of the 
difference in the results, however, BLSTM is preferred 
over the other two models in both cases. 
 

5. CONCLUSIONS 

We have introduced a novel approach for generating a 
chord sequence from symbolic melody using neural 
network models. The result shows that BLSTM achieves 
the best performance followed by DNN-HMM and HMM. 
Therefore, the recurrent layer of BLSTM is more 
appropriate to model the relationship between melody and 
chord than HMM based sequential methods.  
    Our work can be further improved by modifying data 
extracting and preprocessing steps. First, since the lead 
sheets used in this study have one chord in each bar, the 
task is constrained to one-chord generation for each bar. 
Since actual music usually contains a lot of bars with 
multiple chords, additional extraction process is needed to 
allow the model to generate multiple chords per bar. 
Secondly, in the preprocessing step, all chords are mapped 
into only 24 classes of major and minor. Thus, further 
chord classes such as maj7 and min7 need to be included 
for performance improvement. Lastly, our input feature 
vectors consist of 12 semitones by accumulating the 
melody notes in each bar, so the sequential information of 
melodies in each bar disappears in this step. Thus, another 
feature-preprocessing step may be needed not to omit the 
information, which can be a crucial factor in the future 
work. We hope that more researches will be done through 
our published data to overcome the limitations as well as 
to further develop of this task. 
 

6. ACKNOWLEDGEMENTS 

This work was supported by Kakao Corp. and Kakao Brain 
Corp. 

Figure 6. Mean score of subjective evaluation of each 
model. 

Figure 7. Mean score of subjective evaluation for a 
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ABSTRACT

Most of cover song identification algorithms are based
on the pairwise (dis)similarity between two songs which
are represented by harmonic features such as chroma, and
therefore the choice of a distance measure and a feature has
a significant impact on performance. Furthermore, since
the similarity measure is query-dependent, it cannot rep-
resent an absolute distance measure. In this paper, we
present a novel approach to tackle the cover song identi-
fication problem from a new perspective. We first con-
struct a set of core songs, and represent each song in a
high-dimensional space where each dimension indicates
the pairwise distance between the given song and the other
in the pre-defined core set. There are several advantages
to this. First, using a number of reference songs in the
core set, we make the most of relative distances to many
other songs. Second, as all songs are transformed into the
same high-dimensional space, kernel methods and metric
learning are exploited for distance computation. Third, our
approach does not depend on the computation method for
the pairwise distance, and thus can use any existing algo-
rithms. Experimental results confirm that the proposed ap-
proach achieved a large performance gain compared to the
state-of-the-art methods.

1. INTRODUCTION

A cover song, or simply cover, is a new version of existing
music that is recorded or arranged by another musician. A
cover reuses the melody and lyrics of the original song,
but it is performed with new singers and instruments. The
other musical factors such as key, rhythm, and genre can
be reinterpreted by the new artist. Since the copyright of
composition and lyrics of the cover still belongs to the au-
thor of the original song, releasing a cover song without
permission of the original author may cause a legal con-
flict. Another case is music sampling, which is the act of
process that reuses a snippet of existing sound recordings.
The sampling is widely considered to be a technique for

c© Hoon Heo, Hyunwoo J. Kim, Wan Soo Kim, Kyogu Lee.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Hoon Heo, Hyunwoo J. Kim, Wan
Soo Kim, Kyogu Lee. “Cover Song Identification with Metric Learning
Using Distance as a Feature”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

creating music today, but licensing that the original cre-
ator authorizes its reuse is a legal requirement. Cover song
identification is a task that aims to measure the similarity
between two songs. It can be used to prevent the infringe-
ment of copyright, and also to be an objective reference in
case of conflict.

For a decade, many approaches for cover song identi-
fication have been proposed. Humans generally recognize
the cover through the melodic or lyric similarity, but sep-
aration of the predominant melody from a mixed music
signal is still not at a reliable level, and extraction of the
lyrics can be attempted only if it is clearly separated. For
this reason, most of the existing algorithms use the har-
monic progression represented by an acoustic feature such
as chroma [6], and measure the similarity in the features to
determine the distance between two songs.

Cover song identification generally consists of two main
stages: feature extraction and distance calculation. In
most related works, chroma or harmonic pitch class pro-
file (HPCP) are usually chosen, as well as its variants such
as CENS [9], CRP [8], and MPLPLC [2]. It is reported that
the abstraction of the chroma-like feature to focus on the
chord progression rather than instantaneous note changes
improves the identification performance [2, 15]. In early
days, the feature was synchronized with the beat to take
into account the covers with different tempo [4]. However,
since the error in beat tracking degrades the performance
and the tempo change is usually not extreme, the hop size
with a fixed length is recently preferred [14]. Besides,
two-dimensional Fourier transform magnitude (2DFTM)
of the chroma feature is applicable for large-scale cover
song identification [1]. The 2DFTM is key-invariant and
thus does not require any preprocessing for key transposi-
tion. Also, regardless of the duration of the song, its fixed
size has the advantage of keeping the locality.

In respect to the distance calculation, an early approach
finds the best-correlated point using cross-correlation of
the beat-synchronous chroma [4]. The next popular ap-
proach is based on dynamic time warping (DTW), which
can be sensitive to tempo changes even when the hop size
is fixed [14]. This approach uses the overall distance af-
ter aligning over the whole region of the two given songs.
On the other hand, a more recent approach called similar-
ity matrix profile (SiMPle) yields a high similarity when
many local similar regions are found [15].

The conventional approaches described above calculate
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Figure 1. (a) The original distance between a query q1
and the other songs. (b) The distance between each query
and the core set C. (c) New representation of songs in the
|C|-space.

the distance between a query and the songs to be com-
pared, and determine that the song with the nearest dis-
tance is highly likely to be a cover. Since this process is
separate from each query, the result from “another version
of the same cover” cannot be taken into account. If it is
possible, songs with different lengths can be represented
in the same space. Furthermore, if similar/dissimilar song
pairs are known, the metric to measure the song distance
can be optimized, rather than using the Euclidean distance.
Instead of taking the distance matrix directly to rank the
similarity, we first perform a nonlinear transformation us-
ing kernel principal component analysis (KPCA) to rear-
range each song in the high-dimensional space. Next, the
distance metric is learned from song pairs in the new rep-
resentation and their labels. We select “core songs” with
diverse musical properties and use them for both embed-
ding and training. In summary, our approach assumes that
the distance between the core set and each song can be a
discriminating feature to easily group the same covers. The
conceptual illustration of this new representation is shown
in Figure 1.

The goal of this paper is to examine whether the dis-
tance metric learning can be effective to retrieve the simi-
larity between songs. Also, this paper aims to achieve the
best performance in cover song identification by applying
the metric learning to the distance matrix generated by ex-
isting algorithms. Currently, MIREX hosts an annual task
for cover song identification, but the dataset is not publicly
available. In the later section, we report a performance
comparison using our own dataset with the same specifica-
tion as that of the MIREX.

The rest of this paper is organized as follows. Sec-
tion 2 defines some important terms throughout this pa-
per, and summarizes three popular algorithms for measur-
ing the distance between songs. In section 3, we describe
the technical method for better representation of songs and
metric learning. After that, the experimental setup and re-
sults are presented in section 4. Finally, the conclusions of
this paper are drawn in section 5.

2. DISTANCE MATRIX

The distance matrix is defined by a two-dimensional ma-
trix that contains the pairwise distances for all possible

Evaluation

set 𝔼

Song-wise distance

Kernel PCA

Metric learning

Similarity rank in 𝔼 for each query in ℚ

Core set ℂQuery set ℚ

Figure 2. Block diagram of the proposed method.

combinations of two songs. The range of distance may
vary depending on the algorithm, but it should be low be-
tween songs belonging to the same cover group, and should
be high if they are not associated.

We define three sets of songs as follows:

• Query set (Q): A set of songs to be a query for iden-
tification. Each cover group consists of the same
number of versions.

• Evaluation set (E): A set for performance evaluation
which includes the query set Q. The remainders are
“confusing songs” that are not associated with any
cover groups.

• Core set (C): An additional set of songs for embed-
ding and training in the proposed method. It is good
to select songs in the core set with diverse musical
styles (i.e. genre, tempo, instruments).

Among these sets, Q ⊂ E and E ∩ C = ∅ should be
satisfied.

The distance matrix is a square matrix calculated from
all the songs in the three sets. We employed three al-
gorithms for measuring the song-wise distance: dynamic
time warping (DTW), Smith–Waterman algorithm, and
similarity matrix profile (SiMPle). In the following sub-
sections, we give a brief overview of each algorithm to
construct the distance matrix.

2.1 Dynamic Time Warping

DTW performs dynamic programming to retrieve the op-
timal path that minimizes the warping cost. Given a se-
quence A of length n and a sequence B of length m, it
constructs an n-by-m matrix that contains the Euclidean
distance δi,j between both sequences at two time instances
i and j. The cumulative distance γi,j is the sum of the
distance in the current point and the minimum cumulative
distance from the three adjacent points,

γi,j = δi,j + min (γi−1,j−1, γi−1,j , γi,j−1) . (1)

The overall distance between two sequences A and B is
determined by the cumulative distance at the end of the
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path,
dA,B = γn,m. (2)

To prevent unrealistic warping and reduce the number
of paths to consider, DTW can be implemented with global
and local constraints. The two popular global constraints
are Sakoe–Chiba band [11] and Itakura parallelogram [5].
On the other hand, the local constraints allows deviations
of the double or half the original tempo by using warpings
(i− 1, i− 1), (i− 2, j − 1), and (i− 1, j − 2) [10].

2.2 Smith–Waterman Algorithm

Similar to DTW, Smith–Waterman algorithm performs dy-
namic programming to find the optimal path that max-
imizes the similarity score between two sequences [16].
The main difference to the classic DTW is that the optimal
path is produced locally. That is, it is not necessary that
the path with the maximum similarity covers the whole se-
quence. Given a sequence A of length n and a sequence B
of length m, it constructs an (n + 1)-by-(m + 1) scoring
matrix H . The first row and column are initialized with 0.
The recursion formula to fill the rest of the scoring matrix
is,

Hi,j = max


Hi−1,j−1 + s(ai, bj),

maxk≥1{Hi−k,j −Wk},
maxl≥1{Hi,j−l −Wl},
0

(3)

where s(ai, bj) is the similarity score between ith element
of A and jth element of B, and Wn is the penalty of a
gap with length n. The overall similarity of the Smith–
Waterman algorithm is defined as the maximum value on
the scoring matrix.

2.3 Similarity Matrix Profile

Similarity matrix profile (SiMPle) efficiently evaluates
similarities between songs based on subsequence similar-
ity joins in the features [15]. For a time-frequency repre-
sentation A of length m and B of length n, SiMPle iden-
tifies the nearest neighbor of each continuous subsets in A
from all continuous subsets in B. Euclidean distance be-
tween the subset ofAwith time index i and the subset ofB
with time index j, di,j , is calculated using MASS (Mueen’s
Algorithm for Similarity Search), the fastest known algo-
rithm for distance vector computation [7].

di,j = MASS(A[i], B[j]) (4)

SiMPle Pi is obtained by choosing the minimum value in
the distance between a subset of A and each subset of B.

Pi = min(di,1, di,2, · · · , di,n) (5)

The overall distance between two sequences A and B is
defined as the median value of SiMPle [15].

dA,B = median(Pi) (6)

Note that SiMPle is not a symmetric distance measure, i.e.,
dB,A 6= dA,B .

3. DISTANCE METRIC LEARNING

Distance metric learning has been studied in machine
learning literature. Classical metric learning algorithms are
motivated by Mahalanobis distance given as

d(x1, x2) =
√

(x1 − x2)T Σ−1(x1 − x2), (7)

where Σ is the covariance matrix of X . The main intu-
ition behind Mahalanobis distance is that it calculates the
Euclidean distance in a linearly transformed space by R,
where RTR = S−1. Mahalanobis distance is a conve-
nient metric since it is scale-invariant, and it takes the cor-
relations of data set into account. The linear transform R
makes the data have the isotropic covariance as the same
as the covariance of multivariate normal distribution. The
goal of metric learning algorithms is to learnA, which cor-
responds to the precision matrix (Σ−1) based on a variety
of criterion.

d(x1, x2) =
√

(x1 − x2)TA(x1 − x2), (8)

where A is a symmetric positive semidefinite matrix A �
0, A = AT . Training may require additional labels such as
classes and similar/dissimilar pairs depending on the ob-
jective of the frameworks.

The main difficulty to apply the classical metric learn-
ing algorithms to cover song identification problems is that
the songs should be represented in a vector space. One
simple approach is to extract a set of fixed length features
from songs, e.g., mean MFCCs, mean Chroma, and beats
per minute (BPM). But these features do not capture the
temporal information within a song. So, a variety of time
series analysis methods has been shown to be more effec-
tive such as dynamic time warping (DTW).

Can we embed songs in a vector space preserving the
temporal information? If this is possible, then distance
metric learning algorithms are able to find a better distance
between songs with both the temporal information and ad-
ditional labels (similar/dissimilar pairs or classes). One op-
tion is kernel PCA. Fortunately, distance metric learning
can be extended in the context of kernel methods as well.
The kernel methods do not require the original data to be in
a vector space. We can get a gram matrix (or inner product
matrix) by pairwise dissimilarity measures. For embed-
ding, other embedding algorithms can be used for instance
multidimensional scaling (MDS), ISOMAP, locally linear
embedding (LLE) and so on. We discuss our framework
to calculate the gram matrix and embed songs in a vector
space shortly.

3.1 Embedding of songs

As discussed above, we start from a pairwise dissimilarity
measures. We calculate the distance matrix as described
in Section 2. The gram matrix in the conventional kernel
methods should be symmetric positive-semidefinite ma-
trix. If the matrix is given as not symmetric (e.g. SiMPle),
it needs to be symmetrized by d′i,j = 1

2 (di,j + dj,i), where
di,j is defined in Eqn (6).
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After symmetrization of the distance matrix, we per-
form a kernel PCA. PCA seeks for eigenvectors of the co-
variance matrix of the data given as

C =
1

N

N∑
i

xi, x
T
i . (9)

Similarly, kernel PCA seeks for eigen functions of the co-
variance function. In other words, Given a nonlinear func-
tion Φ(·) to map data to feature space, the covariance ma-
trix is calucated by

C̄ =
1

N

N∑
i

Φ(xi)Φ(xi)
T , (10)

where Φ(x) is centered, i.e.,
∑N

i Φ(xi) = 0. Thanks
to the kernel trick, without performing the map Φ, ker-
nel methods can be computed by kernel functions Kij =
k(xi, xj) = 〈Φ(xi),Φ(xj)〉. In this paper, we used the Ra-
dial basis function (Gaussian kernel). The kernel function
is given by

k(xi, xj) = exp

(
−‖xi − xj‖

2

2σ2

)
= exp

(
−

(d′ij)
2

2σ2

)
(11)

where d′ij is the symmetrized dissimilarity measure (dis-
tance) and σ is a tuning parameter. So only with the
pairwise dissimilarity measure, the gram matrix for ker-
nel PCA is obtained. The remaining procedure is similar to
classical PCA. For more details, we refer the reader to [12].

Let z1, · · · , zN be the new representation of songs from
KPCA described above. In our experiments, the number
of basis functions and the bandwidth σ in Eqn (11) were
empirically selected.
Remarks. When KPCA embeds songs in a vector space
based on dissimilarity measured by SiMPle, we found that
in the vector representations of some songs may have ex-
tremely large norms. So regardless of the metric learned by
A in Eqn (8), these songs tend to have large distance from
most of other songs. In other words, these songs cannot be
detected as a cover song. To prevent this problem, we nor-
malized the vector representation of songs z1, · · · , zN by
their `2 norms. All songs now are on the unit sphere and
the problem can be alleviated. The empirical performance
gain is provided in Section 4.3. The normalized vector rep-
resentation will be used for metric learning.

3.2 Metric Learning

We adopt the Information-Theoretic Metric Learning
(ITML) [3] except the regularization to make A close to
the prior A0, which is selected by users. Let S and D be
a similar set and a dissimilar set, respectively. Then opti-

mization program is given as

min
A

∑
(i,j)∈S

max(0,Tr(AZijZ
T
ij)− u)

+
∑

(i,j)∈D

max(0, l − Tr(AZijZ
T
ij)), (12)

s.t. A � 0 and AT = A,

where Zij = zi − zj and Tr(·) is the trace. The input
zi for the metric learning in Eqn (12) is the new (normal-
ized) representation of ith song obtained by KPCA. The
objective of this metric learning is to seek for an A matrix,
which make the distance of dissimilar pairs larger than a
threshold l (and the distance of similar pairs smaller than
a threshold u). A similar pair consists of an original song
and its cover song, or it can be two cover songs from an
original song. The dissimilar pairs in our experiments are
all possible pairs of songs except the similar pairs.

The way we label the relationship between songs natu-
rally yields highly skewed labels. For example, if two out
of ten songs are the only covers, then we have one similar
pair against

(
10
2

)
− 1 = 44 dissimilar pairs. Interestingly,

it turns out that the skewness of labels does not hurt the
performance of our framework. Rather, as the number of
dissimilar pairs increases, the performance increases. Our
experiment evidences this phenomenon, see Section 4.3.

The formulation in Eqn (12) is optimized by projected
stochastic subgradient descent as in Alg. 1. Since the ob-
jective function is a nonsmooth and convex function, we
used the subgradient descent function. Also for the sym-
metric positive semidefinite constraint, the projection is
added in line 12. The step size α can be updated by any
reasonable method.

Algorithm 1 Projected SSGD for metric learning.
1: for k=1:maxiter do
2: DATA′ = randperm(DATA)
3: for (i, j) = DATA′ do
4: p = 0
5: if (i, j) ∈ S then
6: if max(0,Tr(AZijZ

T
ij)− u) > 0 then

7: p = ZijZ
T
ij

8: else
9: if max(0, l − Tr(AZijZ

T
ij)) > 0 then

10: p = −ZijZ
T
ij

11: A = A− αp
12: A = πpsd(A)

13: update α

4. EVALUATION

4.1 Dataset and Metrics

We used two separate datasets to evaluation and train our
method. The specification of our evaluation dataset resem-
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Figure 3. Improved performance by each step in the proposed method: the original distance matrix, kernel PCA, and
metric learning with kernel PCA.

bles as in the MIREX cover song identification task 1 . The
evaluation set E consists of 330 cover songs, which make
the query set Q, and 670 non-covers. There are 30 differ-
ent kinds of cover songs and each has 11 cover versions.
The training dataset consists of 254 covers and each cover
has two to five different versions, and have 1,175 songs in
total. It was used as the core set C in the experiments. Both
datasets are disjoint, and contain various genres of Korean
pops released from 1980 to 2016.

We employed four conventional metrics that have been
used in the MIREX: total number of covers identified in top
10, mean number of covers identified in top 10 (MNIT10),
mean average precision (MAP), and mean rank of the first
correctly identified cover (MR1). In the experimental re-
sults, we skipped the first one because it is exactly the same
as the second metric multiplied by |Q|.

4.2 Experiments

Since selection of features and calculation of pairwise song
distance are not our interest, the chroma energy normalized
statistics (CENS) [9] was fixed as the feature vector and
extracted for every half a second in all the following ex-
periments. Also, before calculating the distance between
two songs, we transposed one using the optimal transpose
index (OTI) [13] so that both songs have the same key.

In the first experiment, we examined the effect of two
proposed steps on identification performance: new rep-
resentation transformed by the kernel PCA, and the met-
ric learning using similar/dissimilar pairs in the core set.
135 basis functions were empirically selected, and 2435
similar pairs (for covers) and 687k dissimilar pairs (for
non-covers) were used as training data for metric learning.
This experiment allows reporting the maximum perfor-
mance we could achieve and how each part of the proposed
method contributes to the performance improvement.

The second experiment aims to verify that the metric
learning converges to a higher performance as more train-
ing data are used. We tested different numbers of the train-
ing data, which are song pairs in the core set. Songs are
randomly chosen with the given number of pairs in each
class. Since we have much less similar pairs than dissimi-

1 http://www.music-ir.org/mirex/wiki/2016:
Audio_Cover_Song_Identification

lar pairs, the training will be imbalanced when all possible
similar pairs are used. In this experiment, we fixed the
original distance measure by the SiMPle algorithm.

4.3 Results and Discussions

The first experimental result is shown in Figure 3. When
comparing the original performance of the existing algo-
rithms, Smith–Waterman algorithm achieved 26% higher
performance than classic DTW. This is almost the same re-
sult as reported in a previous work [15]. The SiMPle algo-
rithm, which we consider to be the state-of-the-art method,
originally scored a slightly lower performance than Smith–
Waterman algorithm in our experiment. However, the pro-
posed method improved its original performance by 25%
(in MNIT10), which was the largest improvement. Algo-
rithms based on dynamic programming (DP) seem to have
limitations in potential performance gain. One possible
reason is that the differences in distance between similar
and dissimilar pairs are not so discriminated; while the
SiMPle mainly depends on local similarity joins with a
fixed length of 10 seconds, DP-based algorithms may take
much longer sequences into account. Meanwhile, MR1
was increased by the metric learning. This will be dis-
cussed in detail in the next paragraph.

Figure 4 shows the learning curve of the metric learn-
ing with different number of pairs. A hundred pairs for
each class were not sufficient to converge. As more pairs
were used for training, both MNIT10 and MAP converged
to higher performance. This result was also obtained when
more but imbalanced training data was used. Interestingly,
the trend of MR1 increased after a certain number of it-
erations. This is caused by that the metric learning con-
centrates on the performance for a large majority of query
songs, while it fails for very few queries. To support this,
we first calculated the median instead of the arithmetic
mean rank, and noticed that the correct cover had the high-
est similarity in most queries (i.e. median = 1) for every
number of pairs and iteration. Nevertheless, since it is not
suitable to show that the performance is getting improved
with more iterations, the 90th percentile of rank of the first
correctly identified cover (P90R1) is shown instead in the
figure.

In summary, our experiments confirm that the use
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Figure 4. Learning curve of the metric learning with dif-
ferent number of pairs (similar, dissimilar). The black dot-
ted line indicates each metric resulted from the original dis-
tance matrix.

of KPCA and metric learning on the SiMPle algorithm
achieves the highest performance in a general situation.
Although MR1 was increased by metric learning, it was ex-
plained by the second experiment showing that the trained
metric failed only for a very small number of queries,
while it was optimized for the most of queries. Since met-
ric learning takes longer computation time and its perfor-
mance improvement was not prominent as much as KPCA,
it is possible to expect a good performance gain using
empirically optimized parameters of KPCA for a fixed
dataset. However, considering that scalability is an im-
portant issue in cover song identification, metric learning
cannot be excluded especially for large-scale collections.

In the new representation through KPCA, each dimen-
sion represents the distance from each core song. This
implies that core songs with diverse styles of music al-
lows dimensions to be nearly orthogonal, and may yield
better performance. In the metric learning, on the other
hand, higher performance could be achieved with a suffi-
cient number of similar and dissimilar pairs for training. It
is not easy to satisfy both of the above conditions simul-
taneously, because collection of songs with various styles
includes songs that are not very popular and rarely cov-
ered. Therefore, when a high recall is required (to avoid
very low identification performance for very few queries),
it is expected that it can be more important to have many
similar pairs than various styles.

5. CONCLUSIONS

In this paper, we have presented a novel approach to im-
prove the performance of existing algorithms for cover

song identification. Our approach exploits an external set
of core songs so that all the given songs are newly repre-
sented by the distance between each core song. Through
the distance metric learning after embedding of songs us-
ing kernel PCA, the original performance of the state-of-
the-art method was improved by more than 20%.

With different features and distance measures, the pro-
posed method can be easily applied to similarity analysis
of other tag-based data such as genre, mood, and style. We
plan to further explore our approach to many other MIR
tasks, and seek for proper criteria to choose the core set
from large-scale collections. A sufficient number of well-
organized core songs and efficient computation for metric
learning will be also studied in the next step.
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ABSTRACT

Many approaches to Music Information Retrieval tasks
rely on correctly determining if two segments of a given
musical recording are repeats of each other. Repetitions in
recordings are rarely exact, and identifying the appropriate
threshold for these pairwise decisions is crucial for tuning
MIR algorithms. However, current approaches for deter-
mining and reporting this threshold parameter are devoid
of contextual meaning and interpretations, which makes
comparing previous results difficult and which requires ac-
cess to specific datasets. This paper highlights weaknesses
in current approaches to choosing similarity thresholds,
provides a framework using the proportion of orthogonal
musical change to tie thresholds back to feature spaces
with the cosine dissimilarity measure, and introduces new
research possibilities given a music-centered approach for
selecting similarity thresholds.

1. INTRODUCTION

Since Foote introduced the self-similarity matrix as a tech-
nique for visualizing and representing audio data [7], ma-
trix representations have been widely used to represent
music-based data, such as songs or musical scores, when
addressing different kinds of tasks in Music Information
Retrieval [6,11,13,17]. Recordings of music often contain
slight variations between repeated sections either due to
artistic interpretations or noise introduced by the record-
ing environment. Addressing these MIR tasks often re-
quires grouping time steps together using a threshold on
the self-(dis)similarity matrix representation to determine
which pairs of time steps are similar enough to be classi-
fied as repetitions of each other. There are two issues at
play when choosing this similarity threshold: 1) selecting
the best value given the task and data, and 2) using the
value with the best musical interpretation.

Similarity thresholds are currently determined in ways
that prioritize computational successes and ignore tangi-
ble musical interpretations. These thresholds are usually
dependent on the data at hand and reported as a selection
method (say a fixed percentage) instead of as a particu-
lar threshold value. These data-dependent thresholds, re-
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ported as methods, require access to common datasets in
order to compare previous and current research. Further-
more, many of the processes for determining this crucial
threshold do not have a mechanism for connecting that
threshold back to the original feature space. For example,
current methods give little understanding to what a “small-
value” cosine dissimilarity measurement corresponds to in
terms of musical sounds such as notes and chords.

Instead of only justifying similarity thresholds based on
statistical theory or computational success, we argue mu-
sical meaning should be included in the selection and dis-
cussion of a similarity threshold. In Section 2, examples
based on a jazz lead sheet offer motivation for similarity
thresholds with musical context. In Section 3, we model
a framework for tying a chosen threshold to a particular
feature space via the concept of the maximum proportion
of orthogonal musical change. In Section 4, we introduce
how music-centered thresholds can enhance MIR research.

2. MOTIVATION WITH EXAMPLES

In MIR literature, there are a variety of methods for set-
ting the similarity threshold used to decide when sections
of a song are similar. Current methods have been based
on statistical ideas combined with concise algorithmic ex-
planations. In [1, 11, 15], for a given recording of a per-
formance of a piece of music, the threshold was specified
so that a fixed percentage of a matrix representation (either
self-similarity matrix or self-dissimilarity matrix - SDM)
would be selected. The method in [18–20] sets the mean-
ing of “similar” for each time step by first looking for the
κ nearest neighbors of a given time step and then by en-
forcing a mutual condition; that is that time steps i and
j are determined to be similar if both time step i is a κ
nearest neighbor of time step j and vice versa. In [3], the
threshold was set using statistical techniques on a set of
sample data. In [8–10], Goto determined a threshold us-
ing the automatic threshold selection method developed by
Otsu [16] which selects a threshold using statistics of the
grey-level histogram of a particular image. In the case of
Goto’s work [8–10], the image is a matrix representation
for a song.

While the above methods are efficient and have satisfy-
ing connections to our intuition about similarity, a crucial
weakness of these methods is a lack of a musical connec-
tion for the similarity threshold. For example, the fixed
percentage thresholds in [1, 11, 15] are easy to set and of-
fer clear methods for reproducing those workflows, but no
musical intuition is offered for these methods. Underlying
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fixed percentage thresholds is the assumption that all mu-
sic has the same proportion of similarity, which certainly
would not be the case in a collection with both classical and
jazz recordings. The method in [18–20] to some degree ad-
dresses the flaws in this assumption, but this method leaves
unanswered what it means musically to be mutual κ near-
est neighbors.

The following four examples based off a jazz lead sheet
use the bottom-10% paradigm for similarity threshold se-
lection and highlight some of the issues with this method.
The first example is just the chords by beat as described in
the lead sheet. The second example adds absolute Gaus-
sian noise, while the third example adds notes in a re-
stricted manner, seeking to mimic the spontaneous com-
position of jazz music. The final example adds both abso-
lute Gaussian noise and restricted “note” noise. These ex-
amples are constructed from a human coded .jazz file 1 of
Aisha by McCoy Tyner from 1961 found in the iRb Corpus
in **jazz format dataset [2]. Beat tracking was not used
since these examples are based on a version of the piece’s
lead sheet. Each time step represents 8 continuous beats
by concatenating adjacent 8 feature vectors (one per beat).

For each example, the distribution of dissimilarity val-
ues and the thresholded SDM are shown. All results are
from single runs of the associated random processes, but
similar results occur with repeated trials. For the thresh-
olded SDM, the original SDM values are retained to fur-
ther highlight contrast between examples.

Example 1 - Jazz Lead Sheet

This example is the ground truth for the true repeated
structure of the lead sheet. We assume that there is neither
noise nor spontaneous composition on the track.

Figure 1. Complete SDM for Aisha lead sheet. Values
near 0 are dark.

Using the bottom-10% paradigm, the threshold T is
0.375, meaning that two feature vectors with the angle be-
tween them no greater than 51.318 degrees will be deemed
similar enough to be repeats of each other. This is quite
a generous threshold; for example, a feature vector repre-
senting a C chord (held for 8 beats) and a feature vector
representing C-minor chord (also held for 8 beats) would
be deemed as repeats of each other.

1 The .jazz file was converted to a .txt file using code by Yuri Broze [2].
Chromagrams were then extracted using a new converter file, available at
https://github.com/kmkinnaird/MusicalThresh

(a) Thresholded SDM under
bottom-10% paradigm

(b) Histogram of all dissimilar-
ity values

Figure 2. Aisha lead sheet without additions

Example 2 - Jazz Lead Sheet with Gaussian Noise

In this example, we add proxy for general noise (such as
feedback in the recording environment) to the lead sheet.
To each note-beat entry of the chroma matrix for the lead
sheet, we add the absolute value of a random sample from
the Gaussian centered at 0 with standard deviation 0.5.

(a) Thresholded SDM under
bottom-10% paradigm

(b) Histogram of all dissimilar-
ity values

Figure 3. Aisha lead sheet with added track noise

In addition to most of the similarity from Example 1,
additional segments were classified as repeats using the
bottom-10% paradigm, meaning that “similarity” is being
created under this threshold selection method. However,
this example’s threshold value is lower, so two audio shin-
gles must be more similar to be considered repeats than
in Example 1. The threshold T is approximately 0.232,
meaning that two feature vectors with the angle between
them no greater than 39.818 degrees will be deemed sim-
ilar enough to be repeats of each other. This shifted (and
possibly contradictory) definition of similarity may be ap-
propriate given the data but there is no musical interpre-
tation of the threshold to support this choice. The lower
threshold does reflect the compression of the distribution
of dissimilarity values, shown in Figure 3(b).

Example 3 - Jazz Lead Sheet with “Note” Noise

In this third example, we add a proxy for spontaneous
composition. This added “note” noise is restricted to the
notes within the chord specified on the lead sheet and has
its note weight randomly selected from the distribution of
note values, shown in Figure 4.

The threshold T for this example is approximately
0.417, meaning that two feature vectors with the angle be-
tween them no greater than 54.357 degrees will be deemed
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Figure 4. Histogram of note values for “note” noise

similar enough to be repeats of each other. As expected
given this example’s construction, this threshold is similar
to the one in Example 1. However, while much of the sim-
ilarity from Example 1 was found using the bottom-10%
paradigm, it is clear that not all of it was. As with Exam-
ple 2, this threshold may be appropriate, but there is no
musical interpretation to support this choice.

(a) Thresholded SDM under
bottom-10% paradigm

(b) Histogram of all dissimilar-
ity values

Figure 5. Aisha lead sheet with added “note” noise

Example 4 - Jazz Lead Sheet with “Note” Noise and with
Gaussian Noise

In this example, we add proxies for both track noise (as
in Example 2) and “note” noise (as in Example 3). Since
we are assuming that there is both spontaneous composi-
tion and additional noise on the track, it is tempting to sim-
ply add the thresholds from Examples 2 and 3. However,
we cannot, given the construction of the proxies and that
cosine dissimilarity measure does not observe the triangle
inequality.

(a) Thresholded SDM under
bottom-10% paradigm

(b) Histogram of all dissimilar-
ity values

Figure 6. Track and “note” noise added to Aisha lead sheet

Similar to Example 2, we have a possibly contradictory
definition of similarity. In this example, the bottom-10%
paradigm captures most of the similarity from Example 1
but also incorrectly matches additional repeated “similar-
ity.” However, the value of this threshold T is lower, at ap-
proximately 0.293, which translates to an angle no greater
than 45.026 degrees between two feature vectors deemed
similar enough to be repeats.

Comparing Four Examples

These four examples highlight some of the weaknesses
in the commonly used fixed percentage threshold selec-
tion paradigm. First, the generous thresholds in Exam-
ples 1 and 3 allow for major and minor chords (such as C-
major and C-minor) to be deemed as repeats of each other.
However, the histogram from Example 3 is quite similar
to Example 1, which signals that an appropriate choice of
threshold for a lead sheet would also be appropriate to ap-
ply to a lead sheet with spontaneous composition.

Second, when a proxy for random track noise is intro-
duced, as in Examples 2 and 4, major and minor chords
would no longer be matched. However, a passing glance on
the resulting thresholded SDMs in Examples 2 and 4 show
sections of the lead sheet designated as repeats when they
perhaps should not be. Additionally, the histograms for
Examples 2 and 4 are much more compressed than those
in Examples 1 and 3, which further signals a need in in-
corporate musical context into the selection of similarity
thresholds.

Even though these four examples are based on a lead
sheet, of which three employ random processes as prox-
ies for track noise and spontaneous compositions, these
controlled and constructed examples demonstrate the need
for careful examination of the meaning and limitations of
thresholds used in MIR tasks and approaches.

3. RELATING T TO MAXIMUM PROPORTION
OF ORTHOGONAL MUSICAL CHANGE

In this section, we establish a framework for linking a simi-
larity threshold T to the space of audio shingles composed
of chroma feature vectors under the cosine dissimilarity
measure. We define the proportion of orthogonal musical
change (or POMC) for this feature space and prove a rela-
tionship between a given threshold T to POMC. Although
we ground our discussion in one particular feature space, a
similar procedure can be used to tie similarity thresholds to
any feature space using the cosine dissimilarity measure.

3.1 Preliminary Definitions and Notation

We create overlapping audio shingles from k concatenated
feature vectors, where k is a fixed integer [3–5]. For a time-
step i, the chroma feature vector χi is the column vector of
12 non-negative entries, where each entry corresponds to
one of the Western pitch classes {C,C#, ..., B} encoding
the amount of that pitch class in the ith observation [14].
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For time-step i, the audio shingle of length k, incorporating
local information, is the column vector αi:

αi =
[
χti, χ

t
(i+1), χ

t
(i+2), . . . , χ

t
(i+k−1)

]t
(1)

Each audio shingle is an element of R(k×12)
≥0 , the non-

negative closed orthant of R(k×12) and can be regarded
as vectors that start at the origin. Let θαi,αj be the an-
gle between αi and αj . Since αi, αj ∈ R(k×12)

≥0 , then
θαi,αj

∈ [0, π2 ]. The pairwise cosine dissimilarity between
two audio shingles αi and αj is defined as:

Di,j = 1− cos θαi,αj
(2)

It is natural to ask: Given the value Di,j , what are the
musical differences between those two time steps? We
introduce the notion of proportion of orthogonal musical
change (POMC), or rather the amount an audio shingle αi
must change orthogonally (before scaling) in order to be-
come αj . POMC encodes of how much one audio shingle
can be comprised of elements perpendicular to another au-
dio shingle before we say these two audio shingles are no
longer considered to be “similar” of one another.

Consider Figure 7; the vector ~γ is orthogonal to αi and
when added to αi will meet αj . We can scale the vector
(αi + ~γ) to match αj . Similarly ~φ is orthogonal to αj
and when added to αj meets αi. We can scale (αj + ~φ)
to match αi. The length of ~γ is ||αi|| · tan θαi,αj

, and the
length of ~φ is ||αj ||·tan θαi,αj

. So tan θαi,αj
is the amount

of orthogonal change for αi to become a scalar multiple of
αj and vice versa.

y

x

θαi,αj
αjαi

~γ

~φ

Figure 7. Visualization of orthogonal musical change of
αi onto αj and of αj onto αi, represented respectively by
the vectors ~γ and ~φ.

Definition 3.1. For a pair of audio shingles αi and αj , the
proportion of orthogonal musical change (POMC) is given
by tan θai,aj .

3.2 Maximum POMC Given T

Suppose that we have one audio shingle, denoted ~ξ ter-
minating at point ξ, and that we want to classify all audio
shingles that are repetitions of ~ξ. Let T be the threshold de-
termining whether pairs of audio shingles are close enough
to be repeats. We define θT as cos−1(1− T ).

Let Ξ be the set of audio shingles that are less than T
cosine dissimilar from ~ξ. So ~v ∈ Ξ, iff 1− cos θ~v,~ξ ≤ T ,
for θ~v,~ξ. Additionally, for each vector ~v ∈ Ξ, we have:

cos θ~v,~ξ ≥ 1− T = cos θT (3)

Definition 3.2. Given T , the maximum POMC, denoted ρ,
is tan(θT ), where θT = cos−1(1− T ).

We begin establishing the comparison between the au-
dio shingles in Ξ and ~ξ using just POMC. We first note
that the set of audio shingles orthogonal to ~ξ is comprised
of the audio shingles representing silence (i.e. those with-
out any notes) and the audio shingles that do not have notes
in common time with ~ξ. For example, if ~ξ represented a C
chord followed by a F chord, then an audio shingle that is
orthogonal to it could be one representing a C# chord fol-
lowed by an E chord. Given the importance of note and
chord order in music generally, the audio shingle repre-
senting an F note followed by a C chord is orthogonal to a
second representing a C chord followed by an F note. Nei-
ther of the above pairs would be mistaken as similar, and
so we restrict θT ∈ [0, π2 ), since including θT = π

2 would
imply that orthogonal pairs of audio shingles are similar.

y

x

~ξ

Ξ

θT

Figure 8. Visualization of Ξ, the set of audio shingles that
are less than T cosine dissimilar from ~ξ. The gray area
flanked in dotted arrows is the set Ξ. The dashed line con-
tinuing from ~ξ is the subspace defined by ~ξ.

More often, we want to compare pairs like a C chord
followed by a second C chord with a C chord followed
by a C7 chord, and determine if these two audio shingles
are close enough to be deemed similar. These two audio
shingles are the same save for the B[ note in the second
chord. Clearly a lone B[ note is orthogonal to a C chord
but is not orthogonal to the C7 chord. However, the C7
chord can be decomposed into the sum of a C chord and a
B[ note. In other words, the C7 chord is the C chord plus
a vector orthogonal to it. Such a decomposition is at the
heart of the concept of POMC.

Returning to our general case with audio shingle ~ξ,
we make the following definitions generalizing the above
comparison of the C and C7 chords:

Definition 3.3. Let ξ⊥ denote the hyperplane that is or-
thogonal to the vector ~ξ with the point ξ ∈ ξ⊥.

We note that ξ⊥ does not require that vectors in ξ⊥ to
be within Ξ. The following definition adds this restriction:
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Definition 3.4. Let V+ be the set of vectors originating at
the point ξ and terminating at a point in ξ⊥ such that for
~v+ ∈ V+, we have that the cosine of the angle between
(~ξ + ~v+) and ~ξ is greater than or equal to cos θT .

For any vector ~v+ ∈ V+, we have that the angle be-
tween ~ξ and ~v+ is the right angle in a right triangle with one
leg along ~ξ with length ||~ξ||2 and with another leg along
~v+ with length ||~v+||2. The tangent of the angle between
(~ξ + ~v+) and ~ξ is equal to ||~v+||2

||~ξ||2
, which must be less than

or equal to tan θT . So ||~v+||2 ≤ ||~ξ||2 · tan(θT ).

y

x

~ξ

Ξ

θT

~v+

~ξ + ~v+

V+

ξ⊥

Figure 9. Visualization of the right triangle formed by ~ξ
and ~v+ ∈ V+ in R2. The solid line perpendicular to ~ξ
represents V+ and is 2||~ξ||2 · tan(θT ) long. The dashed
line continuing from V+ combined with V+ represents ξ⊥.

The set V+ represents the set of audio shingles that are
created by adding to ~ξ an orthogonal vector of length no
longer than ||~ξ||2 · tan(θT ). For example, if T = 0.1 and
if ~ξ represented one C chord, then the audio shingle repre-
senting a C7-chord would terminate in the hyperplane ξ⊥,
but would not be included in Ξ; however, if T = 0.14, then
it would be included in Ξ.

3.3 Decomposition of Elements in Ξ

Thus far we have established the relationship between our
audio shingle ~ξ and the audio shingles ending in ξ⊥ ∩ Ξ.
We are interested in understanding the relationship of T
with all of Ξ. We offer the following decomposition for
the elements of Ξ, which connects the definitions of the
previous section to Definition 3.1 shown in Figure 7.

Proposition 3.1. The set Ξ is equal to the set S , given by

S =
{
w(~ξ + ~v+)|~v+ ∈ V+, w ∈ R≥0

}
.

Proof: First, we show that S ⊆ Ξ. We begin by letting ~v
be an element of S. So ~v = w(~ξ + ~v+) for some ~v+ ∈ V+
and some w ∈ R≥0. Let β denote the angle between ~v and
~ξ, which is also the angle between (~ξ + ~v+) and ~ξ since
~v and (~ξ + ~v+) are scalar multiples of each other. By the
definition of V+, we have that cosβ ≥ cos θT . So ~v ∈ Ξ
and thus S ⊆ Ξ.

Next, we show that Ξ ⊆ S. Let ~v ∈ Ξ and let θ~v,~ξ be

the angle between ~v and ~ξ. Then:

1− cos
(
θ~v,~ξ

)
≤ T (4)

Let v+ be the point where ~v intersects ξ⊥ (noting that
it may be necessary to continue in the direction of ~v to
intersect with ξ⊥). We have a right triangle with one leg in
the direction of ~ξ with length ||~ξ||2 and another leg from ~ξ

to v+ that is length ||v+−ξ||2. Let ~v+ be the vector from ~ξ
to v+. By definition of v+, then ||~v+||2 = ||v+ − ξ||2 and
thus:

tan
(
θ~v,~ξ

)
=
||v+ − ξ||2
||~ξ||2

. (5)

Leveraging Eqn (5), we have that

||~v+||2 = ||v+ − ξ||2 = ||v+ − ξ||2 ·
||~ξ||2
||~ξ||2

= ||~ξ||2 · tan
(
θv,~ξ

)
≤ ||~ξ||2 · tan(θT ).

The last inequality is due to the angle between two vectors
in Ξ is less than θT , that θT ∈ [0, π2 ), and that tan(x) is a
monotonically increasing function on the interval [0, π2 ).
So ~v+ ∈ V+. Let w be the positive scalar that we multiply
(~ξ + ~v+) by to get ~v. Then ~v = w(~ξ + ~v+) for some
~v+ ∈ V+ and some w ∈ R≥0. So ~v ∈ S and Ξ ⊆ S. �

This proposition gives us a decomposition for all au-
dio shingles that are less than T cosine dissimilar from
~ξ, regardless of how T is set. Using standard orthogo-
nal projections, we can decompose any audio shingle into
the form w(~ξ + ~α), where ~α is audio shingle orthogonal
to ~ξ. To check if ~α ∈ V+, we compute ||~α||2 and see if
||~α||2 ≤ ||~ξ||2 · tan(θT ). Proposition 3.1 gives contextual
meaning to our thresholds, that is the maximum proportion
of orthogonal notes allowed between two audio shingles of
at most T cosine dissimilarity.

3.4 Relating Choice of T to Audio Shingles via
Maximum POMC

The above decomposition for vectors within T cosine dis-
similarity measure from ~ξ provides us an avenue for re-
lating our chosen thresholds directly to musical building
blocks such as notes and chords, when they are represented
as chroma feature vectors. This means that we can set
a threshold by directly encoding acceptable musical vari-
ation for a small segment instead of setting the thresh-
old using parameters free from musical context, such as
a fixed percentage of entries from a matrix representation
or a fixed-number of nearest neighbors.

We can set a threshold in one of three ways: 1) choos-
ing T using existing methods, 2) setting the largest allow-
able θT between two audio shingles classified as similar
enough, or 3) by setting ρ, the maximum POMC. Since
T, θT , and ρ are functions of each other, fixing one inher-
ently fixes the other two, and so we have an interpretation
for that threshold in the space of audio shingles (under the
cosine dissimilarity measure), returning musical context to
what we mean by “similar structure.”

• If we fix T , then we have θT = cos−1(1− T ) and

ρ =

√
1− (1− T )2

(1− T )
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• If we fix θT , then T = 1− cos θT and ρ = tan θT .

• If we instead fix ρ, then we have θT = tan−1(ρ) and

T = 1− 1√
ρ2 + 1

3.5 Returning to Motivating Examples

In Section 2, we described the thresholds for each exam-
ple in terms of θT , which is still unsatisfactory in terms of
musical intuition. Now we will interpret each T using ρ.

The thresholds in Examples 1 and 3 in Section 2 have
similar interpretations, which makes sense given their con-
structions. In Example 1, we have T = 0.375. So
ρ = 1.249, meaning that for each note in a given audio
shingle ~ξ, we can add an orthogonal vector of notes with
1.249 times the magnitude of ~ξ and have the result be con-
sidered similar to ~ξ. This is quite a generous threshold. For
example, an audio shingle representing a C chord whole
note is considered similar to a second shingle representing
a C chord whole note plus a D-minor6 chord whole note
and a B[ dotted-half note. Example 3 has a similarly gen-
erous threshold with T = 0.417. So ρ = 1.395, and we
can add a few more orthogonal notes to ~ξ than in Example
1 and still have the result be considered similar to ~ξ.

Examples 2 and 4 in Section 2 both include the incor-
poration of Gaussian noise, and their associated thresh-
olds have similar interpretations. In Example 2, we have
T = 0.232; so ρ = 0.834. In Example 4, we have
T = 0.293; so ρ = 1.001. These thresholds are less gen-
erous than those in Examples 1 and 3. In Example 4, an
audio shingle representing a C chord whole note is con-
sidered similar to a second shingle representing a C chord
whole note plus a D-minor chord.

While the above interpretations offer a musical context
for our similarity thresholds, these interpretations only re-
gard the worst case (and less likely) scenario for comparing
a given audio shingle ~ξ to another one; that is comparing ~ξ
to one comprised of ~ξ added to an audio shingle orthogonal
to ~ξ. In addition to this interpretation, we would also advo-
cate that when setting the similarity threshold, researchers
also explore comparisons of ~ξ to audio shingles comprised
of ~ξ with audio shingles that are not orthogonal to ~ξ.

4. EXPANDING USES OF MAXIMUM POMC

Building off the examples in Section 2 and the methodol-
ogy in Section 3, we propose research directions that could
benefit from using a musically relevant threshold.

Within the song comparison tasks, we can use the max-
imum POMC to explore less well defined variants of the
version detection task. For example, we can explore how
much spontaneous composition is added to a jazz lead
sheet, while also detecting the repeated sections in the lead
sheet given a maximum POMC. In another direction, we
could use the relationship between a threshold and maxi-
mum POMC to create a lower bound threshold for detect-
ing recordings using auto-tune compared to those without.

Maximum POMC can be used beyond the song com-
parison tasks. We can leverage the maximum POMC to
perform comparisons between genres, perhaps, by quanti-
fying the amount of expected structure in a song from one
genre, and comparing that to the expected value of another
genre. Using ideas from topological data analysis, we can
create diagrams quantifying the amount of structure in a
given piece as we increase the maximum POMC. We could
also use a dynamically set maximum POMC in generative
music tasks to enforce musical style constraints given the
target genre for the generated musical work.

5. CONCLUSION

Previous work in MIR determined and reported similarity
thresholds as a specific method for a specific dataset pre-
processed in a specific manner for a specific task, and thus
it is hard to compare previous results. However we can
more easily compare future work on both new and current
song datasets if we choose a similarity threshold for our
matrix representations that includes a tangible interpreta-
tion within the feature space.

This paper offered three contributions to the study of
similarity thresholds used in MIR on the self-similarity (or
dissimilarity) matrices, like those introduced in [7]. First,
we demonstrated weaknesses in the current fixed percent-
age paradigm, using four examples based off one jazz lead
sheet to show inconsistencies between the interpretations
of the musical differences between sections of music that
are regarded as similar.

Next we demonstrated that it is possible to link a thresh-
old to the feature space of the original data, by providing
a theoretical framework relating a given threshold to the
space of audio shingles comprised of chroma vectors under
the cosine dissimilarity measure. Crucial to this framework
is the notion of proportion of orthogonal musical change
(POMC), introduced here. This paper provides an avenue
for interpreting and exploring the musical context of sim-
ilarity thresholds (regardless of how they are determined)
for self-dissimilarity matrices built from the space of audio
shingles through the maximum POMC. Since the theoret-
ical work in this paper only relied on facts of the cosine
dissimilarity measure, the present framework could easily
be adjusted to accommodate another feature space using
the cosine dissimilarity measure.

Finally we briefly proposed new MIR research direc-
tions where contextually meaningful thresholds could pro-
vide insight. We also discussed how a contextually mean-
ingful threshold could enhance current research directions.

Setting the similarity threshold can take into account
both success on a particular task, given particular data, as
well as a tangible musical interpretation of that threshold.
Understanding that continuing to use current methods for
determining the similarity threshold may be the best for
continued computational success, this paper advocates for
the inclusion of musical context into, at least, the discus-
sion of the similarity threshold, if not the selection.
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ABSTRACT

Richard Wagner’s cycle Der Ring des Nibelungen, con-
sisting of four music dramas, constitutes a comprehensive
work of high importance for Western music history. In this
paper, we indicate how MIR methods can be applied to ex-
plore this large-scale work with respect to tonal properties.
Our investigations are based on a data set that contains 16
audio recordings of the entire Ring as well as extensive
annotations including measure positions, singer activities,
and leitmotif regions. As a basis for the tonal analysis,
we make use of common audio features, which capture
local chord and scale information. Employing a cross-
version approach, we show that global histogram repre-
sentations can reflect certain tonal relationships in a robust
way. Based on our annotations, a musicologist may eas-
ily select and compare passages associated with dramatic
aspects, for example, the appearance of specific characters
or the presence of particular leitmotifs. Highlighting and
investigating such passages may provide insights into the
role of tonality for the dramatic conception of Wagner’s
Ring. By giving various concrete examples, we indicate
how our approach may open up new ways for exploring
large musical corpora in an intuitive and interactive way.

1. INTRODUCTION

Originating in late 16th-century Florence, opera evolved as
a central art form of Western culture [1]. Intended as a re-
turn to ancient Greek dramatic style, the idea of accompa-
nied singing (monody) laid the ground work for two central
singing styles of traditional opera: speech-like recitatives,
which serve as a means for developing the plot, and arias,
which emphasize the characters’ feelings through cantabile
melodic lines. For centuries, the structure of opera was de-
termined by alternating such individual pieces of music,
which is also known as number opera. In the mid-19th
century, Richard Wagner developed a novel approach to
operatic composition. According to his theoretical writings
such as Oper und Drama [15], the “drama of the future”
should integrate all forms of art (“Gesamtkunstwerk”). He
broke with the conventions of number opera in favor of a

© Frank Zalkow, Christof Weiß, Meinard Müller. Licensed
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18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

Das Rheingold
WWV 86 A

3897 measures

Die Walküre
WWV 86 B

5322 measures

Siegfried
WWV 86 C

6682 measures

Götterdämmerung
WWV 86 D

6040 measures
(a)

1 50 100 150 200 250 300
B �mD � FmA � Cm

E � Gm
B � Dm
F AmC EmG BmD F�mAC�mEG

�mBD
�mF�

C
ho
rd
s

(b)

1 50 100 150 200 250 300

Time (measures)

−5
−4
−3
−2
−1
0

+1
+2
+3
+4
+5
+6

Sc
al
es(d)

(c)

(e)

Figure 1. Overview of Wagner’s Ring and schematic de-
scription of the histogram extraction. (a) The four parts of
the Ring with catalogue number and length in measures.
The measures under consideration are highlighted in color.
(b) A local chord representation with time given in mea-
sures. (c) A histogram summarizing the chord represen-
tation. (d) A local scale representation. (e) A histogram
summarizing the scale representation.

unity of prose and music with a steady musical flow, which
is often referred to as through-composed style or “endless
melody” since it lacks both interruptions and exact repe-
titions. A central aspect of Wagner’s operatic style is the
frequent use of leitmotifs—short musical ideas associated
with a character, a place, an item, or with emotional cate-
gories, among others.

One of the most impressive realizations of these ideas
is the tetralogy Der Ring des Nibelungen, an extensive
work cycle of four music dramas created between 1848
and 1874. In Figure 1a, we show an overview of the Ring’s
parts. A typical performance lasts 14–15 hours in total,
which is demanding for listeners as well as performers.
Furthermore, the through-composed form may appear less
structured to the naive listener than a traditional number
opera. Therefore, navigation and visualization tools are
particularly useful for exploring this large-scale work. In
this paper, we present such visualizations and demonstrate
their benefit for musicological research.

The Ring has already obtained some attention in the
field of Music Information Retrieval (MIR). Page et al. [9]
present a toolkit for annotating musical performances in a
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case study based on the Ring. In other studies [17, 21],
Wagner’s tetralogy serves as a basis for investigating the
reliability of measure annotations. Concerning leitmotifs,
Müllensiefen et al. [7] consider the human memory recall
task. They found that the distance of chroma features re-
lates to the perceived novelty of a leitmotif.

In this paper, we approach the Ring from the perspec-
tive of tonal analysis. To this end, we perform experiments
on the basis of common tonal features extracted from dif-
ferent recordings. These audio features capture the local
presence of chord [12] and scale structures [18]. Figure 1
illustrates such tonal representations with respect to ma-
jor and minor triads (Figure 1b) and to diatonic scales 1

(Figure 1d) for the beginning of the first part, Das Rhein-
gold. Dark values indicate a higher salience of the respec-
tive tonal structures. The prelude of this piece strongly
relies on a single E � major triad, which corresponds to
homogeneous regions in both feature sequences. In gen-
eral, Wagner’s music is known to present a rich vocabulary
of different chord and scale types. However, though be-
ing an oversimplification, in this case study we consider
only the major and minor chords as well as diatonic scales.
These simple tonal structures still explain a relevant span
of harmonically stable passages [19]. As a central tech-
nique in this paper, we summarize such chord and scale
feature sequences in histogram representations as shown
in Figures 1c/e. Visualizing these histograms may illus-
trate global trends in the tonal conception of the music.
For computing the histograms, we select and compare pas-
sages associated with dramatic aspects, for example, the
activity of certain characters or the presence of certain leit-
motifs. This way, we show the ability of our visualizations
to explore interesting tendencies and to study relationships
between tonal and dramatic aspects within the Ring cycle.

In the field of MIR, histogram-based features have
been extensively used for tasks such as genre recogni-
tion [13], tuning estimation [5], and other classification
tasks [10, 14]. Moreover, the visualization of music pieces
is an important topic in MIR. Wu and Bello [20] present an
approach for visualizing musical structure. Sapp’s scape
plot representations [11] have come out useful for illustrat-
ing harmony analysis results in a hierarchical way. In [3],
Gómez and Bonada demonstrate several visualization tech-
niques concerning tonal aspects of musical pieces.

Typically, tonal analysis is performed on the basis of
musical scores. In Section 2, we discuss why an analysis
based on audio recordings may be beneficial for the Ring
scenario. Having several recorded performances (versions)
of the Ring allows us to employ a cross-version approach
in order to stabilize the audio-based tonal representations.
Konz et al. [6] show that visualizing the cross-version con-
sistency of analysis results suppresses aspects of particular
performances and, thus, emphasizes aspects relevant to the
musical work in general.

Based on previously mentioned works, we present the
histogram visualizations as a novel way to explore the

1 We refer to the diatonic scales according to the respective accidentals.
For example, +1 corresponds to a scale with 1� (G major or E minor scale)
whereas −2 indicates a scale with 2 � (B � major or G minor scale).

No. Conductor Recording hh:mm:ss

1 Barenboim 1991–92 14:54:55
2 Boulez 1980–81 13:44:38
3 Böhm 1967–71 13:39:28
4 Furtwängler 1953 15:04:22
5 Haitink 1988–91 14:27:10
6 Janowski 1980–83 14:08:34
7 Karajan 1967–70 14:58:08
8 Keilberth/Furtwängler 1952–54 14:19:56
9 Krauss 1953 14:12:27
10 Levine 1987–89 15:21:52
11 Neuhold 1993–95 14:04:35
12 Sawallisch 1989 14:06:50
13 Solti 1958–65 14:36:58
14 Swarowsky 1968 14:56:34
15 Thielemann 2011 14:31:13
16 Weigle 2010–12 14:48:46

Table 1. Performances of the Ring used for this paper. In
No. 8, Furtwängler only conducts Die Walküre (different
from No. 4), the other parts are conducted by Keilberth.

Ring. The main contribution is the application of MIR
techniques in an exploratory manner for highlighting inter-
esting trends and relations within this large-scale work cy-
cle. The remainder of the paper is structured as follows. In
Section 2 we explain the data set and describe the charac-
teristics of our annotations. Then, we shortly recapitulate
the extraction of local chord and scale information and ex-
plain the histogram computation (Section 3). In the central
Section 4, we discuss these histograms in detail by means
of several concrete examples relating to different dramatic
aspects of the Ring. Section 5 concludes our paper.

2. DATA SET AND ANNOTATIONS

For an automated tonal analysis, we have to rely on a spe-
cific representation of a piece of music. Typically, mu-
sicologists perform such analyses in a manual fashion on
the basis of musical scores. To automate this process, mu-
sical scores need to be accessible in a machine-readable
form (symbolic data) in high quality, which is a rare case
for Western classical music with a large instrumentation.
To overcome this problem, Optical Music Recognition
(OMR) techniques are usually employed, which cannot
provide satisfactory results in many situations [2] so that
time-consuming manual correction steps are required. As
an alternative, tonal analysis can be performed on the ba-
sis of audio recordings, at least to a certain extent [12, 18].
For the Ring, for example, a high number of CD record-
ings are easily available. In our experiments, we use 16
different performances comprising nearly 232 hours of au-
dio, see Table 1. To compare and combine analysis results
obtained from different representations, a link between the
representations’ time axes is beneficial. For instance, we
can use the positions of measure boundaries, as specified
by the score, in the recordings. To this end, several stu-
dents with a strong practical experience in Western clas-
sical music manually annotated these positions for three
performances [17]. By means of synchronization tech-
niques [8, Chap. 3], we jointly transferred the manual an-
notations from the three performances to all other perfor-
mances. See [21] for details and an evaluation regarding
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the joint transfer. The measure positions constitute suit-
able reference points for a cross-version analysis on the
measure level since different performances can be related
to each other using a musical time axis. In total, the Ring
encompasses 21941 measures, including pickup measures.

Moreover, the measure positions enable the transfer of
semantic annotations from a musical time axis to the indi-
vidual performances and vice versa. In our scenario, we
are interested in dramatic aspects of the Ring’s plot. For
example, we annotated the regions where different charac-
ters are singing. In particular, we specified the start and
end of the singing voice regions as well as the correspond-
ing character according to the verses of the libretto. If a
verse is interrupted by a whole measure or more, the anno-
tation is split accordingly. In total, our annotations com-
prise 6792 singing voice regions.

Beyond this, the presence of certain leitmotifs is of high
interest for studying the dramatic conception. Motivated
by this, a musicologist annotated the occurrences of the
leitmotifs by listening to a recording and analyzing the
sheet music. The definition of leitmotifs used for this work
relies on a guide by Julius Burghold from 1913 [16], which
serves as a reference both for the names and the musical
shape of the motifs. The annotations comprise start and
end positions as well as the corresponding name for each
occurrence of a leitmotif. For example, within Siegfried
2632 leitmotif occurrence regions have been identified.

3. HISTOGRAM COMPUTATION

In this section, we summarize the computation of local
chord and scale representations, describe our histogram ap-
proach, and show why a cross-version strategy is benefi-
cial. To capture tonal characteristics in audio recordings,
we first compute normalized chroma features [8, Chap. 3],
which represent the energy within the twelve chromatic
pitch classes over time. Employing a common tem-
plate matching strategy, we locally compare the chroma
feature sequence with binary templates corresponding to
chords [12] or scales [18]. By means of normalizing, we
can interpret the results as probability for the occurrences
of the particular chords or scales. Since these tonal struc-
tures relate to a time span of several seconds, we suitably
smooth the chromagram before applying template match-
ing. To obtain musically meaningful windows, we make
use of the measure annotations to obtain performance-
independent window sizes w ∈ N specified in measures,
rather than seconds. Our experiments showed that w = 4
for the chord analysis and w = 12 for the scale analy-
sis provides meaningful visualizations. From a traditional
music theory perspective, a window size of 4 measures
for analyzing chords does not make sense. Indeed, chords
lasting for such a long time rarely occur in Wagner’s mu-
sic. However, such a parameter setting leads to visual-
izations, which appear more structured, e.g. emphasizing
tonic chords. One reason is that many chords in a pro-
gression share common notes and, thus, often stabilize the
result for the respective tonic chord. Since we use a cen-
tered window view and a hop size of one measure, we ob-
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Figure 2. Analysis for the complete Ring cycle. (a) Chord
histogram. (b) Scale histogram.

tain one feature vector for each measure. For emphasizing
the locally salient structures, we apply an exponential post-
processing step similar to the softmax function.

With this strategy, we compute an analysis matrix
A ∈ RD×M for a given performance, where M ∈ N de-
notes the number of measures and D ∈ N the feature di-
mension (with D = 24 for chords and D = 12 for scales).
Figures 1b/d show such matrices. Based on this matrix
A, we calculate a histogram h ∈ RD by averaging over all
measures:

h(d) =
1

M

M∑
m=1

A(d,m) (1)

with d ∈ [1 : D] := {1, 2, . . . , D}. Figure 2 shows his-
tograms for the complete Ring. The bar heights correspond
to the presence of the chords or scales averaged over all
measures. The distributions are rather flat, which indicates
that Wagner seems to use the full range of chords and keys
for tonally shaping his tetralogy. Nevertheless, we observe
a stronger presence of the C major chord as well as the
scales 0, +1, and −1 indicating that tonal regions with few
accidentals seem to be slightly more prominent. Further-
more, we find a small trend towards flat key regions (left
half) compared to sharp key regions (right half).

At this point, we may wonder about the reliability of
these results and the histograms’ dependency on a spe-
cific version. For example, Figure 3a shows two chord
histograms, which are computed for two different perfor-
mances. Even though the global trends seem to be con-
sistent among the two versions, one can observe some de-
viations. For example, the E minor triad seems to be one
of the most prominent chords in the Boulez version (blue),
whereas this chord is less important in the Furtwängler ver-
sion (red). Such performance-specific characteristics may
come into play for a variety of reasons. For example, per-
formances may exhibit a different dynamic balance of the
instruments and singers. Furthermore, different recording
conditions may suppress or enhance certain frequencies.
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Figure 3. Comparison of single-version histograms and
cross-version histograms for the complete Ring. (a) Chord
histograms for the performances conducted by Boulez
(No. 2) in blue and Furtwängler (No. 4) in red. (b) Chord
histograms with cross-version approach. The blue and the
red histogram each correspond to eight different versions.

To attenuate the version-specific aspects, we introduce a
cross-version approach similar to [6]. Having P ∈ N per-
formances, we compute an analysis matrix Ap for each of
these versions p ∈ [1 : P ]. From these matrices, we derive
a cross-version analysis matrix simply by averaging over
all performances

Acv(d,m) =
1

P

P∑
p=1

Ap(d,m) (2)

with d ∈ [1 : D] and m ∈ [1 : M ]. Finally, we average
over all measures of Acv to obtain a histogram as in Eq. 1.

Figure 3b shows two histograms computed with our
cross-version approach, each for P = 8 different perfor-
mances. 2 Note that the two cross-version histograms are
more similar to each other than the two single-version his-
tograms in Figure 3a. This indicates that the cross-version
approach stabilizes the results. Furthermore, characteris-
tic trends and peaks of the histograms are retained, which
shows that the averaging procedure does not smooth out in-
teresting details. In general, the cross-version approach en-
hances work-related aspects and suppresses performance-
specific artifacts. In the following, all histograms are com-
puted in a cross-version fashion using P = 16 perfor-
mances. Also, the histograms in Figure 2 were computed
in this way.

4. EXPLORATION

We now want to show the potential of the introduced his-
tograms for exploring relationships between dramatic as-
pects of the Ring and its tonal organization. To this end, we

2 Performances Nos. 1, 2, 5, 9, 11–13, 15 correspond to blue and
performances Nos. 3, 4, 6–8, 10, 14, 16 correspond to red.
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Figure 4. Comparison of Das Rheingold to the complete
Ring. (a) Activations for the Ring (reference, 21941 mea-
sures, gray) and Das Rheingold (selection, 3897 measures,
red). Dotted lines correspond to the beginning of a new
act. (b) Chord histogram. (c) Scale histogram.

apply a selection procedure with respect to different crite-
ria. As examples of such criteria, we consider the role of
a single part with respect to the full cycle, the behavior of
singing and instrumental regions, as well as the activity of
specific characters. Furthermore, we take the occurrence
of certain leitmotifs into account. For all examples, we se-
lect the measures or passages fulfilling these criteria while
discarding the others before computing the histograms.

As a first scenario, we looked at the role of individual
parts of the Ring. For example, we compared the first part,
Das Rheingold, to the complete cycle. In Figure 4a, we
show a compact overview that illustrates the investigated
passages with the complete cycle as reference (R) in gray
and the first part as selection (S) in red. In the following,
we refer to such illustrations as activation diagrams. Using
this color scheme, Figure 4b shows two chord histograms
with the reference histogram in gray and the selection his-
togram in red. In these histograms, we observe rather flat
distributions. Regarding the individual chords, we observe
a high presence of the C major chord in Das Rheingold (se-
lection). This coincides with the general distribution in the
full Ring (reference). In contrast, the enhanced presence of
the E � major chord in the selection deviates from the shape
of the reference histogram. An important reason for this
peak may be the prelude comprising 136 measures with a
constant harmony, an E � major triad. Figure 4c shows the
corresponding histograms for the scales. The comparison
of these histograms indicates a trend towards scales with
flats ( �) in their key signatures (–2 to –5) in the selection.
These observations suggest that the individual parts of the
Ring may indeed exhibit a characteristic tonal shape.

As a second example, we examine the characteristics
of passages involving instrumental passages and singing
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Figure 5. Comparison of instrumental passages to all oth-
ers. (a) Activations for the Ring (reference, 21941 mea-
sures, gray) and the instrumental passages (selection, 5103
measures, red). (b) Scale histogram. (c) Activations for the
Ring (reference, 21941 measures, gray) and passages in-
volving singing (selection, 16838 measures, red). (d) Scale
histogram.

activity. In contrast to the previous experiment, our se-
lections now comprise several local passages instead of
one contiguous region. To obtain two disjoint selections,
we assign each measure to either the instrumental or the
singing selection where measures with partial singing were
assigned to the singing selection. Figures 5a/c display
the corresponding activation diagrams. The aggregated
lengths of both subsets are in a proportion of roughly 1 : 3
(5103 vs. 16838 measures). In the scale histograms in Fig-
ures 5b/d, the selections show a high similarity to the full
cycle’s histogram even though the respective passages do
not overlap. This indicates that, globally speaking, there
is no substantial tonal difference between these selections.
One may wonder if this similarity is a trivial observation.
As we will show in our next example, we observe different
shapes when we investigate the singing activity of specific
characters.

As the third scenario, we examine the behavior for
two groups of characters, gods and mortals, which con-
stitute central categories in the Ring’s plot. 3 The activa-
tion diagram in Figure 6a shows the singing activities of
gods (in blue) and mortals (in red). Instead using a ref-
erence, like the complete Ring as before, we now com-

3 For this exemplary scenario, we classified as gods: Wotan, Fricka,
Freia, Donner, Froh, Erda, Loge, and the Norns. Characters classified as
mortals are Siegmund, Sieglinde, Siegfried, Hunding, Gunther, Gutrune,
Hagen, as well as the male and female choirs. Even though there are bor-
der cases such as the demigod Loge or Siegmund and Sieglinde, Wotans
children, we consider this a meaningful categorization. We do not take
into account other categories such as the Valkyries, or the Nibelungs.
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Figure 6. Comparison of gods and mortals singing.
(a) Activations for passages with mortals singing (S-M,
6409 measures, red) and passages with gods singing (S-
G, 4203 measures, blue). (b) Chord histogram. (c) Scale
histogram.

pare two selections based on different selection criteria. In
Das Rheingold, only gods are active whereas in the final
Götterdämmerung, gods are barely active (only the Norns
in the prologue). Thus, we observe some kind of global
trend from gods towards mortals over the course of the
Ring. Figures 6b/c show the corresponding chord and scale
histograms. The mortals’ scale histogram exhibits a slight
trend towards scales with few accidentals. In contrast, the
gods’ histogram shows a somewhat higher presence of out-
lying scales. For musicologists, such observations could be
a starting point for relating tonal characteristics to the in-
terpretation of the drama. As an exemplary hypothesis, the
prominence of far-off scales might be associated with the
gods living far-off our human world.

As a final selection criterion, we focus on the occur-
rence of leitmotifs, which constitute a central dramatic el-
ement in the Ring. Even though Wagner did not invent this
technique and never used the term “leitmotif” personally,
the extensive usage of such motifs makes the Ring a promi-
nent example of a realization of this concept. We now indi-
cate how one may explore the tonal characteristics during
the occurrences of certain leitmotifs. As a first example,
we consider the “Valhalla motif,” which refers to the castle
of the gods and is frequently used over the course of the
tetralogy. Figures 7a/b show an activation diagram and a
chord histogram with Das Rheingold as reference and all
regions in this part with the Valhalla motif as selection. For
this motif, we notice a high peak for the D � major chord, in
contrast to the flat shape of the reference histogram. When
we examine this motif over the course of Die Walküre, we
observe a different trend (see Figures 7c/d). For this part,
the histogram exhibits a high peak for the E major chord
whereas the D � major chord has only a slight peak. These
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Figure 7. Passages containing the Valhalla motif. (a) Ac-
tivations for Das Rheingold (reference, 3897 measures,
gray) and passages containing the Valhalla motif therein
(selection, 176 measures, red). (b) Chord histogram.
(c) Activations for Die Walküre (reference, 5322 measures,
gray) and passages containing the Valhalla motif therein
(selection, 124 measures, red). (d) Chord histogram.

observations indicate that the Valhalla motif tends to ap-
pear in a specific tonal context. However, the correspond-
ing chord strongly differs between the parts of the Ring.
The correlation of the Valhalla motif to the D � major and
E major chords, respectively, is a known fact in musicol-
ogy [4, p. 172]. It is promising that automated methods
can confirm such observations.

As a second leitmotif example, we investigate the oc-
currences of the “sword motif.” Figure 8 shows activa-
tion diagrams and scale histograms for this motif within
Die Walküre and Siegfried. In Die Walküre, the motif has
a clear tendency towards the region of 0 (C major/A mi-
nor) and +1 (G major/E minor). The situation is com-
pletely different in Siegfried, where the scale distribution
is rather flat, with a slight trend towards flat scale regions.
One reason might be the integration of this motif into a
more complex tonal conception in Siegfried compared to
Die Walküre.

5. CONCLUSIONS AND OUTLOOK

In this paper we demonstrated how existing MIR tech-
niques such as tonal audio features and global histograms
can be applied in a complex music scenario. Regarding
audio-based analysis, we showed that a cross-version ap-
proach is able to enhance work-related properties while
suppressing performance-specific details and, therefore,
stabilizes the analysis results compared to a single-version
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Figure 8. Passages containing the sword motif. (a) Acti-
vations for Die Walküre (reference, 5322 measures, gray)
and passages containing the sword motif therein (selection,
200 measures, red). (b) Scale histogram. (c) Activations
for Siegfried (reference, 6682 measures, gray) and pas-
sages containing the sword motif therein (selection, 203
measures, red). (d) Scale histogram.

approach. For exploring relationships between dramatic
aspects and the tonal organization of Wagner’s Ring cy-
cle, we presented compact visualizations of tonal features
based on global histograms with several selection criteria.
We showed that these visualizations can provide interest-
ing insights into large-scale works such as Wagner’s tetral-
ogy. Investigating a small selection of examples, we found
that the Ring’s parts may each exhibit an individual tonal
shape. Furthermore, the histograms indicated that charac-
ter groups can have different tonal preferences. Finally,
we showed that leitmotifs can have specific tonal conno-
tations. In general, using global histograms exhibits some
limitations since we cannot address many fine-granular is-
sues with this method. Nevertheless, we showed the bene-
fit of such visualizations for highlighting interesting trends
and relations. Beyond the analyses shown in this paper,
many more filtering criteria could be of interest in this
complex scenario. Concerning subsections of the Ring, in-
dividual acts or scenes could be analyzed. Regarding the
musical parts, different character groups or even individual
singers could be considered as well as the use of certain in-
struments or instrument families. Finally, the enormous
number of leitmotifs with several thousand occurrences
and their complex relationships lead to a vast amount of
possible selections. Investigating the Ring with respect to
such aspects could allow musicologists to confirm or ad-
just their hypotheses or be inspired to create new ones and,
thus, might have potential for musicological research.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 647



Acknowledgments: We thank Julia Zalkow, Vlora Arifi-
Müller, and all students for their assistance in generating
the annotations and preparing the data. This work has
been supported by the German Research Foundation (DFG
MU 2686/7-1). The International Audio Laboratories Er-
langen are a joint institution of the Friedrich-Alexander-
Universität Erlangen-Nürnberg (FAU) and Fraunhofer In-
stitut für Integrierte Schaltungen IIS.

6. REFERENCES

[1] Howard Mayer Brown, Ellen Rosand, Reinhard
Strohm, Roger Parker, Arnold Whittall, Roger Savage,
and Barry Millington. Opera. In Stanley Sadie, editor,
The New Grove Dictionary of Music and Musicians,
pages 416–471. Macmillian Publishers, London, UK,
2nd edition, 2001.

[2] Donald Byrd and Jakob G. Simonsen. Towards a stan-
dard testbed for optical music recognition: Definitions,
metrics, and page images. Journal of New Music Re-
search, 44(3):169–195, 2015.
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ABSTRACT

Learning a model for sequential prediction of symbolic
music remains an open challenge. An important special
case is the prediction of pitch sequences based on a corpus
of monophonic music. We contribute to this line of re-
search in two respects: (1) Our models improve the state-
of-the-art performance. (2) Our method affords learning
interpretable models by discovering an explicit set of rele-
vant features. We discover features using the PULSE learn-
ing framework, which repetitively suggests new candi-
date features using a generative operation and selects fea-
tures while optimizing the underlying model. Defining a
domain-specific generative operation allows to combine
multiple music-theoretically motivated features in a uni-
fied model and to control their interaction on a fine-grained
level. We evaluate our models on a set of benchmark cor-
pora of monophonic chorales and folk songs, outperform-
ing previous work. Finally, we discuss the characteristics
of the discovered features from a musicological perspec-
tive, giving concrete examples.

1. INTRODUCTION

Predictive processing and the formation of expectancies
are core capacities of human cognition, that are closely
tied to the perception and interaction with our environment
and to survival and fitness in an evolutionary perspective.
Apart from its role in most cognitive domains, predictive
processing has also been understood to play a fundamental
role in music perception [22, 29]. The formation of musi-
cal expectancies is essential for goal directed processes at
different musical time-scales, for musical interaction and
synchronization as well as for the play with emotional ef-
fects in music [10, 17], and particularly, musical tension
[8, 13]. Musical expectancy has also been understood to be

c© Jonas Langhabel, Robert Lieck, Marc Toussaint, Martin
Rohrmeier. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Jonas Langhabel, Robert
Lieck, Marc Toussaint, Martin Rohrmeier. “Feature Discovery for Se-
quential Prediction of Monophonic Music”, 18th International Society
for Music Information Retrieval Conference, Suzhou, China, 2017.

culture- and style-dependent and to be grounded in musical
knowledge that is acquired through processes of implicit or
statistical learning [10, 31, 32]. Modeling of human pre-
dictive processing in music is thus fundamental for com-
putational cognitive models of music as well as for models
of musical interaction or generation.

Musical expectancy has been studied in terms of
melody, harmony and rhythm. While the task involves the
prediction of the next note, onset, chord or combinations
thereof given the past events in the sequence, there are
many different types of underlying models one can posit
to compute predictions and event probabilities. While the
setting of predicting the next event is difficult to define ac-
curately and to tackle in the general case of polyphonic
music, many past approaches have simplified the problem
to tackle a single stream of events, such as melodic notes
or chord events. Because this context is similar to the lin-
guistic case, one frequent approach has been to take into
account language models as commonly used in computa-
tional linguistics, particularly, n-gram models and derived
models, which are discussed in Sec. 1.1. More recently,
connectionist models have also become increasingly pop-
ular, as discussed in Sec. 1.3.

Apart from n-gram and connectionist models musical
expectancy and melodic structure have been modelled by
other kinds of approaches that we do not discuss in de-
tail. These involve, most notably, hidden Markov models
for melodic structure (e.g. [15, 16]) and dynamic Bayesian
networks (e.g. [19, 20, 27]). More generally, a large variety
of latent structure models beyond Markovian approaches
may be adequate to characterize prediction and to compute
sequential event probabilities.

1.1 n-gram Models

Markovian and similar approaches have been applied since
decades for the modeling of music (see [22] for a review).
n-gram models track the number of times a particular con-
tiguous sub-sequence of events occurs in the data. In sim-
ple n-gram models the predictive distribution is computed
by normalizing these frequency counts for a fixed context
length n. Such n-gram models have been applied particu-
larly in the modelling of melody [5, 21, 24] and harmony
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[26, 30, 33, 36, 37], classification [4, 9], or applications
such as style description or identification [18, 28].

A major problem with this approach is that short context
lengths are unable to capture longer patterns while longer
context lengths overfit on the training data by assigning
zero probability to unseen sequences. Two common meth-
ods to overcome this problem are (1) escaping strategies,
which explicitly assign non-zero weights to unseen se-
quences and (2) smoothing methods, which combine mul-
tiple n-gram models of different, possibly unbounded con-
text length (see [24] for an extensive overview).

Extending common n-gram models, Conklin and Wit-
ten [5] proposed the notion of multiple viewpoint sys-
tems, which combine n-gram models over different basic
and derived features in order to improve melodic predic-
tion taking into account correlations between different fea-
tures. Pearce [21] extended this idea forming the basis
of IDyOM, a cognitive model of melodic prediction and
generation, which was evaluated with human psychologi-
cal data [23].

1.2 Long-Term and Short-Term Model

Conklin and Witten [5] proposed the distinction between
a long-term model (LTM) and a short-term model (STM).
The LTM is trained on a corpus of data and is supposed
to capture piece-independent characteristics of the corre-
sponding style, epoch, or genre. The STM, on the other
hand, is supposed to capture properties of a single piece
like motives or repetitions and is trained online at predic-
tion time for each piece separately. LTM and STM are
combined at prediction time (see Sec. 2.6 for details).

1.3 RTDRBM (Connectionist Models)

Recently, Cherla et al. [3] used a recurrent temporal dis-
criminative restricted Boltzmann machine (RTDRBM) as
LTM, improving over the to-date best performing n-gram
LTMs. RTDRBM are state-full connectionist models sim-
ilar to recurrent neural networks (RNNs), which have the
potential to capture long-term dependencies in time series
data. This renders them particularly suited for the LTM.

2. THE PULSE FRAMEWORK FOR MUSIC

We employ the PULSE learning framework [14] for discov-
ering relevant musical features. PULSE performs a guided
search through an infinitely large feature space and thereby
allows to discover features in spaces that are too large
for classical feature selection approaches. In doing so,
PULSE iteratively performs (forward) feature expansion and
(backward) feature selection, resulting in a framework sim-
ilar to evolutionary algorithms. We will first describe the
general principles of discovering features with PULSE in
Sec. 2.1 before going into details about our specific im-
plementation.

2.1 Discovering Features with PULSE

PULSE addresses the ubiquitous machine learning problem
that, on the one hand, we need to include task-specific prior

knowledge to efficiently solve a learning task but, on the
other hand, explicitly specifying a set of features might
neither be possible nor desirable for a number of reasons:
(a) We may lack the explicit knowledge required to spec-
ify good features. (b) The specified features may be too
specific and “overfit” on a single problem instance. (c) Ex-
plicitly specifying features is tedious work to be done by
experts, which we might want to automate.

More precisely, instead of explicitly specifying features,
in PULSE we specify a generative operation N+ that sug-
gests new candidate features based on the current feature
set. N+ may inject new features as well as mutate and
recombine existing features, analogous to an evolutionary
algorithm. After expanding the feature set by including all
candidate features suggested by the N+ operation, PULSE

shrinks the feature set by optimizing the underlying model
and selecting features based on the model performance.
Again this is akin to evolutionary algorithms with the dif-
ference that PULSE defines an objective based on the whole
feature set and features are thus not scored individually but
selected based on how much they contribute to the fitness
of the whole population. For learning an optimal set of fea-
tures and parameters, PULSE repetitively expands the fea-
ture set by applying N+ and selects a subset of features by
optimizing the model parameters Θ and removing features
with zero weight.

As the underlying model, PULSE uses a conditional ran-
dom field [12], which defines a conditional probability dis-
tribution p(x|y) as

p(x|y) =
1

Z(y)
exp

∑
f∈F

θff(x, y) (1)

Z(y) =
∑
x′∈X

exp
∑
f∈F

θff(x′, y) , (2)

where y ∈ Y is known at prediction time, x ∈ X is to be
predicted, F is the set of features with weights Θ = {θf ∈
R | f ∈ F}, and the partition functionZ(y) ensures correct
normalization of the conditional distribution. The features
f ∈ F may be arbitrary real-valued functions of x and y,
f : X × Y → R. When modeling sequential data, x ∈ X
is the next event, y ∈ Y ≡ X ∗ is the sequence of past
events, and X is called the symbol space or the alphabet.
The parameters are optimized by performing (stochastic)
gradient descent on the negative log-likelihood of the data

`(Θ;D) = −
∑

(x,y)∈D

log p(x|y) + ρ(Θ) , (3)

where ρ(Θ) comprises any regularization terms, most no-
tably an L1-regularization to enforce a sparse feature set.
Note that since ρ implements a prior over the model pa-
rameters, specifying additional regularization terms is an-
other means to inject task-specific knowledge in addition
to N+ (also see Sec. 2.5). For optimization we use Ada-
Grad [7] combined with the approach described by Tsu-
ruoka, Jun’ichi Tsujii, and Ananiadou [35] for implement-
ing the L1-regularization. We will interchangeably speak
of maximizing the data likelihood or minimizing the model
cross-entropy as both objectives are equivalent.
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Figure 1. Visualization of generalized n-gram features
constructed from three different viewpoints with basis fea-
tures (top row), a classical n-gram feature (middle row),
and a generalized n-gram feature (bottom row). See text
for detailed explanation.

We use PULSE to discover two kinds of features: View-
point features (Sec. 2.2), which generalize the concept of
classical n-grams, and Anchor features (Sec. 2.3), which
incorporate the concepts of tonic and mode (key) that is
common in tonal music.

2.2 Viewpoint Features

Viewpoint or n-gram features indicate the presence of a
specific sequence of events. Compared to classical n-
grams, the approach described in the following defines a
more general set of features, namely ones that also in-
clude partial sequences (i.e. sequences with “holes”) and
sequences that mix different viewpoints. We sometimes
differentiate between these generalized and classical non-
generalized n-gram features.

Any viewpoint ξ implies a particular alphabet Xξ. We
define an associated set of basis features Bξ such that fea-
ture b(x,t)(s) ∈ Bξ indicates whether symbol x ∈ Xξ oc-
curred at time T−t in the given sequence s ∈ X ∗ξ of length
T . The feature b(x,t) thus looks t steps into the past, indi-
cating the occurrence of event x at that time, with b(x,0)
referring to the next event to be predicted. In the upper
part of Tab. 1 we list all viewpoints that we used for con-
structing n-gram features.

Picking up on the construction method suggested in [14]
we construct more complex features via logical conjunc-
tion of multiple basis features. Features constructed in this
way are more general than classical n-grams in two re-
spects: (1) They do not necessarily contain a contiguous
sequence of basis features, which allows to generalize over
events at a specific time by leaving a “hole”. (2) They may
be composed of basis features derived from different al-
phabets/viewpoints, which allows to define a specific com-
bination of viewpoints at one point in a sequence and ig-
nore some of the viewpoints at others. In Sec. 2.4 we de-
scribe the specific generativeN+ operations that we use in
detail.

An illustration of possible features constructed in this
way is given in Fig. 1. Here, we used pitch, interval and
contour (P, I, C in Tab. 1) as viewpoints. The last tone
in the sequence, the rightmost G5, is to be predicted and

has time index t = 0. As indicated by the colored bor-
der, features evaluate to true (or 1) if they match the
data and to false (or 0) otherwise. In the top row, the
basis features b(I=−5,t=4), b(C=+1,t=2), b(P=79,t=1) and
b(P=74,t=0) are depicted. Note that interval and contour
features not only depend on the pitch at time t but addi-
tionally on the previous pitch at time t− 1. By concatenat-
ing basis features from a single viewpoint we can construct
classical n-gram features, as illustrated for a pitch n-gram
feature in the middle row, which indicates the pitch se-
quence 72, 67, 76, 77, 79, 79. If we combine basis features
from different viewpoints in a non-contiguous way, we end
up with a generalized n-gram feature, as shown in the bot-
tom row. This feature indicates a sequence that starts with
a 5-semitone step down, followed by an arbitrary tone from
which it rises by an arbitrary interval, again followed by an
arbitrary tone, and finally terminates on a D5. As the ac-
tual sequence terminates on a G5 this feature evaluates to
false/0 in this specific case.

2.3 Anchor Features

Anchor features allow to incorporate the concept of tonic
and mode, that is key, into our model. They essentially are
interval features where the value is not defined with respect
to the previous tone but with respect to an anchor tone that
may be computed based on any information available at
prediction time.

We use three kinds of anchor features that introduce an
increasing amount of prior knowledge about tonal music,
as listed in the bottom part of Tab. 1. The Fi features use
the ith tone of the current piece as reference tone, which
is trivial to compute, does not change during the piece and
ignores the mode. In many cases the tonic is among the
first tones of a piece. A more sophisticated approach is to
estimate the tonic based on all tones heard so far using the
key-finding algorithm by Krumhansl [11] with parameters
from [34]. This is realized in the T features, which may
thus change during a piece (even though a change usually
only occurs within the first couple of tones) but still ignore
the mode. As the employed key-finding algorithm also es-
timates whether the piece is in major or minor mode it is
straightforward to include this distinction, which is real-
ized in the K features. It is interesting to note that in con-
trast to n-gram features, which have an arbitrary yet fixed
length, anchor features incorporate information from the
entire history dating back to the very first tone in a piece.

Just as with viewpoint features it is possible to form log-
ical conjunctions of anchor features (anchored generalized
n-gram features), however, in this work we confine our-
selves to including only single (unigram) anchor features.

2.4 N+ Operation

In this section we describe the different generative N+ op-
erations we use to search through the space of generalized
n-gram features. The role of the N+ operation is to sug-
gest new candidate features that are included in the feature
set if they improve the model (see Sec. 2.1). Our N+ op-
erations will inject new basis features (unigrams) and sug-
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Abbrev. Name Value Range Description
V

ie
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t
Fe

at
ur

es
P pitch P MIDI pitch of the current note
I interval I pitch difference between current and previous note
C contour {−1, 0, 1} sign of the interval
X extended contour {−2,−1, 0, 1, 2} like C but ±2 for intervals larger than ±5 steps

A
nc

ho
r

Fe
at

ur
es Fi ith in piece I pitch differences to the ith tone in the current piece

T tonic {0, . . . , 11} octave invariant pitch difference to the tonic
K key {maj,min} × {0, . . . , 11} like T but separate for major and minor keys

Table 1. Set of employed basis features. P corresponds to the prediction alphabet, that is, the set of possible MIDI pitches.
I = {a− b | a, b ∈ P} is the set of all possible intervals in P .

gest new candidates by taking existing features and adding
a new basis feature via logical conjunction. In general,
we will apply a combination of multiple N+ operations to
learn our models.

More precisely, we write ξ to refer to an N+ operation
that adds all basis features b(x,0) ∈ Bξ of the correspond-
ing viewpoint for time zero to the feature set. Whether
the symbol ξ refers to the viewpoint or the corresponding
N+ operation should be clear from context or is explicitly
stated otherwise. Likewise, the operators Fi, T, and K add
the corresponding anchor features to the feature set. We
write ξ∗ for an N+ operation that expands existing fea-
tures by adding another basis feature from the correspond-
ing viewpoint. The ξ∗ operation ignores features corre-
sponding to viewpoints other than ξ. When applying the
ξ∗ operation we implicitly assume that the ξ operation is
also applied (after ξ∗) without explicitly stating it.

Our ξ∗ operations come in two versions, as backwards
expansion for the LTM and as forwards expansion for the
STM.

For backwards expansion (LTM), in the ith iteration of
feature expansion, ξ∗ expands all existing features with all
basis features b(x,i) ∈ Bξ with time i. That is, if we were
not to remove any features from the set, after n iterations of
backwards expansion, ξ∗ would have constructed all possi-
ble generalized n-gram features (with and without “holes”)
for alphabet Xξ.

For forwards expansion (STM), ξ∗ first shifts all exist-
ing features by one time step to the past and then expands
them with all basis features b(x,0) ∈ BX for time zero. If
we were not to remove any features, after n iterations of
forwards expansion, ξ∗ would have constructed all possi-
ble non-generalized n-gram features (only those without
“holes”) for alphabet Xξ.

Backwards and forwards expansion take into account
the different learning scenarios for LTM and STM. For
the LTM all data is known from the beginning and back-
wards expansion successively suggests n-gram features of
increasing context length until the model stops improving.
In contrast, for the STM new data keeps coming in and
we construct n-gram features on-the-fly by performing for-
ward expansion once per time step (see Sec. 3). This en-
sures that (1) short n-gram features can be rebuilt from
scratch to account for new data and (2) if an existing n-
gram feature captures a motive in the piece, all possible

continuations are considered as new candidate features in
the next time step.

2.5 Regularization

The purpose of the regularization terms ρ(Θ) in the PULSE

objective is twofold: (1) It limits growth of the feature set
viaL1-regularization. (2) It implements a prior/bias, which
shapes the model characteristics and is a means to prevent
overfitting. We use a regularization of the form

ρ(Θ) =
∑
f∈F

[
|θf |ρL1

(f) + |θf |2ρL2
(f)
]
, (4)

where ρL1
(f) and ρL2

(f) compute the L1 and L2 regu-
larization independently for each feature f . For the L1-
regularization in our LTM we follow the rationale that the
further back a note lies in time, the less impact it has on
the prediction of the current note. This means that longer
context lengths risk to overfit on the training data and
should be regularized more strongly. We did not observe
a significant improvement from applying an additional L2-
regularization in the LTM and use

LTM:
ρL1(f) = λ1 e

τf/ε (5)

ρL2(f) = 0 , (6)

where τf is the temporal extent of feature f (i.e. the max-
imum time index of the basis features), ε determines how
quickly the regularization kicks in for increasing tempo-
ral extent, and λ1 determines the overall regularization
strength. For the STM we use

STM:
ρL1(f) = λ1 e

−t/r1 eτf/ε (7)

ρL2
(f) = λ2 e

−t/r2 , (8)

which implements the same idea with two crucial modifi-
cations: (1) The overall regularization strength decays ex-
ponentially as more data becomes available, where r1/2
are the decay rates and t is the current time index in the
song during online training of the STM. (2) We use an ad-
ditional L2-regularization, which impedes sparsity but was
found to improve the STM performance especially in the
initial phase.

The structure of these regularization functions was the
result of preliminary runs. Parameters are chosen as de-
scribed in Sec. 3.
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2.6 Combining LTM and STM

LTM and STM are combined by computing a weighted
arithmetic mean of their predictive distributions [25]

p(x|y) ∝
∑
m∈M wmpm(x|y)∑

m∈M wm
(9)

where M is the set of available models, which in princi-
ple may contain more than just two models. The weights
are computed based on how “certain” a given model is, as
measured by the entropy of its predictive distribution

wm =

[−∑x∈X log pm(x|y)

log |X |

]−b
, (10)

where division by log |X | (the maximum possible entropy)
ensures that weights are in [0, 1], and b ≥ 0 is a bias pa-
rameter that allows to shift weights towards models with
lower entropy.

3. EXPERIMENTS

We evaluate our models on a corpus of eight symbolic mu-
sic datasets, as used in [1–3, 24]. The corpus consists
of 1009 monophonic folk melodies from different coun-
tries and styles as well as the soprano lines of 185 Bach
chorales. The data is parsed from the **kern format using
the Python toolkit music21 [6]. As input for our model, the
melodies are represented as monophonic chromatic pitch
sequences with ties being merged. Performance is indi-
cated by the model cross-entropy measured in bits. We
perform 10-fold cross-validation on each corpus separately
using the same folds as [2, 24]. The overall model perfor-
mance is computed by first computing the cross-entropy
for the test set in each cross-validation fold, then averag-
ing over the folds within one corpus, and finally averaging
over the different corpora (this is the same approach as in
previous work).

Optimization of the feature weights is done using Ada-
Grad [7] with a constant learning learning rate of η = 1
and initial gradient squared accumulators of g = 10−10.

LTM: We evaluate our LTM using the differentN+ op-
erations listed in Tab. 2. Our best performing LTM is com-
pared to the state-of-the-art (see Tab. 3). The feature set is
expanded until less than 1% of the features change. The
LTM hyperparameter ε was fixed to ε = 1/ ln(2) ≈ 1.44
in preliminary runs while λ1 is optimized for every cross-
validation fold by leaving out 10% of the training data as
validation set and performing a Gaussian process based
optimization for λ1 ∈ [10−9, 10−6] using the framework
Scikit-Optimize 1 .

STM: For the STM we combine theN+ operations P, I∗

and F1. The feature set is expanded once per time step fol-
lowed by an optimization of the feature weights until con-
vergence. The hyperparameters were set to the following
values based on preliminary runs: λ1 = 10−5, r1 = 100,
ε = 1/ ln(1.2) ≈ 5.48, λ2 = 10−2, r2 = 8.

1 https://scikit-optimize.github.io

PULSE-LTM

P I∗

C – 2.701
X∗ – 2.692

C∗

– 2.692
F1 2.620

F1F2F3 2.602
T 2.586
K 2.547

Table 2. Performance of PULSE-LTM for different configu-
rations.

LTM STM Hybrid

PULSE 2.547 3.094 2.395

RTDRBM [3] 2.712 3.363 2.421
n-gram [24] 2.878 3.139 2.479

Table 3. Comparison of best performing PULSE, RTDRBM,
and n-gram models.

Hybrid: For the hybrid model we combine our
(PI∗C∗K)-LTM with our (PI∗F1)-STM. We also test the
combination of our LTM with an (C∗I) n-gram STM model
from the IDyOM-framework [21]. The bias parameter b
was determined over the grid b ∈ {0, 1, 2, 3, 4, 5, 6, 16, 32}
on the training set of each cross-validation fold.

4. RESULTS

The chief results are that

1. Our PULSE-LTM outperforms the current state-of-
the-art, RTDRBM [2].

2. Our PULSE-STM outperforms the current state-of-
the-art, X∗UI n-gram [24].

3. Our LTM/STM-hybrid model outperforms the cur-
rent state-of-the-art, RTDRBM/n-gram [3].

4. The discovered features and learned weights provide
musically interpretable insights into the model.

We will now discuss these results in more detail.

4.1 LTM Configurations

In Tab. 2 we list the results for our different LTM con-
figurations. In preliminary runs we identified PI∗C to
be the minimum setup for outperforming previous work.
Performance is improved by expanding contour features
(C → C∗) in addition to intervals, enabling the model to
learn melody contours in addition to transposition invariant
motifs. Interestingly, the distinction of small and large in-
tervals using extended contour features, X∗, which is con-
sidered relevant in music theory, did not result in further
improvement.

As expected, incorporating an increasing amount of
prior knowledge about tonic and key via F1, F1F2F3, T,
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and K, respectively, led to significant improvements. Our
best LTM configuration, PI∗C∗K, significantly improves
over the current state-of-the-art, with the performance gain
being of the same magnitude as was achieved by the cur-
rent state-of-the-art RTDRBM [2] versus n-grams [24].

It is interesting to note that the algorithm for comput-
ing T and K involves a combination of music-theoretical
insights and empirical tone profiles. An important future
research question is how this can be generalized and made
accessible to learning from corpus data.

4.2 STM Performance

In Tab. 3 we compare the PI∗F1 PULSE-STM with the best
RTDRBM [3] and n-gram STM [24]. To our knowl-
edge we present the first model that outperforms the well-
established n-gram STM for the task of sequential pre-
diction of symbolic monophonic music. We assume that
an even better performance is achievable by performing
a more thorough (yet very expensive) optimization of the
STM hyperparameters.

4.3 Hybrid

Combining the PULSE-LTM with the PULSE-STM gives a
performance boost, outperforming current state-of-the-art
hybrids (see Tab. 3). The combination of our PULSE-LTM
with an C∗I n-gram STM from the IDyOM-framework
yields an interesting result: While the n-gram STM alone
performs worse (3.152 bits) than our PULSE STM the
corresponding hybrid displays a better performance of
2.365 bits. We conjecture that the n-gram STM has com-
plementary properties to our PULSE-based model and there-
fore is able to contribute valuable missing information.
The best performing LTM/STM-hybrid on this corpus thus
is the combination of our PI∗C∗K PULSE-LTM and the C∗I
n-gram STM.

4.4 Discussion of Features

While an extensive discussion of all features for the dif-
ferent corpora is beyond the scope of this paper, we show
a qualitative plot of the weights for a subset of features
learned by our PI∗C∗K PULSE-LTM from the Bach chorale
corpus in Fig. 2. First, we see that the pitch features (P)
describe a general preference for tones in the middle reg-
ister. For the interval features (I) we restrict ourselves to
length-one features, which show a preference of small (es-
pecially descending) steps over large steps. This is in ac-
cordance with general music-theoretic principles of voice
leading. Note that a tritone step (±6 semitones) is partic-
ularly discouraged. The anchor features (K) model sep-
arate tone profiles for major (M) and minor (m) modes.
We empirically confirm a preference for relevant in-scale
tones: tonic (0), major third (4)/minor third (3) and fifth
(7), whereas the out-of-scale tones minor second (1), mi-
nor third(3)/major third (4), tritone (6), and minor seventh
(10)/major seventh (11) are discouraged.

During training of the model, a total of 5851 features
was temporally included from which 322 remained in the

Figure 2. Qualitative plot of the feature weights for P and I
features of length one as well as K features, learned based
on the Bach chorales. For I and K features middle C is
chosen as reference tone as marked by the circles.

final model. This underlines the relevance of performing
both feature expansion and selection, which allows PULSE

to scale to very large feature spaces.

5. CONCLUSION

We applied the PULSE framework to the problem of learning
a model for sequential prediction of symbolic monophonic
music. Our models outperform the current state-of-the-art
for long-term, short-term and hybrid models on a standard
benchmark corpus of folk melodies and Bach chorales. At
the same time our approach affords interpretable models
that use an explicit set of musically relevant features. The
size of the processed feature spaces are challenging for
classical feature expansion methods and our method has
the potential to scale to even larger spaces. This becomes
particularly relevant for an application to polyphonic mu-
sic and modeling of harmony as well as for including more
complex viewpoints.

This is the first application of the PULSE framework
for modelling music, which provides excellent results and
opens up a number of possible directions for further inves-
tigation. We therefore consider PULSE to be a promising
framework for the development of a unified architecture
for modelling music.
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ABSTRACT

We present a hybrid neural network and rule-based sys-
tem that generates pop music. Music produced by pure
rule-based systems often sounds mechanical. Music pro-
duced by machine learning sounds better, but still lacks
hierarchical temporal structure. We restore temporal hi-
erarchy by augmenting machine learning with a temporal
production grammar, which generates the music’s overall
structure and chord progressions. A compatible melody is
then generated by a conditional variational recurrent au-
toencoder.

The autoencoder is trained with eight-measure seg-
ments from a corpus of 10,000 MIDI files, each of which
has had its melody track and chord progressions identified
heuristically.

The autoencoder maps melody into a multi-dimensional
feature space, conditioned by the underlying chord pro-
gression. A melody is then generated by feeding a random
sample from that space to the autoencoder’s decoder, along
with the chord progression generated by the grammar. The
autoencoder can make musically plausible variations on an
existing melody, suitable for recurring motifs. It can also
reharmonize a melody to a new chord progression, keeping
the rhythm and contour.

The generated music compares favorably with that gen-
erated by other academic and commercial software de-
signed for the music-as-a-service industry.

1. INTRODUCTION

Computer-generated music has started to expand from its
pure artistic and academic roots into commerce. Compa-
nies such as Jukedeck and Amper offer so-called music as
a service, by analogy with software as a service. However,
their melodies, when present at all, often just arpeggiate
the underlying chord.

We extend this approach by generating music with both
chord progressions and interesting, nontrivial melodies.
We expand a song structure such as AA′BA into a har-
monic plan, and then add a melody compatible with this
structure and harmony. This compatibility uses a chord-

c© Yifei Teng, Anny Zhao, Camille Goudeseune. Licensed
under a Creative Commons Attribution 4.0 International License (CC
BY 4.0). Attribution: Yifei Teng, Anny Zhao, Camille Goudeseune.
“Generating Nontrivial Melodies for Music as a Service”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

ML training

Crawled MIDI files

Harmonic
analysis

Learned model

Melody Chords

ML generation Chord grammar

Generated melody

Figure 1: Machine learning (ML) workflow for generating
music from a MIDI corpus.

melody relationship found by applying machine learning
to a corpus of MIDI transcriptions of pop music (Figure 1).

Prior research is discussed in section 2. Harmonic anal-
ysis is detailed in sections 3 and 4. Hierarchy generation
and melody generation are described in section 5.

2. RELATED WORK

Recent approaches to machine composition use neural net-
works (NNs), hoping to approximate how humans com-
pose. Chu et al [5] generate a melody with a hierarchical
NN that encodes a composition strategy for pop music, and
then accompany the melody with chords and percussion.
However, this music lacks hierarchical temporal structure.
Boulanger-Lewandowski et al [3] investigate hierarchical
temporal dependencies and long-term polyphonic struc-
ture. Inspired by how an opening theme often recurs at
a song’s end, they detect patterns with a recurrent tempo-
ral restricted Boltzmann machine (RTRBM). This can rep-
resent more complicated temporal distributions of notes.
Similarly, Huang and Wu [10] generate structured music
with a 2-layer Long Short Term Memory (LSTM) net-
work. Although the resulting music often sounds plau-
sible, it cannot produce clearly repeated melodic themes,
just like a Markov resynthesis of the text of the famous
poem “Jabberwocky” is unlikely to replicate the identical
opening and closing stanzas of the original. Despite the
LSTM network’s theoretical capability of long-term mem-
ory, it fails to generalize to arbitrary time lengths [8], and
its generated melodies remain unimaginative.
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In these approaches, tonic chords dominate, and melody
is little more than arpeggiation. To avoid this banality, we
work in reverse. We first create structure and chords, and
then fit melody to that. This mimics how classical west-
ern Roman-numeral harmony is taught to beginners: only
after one has the underlying chord sequence, can one ex-
plain the melody in terms of chord tones, passing tones,
appoggiaturas, and so on.

3. MELODY IDENTIFICATION

For pop music, a catchy and memorable melody is crucial.
To generate melodies that sound less robotic than those
generated by other algorithms, we use machine learning.
To create a learning database, we started with a corpus of
10,000 MIDI files [16], from which we extracted useful
training data (melodies that sound vivid or fun). In partic-
ular, the training data was eight-measure excerpts labelled
as melody and chords. We thus had to identify which of a
MIDI file’s several tracks contained the melody. To do so,
we assigned each track the sum of a rubric score and an en-
tropy score. Whichever track scored highest was declared
to be the melody. (Ties between high-scoring tracks were
broken arbitrarily, because they were usually due to sev-
eral tracks having identical notes, differing only in which
instrument played them.)

3.1 Rubric Score

Our rubric considered attributes such as instrumentation,
note density, and pitch range.

We first considered a track’s instrument name (MIDI
meta-event FF 04). Certain instruments are more com-
mon for melody, such as violin or flute. Others are more
likely to be applied as accompaniment or long sustained
notes, such as low brass. A third category is likely used
as unpitched percussion. The instrument’s category then
adjusted the rubric’s score.

We also considered the track’s note density, how often
at least one note is sounding (between corresponding MIDI
note-on and note-off events), as a fraction of the track’s full
duration. A track scored higher if this was between 0.4 and
0.8, a typical value for pop melodies.

Finally we considered pitch range, because we observed
that pop melodies often lie between C3 and C5. The score
was higher for a pitch range between C3 and C6, to exclude
bass tracks from consideration.

The values for these attributes were chosen based on
manual inspection of 100 files in the corpus.

3.2 Entropy Score

We empirically observed that melody tracks often have a
greater variety of pitches than other tracks. Thus, to quan-
tify how varied, complex, and dynamic a track was, we
calculated each track’s entropy

H(X) = −
∑12

i=1
P (xi) logP (xi) (1)

where xi represents the event that a particular note in the
octave is i semitones from the pitch C, and P (xi) repre-
sents that event’s probability. Higher entropy corresponds
to a greater number of distinct pitches.

3.3 Evaluation

To measure how well this scoring identified melody tracks,
we manually tagged the melody track of 160 randomly se-
lected MIDI files. Comparing the scored prediction to this
ground truth showed that the error rate was 15%.

4. CHORD DETECTION

To identify the chords in a MIDI file, we considered three
aspects of how pop music differs from genres like classi-
cal music. First, chord inversions (where the lowest note
is not the chord’s root) are rare. When a new chord is pre-
sented, it is often in root position: most pop songs have
a clear melody line and bass line [14], and the onset of a
new chord is marked with the chord’s root in that bass line.
Second, chords may contain extensions (seventh), substitu-
tions (flattened fifth), doublings, drop voicings (changing
which octave a pitch sounds in), and omissions (third or
fifth). Although such modifications complicate the task of
functional harmony analysis, this is not a concern for our
application. Third, new chord onsets are often at the start
of a measure; rarely are there more than two chords per
measure. Combining these observations led us to the fol-
lowing chord detection algorithm.

We first partition the song into segments with constant
time signatures. (these are explicitly stated as MIDI meta
messages). Then each segment is evenly divided into bins,
where we try to match the entire bin to a chord. Be-
cause chords have different durations, we try different bin
lengths: half a measure, one measure, and two measures.
Then for each bin, containing all the notes sounding dur-
ing that time interval, we add all these notes to a set that is
matched against a fixed collection of chords, based on how
close the pitches are, with a cost function:

Chord Detection: COST

1: function BESTCHORDINBIN(Pitches)
2: Root← Lowest note starting before first upbeat
3: Chords← All chords, as array of intervals
4: return argminC∈Chords{COST(Pitches, C,Root)}
5: function COST(Pitches, Chord,Root)
6: PitchCost← 0
7: for P ∈ Pitches do
8: interval← No. semitones of P from Root
9: d← minvoice∈Chord{dist(interval, voice)}

10: PitchCost← PitchCost+ d

11: ChordCost← 0
12: for voice ∈ Chord do
13: d← minP∈Pitches{dist(P −Root, voice)}
14: ChordCost← ChordCost+ d

15: return PitchCost+ ChordCost
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Distance in semitones Compatibility distance
0 0
1 6
2 2
3 2
4 2
5 1
6 4
7 1

Table 1: Interval compatibility.

C A7/aug/b9 Dm Dm7

4
4

4
4

Gsus2 G13 C C7add9

Figure 2: Example of chord detection.

Each chord’s cost is the sum of the distance of the near-
est interval in the chord (from the root) to each interval
in the input pitches, and the distance of the nearest inter-
val in the input pitches (from its “root”) to each interval in
the chord, based on some definition of distance. The cost
function then returns the lowest-cost chord.

Defining the distance in terms of mere pitch difference
in semitones would be simple, but performs poorly. For
example, matching the pitch set [C,E,G] to the chord
[C,E[,G[] would yield a cost of two, which is far too
low. Instead, our distance function reflects how compat-
ible intervals are. The unison is the most compatible, with
distance zero; fourths and fifths are next, with distance one
(Table 1). This conveniently handles omitted-fifth chords,
because the chord’s root matches the omitted fifth with a
distance of only one.

Figure 2 demonstrates chord detection on the song Fly
me to the moon. The bin size is half a measure, yielding 8
identified chords. The A7/aug/[9 chord resulted from the
accompaniment notes A,G,B[(flat ninth), C], E, and the
melody notes A,G,F (augmented fifth).

5. WRITING MUSIC

To output pieces with audibly hierarchical structure, we
start with the harmonic structure produced by a temporal
generative grammar. Then an autoencoder recurrent neu-
ral network (RNN) generates a melody compatible with
this harmonic scaffold. The RNN learns to play using the
chord’s notes, with occasional surprising non-chord tone
decorations such as passing tones and appoggiaturas.

5.1 Generating Melody

We first search for a representation of the melody using
ML. This is traditionally done by an autoencoder, a pair of
NNs that maps high-dimensional input data to and from a
lower-dimensional space. Although this dimensionality re-
duction can eliminate perfect mappings, this turns out not
to be a problem because the subspace of “pleasant” music
within all possible musics is sufficiently small. Thus, the
autoencoder can extract the pleasant content and map only
that into the representation space.

It is tempting to feed a random point from the repre-
sentation space to the autoencoder’s decoder, and observe
how much sense it makes of that point. However, because
one cannot control the shape of the distribution of melody
representations, one cannot guarantee that a given point
from the representation space would be similar to those
seen by the decoder during training. Thus, the vanilla
autoencoder architecture [2] is not viable as a generative
model. We propose the following improvements for gen-
erating melodies:

1. Condition the NN on the chord progression. The
chord progression is provided to the NN at every
level, so when reproducing a melody, the decoder
has access to both the representation and the chord
progression. This is useful because a melody has
rhythmic information, intervallic content, and con-
tour. The decoder can ignore the separately provided
harmonic information, and use only the melody’s
other aspects. This also lets the representation
remain constant while altering the chord progres-
sion, so the NN can adapt a melody to a changed
chord progression, such as what happens when a key
changes from minor to major.

2. Add a stochastic layer. Autoencoders which learn
a stochastic representation are called variational au-
toencoders, and perform well in generative mod-
elling of images [11]. The representation is not de-
terministic. We assume a particular (Gaussian) dis-
tribution in the representation space, and then train
the NN to transform this distribution to match the
distribution of input melodies in their high dimen-
sional space. This ensures that we can take a ran-
dom sampling of the representation space following
its associated probability distribution, then feed it
through the decoder and expect a melody similar to
the set of musically sensible melodies.

3. Use recurrent connections. Pop music has many
time-invariant elements, especially at time scales be-
low a few beats. A recurrent NN shares the same
processing infrastructure for note sequences starting
at different times, and thereby accelerates learning.

4. Normalize all other notes relative to the tonic. Pop
music is also largely pitch invariant, insofar as a song
transposed by a few semitones still sounds perceptu-
ally similar. The NN ignores the song’s key and con-
siders the tonic pitch to be abstract, as far as pitches
in melody and chords are concerned.
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16x


-16 . . . 16 Silent Attack

}
x8...

...
...

...
...

I . . . VI VII Silent
Pwr Maj Min Dim Aug

...
...

...
...

...
Major Dorian . . . Locrian Jazz Minor

Table 2: An encoding of 8 measures (see section 5.1.1).

5.1.1 Implementation

The input melody is quantized to sixteenth notes. Only
sections with an unchanging duple or quadruple meter are
kept. The melody is converted to a series of one-hot vec-
tors, whose slots represent offsets from the tonic in the
range of −16 to 16 semitones, with one more slot repre-
senting silence. There is also an attack channel, where
a value of 1 indicates that the note is being rearticulated
at the current time step. The encoding for chords sup-
ports up to two chords per measure, and uses a one-hot
vector for scale degrees and separate boolean channels for
chord qualities (Table 2). (Note that because this encod-
ing uses just seven Roman-numeral symbols, it does not
try to represent chords outside the current mode. Before
training, we removed from the corpus the few songs that
contained significant occurrences of this.) We use the ba-
sic triad form for each chord identified using techniques
from section 4, marking compatible chord qualities. For
example, G7 is encoded by marking a 1 in the Maj and
Pwr columns. (The chord quality encoding could be ex-
tended to seventh and ninth chords.) The table’s gray rows
are data the network is conditioned on, while the other
rows are input data that the network tries to reproduce. For
an 8-measure example, the input and output vector size is
35 × 8 × 16 = 4480, and the conditional vector size is
8× 16 + 5× 16 + 8 = 216.

The network has 24 recurrent layers, 12 each for the en-
coder and decoder (Figure 3). Drawing on ideas of deep
residual learning from computer vision [9], we make ad-
ditional connections from the input to every third hidden
layer. To improve learning, the network accesses both the
original melody and the transformed results from previous
layers during processing. The conditional part (chords and
mode) is also provided to the network at every recurrent
layer, as extra incoming connections.

The network is implemented in Tensorflow, a machine
learning library for rapid prototyping and production train-
ing [1]. It was trained for four days on an Nvidia Tesla K80
GPU. We used Gated Recurrent Units [4] to build the bidi-
rectional recurrent layer and Exponential Linear Units [7]
as activation functions. These significantly accelerate
training while simplifying the network [6, 7]. Figure 4
shows the training error (the sum of model reproduction
errors) and the difference of the latent distribution from
a unit Gaussian distribution, as measured by Kullback-
Leibler divergence [12]. The network’s input data (avail-
able at https://goo.gl/VezNNA) is a set of MIDI
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Figure 3: Network architecture. Rectangles are bidirec-
tional recurrent neural network cells. Ellipses are strided
time-convolution cells. Rounded rectangles are fully con-
nected (FC) layers. Numbered arrows indicate a connec-
tion’s dimension.
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Figure 4: Training error and Kullback-Leibler divergence
of the NN. The horizontal axis indicates how many training
segments have elapsed (×105). Initial outliers have been
removed.

songs from various online sources. Our harmonic analy-
sis converted this to 1.9 × 106 measures of melodies and
corresponding chords. We implemented KL warm up, be-
cause that is crucial to learning for a variational autoen-
coder [15]. But instead of linearly scaling the KL term for
this, we found that a sigmoid reduced the network’s repro-
duction loss.

5.2 Generating Hierarchy and Chords

Hierarchy and chords are generated simultaneously, using
a temporal generative grammar [13], modified to suit the
harmonies of pop music, and extended to enable repeated
motifs with variations. The original temporal generative
grammar has notions of sharing by binding a section to a
symbol. For example, the rule

let x = I in I M5(x) I M5(x) I, (2)

where M5 indicates modulating to the 5th degree, would
expand to five sections, with the second and fourth identi-
cal because x is reused. We extend this by having symbols
x carry along a number: x1, x2, .... Different subscripts of
the same symbol still expand to the same chord progres-
sion, but denote slightly different latent representations
when generating corresponding melodies for those sec-
tions. The latent representations corresponding to xi>1 are
derived from that of x1 by adding random Gaussian pertur-
bations. This yields variations on the original melody.

5.3 Training Examples in the Representation Space

We randomly chose 130 songs from the training set, fed
them through the network, and performed t-SNE analy-
sis on the resulting 130 locations in the representation
space. Although a melody maps to a distribution in
the representation space, Figure 5 plots only each dis-
tribution’s mean, for visual clarity. This t-SNE analy-
sis effectively reduces the 800-dimensional representation

Figure 5: Example melodies in a t-SNE plot of the repre-
sentation space.

4
4

4
4

Figure 6: Four-bar excerpts from the songs Indica (top)
and Control (bottom).

space into a low-dimensional human-readable format [17].
(A larger interactive visualization of 1,680 songs is at
https://composing.ai/tsne.)

Two songs that are both in the techno genre, Indica by
Jushi and Control by Junk Project, are indeed very near in
the t-SNE plot, almost overlapping. Excerpts from them
show that both have a staccato rhythm with notes landing
on the upbeat, and have similar contours (Figure 6).

5.4 Reharmonizing Melody

We hypothesized that, when building the neural network
architecture, providing the chord progression to both the
encoder and the decoder would not preserve that infor-
mation in the representation space, thus saving space for
rhythmic nuances and contour. To test this hypothesis,
we gave the network songs disjoint from the training set
and collected their representations. We then fed these rep-
resentations along with a new chord progression to the
network. We hoped that it would respond by generat-
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Figure 7: The song Jasmine Flower with original chords
(top), and adapted to a new chord progression (bottom).

ing a melody that was harmonically compatible with the
new chord progression, while still resembling the origi-
nal melody. We demonstrate this with the Chinese folk
song Jasmine Flower, in a genre unfamiliar to the NN
(Figure 7). Note that we supplied the chords in Figure 7
(bottom), for which the NN filled in the melody. The
network flattened the E, A, and B, by observing that the
chord progression looked minor. This is typically how a
human would perform the reharmonization, demonstrating
the network’s comprehension of how melody and harmony
interact.

Although the NN struggled to reproduce the melody,
it provided interesting modifications. The grace notes in
measure 6 could be due to similar ones in the training set,
or due to vacillation between the A\ from the representa-
tion and the A[ from the chord conditioning.

5.5 Examples of Generated Melodies

Because an entire multi-section composition cannot fit
here, we merely show excerpts from two shorter examples.

Figure 8 and Figure 9 demonstrate melodies generated
from points in the representation space that are not near any
particular previously known melody. Structure is evident
in Figure 8: measures 1–3 present a short phrase, and mea-
sure 4 leads to the next four measures, which recapitulate
the first three measures with elaborate variation. Figure 9
shows an energetic melody where the grammar only pro-
duced C minor chords. Although the final two measures
wander off, the first six have consistent style and natural
contour.

G G C

4
4

C G

G C C

Figure 8: Generated melody for a grammar-generated
chord progression.

4
4

Figure 9: Generated melody for an extended C minor
chord.

6. CONCLUSION AND FUTURE WORK

We have combined generative grammars for structure and
harmony with a NN, trained on a large corpus, to emit
melodies compatible with a given chord progression. This
system generates compositions in a pop music style whose
melody, harmony, motivic development, and hierarchical
structure all fit the genre.

This system is currently limited by assuming that the in-
put data’s chords are in root position. More sophisticated
chord detection would still let it exploit the relative har-
monic rigidity of popular music. Also, by investigating
the representation found by the NN, meaning could be as-
signed to some of its 800 dimensions, such as intensity,
consonance, and contour. This would let us boost or atten-
uate a given melody along those dimensions.
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ABSTRACT

Field recordings from ethnomusicological research since
the beginning of the 20th century are available today in
large digitised music archives. The application of music
information retrieval and data mining technologies can aid
large-scale data processing leading to a better understand-
ing of the history of cultural exchange. In this paper we fo-
cus on folk and traditional music from the United Kingdom
and study the correlation between spatial origins and mu-
sical characteristics. In particular, we investigate whether
the geographical location of music recordings can be pre-
dicted solely from the content of the audio signal. We build
a neural network that takes as input a feature vector cap-
turing musical aspects of the audio signal and predicts the
latitude and longitude of the origins of the music record-
ing. We explore the performance of the model for different
sets of features and compare the prediction accuracy be-
tween geographical regions of the UK. Our model predicts
the geographical coordinates of music recordings with an
average error of less than 120 km. The model can be used
in a similar manner to identify the origins of recordings in
large unlabelled music collections and reveal patterns of
similarity in music from around the world.

1. INTRODUCTION

Since the beginning of the 20th century ethnomusicolog-
ical research has contributed significantly to the collec-
tion of recorded music from around the world. Collections
of field recordings are preserved today in digital archives
such as the British Library Sound Archive. The advances
of Music Information Retrieval (MIR) technologies make
it possible to process large numbers of music recordings.
We are interested in applying these computational tools to
study a large collection of folk and traditional music from
the United Kingdom (UK). We focus on exploring music
attributes with respect to geographical regions of the UK
and investigate patterns of music similarity.

c© Vytaute Kedyte, Maria Panteli, Tillman Weyde, Simon
Dixon. Licensed under a Creative Commons Attribution 4.0 International
License (CC BY 4.0). Attribution: Vytaute Kedyte, Maria Panteli,
Tillman Weyde, Simon Dixon. “Geographical origin prediction of folk
music recordings from the United Kingdom”, 18th International Society
for Music Information Retrieval Conference, Suzhou, China, 2017.

The comparison of music from different geographical
regions has been the topic of several studies from the field
of ethnomusicology and in particular the branch of com-
parative musicology [13]. Savage et al. [17] studied stylis-
tic similarity within music cultures of Taiwan. In particu-
lar, they formed music clusters for a collection of 259 tra-
ditional songs from twelve indigenous populations of Tai-
wan and studied the distribution of these clusters across ge-
ographical regions of Taiwan. They showed that songs of
Taiwan can be grouped into 5 clusters correlated with geo-
graphical factors and repertoire diversity. Savage et al. [18]
analysed 304 recordings contained in the ‘Garland Ency-
clopedia of World Music’ [14] and investigated the dis-
tribution of music attributes across music recordings from
around the world. They proposed 18 music features that
are shared amongst many music cultures of the world and
a network of 10 features that often occur together.

The aforementioned studies incorporated knowledge
from human experts in order to annotate music characteris-
tics for each recording. While expert knowledge provides
reliable and in-depth insights into the music, the amount of
human labour involved in the process makes it impractical
for large-scale music corpora. Computational tools on the
other hand provide an efficient solution to processing large
numbers of music recordings. In the field of MIR several
studies have used computational tools to study large music
corpora. For example, Mauch et al. [10] studied the evo-
lution of popular music in the USA in a collection of ap-
proximately 17000 recordings. They concluded that popu-
lar music in the US evolved with particular rapidity during
three stylistic revolutions, around 1964, 1983 and 1991.
With respect to non-Western music repertoires Moelants et
al. [12] studied pitch distributions in 901 recordings from
Central Africa from the beginning until the end of the 20th
century. They observed that recent recordings tend to use
more equally-tempered scales than older recordings.

Computational studies have also focused on predict-
ing the geographic location of recordings from their music
content. Gomez et al. [3] approached prediction of musical
cultures as a classification problem, and classified music
tracks into Western and non-Western. They identified cor-
relations between the latitude and tonal features, and the
longitude and rhythmic descriptors. Their work illustrates
the complexity of using regression to predict the geograph-
ical coordinates of music origin. Zhou et al. [23] also ap-
proached this as a regression problem, predicting latitudes
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and longitudes of the capital city of the music’s country of
origin, for pieces of music from 73 countries. They used
K-nearest neighbours and Random Forest regression tech-
niques, and achieved a mean distance error between pre-
dicted and target coordinates of 3113 kilometres (km). The
advantage of treating geographic origin prediction as a re-
gression problem is that it allows the latitude and longitude
correlations found by Gomez et al. [3] to be considered as
well as the topology of the Earth. The disadvantage is not
accounting for latitudes getting distorted towards the poles,
and longitudes diverging at±180 degrees. Location is usu-
ally used as an input feature in regression models, however
some studies have explored prediction of geographical ori-
gin in a continuous space in the domains of linguistics [2],
criminology [22], and genetics [15, 21].

In this paper we study the correlation between spatial
origins and musical characteristics of field recordings from
the UK. We investigate whether the geographical location
of a music recording can be predicted solely based on its
audio content. We extract features capturing musical as-
pects of the audio signal and train a neural network to pre-
dict the latitude and longitude of the origins of the record-
ing. We investigate the model’s performance for different
network architectures and learning parameters. We also
compare the performance accuracy for several feature sets
as well as the accuracy across different geographical re-
gions of the UK.

Our developments contribute to the evaluation of ex-
isting audio features and their applicability to folk music
analysis. Our results provide insights for music patterns
across the UK, but the model can be expanded to process
music recordings from all around the world. This could
contribute to identifying the location of recordings in large
unlabelled music collections as well as studying patterns
of music similarity in world music.

This paper is organised as follows: Section 2 provides
an overview of the music collection and Section 3 de-
scribes the different sets of audio features considered in
this study. Section 4 provides a detailed description of the
neural network architecture as well as the training and test-
ing procedures. Section 5 presents the results of the model
for different learning parameters, audio features, and geo-
graphical areas. We conclude with a discussion and direc-
tions for future work.

2. DATASET

Our music dataset is drawn from the World & Traditional
music collection of the British Library Sound Archive 1

which includes thousands of music recordings collected
over decades of ethnomusicological research. In particu-
lar, we use a subset of the World & Traditional music col-
lection curated for the Digital Music Lab project [1]. This
subset consists of more than 29000 audio recordings with a
large representation (17000) from the UK. We focus solely
on recordings from the UK and process information on the
recording’s location (if available) to extract the latitude and

1 http://sounds.bl.uk/World-and-traditional-music
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Figure 1: Geographical spread and year distribution in our
dataset of 10055 traditional music recordings from the UK.

longitude coordinates. We keep only those tracks whose
extracted coordinates lie within the spatial boundaries of
the UK.

The final dataset consists of a total of 10055 recordings.
The recordings span the years between 1904 and 2002 with
median year 1983 and standard deviation 12.3 years. See
Figure 1 for an overview of the geographical and temporal
distribution of the dataset. The origins of the recordings
span a range of maximum 1222 km. From the origins of all
10055 recordings we compute the average latitude and av-
erage longitude coordinates and estimate the distance be-
tween each recording’s location and the average latitude,
longitude. This results in a mean distance of 167 with stan-
dard deviation of 85 km. A similar estimate is computed
from recordings in the training set and used as the random
baseline for our regression predictions (Section 5).

3. AUDIO FEATURES

We aim to process music recordings to extract audio fea-
tures that capture relevant music characteristics. We use
a speech/music segmentation algorithm as a preprocessing
step and extract features from the music segments using
available VAMP plugins 2 . We post-process the output of
the VAMP plugins to compute musical descriptors based
on state of the art MIR research. Additional dimensional-
ity reduction and scaling is considered as a final step. The
methodology is summarised in Figure 2 and details are ex-
plained below.

Several recordings in our dataset consist of compila-
tions of multiple songs or a mixture of speech and mu-
sic segments. The first step in our methodology is to use
a speech/music segmentation algorithm to extract relevant
music segments from which the rest of the analysis is de-
rived. We choose the best performing segmentation algo-
rithm [9] based on the results of the Music/Speech Detec-
tion task of the MIREX 2015 evaluation 3 . We apply the
segmentation algorithm to extract music segments from

2 http://www.vamp-plugins.org
3 http://www.music-ir.org/mirex/wiki/2015:

Music/Speech_Classification_and_Detection
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Figure 2: Summary of the methodology: UK folk music recordings are processed with a speech/music segmentation
algorithm and VAMP plugins are applied to music segments. Audio features are derived from the output of the VAMP
plugins, PCA is applied, and output is fed to a neural network that predicts the latitude and longitude of the recording.

each recording in our dataset. We require a minimum of
10 seconds of music for each recording and discard any
recordings with total duration of music segments less than
this threshold.

Our analysis aims to capture relevant musical charac-
teristics which are informative for the spatial origins of the
music. We focus on aspects of rhythm, melody, timbre,
and harmony. We derive audio features from the following
VAMP plugins: MELODIA - Melody Extraction 4 , Queen
Mary - Chromagram 5 , Queen Mary - Mel-Frequency Cep-
stral Coefficients 6 , and Queen Mary - Note Onset Detec-
tor 7 . We apply these plugins for each recording in our
dataset and omit frames that correspond to non-music seg-
ments as annotated by the previous step of speech/music
segmentation.

The raw output of the VAMP plugins cannot be directly
incorporated in our regression model. We post-process the
output to low-dimensional and musically meaningful de-
scriptors as explained below.

Rhythm. We post-process the output of the Queen
Mary - Note Onset Detector plugin to derive histograms of
inter-onset interval (IOI) ratios [4]. Let O = {o1, ..., on}
denote a sequence of n onset locations (in seconds) as
output by the VAMP plugin. The IOIs are defined as
IOI = {oi+1−oi} for index i = 1, ..., n−1. The IOI ratios
are defined as IOIR = { IOI j+1

IOI j
} for index j = 1, ..., n−2.

The IOI ratios denote tempo-independent descriptors be-
cause the tempo information carried with the magnitude
of IOIs vanishes with the ratio estimation. We compute
a histogram for the IOIR values with 100 bins uniformly
distributed between [0, 10).

Timbre. We extract summary statistics from the output
of the Queen Mary - Mel-Frequency Cepstral Coefficients
(MFCC) plugin [8] with the default values of frame and
hop size. In particular, we remove the first coefficient (DC
component) and extract the min, max, mean, and standard
deviation of the remaining 19 MFCCs over time.

Melody. The output of the MELODIA - Melody Ex-
traction plugin denotes the frequency estimates over time

4 http://mtg.upf.edu/technologies/melodia
5 http://vamp-plugins.org/plugin-doc/

qm-vamp-plugins.html#qm-chromagram
6 http://vamp-plugins.org/plugin-doc/

qm-vamp-plugins.html#qm-mfcc
7 http://vamp-plugins.org/plugin-doc/

qm-vamp-plugins.html#qm-onsetdetector

of the lead melody. We extract a set of features captur-
ing characteristics of the pitch contour shape and melodic
embellishments [16]. In particular, we extract statistics
of the pitch range and duration, fit a polynomial curve
to model the overall shape and turning points of the con-
tour, and estimate the vibrato range and extent of melodic
embellishments. Each recording may consist of multiple
shorter pitch contours. We keep the mean and standard
deviation of features across all pitch contours extracted
from the audio recording. We also post-process the out-
put from MELODIA to compute an octave-wrapped pitch
histogram [20] with 1200-cent resolution.

Harmony. The output of the Queen Mary - Chroma-
gram plugin is an octave-wrapped chromagram with 100-
cent resolution [5]. We use the default frame and hop
size and extract summary statistics denoting the min, max,
mean, and standard deviation of chroma vectors over time.

The above process results in a total of 1484 features
per recording. Before further processing, the features were
standardised with z-scores. Dimensionality reduction was
also applied with Principal Component Analysis (PCA) in-
cluding whitening and keeping enough components to rep-
resent 99% of the variance.

4. REGRESSION MODEL

The prediction of spatial coordinates from music data has
been treated as a regression problem in previous research
using K-nearest neighbours and Random Forest Regres-
sion methods [23]. We explore the application of a neu-
ral network method. Neural networks have been shown to
outperform existing methods in supervised tasks of music
similarity [7, 11, 19]. We evaluate the performance of a
neural network under different parameters for the regres-
sion problem of predicting latitude and longitudes from
music features.

A neural network with two continuous value outputs,
latitude and longitude predictions, was built in Tensorflow.
We used the Adaptive Moment Estimation (Adam) algo-
rithm for optimisation, Rectified Linear Unit (ReLU) as
activation function, and drop-out rate of 0.5 for regularisa-
tion. The evaluation of the model performance was based
on the mean distance error in km, calculated using the
Haversine formula [6]. The Haversine distance d between
two points in km is given by
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Parameters Values

Target Scaling True or False
Number of hidden layers {3, 4}
Cost function Haversine or MSE
Learning Rate {0.005, 0.01, 0.05}
L1 regularisation {0, 0.05, 0.5}
L2 regularisation {0, 0.05, 0.5}

Table 1: The hyper-parameters and their range of values
for optimisation.

d = 2r arcsin([sin2(
φ2 − φ1

2
)+

cos(φ1) cos(φ2) sin
2(
λ2 − λ1

2
)]

1
2 ) (1)

where φ represents the latitude, λ longitude, and r the ra-
dius of the sphere (with r fixed to 6367 km in this study).
We further explored the performance of the model under
architectures with different numbers of hidden layers, two
different cost functions, and a range of regularisation pa-
rameters as explained below.

4.1 Parameter Optimisation

A grid-search of model hyper-parameters was performed
to identify the combination that achieves best performance
in cross-validation. The following hyper-parameters were
considered for optimisation: whether or not to scale the
targets (i.e., z-score standardisation of the ground truth lat-
itude/longitude coordinates of each recording), the num-
ber of hidden layers, two possible cost functions, namely,
the Haversine distance in km and the Mean Squared Error
(MSE), and a range of values for learning rate, L1 and L2
regularisation parameters. The parameter optimisation is
summarised in Table 1. We tested in total 216 combina-
tions of hyper-parameters and selected the best performing
combination to tune parameters and retrain the model for
the final results.

4.2 Train-test splits

The training of the model was done in two phases. First
the model was trained using the full set of features (Sec-
tion 3) and the different hyper-parameters as defined in Ta-
ble 1. The hyper-parameters were tuned based on the opti-
mal performance obtained through cross-validation. In the
second phase, the hyper-parameters were fixed to their op-
timal values and the model was retrained for different sets
of features. Each new model’s performance was assessed
on a test set unique to that model.

In the first training phase, we sampled at random 70%
from the total number of 10055 recordings for training.
This resulted in a total of 7038 samples in the training set,
of which 30% (2111) was set aside for validation. Follow-
ing PCA, the feature dimensionality of the dataset was 368.

Target Hidden Cost Training Validation
Scaling Layers Function Error (km) Error (km)

True 3 Haversine 72.68 119.36
True 3 MSE 166.21 166.27
True 4 Haversine 98.03 128.44
True 4 MSE 166.19 166.24
False 3 Haversine 165.34 166.79
False 3 MSE 169.91 169.30
False 4 Haversine 170.91 171.26
False 4 MSE 181.44 180.10

Table 2: Results for parameter optimisation. Learning
rate, L1, and L2 regularisation parameters are fixed to
0.005, 0, 0.5 respectively. Best performance is obtained
when target scaling is combined with 3 hidden layers and
Haversine distance as cost function.

We used cross-validation with K = 5 folds and tuned pa-
rameters based on the mean of the distance error on the val-
idation set (Equation 1). In the second phase we retrained
the model for different feature sets. For each feature set,
the dataset was split into training (random 70%) and test
(remaining 30%) and the performance of the model was
assessed on the test set.

5. RESULTS

5.1 Parameter Optimisation

The model that produced the lowest mean error on the val-
idation set (119 km) used the following hyper parameters:
target scaling, 3 hidden layers, Haversine distance as cost
function, learning rate of 0.005, and L1, L2 regularisation
parameters of 0 and 0.5, respectively. The main hyper-
parameters that determined the accuracy of the model were
the use of Haversine distance as the cost function, and
the application of target scaling. The performance of the
model for different parameter values is shown in Table 2.

5.2 Results for different feature sets

The second set of experiments explored the performance of
the model when trained for different sets of features. We
estimated the random baseline from the origins of record-
ings in the training set. In particular, we computed the av-
erage latitude and average longitude coordinates of record-
ings and estimated the distance between each recording’s
location and the average latitude, longitude. Based on this
estimate the mean distance error of the baseline approach
was 167.4 km. Each model was compared to the baseline
approach (i.e., the mean distance error of its test targets)
with a Wilcoxon signed-rank test. The performances of
the models trained on different sets of features and evalu-
ated on separate test sets were compared with a pairwise
Wilcoxon rank sum test (also known as Mann-Whitney)
with Bonferroni correction for multiple comparisons. We
consider a significance level of α = 0.05 and denote the
Bonferroni corrected level by α̂.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 667



Model Feature Set Error
No. Name (km)

1 All features 149.8
2 Rhythm: IOIR histogram 160.0
3 Harmony: Chromagram statistics 152.5
4 Timbre: MFCC statistics 129.0
5 Pitch histogram 160.1
6 Contour features mean 159.8
7 Contour features standard deviation 162.3
8 Melody: Pitch hist., contour features 152.6
9 Rhythm and Harmony 149.1
10 Rhythm and Timbre 120.1
11 Rhythm and Melody 150.5
12 Melody and Harmony 139.4
13 Melody and Timbre 117.1
14 Timbre and Harmony 114.0
15 Rhythm, Harmony, and Timbre 118.3
16 Rhythm, Harmony, and Melody 142.8
17 Rhythm, Timbre, and Melody 119.8
18 Harmony, Timbre, and Melody 140.3

– Baseline 167.4

Table 3: The mean distance error (in km) of the test set for
18 models trained on different sets of features.
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Figure 3: Distance error of predictions for different sets of
features (see Table 3 for the feature set used to train each
model). Labels a−l in indicate features sets that have non-
significantly different results (p > α̂) where they share the
same letter. For example, feature set 3 shares the label a
with feature set 8 but shares no label with any other feature
set, indicating that results from model 3 are significantly
different from all other models except for model 8.
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Figure 4: (a) Ground truth and (b) predicted music record-
ing origins, coloured by the distance error (in km) for the
best performing model (no. 14).

All models achieved results significantly different from
the baseline approach (p < .0001). The best performance
(lowest error of 114.0 km) was achieved when combin-
ing the timbral and harmonic descriptors (model 14). This
combines the summary statistics of the chromagram and
the summary statistics of the MFCCs. The performance
of this model was significantly different (p < α̂) from all
other models except models 13 and 15 trained on melodic
and timbral, and rhythmic, harmonic and timbral descrip-
tors, respectively. The model achieved a mean error of
149.8 km on the test set when all features (Section 3) were
used. The results from model 3 trained on harmonic de-
scriptors were significantly different from all other models
except model 8 trained on melodic features. The model
trained on rhythmic descriptors (model 2) is amongst the
weakest predictors. However, adding rhythmic features to
any of melodic, harmonic, or timbral features, for example
models 9, 10, 11, significantly improves the performance
of the model (p < α̂ for pairwise comparisons between
models 3 and 9, 4 and 10, 8 and 11). Models 5, 6, 7 trained
on pitch histograms, contour features mean, and contour
features standard deviation, respectively, are also amongst
the weakest predictors but when all these features are com-
bined together as in model 8, the performance is improved.
See Table 3 for an overview of the prediction accuracy of
models trained on different feature sets. Figure 3 provides
a box-plot visualisation of the results from different feature
sets and marks statistical significance between results.

5.3 Results for different regions

The last analyses aim to study the prediction accuracy with
respect to the geographical origins of recordings. Figure 4
shows the ground truth and predicted coordinates for the
best performing model (model no.14 as denoted in Table 3)
coloured by the distance error in km. We observe that data
points with the lowest predictive accuracy originate from
the north-eastern and the south-western areas of the UK
(Figure 4a). Predictions are mostly concentrated in the
southern part of the UK. Data points predicted towards the
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Figure 5: Music recording origins coloured by the distance error (in km) for models trained on (a) rhythmic, (b) harmonic,
(c) timbral, and (d) melodic features (models no. 2, 3, 4, 8 respectively as defined in Table 3).

eastern areas indicate a larger distance error (Figure 4b).
In Figure 5 we visualise the prediction accuracy of mod-

els trained on different feature sets with respect to geogra-
phy. We observe that for all models the northern areas of
the UK (i.e., in the region of Scotland) are predicted with
a relatively large distance error (lowest accuracy). For the
model trained on timbral features (Figure 5c) we also ob-
serve the south west of England predicted with lower ac-
curacy than the models trained on harmonic and melodic
features (Figures 5b and 5d).

6. DISCUSSION

Our results provide insights on the contribution of different
feature sets and suggest patterns of music similarity across
geographical regions. The methodology can be improved
in various ways.

The initial corpus of folk and traditional music from the
UK consisted of a total of 17000 of which only 10055
were processed in this study. The final dataset had a
skewed geographical distribution with over-representation
of the south-eastern and south-western UK regions, e.g.,
Devon and Suffolk, and under-representation of the North-
Eastern, North-Western areas, e.g., Scotland and Northern
Ireland. Effects from the skewness of the dataset could be
observed in the distribution of predicted latitude and longi-
tude coordinates (Figure 4b). A larger and more represen-
tative corpus can be used in future work.

We used features derived from the output of VAMP plu-
gins to describe musical content of audio recordings. Some
of these plugins were designed for different music styles
and their application to folk music might not give robust
results. A thorough evaluation of the suitability of the
features can give valuable insights for improving their ro-
bustness to different corpora such as the one used in this
study. We used feature representations averaged over time
but in future work preserving temporal information in the
features could provide better music content description.

We observed that results from models trained on indi-
vidual features showed on average larger distance errors.
When however combinations of features were considered,
the model achieved on average higher accuracies. An ex-
ception is the case when all features were considered but
the performance of the model had a relatively large dis-

tance error. This could be due to limitations of the model
especially with regards to over-fitting or the lack of ade-
quate music information captured by the features. Inte-
grating additional audio features could help capture more
of the variance of the data and improve the model.

The model was validated for a range of parameters and
several approaches were considered to avoid over-fitting.
However, evidence of over-fitting could still be observed
in the final results. Training with more data could help
make the model more generalisable in future work. What is
more, oversampling techniques could be explored to over-
come the problem of under-represented geographical re-
gions in our dataset.

Neural networks in combination with audio features as
proposed in this study, can provide good predictions of the
origins of the music. This can aid musicological research
as well as improve spatial metadata associated with large
music collections.

7. CONCLUSION

We studied a collection of field recordings from the
UK and investigated whether the geographical origins of
recordings can be predicted from the music attributes of
the audio signal. We treated this as a regression prob-
lem and trained a neural network to take as input audio
features and predict the latitude and longitude of the mu-
sic’s origin. We trained the model under different hyper-
parameters and tested its performance for different feature
sets. Highest accuracy was achieved for the model trained
on timbral and harmonic features but no significant differ-
ences were found to the same model with rhythm features
added or with melody replacing harmony. The southern
regions of the UK were predicted with a relatively high ac-
curacy whereas northern regions were predicted with low
accuracy. Effects of the skewness of the dataset and the re-
liability of audio features were discussed. The corpus and
methodology can be improved in future work and the ap-
plicability of the model could be extended to music from
around the world.
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ABSTRACT

Patterns are an essential part of music and there are many
different algorithms that aim to discover them. Based on
the improvements brought by using data fusion methods
to find the consensus of algorithms on other MIR tasks,
we hypothesize that fusing the output from musical pat-
tern discovery algorithms will improve the pattern discov-
ery results. In this paper, we explore two methods to com-
bine the pattern output from ten state-of-the-art algorithms
using two datasets. Both provide human-annotated pat-
terns as ground truth. We show that finding the consen-
sus among the output of different musical pattern discov-
ery algorithms is challenging for two reasons: First, the
number of patterns found by the algorithms exceeds pat-
terns in human annotations by several orders of magnitude,
with little agreement on what constitutes a pattern. Sec-
ond, the algorithms perform inconsistently across different
pieces. We show that algorithms lack a consensus with
each other. Therefore, it is difficult to harness the collec-
tive wisdom of the algorithms to find ground truth patterns.
The main contribution of this paper is a meta-analysis of
the (dis)similarities among pattern discovery algorithms’
output and using the output in two fusion methods. Fur-
thermore, we discuss the implication of our results for the
MIREX task.

1. INTRODUCTION

An important property of music is its recurring structures
[18]. Musically meaningful repetitions in the form of mu-
sical patterns or musical motifs [29] provide one of the
most intensely researched aspects both for analyzing in-
dividual musical pieces [24] and groups or collections of
musical pieces for identifying musical style based on mu-
sical patterns [8,23,34]. Automatic pattern discovery is an
active research area in Music Information Retrieval (MIR)
that aims to discover these patterns automatically. Differ-
ent pattern discovery methods have been introduced, such
as string-based approaches [4, 7, 14, 16, 17, 25], geometric
approaches [3,6,21,31], data mining approaches [28], and

c© Iris Yuping Ren, Hendrik Vincent Koops, Anja Volk,
Wouter Swierstra. Licensed under a Creative Commons Attribution 4.0
International License (CC BY 4.0). Attribution: Iris Yuping Ren, Hen-
drik Vincent Koops, Anja Volk, Wouter Swierstra. “Finding the consen-
sus among musical pattern discovery algorithms”, 18th International So-
ciety for Music Information Retrieval Conference, Suzhou, China, 2017.

machine learning approaches [26]. Musical pattern discov-
ery algorithms have been used for different applications:
for determining similarity between musical pieces [1], for
automatic compositions [11], and for describing musical
style characteristics [8].

Although many approaches have been developed over
the recent decades (for a detailed overview see [12]), mu-
sical pattern discovery algorithms face a number of chal-
lenges. Music is inherently ambiguous: musicologists of-
ten do not agree on what the important musical patterns are
in a given piece [5]. This makes it difficult to evaluate the
quality of automatically extracted musical patterns. Fur-
thermore, each algorithm is historically tested on unasso-
ciated datasets with disparate metrics [12]. One attempt to
systematically evaluate the algorithms is the MIREX Dis-
covery of Repeated Themes & Sections task initiated in
2014. In the task, a pattern is defined as a set of time-pitch
pairs that occurs at least twice in a piece of music [10].
Although the state-of-the-art algorithms cannot reproduce
the human-annotated patterns yet, they perform acceptably
well according to the evaluation metrics in this task. How-
ever, the algorithms perform inconsistently across different
pieces which makes it hard to determine whether there ex-
ists a single ‘best’ performing algorithm.

Another problem is that algorithms tend to find far
more patterns than human annotators do [10]. Hence the
challenge is to find which potential patterns are musically
meaningful. The poor performance of automatically ex-
tracted patterns in the compression and classification task
on the Dutch Song Database in [1] also shows that pattern
discovery is far from being a solved problem in MIR and
Computational Music Analysis.

Integrating different algorithms using data fusion has
been shown to be a successful approach to improving over-
all performance in other areas dealing with ambiguous mu-
sical data, such as in Automatic Chord Estimation [15]. To
address the challenges in musical pattern discovery, we hy-
pothesize that integrating the output of state-of-the-art al-
gorithms to find a consensus among these algorithms will
help us to achieve an overall better pattern discovery re-
sult. To this end, we explore two fusion methods: a new
algorithm, the Pattern Polling Algorithm (PPA), and the
Time Indexed Novelty Algorithm (TINA), which is based
on commonly used time indexed novelty scores. Using
these two methods, we aim to integrate the patterns found
by multiple pattern discovery algorithms to a consensus
and therefore employ their collective wisdom.
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Fusing the patterns produced by individual algorithms
is challenging since there are different assumptions,
datasets and methods behind the development of each algo-
rithm. By exploring PPA and TINA using the MIREX dataset
and the Annotated Corpus from the Dutch Song Database
[32], we identify two problems with using these fusion
methods. First, because the number of patterns taken as
input of the fusion process is several orders of magnitude
larger than the human-annotated ground truth patterns and
they are disparate in terms of the pattern location, the pat-
tern length, pattern overlap, and pattern coverage of the
music pieces, it makes it difficult to find agreements among
these patterns. The disagreement reflects the ambiguity of
the pattern discovery task and a need for better definitions
of musical patterns. Second, the individual algorithms per-
form inconsistently on different pieces of music. The lack
of large musical pattern discovery data sets aggregates the
issue of the inconsistency and prevents further improve-
ments on using machine learning algorithms.

In this paper, we make two main contributions: First,
we undertake a meta (dis)similarity comparison among the
output of musical pattern discovery algorithms using two
fusion methods, TINA and PPA (Section 2 and Section 3).
Second, based on this research, we discuss issues of the
MIREX Discovery of Repeated Themes & Sections task
and suggest future directions for improving musical pat-
tern discovery research (Section 4).

2. METHODS

In this section, we introduce the two fusion methods of PPA

and TINA along with our evaluation methods. We use the
MIREX monophonic version of Chopin’s Mazurka Op. 24
No. 4 as an example to illustrate the algorithms. The code
of the algorithms and supportive explanations can be found
in https://github.com/irisyupingren/2017Pattern.

2.1 Algorithms Overview

The two new methods we use to explore musical pattern
fusion have different goals. PPA focuses on using the gath-
ered information to extract local pattern features (pattern
boundaries), while TINA focuses on globally integrating
the output patterns of individual algorithms to a probability
distribution (pattern distribution).

We devise PPA based on the fact that all pattern discov-
ery algorithms aim at finding the salient parts in musical
compositions. We assume that each algorithm’s output can
be taken as a vote on whether or not a given time point par-
ticipates in a salient part of the composition, e.g. is part
of a musical pattern. Moreover, we define a salience de-
gree of a time point which corresponds to the number of
patterns that the time point participates in. In essence, the
PPA is a voting system in which each algorithm votes on
the salience degree of a time point based on the discovered
patterns. The resulting polling curve is then taken as a base
to detect pattern beginnings and endings.

TINA is devised based on taking the polling curve and
the ground truth patterns and normalize them to a proba-

Figure 1. The pipeline of the fusion and evaluation. Same
datasets and evaluation methods are used to compare two
fusion methods (PPA and TINA) with individual algorithms.

bility distribution. Along with the polling curve, we use
the time indexed novelty score [9], which is produced by
correlating a checkerboard kernel along the main diagonal
of the similarity matrix of pattern votes. The time indexed
novelty scores are then taken as a base to compare with the
pattern distributions of individual algorithms, the polling
curve, and the human-annotated patterns.

The pipeline of the entire fusion and evaluation process
can be found in Figure 1. For a set of music data and mu-
sical pattern discovery algorithms, we first determine the
musical patterns discovered by each algorithm on each mu-
sical piece. Then we use PPA to extract pattern boundaries
and use TINA to calculate the pattern distributions. Finally,
we analyze the fusion results and the individual algorithms.

2.2 Pattern Polling Algorithm (PPA)

PPA starts with calculating a polling curve by taking into
account all musical patterns output of all algorithms. After
smoothing the polling curve, the algorithm takes the criti-
cal points (i.e. where the derivatives equal to zero) of the
curve and the first derivative as the boundaries of the pat-
terns (the beginnings and endings of the patterns). This is
because changes in salience values could potentially reveal
structural changes in music.

Polling Curve. The polling curve (PC) is created using
the output from all individual algorithms. We let each al-
gorithm vote at a given time point to decide whether it is a
salient part of the music. To create the voting time points in
the music, we use the resolution of one quarter note length.
The time points where the algorithms vote are therefore in
the vector T := [0, 1, ..., n] with the unit of a quarter note.

The voting is realized by looking up discretized time
points in the occurrences of output patterns: if there is an
occurrence interval which covers the time point, we count
that there is a valid vote. Finally, we add up the voting
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Figure 2. The polling curve of Chopin’s Mazurka
Op. 24 No. 4 using algorithms from the MIREX task (see
Section 3). The horizontal bars show where the ground
truth patterns are present. The x-axis represents time in the
unit of quarter note and the y-axis represents the salience
value, which is the number of pattern counts if each vote
carries the same weight. We see promising correspon-
dences between the polling curve and human annotations.

from all the algorithms and produce the polling curve P (t),
which is a time series consisting of the salience values at
time points in T .

Since PPA uses a combination of algorithms, we should
consider which algorithms we want to include or exclude.
PPA could be extended if we have extra information on
which algorithms should be trusted more and make a port-
folio of algorithms as the input. The portfolio is essen-
tially a way of assigning binary weights to the algorithms’
votes: when the algorithm is included, its patterns have
weight one, and when not included, weight zero. We can
also generalize the weight to a continuous value.

To formalize the process of voting:

P (t) =
∑
A

∑
P

∑
O

IA,P
O (t) (1)

where A stands for Algorithm, P stands for Pattern, O
stands for occurrence, and IA,P

O (t) is the weighted indi-
cator function of an occurrence in the pattern P in the al-
gorithm A:

IA,P
O (t) =

{
ωA t ∈ O ⊆ P ⊆ A
0 t 6∈ O ⊆ P ⊆ A

(2)

where ωA is the weight assigned to algorithm A.
An exemplary polling curve of Chopin’s Mazurka

Op. 24 No. 4 using several algorithms from the MIREX task
is shown in Figure 2. The polling curve provides us with
a clue of where there is a salience change in the music.
Critical values (i.e. prominent changes) in salience values
will be regarded as boundaries in the polling curve times
series. In the following subsection, we will explain how to
decide what are the prominent changes and how to reduce
the possibly irrelevant micro-changes in the polling curve
and then find the pattern boundaries.

Smoothing. One common way to reduce the effects of
possibly irrelevant micro-changes in time series is smooth-
ing. In our algorithm, we use the Savitzky-Golay filter
[30], which is a linear least-square polynomial fitting fil-
ter. Each time we apply the smoothing, we reduce some
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Figure 3. Extracted pattern boundaries using PPA. The
dashed vertical lines are the boundaries. Many dashed
lines are aligned with the boundaries of human annota-
tions. We also plotted the polling curve, the ground truth,
first and second derivatives for reference.

effects of micro-changes, but at the same time, we might
also lose potentially valuable details. With different de-
grees of smoothing, we capture different levels of details
in salience’s changes. Therefore, we make the degree of
smoothness, s, to be one of the two parameters in PPA.

Derivative. After smoothing, to find the prominent
changes of the salience in music, we calculate the first
and second discrete derivatives of the polling curve and
take their critical zero-crossing points as the pattern bound-
aries. More formally: let P ′(t) = P (t+ 1)− P (t) and let
P ′′(t) = P ′(t + 1) − P ′(t), t > 0, t ∈ T . We are in-
terested in the zero crossing t̄ of P ′(t) and P ′′(t) because
the zero crossing points t̄ represent a change of direction
in the polling curve. For example, when P ′(t) < 0 and
P ′(t + 1) > 0, we have a dipping point P ′(t̄) = 0 in the
curve. There are more patterns discovered starting from
this point: it is likely to be a beginning of a pattern.

One question remains as for how strong the dipping,
tipping, concave and convex in the curve should be so that
we pick it as a boundary. Here we introduce the second
parameter: a threshold on the steepness of the zero cross-
ing points λ. With different values of λ, we create a set
of boundary sets which consist of the time at which zero
crossing happens. In Figure 3, an example of the extracted
boundaries can be found. We notice that some boundaries
line up well with ground truth boundaries. We will evalu-
ate the extracted pattern boundaries in Section 2.4.

2.3 Time Indexed Novelty Algorithm (TINA)

Since PPA extracts local boundaries, we use TINA to as-
sess globally how the extracted patterns are similar to
human-annotated patterns. Using the notions provided
in Section 2.2, TINA can be described concisely as fol-
lows: We use the pattern vote representation in Equa-
tion (2) as the input. Formally, the input matrix is M =
(IA,P1

O (t); IA,P2

O (t); ..., IA,Pn

O (t)), where n is the count of
output patterns we would like to combine. The main com-
ponent of TINA is the calculation of the time indexed nov-
elty scores described in [9]. This includes calculating the
similarity matrix S of M using the Euclidean distance and
then multiplying the diagonal with a checkerboard kernel
K = (1,−1;−1, 1), which gives us the novelty curve
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Figure 4. The TINA output novelty curve (N) distri-
bution calculated using patterns from all algorithms, the
TINA output polling curve (PC) distribution calculated us-
ing patterns from MIREX algorithms (see Section 3) and
the ground truth (GT) pattern distribution. The x-axis rep-
resents time in the unit of quarter note. Correspondences
of the time series can be seen from the three curves.

N(t). The novelty curve represents the changing rate of
the pattern vote time series IA,Pi

O (t), serving the same role
as the derivatives in PPA. In the end, we obtain a novelty
curve for each algorithm and the ensemble of algorithms,
depending on which patterns are included in M .

Next, the comparison in TINA requires the input from
the human-annotated ground truth patterns and the polling
curve. To convert the ground truth into the same time series
format as the novelty curve and the polling curve, we con-
struct the polling curve from the ground truth patterns as
GT (t). Furthermore, taking the frequentists point of view,
we normalize the time series by the sum of the entire time
series so that we get the distributions of the novelty curve
N(t), the polling curve P (t) and the ground truth patterns
GT (t). Similarly, we can also construct the pattern distri-
butions of individual algorithms PA(t).

In Figure 4, we give an example of the novelty curve
distribution, the polling curve distribution and the ground
truth pattern distribution. In an initial visual inspect, we
see some correspondences among the three curves: some
fluctuations and the tipping/dipping points of the curves
tend to coincide. We will evaluate the distribution similar-
ities globally in the next subsection.

2.4 Evaluation

We use two evaluation methods to assess how similar the
human-annotated patterns are to the output boundaries of
PPA and the output distributions of TINA.

Pattern Boundaries. To evaluate the extracted pat-
tern boundaries, we use the boundaries of the ground truth
patterns. Following the standard MIREX evaluation met-
rics, we calculate the precision, recall and F1 score of the
boundaries with a degree of fuzziness: we look for a match
of boundaries with a tolerance of one quarter note length
because of the one-quarter-length discretization we used
for creating the polling curve.

Pattern Distribution. To evaluate globally how similar
the normalized novelty curve and the polling curve are to
the ground truth pattern distribution, we calculate the Bhat-
tacharyya coefficients [13] and the Pearson correlation co-

efficients. Bhattacharyya coefficients measure the amount
of overlaps between two distributions and the Pearson cor-
relation coefficients measure the linear correlation of dis-
tributions. For the extracted patterns to be similar with the
ground truth patterns, we expect high correlation values
and high overlap values.

3. RESULTS

In this section, we first introduce the input we use for PPA

and TINA and provide a meta-analysis on the individual
algorithms. Then we explore the effects of the two param-
eters s and λ in PPA and the necessity of cross-validation.
Using our evaluation metrics, we show the performance
of the two fusion algorithms is on average similar to indi-
vidual algorithms, and we provide analysis as to why the
fusion methods do not excel.

3.1 Input: Algorithms and Music Data

We use two sets of algorithms and music data. The
first set is from the Annotated Corpus of the Dutch Song
Database (MTC-ANN) and the algorithms used in [1],
namely PatMinr [17], MotivesExtractor (ME) [25], SIATEC

[22], COSIATEC [19], and MGDP [7]. MTC-ANN [32] con-
sists of 360 dutch folk songs in 26 tune families. Because
we are interested in finding shared patterns between songs
in the same tune family, the pattern discovery algorithms
are computed on the concatenation of the songs in the same
tune family, and then the patterns discovered on the bound-
aries of concatenation are filtered out (same as the intra-
opus task described in [1]). The 360 individual songs are
taken as the input of PPA and TINA.

The second set is from the MIREX Discovery of Re-
peated Themes & Sections task. For music data, we
use a subset of the task’s training dataset. The original
dataset contains five pieces in both polyphonic and mono-
phonic format. We take three pieces in the monophonic
format: Chopin’s Mazurka Op. 24 No. 4, Mozart’s Pi-
ano Sonata K. 282, 2nd movement, and Beethoven Piano
Sonata Op. 2 No. 1, 3rd movement. For the sake of the
consistency of the task and the compatibility with MTC-
ANN, we leave out the two music pieces which are con-
structed by a concatenation of voices in the piece. The
algorithm input consists of all algorithms submitted to
the MIREX task during 2014-2016: MotivesExtractor (ME)
[25], SIATECCompress-TLP (SIAP), SIATECCompress-
TLF (SIAF), SIATECCompress-TLR (SIAR) [20], OL &
OL [17], VM & VM [33], SYMCHM (SC) [27], along
with SIARCT-CFP (SIACFP) [6], the algorithm developed
by the task captain. The output patterns of these state-
of-the-art algorithms for our example piece are shown in
Figure 5. We make several observations:

1. Different algorithms find very different patterns: some
tend to find shorter patterns, some longer; some find
many patterns while others are more “picky”.

2. We have three algorithm families (SIA, VM, and OL)
which consist of more than one algorithm. The algo-
rithms from the same algorithm family tend to find sim-
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Figure 5. Patterns extracted by all algorithms submitted to
the MIREX task 2014-2016 plus SIARCT-CFP on the mono-
phonic Chopin’s Mazurka Op. 24 No. 4. The horizontal
bars show where the patterns are present. The x-axis rep-
resents time in the unit of quarter note. We can see the
algorithms find different amount of patterns and patterns
of different length, etc.

ilar patterns. Similarities here include the number of
patterns discovered, the coverage of the song and the
overlaps of the occurrences.

3. The ground truth is sparse in comparison to the patterns
discovered by the algorithms.

4. From eyeballing the entire visualization, we see some
correspondence and similarities between the algo-
rithms and the ground truth patterns.

3.2 PPA: Parameter Space and Cross Validation

PPA extracts the local boundaries using the output patterns
from individual algorithms. We start investigating the ef-
fects s and λ in PPA using the MIREX set as input, because
a small number of music pieces gives us a clear idea of
the relation between the parameters and the performance
of PPA. Ideally, if there is a consistent best-performing s
and λ across the three pieces for precision, recall and F1
score, it would be possible that the parameters can be gen-
eralized. However, we find that no single choice of s and
λ performs well across all pieces. Nevertheless, to avoid
over-fitting using the ground truth patterns, we perform a

Algorithm Precision Recall F1
ME (0.125, 0.086) (0.184, 0.077) (0.149, 0.083)
SC (0.396, 0.022) (0.419, 0.068) (0.402, 0.046)

OL (0.420, 0.038) (0.565, 0.044) (0.462, 0.023)
OL (0.422, 0.061) (0.565, 0.044) (0.483, 0.054)

SIAF (0.139, 0.049) (0.670, 0.005) (0.228, 0.041)
SIAR (0.213, 0.039) (0.427, 0.000) (0.279, 0.021)
SIAP (0.117, 0.043) (0.596, 0.008) (0.195, 0.037)
VM (0.137, 0.035) (1.0, 0.0) (0.240, 0.029)
VM (0.206, 0.073) (0.543, 0.024) (0.296, 0.060)

SIACFP (0.819, 0.030) (0.82, 0.064) (0.815, 0.046)
PPA-P 0.478 0.206 0.249
PPA-R 0.228 0.867 0.35

PPA-F 0.248 0.738 0.360

Table 1. MIREX: (Mean, Variance) of the precision, recall
and F1 score of different algorithms at the pattern bound-
ary extraction task. The PPA-P, PPA-R and PPA-F are ob-
tained using a 3-fold cross-validation training process opti-
mizing the precision, the recall and the F1 scores. Because
we only have one piece in the test set, there is no variance
value. Bold numbers are the best results from individual
algorithms and PPA.

Algorithm Precision Recall F1
PatMinr (0.465, 0.054) (0.957, 0.020) (0.598, 0.050)
ME (0.366, 0.103) (0.353, 0.098) (0.314, .0879)
COSIATEC (0.482, 0.049) (0.774, 0.042) (0.569, 0.040)
SIATEC (0.468, 0.046) (0.975, 0.017) (0.610, 0.041)
MGDP (0.515, 0.072) (0.754, 0.093) (0.557, 0.065)
PPA-P (0.489, 0.135) (0.201, 0.023) (0.264, 0.035)
PPA-R (0.486, 0.057) (0.657, 0.046) (0.534, 0.044)
PPA-F (0.477, 0.054) (0.652, 0.047) (0.526, 0.042)

Table 2. MTC-ANN results in the format of Table 1,
the only difference being that we use a 10-fold cross-
validation. Best results are bold.

three-fold cross-validation using a split of two-pieces train-
ing and one piece testing in the MIREX dataset. The results
of the MIREX set are shown in Table 1 and the results of
MTC-ANN are shown in Table 2.

In the MIREX set, the best F1 score of PPA ranks the
fifth out of ten when using the optimal parameters found
by cross-validation. The best F1 score of PPA 0.360 is bet-
ter than the average of the F1 scores of individual algo-
rithms 0.3549. The SIACFP algorithm performs overall the
best on the MIREX set. With small differences, PPA ranks
the fourth out of five algorithms in MTC-ANN. However,
the best F1 score 0.534 of PPA is better than the average
F1 score of four individual algorithms 0.510. Although
PatMinr has the best F1 score in this set of music data and
algorithms, other algorithms follow very closely and there-
fore it is hard to determine whether there is a best algorithm
in this set of data and algorithms. On both datasets, we ob-
serve that PPA performs slightly better than the average of
the individual algorithms.

3.3 TINA: Pattern Distributions

From a global point of view, to measure the similarities of
novelty distributions, we calculate the polling curve distri-
butions and the pattern distributions of ground truth and
individual algorithms using TINA. To evaluate how similar
the distributions are, we calculate the Bhattacharyya coef-
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Figure 6. Left: Pairwise Pearson correlation coefficients
of the ground truth distribution, individual algorithm dis-
tributions, the novelty curve distribution (Novelty) and the
polling curve (PC) distribution using the 360 songs in MTC-
ANN. All p-values� 0.05. Right: Pairwise Bhattacharyya
coefficients of the same distributions.

ficients and the Pearson coefficients. The pairwise values
of the two measurements of the MTC-ANN set of music
data and algorithms are shown in Figure 6.

An obvious observation in both figures is the large dis-
tance and small correlation between the ground truth pat-
tern distribution and the output of algorithms. Using the
Bhattacharyya coefficients, we see that, in comparison to
the distribution overlap differences between the ground
truth and the individual algorithms, the differences among
the individual algorithms and the fusion algorithms are
smaller. Using the Pearson correlation coefficients, we see
less linear correlation between the polling curve distribu-
tion and the ground truth distribution. Other algorithms
have similar correlation values except SIATEC and the nov-
elty curve, which have specially high correlation. This
means the novelty curve is largely based on the SIATEC

algorithm’s output, and this is caused by the large num-
ber of output patterns generated by the algorithm. Look-
ing at both figures, from a global point of view, output
of the algorithms have similarities among themselves, but
they show less correlation and similarity compared to the
ground truth patterns. Similar observations are made in the
MIREX dataset and hence the matrices are not shown here.

3.4 Analysis on the Results

Combining all evaluation results, we identify why the fu-
sion methods do not excel over individual algorithms as
the fusion approach applied in [15]. First, the available
datasets are small and the ground truth patterns are sparse,
which is problematic for training the parameters and eval-
uating a stable performance. Second, the algorithms dis-
agree with each other on pattern length and pattern overlap
etc., which reflects the inherent ambiguity of music and a
lack of unified goal/application of the musical pattern dis-
covery task. Third, because there are well-performing al-
gorithms and relatively less well-performing algorithms in
the fusing portfolio, fusion results are understandably of
average quality since it combines results from all these dif-
ferent sources. In the end, although we observed promis-
ing correspondence and consensus among algorithms in
Figure 4 and Figure 5, a systematic evaluation reveals that

the degree of consensus is not yet enough for helping to
find patterns that agree with the annotated patterns.

4. DISCUSSION AND CONCLUSION

In this paper, we attempt to combine the output of musi-
cal pattern discovery algorithms to improve musical pat-
terns discovery. We devise a new algorithm, PPA, and ap-
ply an established method from the audio music similar-
ity field, TINA, to musical pattern discovery. We test the
fusion algorithms on pieces in the MIREX and MTC-ANN

datasets. The results show that PPA and TINA on aver-
age do not improve the performance significantly. More
specifically, the results from PPA show that we can extract
local boundaries using a combination of musical pattern
discovery algorithms, but we need to select the parame-
ters properly. The results from TINA show that the ground
truth probability distributions of musical patterns are dif-
ferent from the ones produced by algorithms. The results
of using two datasets show that algorithms perform dif-
ferently given different pieces and it is sometimes hard to
select a single ‘winner’. The reason of the dissatisfying
performance of the fusion algorithms lies in a large num-
ber of disagreeing patterns and the sparsity of the human-
annotated patterns: the salient parts of music identified by
the extracted musical patterns do not align with the human
annotations. To break the current limitations of applying
data fusion in this domain, our work implies a need for an
improved dataset and musical pattern discovery task for-
mulation. It is also possible to improve the fusion methods
by incorporating and learning more parameters from the
data source.

MIREX From using the MIREX dataset in the fusion
task, we identify three potential improvements for the task.
First, the ground truth data from the MIREX dataset is
sparse and consists of only a few pieces. It would be de-
sirable to obtain more annotations from experts. In addi-
tion, the current ground truth consists of annotations from
different sources, which could be improved by adopting a
collaborative ground truth creation process [2]. Second, an
open question is whether the patterns of algorithms should
be compared to humanly annotated patterns as a way of
evaluation, given that musicologists often disagree on the
patterns: more aspects of subjectivity should be taken into
account. In addition, since we see that pattern discovery
algorithms produce very different patterns, one might ask
whether different algorithms’ output might be useful for
different application scenarios. In the future of the MIREX

task, instead of measuring the agreement with annotated
patterns only, the testing of pattern quality by providing
a range of subtasks which employ extracted patterns into
various applications, constitutes a promising direction for
improving the evaluation of pattern discovery algorithms.
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ABSTRACT

Automatic meter analysis aims to annotate a recording of
a metered piece of music with its metrical structure. This
analysis subsumes correct estimation of the type of meter,
the tempo, and the alignment of the metrical structure with
the music signal. Recently, Bayesian models have been
successfully applied to several of meter analysis tasks, but
depending on themusical context, meter analysis still poses
significant challenges. In this paper, we investigate if there
are benefits to automatic meter analysis from additional a
priori information about the metrical structure of music.
We explore informed automatic meter analysis, in which
varying levels of prior information about themetrical struc-
ture of the music piece is available to analysis algorithms.
We formulate different informed meter analysis tasks and
discuss their practical applications, with a focus on Indian
art music. We then adapt state of the art Bayesian meter
analysis methods to these tasks and evaluate them on cor-
pora of Indian art music. The experiments show that the
use of additional information aids meter analysis and im-
proves automatic meter analysis performance, with signif-
icant gains for analysis of downbeats.

1. INTRODUCTION

Automatic meter analysis of a music recording aims at
determining different components of its metrical struc-
ture such as the type of meter, the tempo, the beats and
downbeats. It is an important Music Information Re-
search (MIR) task that provides useful musically relevant
metadata not only for enriched listening, but also for pre-
processing of music for several higher level tasks such
as section segmentation, structural analysis and defining
rhythm similarity measures. Initial approaches to meter
analysis explored individual tasks of meter analysis, such
as tempo estimation [8,9], beat tracking [5,13], time signa-
ture estimation [15] and downbeat tracking [10,14]. Recent
approaches consider a joint estimation of several of these
components and have successfully applied Bayesian mod-
els to jointly estimate beat and downbeats using rhythmic
patterns learned from onset detection features [1, 11, 12].
Recent interest has also been to explore neural networks for

© Ajay Srinivasamurthy, Andre Holzapfel, Xavier Serra.
Licensed under a Creative CommonsAttribution 4.0 International License
(CC BY 4.0). Attribution: Ajay Srinivasamurthy, Andre Holzapfel,
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beat and downbeat tracking with several musically inspired
features and network topologies [7]. Despite the recent suc-
cess, meter analysis still poses significant challenges de-
pending on the musical context [18, 20].

In this paper, we investigate the potential to improve
meter analysis methods by providing them with additional
prior information about the underlying metrical structure.
This is a research problem we define as informed meter
analysis, referring to a class of analysis tasks that utilize
some form of additional information about the underlying
metrical structure of the piece. Apart from building meter-
aware analysis methods, informed meter analysis is mo-
tivated by its potential applications and the need for im-
proved meter analysis performance. It is hypothesized that
information available asmetadata or obtainable from an ex-
pert user can be effectively utilized to significantly improve
meter analysis performance. Such informed approaches
can help to establish a focus in the space of possible solu-
tions by the incorporation of a priori information, support-
ingmeter analysis especially in the context of computation-
ally challenging samples. Some informed meter analysis
tasks have been studied before, such as the task of down-
beat tracking from a set of known beats [10]. However,
there has been no formal treatment of the problem, which
is the focus of this paper.

Carnatic and Hindustani music are Indian Art Music
(IAM) traditions from Southern and Northern parts of the
Indian subcontinent, respectively. Both these musics have
a long history of performance and continue to thrive in cur-
rent sociocultural contexts. While the two musics differ
in performance practices, they share similar melodic and
rhythmic concepts. The rhythmic framework is based on
cyclic metrical structures called the tāḷa in Carnatic mu-
sic (CM) or tāl in Hindustani music (HM), which provide
a broad structure for repetition of music phrases, motifs
and improvisations. A cycle of a tāḷa (or tāl) is divided
into isochronous beats (called the mātrā in HM), which are
grouped into possibly unequal length sections. The begin-
ning of a cycle (the downbeat) is referred to as sama (sam
in HM). Given the central importance of tāḷa in defining
rhythmic structures, meter analysis in the context of IAM
aims to time-align and tag a music recording with tāḷa re-
lated events and metadata. Clayton [3] and Sambamoor-
thy [16] provide an in depth discussion of rhythm in Hin-
dustani and Carnatic music, respectively.

With significant improvisation and expressive timing, a
wide range of tempo and cycles as long as a minute, IAM
has been shown to pose several challenges to automaticme-
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ter analysis [20]. Further, large and continuously growing
archives of IAM are available with varying amounts of tāḷa
related metadata [17]. In this paper, we use corpora of IAM
as a challenging case to explore the potential of informed
meter analysis, and include a set of Ballroom dances to en-
able comparison with other styles.

2. INFORMEDMETER ANALYSIS

Different kinds of prior information about the underlying
metrical structure can be made available to analysis algo-
rithms. In the following subsections, we describe specific
informed analysis tasks and emphasize different practical
scenarios for each task. At the outset, we assume that some
basic information about the music piece is available for all
informed analysis tasks. We assume that the music tradi-
tion is known, and that the rhythm class (tāḷa) of the piece
is from a set of known (frommusicological literature) tāḷas.
Further, we assume we know the range of tempo generally
used in a music culture. A piece of IAM is performed in
a single tāḷa (rare exceptions exist, but outside the scope
of regular performance practice) and most commercial re-
leases are segmented so that an audio recording is a single
piece. However, there are cases when an entire concert or
parts of concert with multiple pieces (and hence possibly
different tāḷas) are stored in a single audio recording. We
assume that such a recording has been segmented into in-
dividual pieces of music with a single tāḷa. The case of
change of tāḷas within a recording is not addressed.

Finally, for better readability, we use the commonly used
terminology of tempo, beats and downbeats in the paper,
while we carefully note that the equivalence of these terms
across different music cultures cannot be assumed.

2.1 Meter Inference (Inference)

Meter inference aims for a complete meter analysis of a
recording starting with no prior information. Given an
audio music recording, meter inference task aims to esti-
mate the rhythm class (or meter type or tāḷa), time-varying
tempo, beats and downbeats. Meter inference in IAM
aims to recognize the tāḷa/tāl, estimate the time varying
tempo (measured as the inter beat interval), the beat and
the sama/sam (downbeat) locations. It is the least informed
and most difficult task owing to the large range of tempi
and different tāḷas. While meter inference is the only ap-
plicable task with unlabeled collections of music, it is often
the case that some tāḷa related information is available or
can be inferred, e.g. from the editorial metadata of a music
piece. Most of commercially released music in both Car-
natic and Hindustani music has the name of the tāḷa in ed-
itorial metadata. Even within a live concert, the musician
often announces the tāḷa of a piece and hence tāḷa recog-
nition is a redundant task. However, meter inference can
be used as a baseline task to understand the complexity of
uninformed meter analysis.

2.2 Meter Tracking (Track)

Given an audio music recording and its rhythm class (or
meter type or tāḷa), meter tracking aims to estimate the time

varying tempo, beat and downbeat locations. Meter track-
ing in IAM aims to track the time varying tempo, beats and
the sama from an audio music recording, given the tāḷa.
Assuming that the tāḷa, and hence the metrical structure is
known in advance is a fair and practical assumption mak-
ing meter tracking the most relevant meter analysis task for
IAM.

2.3 Informed Meter Tracking

Informed meter tracking is meter tracking in which some
additional information apart from the tāḷa is available. The
additional information could be in the form of a tempo
range, a few instances of beats and downbeats annotated,
or even partially tracked metrical cycles. The additional
metadata could come from manual annotation or as an out-
put of other automatic algorithms, e.g. the median tempo
of a piece can be obtained from a standalone tempo estima-
tion algorithm, or some melodic analysis algorithms might
output (with a high probability) some beats/downbeats as a
byproduct.

From a practical standpoint, while it is prohibitively
resource intensive to manually annotate all the beats and
downbeats of a large music collection, it might be possi-
ble to seed the meter tracking algorithms with the first few
beats and downbeats. For a musician or even an expert lis-
tener, it would be easy to tap some instances of the beat
and sama/downbeats, which could then be used to auto-
matically track meter in the whole recording. In specific,
we explore three variants of informed meter tracking, with
varying levels of available information:

Sama-informed meter tracking (SI-Track) task in
which a few instances of sama/downbeat of the piece are
provided as an additional input to the meter tracking algo-
rithm. An example downbeat is expected to help the algo-
rithm to better align the audio to the underlying meter. We
only explore the use of first downbeat of the piece, without
any knowledge of tempo.
Tempo-informed meter tracking (TI-Track) task in
which the median tempo (or a narrow range of tempi) of the
piece is provided as an additional input to the meter track-
ing algorithm. Providing themedian tempo is hypothesized
to help reduce metrical level errors - tracking the metri-
cal cycles at the correct metrical level instead of tracking
half and double cycles. The median tempo can be obtained
manually or through other automatic tempo estimation al-
gorithms [8, 22].
Sama-Tempo-informed meter tracking (STI-Track)
task in which the median tempo and a few downbeat lo-
cations in the excerpt are provided as additional inputs to
the meter tracking algorithm. We only explore the use of
median tempo value and the first downbeat of the music
piece provided to the meter tracking algorithm.

The informed meter tracking tasks formulated in this sec-
tion are relevant and designed to require minimal human
effort to provide the necessary additional information. In a
best case scenario, the most informed STI-Track task can
be applied to a music piece by listening to just the first few
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Figure 1: The bar pointer model for meter analysis. The
circles and squares denote continuous and discrete vari-
ables, respectively. Grey nodes and white nodes represent
observed and latent variables, respectively.

seconds of the piece and marking two consecutive down-
beats. An estimate of the initial tempo can be obtained
the two downbeats and used by the analysis algorithm. Fi-
nally, the various tasks were described using terminology
of IAM, but they are applicable to any music with hierar-
chical metrical structures that can be described with beats,
downbeats and rhythm patterns.

3. METER ANALYSIS MODEL

To compare different informed analysis tasks, we use and
adapt a state of the art Dynamic Bayesian Network (DBN).
Referred to as bar pointer model (BP-model) [23], has been
successfully applied for meter analysis in different music
cultures [11, 19]. We describe the model briefly while a
detailed description is presented in [12]. We then explain
how it can be adapted to the informed analysis tasks.

In a DBN, an observed sequence of features derived
from an audio signal y1:K = {y1, . . . , yK} is gener-
ated by a sequence of hidden (latent) variables x1:K =
{x1, . . . , xK}, where K is the length of the feature se-
quence (number of audio frames). The joint probability
distribution of hidden and observed variables factorizes as,

P (y1:K , x0:K) = P (x0) ·
K∏

k=1

P (xk | xk−1)P (yk | xk)

where, P (x0) is the initial state distribution, P (xk|xk−1)
is the transition model, and P (yk|xk) is the observation
model. The structure of the BP-model in Figure 1 shows
the conditional dependence relations between the vari-
ables.

3.1 Hidden Variables

At each audio frame k, the hidden variable vector xk
describes the state of a hypothetical bar pointer xk =
[ϕk ϕ̇k rk], representing the bar position, instantaneous
tempo and a rhythmic pattern indicator, respectively.

Rhythmic pattern indicator: The rhythmic pattern vari-
able r ∈ {1, . . . , R} is an indicator variable to select one of
theR observationmodels corresponding to each bar (cycle)
length rhythmic pattern of a rhythm class that are learned
from training data. Each pattern r corresponds to a rhythm
class (or meter type or tāḷa) and has an associated length of
cycleMr and number of beat (or mātrā) pulses Br.

Bar position: The bar position ϕ ∈ [0,Mr) variable
tracks the progression through the bar and indicates a po-
sition in the bar at any audio frame. The variable traverses
the whole bar and wraps around to zero at the end of the
bar to track the next bar.
Instantaneous tempo: Instantaneous tempo ϕ̇ is the rate
at which the bar position variable progresses through the
bar at each frame, measured in bar positions per time frame.

3.2 Transition and Observation Model

The initial state distribution P (x0) can be used to incor-
porate prior information about the metrical structure of the
music into the model. Given the conditional dependence
relations in Figure 1, the transition model factorizes as,

P (xk | xk−1) = P (ϕk | ϕk−1, ϕ̇k−1, rk−1)P (ϕ̇k | ϕ̇k−1)

P (rk | rk−1, ϕk, ϕk−1) (1)

The individual terms of the equation can be expanded as,
P (ϕk | ϕk−1, ϕ̇k−1, rk−1) = 1ϕ (2)

where 1ϕ is an indicator function that takes a value of one
if ϕk = (ϕk−1 + ϕ̇k−1)mod(Mrk−1

) and zero otherwise.
The tempo transition is given by,

P (ϕ̇k | ϕ̇k−1) ∝ N (ϕ̇k−1, σ
2
ϕ̇k
)× 1ϕ̇ (3)

where 1ϕ̇ is an indicator function that equals one if ϕ̇k ∈
[ϕ̇min, ϕ̇max] and zero otherwise, restricting the tempo to be
between a predefined range. N (µ, σ2) denotes a normal
distribution with meanµ and variance σ2. The value of σϕ̇k

depends on the value of tempo to allow for larger tempo
variations at higher tempi. We set σϕ̇k

= σn · ϕ̇k−1, where
σn (= 0.02) is a user parameter that controls the amount of
local tempo variations we allow in the music piece.

The transition probability of pattern indicator variable
P (rk | rk−1, ϕk, ϕk−1) is governed by A, a R × R time-
homogeneous transition matrix where A(i, j) is the transi-
tion probability from ri to rj . However, since the rhythmic
patterns are one bar (cycle) in length, pattern transitions are
allowed only at the end of the bar (ϕk < ϕk−1).

The observation model is identical to the one used in
[12], and depends only on the bar position and rhythmic
pattern variables, without any influence from tempo. To
model rhythm patterns, we compute spectral flux feature
from audio in two frequency bands (Low: ≤ 250 Hz, High:
> 250 Hz). Using beat and downbeat annotated training
data, the audio features are grouped into bar length patterns
on a bar discretized into 64th note cells. A k-means clus-
tering algorithm then assigns each bar of the dataset to one
of the R rhythmic patterns. All the features within the cell
of each pattern are collected and maximum likelihood esti-
mates of the parameters of a two component GaussianMix-
ture Model (GMM) are obtained. The observation proba-
bility within a 64th note cell is assumed to be constant and
is computed as,

P (y | x) = P (y | ϕ, r) =
2∑

i=1

πϕ,r,i N (y;µϕ,r,i,Σϕ,r,i)

where, N (y;µ,Σ) denotes a normal distribution of the
two dimensional feature y. For the mixture component i,
πϕ,r,i,µϕ,r,i and Σϕ,r,i are the component weight, mean
(2-dim.) and the covariance matrix (2× 2), respectively.
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3.3 Inference in BP-model

The goal of inference with the BP-model is to estimate a
hidden variable sequence x∗1:K that maximizes the posterior
probability P (x1:K | y1:K) given an observed sequence of
features y1:K . The sequence x∗1:K can then be translated
into a sequence of downbeat (sama) instants (t∗k | ϕ∗

k = 0),
beat instants (t∗k | ϕ∗

k = i · Mr∗/Br∗ , i = 1, . . . , Br), local
instantaneous tempo (ϕ̇∗

k) and rhythmic patterns (r∗).
In this paper, we use an approximate particle filter [6]

based inference scheme called the Auxiliary Mixture Par-
ticle Filter (AMPF), which has been shown to be effective
for meter analysis [12]. In a particle filter, the posterior is
estimated pointwise by approximating it using a weighted
set of points (known as particles) in the state space as,

P (x1:K | y1:K) ≈
Np∑
i=1

w
(i)
K δ(x1:K − x(i)1:K) (4)

Here, {x(i)1:K} is a set of points (particles) with associated
weights {w(i)

K }, i = 1, . . . , Np, x1:K is the set of all state
trajectories until frameK, δ(x) is the Dirac delta function,
and Np is the number of particles. The AMPF algorithm
includes several enhancements to make it suitable for in-
ference with the BP-model, a detailed description of which
has been presented in [12].

3.4 BP-model and AMPF for Informed Meter Analysis

The AMPF algorithm on the BP-model is generic and can
be adapted to be applicable to the informed meter analy-
sis tasks described in Section 2. For meter inference, the
rhythm class (tāḷa) can be estimated by allowing rhythmic
patterns of different lengths from different rhythm classes
to be present in the model, as used by [12]. For meter track-
ing tasks, we assume that the rhythm class is known and all
rhythm patterns belong to that class, i.e. Mr = M and
Br = B ∀ r.

The initial state distribution P (x0) and the initializa-
tion of the particle filter system are modified to suit the in-
formed meter tracking tasks. A uniform initialization over
all allowed states is used for Inference and Track tasks,
while a narrower informed initialization is done for in-
formedmeter tracking. For TI-Track task, we use theme-
dian ground truth tempo of the music piece being tracked
and initialize the tempo variable ϕ̇ within a tight bound
allowing for 10% variation in tempo around the median
value. This enables the tracking algorithm to restrict the
tempo variable within the tight tempo range and track the
correct tempo at the right metrical level. For SI-Track
task, the provided sama instance is used to initialize the
bar position variable ϕ to zero at the related time position.
For STI-Track task, both the tempo and bar position vari-
ables are initialized appropriately using the given informa-
tion. The tracking algorithm hence gets the tempo and the
beginning of the cycle in the piece, tracking the remaining
beats and downbeats.

4. EXPERIMENTS

The experiments aim to compare performance across dif-
ferent informed meter analysis tasks and investigate the

Dataset #Pieces #Ann. #Sama

CMR 118 28725 5560
HMRs 92 32731 2572
HMRl 59 3280 304

Total (IAM) 269 64736 8436

Table 1: The Carnatic (CMR) and Hindustani (HMRland
HMRs) music datasets showing the number of pieces, sama
and beat/mātrā annotations.

advantage of the additional prior information they utilize.
While the focus of experiments is on Indian music, we also
report the results on a collection of Ballroom dances to
evaluate the extensibility of the informed analysis tasks.
Furthermore, reproducibility will be ensured by providing
free access for research purposes to all code repositories
and datasets on the companion webpage, which also pro-
vides additional resources and music examples. 1

4.1 Music Datasets

For the experiments, we use rhythm annotated datasets of
Carnatic and Hindustani music (described in Table 1) that
have been previously used for evaluating automatic meter
analysis algorithms. The Carnatic music rhythm dataset
(CMR dataset) [19] includes 118 two minute long excerpts
of Carnatic music sampled from commercial releases. The
recordings span four commonly used tāḷas with different
number of beats in a cycle, with a total duration of 236
minutes. The dataset consists of audio, manually annotated
time-aligned markers indicating the progression through
the tāḷa cycle, and the associated tāḷa related metadata.

The Hindustani music rhythm dataset consists of 151
two minute long excerpts of Hindustani music sampled
from the CompMusic Hindustani music research cor-
pus [21], a curated collection of commercial audio releases
and metadata. The excerpts span four popular tāls of Hin-
dustani music that are structurally different and of different
lengths. For each audio excerpt, the annotations consist
of editorial metadata about the tāl, as well as time-aligned
metrical annotations of all beat and sam instances.

The dataset consists of excerpts with a wide tempo range
from 10 MPM (mātrās per minute) to 370 MPM. Hindus-
tani music divides tempo into three main tempo classes
(lay). Since no exact tempo ranges are defined for these
classes, we determined suitable ranges in correspondence
with a professional Hindustani musician as 10-60 MPM,
60-150 MPM, and >150 MPM for the slow (vilaṁbit),
medium (madhya), and fast (dr̥t) tempi, respectively. The
tempo class of a piece has a significant effect onmeter anal-
ysis due to the wide range of possible tempi. To study any
effects of the tempo class, the full Hindustani dataset is di-
vided into two other subsets - the long cycle duration subset
called the HMRl dataset consisting of vilaṁbit pieces and
the short cycle duration subset HMRs dataset with mad-
hya and the dr̥t lay pieces. The complete collection of Car-
natic and Hindustani music datasets together is called IAM
dataset.

1 http://compmusic.upf.edu/informed-meter-tracking
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In addition to Indian art music, we evaluate the tasks
on a set of Ballroom dances, which includes beat and bar
annotations of audio recordings of several dance styles
sourced from BallroomDancers.com [9, 11]. The ball-
room dataset contains eight different dance styles (Cha cha,
Jive, Quickstep, Rumba, Samba, Tango, Viennese Waltz,
and (slow) Waltz) and has been widely used for several
MIR tasks such as genre classification, tempo tracking,
beat and downbeat tracking [1, 9, 12]. It consists of 698
thirty second long audio excerpts and has tempo and dance
style annotations. The dataset contains two different me-
ters (3/4 and 4/4) and all pieces have constant meter.

4.2 Evaluation Measures

We evaluate the tasks through the relevant meter compo-
nents they estimate - meter type, tempo, beats and down-
beats. We evaluate only the applicable components that are
not assumed to be known a priori in an informed task (e.g.
meter type is known in Track task and hence only tempo,
beats and downbeats are evaluated).

A variety of measures are available for evaluating beat
and downbeat tracking [4]. We chose the f-measure (f) met-
ric that is widely used in beat tracking evaluation. Other
measures were applied in addition during the experiments,
but did not add further detail and hence are not reported. It
is a number between 0 and 1 computed from estimated and
ground truth annotation sequences as the harmonic mean of
the precision and recall measures. The definition extends to
tracking both the beat/mātrās (fb) and the downbeats/samas
(fs). For Inference and Track tasks, we additionally re-
port the results of median tempo estimation, comparing the
median estimated tempo and the median annotated ground
truth tempo with a 5% error margin. For Inference task,
the algorithms also detect the rhythm class (or tāḷa) and
hence the accuracy of this detection is also reported.

4.3 Experimental Setup

Experiments are done separately on each of the three IAM
datasets (CMR, HMRs, HMRl) and the Ballroom dataset.
To compute the f-measure in CMR, HMRs and Ballroom
datasets, an error tolerance window of 70 ms is used be-
tween the annotation and the estimated beat/sama. The
computation of f-measure with HMRl dataset is an excep-
tion, where a bigger margin window is allowed. Since cy-
cles are of long duration in HMRl dataset and current eval-
uation approaches were not designed with such long cycles
in mind, an error tolerance window of 70 ms is very tight.
To account for the length of the cycle in the error margin,
a 6.25% median inter annotation interval is used as the tol-
erance window, as used in many other beat tracking eval-
uations (e.g. by [10]). This choice of a larger allowance
window also corroborates well with the observation that
in vilaṁbit pieces of the HMRl dataset, there can be sig-
nificant freedom in pulsation and that larger timing devi-
ations go unnoticed since the pieces are not rhythmically
dense. It can be argued that the beat pulsation in vilaṁbit
pieces is beyond the duration of what is called the percep-
tual present [2], and can therefore not be considered to be-
long to metrical structure. However, it is to be noted that

Dataset CMR HMRs HMRl IAM Ballroom

Accuracy 68 63 27 57 89

Table 2: Tāḷa recognition accuracy (%) in Inference
task. Time signature recognition accuracy is reported for
Ballroom dataset.

the allowance used in this paper is a compromise and better
evaluation measures that can handle these complexities are
to be developed.

The tempo ranges for initialization of AMPF in In-
ference, Track and SI-Track tasks are learned from
training data of each fold and an additional 20% margin is
added to extend to unseen data. However, if the learned
ranges are beyond the minimum and maximum tempo lim-
its of each music culture, we set it to the minimum or the
maximum. We use one rhythmic pattern per tāḷa (or dance
style). Hence, we use R = 1 for meter tracking, when a
known meter is being tracked, while R = 4 (8 in Ball-
room dataset) is used for meter inference, with one pat-
tern per tāḷa/rhythm. We use the number of bar positions,
Mr = 1600 for the longest rhythmic pattern we encounter
in the dataset and scale all other pattern lengths accord-
ingly. For the AMPF algorithm, we use 1500 particles
per rhythm pattern, with other parameters identical to those
used in [12]. A hop size of 20 ms is used to compute the
two dimensional spectral flux feature.

4.4 Results and Discussion

The results in Table 2 and Figures 2-3 summarize the per-
formance across different datasets and informed analysis
tasks. All results are reported as the mean performance
over three runs in a 2-fold (equal size) cross validation ex-
periment on each dataset. The results are presented for
each dataset as an average over the pieces in all the tāḷas
(or rhythm classes). Table 2 shows the tāḷa recognition ac-
curacy for the Indian music datasets (and time signature es-
timation accuracy for Ballroom dataset) from the Infer-
ence task. Figure 3 shows the median tempo estimation
accuracy for different datasets in the Inference, Track,
and SI-Track tasks, where median tempo is not known
a priori. The beat and downbeat f-measure values are re-
ported for all the informed analysis tasks in Figure 2. We
use a paired-sample t-test to assess statistically significant
differences in beat and downbeat tracking performance by
pooling the results of Indian music datasets.

Table 2 shows a similar performance with the CMR and
HMRs datasets, but is significantly poor for the long cycle
subset of Hindustani music (HMRl dataset). Whereas in
the Carnatic and Hindustani music datasets, each tāḷa has
a distinct length, the eight rhythm classes in the Ballroom
data are assigned to only two time signatures reducing the
task to a classification task between 3/4 and 4/4 time signa-
tures. Ballroom dataset hence shows the best recognition
performance.

Tāḷa recognition accuracy affects tempo estimation, as
seen in Figure 3 with a poor tempo estimation performance
within the HMRl dataset. Median tempo estimation accu-
racy is similar for CMR and HMRs datasets. Tempo es-
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Figure 2: Beat and sama (downbeat) tracking results showing the f-measure as bar plots for different datasets and informed
analysis tasks. The matrix on the right shows the results of a significance test between analysis tasks (numbers 1-5 corre-
spond to tasks in the legend) for the IAM dataset. A box with numeral 1 indicates a statistically significant difference in a
paired-sample t-test (at p = 0.05) while numeral 0 indicates a difference that is not statistically significant.

Figure 3: Median tempo estimation accuracy in the In-
ference, Track and SI-Track tasks.

timation accuracy improves for Track task compared to
Inference task, showing the utility of knowing the me-
ter type in estimating the correct tempo. However, addi-
tional downbeat information in SI-Track task does not
add much to tempo estimation, with marginal or no further
improvement. Ballroom dataset shows the best tempo es-
timation performance except for Inference task, where
wrong estimations of the rhythm class leads to poorer
tempo estimation.

The beat f-measure (fb) results in Figure 2 across dif-
ferent informed analysis tasks shows a marginal improve-
ment with informed tracking tasks, but statistically signifi-
cant improvements are observed only with TI-Track and
STI-Track tasks for IAM datasets, when median tempo
is known a priori. This shows that the tempo informa-
tion is more relevant than tāḷa and sama information to im-
prove beat tracking performance for Indian art music. The
biggest gains in informedmeter analysis are seen in sama f-
measure (fs), with significant improvements achieved with
more informed analysis tasks. For the pooled IAM dataset,
startingwith a fs = 0.51with Inference task, STI-Track
task achieves fs = 0.82, showing the benefit and the util-
ity of both tempo and sama information in informed meter
analysis for a more difficult task of downbeat estimation.

For Ballroom dataset, compared to the Track task,
we observe that downbeat tracking performance for SI-
Track improves more over TI-Track task. This indicates
that downbeat information is more important than tempo

information. It is perhaps due to the fact that Ballroom
dances have a stable tempo and clear repeated rhythmic pat-
terns. Accurate tempo estimation is achieved even without
prior tempo information (Figure 3), and hence downbeat
information is more useful.

A comparison of performance across datasets shows that
CMR, HMRs and Ballroom datasets have similar trends of
improvement in both beat and sama (downbeat) tracking
with informed tracking tasks. The largest gains however
are obtained with the long cycle HMRl dataset, which im-
proves from a poor fs = 0.26 (Inference) to fs = 0.99
(STI-Track). While we note that a larger error margin and
fewer sama examples in the long cycle dataset contribute
to this high performance, the overall results considering all
datasets and tasks conclude that the use of tempo and sama
information enhances the capabilities of automatic meter
analysis algorithms to track downbeats.

5. CONCLUSIONS

Starting with a hypothesis that automatic meter analysis
performance can be improved by utilizing additional in-
formation about meter or tempo of a piece, we formu-
lated relevant informed meter analysis tasks that can incor-
porate varying levels of prior information about the me-
ter type, tempo and downbeat position. An evaluation on
corpora of Indian art music and Ballroom dances showed
the utility of prior information for automatic meter anal-
ysis, where tempo information is useful for beat tracking
and the tempo and downbeat information was shown to be
useful for downbeat tracking. We also showed that with
minimal effort by a potential user of an annotation sys-
tem, a high accuracy in tempo, beat and downbeat estima-
tion can be achieved through informed meter analysis algo-
rithms. Evaluation of informed analysis tasks in the paper
was done through individual components of meter (tempo,
beat, downbeat). In future work, we plan to develop unified
meter analysis evaluation measures that take into account
the hierarchical structure of musical meter.
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ABSTRACT

We propose a system to automatically assess the intel-
ligibility of sung lyrics. We are particularly interested in
being able to identify songs which are intelligible to sec-
ond language learners, as such individuals often sing along
the song to help them learn their second language, but
this is only helpful if the song is intelligible enough for
them to understand. As no automatic system for identify-
ing ‘intelligible’ songs currently exists, songs for second
language learners are generally selected by hand, a time-
consuming and onerous process. We conducted an exper-
iment in which test subjects, all of whom are learning En-
glish as a second language, were presented with 100 ex-
cerpts of songs drawn from five different genres. The test
subjects listened to and transcribed the excerpts and the in-
telligibility of each excerpt was assessed based on average
transcription accuracy across subjects. Excerpts that were
more accurately transcribed on average were considered to
be more intelligible than those less accurately transcribed
on average. We then tested standard acoustic features to
determine which were most strongly correlated with intel-
ligibility. Our final system classifies the intelligibility of
the excerpts and achieves 66% accuracy for 3 classes of
intelligibility.

1. INTRODUCTION

While various studies have been conducted on singing
voice analysis, one aspect which has not been well-studied
is the intelligibility of a given set of lyrics. Intelligibility
describes how easily a listener can comprehend the words
that a performer sings; the lyrics of very intelligible songs
can easily be understood, while the lyrics of less intelligi-
ble songs sound garbled or even incomprehensible to the
average listener. People’s impressions of many songs are
strongly influenced by how intelligible the lyrics are, with
one study even finding that certain songs were perceived
as ‘happy’ when people could not understand its lyrics,
but was perceived as ‘sad’ when the downbeat lyrics were

c© Karim M. Ibrahim, David Grunberg, Kat Agres, Chi-
tralekha Gupta, Ye Wang. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Karim M.
Ibrahim, David Grunberg, Kat Agres, Chitralekha Gupta, Ye Wang. “ In-
telligibility of Sung Lyrics: a Pilot Study”, 18th International Society for
Music Information Retrieval Conference, Suzhou, China, 2017.

made comprehensible [20]. It would thus be useful to en-
able systems to automatically determine intelligibility, as
it is a key factor in people’s perception of a wide variety of
songs.

We are particularly interested in measuring the intelli-
gibility of songs with respect to second language learners.
Many aspects of learning a second language to the point of
fluency have been shown to be difficult, including separat-
ing the phonemes of an unfamiliar language [30], memo-
rizing a large number of vocabulary words and grammar
rules [22], and maintaining motivation for the length of
time required to learn the language. Consequently, many
second language learners need help, and music has been
shown to be a useful tool for this purpose. Singing and
language development have been shown to be closely re-
lated at the neurological level [24, 32], and experimental
results have demonstrated that singing along with music
in the second language is an effective way of improving
memorization and pronunciation [12, 19]. However, spe-
cific songs are only likely to help these students if they can
understand the content of the lyrics [11]. As second lan-
guage learners may have difficulty understanding certain
songs in their second language due to their lack of fluency,
they could be helped by a system capable of automatically
determining which songs they are likely to find intelligible
or unintelligible.

We therefore seek to design a system which is capable
of assessing a given song and assigning it an intelligibil-
ity score, with the standard of intelligibility biased towards
people who are learning the language of the lyrics but have
not yet mastered it. To gather data for this system we com-
piled excerpts from 50 songs and had volunteering partic-
ipants listen to the song in order to discover how intelligi-
ble they found the lyrics. Rather than simply having the
participants rate the intelligibility of the song, we had the
participants transcribe the lyrics that they heard and then
calculated an intelligibility score for each excerpt based on
the statistics of how accurately the students transcribed it.
Excerpts that were transcribed more accurately on average
were judged to be more intelligible than those transcribed
less accurately on average. A variety of acoustic features
were then used to build a classifier which could determine
the intelligibility of a given piece of music. The classifier
was then run on the same excerpts used in the listening
experiment, and the results of each were compared.

The remaining outline of this paper is as follows: Sec-

686



tion 2 lists relevant literature in the field. Section 3 de-
scribes the transcription experiment performed to gather
data. Section 4 discusses the features and the classifier.
Finally, Sections 5 and 6 shows the evaluation of our pro-
posed model and our conclusions, respectively.

2. LITERATURE REVIEW

That sung lyrics could be more difficult to comprehend
than spoken words has long been established in the scien-
tific community. One study showed that even professional
voice teachers and phoneticians had difficulty telling vow-
els apart when sung at high pitch [7]. Seminal work by
Collister and Huron found listeners to make hearing er-
rors as much as seven times more frequently when listen-
ing to sung lyrics than spoken ones [3]. Such studies also
noted lyric features which could help differentiate intelligi-
ble from unintelligible songs; for instance, one study noted
that songs comprised mostly of common words sounded
more intelligible than songs with rarer words [9]. How-
ever, lyric features alone are not sufficient to assess intelli-
gibility; the same lyrics can be rendered more or less intel-
ligible depending on, for instance, the speed at which they
are sung. These other factors must be taken into account to
truly assess lyric intelligibility.

Studies have been conducted on assessing the overall
quality of singing voice. One acoustic feature which mul-
tiple studies have found to be useful for this purpose is
the power ratio of frequency bands containing energy from
the singing voice to other frequency bands; algorithms us-
ing this feature have been shown to reliably distinguish be-
tween trained and untrained singers [2,23,34]. Calculation
of pitch intervals and vibrato have also been shown to be
useful for this purpose [21]. However, while the quality
of singing voice may be a factor in assessing intelligibil-
ity, it is not the only such factor. Aspects of the song that
have nothing to do with the skill of the singer or the qual-
ity of their performance, such as the presence of loud back-
ground instruments, can contribute, and additional features
that take these factors into account are needed for a system
which determines lyric intelligibility.

Another related task is that of singing transcription,
in which a computer must listen to and transcribe sung
lyrics [18]. It may seem that one could assess intelligibil-
ity by comparing a computer’s transcription of the lyrics
to a ground truth set of lyrics and determining if the tran-
scription is accurate. But this too does not really determine
intelligibility, at least as humans perceive it. A computer
can use various filters and other signal processing or ma-
chine learning tools to process the audio and make it easier
to understand, but a human listening to the music will not
necessarily have access to such tools. Thus, even if a com-
puter can understand or accurately transcribe the lyrics of a
piece of music, this does not indicate whether those lyrics
would be intelligible to a human as well.

3. BEHAVIORAL EXPERIMENT

To build a system that can automatically process a song
and evaluate the intelligibility of its lyrics, it is essential to
gather ground truth data that reflects this intelligibility on
average across different listeners. Hence, we conducted a
study where participants were tasked with listening to short
excerpts of music and transcribing the lyrics, a common
task for evaluating intelligibility of lyrics [4]. The accuracy
of their transcription can be used to assess the intelligibility
of each excerpt.

3.1 Method

3.1.1 Participants

Seventeen participants (seven females and ten males) vol-
unteered to take part in the experiment. Participants were
between 21 to 41 years (mean = 27.4 years). All partici-
pants indicated no history of hearing impairment and that
they spoke some English as a second language. Partic-
ipants were rewarded with a $10 voucher for their time.
Participants were recruited through university channels via
posters and fliers. The majority of the participants were
university students.

3.1.2 Materials

For the purpose of this study, we focused solely on
English-language songs. Because one of the main appli-
cations for such a system is to recommend music for stu-
dents who are learning foreign languages, we focused on
genres that are popular for students. To identify these gen-
res, we asked 48 university students to choose the 3 genres
that they listen to the most, out of the 12 genres introduced
in [4], as these 12 genres cover a wide variety of singing
styles. The twelve genres are: Avante-garde, Blues, Clas-
sical, Country, Folk, Jazz, Pop/Rock, Rhythm and Blues,
Rap, Reggae, Religious, and Theater. Because the tran-
scription task is long and tiring for participants, we lim-
ited the number of genres tested to only five, from which
we would draw approximately 45 minutes worth of music
for transcription. We selected the five most popular gen-
res indicated by the 48 participants: Classical, Folk, Jazz,
Pop/Rock, and Rhythm and Blues.

After selecting the genres, we collected a dataset of 10
songs per genre. Because we were interested in evaluat-
ing participants’ ability to transcribe an unfamiliar song,
as opposed to transcribing a known song from memory,
we focused on selecting songs that are not well-known in
each genre. We approached this by selecting songs that
have less than 200 ratings on the website Rate Your Mu-
sic (rateyourmusic.com). Rate Your Music is a database
of popular music where users can rate and review different
songs, albums and artists. Popular songs have thousands
of ratings while less known songs have few ratings. We
used this criteria to collect songs spanning the 5 genres to
produce our dataset. The songs were randomly selected,
with no control over the vocal range or the singer’s accent,
as long as they satisfied the condition of being in English
and having few ratings.
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Because transcribing an entire song, let alone 50 songs,
would be an overwhelming process for the participants, we
selected short excerpts from each song to be transcribed.
Two excerpts per song were selected randomly such that
each excerpt would include a complete utterance (e.g., no
excerpts were terminated mid-phrase). Excerpts varied be-
tween 3 to 16 seconds in length (average = 6.5 seconds),
and contained 9.5 words on average. The ground-truth
lyrics for these songs were collected from online sources
and reviewed by the experimenters to ensure they matched
the version of the song used in the experiment. It is im-
portant to note that selecting short excerpts might affect
intelligibility, because the context of the song (which may
help in understanding the lyrics) is lost. However, using
these short excerpts is essential in making the experiment
feasible for the participants, and would still broadly reflect
the intelligibility of the song. The complete dataset is com-
posed of 100 excerpts from 50 songs, 2 excerpts per song,
covering 5 genres, and 10 songs per genre. Readers who
are interested in experimenting on the dataset can contact
the authors.

3.1.3 Procedure

We conducted the experiment in three group listening ses-
sions. During each session, the participants were seated
in a computer lab, and recorded their transcriptions of the
played excerpts on the computer in front of them. The ex-
cerpts were played in randomized order, and each excerpt
was played twice consecutively. Between the two play-
backs of each excerpt there was a pause of 5 seconds, and
between different excerpts a pause of 10 seconds, to allow
the participants sufficient time to write their transcription.
The total duration of the listening session is 46:59 minutes.
Two practice trials were presented before the experimental
trials began, to familiarize participants with the experimen-
tal procedure.

3.2 Results and Discussion

To evaluate the accuracy of the participants’ transcription,
we counted the number of words correctly transcribed by
the participant that match the ground truth lyrics. For each
transcription by each student, the ratio between correctly
transcribed words to the total number of words in the ex-
cerpt was calculated. We then calculated the average ratio
for each excerpt across all 17 participants to yield an over-
all score for each excerpt between 0 and 1. This score was
used to represent the ground-truth transcription accuracy,
or Intelligibility score, for each excerpt. The distribution
of Intelligibility scores in the dataset is shown in Figure
1. From the figure, we can observe that the intelligibility
scores are biased towards higher values, i.e. there are rel-
atively few excerpts with a low intelligibility score. This
may be caused by the restricted set of popular genres in-
dicated by students, as certain excluded genres would be
expected to have low intelligibility, such as Heavy Metal.
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Figure 1. The distribution of the transcription accuracies
(Intelligibility score).

4. COMPUTATIONAL SYSTEM

The purpose of this study is to select audio features that
can be used to build a system capable of 1) predicting the
intelligibility of song lyrics, and 2) evaluating the accu-
racy of these predictions with respect to the ground truth
gathered from human participants. In the following ap-
proach, we analyze the input signal and extract expressive
features that reflect the different aspects of an intelligible
singing voice. Several properties may contribute to making
the singing voice less intelligible than normal speech. One
such aspect is the presence of background music, as ac-
companying music can cover or obscure the voice. There-
fore, highly intelligible songs would be expected to have a
dominant singing voice compared with the accompanying
music [4]. Unlike speech, the singing voice has a wider and
more dynamic pitch range, often featuring higher pitches
in soprano vocal range. This has been shown to affect
the intelligibility of the songs, especially with respect to
the perception of sung vowels [1, 3]. An additional con-
sideration is that in certain genres, such as Rap, singing
is faster and has a higher rate of words per minute than
speech, which can reduce intelligibility. Furthermore, as
indicated in [10], the presence of common, frequently oc-
curring words helps increase intelligibility, while uncom-
mon words decrease the likelihood of understanding the
lyrics. In our model, we aimed to include features that ex-
press these different aspects to determine the intelligibility
of song lyrics across different genres. These features are
then used to train the model to accurately predict the intel-
ligibility of lyrics in the dataset, based on the ground truth
collected in our behavioral experiment.

4.1 Preprocessing

To extract the proposed features from an input song, two
initial steps are required: separating the singing voice from
the accompaniment, and detecting the segments with vo-
cals. To address these steps, we selected the following ap-
proaches based on current state-of-the-art methods:

4.1.1 Vocals Separation

Separating vocals from accompaniment music is a well-
known problem that has received considerable attention in
the research community. Our approach makes use of the
popular Adaptive REPET algorithm [16]. This algorithm is
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based on detecting the repeating patten in the song, which
is meant to represent the background music. Separating the
detected pattern leaves the non-repeating part of the song,
meant to capture the vocals. Adaptive REPET also has
the advantage of discovering local repeating patterns in the
song over the original REPET algorithm [26]. Choosing
Adaptive REPET was based on two main advantages: The
algorithm is computationally attractive, and it shows com-
petitive results compared to other separation algorithms, as
shown in the evaluation of [14].

4.1.2 Detecting Vocal Segments

Detecting vocal and non-vocal segments in the song is an
important step in extracting additional information about
the intelligibility of the lyrics. Various approaches have
been proposed to perform accurate vocal segmentation,
however, it remains a challenging problem. For our ap-
proach, we implemented a method based on extracting the
features proposed in [15], then training a Random Forest
classifier using the Jamendo corpus 1 [27]. The classifier
was then used to binary classify each frame of the input file
as either vocals or non-vocals.

4.2 Audio features

In this section, we investigate the set of features we used
in training the model for estimating lyrics intelligibility.
We use a mix of features reflecting specific aspects of in-
telligibility plus common standard acoustic features. The
selected features are:

1. Vocals to Accompaniment Music Ratio (VAR):
Defined as the energy of the separated vocals di-
vided by the energy of the accompaniment music.
This ratio is computed only in segments where vo-
cals are present. This feature reflects how strong the
vocals are compared to the accompaniment. High
VAR suggests that vocals are relatively loud and less
likely to be obscured by the music. Hence, higher
VAR counts for higher intelligibility. This feature is
particularly useful in identifying songs that are un-
intelligible due to loud background music which ob-
scures the vocals.

2. Harmonics-to-residual Ratio (HRR): Defined as
the the energy in a detected fundamental frequency
(f0) according to the YIN algorithm [5] plus the en-
ergy in its 20 first harmonics (a number chosen based
on empirical trials), all divided by the energy of the
residual. This ratio is also applied only to segments
where vocals are present. Since harmonics of the de-
tected f0 in vocal segments are expected to be pro-
duced by the singing voice, this ratio, like VAR,
helps to determine whether the vocals in a given
piece of music are stronger or weaker than the back-
ground music which might obscure it.

1 http://www.mathieuramona.com/wp/data/jamendo/

3. High Frequency Energy (HFE): Defined as the
sum of the spectral magnitude above 4kHz,

HFEn =

Nb/2∑
k=f4k

an,k (1)

where an,k is the magnitude of block n and FFT in-
dex k of the short time Fourier transform of the in-
put signal, f4k is the index corresponding to 4 kHz
and Nb is the FFT size [8]. We calculate the mean
across all frames of the separated and segmented vo-
cals signal, as we are interested in the high energy
component in vocals and not the accompanying in-
struments. We get a scalar value per input file re-
flecting high frequency energy. Singing in higher
frequencies has been proven to be less intelligible
than music in low frequencies [3], so detection of
high frequency energy can be a useful clue that such
vocals might be present and could reduce the intel-
ligibility of the music, such as frequently happens
with opera music.

4. High Frequency Component (HFC): Defined as
the sum of the amplitudes and weighted by the fre-
quency squared,

HFCn =

Nb/2∑
k=1

k2an,k (2)

where an,k is the magnitude of block n and FFT in-
dex k of the short time Fourier transform of the input
signal and Nb is the FFT size [17]. This is another
measure of high frequency content.

5. Syllable Rate: Singing at a fast pace while pro-
nouncing several syllables over a short period of
time can negatively affect the intelligibility [6]. In
the past, Rao et al. used temporal dynamics of tim-
bral features to separate singing voice from back-
ground music [28]. These features showed more
variance over time for singing voice, while being rel-
atively invariant to background instruments. We ex-
pect that these features will also be sensitive to the
syllable rate in singing. We use the temporal stan-
dard deviation of two of their timbral features: sub-
band energy (SE) in the range of ([300-900 Hz]),
and sub-band spectral centroid (SSC) in the range
of ([1.2-4.5 kHz]), defined as

SSC =

∑khigh

k=klow
f(k)|X(k)|∑khigh

k=klow
|X(k)|

(3)

SE =

khigh∑
k=klow

|X(k)|2 (4)

where f(k) and |X(k)| are frequency and magnitude
spectral value of the kth frequency bin, and klow and
khigh are the nearest frequency bins to the lower and
upper frequency limits on the sub-band respectively.
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According to [28], SE enhances the fluctuations be-
tween voiced and unvoiced utterances, while SSC
enhances the variations in the 2nd, 3rd and 4th for-
mants across phone transitions in the singing voice.
Hence, it is reasonable to expect high temporal vari-
ance of these features for songs with high syllable
rate, and vice versa. Thus, this feature is able to dif-
ferentiate songs with high and low syllable rates. We
would expect that very high and very low syllable
rates should lead to low intelligibility score, while
rates in a similar range to that of speech should re-
sult in high intelligibility score.

6. Word-Frequency Score: Songs which use com-
mon words have been shown to be more intelligi-
ble than those which use unusual or obscure words
[10]. Hence, we calculate a word-frequency score
for the lyrics of the songs as an additional feature.
This feature is a non-acoustic feature that is use-
ful in cases where the lyrics of the song are avail-
able. We calculate the word-frequency score us-
ing the wordfreq open-source toolbox [31] which
provides an estimates of the frequencies of words in
many languages.

7. Tempo and Event Density: These two rhythmic
features reflect how fast the beat and rhythm of the
song are. Event density is defined as the average
frequency of events, i.e., the number of note on-
sets per second. Songs with very fast beats and
high event density are likely to be less intelligible
than slower songs, since the listener has less time to
process each event before the next one begins. We
used the MIRToolbox [13] to extract these rhyth-
mic features.

8. Mel-frequency cepstral coefficients (MFCCs):
MFCCs approximates the human auditory system’s
response more closely than the linearly-spaced fre-
quency bands [25]. MFCCs have been proven to
be effective features in problems related to singing
voice analysis [29], and so were considered as a po-
tential feature here as well. For our system, we se-
lected the 17 first coefficients (excluding the 0th) as
well as the deltas of those features, which proved
empirically to be the best number of coefficients.
The MFCCs are extracted from the original signal
without separation, as it reflects how the whole song
is perceived.

By extracting this set of features for an input file, we
end up with a vector of 43 features to be used in estimating
the intelligibility of the lyrics in this song.

4.3 Model training

We used the dataset and ground-truth collected in our be-
havioral experiment to train a Support Vector Machine
model to estimate the intelligibility of the lyrics. To cat-
egorize the intelligibility to different levels that would
match a language student’s fluency level, we divided our

High Moderate Low

High

Moderate

Low

33 9 1

10 30 2

4 8 3

Confusion Matrix of the complete dataset

Figure 2. Confusion Matrix of the SVM output.

dataset to three classes:
High Intelligibility: excerpts with transcription
accuracy of greater than 0.66.
Moderate Intelligibility: excerpts with tran-
scription accuracy between 0.33 and 0.66 inclusive.
Low Intelligibility: excerpts with transcription
accuracy of less than 0.33.
Out of the 100 samples in our dataset, 43 are in the High
Intelligibility class, 42 are in the Moderate Intelligibility
class, and the remaining 15 are in the Low Intelligibility
class. For this pilot study, we tried a number of common
classifiers, including Support Vector Machine (SVM), ran-
dom forest and k-nearest neighbors. Our trials for finding
a suitable model led to using SVM with a linear kernel, as
it is an efficient, fast and simple model which is suitable
for this problem. Finally, as a preprocessing step, we nor-
malize all the input feature vectors before passing them to
the model to be trained.

5. MODEL EVALUATION

Because this problem has not been addressed before in the
literature, and it is not possible to perform evaluation us-
ing other methods, we based our evaluation on classifica-
tion accuracy from the dataset. Given the relatively small
number of samples in the dataset, we used leave-one-out
cross-validation for evaluation. To evaluate the perfor-
mance of our model, we compute overall accuracy, as well
as the Area Under the ROC Curve (AUC). We scored AUC
of 0.71 and accuracy of 66% with the aforementioned set
of features and model. The confusion matrix of validat-
ing our model using leave-one-out cross-validation on our
collected dataset is shown in Figure 2. The figure shows
that the classifier has relatively more accuracy in predicting
high and moderate than low intelligibility, which is often
confused with the moderate class. Given that our findings
are based on a relatively small segment of excerpts with
low intelligibility, the classifier was found to be trained to
work better on the high and moderate excerpts.

Following model evaluation on the complete dataset, we
were interested in investigating how the model performs on
different genres, specifically how it performs when tested
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Confusion Matrix of R&B Genre
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High
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3 5 0
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Confusion Matrix of Jazz Genre

Figure 3. Confusion matrix of the different genres

Genre Classification Accuracy
Pop/Rock 60%

R&B 55%
Classical 70%

Folk 55%
Jazz 60%

Table 1. Classification accuracy for different genres

with a genre that was not included in the training dataset.
This would imply how the model generalizes when run-
ning on different genres that was not present during train-
ing, as well as showing how changing genres affect classi-
fication accuracy. We performed an evaluation where we
trained our model using 4 out of the 5 genres in our dataset,
and tested it on the 5th genre. The classification accuracy
across different genres is shown in Table 1. The results
show variance in classifying different genres. For exam-
ple, Classical music receives higher accuracy, while gen-
res as Rhythm and Blues and Folk shows less accuracy.
By analyzing the confusion matrices of each genre shown
in Figure 3, we found that the confusion is mainly between
high and moderate classes.

By reviewing the impact of the different features on the
classifier performance, we looked into what features have
the biggest impact using the attribute ranking feature in
Weka [35]. We found that several MFCCs contribute most
in differentiating between the three classes, which we in-
terpret to be due to analyzing the signal in different fre-
quency sub-bands incorporates perceptual information of
both the singing voice and the background music. This
was followed by the features reflecting the syllable rate in
the song, because singing rate can radically affect the intel-
ligibility. Vocals-to-Accompaniment Ratio and High Fre-
quency Energy followed in their impact on differentiating
between the three classes. The features that had the least
impact were the tempo and event density, which does not

necessarily reflect the rate of singing.
For further studies on the suitability of the features in

classifying songs with very low intelligibility, the genres
pool can be extended to include other genres with lower
intelligibility, rather than being limited to the popular gen-
res between students. Further studies can also include the
feature selection and evaluation process: similar to the
work in [33], deep learning methods may be explored to
select the features which perform best, rather than hand-
picking features, to find the most suitable set of features
for this problem. It is possible to extend the categorical ap-
proach of intelligibility levels to a regression problem, in
which the system evaluates the song’s intelligibility with a
percentage. Similarly, certain ranges of the intelligibility
score can be used to recommend songs to students based
on their fluency level.

6. CONCLUSION

In this study, we investigated the problem of evaluating the
intelligibility of song lyrics to provide an aid for language
learners who listen to music as part of language immersion.
We conducted a behavioral experiment to review how the
intelligibility of lyrics in different genres of songs are per-
ceived by human participants. We then developed a com-
putational system to automatically estimate the intelligibil-
ity of lyrics in a given song. In our system, we proposed
features to reflect different factors that affect the intelli-
gibility of lyrics according to previous empirical studies.
We used the proposed features along with standard audio
features to train a model capable of estimating the intelli-
gibility of lyrics (as low, moderate, or high intelligibility)
with an AUC of 0.71. The study provides evidence that the
proposed system has promising initial results, and draws
attention to the problem of lyrics intelligibility, which has
received little attention in terms of computational audio
analysis and automatic evaluation.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 691



7. REFERENCES

[1] Martha S Benolken and Charles E Swanson. The effect
of pitch-related changes on the perception of sung vow-
els. The Journal of the Acoustical Society of America,
87(4):1781–1785, 1990.

[2] Ugo Cesari, Maurizio Iengo, and Pasqualina Apisa.
Qualitative and quantitative measurement of the
singing voice. Folia Phoniatrica et Logopaedica,
64(6):304–309, 2013.

[3] Lauren Collister and David Huron. Comparison of
word intelligibility in spoken and sung phrases. Em-
pirical Musicology Review, 3(3):109–125, 2–8.

[4] Nathaniel Condit-Schultz and David Huron. Catch-
ing the lyrics. Music Perception: An Interdisciplinary
Journal, 32(5):470–483, 2015.
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ABSTRACT

Music genre classification, especially using lyrics alone,
remains a challenging topic in Music Information Re-
trieval. In this study we apply recurrent neural network
models to classify a large dataset of intact song lyrics.
As lyrics exhibit a hierarchical layer structure—in which
words combine to form lines, lines form segments, and
segments form a complete song—we adapt a hierarchical
attention network (HAN) to exploit these layers and in ad-
dition learn the importance of the words, lines, and seg-
ments. We test the model over a 117-genre dataset and a
reduced 20-genre dataset. Experimental results show that
the HAN outperforms both non-neural models and simpler
neural models, whilst also classifying over a higher num-
ber of genres than previous research. Through the learning
process we can also visualise which words or lines in a
song the model believes are important to classifying the
genre. As a result the HAN provides insights, from a com-
putational perspective, into lyrical structure and language
features that differentiate musical genres.

1. INTRODUCTION

Automatic classification of music is an important and
well-researched task in Music Information Retrieval
(MIR) [25]. Previous work on this topic has focused
primarily on classifying mood [13], genre [21], annota-
tions [27], and artist [9]. Typically one or a combination
of audio, lyrical, symbolic, and cultural data is used in ma-
chine learning algorithms for these tasks [23].

Genre classification using lyrics presents itself as a nat-
ural language processing (NLP) problem. In NLP the aim
is to assign meaning and labels to text; here this equates
to a genre classification of the lyrical text. Traditional ap-
proaches in text classification have utilised n-gram models
and algorithms such as Support Vector Machines (SVM),
k-Nearest Neighbour (k-NN), and Naı̈ve Bayes (NB).

In recent years the use of deep learning methods such as
recurrent neural networks (RNNs) or convolutional neural
networks (CNNs) has produced superior results and rep-
resent an exciting breakthrough in NLP [16, 17]. Whilst

c© Alexandros Tsaptsinos. Licensed under a Creative Com-
mons Attribution 4.0 International License (CC BY 4.0). Attribution:
Alexandros Tsaptsinos. “Lyrics-Based Music Genre Classification Using
A Hierarchical Attention Network”, 18th International Society for Music
Information Retrieval Conference, Suzhou, China, 2017.

linear and kernel models rely on good hand-selected fea-
tures, these deep learning architectures circumvent this by
letting models learn important features themselves.

Deep learning has in recent years been utilised in sev-
eral MIR research topics including live score following [7],
music instrument recognition [20], and automatic tagging
[3]. In many cases, these approaches have led to signifi-
cant improvements in performance. For example, Kum et
al. [18] utilise multi-column deep neural networks to ex-
tract melody on vocal segments while Southall et al. [34]
approach automatic drum transcription using bidirectional
recurrent neural networks.

Neural methods have further been utilised for the genre
classification task on audio and symbolic data. Sigtia and
Dixon [31] use the hidden states of a neural network as
features for song on which a Random Forest classifier
was built, reporting an accuracy of 83% among 10 genres.
Costa et al. [6] compare the performance of CNNs in genre
classification through spectrograms with respect to results
obtained through hand-selected features and SVMs. Jeong
and Lee [14] learn temporal features in audio using a deep
neural network and apply this to genre classification. How-
ever, not much research has looked into the performance
of these deep learning methods with respect to the genre
classification task on lyrics. Here, we attempt to remedy
this situation by extending deep learning approaches to text
classification to the particular case of lyrics.

Hierarchical methods attempt to use some sort of struc-
ture of the data to improve the models and have previously
been utilised in vision classification tasks [30]. Yang et
al. [37] propose a hierarchical attention network (HAN)
for the task of document classification. Since documents
often contain structure whereby words form to create sen-
tences, sentences to paragraphs, etc. they introduce this
knowledge to the model, resulting in superior classifica-
tion results. It is evident that songs and, in particular, lyrics
similarly contain a hierarchical composition: Words com-
bine to form lines, lines combine to form segments, and
segments combine to form the whole song. A segment of a
song is a verse, chorus, bridge, etc. of a song and typically
comprises several lines. The hierarchical nature of songs
has been previously exploited in genre classification tasks
with Du et al. [8] utilising hierarchical analysis of spectro-
grams to help classify genre.

Here, we propose application of an HAN for genre clas-
sification of intact lyrics. We train such a network, allow-
ing it to apply attention to words, lines, and segments. Re-
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sults show the network produces higher accuracies in the
lyrical classification task than previous research and from
the attention learned by the network we can observe which
words are indicative of different genres.

The remainder of the paper is structured as follows. In
Section 2 we describe our methods, including the dataset
and a description of the HAN. In Section 3 we provide re-
sults and visualisations from our experiments. We con-
clude with a discussion in Section 4.

2. METHODS

2.1 Dataset

Research involving song lyrics has historically suffered
from copyright issues. Consequently most previous liter-
ature has utilised count-based bag-of-words lyrics. In this
format, structure and word order are lost, and it has been
shown that utilising intact lyrics reveals superior results in
classification tasks [11, 32].

Seeking an intact lyrics corpus for the present study, we
obtained a collection of lyrics through a signed research
agreement with LyricFind 1 . This corpus has been used in
the past to study novelty [10] and influence [1] in lyrics.
The complete set contained 1,039,151 song lyrics in JSON
format, as well as basic metadata including artist(s) and
track name. As the corpus provided no genre information,
we aggregated it ourselves using the iTunes Search API 2 ,
extracting the value for the primaryGenreName key as
baseline truth. Several different sources were not used for
consistency reasons with iTunes found to be the largest,
easily accessible source with reasonable genre tags. This
unfortunately still greatly reduced the size of the dataset
due to the sparse iTunes database. We then further re-
moved any songs that were linked with a genre tag of ‘Mu-
sic Video’, leaving a dataset comprising 244 genres. As
this dataset had a very long tail of sparse genres, we fur-
ther filter the dataset via two methods. Firstly we remove
any genres with less than 50 instances, giving a dataset
of size 495,188 lyrics and 117 genres. Secondly we re-
tain only the top 20 genres, giving a dataset of 449,458
lyrics. We note also that the dataset originally contained
various versions of the same lyrics, due to the prevalence
of cover songs; we retain only one of these versions cho-
sen at random. The song lyrics are split into lines and seg-
ments which we tokenised using the nltk package 3 in
Python. We split the dataset into a rough split of 80% for
training, 10% for validation, and 10% for testing. All pre-
processing was done via Python with the neural networks
built using Tensorflow 4 .

2.2 Hierarchical Attention Networks

The structure of the model follows that of Yang et al. [37].
Each layer is run through a bidirectional gated recurrent

1 http://lyricfind.com/
2 http://apple.co/1qHOryr
3 http://www.nltk.org/
4 https://www.tensorflow.org/
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Figure 1: Representation of the HAN architecture; boxes
represent vectors. A and B vectors represent the hidden
states for the forward and backward pass of the GRU at
the word level, respectively. The line vectors C are then
obtained from these hidden states via the attention mech-
anism. The D and E vectors represent the forward and
backward pass of the GRU at the line level, respectively.
The song vector F is then obtained from these hidden states
via the attention mechanism. Finally classification is per-
formed via the softmax activation function.

unit (GRU) with attention applied to the output. The at-
tention weights are used to create a vector via a weighted
sum which is then passed as the input to the next layer. A
representation of the architecture for the example song of
‘Happy Birthday’ can be seen in Figure 1, where the lay-
ers are applied at the word, line, and song level. We briefly
step through the various components of the model.

2.2.1 Word Embeddings

An important idea in NLP is the use of dense vectors to
represent words. A successful methodology proposes that
similar words have similar context and thus vectors can
be learned through their context, such as in the word2vec
model [26]. Pennington et al. [29] propose the GloVe
method which combines global matrix factorisation and lo-
cal context window methods to produce word vectors that
outperform previous word2vec and SVM based models.

Here we take as our vocabulary the top 30,000 most fre-
quent words from the whole LyricFind corpus, including
those from songs we did not match with a genre. We train
100-dimensional GloVe embeddings for these words using
methods obtained from the GloVe website 5 . Previous re-
search has shown that retraining these word vectors over
the extrinsic task at hand can improve results if the dataset
is large enough [5]. In a preliminary genre classification
task we found that retraining these word embeddings did
improve accuracy, and so we let our model learn superior
embeddings to those provided by GloVe [29].

2.2.2 Gated Recurrent Units

Introduced by Chung et al. [4], GRUs are a form of gat-
ing mechanism in RNNs designed to help overcome the

5 http://nlp.stanford.edu/projects/glove/
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struggle to capture long-term dependencies in RNNs. This
is achieved by the introduction of intermediate states be-
tween the hidden states in the RNN. An update gate zt is
introduced to help determine how important the previous
hidden state is to the next hidden state. A reset gate rt is
introduced to help determine how important the previous
hidden state is in the creation of the next memory. The
hidden state is ht, whilst new memory is computed and
stored in h̃t. Mathematically we describe the process as

zt = sigmoid (Wzxt + Uzht−1 + bz) (1)

rt = sigmoid (Wrxt + Urht−1 + br) (2)

h̃t = tanh (Whxt + rt ◦ Uhht−1 + bh) (3)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t, (4)

where xt is the word vector input at time-step t, ◦ is the
Hadamard product, and sigmoid is the sigmoid activation
function. Wz , Uz , Wr, Ur, Wh, and Uh are weight ma-
trices randomly initialised and to be learned by the model
along with the bz , br, and bh bias terms. Bias terms were
not included in the original model by Chung et al. [4], how-
ever have been included here as in Jozefowicz et al. [15].

2.2.3 Hierarchical Attention

Attention was first proposed by Bahdanau et al. [2] with
respect to neural machine translation to allow the model to
learn which words were more important in the translation
objective. Along the lines of that study, we would like our
model to learn which words are important in classifying
genre and then apply more weight to these words. Sim-
ilarly, we can apply attention again on lines or segments
to let the model learn which lines or segments are more
important in classification.

Given input vectors hi for i = 1, . . . , n the attention
mechanism can be formulated as

ui = tanh (Wahi + ba) (5)

αi =
exp(uTi ua)∑n
k=1 exp(u

T
k ua)

(6)

s =
n∑

i=1

αihi, (7)

where s is the output vector passed to the next layer con-
sisting of the weighted sum of the current layers vectors.
Parameters Wa, ba, and ua are learned by the model after
random initialisation.

One layer of the network takes in vectors x1, . . . , xn,
applies a bidirectional GRU to find a forward hidden state
−→
h j and a backward hidden state

←−
h j , and then uses the at-

tention mechanism to form a weighted sum of these hidden
states to output as the representation. Letting GRU indi-
cate the output of a GRU and ATT represent the output
from an attention mechanism, one layer is formulated as

−→
h j =

−−−→
GRU(xj), (8)

←−
h j =

←−−−
GRU(xj), (9)

hj = [
−→
h j ;
←−
h j ], (10)

s = ATT (h1, . . . , hL). (11)

Our HAN consists of two layers, one at the word level, and
one at the line/segment level. Consider a song of L lines
or segments sj , each consisting of nj words wij . Let E
be the pre-trained word embedding matrix. Letting LAY
represent the dimension reduction operation of a layer in
the network as in Eqns 8–11 the whole HAN can be for-
mulated for i = 1, . . . , nj and j = 1, . . . , L as

xij = Ewij (12)

sj = LAY (x1j , . . . , xnjj), (13)

s = LAY (s1, . . . , sL). (14)

Each layer has its own set of GRU weight matrix and bias
terms to learn, as well as its own attention weight matrix,
bias terms, and relevance vector to learn.

2.2.4 Classification

With the song vector s now obtained, classification is per-
formed by using a final softmax layer

p = softmax (Wps+ bp) , (15)

where intuitively we take the entry of highest magnitude
as the prediction for that song. To train the model we min-
imise over cross-entropy loss.

3. EXPERIMENTS

3.1 Baseline Models

We compare the performance of the HAN against various
baseline models.

1. Majority classifier (MC): ‘Rock’ is the most common
genre in our dataset. The MC simply predicts ‘Rock’.

2. Logistic regression (LR): A LR run on the average song
word vector produced from the GloVe embeddings.

3. Long Short-Term Memory (LSTM): An LSTM, treat-
ing the whole song as a single sequence of words and
use max-pooling of the hidden states for classification.
Fifty hidden units were used in the LSTM and each
song had a maximum of 600 words. For full discussion
of the LSTM framework see Hochreiter and Schmidhu-
ber [12].

4. Hierarchical network (HN-L): The HN structure in the
absence of attention run at the line level. At each layer
all of the representations are simply averaged to pro-
duce the next layer input.

For LR, LSTM, and HN-L we let the model retrain the
word embeddings as it trained.

3.2 Model Configuration

The lyrics are padded/truncated to have uniform length. In
the line model, each line has a maximum of 10 words and
a maximum of 60 lines. In the segment model each seg-
ment has a maximum of 60 words and a maximum of 10
segments. Fifty hidden units are utilised in the bidirec-
tional GRUs, whilst one hundred states are output from the
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Model 117 Genres 20 Genres

MC 24.71 27.17
LR 35.21 38.13
LSTM 43.66 49.77
HN-L 45.85 49.09
HAN-L 46.42 49.50
HAN-S 45.05 47.60

Table 1: Genre classification test accuracies for the two
datasets (%) using majority classifier (MC), logistic regres-
sion (LR), Long Short-Term Model (LSTM), hierarchical
network (HN-L), and line- and segment-level HAN (HAN-
L, HAN-S).

attention mechanisms. Before testing the model, hyper-
parameters were tuned on the validation set. Dropout [35]
and gradient clipping [28] were both found to benefit the
model. We dropout at each layer with probability p = 0.5
and gradients are clipped at a maximum norm of 1 in the
backpropogation. We utilise a mini-batch size of 64 and
optimise using RMSprop [36] with a learning rate of 0.01.
The models were all run until their validation loss did not
decrease for 3 successive epochs. In all the HAN models,
this occurred between the 5th and 8th epoch.

The code to train the model and perform the experi-
ments described are made publicly available 6 .

3.3 Results

For both dataset sizes we run the baseline models and the
HAN at the line and segment level. Let HAN-L represent
running over lines and HAN-S represent running over seg-
ments. The test accuracies are seen in Table 1.

From the results we see a trend between model com-
plexity and classification accuracy. The very simple major-
ity classifier performs weakest and is improved upon by the
simple logistic regression on average bag-of-words. The
neural-based models perform better than both of the simple
models. The LSTM model, which takes into account word
order and tries to implement a memory of these words,
gives performances of 43.66% and 49.77%, outperform-
ing the HAN on the 20-genre dataset. Over the 117-genre
dataset the best performing models were the HANs, with
a highest accuracy of 46.42% when run over lines. It is
observed that for the simpler 20-genre case, the more com-
plex HAN is not required since the simpler LSTM beats
it, although the LSTM took almost twice as long to train
as the HAN. However for the more challenging 117-genre
case, the HAN-L outperforms the LSTM, perhaps picking
up on more of the intricacies of rarer genres.

In both cases the HAN run at the line level produced su-
perior results than that run over the segment level, giving
a bump of roughly 1.4% and 1.9% in the 117-genre and
20-genre datasets, respectively. The HN-L, which is run
at the line level, additionally outperforms the HAN at seg-
ment level. This indicates that the model performs better
when looking at songs line by line rather than segment by

6 https://github.com/alexTsaptsinos/lyricsHAN

Figure 2: HAN-L confusion matrix for Rock, Pop, Al-
ternative (Alt), Country, and Hip-Hop/Rap (HHR) genres
over larger (117-genre) dataset. Rows represent true genre,
whilst columns are predicted.

segment. In the HAN-L the model can pick up on many
repeated lines or lines of a similar ilk, rather than the few
similar segments it attains in the HAN-S, and this may be
attributive to the better performance. The network does
benefit from the inclusion of attention, with HAN-L clas-
sifying with higher accuracies than HN-L. This increase is
marginal and requires an increased cost, however allows
for the extraction of attention in the visualisations of the
following section.

As expected, classifying over the 20-genre dataset has
given boosts of roughly 3% and 2.5% in the HAN-L and
HAN-S, respectively. It is interesting to note that dis-
carding roughly 10% of the data by only keeping roughly
a sixth of the genres has not strengthened the model by
much. Given the similarity of recognition performance be-
tween the two datasets, even with the simplest of models,
it is likely that the extra genres are predominantly noise
added to the 20-genre dataset. With the HAN-L outper-
forming the LSTM over the 117-genre dataset this then in-
dicates that the model is more robust to noise.

The confusion matrix for HAN-L run over the larger
dataset for the top 5 genres can be seen in Figure 2. We can
see from the matrix that Rock, Pop, and Alternative (Alt)
are all commonly confused; the model predicts Rock for
Alternative almost as many times as it does Alternative. As
the most common genre in the dataset by about 30,000 it
is unsurprising to see the model try and predict Rock more
often, and it is unclear whether a person would be able
to distinguish between the lyrics of these genres. How-
ever, we see that both Country and Hip-Hop/Rap (HHR)
are more separated. With their distinct lyrical qualities,
especially in the case of Hip-Hop/Rap, this is an encour-
aging result indicating that the model has learned some of
the qualities of both these genres.

3.3.1 Attention Visualisation

To help illustrate the attention mechanism, we feed song
lyrics into the HAN-L and observe the weights it applies
to words and lines. For each song we extract the 5 most
heavily weighted lines and a visualisation of their weights
and the individual word weights for a few different cor-
rectly predicted song lyrics can be seen in Figure 3.

From these visualisations we notice that the model has
placed greater weights on words we may associate with
a certain genre. For example ‘baby’ and ‘ai’ are weighted
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Got a bad toy sittin ' in the parkin '
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Let me whisper in your ear

I 'm in love with you oo

Say the words you long to hear

You 'll never know how much I really love you
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Figure 3: Weights applied by the HAN-L for song lyrics that were correctly classified. Line weights appear to the left of
each line and word weights are coloured according to the respective colorbars on the right.

heavily in the Country song, and the most heavily weighted
line in that song is characteristically Country. The model
has placed great weight on a blank line, indicating the
break between segments; it is unclear whether the model
is learning to place importance on how songs are seg-
mented and the number of segments occurring. In the Hip-
Hop/Rap song the model places attention on colloquially
spelled words ‘cause’ and ‘gonna’. Although not included
here, it was observed that for many rap songs swear words
and racial terms were heavily weighted. The model picks
up the ‘woh’ and ‘oo’ in the Rock song and also heavily
weights occurrences of second-person determiner ‘your’
and pronoun ‘you’. It was found that for many Rock songs
this was the case.

In addition some visualisations of lyrics that were in-
correctly classified by the HAN-L can be seen in Figure 4.
We observe the model predicting Country for a Pop song,
applying weights to ‘sin’ and ‘strong’ which could be char-
acteristic of Country songs. The dataset contains songs
with foreign language lyrics. Here we observe a song with
Spanish lyrics classed as Pop Latino by the model whilst
iTunes deems it Pop. This seems like a fair mistake for
the model to have made since it has evidently recognised
the Spanish language. The model also incorrectly classi-
fies the Hip-Hop/Rap song as Pop. In the 5 most heavily
weighted lines we do not spot any instances of language
that indicate a Hip-Hop/Rap song and we hypothesise that

the genericness of the lyrics has led the model to predict
Pop.

4. DISCUSSION

Genre is an inherently ambiguous construct, but one that
plays a major role in categorising musical works [24, 33].
From one standpoint, genre classification by lyrics will
always be inherently flawed by vague genre boundaries
and many genres borrowing lyrics and styles from one an-
other. Previous research has shown that lyrical data per-
forms weakest in genre classification compared to other
forms of data [23]. As a consequence, this problem is not
as well researched and preference has been given to other
methods.

SVMs, k-NN, and NB have been heavily used in previ-
ous lyrical classification research. In addition very rarely
has research looked into classifying more than between 10
genres despite the prevalence of clearly many more gen-
res. Fell and Sporleder classify among 8 genres using
n-grams along with other hand-selected features to help
represent vocabulary, style, structure, and semantics [11].
Ying et al. make use of POS tags and classify among 10
genres using SVMs, k-NN, NB with a highest accuracy of
39.94% [38]. McKay et al. utilise hand-selected features to
produce classification accuracies of 69% among 5 genres
and 43% among 10 genres [23].

698 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



0 2 4 6 8 10

0.076

0.075

0.07

0.07

0.06

I long to take each breath beside you

I ai n't strong enough to hide

Reach for me , sweet as sin

All at once our worlds <unk>

Predicted Class: Country, True Class: Pop

0.2

0.4

0.6

0.8
0 2 4 6 8 10

0.048

0.04

0.038

0.036

0.035

Yo que nunca te he <unk>
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See the kid with the memory he can t shake

Them things that haunt you , let them be

Do what you want to do if you feel that

All your idols were just like you
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Figure 4: Weights applied by the HAN-L for song lyrics that were incorrectly classified. Line weights appear to the left of
each line and word weights are coloured according to the respective colorbars on the right.

In this paper we have shown that an HAN and other
neural-based methods can improve on the genre classifi-
cation accuracy. In large part this model has beaten all
previously reported lyrical-only genre classification model
accuracies, except for the classification among 5 gen-
res. Whilst having been trained on different datasets the
jump in classification accuracies achieved by the HAN and
LSTM across the 20-genre datasets compared to previous
research indicate that neural structures are clearly benefi-
cial. However, with very similar results between the neural
structures it is still unclear what the optimal neural struc-
ture may be and there is certainly room for further exper-
imentation. We have shown that the HAN works better
with layers at the word, line, and song level rather than
word, segment, and song level. One known issue of the
present dataset is that iTunes attributes genres by artist,
not by track; this is a problem for artists whose work may
cover multiple genres and is something that should be ad-
dressed in the future. A larger issue concerns the accuracy
of the iTunes genre labels more generally, especially for
the larger 117-genre dataset which naturally includes more
subjective and vague genre definitions.

Visualisations of the weights the HAN applies to words
and lines were produced to help see what the model was
learning. In a good amount of cases, words and lines were
heavily weighted that were cohesive with the song genre;
however, this was not always the case. We note that in gen-

eral the model tended to let one word dominate a single line
with the greatest weight. However this was not as apparent
across lines, with weights among lines more evenly spread.
With a large amount of foreign-language lyrics also present
in the dataset, an idea for further research is to build a clas-
sifier that identifies language, and from there classifies by
genre. Any such research would be inhibited, however, by
the lack of such a rich dataset to train on.

To produce a state-of-the-art classifier it is evident that
the classifier must take into account more than just the lyri-
cal content of the song. Mayer et al. combine audio and
lyrical data to produce a highest accuracy of 63.50% within
10 genres via SVMs [21]. Mayer and Rauber then use a
cartesian ensemble of lyric and audio features to gain a
highest accuracy of 74.08% within 10 genres [22]. Further
research could look into employing this hierarchical atten-
tion model to the audio and symbolic data, and combining
with the lyrics to build a stronger classifier. Employment of
the HAN in the task of mood classification via sentiment
analysis is another possible area of research. In addition
the HAN could be extended to include both a layer at the
line and segment level, or even at the character level, to
explore performance.
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ABSTRACT

The goal of this study is the automatic detection of onsets
of the singing voice in polyphonic audio recordings. Start-
ing with a hypothesis that the knowledge of the current po-
sition in a metrical cycle (i.e. metrical accent) can improve
the accuracy of vocal note onset detection, we propose a
novel probabilistic model to jointly track beats and vocal
note onsets. The proposed model extends a state of the art
model for beat and meter tracking, in which a-priori prob-
ability of a note at a specific metrical accent interacts with
the probability of observing a vocal note onset. We carry
out an evaluation on a varied collection of multi-instrument
datasets from two music traditions (English popular music
and Turkish makam) with different types of metrical cy-
cles and singing styles. Results confirm that the proposed
model reasonably improves vocal note onset detection ac-
curacy compared to a baseline model that does not take
metrical position into account.

1. INTRODUCTION

Singing voice analysis is one of the most important topics
in the field of music information retrieval because singing
voice often forms the melody line and creates the impres-
sion of a musical piece. The automatic transcription of
singing voice can be considered to be a key technology in
computational studies of singing voice. It can be utilized
for end-user applications such as enriched music listening
and singing education. It can as well enable other compu-
tational tasks including singing voice separation, karaoke-
like singing voice suppression or lyrics-to-audio alignment
[5].

The process of converting an audio recording into some
form of musical notation is commonly known as auto-
matic music transcription. Current transcription methods
use general purpose models, which are unable to capture

c� Georgi Dzhambazov, Andre Holzapfel, Ajay Srini-
vasamurthy, Xavier Serra. Licensed under a Creative Commons Attri-
bution 4.0 International License (CC BY 4.0). Attribution: Georgi
Dzhambazov, Andre Holzapfel, Ajay Srinivasamurthy, Xavier Serra.
“Metrical-accent aware vocal onset detection in polyphonic audio”,
18th International Society for Music Information Retrieval Conference,
Suzhou, China, 2017.

the rich diversity found in music signals [2]. In particular,
singing voice poses a challenge to transcription algorithms
because of its soft onsets, and phenomena such as porta-
mento and vibrato. One of the core subtasks of singing
voice transcription (SVT) is detecting note events with a
discrete pitch value, an onset time and an offset time from
the estimated time-pitch representation. Detecting the time
locations of vocal note onsets can benefit from automati-
cally detected events from musical facets, such as musical
meter. In fact, the accents in the metrical cycle determine
to a large extent the temporal backbone of singing melody
lines. Studies on sheet music showed that the locations
of vocal note onsets are influenced by the their position
in a metrical cycle [7, 10]. Despite that, there have been
few studies on meter aware analysis of onsets in music au-
dio [4].

In this work we propose a novel probabilistic model
that tracks simultaneously note onsets of singing voice and
instrumental energy accents in a metrical cycle. We ex-
tend a state of the art model for beat and meter tracking,
based on dynamic Bayesian networks (DBN). A model
variable is added that models the temporal segments of a
note and their interaction with metrical position. The pro-
posed model is applied for the automatic detection of vocal
note onsets in multi-instrumental recordings with predom-
inant singing voice. Evaluation is carried out on datasets
from music traditions, for which there is a clear correlation
between metrical accents and the onset times in the vocal
line.

2. RELATED WORK

2.1 Singing Voice Transcription

A probabilistic note hidden Markov model (HMM) is pre-
sented in [18], where a note has 3 states: attack (onset),
stable pitch state and silent state. The transition proba-
bilities are learned from data. Recently [14] suggested to
compact musical knowledge into rules as a way to describe
the observation and transition likelihoods, instead of learn-
ing them from data. The authors suggest covering a range
with distinct pitch from lowest MIDI C2 up to B7. Each
MIDI pitch is further divided into 3 sub-pitches, result-
ing in n = 207 notes with different pitch, each having
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the 3 note states. Although being conceptually capable
of tracking onsets in singing voice audio with accompa-
niment, these approaches were tested only on a cappella
singing.

In multi-instrumental recordings, an essential first step
is to extract reliably the predominant vocal melody.
There have been few works dealing with SVT in multi-
instrumental recordings in general [13, 15], and with onset
detection, in particular [3]. Some of them [13, 15] rely on
the algorithm for predominant melody extraction of [19].

2.2 Beat Detection

Recently a Bayesian approach, referred to as the bar-
pointer model, has been presented [20]. It describes events
in music as being driven by their current position in a met-
rical cycle (i.e. musical bar). The model represents as hid-
den variables in a Dynamic Bayesian network (DBN) the
current position in a bar, the tempo, and the type of musical
meter, which can be referred to as bar-tempo state space.

The work of [9] applied this model to recordings from
non-Western music, in order to handle jointly beat and
downbeat tracking. The authors showed that the original
model can be adapted to different rhythmic styles and time
signatures, and an evaluation is presented on Indian, Cre-
tan and Turkish music datasets.

Later [12] suggested a modification of the bar-tempo
state space, in order to reduce the computational burden
from its huge size.

3. DATASETS

3.1 Turkish Makam

The Turkish dataset has two meter types, referred to as
usuls in Turkish makam: the 9/8-usul aksak and the 8/8-
usul düyek. It is a subset of the dataset presented in [9],
including only the recordings with singing voice present.
The beats and downbeats were annotated by [9]. The vo-
cal note onsets are annotated by the first author, whereby
only pitched onsets are considered (2100 onsets). To this
end, if a syllable starts with an unvoiced consonant, the
onset is placed at the beginning of the succeeding voiced
phoneme 1 .

For this study we divided the dataset into training and
test subsets. The test dataset comprises 5 1-minute ex-
cerpts from recordings with solo singing voice only for
each of the two usuls (on total 780 onsets). The training
dataset spans around 7 minutes of audio from each of the
two usuls. Due to the scarcity of material with solo singing
voice, several excerpts with choir sections were included in
the training data.

3.2 English Pop

The datasets, on which singing voice transcription in multi-
instrumental music is evaluated, are very few [2]: Often a
subset of the RWC dataset is employed, which does not

1 The dataset is described at http://compmusic.upf.edu/

node/345

contain diverse genres and singers [6]. To overcome this
bias, we compiled the lakh-vocal-segments dataset: We
selected 14 30-second audio clips of English pop songs,
which have been aligned to their corresponding MIDIs in
a recent study [17]. Criteria for selecting the clips are the
predominance of the vocal line; 4/4 meter; correlation be-
tween the beats and the onset times. We derived the loca-
tions of the vocal onsets (850 on total) from the aligned
vocal MIDI channel, whereby some imprecise locations
were manually corrected. To encourage further studies on
singing voice transcription we make available the derived
annotations 2 .

4. APPROACH

The proposed approach extends the beat and meter track-
ing model, presented in [12]. We adopt from it the vari-
ables for the position in the metircal cycle (bar position)
� and the instantaneous tempo ˙�. We also adopt the ob-
servation model, which describes how the metrical accents
(beats) are related to an observed onset feature vector yf .
All variables and their conditional dependencies are repre-
sented as the hidden variables in a DBN (see Figure 1). We
consider that the a priori probability of a note at a specific
metrical accent interacts with the probability of observing
a vocal note onset. To represent that interaction we add a
hidden state for the temporal segment of a vocal note n,
which depends on the current position in the metrical cy-
cle. The probability of observing a vocal onset is derived
from the emitted pitch yp of the vocal melody.

In the proposed DBN, an observed sequence of fea-
tures derived from an audio signal y1:K = {y, .., yK} is
generated by a sequence of hidden (unknown) variables
x1:K = {x1, ..., xK}, where K is the length of the se-
quence (number of audio frames in an audio excerpt). The
joint probability distribution of hidden and observed vari-
ables factorizes as:

P (x1:K , y1:K) = P (x0)⇧
K
k=1P (xk|xk�1)P (yk|xk) (1)

where P (x0) is the initial state distribution;
P (xk|xk�1) is the transition model and P (yk|xk) is
the observation model.

4.1 Hidden Variables

At each audio frame k, the hidden variables describe the
state of a hypothetical bar pointer xk = [

˙�k,�k, nk], rep-
resenting the instantaneous tempo, the bar position and the
vocal note respectively.

4.1.1 Tempo State ˙� and Bar Position State �

The bar position � points to the current position in the met-
rical cycle (bar). The instantaneous tempo ˙� encodes how
many bar positions the pointer advances from the current
to the next time instant. To assure feasible computational
time we relied on the combined bar-tempo efficient state
space, presented in [12]. To keep the size of the bar-tempo

2
https://github.com/georgid/lakh_vocal_

segments_dataset
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Figure 1: A dynamic Bayesian network for the pro-
posed beat and vocal onset detection model. Circles and
squares denote continuous and discrete variables, respec-
tively. Gray nodes and white nodes represent observed and
hidden variables, respectively.

state space small, we input the ground truth tempo for each
recording, allowing a range for ˙� within ±10 bpm from
it, in order to accommodate gradual tempo changes. This
was the minimal margin at which beat tracking accuracy
did not degrade substantially. For a study with data with
higher stylistic diversity, it would make sense to increase it
to at least 20% as it is done in [8, Section 5.2]. This yields
around 100-1000 states for the bar positions within a sin-
gle beat (in the order of 5000 for 4 beats, and 10000 for
8-9 beats for the usuls ).

4.1.2 Vocal Note State n

The vocal note states represent the temporal segments of a
sung note. They are a modified version of these suggested
in the note transcription model of [14]. We adopted the
first two segments: attack region (A), stable pitch region
(S). We replaced the silent segment with non-vocal state
(N). Because full-fledged note transcription is outside the
scope of this work, instead of 3 steps per semitone, we used
for simplicity only a single one, which deteriorated just
slightly the note onset detection accuracy. Also, to reflect
the pitch range in the datasets, on which we evaluate, we
set as minimal MIDI note E3 covering almost 3 octaves up
to B5 (35 semitones). This totals to 105 note states.

To be able to represent the DBN as an HMM, the bar-
tempo efficient state space is combined with the note state
space into a joint state space x. The joint state space is a
cartesian product of the two state spaces, resulting in up to
10000⇥105 ⇡ 1M states.

4.2 Transition Model

Due to the conditional dependence relations in Figure 1 the
transitional model factorizes as

P (xk|xk�1) = P (

˙�k| ˙�k�1)⇥
P (�k|�k�1, ˙�k�1)⇥ P (nk|nk�1,�k)

(2)

The tempo transition probability p( ˙�k| ˙�k�1) and bar
position probability p(�k|�k�1, ˙�k�1) are the same as in
[12]. Transition from one tempo to another is allowed only
at bar positions, at which the beat changes. This is a rea-
sonable assumption for the local tempo deviations in the
analyzed datasets, which can be considered to occur rela-
tively beat-wise.

4.2.1 Note Transition Probability

The probability of advancing to a next note state is based
on the transitions of the note-HMM, introduced in [14].
Let us briefly review it: From a given note segment the
only possibility is to progress to its following note seg-
ment. To ensure continuity each of the self-transition prob-
abilities is rather high, given by constants cA, cS and cN
for A, S and N segments respectively (cA=0.9; cS=0.99;
cN = 0.9999). Let PNiAj be the probability of transition
from non-vocal state Ni after note i to attack state Aj of
its following note j. The authors assume that it depends on
the difference between the pitch values of notes i and j and
it can be approximated by a normal distribution centered at
change of zero ( [14], Figure 1.b). This implies that small
pitch changes are more likely than larger ones. Now we
can formalize their note transition as:

p(nk|nk�1) =

8
>>>>>>>>>>><

>>>>>>>>>>>:

PNiAj , nk�1 = Ni nk = Aj

cN , nk�1 = nk = Ni

1� cA, nk�1=Ai nk = Sj

cA, nk�1 = nk = Ai

1� cS nk=1 = Si nk = Nj

cS , nk�1 = nk = Si

0 else

(3)

Note that the outbound transitions from all non-vocal
states Ni should sum to 1, meaning that

cN = 1�
X

i

PNiAj (4)

In this study, we modify PNiAj to allow variation in
time, depending on the current bar position �k.

p(nk|nk�1,�k) =

8
><

>:

PNiAj⇥(�k), nk�1 = Ni, nk = Aj

cN , nk�1 = nk = Ni

...
(5)

where

⇥(�k) : function weighting the contribution of a beat ad-
jacent to current bar position �k

704 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



and

cN = 1�⇥(�k)

X

i

PNiAj (6)

The transition probabilities in all the rest of the cases
remain the same. We explore two variants of the weighting
function ⇥(�k) :

1. Time-window redistribution weighting: Singers
often advance or delay slightly note onsets off the loca-
tion of a beat. The work [15] presented an idea on how to
model vocal onsets, time-shifted from a beat, by stochastic
distribution. Similarly, we introduce a normal distribution
N 0,� , centered around 0 to re-distribute the importance of
a metrical accent (beat) over a time window around it. Let
bk be the beat, closest in time to a current bar position �k.
Now:

⇥(�k) = [N0,�(d(�k, bk))]
we(bk) (7)

where

e(b) : probability of a note onset co-occurring with the bth
beat (b 2B); B is the number of beats in a metrical
cycle

w : sensitivity of vocal onset probability to beats

d(�k, bk) : the distance from current bar position �k to the
position of the closest beat bk

Equation 5 means essentially that the original PNiAj is
scaled according to how close in time to a beat it is.

2. Simple weighting: We also aim at testing a more
conservative hypothesis that it is sufficient to approximate
the influence of metrical accents only at the locations of
beats. To reflect that, we modify the PNiAj only at bar
positions corresponding to beat positions, for which the
weighting function is set to the peak of N0,� , and to 1 else-
where.

⇥(�k) =

(
[N0,�(0)]

we(bk), d(�k, bk) = 0

1 else
(8)

4.3 Observation Models

The observation probability P (yk|xk) describes the rela-
tion between the hidden states and the (observed) audio
signal. In this work we make the assumption that the ob-
served vocal pitch and the observed metrical accent are
conditionally independent from each other. This assump-
tion may not hold in cases when energy accents of singing
voice, which contribute to the total energy of the signal, are
correlated to changes in pitch. However, for music with
percussive instruments the importance of singing voice ac-
cents is diminished to a significant extent by percussive
accents. Now we can rewrite Eq. 1 as

P (x1:K , yf1:K , yp1:K) =

P (x0)⇧
K
k=1P (xk|xk�1)P (yfk |xk)P (ypk|xk)

(9)

This means essentially that the observation probability can
be represented as the product of the observation probability
of a metrical accent P (yfk |xk) and the observation proba-
bility of vocal pitch P (ypk|xk).

4.3.1 Accent Observation Model

In this paper for P (yfk |xk) we train GMMs on the spectral
flux-like feature yf , extracted from the audio signal using
the same parameters as in [12] and [9]. The feature vector
yf summarizes the energy changes (accents) that are likely
to be related to the onsets of all instruments together. This
forms a rhythmic pattern of the accents, characteristic for
a given metrical type. The probability of observing an ac-
cent thus depends on the position in the rhythmic pattern,
P (yfk |xk) = P (yfk |�k).

4.3.2 Pitch Observation Model

The pitch probability P (ypk|xk) reduces to P (ypk|nk), be-
cause it depends only on the current vocal note state. We
adopt the idea proposed in [14] that a note state emits pitch
yp according to a normal distribution, centered around its
average pitch. The standard deviation of stable states and
the one of the onset states are kept the same as in the orig-
inal model, respectively 0.9 and 5 semitones. The melody
contour of singing is extracted in a preprocessing step. We
utilized for English pop a method for predominant melody
extraction [19]. For Turkish makam, we instead utilized
an algorithm, extended from [19] and tailored to Turk-
ish makam [1]. In both algorithms, each audio frame k
gets assigned a pitch value and probability of being voiced
vk. Based on frames with zero probabilities, one can in-
fer which segments are vocal and which not. Since cor-
rect vocal segments is crucial for the sake of this study
and the voicing estimation of these melody extraction al-
gorithms are not state of the art, we manually annotated
segments with singing voice, and thus assigned vk = 0 for
all frames, annotated as non-vocal.

For each state the observation probability P (ypk|nk) of
vocal states is normalized to sum to vk (unlike the original
model which sums to a global constant v). This leaves the
probability for each non-vocal state be 1�vk/n.

4.4 Learning Model Parameters

4.4.1 Accent Observation Model

We trained the metrical accent probability P (yfk |�k) sepa-
rately for each meter type: The Turkish meters are trained
on the training subset of the makam dataset (see section
3.1). For each usul (8/8 and 9/8) we trained a rhythmic
pattern by fitting a 2-mixture GMM on the extracted fea-
ture vector yf . Analogously to [12], we pooled the bar
positions down to 16 patterns per beat. For English pop we
used the 4/4 rhythmic pattern, trained by [11] on ballroom
dances. The feature vector is normalized to zero mean,
unit variance and taking moving average. Normalization is
done per song.
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4.4.2 Probability of Note Onset

The probability of a vocal note onset co-occurring at a
given bar position e(b) is obtained from studies on sheet
music. Many notes are aligned with a beat in the music
score, meaning a higher probability of a note at beats com-
pared to inter-beat bar positions. A separate distribution
e(b) is applied for each different metrical cycle. For the
Turkish usuls e(b) has been inferred from a recent study [7,
Figure 5. a-c]. The authors used a corpus of music scores,
on data from the same corpus, from which we derived the
Turkish dataset. The patterns reveal that notes are expected
to be located with much higher likelihoods on those beats
with percussive strokes than on the rest.

In comparison to a classical tradition like makam, in
modern pop music the most likely positions of vocal ac-
cents in a bar are arguably much more heterogeneous, due
to the big diversity of time-deviations from one singing
style to another [10]. Due to lack of a distribution pat-
tern e(b), characteristic for English pop, we set it manually
with probabilities (0.8, 0.6, 0.8, 0.6) for the 4 beats.

4.5 Inference

We obtain the most optimal state sequence x1:K by decod-
ing with the Viterbi algorithm. A note onset is detected
when the state path enters an attack note state after being
in non-vocal state.

4.5.1 With Manually Annotated Beats

We explored the option that beats are given as input from
a preprocessing step (i.e. when they are manually anno-
tated). In this case, the detection of vocal onsets can be
carried out by a reduced model with a single hidden vari-
able: the note state. The observation model is then re-
duced to the pitch observation probability. The transition
model is reduced to a bar-position aware transition prob-
ability aij(k) = p(nk = j|nk�1 = i,�k) (see Eq. 5).
To represent the time-dependent self-transition probabili-
ties we utilize time-varying transition matrix. The standard
transition probabilities in the Viterbi maximization step are
substituted for the bar-position aware transitions aij(k)

�k(j) = max

i2(j, j�1)
�k�1(i) aij(k) bj(Ok) (10)

Here bj(Ok) is the observation probability for state i for
feature vector Ok and �k(j) is the probability for the path
with highest probability ending in state j at time k (com-
plying with the notation of [16, III. B]

4.5.2 Full Model

In addition to onsets, a beat is detected when the bar po-
sition variable hits one of B positions of beats within the
metrical cycle.

Note that the size of the state space x poses a memory
requirement. A recording of 1 minute has around 10000

frames at a hopsize of 5.8ms. To use Viterbi thus requires
to store in memory pointers to up to 4G states, which
amounts to 40G RAM (with uint32 python data type).

5. EXPERIMENTS

The hopsize of computing the spectral flux feature, which
resulted in most optimal beat detection accuracy in [12]
is hf = 20ms. In comparison, the hopsize of predom-
inant vocal melody detection is usually of smaller order
i.e. hp = 5.8ms (corresponding to 256 frames at sampling
rate of 44100). Preliminary experiments showed that ex-
tracting pitch with values of hp bigger than this values rea-
sonably deteriorates the vocal onset accuracy. Therefore
in this work we use hopsize of 5.8ms for the extraction of
both features. The time difference parameter for the spec-
tral flux computation remains unaffected by this change in
hopsize, because it can be set separately.

As a baseline we run the algorithm of [14] with the 105
note states, we introduced in Section 4.1.2 3 . The note
transition probability is the original as presented in Eq. 3,
i.e. not aware of beats. Note that in [14] the authors intro-
duce a post-processing step, in which onsets of consecutive
sung notes with same pitch are detected considering their
intensity difference. We excluded this step in all system
variants presented, because it could not be integrated in the
proposed observation model in a trivial way. This means
that, essentially, in this paper cases of consecutive same-
pitch notes are missed, which decreases inevitably recall,
compared to the original algorithm.

5.1 Evaluation Metrics

5.1.1 Beat Detection

Since improvement of the beat detector is outside the scope
of this study, we report accuracy of detected beats only in
terms of their f-measure 4 . This serves solely the sake of
comparison to existing work 5 . The f-measure can take a
maximum value of 1, while beats tapped on the off-beat
relative to annotations will be assigned an f-measure of 0.
We used the default tolerance window of 70ms, also ap-
plied in [9].

5.1.2 Vocal Onset Detection

We measured vocal onset accuracy in terms of precision
and recall 6 . Unlike a cappella singing, the exact onset
times of singing voice accompanied by instruments, might
be much more ambiguous. To accommodate this fact, we
adopted the tolerance of t = 50ms, used for vocal onsets
in accompanied flamenco singing by [13], which is much
bigger than the t = 5ms used by [14] for a cappella. Note
that measuring transcription accuracy remains outside the
scope of this study.

3 We ported the original VAMP plugin im-
plementation to python, which is available at
https://github.com/georgid/pypYIN

4 The evaluation script used is at https://github.com/CPJKU/
madmom/blob/master/madmom/evaluation/beats.py

5 Note that the f-measure is agnostic to the phase of the detected beats,
which is clearly not optimal

6 We used the evaluation script available at https://github.
com/craffel/mir_eval/blob/master/mir_eval/onset.

py#L56

706 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



meter beat Fmeas P R Fmeas

aksak
Mauch - 33.1 31.6 31.6
Ex-1 - 37.5 38.4 37.2
Ex-2 86.4 37.8 36.1 36.1

düyek
Mauch - 42.1 36.9 37.9
Ex-1 - 44.3 41.0 41.4
Ex-2 72.9 45.0 39.0 40.3

meter beat Fmeas P R Fmeas

4/4
Mauch - 29.6 38.3 33.2
Ex-1 - 30.3 42.5 35.1
Ex-2 94.2 31.6 39.4 34.4

total
Mauch - 34.8 35.6 35.2
Ex-1 - 38.3 40.6 39.5
Ex-2 84.3 38.1 38.2 38.1

Table 1: Evaluation results for Experiment 1 (shown as Ex-1) and Experiment 2 (shown as Ex-2). Mauch stands for the
baseline, following the approach of [14]. P, R and Fmeas denote the precision, recall and f-measure of detected vocal
onsets. Results are averaged per meter type.

5.2 Experiment 1: With Manually Annotated Beats

As a precursor to evaluating the full-fledged model, we
conducted an experiment with manually annotated beats.
This is done to test the general feasibility of the proposed
note transition model (presented in 4.2.1), unbiased from
errors in the beat detection.

We did apply both the simple and the time-
redistribution weighting schemes, presented respectively
in Eq. 8 and in Eq. 7. In preliminary experiments we
saw that with annotated beats the simple weighting yields
much worse onset accuracy than the time-redistributed
one. Therefore the results reported are conducted with the
latter weighting.

We have tested different pairs of values for w and �
from Eq. 5. For Turkish makam the onset detection ac-
curacy peaks at w = 1.2 and � = 30ms, whereas for the
English pop optimal are w = 1.1 and � = 45ms. Ta-
ble 1 presents metrics compared to the baseline 7 . Inspec-
tion of detections revealed that the metrical-accent aware
model could successfully detect certain onsets close to
beats, which are omitted by the baseline.

5.3 Experiment 2: Full Model

To assure computational efficient decoding, we did an effi-
cient implementation of the joint state space of [12] 8 . To
compare to that work, we measured the beat detection with
both their original implementation and our proposed one.
Expectedly, the average f-measure of the detected beats
were the same for each of the three metrical cycle types
in the datasets, which can be seen in Table 1. For aksak
and düyek usuls, the accuracy is somewhat worse than the
results of 91 and 85.2 respectively, reported in [9, Table
1.a-c, R=1]. We believe the reason is in the smaller size of
our training data. Table 1 evidences also a reasonable im-
provement of the vocal onset detection accuracy for both
music traditions. The results reported are only with the
simple weighting scheme for the vocal note onset transi-
tion model (the time-redistribution weighting was not im-
plemented in this experiment).

7 Per-recording results for the makam dataset are available at https:
//tinyurl.com/y8r73zfh and for the lakh-vocal-segments dataset
at https://tinyurl.com/y9a67p8u

8 We extended the python toolbox for beat tracking
https://github.com/CPJKU/madmom/, which we make available at
https://github.com/georgid/madmom

Adding the automatic beat tracking improved the base-
line, whereas this was not the case with manual beats for
simple weighting. This suggests that the concurrent track-
ing of beats and vocal onsets is a flexible strategy and
can accommodate some vocal onsets, slightly time-shifted
from a beat. We observe also that the vocal onset accu-
racy is on average a bit inferior to that with manual beat
annotations (done with the time-redistribution weighting).

For the 4/4 meter, despite the highest beat detection ac-
curacy, the improvement of onset accuracy over the base-
line is the least. One reason for that may be that the note
probability pattern e(b), used for 4/4 is not well represen-
tative for the singing style differences.

A paired t-test between the baseline and each of Ex-1
and Ex-2 resulted in p-values of respectively 0.28 and 0.31
on total for all meter types. We expect that statistical sig-
nificance can be evaluated more accurately with a bigger
number of recordings.

6. CONCLUSIONS

In this paper we presented a Bayesian approach for track-
ing vocal onsets of singing voice in polyphonic music
recordings. The main contribution is that we integrate in
one coherent model two existing probabilistic approaches
for different tasks: beat tracking and note transcription.
Results confirm that the knowledge of the current posi-
tion in the metrical cycle can improve the accuracy of vo-
cal note onset detection over different metrical cycle types.
The model has a comprehensive set of parameters, whose
appropriate tuning allows application to material with dif-
ferent singing style and meter.

In the future the manual adjustment of these parameters
could be replaced by learning their values from sufficiently
big training data, which was not present for this study. In
particular, the lakh-vocal-segments dataset could be eas-
ily extended substantially, which we plan to do in the fu-
ture. Moreover, one could decrease the expected parame-
ter values range, based on learnt values, and thus decrease
the size of the state space, which is a current computa-
tional limitation. We believe that the proposed model could
be applied as well to full-fledged transcription of singing
voice.
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ABSTRACT

This work demonstrates an approach to generating strongly
labeled data for vocal activity detection by pairing instru-
mental versions of songs with their original mixes. Though
such pairs are rare, we find ample instances in a massive
music collection for training deep convolutional networks
at this task, achieving state of the art performance with a
fraction of the human effort required previously. Our error
analysis reveals two notable insights: imperfect systems
may exhibit better temporal precision than human anno-
tators, and should be used to accelerate annotation; and,
machine learning from mined data can reveal subtle biases
in the data source, leading to a better understanding of the
problem itself. We also discuss future directions for the de-
sign and evolution of benchmarking datasets to rigorously
evaluate AI systems.

1. INTRODUCTION

Over the last few years, the ubiquity of cheap computa-
tional power and high quality open-source machine learn-
ing software toolkits has grown considerably. This trend
underscores the fact that attaining state-of-the-art solutions
via machine learning increasingly depends more on the
availability of large quantities of data than the sophisti-
cation of the approach itself. Thus, when tackling less
traditional or altogether novel problems, machine learning
practitioners often choose between two paths to acquiring
data: manually create (or curate) a dataset, or attempt to
leverage existing resources.

Both approaches present unique challenges. Curation
is necessary when precise information is required or in-
sufficient data are available, but can incur large costs in
both time and money. Alternatively, “mining” data – re-
covering useful information that occurs serendipitously in
different contexts – can result in large datasets with far

c© Eric J. Humphrey, Nicola Montecchio, Rachel Bittner,
Andreas Jansson, Tristan Jehan. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Eric
J. Humphrey, Nicola Montecchio, Rachel Bittner, Andreas Jansson, Tris-
tan Jehan. “Mining Labeled Data from Web-Scale Collections for Vocal
Activity Detection in Music”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

less effort, e.g., recovering labels from the text around an
image. While this information is typically generated as a
by-product of some other pre-existing human activity and
prone to both noise and bias, recent machine learning re-
search has managed to use this approach to great effect [5].

With the continued growth of digital music services, vo-
cal activity detection (VAD) is a task of increasing impor-
tance. Robust VAD is a key foundational technology that
could power or simplify a number of end-user applica-
tions, such as vocalist similarity, music recommendation,
artist identification, source separation, or lyrics transcrip-
tion. Despite previous research, the state of the art contin-
ues to advance with diminishing returns, rendering VAD
an unsolved problem with considerable potential.

Given the dominance of data-driven methods in ma-
chine learning, it stands to reason that data scarcity may
be contributing to the apparent ceiling in the performance
of VAD algorithms. Modest progress has been made to-
ward increasing the size of labeled datasets, limiting the
efficacy of modern approaches, e.g., deep learning. Ef-
forts to leverage strongly labeled datasets have converged
to hundreds of observations [1,13,15,16], with which com-
plex methods have been explored [9, 10, 18]. Recent re-
search succeeded in curating a private dataset of 10k, 30
second weakly labeled clips, e.g., “completely instrumen-
tal” or “contains singing voice”, using this dataset to train
convolutional neural networks [17].

In short, VAD research remains largely dependent on
sustained human involvement in sourcing labeled data, but
this approach struggles to scale. Here, we propose leverag-
ing a huge, untapped resource in modern music to circum-
vent this challenge: the “instrumental version”, i.e., a song
in which the vocals have been omitted. The goal of this
work is thus the exploration of this opportunity, achieved
in four steps: mine original-instrumental pairs from a mas-
sive catalogue of music content; estimate time-varying vo-
cal density given corresponding tracks; exploit this signal
to train deep neural networks to detect singing voice; and
understand the effects of this data source on the resulting
models.
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2. DATA GENERATION

In Western popular music, a song’s arrangement often re-
volves around a lead vocalist, accompanied by instruments
such as guitar, drums, bass, etc. It is not uncommon for an
artist to also release an “instrumental” version of the same
song (to be used for e.g., remixes or karaoke), in which the
primary difference between it and the corresponding “orig-
inal” recording is the absence of vocals. 1 In principle, the
difference between these two sound recordings should be
highly correlated with vocal activity, which would provide
a fine-grained signal for training machine learning models.
However, to exploit this property at scale, it is necessary to
identify and align pairs of original recordings and match-
ing instrumental versions automatically.

We outline a three-step approach toward mining
strongly labeled instances of singing voice from a music
catalogue: identify original-instrumental pairs from track
metadata; estimate a vocal density signal for the original
track, given its instrumental; draw positive observations
from an original track as a function of estimated vocal den-
sity.

2.1 Selection of Matching Recordings

We search the full Spotify catalogue, a set of tens of mil-
lions of commercially recorded tracks, for paired versions
using a heuristic based on track metadata. A pair of tracks
(A,B) are marked as (original, instrumental) if:

• A and B are recorded by the same artist.

• “instrumental” does not appear in the title of A.

• “instrumental” does appear in the title of B.

• The titles of A and B are fuzzy matches.

• The track durations differ by less than 10 seconds.

Fuzzy matching is performed on track titles by first
latinizing non-ASCII characters, removing parenthesized
text, and finally converting to lower-case; this yields about
164k instrumental tracks. Note that this is a many-to-many
mapping, as an original version can point to several differ-
ent instrumentals, and vice versa.

A tiny subset of this content is manually reviewed to
check for quality, and we find roughly 1 in 10 tracks to be
a mismatched pair: the majority of errors are due to instru-
mental tracks that appear on multiple albums, such as com-
pilations or movie soundtracks, but are only tagged as such
in some contexts. An open-source audio fingerprinting al-
gorithm is used to remove suspect pairs from the candidate
set [6]. Sequences of codes for tracks are extracted, and
track pairs are discarded as a function of Jaccard similarity
if code sequences do not overlap sufficiently (an erroneous
fuzzy metadata match) or overlap too much (the tracks in
the pair being both instrumental or vocal). Finally, re-
dundant associations from this mapping are removed, so
that each original track is linked to only one instrumental

1 Though other differences in signal characteristics may occur due to
production effects, e.g., mastering, compression, equalization, these are
not considered here.

track. Overall this process yields roughly 24k tracks, or
12k original-instrumental pairs, totaling some 1500 hours
of audio.

2.2 Estimating Vocal Density

Let TO and T I denote two recordings, corresponding to
an “original” and “instrumental” version, respectively. A
Time-Frequency Representation (TFR) is computed for
both tracks, respectively XO and XI . Subsequently, the
TFRs are aligned to estimate time-varying vocal density.

In this work a Constant-Q Transform (CQT) [3] is cho-
sen for its complementary relationship between convolu-
tional neural networks and music audio; the CQT uses a
logarithmic frequency scale that linearizes pitch, allowing
networks to learn pitch-invariant features as a result [8].
The frequency range of the transform is constrained to
the human vocal range, i.e., E2 - E7 (5 octaves, spanning
82.4-2637 Hz), and a moderately high resolution is em-
ployed, with 36 bins per octave and 32 frames per second.
Logarithmic compression is applied pointwise to the TFR.

The pair of TFRs (XO, XI) undergoes a feature dimen-
sionality reduction via Principal Component Analysis 2 ,
producing (ZO, ZI); based on empirical findings, k = 20
components were found to yield good results. This step
not only provides an increase in computational efficiency
in subsequent processing steps, but also affords a useful
degree of invariance because of the lower dimensionality.

The transformed sequences are then aligned using Dy-
namic Time Warping (DTW), yielding two sequences,
nO, nI , of indices over the original and instrumental song,
respectively [14]. This allows us to recover points in time
from both a full and instrumental mix where the back-
ground musical content is roughly identical.

Using these indices, the CQT spectra (XO, XI) are re-
sampled to equivalent shapes, and the half-wave rectified
difference between log-magnitude spectra yields the fol-
lowing residual:

δj,k = max
(
0, log |XO

nO
j,k

+ 1| − log |XI
nI
j,k

+ 1|
)

(1)

In the ideal case, where any difference is due entirely
to vocals, this residual represents the vocal CQT spectra,
and will behave like a smooth contour through succes-
sive time-frequency bins. Practically, however, there will
likely be other sources of residual energy, due to subopti-
mal alignment or true signal differences. To best charac-
terize contour-like residuals, we normalize the spectral en-
ergy in each time frame and apply the Viterbi algorithm to
decode the most likely path through the residual spectra;
this step is inspired by previous work on tracking funda-
mental frequency in a time-frequency activation map [12].
Empirically we find this process far more robust to residual
noise than simpler aggregation schemes, such as summing
energy over frequency.

2 We are not interested in learning a general transform; the Principal
Components of each pair of tracks are computed independently of the
overall dataset.
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Figure 1. The intermediate stages in estimating vocal
density from an original-instrumental pair of recordings,
showing (i) the original and (ii) instrumental CQT spectra,
(iii) the residual with a trace of its fundamental, and (iv)
the estimated vocal density over time.

The amplitude of this time-frequency path, ρ, provides
an estimate of vocal density, φ, the likelihood that vocals
are present in the original recording, TO, as a function
of time. Finally, we forwards-backwards filter φ with a
Hanning window (L = 15), to both smooth and dilate the
density signal to encompass vocal onsets and offsets. The
stages of this process are pictured in Figure 1.

2.3 Sampling of Positive and Negative Observations

Having estimated where vocals likely occur in a piece of
audio, we turn our attention to how this information is
utilized for supervised training. We highlight that track-
level metadata presents a multiple-instance learning prob-
lem, where each recording can be understood as a bag of
samples with a single binary label: “vocal” if it contains
at least one positive sample, or “non-vocal” if all samples
are negative. In this setting, positively labeled bags are in-
herently noisy, with some unknown percentage of negative
samples effectively mislabeled as a result. To address this
issue, the vocal density estimate is used to reweight the
contributions of samples drawn from positive bags.

An estimator is trained by drawing positive (Y = 1) and
negative (Y = 0) samples from original and instrumental
tracks, with equal frequency. Negative samples are drawn
uniformly from instrumental tracks, while positive samples
are drawn as a function of the vocal density φ. To smoothly

interpolate between a uniform distribution and the vocal
density estimate over positive samples, two parameters are
introduced, a threshold, τ , and a compression factor, ε:

Pr(XO
n |Y = 1) ∝

{
φεn φn ≥ τ
0 otherwise

(2)

Here, we are interested in exponentials in the range of
0 < ε < 1, which flatten the density function. Note that
ε = 0, τ = 0 corresponds to uniform sampling over time,
and is equivalent to the weakly labeled setting, i.e., a label
applies equally to all samples.

As a final consideration, we highlight that the original
and instrumental recordings are aligned in the course of
computing the vocal density estimate. Therefore, it is pos-
sible to draw correlated positive-negative pairs from both
the original and instrumental tracks corresponding to the
same point in time, a sampling condition we refer to as
entanglement, ζ ∈ {True, False}. One would expect that
these paired samples live near the decision boundary, being
near-neighbors in the input space but belonging to differ-
ent classes, and we are interested in exploring how training
with entangled pairs may affect model behavior.

3. SYSTEM DESIGN

3.1 Previous Approaches

The majority of VAD research follows a similar architec-
ture: short-time observations are fed to a classifier, each
observation is assigned to either a vocal or a non-vocal
class, and optionally post-processing is applied to elimi-
nate spurious predictions. Early work uses “the acoustic
classifier of a speech recognizer as a detector for speech-
like sounds” to feed an Artificial Neural Network trained
on a speech dataset (NIST Broadcast News) [1], while
[16] attempts to explicitly exploit vibrato and tremolo, two
characteristics that are specific of vocal signals. Alternativ-
ley, Support Vector Machines (SVMs) are used for frame
classification and Hidden Markov Models act as smoothing
step [15]; a similar solution is proposed by [13], which ex-
ploits a wider set of features, including ones derived from
a predominant melody extraction step.

More recently, increasingly complex classifiers are pre-
ferred to feature engineering, given the widespread success
of deep learning methods and modest increases in available
training data. Much prior research explores the application
of deep learning to music tagging, which typically encom-
passes one or more classes for singing voice in the taxon-
omy considered [7]. Elsewhere, deep networks have been
used for pinpointing singing voice in source separation
systems [19]. Regarding the particular task at hand, [9]
proposes a sophisticated architecture based on Recurrent
Neural Networks that does not have a separate smoothing
step, while [17] uses a conventional convolutional network
topology, further advancing the state of the art.

3.2 Proposed System

The log-magnitude CQT representation described in 2.2
is processed in 1 second windows, with a dimensional-
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ity of (32 × 180) bins in time and frequency, respec-
tively. We adopt a five-layer neural network, with three
(3D) convolutional layers, each followed by max-pooling,
and two fully-connected layers, with the following pa-
rameter shapes: w0 = (1, 64, 5, 13), p0 = (2, 3), w1 =
(64, 32, 3, 9), p1 = (2, 2),w2 = (32, 24, 5, 1), p2 = (2, 1),
w3 = (1540, 768),w4 = (768, 2). All layer activations are
hard rectified linear units (ReLUs), with the exception of
the last (classifer) layer, which uses a softmax.

The network is trained using a negative log-likelihood
loss function and parameters are optimized with minibatch
stochastic gradient descent. We implement our model in
Theano 3 , leveraging the Pescador 4 package for drawing
samples from our dataset, and accelerate training with a
NVIDIA Titan X GPU. Networks are trained for 500k iter-
ations (≈ 20 hours) with a learning rate of 0.05 and a batch
size of 50. Dropout is used in all but the last layer, with a
parameter of 0.125. In addition to the weakly labeled case,
{ε = 0.0, τ = 0.0, ζ = F}, we explore model behavior
over two sampling parameter settings, with and without en-
tanglement: {ε = 0.3, τ = 0.05} and {ε = 1.0, τ = 0.2}.
These values are informed by first computing a histogram
of vocal activation signals over the collection, revealing
that a large number of values occur near zero (≤ 0.05),
while the upper bound rolls off smoothly at ≈ 2.5.

4. EXPERIMENTAL RESULTS

We evaluate our models on two standard datasets in VAD
research: the Jamendo collection, containing 93 manually
annotated songs [15]; and the RWC-Pop collection, con-
taining 100 manually annotated songs [13]. To compare
with previously reported results, we consider the area un-
der the curve (AUC) score and max-accuracy [17]. The
AUC score provides insight into the rank ordering of class
likelihoods, and max-accuracy indicates the performance
ceiling (or error floor) given an optimal threshold.

4.1 Quantitative Evaluation

Table 1 shows the summary statistics over the two datasets
considered as a function of sampling parameters, alongside
previously reported results for comparison [17]. The first
three systems (α, β, γ) are successive boosted versions of
each other, i.e., α is trained with weak labels, and its pre-
dictions on the training set are used to train β, and so on;
the fine model is trained directly with strongly labeled data,
and we refer to each by suffix, e.g., α. Additionally, the au-
thors train these models with a witheld dataset unavailable
to our work here.

These results provide a few notable insights. First, we
confirm that our automated approach of mining training
data is sufficient to train models that can match state of
the art performance. Configuration I, corresponding to the
weak labeling condition, performs roughly on par with a
comparably trained system, α, validating previous results;
configuration V achieves the best scores of our models, and

3 https://github.com/Theano/Theano
4 https://github.com/pescadores/pescador

RWC JAMENDO
AUC ACC+ AUC ACC+

SCHLÜTER-α 0.879 0.856 0.913 0.865
SCHLÜTER-β 0.890 0.861 0.923 0.875
SCHLÜTER-γ 0.939 0.887 0.960 0.901
SCHLÜTER-FINE 0.947 0.882 0.951 0.880

τ ε γ
I 0.0 0.0 F 0.891 0.856 0.911 0.856
II 0.05 0.3 F 0.918 0.879 0.925 0.869
III 0.05 0.3 T 0.918 0.879 0.934 0.874
IV 0.2 1.0 F 0.937 0.887 0.935 0.872
V 0.2 1.0 T 0.939 0.890 0.939 0.878

Table 1. AUC-scores and maximum accuracies across
models on the RWC and Jamendo datasets.
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Figure 2. Trackwise error rates, plotting false positives
versus false negatives for IV ; one outlier (fn ≈ 0.66) in
the Jamendo set is not shown to maintain aspect ratio.

is consistent with gains in prior work. That said, the dif-
ference between models is in the range of 0.02-0.05 across
metrics, which is of limited reliability with datasets of this
size. In terms of sampling parameters, we observe a direct
correlation between signal-to-noise ratio in our training
data, i.e., the more non-vocal observations are discarded,
the better the models behave on these measures. Training
with entangled pairs (ζ = T ) also seems to have a small
positive effect. Finally, we note a possible corpus effect be-
tween these systems and previously reported results, where
models (V and γ) perform better on different data. Though
minor, this potential corpus effect serves as a dimension to
explore in subsequent analysis.

4.2 Error Analysis

As the systems reported here are high performing, a poten-
tially more informative path to understanding model be-
havior is through analyzing the errors made. Here, false
positives occur when a different sound source is mistaken
for voice; false negatives occur when the energy of a vocal
source has fallen below the model’s sensitivity. Observa-
tions drawn from the same music recording will be highly
correlated, due to the repetitive nature of music, and so we
explore the track-wise frequency of errors to identify be-
haviors that may reveal broader trends.

A slight corpus effect is seen in Figure 2 between the
RWC and Jamendo collections. In the former, the majority
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Figure 3. Examples from the evaluation dataset, showing the ground truth (black), estimated likelihoods (blue) and thresh-
olded prediction (green) over time: (top) a track from the RWC corpus demonstrates how a model can operate with greater
temporal precision than a human annotator, a common source of false negatives; (bottom) a track from the Jamendo collec-
tion illustrates different challenges, including imposter sources (a guitar solo), sensitivity to vocals, and annotator error.

of error is due to false positives, but at a much lower rate
of occurrence (fp < 0.1) than false negatives. Addition-
ally, when errors do occur in a track, they tend to be pri-
marily of one type, and seldom both. This is less the case
for the Jamendo set, comprised of both “worse” tracks and
a (slightly) larger co-occurrence of error types in a given
track.

Using this visualization of trackwise errors, an investi-
gation into the various outliers yields a few observations.
There are two primary sources of false negatives: one,
shown in Figure 3 (top), trained models exhibit a level of
temporal precision beyond the annotators’ in either dataset,
pinpointing breaths and pauses in otherwise continuous vo-
calizations; and two, nuances of the data used for train-
ing seem to induce a production bias, whereby the model
under-predicts singing voice in lower quality mixes. In
hindsight, it is unsurprising that models trained on pro-
fessionally produced music might develop a sensitivity to
mixing quality, and we note this as a topic for future ex-
ploration. A similar bias also appears to account for the
majority of all false positives, often corresponding with
monophonic instrumental melodies, e.g., guitar riffs or so-
los, but less so for polyphonic melodies, i.e., two or more
notes played simultaneously by the same source, consistent
with previous findings [11].

Figure 3 (bottom) illustrates an interesting example of
this behavior. In the first 80 seconds shown here, the model
agrees with the human annotation. The model fails at the
180 second mark, misclassifying a guitar line, and contin-
ues through 194-210 seconds, where the model struggles
to detect rap vocals at a softer volume. However, from that
point onwards, the human annotation itself is wrong, while
the model is correct; vocals are indeed present between
210-230 seconds and 230-252 contains no voice, which
accounts for 16% of the track. Coincidentally, this further
underscores the need for large, diverse evaluation datasets
to produce reliable metrics.

4.3 Multitrack Analysis

The above results confirm the intuition that it can be chal-
lenging to manually annotate singing voice activity with
machine precision. Ideally, though, human annotation ap-
proximates a smoothed, thresholded version of the vocal
signal energy in isolation, and as such, we are interested
understanding the degree to which model estimations cor-
respond with the pure vocal signal. Another way of mea-
suring our models’ capacity to estimate singing voice from
a “down-mixed” recording is through the use of multitrack
audio, which provides direct access to the signal of inter-
est, i.e., vocals, in isolation.

We now turn our attention to MedleyDB, a dataset of
122 songs containing recordings of individual stems and
corresponding mixes [2]. For each of the 47 songs that
have vocals in isolation, we create a single vocal track for
analysis, and compute the log-magnitude CQT for the full
mix (the “original” version) XM , and the isolated vocals,
XV . Whereas previously Viterbi was used to track vocal
density, here the reference vocal density contains no noise
and can be computed by summing the spectral energy over
frequency, i.e., φVn =

∑
kX

V
n,k. The trained models are

applied to the full mix, XM , for inference, producing a
time-varying likelihood, LM .

The reference vocal density is not a class label but a
continuous value, and the comparison metrics must be ad-
justed accordingly. Maximum accuracy is generalized to
the case where independent thresholds are considered for
φV , LM over the dataset, providing insight into the best-
case agreement between the two signals. We also con-
sider the Spearman rank-order correlation between the two
sets, a measure of the relative rank order between distribu-
tions [20].

An exploration of model performance on this dataset
validates earlier observations, summarized in Table 2. On
manual inspection of the temporal precision of the model
on the Medley dataset, we confirm that deviations between
estimated likelihoods and the reference vocal density are
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{τ , ε, ζ } SPEARMAN-R ACC+

I 0.0, 0.0, F 0.681 0.812
II 0.05, 0.3, F 0.779 0.849
III 0.05, 0.3, T 0.768 0.854
IV 0.2, 1.0, F 0.784 0.852
V 0.2, 1.0, T 0.796 0.862

Table 2. Spearman rank-order correlation and maximum
accuracy scores across models on the MedleyDB vocal
subset.

representative of true model errors, setting a baseline for
future work. As seen previously, false negatives again cor-
respond to vocal loudness relative to the mix, and false
positives are caused by loud melodic contours. Note also
that the Spearman rank-order correlation is consistent with
previously observed trends across models, while provid-
ing more nuance; the greatest difference between models
is > 0.11, versus ≈ 0.05 for maximum accuracy. Fi-
nally, we note that the flexibility of multitrack datasets
presents a great opportunity for rigorously testing future
work, whereby the pitch and loudness of a vocal track can
be used to synthesize “imposters” with different timbres,
e.g., a sine wave or flute, mixed with instrumental tracks,
and used to measure false positives.

5. DISCUSSION

This work presents an approach to mining strongly labeled
data from web-scale music collections for detecting vocal
activity. Original recordings, containing vocals, are auto-
matically paired with their instrumental counterparts, and
differential information is used to estimate vocal activity
over time. This signal can be used to train convolutional
neural networks; the strongly labeled training data pro-
duces superior results to the weakly labeled setting, achiev-
ing state of the art performance. While analyzing errors
made by our models, three distinct lessons stood out.

First, in addition to curation and mining, it is valuable
to recall a third path to acquiring sufficiently large datasets:
active learning. Imperfect models can be leveraged to
make the annotation process more efficient by perform-
ing aspects of annotation that humans may find difficult or
time-consuming, as well as prioritizing data as a function
of model uncertainty. Here, for example, we observe that
regions annotated as vocal tend to include brief pauses, no
doubt resulting from the time and effort it would require to
annotate at that level of detail. Alternatively, a performant
model, like those described here, could segment audio into
short, labeled excerpts for a human to verify or correct,
eliminating a huge time cost. This would allow reliable
data to be obtained at a faster rate.

Second, the application of machine learning to mined
datasets can help identify particular challenges of a given
task, unlocking new research directions. Here, our model
identifies an interesting bias in the dataset that we had not
previously considered, being the tight coupling between
singing voice (timbre), melody (pitch), and production ef-
fects (loudness). Often in Western popular music, lead

vocals carry the melody and tend to be one of the more
prominent sources in the mix. Thus, in the dataset mined
from a commercial music catalogue, instrumental versions
not only lack vocal timbres, but prominent melodic con-
tours are missing as well. This complex relationship is less
obvious at a distance, but our experiments illustrate the
challenges faced data-driven approaches to singing voice
detection. By the same token, this also identifies an oppor-
tunity to build systems invariant to these dimensions.

Finally, these insights serve as a reminder that it is good
practice to both design and evolve benchmarking datasets
to encompass challenging test cases and known failure
modes as they are identified. In our analysis, we find
that the available benchmarking datasets consist mostly of
musical content in which the melody is also voice, and
therefore more “difficult” signals would help reliably dis-
criminate between models. This content could be identi-
fied automatically via incremental evaluation methods, in
which disagreement between machine estimations effec-
tively prioritizes data to maximize discrimination between
models [4].

5.1 Future Work

Perhaps the most logical next step for this work is to bet-
ter augment training data, such that pitch and melodic in-
formation are well represented in negative examples. One
possible approach, for example, would be to use the fre-
quency of the vocal density estimate recovered in Section
?? to synthesize the melody with different timbres to be
mixed into the instrumental recording. Whereas before
entangled pairs contrast the presence of vocals, this ap-
proach would yield pairs that differ only in the timbre of
the voice. Alternatively, additional sources could be lever-
aged for building models invariant to less relevant char-
acteristics, such as instrumental content without a corre-
sponding “original” version, or multitrack audio.

Additionally, more effort is required to advance eval-
uation methodology for automatic vocal activity detec-
tion. Multitrack datasets like MedleyDB, are a particularly
promising route for rigorous benchmarking. The isolated
vocal signal provides an optimal reference signal, while
the other, non-vocal stems can be recombined as needed
to deeply explore system behavior. We also recognize that
larger, more diverse evaluation datasets are a prerequisite
to advancing the state of the art in this domain. Thus, as
a first step toward these ends, we provide machine estima-
tions from our model over the datasets used here, as well as
a large publicly available dataset (with audio) to facilitate
the manual annotation process. 5 Though human effort is
necessary to verify or correct these machine estimations,
we share this data in the hope that it can serve as a starting
point to accelerate the growth of labeled data for this task
and facilitate efforts toward incremental evaluation.

5 https://github.com/ejhumphrey/vox-detect-jams
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[18] Jan Schlüter and Thomas Grill. Exploring data aug-
mentation for improved singing voice detection with
neural networks. In Proceedings of the 16th Interna-
tional Society for Music Information Retrieval Confer-
ence (ISMIR), pages 121–126, 2015.

[19] Andrew JR Simpson, Gerard Roma, and Mark D
Plumbley. Deep Karaoke: Extracting vocals from mu-
sical mixtures using a convolutional deep neural net-
work. In Latent Variable Analysis and Signal Sepa-
ration, International Conference on, pages 429–436.
Springer, 2015.

[20] D. Zwillinger and S. Kokoska, editors. Probability and
Statistics Tables and Formulae. Chapman & Hall, New
York, NY, 2000.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 715



MULTI-PART PATTERN ANALYSIS:
COMBINING STRUCTURE ANALYSIS AND SOURCE SEPARATION

TO DISCOVER INTRA-PART REPEATED SEQUENCES

Jordan B. L. Smith Masataka Goto
National Institute of Advanced Industrial Science and Technology (AIST), Japan

jordan.smith@aist.go.jp, m.goto@aist.go.jp

ABSTRACT

Structure is usually estimated as a single-level phe-
nomenon with full-texture repeats and homogeneous sec-
tions. However, structure is actually multi-dimensional: in
a typical piece of music, individual instrument parts can re-
peat themselves in independent ways, and sections can be
homogeneous with respect to several parts or only one part.
We propose a novel MIR task, multi-part pattern analysis,
that requires the discovery of repeated patterns within in-
strument parts. To discover repeated patterns in individual
voices, we propose an algorithm that applies source separa-
tion and then tailors the structure analysis to each estimated
source, using a novel technique to resolve transitivity er-
rors. Creating ground truth for this task by hand would
be infeasible for a large corpus, so we generate a synthetic
corpus from MIDI files. We synthesize audio and produce
measure-by-measure descriptions of which instruments are
active and which repeat themselves exactly. Lastly, we
present a set of appropriate evaluation metrics, and use
them to compare our approach to a set of baselines.

1. INTRODUCTION

Music structure is important to listeners and researchers,
but annotating music is hard because typical songs include
multiple independent instrument parts. For example, if two
sections share the same basic melody, but one features an
extra horn part, should one section be labeled as a repeti-
tion of the other? To decide, the annotator must consider
all the ways in which the two sections are similar or dif-
ferent, but the outcome of their decision is encoded in a
single bit: whether the label is the same or not. The anno-
tation discards many of the decisions made by the listener,
especially when these are made at the timescale of entire
sections. For example, the second verse of Oasis’ “Won-
derwall” has the same chords and melody as the first, but
different lyrics, and it includes two new instruments, cello
and drums—the latter of which enters a measure late. A

c© Jordan B. L. Smith, Masataka Goto. Licensed under a
Creative Commons Attribution 4.0 International License (CC BY 4.0).
Attribution: Jordan B. L. Smith, Masataka Goto. “Multi-part pattern
analysis: Combining structure analysis and source separation to discover
intra-part repeated sequences”, 18th International Society for Music In-
formation Retrieval Conference, Suzhou, China, 2017.

Figure 1. Example multi-part pattern description for the
first 40 measures of“Come Together”. Measures that re-
peat are given the same letter label. In this and later figures,
the colors highlight repeated sequences instead of individ-
ual labels: if label i is always followed by j, and j always
follows i, their color assignments are merged.

single large-scale section label cannot encode this interest-
ing situation.

The multi-dimensional nature of structure has been
commented on [22], and recent corpora of annotations
have addressed it in different ways: the SALAMI dataset
provides descriptions at two timescales, and of functions
and leading instrument [29], and the INRIA dataset de-
scribes how segments and their component patterns are hi-
erarchically related [2]. For music cognition research, [26]
suggested that music be annotated multiple times on a per-
feature basis: e.g., once while focusing only on harmony,
again while focusing on timbre, and so forth. However,
the challenge of hierarchy is different from the challenge
of multiple independent parts. We argue that estimating
the structure of these independent parts—i.e., creating a
multi-part pattern analysis—should be a new MIR goal.

An example of a multi-part pattern description is shown
in Fig. 1. It is derived from a MIDI transcription of “Come
Together” by The Beatles from the Lakh dataset [23].
It indicates whenever an instrument in the mixture re-
peats itself, at the timescale of measures. This represen-
tation makes clear that the organ part (here substituting
the lead vocals) is varied in the second verse, while the
other instruments repeat themselves exactly. Compared to
a one-dimensional structural analysis, the richer detail of a
multi-part description would be more suitable for applica-
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tions like automatically editing videos or choreographies
to match an audio file.

We make four main contributions in this work. First,
we define a new goal for MIR research; second, we pro-
pose an algorithm for accomplishing it, which uses exist-
ing technology and some new techniques; third, we pro-
pose an evaluation framework for the task, including met-
rics, baselines, and how to obtain ground truth; and finally,
we conduct an evaluation.

In the next section, we discuss how our proposed task
relates to existing MIR tasks. We present our algorithm in
Section 3, present the evaluation framework in Section 4,
and discuss the results in Section 5.

2. RELATED WORK

Identifying repeating motives has long been of interest
to musicologists in MIR. Although most research in this
area has focused on symbolic data analysis (see, e.g., [5]),
when “Discovery of Repeated Themes” was added to
MIREX in 2013, it included both symbolic and audio
tracks (e.g., [21])—but the focus of that task is different:
in it, the challenge is precisely to ignore the differences
between instruments (if the piece being analyzed contains
multiple parts) as well as, potentially, to ignore differences
in key or modality. Our task, multi-part pattern analysis,
involves a separate challenge: discovering repetitions ex-
pressed by a single voice within the mixture.

Since it involves describing the independent patterns in
a mixture of tracks, the task is clearly related to source sep-
aration. Recently, approaches to source separation have
become more structural, taking better advantage of the
redundancies offered by repetition in music. One com-
mon technique, non-negative matrix factorization (NMF),
separates sources by modeling steady states in the spec-
trum; an extended version, NMF decomposition (NMFD),
models short sequences that are time-varying but exactly-
repeating [28], and NMF was recently used to detect
long loops [15]. Median filtering, which was used to ef-
ficiently perform harmonic-percussive source separation
(HPSS) [6], was used in the REPET algorithm to separate
a repeating background from a mixture [14]; REPET was
later adapted to looping backgrounds that change over time
and heterogenous backgrounds [25]. Although estimating
a multi-part pattern analysis will require source separa-
tion, the desired output is an abstract description, not a set
of separated tracks. Thus, whereas a source separation is
evaluated with signal reconstruction error, a pattern analy-
sis will be evaluated more like a structural analysis.

As for structural analysis, it has evolved toward mod-
eling hierarchy. Early segmentation-only approaches [7]
were followed by approaches that also estimate labels [8],
and by approaches that model similarity differently at dif-
ferent timescales [11]. Since the creation of the multi-scale
SALAMI and INRIA annotations, approaches to hierarchi-
cal description have been refined [17], as has the methodol-
ogy for evaluating them [18]. Hierarchy is partly a conse-
quence of multiple sources behaving independently: three
repetitions of the chorus could be considered the same at a
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Figure 2. Algorithm and ground truth generation pipeline.

coarse timescale (the context of the song), but differences
in range or instrumentation could differentiate them at a
finer timescale (the context of the three choruses). Mod-
els of hierarchy will always be ambiguous, since its per-
ception is ambiguous [12]. In contrast, the multi-layered
composition of a song can be described more concretely.
Thus, multi-part pattern analysis is worth treating sepa-
rately from hierarchical structure, and a good multi-part
analysis may be very useful for describing hierarchy.

Finally, two works have directly bridged source separa-
tion and structural analysis: First, [10] found that structure
analysis could be performed more accurately with multi-
track audio as input. Second, [27] discovered that spikes
in the reconstruction error of a source separation algorithm
can indicate structural boundaries. In defining the task of
multi-part pattern description, we hope to bring these fields
closer together.

3. PROPOSED APPROACH

Our proposed algorithm is outlined in Fig. 2, and data at
certain intermediate steps are illustrated in Fig. 3. The
three key stages of the algorithm are:

1. Source separation. We apply source separation to
the audio to convert the stereo recording to an estimated
multi-track recording. We do this with two median spectral
filters [13]: first, we take the median of the left and right
channels to estimate the center channel, and subtract this
from the original signals, resulting in three tracks. Second,
we apply HPSS to each track [6]. Even if a track con-
tains multiple pitched instruments, HPSS can separate in-
struments with different attacks, such as piano vs. strings,
or rhythm guitar vs. organ. We end up with 6 audio tracks
(see Fig. 3b).

2. Activation function estimation. The separated
tracks may be sparse: e.g., if the left channel contains
only strings, the left-percussive component may be nearly
empty. We compute RMS to estimate when the channels
are active. At this stage, we also use the ground truth
downbeat labels to define our segment windows. In future
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Figure 3. Data in intermediate stages of algorithm
pipeline. The SSMs in plots (d) and (e) correspond to the
center-harmonic track, which is the first track in plots (b)
and (c). Sound example is “Across The Universe.”

work, beats and downbeats could be estimated instead.
We take the mean over each window (i.e., each mea-

sure), and apply a k-means clustering to the RMS values,
with k = 2, to classify windows as either silent or active.
Even if the classes are very uneven, the difference between
the two with respect to RMS tends to be extreme enough
that this method is effective. At the end of this stage we
have a set of estimated activation functions (see Fig. 3c).

3. Sequence analysis. We use self-similarity matri-
ces (SSMs) to discover repetitions in each track. We com-
pute chroma with the madmom package [4] and compute a
measure-indexed SSM: element i, j gives the cosine simi-
larity between the sequences of beat-synchronized chroma
features of the ith and jth measures. We also use the
previously-estimated activation functions to zero out the
SSM when the track was judged inactive, as shown at the
beginning and end of the track in Fig. 3d.

To estimate segment labels from the real-valued SSM,
we choose a threshold t to binarize the matrix; then, to em-
phasize diagonal lines, we apply a single erosion-dilation
operation (in time-lag space) with a kernal size k. We
choose t and k in a novel way: my finding the values that
minimize the number of transitivity errors. These errors
are resolved with a novel lexical-sort approach. Transitiv-
ity errors are cases where a segment i is judged to be sim-
ilar to both j and k, but segments j and k are not similar
to each other; resolving these inconsistencies is a difficult
part of interpreting structure from SSMs (e.g., see [20]).
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Figure 4. Eliminating transitivity errors with lexical sort-
ing. Errors appear as inconsistent blocks in the sorted
SSM. We can fix the error by eliminating pixels X, or pix-
els Y, or adding pixels at Z.

Given a binary SSM, we can collect repeating pixels
into groups by sorting the rows lexically (i.e., alphabeti-
cally). The process is illustrated in Fig. 4: after sorting the
SSM’s rows and columns, groups of repeating elements
become blocks on the main diagonal, and all other pixels
represent transitivity errors. The third SSM in Fig. 4 can
be fixed in three ways: zeroing the pixels at X, or at Y,
or adding pixels at Z. We greedily eliminate the errors by
walking along the main diagonal from the upper left and
discarding off-diagonal elements that do not fit the current
block, which corresponds to zeroing X. When the cleaned
SSM is re-ordered, the result is guaranteed to be transitive.

We call the number of pixels deleted from an SSM the
“strain”, and the number of off-diagonal pixels that remain
the “coverage”. (For the example in Fig. 4, strain is 2 and
coverage is 4.) Our goal is to choose t and k to maximize
coverage and minimize strain, while avoiding redundant
cases such as an empty SSM or an SSM that is all ones.

We sweep values of t between 0.99 and 0.8, and k be-
tween 4 and 8 measures. A set of real-world examples
are shown in Fig. 5. The left column contains 5 binary
SSMs derived from chroma computed on an audio track.
The second and third columns give the lexically-ordered
SSMs (and their strains) and their cleaned versions (and
coverages). The fourth column gives the cleaned SSMs
and the difference between coverage and strain, which is
maximized by choosing k = 7. The result is a binary SSM
that is sparse but not empty, and free of transitivity errors,
as in Fig. 3e. It is then trivial to label the segments. The
six estimated part descriptions are collected in Fig. 3f.

In structure analysis, we typically search for long re-
peating subsequences and long homogeneous stretches,
and apply strong smoothing to the SSM to gloss over varia-
tions. In contrast, the above pipeline was designed to focus
on tracking shorter patterns and to find when they repeat
exactly, with the expectation of obtaining a much sparser
SSM with few transitivity errors.

4. EVALUATION FRAMEWORK

4.1 Data and Ground Truth

To test the quality of a multi-part pattern analysis algo-
rithm, we need audio files with multiple layers, with each
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Figure 5. Illustration of strain-coverage optimization ap-
proach on a track estimated from a recording of “All My
Loving.” The four columns, from left, give: (1) binary
SSMs filtered with different kernel sizes; (2) lexically
sorted SSMs; (3) SSMs with errors removed; (4) cleaned
SSMS restored to original column and row order. Kernel
size 7 maximizes coverage while minimizing strain.

layer annotated to indicate repeating patterns. Creating
ground truth for this task by hand would be infeasible for
a large corpus. There are many public datasets of multi-
track audio, but only rarely are the tracks annotated in
detail. The existing dataset that most closely meets our
needs is MedleyDB [3], which contains multitrack audio
and melody f0 annotations for a subset of stems, but not
annotations of repetitions in each track.

However, we can generate an appropriate dataset from
MIDI. We used a portion of Lakh MIDI dataset [23] called
the “Clean MIDI subset”, which contains most of the Beat-
les catalogue, and used FluidSynth 1 to convert these to au-
dio files. When there were duplicate MIDI files to choose
from, we selected the version where the average panning
setting of the tracks had the highest standard deviation.
(Many MIDI transcriptions have no panning information
at all, which would work against our algorithm.)

We processed the MIDI files (using Pretty MIDI [24])
to create, for each MIDI channel, a ground truth descrip-
tion of the measure-level patterns. The procedure for this
is similar to our analysis algorithm (see Fig. 3). From
a downbeat-segmented piano roll (Fig. 6a), we obtain an
activation pattern, i.e., a timeline of 1s and 0s indicating
whether an instrument has any MIDI note events during
each measure-long window (Fig. 6b). Next, we estimate
the similarity of every pair of measures within a track with
an SSM (Fig. 6c). To compare two piano roll windows,
we take the percentage of active note spans that overlap.
To focus on exact repetitions, we should use a threshold of

1 http://www.fluidsynth.org/

Figure 6. Data in intermediate stages of ground truth gen-
eration for the vocal channel of “All My Loving.” The
song’s multi-part description is shown in (e).

1.0, but in practice, due to small timing differences and ex-
pressive gestures in the MIDI transcription, a threshold of
1.0 leads to extremely sparse recurrence plots—but on the
other hand, lowering the threshold can lead to transitivity
errors, as before. However, we found that a threshold of
0.9 was generally suitable to obtain non-empty recurrence
plots without producing a large number of transitivity er-
rors (Fig. 6d). Doing this for every track gives a multi-part
description (Fig. 6e).

4.2 Evaluation Metrics

After processing the MIDI data, we obtain a “ground truth”
matrix of instrument patterns A where the element Ai,j

indicates the pattern label for the ith instrument during the
jth measure. (Such information is displayed in Fig. 1 and
Fig. 6e.) We set Ai,j = 0 when the ith instrument is not
active. Similarly, we can obtain an estimated description
E with elements Ei,j , such as in Fig. 3f.

To compare two single-track descriptions (two rows
of A and E), we can use any metrics from the field of
structure analysis, such as the pairwise f -measure met-
ric [19]. (For a comparison of structure evaluation metrics,
see [16].) However, the rows of A and E are not necessar-
ily aligned in the correct order. Moreover, the number of
estimated tracks in E may be smaller or greater than the
number of MIDI channels in A. We present two sets of
evaluation metrics: one that requires matching the layers,
and one that does not. We also devise a set of baselines.

Evaluation of descriptions. Suppose we have an N -
layer estimated description and an M -layer ground truth
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Figure 7. Optimal pairing of estimated tracks (columns)
with ground truth channels (rows), according to pairwise
f -measure between descriptions (which are illustrated as
recurrence plots) The mean pwf is 0.44.

description, and let L = min(M,N). We can compute
the pairwise f -measure between all pairs of layers, giv-
ing a table of values like the one in Fig. 7. The Hungar-
ian Algorithm 2 gives us the optimal one-to-one match-
ing between L layers to maximize the average f -measure.
Using the optimal pairings, we can compute the average
precision and recall. Together, these serve as our set of
3 “generous” metrics, since it does not punish cases when
N 6= M . If there are unmatched layers, whether in A or E,
these should count against the estimate. We can compute a
stricter mean f -measure by taking pwf ∗ L/max(M,N).

Evaluation of activations. The activation matrix that
we estimate (e.g., Fig. 3c) is an important intermediate
step. It is worth evaluating on its own, and we can do
so without matching tracks to channels. We treat each
column of the activation matrix, an N -dimensional binary
vector, as a ‘timbre label,’ such that each unique column
gets a unique label. (This calls to mind the timbre-mixture
estimation of [1].) We perform the same process on the
ground truth activation matrix. Then we can use pairwise
f -measure to compare the two sequences of timbre labels.

This metric ignores the difference between an instru-
ment being added to or subtracted from the mixture. To
evaluate the retrieval of entrances and exits, we use a ver-
sion of the boundary retrieval f -measure [19, p. 220],
counting each entrance (or exit) in the ground truth as be-
ing correctly estimated only if some instrument in the esti-
mated description also enters (or exits, respectively) in the
same measure.

4.3 Baseline Methods

We compare our algorithm against a set of naive baselines
to gauge the success of our algorithm, but also to learn

2 https://en.wikipedia.org/wiki/Hungarian_
algorithm

how the proposed evaluation metrics behave. The labeling
baselines are:

• Bconstant: all measures repeat the same pattern;

• Bnull: all measures are unique;

• Bperiodic: there are three concurrent tracks playing
sequence loops of length 2, 4 and 8 measures: i.e.,
three sequences [ab]∗ (i.e., ab repeated), [abcd]∗,
and [abcdefgh]∗;

• Bblock: there are three concurrent tracks that alter-
nate static textures with periods 2, 4 and 8 measures:
i.e., [ab]∗, [aabb]∗, and [aaaabbbb]∗.

The activation matrix baselines are:

• Buniform: the song has a single texture;

• Bbuildup: new instruments enter in measures 3, 5
and 7.

In addition to these naive baselines, we tested two sim-
plified versions of our proposed approach. The first skips
the source separation step: instead of estimating patterns
from 6 separated tracks, we can estimate patterns from the
full-audio chroma features, and then duplicate the result 6
times to match the number of estimated sources as the pro-
posed approach (“Chr. w/o SS”). Second, since the activa-
tion matrix is evaluated as if it were a timbre label, we also
estimate timbre labels by computing full-audio MFCCs,
and using NMF to label the measures (“MFCCs”). All sec-
tion transitions are treated as predictions of entrances and
exits.

5. RESULTS AND DISCUSSION

We applied all the approaches described above to the
dataset of 200 Beatles songs. The results for the multi-
part pattern description task are shown in Table 1 (“Stan-
dard approach”). We find that the proposed approach out-
performs the naive baselines, but that the simpler approach
that skips the source separation step performs even better,
even though it has lower recall. The pwf values are al-
most all dominated by the lower precision values; like in
structure analysis, it seems harder to achieve high preci-
sion than high recall. By tweaking the evaluation metric,
we can understand why. In the bottom half of the table, we
compute pwf counting the elements on the main diagonal.
The Bnull baseline, which guesses that every measure is
different, now becomes very competitive.

The explanation is that unlike in the usual structure
analysis task, the ground truth for this task is very sparse.
Recall that pairwise f -measure tells us how well the sim-
ilarity relationships of one description are captured by the
similarity relationships in another. In other words, given
two binary SSMs that encode similarity descriptions, pwf

assesses how well the positive parts of these SSMs coin-
cide. Since it is trivial to guess that each segment is similar
to itself, we should ignore the contributions of the main di-
agonal. This does not usually affect the outcome of struc-
ture evaluation, since the repeating blocks ensure that the
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Standard approach
Generous Strict

pwf pwp pwr pwf

Proposed .245 .211 .71 .184
Chr. w/o SS .297 .312 .529 .222
Bconstant .144 .092 .95 .106
Bnull 0 0 0 0

Bperiodic .149 .136 .318 .112
Bblock .06 .103 .074 .044

Counting self-labeled measures
pwf pwp pwr pwf

Proposed .365 .309 .819 .274
Chr. w/o SS .466 .442 .695 .346
Bconstant .183 .115 .962 .135
Bnull .515 .749 .477 .384

Bperiodic .255 .218 .461 .192
Bblock .411 .44 .465 .309

Table 1. Above: results for estimated multi-track descrip-
tion quality using the proposed metric. Below: the results
if self-labeled measures are counted as correct. The high
retrieval for Bnull illustrates the sparseness of the ground
truth.

ground truth SSM has very many off-diagonal pixels to es-
timate. However, in our application, the ground truth ma-
trices are extremely sparse: in cases where a part never
repeats itself exactly, there are no off-diagonal elements.

On the other hand, this task is unlike structure analysis
because in our case, elements on the main diagonal can
equal 0, if the corresponding source is not active. This
means that the Bnull baseline does not actually achieve
perfect precision: from the bottom part of Table 1 we can
see that on average, sources are active for 75% of the song.

Results for the activation detection task are shown in
Table 2. According to the pwf measure, the best approach
to characterize the changing timbre of the piece was our
proposed one. However, the uniform baseline performs
almost as well according to this metric. Although some
songs have over a dozen tracks, with many entrances and
exits, it seems that the majority of songs have an instru-
mentation that changes little. As a result, the uniform and
buildup baselines achieve near-perfect recall while preci-
sion does not fall below 30%. That said, these naive base-
lines fail to detect nearly all the entrances and exits of
instruments from the mixture, so the proposed approach
beats them handily on entrance/exit f -measure.

In contrast, the MFCC approach tends to find a majority
of the entrances and exits, and narrowly beats the proposed
approach in terms of entrance/exit f -measure. The cost of
this apparent over-segmentation is lower pairwise retrieval,
and the lowest overall pwf , for labeling the timbres.

In designing the evaluation, we made an effort to re-
use metrics that are used for structure analysis. We did
not expect the sparseness of the ground truth to have such
an impact on the metrics, but the impact is plain to see
in the success of the baselines. Perhaps we should have

Timbre labeling Entrance/exit
pwf pwp pwr f p r

Proposed .450 .456 .546 .248 .271 .296
MFCCs .3 .549 .319 .273 .195 .566
Buniform .433 .306 .962 0 0 0
Bbuildup .446 .328 .909 .071 .351 .045

Table 2. Results for estimated activation matrix quality.

anticipated this: data sparseness is often a problem when
translating a one-dimensional function (here, the overall
structure) into a higher-dimensional space (a per-channel
representation). One potential way to resolve this issue
is to automatically process both the ground truth and the
estimated descriptions using a fixed sequences-to-blocks
conversion step, such as that proposed by [9]. This would
allow us to compare nearly-equivalent representations that
are much less sparse.

Needless to say, the multi-track analysis approach we
have proposed could be improved in many ways. We have
used two source separation kernels, in a fixed way, but it is
possible to apply more kernels, and to do so in an optimiza-
tion framework to increase the independence of the esti-
mated tracks [13]. Future work should also test a greater
variety of source separation methods, especially NMF-
based approaches. However, this first effort has helped us
to understand the special challenge of this task, which is
the sparseness of the ground truth.

6. CONCLUSION AND FUTURE WORK

We have described a new MIR task, multi-part pattern
analysis, in which the goal is to describe each indepen-
dent layer of a piece of music. The task complements re-
cent work on estimating hierarchical structure. We have
also proposed a method for estimating multi-part pattern
analyses using a combination of existing source-separation
tools, SSM-based structure estimation methods, and a
novel approach to thresholding SSMs in order to minimize
transitivity errors.

To support future work on this problem, we have pro-
posed a method of creating ground truth annotations from
MIDI files, and a set of evaluation metrics that can esti-
mate the similarity between two multi-part descriptions or
two multi-part activation functions.

In our evaluation, we found the sparseness of the data to
be an issue, but it is a direct consequence of how we chose
to create the ground truth. As we refine the methodology
for this task in future work, we will study the impact of dif-
ferent ways of converting multi-channel files into ground
truth recurrence plots.

7. ACKNOWLEDGEMENTS

This work was supported in part by JST ACCEL Grant
Number JPMJAC1602, Japan.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 721



8. REFERENCES

[1] J.-J. Aucouturier and Mark Sandler. Segmentation of
musical signals using hidden Markov models. In Proc.
of the Audio Engineering Society Convention, Amster-
dam, The Netherlands, 2001.

[2] Frédéric Bimbot, Gabriel Sargent, Emmanuel Deruty,
Corentin Guichaoua, and Emmanuel Vincent. Semiotic
description of music structure: An introduction to the
Quaero/Metiss structural annotations. In Proc. of the
AES Conference on Semantic Audio, 2014.

[3] Rachel M. Bittner, Justin Salamon, Mike Tierney,
Matthias Mauch, Chris Cannam, and Juan Pablo
Bello. MedleyDB: A multitrack dataset for annotation-
intensive mir research. In Proc. of ISMIR, pages 155–
160, Taipei, Taiwan, 2014.

[4] Sebastian Böck, Filip Korzeniowski, Jan Schlüter, Flo-
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ABSTRACT

One of the most complex stages of optical music recog-
nition workflows is the detection and isolation of musical
symbols. Traditionally, this goal is achieved by performing
preprocesses of binarization and staff-line removal. How-
ever, these are commonly performed using heuristics that
do not generalize widely when applied to different types
of documents such as medieval scores. In this paper we
propose an effective and generalizable approach to address
this problem in one step. Our proposal classifies each
pixel of the image among background, staff lines, and sym-
bols using supervised learning techniques, namely convo-
lutional neural networks. Experiments on a set of medieval
music pages proved that the proposed approach is very ac-
curate, achieving a performance upwards of 90% and out-
performing common ensembles of binarization and staff-
line removal algorithms.

1. INTRODUCTION

Optical music recognition (OMR) is the field of computer
science devoted to providing computers with the ability to
extract the musical content of a score from the optical scan-
ning of its source image [1]. This problem represents a
complex challenge for which there are no completely sat-
isfactory solutions yet [20]. The task can be further di-
vided into two different stages [6]: document image pro-
cessing, in which the objective is to detect and recognize
each meaningful symbol appearing in the image; and re-
construction of musical notation, in which musical mean-
ing is assigned to each of these symbols in order to encode
the content in a structured symbolic music format such as
MEI (Music Encoding Initiative) or MusicXML.

Due to the arrangement of the elements on the staff, the
image-processing stage is usually approached following a
strategy of segmentation and classification. That is, ele-
ments within the score are first detected independently and

c© Jorge Calvo-Zaragoza, Gabriel Vigliensoni, and Ichiro
Fujinaga. Licensed under a Creative Commons Attribution 4.0 Inter-
national License (CC BY 4.0). Attribution: Jorge Calvo-Zaragoza,
Gabriel Vigliensoni, and Ichiro Fujinaga. “One-step detection of back-
ground, staff lines, and symbols in medieval music manuscripts with con-
volutional neural networks”, 18th International Society for Music Infor-
mation Retrieval Conference, Suzhou, China, 2017.

then a classification algorithm assigns a category to each
of them. Our approach focuses on the segmentation stage.

The final objective of segmentation is to detect the re-
gions of the image that correspond to music symbols. To
achieve this, traditional segmentation workflows incorpo-
rate the steps of binarization of the document and detection
and removal of staff lines. Staff-line detection and removal
algorithms usually use a binarized image as input, which
facilitates certain procedures such as morphological oper-
ations or histogram analysis—core processes of many of
these algorithms. In addition, the segmentation workflow
also allows for the detection of staff line positions. If sym-
bol isolation were done from a color image, it would not
know which parts belong to the background of the docu-
ment and which to staff lines. Note that the position of
staff lines is crucial for determining the pitch of the sym-
bols.

The traditional segmentation workflow, however, has a
number of drawbacks. First, the staff-line detection and re-
moval becomes heavily dependent on the accuracy of bina-
rization, as errors are propagated between the two stages.
In addition, the traditional methods follow heuristic tech-
niques that assume specific conditions in the images to be
treated. While this may be useful if the context of their
use is limited to a particular style of documents, it is dif-
ficult to generalize these methods so that they can be used
in various cases. This is especially true when dealing with
medieval manuscripts, which present a greater heterogene-
ity in this regard.

For all of the above cases, we propose a framework with
the goals of isolating the symbols depicted in the image of
a music score and keeping the staff-line information. In
our approach we perform a document analysis procedure
that allows for categorical discrimination of each pixel, ac-
cording to the class it belongs to (e.g., background, staff
lines, or symbols) in a single step. In order to make this
approach generalizable we address the task using the su-
pervised learning paradigm. That is, we assume that a ref-
erence set is available that can be used to train a model to
perform such task. In particular, we make use of convolu-
tional networks for this purpose. These networks are pow-
erful models that are capable of learning a suitable repre-
sentation for a given task, thus avoiding the necessity of de-
veloping a feature extraction strategy specifically designed
for each type of document to be processed. Our experi-
ments on two sets of medieval documents report excellent
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results, outperforming different combinations of binariza-
tion algorithms and staff-line removal algorithms.

The rest of the paper is structured as follows: related
work and the context of our proposal is presented in Sec-
tion 2; the proposed method to solve the problem is de-
tailed in Section 3; the experimental setup to validate our
approach is described in Section 4; comparative and qual-
itative results are reported in Section 5; and conclusions
and promising avenues for future work are summarized in
Section 6.

2. RELATED WORK

OMR has to deal with many aspects of musical notation,
one of which is the presence of the staff. Since most sym-
bols in the score are connected through these lines, it has
been traditionally necessary to remove them in order to de-
tect musical symbols.

The staff-line removal stage is usually performed af-
ter the binarization of the document in the OMR work-
flow [20] because this step helps to reduce the complex-
ity of the problem and is required to apply certain tech-
niques such as morphological operators, histogram anal-
ysis, or connected components. In addition, starting from
the color image, the processes of binarization and staff-line
removal, one after the other, allow the separation of back-
ground, staff lines, and musical symbols regions.

A comprehensive review and comparison of the early
attempts for the staff-line removal can be found in the work
of Dalitz et al. [7]. Given the interest in this challeng-
ing task, many other methods have been proposed more
recently. Cardoso et al. [9] proposed a method that con-
siders the staff lines as connecting paths between the two
margins of the score. The score was modeled as a graph so
that staff detection was solved as a maximization problem.
Dutta et al. [10] developed a method for printed scores that
considered the staff-line segment as a horizontal connec-
tion of vertical black runs with uniform height. Piatkowska
et al. [18] designed a method that used a Swarm Intelli-
gence algorithm. Their approach can apparently deal with
any type of image, but only results on binary images were
reported. Su et al. [23] fitted an approximate staff con-
sidering properties such as height and space. Geraud [11]
developed a method that entails a series of morphological
operators: first, a permissive hit-or-miss with a horizontal
line pattern, followed by a horizontal median filter and a
dilation operation. A binary mask is then obtained with a
morphological closing. Finally, a vertical median filter is
applied to the largest components of the mask. The proce-
dure is directly applied to the image, which eventually re-
moves staff lines. Montagner et al. [15] proposed to learn
image operators, whose combination remove staff lines.

The problem with these methods is that they focus on
particular aspects of the style of the specific scores toward
which they are oriented and it is, therefore, very difficult
to adapt them to other types of documents (for example,
from different eras or with different notations or styles).
In addition, most of these methods assume already bina-
rized images as input. The binary nature of modern musi-

cal scores (black ink on white paper) has, to some extent,
justified this assumption. Of course, document binariza-
tion is not a trivial problem—especially when dealing with
ancient documents [16]. Furthermore, it turns out that tra-
ditional document binarization methods, which were de-
signed mainly for text documents, are often not suitable
for musical scores [4].

Here we introduce a more generalized framework to
solve the whole segmentation problem directly. The frame-
work is based on machine learning so that it can be applied
to a wide variety of musical notation styles and musical
documents, as long as training data is available. Our strat-
egy is inspired by the work of Calvo-Zaragoza et al. [5],
in which a Support Vector Machine classifier was trained
to discriminate if a foreground pixel of a binary image be-
longs to a symbol or to a staff line. Our approach is similar
in formulation, but we do not assume that the documents
are binarized or that they contain only symbols or staff
lines. Furthermore, we also extend the procedure by using
a more advanced classification scheme based on Convolu-
tional Neural Networks (CNN).

3. METHOD

Although rarely formulated in this way, the problems re-
lated to image processing for musical documents are con-
cerned with pixel-level classification processes. That is,
for each pixel of the image we want to know whether it
belongs to a musical symbol or not. In the latter case, we
want to know whether the pixel belongs to a staff line or
not, as this information is valuable for determining the ver-
tical position of the notes (pitches), among others.

Therefore, the process can be formulated as a classifica-
tion problem in which a model is trained to distinguish the
category a given pixel belongs to. Formally, our approach
considers a model that categorizes a given pixel into three
possible classes: background, staff, and symbol. The re-
quirement to carry out this idea consists of a reference set
that allows providing examples of each category to the su-
pervised learning algorithm.

In our framework, this classification process is carried
out by means of Deep Learning. Recently, Deep Neural
Networks have shown a remarkable leap of performance in
pattern recognition. Specifically, CNN have been applied
with great success for the detection, segmentation, and
recognition of objects and regions in images, approaching
human performance on some of these tasks [13].

CNN are composed of a series of filters (i.e., convolu-
tions) that obtain several representations of the input im-
age. These filters are applied in a hierarchy of layers, each
of which represent different levels of abstraction; while fil-
ters of the first layers may enhance details of the image,
filters of the last layers may detect high-level entities [12].
The key to this approach is that, instead of being fixed,
these filters are modified through a gradient descent opti-
mization algorithm called back-propagation [14].

One of the main advantages of CNN is their ability to
learn a suitable representation of the training data with-
out any human intervention, affording greater general-
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ization to documents of different style. In other words,
these networks learn a suitable representation of the data
from raw data, without the need of feature extraction.
Since collections of music documents are a rich source of
highly complex information—often more heterogeneous
than other types of documents—a framework based on
CNN is promising.

3.1 Input Feature Set

As mentioned above, our intention is to train a CNN to dif-
ferentiate pixels belonging to the different categories. An-
alyzing the organization of musical documents, we hypoth-
esize that a pixel can be correctly categorized by using its
local, neighboring information. In other words, we assume
that the surrounding region of a pixel contains enough dis-
criminative information to classify it into its correct cate-
gory. As a result, the input set to the classifier in our frame-
work is a portion of the input image, centered at the pixel
of interest. Figure 1 illustrates some examples of input fea-
ture set for each of the considered categories, in which the
pixel to be classified is located in the center of the patch.

Figure 1. Example of input feature sets for pixels of in-
terest of the three classes: symbol, background, and staff.
Note that the pixel to be classified is located at the center of
each window (highlighted in red for a better illustration).

Note that the method can work directly with color im-
ages and that the size of the neighborhood (i.e., the size of
the window) is a parameter to be tuned according to the
scale of the images to be processed.

3.2 Convolutional Neural Networks

Since there are no previously proposed CNN models to
solve a task of this kind, we designed a new network con-
figuration. Note, however, that the ultimate goal of this pa-
per is not to find the best network topology—which would
involve a comprehensive set of experiments to find the best
set of parameters—but to demonstrate that the proposed
categorization of music documents based on pixel-wise
classification with CNN is feasible.

Our design is inspired by the VGG network [22], a
topology widely used in the computer vision community

for object recognition. This network contains several lay-
ers of convolution plus 2 × 2 max-pooling (16 or 19, de-
pending on its version). By means of informal testing we
simplified this network to up to 3 layers, adjusting the num-
ber of convolutional filters per layer to 64, and the size of
the convolution kernels to 7.

Learning of the network weights is performed by means
of stochastic gradient descent [2] with a batch size of 32,
considering the adaptive learning rate proposed by Zeiler
[26] (default parameterization) and a cross-entropy loss
function. Once the CNN has learned how to distinguish
among the considered categories it can be used to perform
the layout analysis of a document. To do so, each pixel of
the image is queried, and its feature set is forwarded and
processed by the network in order to obtain its most likely
category.

4. EXPERIMENTAL SETUP

4.1 Corpora

We trained and tested our approach on a set of high-
resolution image scans of two different old music docu-
ments. The first corpus is a subset of 10 pages of the
Einsiedeln, Stiftsbibliothek, Codex 611(89), from 1314. 1

The second corpus consists of 10 pages of the Salzinnes
Antiphonal manuscript (CDM-Hsmu M2149.14), music
score dated 1554–5. 2 Pages from the two manuscripts are
shown in Figure 2. As a reference measure for scale, both
pages depict a separation between staff lines of approxi-
mately 50 pixels.

Note that the image scans of these two manuscripts have
zones with different lighting conditions that may affect the
performance of the proposal we evaluate. The Einsiedeln
manuscript images, in particular, present areas with severe
bleed-through that may mislead the automatic recognition.

The ground-truth data from the corpora was created by
manually labeling pixels into the three categories consid-
ered, as illustrated in Figure 3. Note that the class symbol
includes both musical symbols and other types of symbols
(such as lyrics). This should not be an issue as there exist
successful algorithms to separate music and lyrics [3].

Taking into account the scale of the images of our cor-
pora, an input window size of 41 × 41 pixels was empir-
ically chosen, which corresponds to more than half of the
space between the staff lines.

4.2 Comparative Assessment

To the best of our knowledge, there are no other algorithms
that perform a direct detection of staff lines and symbols
from music document images, and so we decided to com-
pare our approach with combinations of standard binariza-
tion and staff-line removal algorithms. In order to select
these algorithms, we took into account the results of the IC-
DAR / GREC 2013 Competition on Music Scores: Staff Re-
moval [24]. In this contest, the two strategies that obtained
the best performance were LRDE [11] and INESC [9].

1 http://www.e-codices.unifr.ch/en/sbe/0611/
2 https://cantus.simssa.ca/manuscript/133/
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(a) Einsiedeln (b) Salzinnes

Figure 2. Pages from the corpora used in this work.

(a) Source image

(b) Ground-truth

Figure 3. Example of ground-truth created. Background
pixels are labeled in white, staff-line pixels are labeled in
red, and symbol pixels are labeled in blue.

These methods were based on published approaches (de-
scribed in Section 2).

As mentioned before, these methods require that the in-

put image only contains binary values. Therefore, the fol-
lowing binarization strategies are considered:

Sauvola method [21] is perhaps the most widely consid-
ered binarization algorithm for document images. It
is based on the assumption that foreground pixels are
closer to black than background pixels. It computes
a threshold at each pixel considering the mean and
standard deviation of a square window centered at
the pixel under consideration.

Wolf & Jolion method [25] is an extension of Sauvola’s,
with a change in threshold formula to normalize
contrast and the mean gray-level of the considered
square window.

BLIST method [19] (Binarization based in LIne Spacing
and Thickness) is specially designed for binarizing
music scores. It consists of an adaptive local thresh-
olding algorithm based on the estimation of the fea-
tures of the staff lines depicted in the score.

To obtain the three categories mentioned above, we as-
sume that background are those pixels removed by the
binarization algorithm, while staff are those removed by
the staff-line removal algorithm from the binarized image.
The remaining pixels are thus classified as belonging to the
symbol category.

Each combination of staff-line removal and binarization
methods was evaluated experimentally. To assure a fair
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comparison, the parameters for each method (if any) were
tuned to obtain the best results in the training set.

4.3 Evaluation

To evaluate our proposal, we used a scheme of 10-fold
cross-validation on each corpus. That is, at each iteration,
one of the pages was used as a test set, and the other nine
were used to train the network and optimize its configu-
ration. Specifically, 30 000 samples of each of the three
classes were randomly selected for training (total: 90 000),
while 600 000 of each class (total: 1 800 000) were used as
a validation set. Note that these partitions represent a tiny
portion of the available data, as each page contains about
2 · 107 pixels. However, these values were considered ad-
equate to successfully train the networks (both in accuracy
and computational load) on the machines that were used
for that purpose. A more clever use of all available data
will be discussed when addressing future work. As a re-
sult, the training set was used to optimize the CNN through
gradient descent, whereas the validation set was used to se-
lect the most appropriate epoch to stop the learning process
and prevent over-fitting. The complete testing pages were
finally used to measure the performance of the model cre-
ated by the network during training.

Given that the number of pixels of each class is not
evenly balanced in the documents, we consider the F-
measure (F1) class-wise figure of merit for quantitatively
assessing the classification accuracy of the system. Taking
one class at a time as reference, this metric summarizes the
correctly classified elements (True Positive, TP), elements
falsely classified as belonging to the reference set (False
Positive, FP), and elements of the reference set misclassi-
fied as belonging to another category (False Negative, FP)
in a single value. Then, the F1 is formalized as:

F1 =
2 · TP

2 · TP + FP + FN
.

Finally, in order to minimize the possibility that the dif-
ferences in model performance were due to chance vari-
ation, we will perform a pairwise, non-parametric test
(Wilcoxon signed rank [8]).

5. RESULTS

We show in Table 1 the average F1 results obtained in each
corpus, as well as the overall performance when the whole
set of documents is taken into consideration.

As can be seen in the table, the staff-line removal algo-
rithm is the most relevant element in the considered con-
figurations, because the differences are smaller when vary-
ing the binarization algorithm. In particular, the LRDE
approach reports poor results in both sets of documents,
despite having obtained the best results in the aforemen-
tioned competition. This directly demonstrates the lack of
generalization of this approach. The INESC algorithm ex-
hibits a fair performance, especially in the Salzinnes cor-
pus. In regard to binarization algorithms, no conclusion
can be drawn since the results seem too similar and depend
on the corpus.

Strategy
Dataset

Einsiedeln Salzinnes Whole

LRDE

Sauvola 58.5 78.6 68.6

Wolf 58.7 70.6 64.6

BLIST 59.2 74.0 66.6

INESC

Sauvola 80.3 91.6 86.0

Wolf 83.0 90.7 86.9

BLIST 83.8 88.0 85.9

CNN 88.0 92.6 90.3

Table 1. Average F1 obtained in the 10-fold cross-
validation scheme for each corpus and the whole set.

The approach based on CNN, which performs the pro-
cess in a single step, yields the best results in all cases
considered. Since these results only reflect the average
performance, we used the 20 independent results (10 for
each corpus) to perform statistical tests. It resulted in p-
values below 0.01 in all pairwise comparisons, and so our
approach is significantly better than the rest of the config-
urations with an alpha significance level of 99%.

In order to have a qualitative reference, Table 2 shows
an example of the categorization obtained by LRDE and
INESC methods on a piece of Einsiedeln documents, con-
sidering BLIST binarization (best case), as well as the cat-
egorization of the approach based on CNN. It is observed
that LRDE is only able to partially detect one of the lines
of staff. INESC achieves an acceptable performance but it
mislabels some sections of the staff. CNN shows a predic-
tion that is very similar to the reference one. In addition,
it completes one of the staff lines that is not perfectly seen
in the original document (which, in turn, may be detrimen-
tal when computing its accuracy). Also, the CNN tends to
mislabel pixel close to boundaries of elements, in which is
not clear the actual category of the pixel. It is expected,
however, that these errors will not cause inconveniences in
subsequent procedures of the recognition workflow.

All in all, we can state that a trained CNN can success-
fully detect the selected categories at the pixel level in im-
ages of music scores. Our approach reports the best per-
formance among the evaluated methods although it is fair
to say that it is not by a wide margin. Nevertheless, its
strength can be observed in the improvements achieved in
each corpus. On the Salzinnes corpus, which seems to be
less degraded and simpler, the margin was narrower. How-
ever, in the Einsiedeln manuscript the improvement over
the compared methods was higher. This could mean that,
as the difficulty increases, our approach could be more gen-
eralizable and adaptable.

It should be emphasized that the intention of this work
was not to find the most suitable combination of input
feature size and network topology, but to show that this
approach allows dealing with the analysis of music doc-
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Source Ground-truth

BLIST+LRDE BLIST+INESC CNN

Table 2. Qualitative examples of categorization from Einsiedeln document, depicting the original piece along with the man-
ually created ground-truth, and the labeling predicted by BLIST+LRDE, BLIST+INESC, and CNN. Coloring: background
in white, staff lines in red, and symbols in blue.

uments successfully. Therefore, a more comprehensive
search of the optimal parameters could be carried out to
obtain an even better performance.

6. CONCLUSIONS

In this paper we presented a framework for detecting back-
ground, staff lines, and symbols in medieval manuscripts.
Our approach was based on the classification of the dif-
ferent elements of the image at pixel level using machine
learning. We use a CNN along with a training dataset of
reasonable size that contained examples for each category.

Our results showed that the accuracy obtained is high,
achieving around 90% of F1 in the evaluated corpus. It
has also been shown that our proposal is able to outper-
form state-of-the-art strategies based on heuristic image
processing, demonstrating that CNN is a robust and gen-
eralizable alternative to those traditional approaches.

In future work, efforts should be devoted to overcom-
ing the problem of getting enough data to train the CNN. It
could be interesting to consider an incremental interactive
framework in which the user does not have to label every
single pixel of the image but only those erroneously la-
beled by a base classifier. The use of transfer learning [17]
is another way to reduce the initial effort when dealing with
a new type of document.

Moreover, there are several ways to improve the accu-
racy of the model in the future. Of course, finding a more
suitable network configuration for this problem is a way
of improving the results presented here. Also, since the
available data is very large (i.e., a single page of ground-
truth provides millions of examples of pixels labeled by
humans), it would be more beneficial to train the network

following a smarter strategy than choosing a random sub-
set of the available data. For example, a random training
set can be initially chosen to perform a first training itera-
tion (as in the case of this work). After that, training doc-
uments can be evaluated so that the network is re-trained
only with those pixels that would be misclassified by the
current model. In this way, the network would pay special
attention to the most difficult cases.

7. ACKNOWLEDGEMENT

This work was partially supported by the Social Sciences
and Humanities Research Council of Canada.

Special thanks to Vi-An Tran for manually labeling the
different layers in all the manuscripts used for this re-
search.

8. REFERENCES

[1] D. Bainbridge and T. Bell. The challenge of opti-
cal music recognition. Computers and the Humanities,
35(2):95–121, 2001.

[2] L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMP-
STAT’2010, pages 177–186. Springer, 2010.

[3] J. A. Burgoyne, Y. Ouyang, T. Himmelman, J. De-
vaney, L. Pugin, and I. Fujinaga. Lyric extraction and
recognition on digital images of early music sources. In
Proceedings of the 10th International Society for Mu-
sic Information Retrieval Conference, pages 723–727,
2009.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 729



[4] J. A. Burgoyne, L. Pugin, G. Eustace, and I. Fujinaga.
A comparative survey of image binarisation algorithms
for optical recognition on degraded musical sources.
In Proceedings of the 8th International Conference on
Music Information Retrieval, pages 509–512, 2007.

[5] J. Calvo-Zaragoza, L. Micó, and J. Oncina. Music staff
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ABSTRACT

Optical Music Recognition (OMR) is an important tech-
nology within Music Information Retrieval. Deep learn-
ing models show promising results on OMR tasks, but
symbol-level annotated data sets of sufficient size to train
such models are not available and difficult to develop.
We present a deep learning architecture called a Convolu-
tional Sequence-to-Sequence model to both move towards
an end-to-end trainable OMR pipeline, and apply a learn-
ing process that trains on full sentences of sheet music in-
stead of individually labeled symbols. The model is trained
and evaluated on a human generated data set, with vari-
ous image augmentations based on real-world scenarios.
This data set is the first publicly available set in OMR re-
search with sufficient size to train and evaluate deep learn-
ing models. With the introduced augmentations a pitch
recognition accuracy of 81% and a duration accuracy of
94% is achieved, resulting in a note level accuracy of 80%.
Finally, the model is compared to commercially available
methods, showing a large improvements over these appli-
cations.

1. INTRODUCTION

Optical Music Recognition (OMR) is an application of
recognition algorithms to musical scores, to encode the
musical content to some kind of digital format. In mod-
ern Music Information Retrieval (MIR), these applications
are of great importance. The digitization of sheet music
libraries is necessary first step in various data-driven meth-
ods of musical analysis, search engines, or other applica-
tions where digital formats are required.

OMR is an active area of research in MIR, and a classi-
cally hard problem. OMR systems need to deal with a large
range of challenges such as low quality scans, ambiguous
notation, long range dependencies, large variations in mu-
sical font, and handwritten notation. Multiple commercial
applications are available, each with their own strengths
and weaknesses [3], but the accuracy of these products is

c© Eelco van der Wel, Karen Ullrich. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Eelco van der Wel, Karen Ullrich. “Optical Music Recog-
nition with Convolutional Sequence-to-Sequence Models”, 18th Inter-
national Society for Music Information Retrieval Conference, Suzhou,
China, 2017.

often too low to use without human supervision. An imple-
mentation that deals with these challenges in a satisfactory
way has yet to be developed.

A traditional OMR system typically consists of multi-
ple parts: score pre-processing, staff line identification and
removal, musical object location, object classification and
score reconstruction [15]. Each of these individual parts
has its own difficulties, resulting in OMR systems with low
confidence. More recently, there has been a trend towards
less segmented systems involving machine learning meth-
ods, such as OMR without staffline removal [13] or with-
out symbol segmentation [16]. However, a major difficulty
of these algorithms is the need for large amounts of train-
ing data. Typically, scores need to be annotated on musi-
cal symbol level to train such machine learning pipelines,
but large corpora of sufficiently diverse symbol-annotated
scores are difficult and expensive to produce [15].

In this study, we propose a novel deep learning archi-
tecture to both move towards an end-to-end trainable OMR
pipeline, and greatly reduce the data requirements for train-
ing. This is achieved by using two common deep learning
architectures: Convolutional Neural Networks (CNN) and
Recurrent Neural Networks (RNN). Convolutional archi-
tectures have been a popular choice of algorithm in various
MIR related tasks, due to the ability to learn local struc-
tures in images, and combining them to useful features. In
our method, we use a CNN to learn a feature representation
of the input scores. Continuing, a Sequence-to-Sequence
model [5, 18] is used, which is a stack of two RNN’s used
commonly in machine translation tasks. This model di-
rectly produces a digital representation of the score from
the learned representation by the CNN. The combination of
these two architectures is called a Convolutional Sequence-
to-Sequence model. By using a Sequence-to-Sequence ar-
chitecture, we cast the problem of OMR as a translation
problem. Instead of training on individual segmented sym-
bols without context, full lines of sheet music are translated
simultaneously. This approach has two major advantages;
Firstly, by training the algorithm on full lines of sheet mu-
sic, there is no need for symbol level annotated training
data. This means that in principle any corpus of sheet mu-
sic with corresponding digital notation could be used for
training, opening up many new possibilities for data-driven
OMR systems. Secondly, because in the proposed model
each of the classically segmented OMR steps is done by
a single algorithm, the model can use a large amount of
contextual information to solve ambiguity and long-range
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dependency problems.
To train the proposed model, a large corpus of mono-

phonic sheet music is generated from a MusicXML dataset
as described in Section 3. Additionally, in Section 3.2 vari-
ous types of image augmentations based on real-world sce-
narios are proposed to enhance the models flexibility to
different kinds of fonts and varying score quality. Finally
in Section 5, the results of the method are discussed on
both clean and augmented data, and the weaknesses of the
model are examined.

2. RELATED WORK

A starting point for any OMR research is the overview pa-
per by Rebelo et al. [15], which contains a complete in-
troduction to OMR systems and a description of the cur-
rent state of the field. The paper describes four main
stages that are necessary for any OMR pipeline: Image
pre-processing, musical symbol recognition, musical in-
formation reconstruction and construction of musical no-
tation. The second component, as the name suggests, is
where the main recognition work is done. Detecting and
removing staff lines, segmenting individual symbols, and
classifying symbols. Systems where steps are conducted
by different methods we call segmented systems.

Not all methods follow this model, recent data-driven
approaches suggest merging or omitting some of these seg-
mented steps. An example of this is an approach suggested
by Pugin et al. [12, 13], which applies Hidden Markov
Models (HMM) to the recognition stage, without perform-
ing staff line removal. Shi et al. [16] incorporate a deep
learning approach with Connectionist Temporal Classifi-
cation function [6] as decoding mechanism. They pose a
similar idea to the method proposed in this research, with a
difference in the encoder mechanism. Instead of using both
a CNN and RNN as encoder, only a CNN is used. This
is less computationally expensive, but the additional RNN
in the Sequence-to-sequence model can make the method
proposed in this research more context aware.
Symbol classification involving neural networks has been
researched by several authors [14, 19]. Convolutional ar-
chitectures have been used for different OMR sub-tasks,
such as staff-line detection [4] or symbol recognition [11].

In a different paper, Rebelo et al. [14] research the use
of Deformable Templates [8] with various classifiers to
make symbol recognition invariant to changes in musical
font. This method is very similar to the Elastic Transfor-
mations [17] used in this research. However, we decide to
use Elastic Transformations for ease of use and application
speed.

3. DATASET

The dataset used in this research is compiled from
monophonic MusicXML scores from the MuseScore
sheet music archive [1]. The archive is made up of
user-generated scores, and is very diverse in both content
and purpose. As a result, the dataset contains a large
variation in type of music, key signature, time signature,

clef, and notation style.
To generate the dataset, each score is checked for mono-
phonicity, and dynamics, expressions, chord symbols,
and textual elements are removed. This process produces
a dataset of about 17 thousand MusicXML scores. For
training and evaluation, these scores are split into three
different subsets. 60% is used for training, 15% for
validation and 25% for the evaluation of the models. A
specification to reproduce the data set is publicly available
online. 1

3.1 Preprocessing

From the corpus of monophonic MusicXML files, a dataset
of images of score fragments and corresponding note an-
notations is created. Each MusicXML score is split into
fragments of up to four bars, with a two bar overlap be-
tween adjacent fragments. The fragments are converted to
sheet music using MuseScore [1], each image containing a
single staff line. The corresponding labels are represented
with a pitch and duration vector, containing all information
about the notes and rests within the same four bars. Each
musical symbol is represented with two values: a pitch,
and a duration. Pitch values are specified by a MIDI pitch,
and durations by quarterlength. In case of a rest, the pitch
is a special rest indicator, which we indicate with r. The
possible duration classes contain only the durations that
can be specified by a single notehead. Notes with dura-
tions that require multiple noteheads are split into multiple
notes. The first note will contain the pitch, and pitches
of subsequent tied notes are replaced with a tie indicator,
which we indicate with t

As an example, a quarter rest followed by a note
with MIDI pitch 60 and a complex duration of a
tied quarter note and a sixteenth note is notated as
((r, 1), (60, 1), (t, 0.25)). Applying this method to the full
score fragments produces the pitch and duration vector,
and is a suitable representation for the model. A maxi-
mum of 48 events per fragment is used to put a limit on
the sequence length the model has to decode. Finally, at
the end of each pitch and duration vector an extra event is
added to indicate the sequence has ended. This indicator is
implemented as a rest with duration of zero quarter notes.

Each generated image is padded to the same width and
height, and images containing notes with more than five
ledger lines are discarded. These notes are extreme out-
liers and do not occur in normal notation. The resulting
fragments have a dimension of 2261× 400 pixels.

3.2 Image Augmentation

The computer generated score fragments contain no noise
or variation in musical symbols. To make the proposed
model robust to lower quality inputs and different kinds
of musical fonts we propose four different augmentations,
each simulating a real world source of input noise. Ad-
ditionally, for each augmentation, we choose two separate

1 https://github.com/eelcovdw/
mono-musicxml-dataset
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Figure 1. An example of each of the used image aug-
mentations from the evaluation dataset. From top to bot-
tom: No Augmentations, Additive White Gaussian Noise
(AWGN), Additive Perlin Noise (APN), Small scale Elas-
tic Transformations (ET small), Large scale Elastic Trans-
formations (ET large), and all combined augmentations.

settings. For the augmented training data, the parameters
are chosen such that the input sheet music is greatly de-
formed but still readable. For the augmented evaluation
set, parameters are chosen such that they resemble real-
world sheet music, with less deformation than the train-
ing data. The larger amount of deformation in training
will force our model to learn to recognize musical symbol
in any situation, and should improve the accuracy of our
model on both non-augmented and augmented evaluation
data.

A popular choice of augmentation is Additive White
Gaussian Noise (AWGN). This augmentation introduces a
normally distributed random deviation in pixel intensities,
to mimic noise introduced by low quality scans or photos.
This noise has a mean µ, which is chosen to be the same as
the mean pixel intensity of the full dataset. The standard
deviation σ is different between our training and evalua-
tion set. In the training set, the σ of pixel intensities in our
non-augmented data set is used. The evaluation set has a σ
of half that value.

The second type of noise augmentation used is Additive
Perlin Noise [10]. Perlin noise is a procedurally generated
gradient noise, that generates lighter and darker areas in
the image at larger scales than AWGN. This effect mim-
ics quality differences in parts of the score. Some sym-
bols might be faded and parts of staff lines less visible, and
dark areas in the image are created. The mean size of gen-
erated clouds is controlled by a frequency parameter. For
each augmented score, this frequency is chosen to be a ran-
dom value between the size of one note head and the mean
width of a full bar, to generate noise structures at different
scales. The maximum intensity of the noise in our training
set is chosen to be a strength of 0.8. The evaluation set uses
a maximum intensity of half this value.

The final two augmentations are achieved with Elastic
Transformations (ET) [17], which apply a smoothed field
of local random affine transformations, resulting in wave-
like displacements in the augmented image. An advantage
of using this augmentation is that it applies a large range
of possible affine and geometric transformations to each
image, such as rotation, skewing, squeezing and stretch-
ing. This both enhances the diversity of the augmented
data and alleviates the need to use manually defined geo-
metric transformations.

Two parameters are used to control an elastic transfor-
mation: a strength factor σ, which reduces the strength of
the distortion if a larger value is used, and a smoothing
factor α, which controls the scale of deformations. A very
large α will apply a nearly linear translation to the image,
while an α of zero applies fully random displacements on
individual pixels.

The first type of Elastic Transformation is applied on
very small scales, to change the characteristics of lines and
smaller symbols. Lines might appear to be drawn by pencil
or pen, and the edges of symbols become less defined. α
is chosen to be a random value between 2 and 8, with a σ
of 0.5 for the training data, and a σ of 2 for the evaluation
data.

The second type of Elastic Transformation is applied on
a large scale to change the shape and orientation of musi-
cal symbols. Barlines and note stems get skewed or bent,
note heads can be compressed or elongated, and many new
shapes are introduced in the score. This transformation
mimics the use of different musical fonts, or even hand-
written notation. An α between 2000 and 3000 is used,
with a σ of 40 for the training data, and 80 for the evalu-
ation data. To maintain straight and continuous stafflines,
the original algorithm is slightly adapted to reduce vertical
translations of pixels by reducing the vertical component
of transformations by 95%.

In Figure 1, an example of each of these four augmen-
tation is shown, with the setting used for generating the
evaluation data. The last example shows a combination of
all four augmentations.

4. METHOD

We introduce the Convolutional Sequence-to-Sequence
model as applied to OMR tasks, translating lines of sheet-
music to a sequence of (pitch, duration) pairs. Continuing,
the training and evaluation methods are defined.

4.1 Model

We define a Convolutional Sequence-to-Sequence network
as a stack of three components. First, a CNN encodes the
input image windows to a sequence of vector representa-
tions. Then, an encoder RNN encodes the vector sequence
to a fixed size representation, containing all information
from the input score. Finally, a decoder RNN decodes
the fixed size representation to a sequence of output labels.
The following section describes each component in detail.
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Figure 2. A diagram of the proposed Convolutional Sequence-to-Sequence model. On the left, a score fragment is pro-
cessed by a CNN and Encoder RNN to a fixed size representation. This representation is used by the decoder RNN to create
a sequence of (pitch, duration) pairs.

Note that, while each component is described separately,
the model will be trained as a single algorithm.

Sliding window input. The image input of the algo-
rithm is defined as a sequence of image patches, gener-
ated by applying a sliding window over the original input
score. The implementation has two separate parameters:
the window width w and window stride s. By varying w,
the amount of information per window can be increased or
decreased. s defines how much redundancy exists between
adjacent windows. Increasing the value of w or decreasing
the value of s provides the model with more information
about the score, but will raise the computational complex-
ity of the algorithm. Thus when determining the optimal
parameters, a balance has to be struck between complexity
and input coverage. As a rule of thumb, we use a w that
is approximately twice the width of a notehead, and an s
of half the value of w. This will ensure that each musical
object is shown in full at least once in an input window.
This gives a w of 64 pixels with a s of 32.

Convolutional neural network. To extract relevant
features from the image patches, each patch is fed into
a CNN. In this research, we keep the architecture of the
CNN the same between different experiments, to ensure a
fair comparison. First a max-pooling operation of 3× 3 is
applied on the input window for dimensionality reduction.
Then, a convolutional layer of 32 5× 5 kernels is applied,
followed by a relu activation and 2×2 max-pooling opera-
tion. These three layers are repeated, and a fully-connected
layer of 256 units with relu activation is applied, so each
input for the encoder will be a vector of size 256.

Sequence-to-Sequence network. After extracting a
vector description of each image patch, the sequence of
vectors is fed into a Sequence-to-Sequence network [5,18].
This architecture consists of two RNN’s. The first RNN,
the encoder, encodes the full input sequence to a fixed size
representation. The second RNN, the decoder, produces
a sequence of outputs from the encoded representation. In
the case of the OMR task, this sequence of outputs is the
sequence of pitches and durations generated from the Mu-

sicXML files. For both encoder and decoder, a single Long
Short-Term Memory (LSTM) [7] layer is used with 256
units. To predict both the pitch and duration, the output
of the decoder is split into two separate output layers with
a softmax activation and categorical cross-entropy loss.

A diagram of the full model is shown in Figure 2, where
four input patches and output predictions are shown. On
the left side, A sliding window is applied to a 2 bar score
fragment. Each image patch is sequentially fed into the
same CNN. This CNN is connected to the encoder net-
work, creating a fixed size representation of the two in-
put bars. The decoder uses this representation to produce
the output sequence of (pitch, duration) pairs. Note that
the second predicted pitch is an r pitch, representing a rest
symbol.

Using the described configuration, the model has an in-
put sequence length of 70 windows and an output sequence
length of 48 units. Shorter output sequences are padded to
this maximum length and the loss function is masked after
last element of the sequence. The number of pitch cate-
gories is 108, and the number of duration categories is 48.
In total, the model contains approximately 1.67 million pa-
rameters.

4.2 Training

Six separate models are trained, one on each of the pro-
posed augmented data sets: No augmentations, AWGN,
APN, Small ET, large ET and all augmentations. Augmen-
tations are applied during training, and will be different
each time the network is presented with a training sam-
ple. All models are trained with a batch-size of 64 using
the ADAM optimizer [9], with an initial learning rate of
8∗10−4 and a constant learning rate decay tuned so the rate
is halved every ten epochs. Each model is trained to con-
vergence, taking about 25 epochs on the non-augmented
dataset. A single Nvidia Titan X Maxwell is used for train-
ing, which trains a model in approximately 30 hours.
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4.3 Evaluation Metrics

On the evaluation data, three different metrics are calcu-
lated, similar to [3]:

• Pitch accuracy, the proportion of correctly predicted
pitches.

• Duration accuracy, the proportion of correctly pre-
dicted note durations.

• Note accuracy, the proportion of predicted events
where both pitch and duration are correctly pre-
dicted.

The accuracy is measured over all notes before the stop
indicator, and the stop indicator is not included in the cal-
culation of accuracy. The model is not given any a priori
knowledge about how many notes are in the input frag-
ment, so a wrong number of notes could be predicted. In
case of a shorter predicted sequence, the missing notes
are automatically marked as incorrect. If the predicted se-
quence is longer than the ground truth, the additional pre-
dicted notes are cut and only the notes within the length of
the ground truth are used. This method of measuring accu-
racy is quite strict, as an insertion or omission of a note in
the middle of a sequence could mean subsequent notes are
all marked as incorrect. This should be kept in mind when
evaluating the results of the model, and perhaps more de-
scriptive metrics could be applied in future work.

5. RESULTS

5.1 Model Evaluation

The six trained models are evaluated on both a clean eval-
uation set, shown in Table 1, and augmented sets, shown in
Table 2. The augmented evaluation sets are generated by
applying the augmentations the model was trained on to
the full clean evaluation set, with the parameters described
in Section 3.2.

The model trained on data with all augmentations is
compared against two commercially available methods in
Table 3, similar to Shi et al. [16]. The comparison between
the different methods on the clean dataset gives a base-
line performance on digital scores, while the comparison
on augmented data gives an indication of the difference of
performance on real-world sheet music.

Training
Augmentation

Pitch
Accuracy

Duration
Accuracy

Note
Accuracy

None 0.79 0.92 0.76
AWGN 0.79 0.92 0.77
APN 0.82 0.91 0.79
ET - Small 0.78 0.91 0.76
ET - Large 0.79 0.94 0.78
All augmentations 0.81 0.94 0.80

Table 1. Measured accuracy on non-augmented scores.
The accuracy scores for augmentations with the highest
positive impact are in bold.

2 https://www.capella-software.com/

Training
Augmentation

Pitch
Accuracy

Duration
Accuracy

Note
Accuracy

AWGN 0.79 0.90 0.75
APN 0.81 0.89 0.76
ET - Small 0.78 0.89 0.74
ET - Large 0.78 0.94 0.75
All augmentations 0.79 0.92 0.77

Table 2. Measured accuracies on scores with augmenta-
tions. Each model trained on different augmented data is
evaluated on an evaluation set with corresponding augmen-
tations.

Model Clean Augmented
Capella Scan 8 2 0.53 0.14
Photoscore 8 3 0.61 0.09
CS2S 0.80 0.77

Table 3. A comparison of accuracy between the proposed
model (CS2S) and two popular commercially available
methods.

5.2 Evaluation of Model Difficulties

To examine the difficulties the model has on different kinds
of scores, three additional evaluations are performed on
different subsets of the evaluation data.

Figure 3. Top: The note-level accuracy for each number
sharps/flats in the key signature. Bottom: The note-level
accuracy for the most common time signatures. The dotted
lines indicate the mean accuracy of 0.80.

First, an investigation into the impact of key signature
on the note level accuracy on the non-augmented evalua-
tion data is conducted. Just like human performance, the
added complexity of many sharps or flats in the key sig-
nature of a fragment impacts the accuracy of the model.
The results of this experiment are displayed in Figure 3
(top). At zero sharps or flats, the reported accuracy is 0.86,

3 http://www.neuratron.com/
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Figure 4. The mean note-level accuracy for each number
of notes per fragment, with a confidence interval at a 95%
level fit with a Gaussian Process.

achieving 0.06 higher than the mean accuracy of 0.80.
With more than 4 sharps or flats in the key signature the
note accuracy starts diminishing, down to a minimum of
0.66 for key signatures with seven sharps or flats.

Continuing, the nine most common time signatures and
their accuracies are examined. While the output notation
does not encode any direct information about time signa-
ture, the model could use structural information imposed
by the time signature on the score to aid in note recogni-
tion. This evaluation will both look at if that is the case,
and investigate which time signatures are potentially more
difficult to transcribe. The results in Figure 3 (bottom) do
not show a significant difference between the measured ac-
curacy of different time signatures. The complex time sig-
natures of 7/8 and 5/4 both are slightly less accurate, but
this observation could be caused by a random deviation, or
by features correlating with complex time signatures such
as number of notes in a fragment.

As a final evaluation, we look at the correlation between
number of notes in a fragment and accuracy. The model
capacity and the representation between encoder and de-
coder are of a fixed size, which forces the model to rep-
resent more notes in the same space for fragments with a
higher note density. This higher density could cause a loss
in accuracy. Figure 4 shows clear evidence that this is the
case; fragments containing more than 25 notes have a sig-
nificantly lower accuracy than the measured mean.

6. DISCUSSION

We propose the Convolutional Sequence-to-Sequence
model to deal with the difficulties OMR presents for learn-
ing systems. By using an end-to-end trainable sequential
model, we completely move away from segmented sym-
bol recognition, and perform the full OMR pipeline with a
single algorithm. By incorporating Sequence-to-Sequence
models into OMR, there are many new possibilities for
obtaining development data. We view this aspect as the
largest advantage the proposed method has over segmented
models, as the acquisition of quality training data can be a

limiting factor. The proposed model shows that it is robust
to noisy input, an important quality for any OMR model.
Additionally, the experiments show that it can deal with the
large scale Elastic Transformations that essentially change
the musical font. In future research, this aspect could be
expanded to include handwritten notation.

A weakness of the model is pitch classification. Pool-
ing operations introduce a degree of translation invariance,
we hypothesize this invariance reduces the pitch recog-
nition accuracy by discarding information about symbol
position. However, omitting pooling operations from the
model would greatly reduce the dimensionality reduction
performed by the CNN. We propose incorporating a com-
bination of convolutional layers and fully connected layers
as a possible solution.

Furthermore, on more complex scores the model per-
forms significantly worse. Both the number of sharps or
flats in the key signature and the note density in the score
fragment play a large role in the prediction accuracy. In fu-
ture work, these problems could be addressed in multiple
ways. A separate key signature recognition could be per-
formed, and given as additional information to the model.
This would take away some of the long range computations
the key signature introduces and could improve the results
on more complex scores.

The difficulty of translating long sequences with
Sequence-to-Sequence models is a well studied problem
[5, 18]. For longer sequences, the model needs to encode
more information in the same fixed size representation, re-
ducing the amount of storage available per note. A pos-
sible solution for this difficulty is proposed by Bahnadau
et al. [2]: they replace the fixed size representation be-
tween encoder and decoder with an attention mechanism, a
method that essentially performs a search function between
the two networks. This mechanism has shown improve-
ments to Sequence-to-Sequence models in neural machine
translation, and could be used in the proposed method to
alleviate some of the problems introduced with long se-
quences and long range dependencies.

The experiments performed in this research are exclu-
sively on monophonic scores. The current representation
of (pitch, duration) pairs does not allow for polyphonic
note sequences, and in order to apply the model to poly-
phonic OMR tasks this representation needs to be adapted.
A possible representation could be produced by using a
method close like the MIDI-standard or piano roll repre-
sentation.

Finally, we propose that the Convolutional Sequence-
to-Sequence model could be applied to tasks outside of
OMR that translate a spatial sequential representation to a
sequence of labels. Within MIR, tasks like Automatic Mu-
sic Transcription can be considered as such a task, where a
representation of an audio signal is converted to a sequence
of pitches and durations. Outside of MIR, tasks like video
tagging or Optical Character Recognition are similar ex-
amples.

736 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



7. ACKNOWLEDGEMENTS

Many thanks to the reviewers for their valuable feedback,
and to MuseScore for providing access to the material
available in their archive. This research has been partially
funded by Google.

8. REFERENCES

[1] Musescore. https://musescore.org/.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. Neural machine translation by jointly learning to
align and translate. arXiv preprint arXiv:1409.0473,
2014.

[3] Donald Byrd and Megan Schindele. Prospects for im-
proving omr with multiple recognizers. In ISMIR,
pages 41–46, 2006.

[4] Jorge Calvo-Zaragoza, Antonio Pertusa, and Jose
Oncina. Staff-line detection and removal using a con-
volutional neural network. Machine Vision and Appli-
cations, pages 1–10, 2017.

[5] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gul-
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ABSTRACT

Identifying boundaries in music structural segmentation is
a well studied music information retrieval problem. The
goal is to develop algorithms that automatically identify
segmenting time points in music that closely matches hu-
man annotated data. The annotation itself is challenging
due to its subjective nature, such as the degree of change
that constitutes a boundary, the location of such bound-
aries, and whether a boundary should be assigned to a sin-
gle time frame or a range of frames. Existing datasets have
been annotated by small number of experts and the anno-
tators tend to be constrained to specific definitions of seg-
mentation boundaries. In this paper, we re-examine the an-
notation problem. We crowdsource the problem to a large
number of annotators and present an analysis of the results.
Our preliminary study suggests that although there is a cor-
relation to existing datasets, this form of annotations re-
veals additional information such as stronger vs. weaker
boundaries, gradual vs. sudden boundaries, and the differ-
ence in perception of boundaries between musicians and
non-musicians. The study suggests that it could be worth
re-defining certain aspects of the boundary identification
in music structural segmentation problem with a broader
definition.

1. INTRODUCTION

Music segmentation has been a fundamental task in auto-
matic music content analysis. The task includes detect-
ing boundaries between contiguous segments and labeling
each detected segment within a music piece. In order to
evaluate this task and train supervised machine learning
algorithms, researchers have developed datasets that con-
tain boundary timing and segment labeling annotations. In
the majority of these datasets (such as Beatles-TUT [11],
CHARM Mazurka [3] and Beatles-ISO [7], boundary tim-
ings are annotated by music experts and are defined as the
time points that separate a music piece into non-overlapped
contiguous sections representing meaningful song struc-
tures. These annotations provide clean-cut data for devel-

c© Cheng-i Wang, Gautham J. Mysore, Shlomo Dubnov.
Licensed under a Creative Commons Attribution 4.0 International Li-
cense (CC BY 4.0). Attribution: Cheng-i Wang, Gautham J. Mysore,
Shlomo Dubnov. “Re-visiting the Music Segmentation Problem with
Crowdsourcing”, 18th International Society for Music Information Re-
trieval Conference, Suzhou, China, 2017.

oping algorithms. During evaluation, the metrics are, in
short, a measure of how close the automatically detected
boundaries are to the ground truth annotations [6, 14].

Nevertheless, the instructions and rules for expert anno-
tators to annotate these boundaries differs between datasets
and the annotations inevitably conform to the subjective
judgments of the annotators [13]. Moreover, the “one time
point for one boundary” definition prevents the concept of
short ambiguous/transitional/developing musical regions
to be explored by researchers. To be more specific, it is
established that different listeners will disagree on whether
certain boundaries should exist or not in a music piece, and
the saliences between boundaries might be different, while
almost none of the existing datasets provide information
about these intuitions [1, 13].

In [13], the issues of inter-annotator disagreement and
the lack of multiple level annotations are discussed. The
creation of the SALAMI dataset then attempts to solve such
issues by having two versions of labels (by two annotators)
and two levels (long and short time scale) of annotations in
part of the dataset. The SPAM dataset also has five an-
notators with two levels of annotation for 50 songs [9].
In [8, 10], the issue of lacking support for hierarchical
segmentation is discussed. Although the evaluation met-
rics for hierarchical segmentation problems are proposed
in [8], only two datasets having two levels of hierarchy
currently support this concept.

Apart from the inter-annotator agreement and between-
boundaries saliency issues, the problem of not being able
to model different types of boundaries is also an issue due
to the current format of annotations. Sometimes the dis-
agreements between annotators are not about whether one
boundary should exist or not, but rather the timing of that
boundary. The disagreement is likely because the exact
change point or boundary between two larger segments is
difficult to recognize if there are smaller transitional, piv-
otal, building, fading, or developing musical region con-
necting these two segments.

One of the major reasons for these limitations in ex-
isting datasets is the large amount of time and effort re-
quired by music experts to annotate songs. It tends to pre-
vent datasets from having numerous (more than 5) anno-
tators, and also tends to prevent detailed annotations for
each song. One can alleviate the amount of effort required
for annotating segmentation boundaries by crowdsourcing
such task to the web. To the best of our knowledge, no
methodology has been proposed utilizing crowdsourcing
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Dataset Song Name Artist

Beatles-TUT

All You Need is Love

The Beatles
Help!

Here, There and Everywhere
Strawberry Fields Forever

Come Together(∗)

SALAMI

Smoke Machines Atom Orr
You Done Me Wrong Cindy Woolf

Out in the Cold Carole King
Black or White Michael Jackson

We will Rock You(∗) Queen

Table 1. Song lists of the subsets from Beatles-TUT and
SALAMI. Songs followed by asterisks are the hidden refer-
ence songs during the task.

to collect music segmentation boundaries. Crowdsourcing
with Amazon’s Mechanical Turks has been used to collect
music similarity [4], music mood [5] data collection and
audio sound quality evaluation [2].

In this paper, we present an preliminary study to sup-
port the above observations and address the above issues.
We believe that this could lead to the creation of richer
datasets with significantly less effort than previously re-
quired. In order to investigate the inter-annotator, between-
boundary saliency problems and explore different types of
segmentation boundaries, we used small subsets from ex-
isting datasets and annotate these via crowdsourcing. The
results are a collection of annotations from at least 53 an-
notators (with at least 6 annotators annotated each song in
full coverage) for each song for a total of 8 songs. The
methodology of collecting annotations via crowdsourcing
is described in section 2. The validation and analysis of the
collected annotations are elaborated in section 3. Conclu-
sions, and proposed future works are in section 4.

2. CROWDSOURCING

To perform the music segmentation boundary annotation
collection task on the web, we use Amazon’s Mechanical
Turk (AMT). The proposed methodology is implemented
as an extension of the CAQE (The Crowdsourced Audio
Quality Evaluation Toolkit 1 ) python package [2].

2.1 Data

Two subsets of songs from two music segmentation
datasets were selected randomly to be annotated by the
proposed methodology. The two datasets are the Beatles-
TUT and SALAMI datasets. From each dataset, 5 songs
were randomly selected. Among the 5 songs, 1 song is
used as the hidden reference during the collection task to
determine whether to accept or reject a person’s annota-
tions. Table 1 shows the 5 songs from both datasets.

2.2 Task Design

The typical off-line annotation process by music experts is
to let them listen to a whole song and then annotate bound-
aries. This allows them to fine tune their annotations with-

1 https://github.com/interactiveaudiolab/CAQE

out time constraints. It also typically necessitates famil-
iarity with an audio editing software package. Annotators
on AMT, on the other hand, typically spend less time on
such a task since their payment is fixed for a given task.
They also typically have less (or no) experience with audio
editing software packages. Therefore, the annotation pro-
cess needs to be redesigned to accommodate it as an AMT
based task. There are two goals of the redesign. The first
goal is to simplify the annotation process so that AMT an-
notators could learn how to annotate quickly and repeat the
process easily. The second goal is to maintain the quality
of the annotations so that the results are informative and
usable.

Since music structural segmentation is subjective in na-
ture, we aim to not bias AMT annotators toward listening
to specific musical cues. Therefore, the working definition
used in the description of the task is kept as concise as pos-
sible and no musical terms are used. It is as follows:

This listening task aims at collecting the
boundary timings between parts of a song.
During this task, you will be asked to listen
for when a part of a song changes to another.

Rather than asking AMT annotators to listen to an entire
song, we present them with short clips of music. For each
clip, their task is to listen to the clip, determine if a bound-
ary exists in the clip, and label the location of the bound-
ary. We segment each song into clips of 20 seconds long
with 10 seconds of overlap. The choice of 20 seconds is
made according to the average length of segments defined
by ground truth annotations in existing datasets as reported
in [12]. The annotator is only given the option of labeling a
single boundary and asked to choose the strongest bound-
ary if they hear more than one. They also have the option
of choosing no boundary.

The goal of the user interface design is to simplify the
task and not bias the annotators to any clues apart from
what is heard in the clip. To ensure that the annotator
listened to the full clip and made an annotation decision
before going to the next clip, all buttons and sliders are
disabled except the Play/Pause button until the first full
playback of the clip. The annotator uses the Play/Pause
button and audio progress bar to listen to and navigate the
clip. The annotation is done by clicking on the bound-
ary selection slider. The darker green area surrounding the
clicked location on the boundary selection slider indicates
the playback region for the check selection button. The
annotator has the option to simply not choose a boundary
if they do not hear one. The next trial button is disabled
until the annotator clicks on the change heard (submit cur-
rent clicked location on the boundary selection slider) or
no change heard button. A snapshot of the user interface is
shown in Figure 1.

Each boundary collection task (“HIT” in AMT’s terms)
contains 10 clips, with 9 clips randomly selected from all
non-hidden reference songs and 1 clip from the hidden ref-
erence song. The randomization of selected clips is de-
signed such that annotators will not be presented with over-
lapping clips within one task (10 clips) and will cover the

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 739



Figure 1. The user interface for the AMT annotating task. The annotator uses the Play/Pause button and audio progress
bar to listen to and navigate the clip. The annotation is done by clicking on the boundary selection slider. The darker green
area surrounding the clicked location on the boundary selection slider indicates the playback region for the check selection
button.

full range of all songs once and once only if they finish all
the tasks available to them. The order of the 10 clips within
each task is also randomized. In order to further make sure
that each song is covered with enough annotations, the an-
notation tasks are divided into two batches according to the
two dataset subsets, meaning one batch for Beatles-TUT
and one batch for SALAMI, and are collected separately.
The batch for Beatles-TUT has 10 tasks (100 clips) and the
batch for SALAMI has 8 tasks (80 clips) for each annotator.

It is mentioned in the previous section that out of the 5
songs, there is 1 song selected as a hidden reference acting
as a quality check after collecting boundary annotations
from the AMT annotators. To use this song as a quality
check, a few clips from the song that have clear and obvi-
ous boundary regions are selected and manually annotated
by the authors. The authors avoided using the ground truth
annotations from the original datasets since the goal for the
task is not to identify the “correct” boundaries defined by
the original datasets, but rather simply annotating reason-
able boundaries (that might differ from the ground truth
annotations from the original datasets).

In order to take this concern into account, multiple
boundary candidates for each hidden reference clip are
allowed so the quality check accepts wider and reason-
able results than just using ground truth annotations (only
one boundary annotation for each clip) from the original
datasets. After collecting boundary annotations from an
AMT annotator, their boundary annotations on the hidden
reference clips are compared against the author’s annota-
tions on the same clips. If the average distance between
AMT annotator’s boundary annotation to the closest anno-
tation by the author for each clip is less than 3 seconds,
all of the AMT annotator’s annotations are accepted, oth-
erwise they are rejected and not used for the analysis. The
annotations by the authors for the hidden references could

be found in the code repository 2 .
In order to determine if the annotator is follow-

ing basic instructions and listening on a device (speak-
ers/headphones) with a sufficient frequency response, we
insert a hearing screening before the task begins, as done
in [2]. After the completion of the task, the annotator is
presented with a post task survey gathering demographi-
cal, musical background, and qualitative information. For
the musical background, the AMT annotator is asked to
answer if they consider themself to be a musician. We also
ask for qualitative feedback on the task and what the anno-
tators were listening for.

3. ANALYSIS

We consolidated the annotations from the individual clips
so that we have all annotations of a given song on a com-
mon timeline. Since there is an overlap of 10 seconds be-
tween consecutive clips, there is a chance that the same
boundary will be labeled twice by the same annotator
(cases in which the time difference between the two anno-
tations are less than 3 seconds). In such cases, we simply
randomly discarded one of the annotations.

Two example songs showing the annotations from the
AMT annotators along with a comparison to the ground
truth annotations from the original datasets are shown in
Figure 2. A correlation can be seen between the two.

In Table 2 and Table 3, overall statistics of the collected
annotations and AMT annotators are shown. Though the
task is only exercised on subsets of existing datasets, the
number of AMT annotators and annotations easily out-
numbered those of existing datasets. This observation is
true even when considering only the statistics from AMT
annotators that are self-identified musicians (numbers in

2 https://github.com/wangsix/caqe_segmentation
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0:00 0:35 1:10 1:45 2:21
Time

Help!

all annotations

musician annotations

non-musician annotations

(a) Help! - Beatles

0:00 0:41 1:22 2:03 2:45
Time

Out in the Cold

all annotations

musician annotations

non-musician annotations

(b) Out in the Cold - Carole King

Figure 2. Two example songs with their annotations from
selected subsets. The first row of each subplot is the CQT-
spectrogram of the example song. The light blue lines in
this row are the ground truth annotated by music experts.
The yellow lines in “Out in the Cold” are the lower level
ground truth by music experts. The vertical lines in the
rest of the rows represent annotations from all AMT anno-
tators, musician annotators and non-musician annotators
respectively.

parentheses in Table 2 and Table 3). It is also true if only
complete annotations from single annotator are considered.

The seemingly low average coverage rate of each song
by each annotator (right most column of Table 3) is a natu-
ral result of distributing clips randomly to AMT annotators
throughout the AMT tasks. Even with the randomized task
distribution, there are still at least 6 completed annotations
for each song (2nd right column of Table 3).

The counts of annotations for each clip in each song are
shown in Figure 3. From the histograms it could be ob-
served that every song is fully covered by multiple annota-
tors in a more or less evenly distributed manner. The be-
ginning and ending of songs have less accumulated counts
since they are not fully covered by overlaps.

3.1 Validation

To validate the collected annotations with the proposed
methodology, the aggregated annotations for one song
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(a) Beatles subset
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Figure 3. Histograms of annotation count along the time
line of each song. It shows a roughly evenly distributed
coverage for each song being annotated.

are treated as one segmentation boundary prediction from
an arbitrary algorithm and compared to the ground truth
boundary annotations from the original datasets.

The annotated timings of a song via crowdsourcing are
first discretized into a binary vector with ones representing
the presence of annotated boundaries. The discretization is
done with a sampling rate of 22050Hz and 512 sample hop
size. Then the binary vector of each song is normalized
by its annotation count histogram (Figure 3) to account for
different number of times each time region is annotated.
After the normalization, a Gaussian window with 0.5 sec-
ond standard deviation is convolved with the binary vec-
tors obtaining a boundary detection function for each song.
The boundary detection functions are renormalized to be
between [0, 1]. A simple peak-picking strategy using the
same principle as [12] with 0.5s window and 0.1 thresh-
old is applied to select segmentation boundaries from the
boundary detection function. These functions are shown in
Figure 4 with the ground truth plotted against them.

The validation of such predictions are done using the
standard MIREX 3 seconds structural music segmentation
boundary accuracy evaluation metric. The validation re-
sults are shown in Table 4. From the F-measures and recall
rate, it can be observed that the aggregated results from
AMT based annotations in general agree with the music
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Annotators Accepted Annotations
Datasets Accepted(musician) Rejected Invalid Total Per Annotator

Beatles-TUT 61(17) 11 89 1468 24.06
SALAMI 61(14) 41 65 1652 27.08

Table 2. Statistics of the AMT annotators and their annotations. Accepted annotators are the ones that passed the hidden
reference quality check. Rejected annotators are the ones that failed the hidden reference quality check. Invalid annotators
are the ones that did not pass the hearing screening or failed to submit their results.

Song Count(musician) Avg. Coverage
Annotators Annotations Complete Per Annotator(%)

All You Need is Love 61(17) 452(131) 6(3) 28.53
Help! 53(15) 275(80) 8(3) 30.69

Here, There and Everywhere 53(13) 264(75) 8(3) 29.93
Strawberry Fields Forever 59(16) 477(133) 7(3) 27.25

Smoke Machines 58(14) 376(103) 13(4) 25.31
You Done Me Wrong 61(14) 405(110) 12(4) 23.35

Black or White 61(14) 502(131) 14(5) 24.6
Out in the Cold 58(14) 369(92) 13(3) 23.7

Table 3. Song statistics from accepted annotations. The numbers in parentheses in columns 2 and 3 (from the left) are
the numbers for self-identified musicians. The 4th column is the number of complete annotations by one annotator. The
average coverage of a song per annotator (5th column) is calculated by dividing the average number of annotated clips per
annotator for a given song by the total number of clips for that song.

experts annotating the original datasets. Also the self-
identified musicians performed better than non-musicians
in 7 cases out of 8. There might be two reasons for the
higher recall rates. One reason is a potential bias due to
the 20 seconds length clip. The other reason is that some of
the peaks representing different levels of saliency or confi-
dence (height of the boundary detection function), resulted
in more peaks than the single level annotations by the mu-
sic experts.

3.2 Inter-Annotator Analysis

In [9], the problem of subjectivity in music structural seg-
mentation problem is studied by showing annotator effects
with the two-way ANOVA factor analysis. The same anal-
ysis approach can not be applied here since the sets of
annotators annotating each song are different (with over-
lapped annotators). In order to analyze the degree of agree-
ment between AMT annotators, a simple measurement is
devised. The agreement degree ai of one annotation i of a
clip to other annotations i′ of the same clip is defined as

ai =

∑
i′∈I,i′ 6=i[1 if i agrees with i′]

Number of items in I
. (1)

where I is the set of annotations of a clip annotated by
all annotators. The agreement of one annotation i to an-
other i′ is established if the annotated timing of i is within
3 seconds of i′’ annotated timing, or if both i and i′ has
empty annotation. ai is a value between [0, 1] and could be
thought of as the probability of one annotation agrees with
other annotations in the same 20 seconds region. Since ev-
ery annotator could only annotate a clip once, Equation 1
becomes a measurement of agreement between annotators.
The agreement between annotators of one song could then
be measured by calculating the average of all as over one
song. The inter-annotator agreement of each song is shown

in Table 5. From Table 5, one can observe that although the
average agreement between annotators is above 70%, the
standard deviations show that the agreement between an-
notators is not consistent throughout the song but varying
a lot from time to time within a song. This observation
supports the propositions made in [10] that multiple hu-
man annotations should be used during evaluation to take
human subjectivity into account.

3.3 Boundaries Investigation

By qualitatively examining the AMT annotations and lis-
tening to the corresponding regions, it is evident that us-
ing a single time stamp representing the boundary between
segmentations is inadequate. For example, the ground
truth segmentation boundary around 0:50 in the song Help!
by the Beatles is annotated at the beginning of the second
verse when the lyrics start, but the AMT based annotations
were spread across the region from 0:46 to 0:50 synchro-
nizing with the sentence “Would you please, please, help
me?”. Musically, it could be correct to say that that region
acts as the transition between two larger segments and the
single boundary at 0:50 is inadequate to represent this mu-
sical property since the boundary is actually a prolonged
region. This observation suggests that there exist different
types of boundaries, with the easiest categorization being
a clear-cut one versus a smooth/prolonged one. The AMT
annotations of Help! are shown in Figure 2(a).

The other qualitative assessment is that the boundary
detection function mentioned in section 3.1 shows that the
hierarchical nature of structural segmentation boundaries
exist and could be measured by the relative votes a bound-
ary has compared to other boundaries in the same song.
The boundary detection function also suggests that instead
of having a discretized hierarchical representation of struc-
tural segmentation boundaries, a continuous version where

742 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



Song Musician Non-musician
Precision Recall F-measure Precision Recall F-measure

All You Need is Love 0.73 0.85 0.79 0.5 0.69 0.58
Help! 0.5 0.78 0.61 0.33 0.89 0.48

Here, There and Everywhere 0.81 0.9 0.86 0.61 0.8 0.7
Strawberry Fields Forever 0.36 0.72 0.48 0.25 0.9 0.4

Smoke Machines 0.5 0.7 0.59 0.38 0.9 0.53
You Done Me Wrong 0.76 0.87 0.81 0.73 0.93 0.82

Black or White 0.67 0.8 0.72 0.33 0.73 0.46
Out in the Cold 0.39 0.88 0.54 0.2 0.75 0.32

Table 4. Standard 3-seconds precision, recall and F-measure evaluation metrics on the AMT annotator’s annotation against
ground truth from original datasets.

Strawberry Fields Forever
Musician
Non-musician
Ground Truth

Here, There And Everywhere

All You Need Is Love

Help!

(a) Beatles subset

Black or White
Musician
Non-musician
Ground Truth(low)
Ground Truth

Smoke Machines

You Done Me Wrong

Out in the Cold

(b) Salami subset

Figure 4. The boundary detection functions obtained from
AMT annotations against ground truth by music experts.

the saliency or confidence of boundaries is represented by a
continuous curve might be another intuitive choice in terms
of evaluating boundary detection algorithms.

4. FUTURE WORK AND CONCLUSION

In this paper, a methodology utilizing crowdsourcing for
collecting alternative ground truth data for structural seg-
mentation boundaries is proposed and validated. This
methodology provides opportunities for researchers to cre-
ate new segmentation boundary datasets in a fast and effi-
cient way. To create a dataset with the proposed method-
ology, one has to make sure not to bias annotators toward

Song Avg. agreement (Std.)
All You Need is Love 0.71 (0.29)

Help! 0.75 (0.26)
Here, There and Everywhere 0.65 (0.28)

Strawberry Fields Forever 0.72 (0.29)
Smoke Machines 0.72 (0.28)

You Done Me Wrong 0.72 (0.28)
Out in the Cold 0.76 (0.31)
Black or White 0.71 (0.31)

Table 5. The average and standard deviation of inter-
annotator agreement of each song.

specific aural cues and manage the distribution of clips so
that annotators work on evenly distributed clips between
songs and songs get evenly distributed annotations from
all annotators.

As suggested in section 3.3, different types of bound-
aries exist and could be investigated given the kind of data
collected by the methodology proposed in this work. These
boundary types could be categorized. Also the different
types of musical cues that lead to the perception of music
segmentation boundaries could be investigated by another
round of crowdsourcing on the annotated data focusing on
surveying the reasoning behind each annotations.
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ABSTRACT

The decomposition of a music audio signal into its vocal
and backing track components is analogous to image-to-
image translation, where a mixed spectrogram is trans-
formed into its constituent sources. We propose a novel
application of the U-Net architecture — initially devel-
oped for medical imaging — for the task of source sep-
aration, given its proven capacity for recreating the fine,
low-level detail required for high-quality audio reproduc-
tion. Through both quantitative evaluation and subjective
assessment, experiments demonstrate that the proposed al-
gorithm achieves state-of-the-art performance.

1. INTRODUCTION

The field of Music Information Retrieval (MIR) concerns
itself, among other things, with the analysis of music in
its many facets, such as melody, timbre or rhythm [20].
Among those aspects, popular western commercial mu-
sic (“pop” music) is arguably characterized by emphasiz-
ing mainly the Melody and Accompaniment aspects; while
this is certainly an oversimplification in the context of the
whole genre, we restrict the focus of this paper to the
analysis of music that lends itself well to be described in
terms of a main melodic line (foreground) and accompa-
niment (background) [27]. Normally the melody is sung,
whereas the accompaniment is performed by one or more
instrumentalists; a singer delivers the lyrics, and the back-
ing musicians provide harmony as well as genre and style
cues [29].

The task of automatic singing voice separation consists
of estimating what the sung melody and accompaniment
would sound like in isolation. A clean vocal signal is help-
ful for other related MIR tasks, such as singer identifica-
tion [18] and lyric transcription [17]. As for commercial
applications, it is evident that the karaoke industry, esti-
mated to be worth billions of dollars globally [4], would

c© Andreas Jansson, Eric Humphrey, Nicola Montecchio,
Rachel Bittner, Aparna Kumar, Tillman Weyde. Licensed under a Cre-
ative Commons Attribution 4.0 International License (CC BY 4.0). At-
tribution: Andreas Jansson, Eric Humphrey, Nicola Montecchio, Rachel
Bittner, Aparna Kumar, Tillman Weyde. “Singing Voice Separation with
Deep U-Net Convolutional Networks”, 18th International Society for Mu-
sic Information Retrieval Conference, Suzhou, China, 2017.

directly benefit from such technology.

2. RELATED WORK

Several techniques have been proposed for blind source
separation of musical audio. Successful results have been
achieved with non-negative matrix factorization [26, 30,
32], Bayesian methods [21], and the analysis of repeating
structures [23].

Deep learning models have recently emerged as power-
ful alternatives to traditional methods. Notable examples
include [25] where a deep feed-forward network learns to
estimate an ideal binary spectrogram mask that represents
the spectrogram bins in which the vocal is more prominent
than the accompaniment. In [9] the authors employ a deep
recurrent architecture to predict soft masks that are multi-
plied with the original signal to obtain the desired isolated
source.

Convolutional encoder-decoder architectures have been
explored in the context of singing voice separation in [6]
and [8]. In both of these works, spectrograms are com-
pressed through a bottleneck layer and re-expanded to the
size of the target spectrogram. While this “hourglass” ar-
chitecture is undoubtedly successful in discovering global
patterns, it is unclear how much local detail is lost during
contraction.

One potential weakness shared by the papers cited
above is the lack of large training datasets. Existing mod-
els are usually trained on hundreds of tracks of lower-than-
commercial quality, and may therefore suffer from poor
generalization. In this work we aim to mitigate this prob-
lem using weakly labeled professionally produced music
tracks.

Over the last few years, considerable improvements
have occurred in the family of machine learning algorithms
known as image-to-image translation [11] — pixel-level
classification [2], automatic colorization [33], image seg-
mentation [1] — largely driven by advances in the design
of novel neural network architectures.

This paper formulates the voice separation task, whose
domain is often considered from a time-frequency perspec-
tive, as the translation of a mixed spectrogram into vocal
and instrumental spectrograms. By using this framework
we aim to make use of some of the advances in image-to-
image translation — especially in regard to the reproduc-
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tion of fine-grained details — to advance the state-of-the-
art of blind source separation for music.

3. METHODOLOGY

This work adapts the U-Net [24] architecture to the task
of vocal separation. The architecture was introduced in
biomedical imaging, to improve precision and localization
of microscopic images of neuronal structures. The archi-
tecture builds upon the fully convolutional network [14]
and is similar to the deconvolutional network [19]. In a de-
convolutional network, a stack of convolutional layers —
where each layer halves the size of the image but doubles
the number of channels — encodes the image into a small
and deep representation. That encoding is then decoded
to the original size of the image by a stack of upsampling
layers.

In the reproduction of a natural image, displacements
by just one pixel are usually not perceived as major dis-
tortions. In the frequency domain however, even a mi-
nor linear shift in the spectrogram has disastrous effects
on perception: this is particularly relevant in music sig-
nals, because of the logarithmic perception of frequency;
moreover, a shift in the time dimension can become audi-
ble as jitter and other artifacts. Therefore, it is crucial that
the reproduction preserves a high level of detail. The U-
Net adds additional skip connections between layers at the
same hierarchical level in the encoder and decoder. This al-
lows low-level information to flow directly from the high-
resolution input to the high-resolution output.

3.1 Architecture

The goal of the neural network architecture is to predict the
vocal and instrumental components of its input indirectly:
the output of the final decoder layer is a soft mask that is
multiplied element-wise with the mixed spectrogram to ob-
tain the final estimate. Figure 1 outlines the network archi-
tecture. In this work, we choose to train two separate mod-
els for the extraction of the instrumental and vocal com-
ponents of a signal, to allow for more divergent training
schemes for the two models in the future.

3.1.1 Training

Let X denote the magnitude of the spectrogram of the orig-
inal, mixed signal, that is, of the audio containing both vo-
cal and instrumental components. Let Y denote the mag-
nitude of the spectrograms of the target audio; the latter
refers to either the vocal (Yv) or the instrumental (Yi) com-
ponent of the input signal.

The loss function used to train the model is the L1,1

norm 1 of the difference of the target spectrogram and the
masked input spectrogram:

L(X,Y ; Θ) = ||f(X,Θ)�X − Y ||1,1 (1)

where f(X,Θ) is the output of the network model applied
to the input X with parameters Θ – that is the mask gener-
ated by the model.

1 The L1,1 norm of a matrix is simply the sum of the absolute values
of its elements.

Two U-Nets, Θv and Θi, are trained to predict vocal and
instrumental spectrogram masks, respectively.

3.1.2 Network Architecture Details

Our implementation of U-Net is similar to that of [11].
Each encoder layer consists of a strided 2D convolution
of stride 2 and kernel size 5x5, batch normalization, and
leaky rectified linear units (ReLU) with leakiness 0.2. In
the decoder we use strided deconvolution (sometimes re-
ferred to as transposed convolution) with stride 2 and ker-
nel size 5x5, batch normalization, plain ReLU, and use
50% dropout to the first three layers, as in [11]. In the final
layer we use a sigmoid activation function. The model is
trained using the ADAM [12] optimizer.

Given the heavy computational requirements of train-
ing such a model, we first downsample the input audio to
8192 Hz in order to speed up processing. We then com-
pute the Short Time Fourier Transform with a window size
of 1024 and hop length of 768 frames, and extract patches
of 128 frames (roughly 11 seconds) that we feed as input
and targets to the network. The magnitude spectrograms
are normalized to the range [0, 1].

3.1.3 Audio Signal Reconstruction

The neural network model operates exclusively on the
magnitude of audio spectrograms. The audio signal for an
individual (vocal/instrumental) component is rendered by
constructing a spectrogram: the output magnitude is given
by applying the mask predicted by the U-Net to the magni-
tude of the original spectrum, while the output phase is that
of the original spectrum, unaltered. Experimental results
presented below indicate that such a simple methodology
proves effective.

3.2 Dataset

As stated above, the description of the model architec-
ture assumes that training data was available in the form
of a triplet (original signal, vocal component, instrumental
component). Unless one is in the extremely fortunate po-
sition as to have access to vast amounts of unmixed multi-
track recordings, an alternative strategy has to be found in
order to train a model like the one described.

A solution to the issue was found by exploiting a spe-
cific but large set of commercially available recordings in
order to “construct” training data: instrumental versions of
recordings.

It is not uncommon for artists to release instrumental
versions of tracks along with the original mix. We lever-
age this fact by retrieving pairs of (original, instrumental)
tracks from a large commercial music database. Candi-
dates are found by examining the metadata for tracks with
matching duration and artist information, where the track
title (fuzzily) matches except for the string “Instrumen-
tal” occurring in exactly one title in the pair. The pool
of tracks is pruned by excluding exact content matches.
Details about the construction of this dataset can be found
in [10].
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Figure 1. Network Architecture

Genre Percentage
Pop 26.0%
Rap 21.3%
Dance & House 14.2%
Electronica 7.4%
R&B 3.9%
Rock 3.6%
Alternative 3.1%
Children’s 2.5%
Metal 2.5%
Latin 2.3%
Indie Rock 2.2%
Other 10.9%

Table 1. Training data genre distribution

The above approach provides a large source of X
(mixed) and Yi (instrumental) magnitude spectrogram
pairs. The vocal magnitude spectrogram Yv is obtained
from their half-wave rectified difference. A qualitative
analysis of a large handful of examples showed that this
technique produced reasonably isolated vocals.

The final dataset contains approximately 20,000 track
pairs, resulting in almost two months worth of continuous
audio. To the best of our knowledge, this is the largest
training data set ever applied to musical source separation.
Table 1 shows the relative distribution of the most frequent

genres in the dataset, obtained from the catalog metadata.

4. EVALUATION

We compare the proposed model to the Chimera model
[15] that produced the highest evaluation scores in the 2016
MIREX Source Separation campaign 2 ; we make use of
their web interface 3 to process audio clips. It should be
noted that the Chimera web server is running an improved
version of the algorithm that participated in MIREX, using
a hybrid “multiple heads” architecture that combines deep
clustering with a conventional neural network [16].

For evaluation purposes we built an additional baseline
model; it resembles the U-Net model but without the skip
connections, essentially creating a convolutional encoder-
decoder, similar to the “Deconvnet” [19].

We evaluate the three models on the standard iKala [5]
and MedleyDB dataset [3]. The iKala dataset has been
used as a standardized evaluation for the annual MIREX
campaign for several years, so there are many existing
results that can be used for comparison. MedleyDB on
the other hand was recently proposed as a higher-quality,
commercial-grade set of multi-track stems. We generate
isolated instrumental and vocal tracks by weighting sums
of instrumental/vocal stems by their respective mixing co-

2 www.music-ir.org/mirex/wiki/2016:Singing_
Voice_Separation_Results

3 danetapi.com/chimera
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U-Net Baseline Chimera
NSDR Vocal 11.094 8.549 8.749
NSDR Instrumental 14.435 10.906 11.626
SIR Vocal 23.960 20.402 21.301
SIR Instrumental 21.832 14.304 20.481
SAR Vocal 17.715 15.481 15.642
SAR Instrumental 14.120 12.002 11.539

Table 2. iKala mean scores

U-Net Baseline Chimera
NSDR Vocal 8.681 7.877 6.793
NSDR Instrumental 7.945 6.370 5.477
SIR Vocal 15.308 14.336 12.382
SIR Instrumental 21.975 16.928 20.880
SAR Vocal 11.301 10.632 10.033
SAR Instrumental 15.462 15.332 12.530

Table 3. MedleyDB mean scores

efficients as supplied by the MedleyDB Python API 4 . We
limit our evaluation to clips that are known to contain
vocals, using the melody transcriptions provided in both
iKala and MedleyDB.

The following functions are used to measure per-
formance: Signal-To-Distortion Ratio (SDR), Signal-to-
Interference Ratio (SIR), and Signal-to-Artifact Ratio
(SAR) [31]. Normalized SDR (NSDR) is defined as

NSDR(Se, Sr, Sm) = SDR(Se, Sr)− SDR(Sm, Sr) (2)

where Se is the estimated isolated signal, Sr is the refer-
ence isolated signal, and Sm is the mixed signal. We com-
pute performance measures using the mir eval toolkit [22].

Table 2 and Table 3 show that the U-Net significantly
outperforms both the baseline model and Chimera on all
three performance measures for both datasets. In Figure 2
we show an overview of the distributions for the different
evaluation measures.

Assuming that the distribution of tracks in the iKala
hold-out set used for MIREX evaluations matches those
in the public iKala set, we can compare our results to the
participants in the 2016 MIREX Singing Voice Separation
task. 5 Table 4 and Table 5 show NSDR scores for our
models compared to the best performing algorithms of the
2016 MIREX campaign.

In order to assess the effect of the U-Net’s skip connec-
tions, we can visualize the masks generated by the U-Net
and baseline models. From Figure 3 it is clear that while
the baseline model captures the overall structure, there is a
lack of fine-grained detail observable.

4.1 Subjective Evaluation

Emiya et al. introduced a protocol for the subjective eval-
uation of source separation algorithms [7]. They suggest

4 github.com/marl/medleyDB
5 http://www.music-ir.org/mirex/wiki/2016:

Singing_Voice_Separation_Results

Model Mean SD Min Max Median
U-Net 14.435 3.583 4.165 21.716 14.525
Baseline 10.906 3.247 1.846 19.641 10.869
Chimera 11.626 4.151 -0.368 20.812 12.045
LCP2 11.188 3.626 2.508 19.875 11.000
LCP1 10.926 3.835 0.742 19.960 10.800
MC2 9.668 3.676 -7.875 22.734 9.900

Table 4. iKala NSDR Instrumental, MIREX 2016

Model Mean SD Min Max Median
U-Net 11.094 3.566 2.392 20.720 10.804
Baseline 8.549 3.428 -0.696 18.530 8.746
Chimera 8.749 4.001 -1.850 18.701 8.868
LCP2 6.341 3.370 -1.958 17.240 5.997
LCP1 6.073 3.462 -1.658 17.170 5.649
MC2 5.289 2.914 -1.302 12.571 4.945

Table 5. iKala NSDR Vocal, MIREX 2016

asking human subjects four questions that broadly corre-
spond to the SDR/SIR/SAR measures, plus an additional
question regarding the overall sound quality.

As we asked these four questions to subjects without
music training, our subjects found them ambiguous, e.g.,
they had problems discerning between the absence of arti-
facts and general sound quality. For better clarity, we dis-
tilled the survey into the following two questions in the
vocal extraction case:

• Quality: “Rate the vocal quality in the examples be-
low.”

• Interference: “How well have the instruments in the
clip above been removed in the examples below?”

For instrumental extraction we asked similar questions:

• Quality: “Rate the sound quality of the examples be-
low relative to the reference above.”

• Extracting instruments: “Rate how well the instru-
ments are isolated in the examples below relative to
the full mix above.”

Data was collected using CrowdFlower 6 , an online
platform where humans carry out micro-tasks, such as im-
age classification, simple web searches, etc., in return for
small per-task payments.

In our survey, CrowdFlower users were asked to listen
to three clips of isolated audio, generated by U-Net, the
baseline model, and Chimera. The order of the three clips
was randomized. Each question asked one of the Quality
and Interference questions. In the Interference question
we also included a reference clip. The answers were given
according to a 7 step Likert scale [13], ranging from “Poor”
to “Perfect”. Figure 4 is a screen capture of a CrowdFlower
question.

6 www.crowdflower.com
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Figure 2. iKala vocal and instrumental scores

Figure 3. U-Net and baseline masks

Figure 4. CrowdFlower example question

To ensure the quality of the collected responses, we in-
terspersed the survey with “control questions” that the user
had to answer correctly according to a predefined set of ac-
ceptable answers on the Likert scale. Users of the platform
are unaware of which questions are control questions. If
they are answered incorrectly, the user is disqualified from
the task. A music expert external to our research group
was asked to provide acceptable answers to a number of
random clips that were designated as control questions.

For the survey we used 25 clips from the iKala dataset
and 42 clips from MedleyDB. We had 44 respondents and
724 total responses for the instrumental test, and 55 re-

spondents supplied 779 responses for the voice test 7 .
Figure 5 shows mean and standard deviation for an-

swers provided on CrowdFlower. The U-Net algorithm
outperforms the other two models on all questions.

5. CONCLUSION AND FUTURE WORK

We have explored the U-Net architecture in the context of
singing voice separation, and found that it brings clear im-
provements over the state-of-the-art. The benefits of low-
level skip connections were demonstrated by comparison
to plain convolutional encoder-decoders.

A factor that we feel should be investigated further is
the impact of large training data: work remains to be done
to correlate the effects of the size of the training dataset to
the quality of source separation.

We have observed some examples of poor separation on
tracks where the vocals are mixed at lower-than-average
volume, uncompressed, suffer from extreme application of
audio effects, or otherwise unconventionally mixed. Since
the training data consisted exclusively of commercially
produced recordings, we hypothesize that our model has
learned to distinguish the kind of voice typically found in
commercial pop music. We plan to investigate this further
by systematically analyzing the dependence of model per-
formance on the mixing conditions.

Finally, subjective evaluation of source separation al-
gorithms is an open research question. Several alternatives
exist to 7-step Likert scale, e.g. the ITU-R scale [28]. Tools
like CrowdFlower allow us to quickly roll out surveys, but
care is required in the design of question statements.

6. REFERENCES

[1] Vijay Badrinarayanan, Alex Kendall, and Roberto
Cipolla. Segnet: A deep convolutional encoder-
decoder architecture for scene segmentation. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 2017.

7 Some of the audio clips we used for evaluation can
be found on http://mirg.city.ac.uk/codeapps/
vocal-source-separation-ismir2017

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 749



U-N
et

 Q
ua

lit
y

Bas
el
in

e 
Qua

lit
y

Chi
m

er
a 

Qua
lit

y

U-N
et

 In
te

rfe
re

nc
e

Bas
el
in

e 
In

te
rfe

re
nc

e

Chi
m

er
a 

In
te

rfe
re

nc
e

1

2

3

4

5

6

7
MedleyDB vocal

U-N
et

 Q
ua

lit
y

Bas
el
in

e 
Qua

lit
y

Chi
m

er
a 

Qua
lit

y

U-N
et

 In
te

rfe
re

nc
e

Bas
el
in

e 
In

te
rfe

re
nc

e

Chi
m

er
a 

In
te

rfe
re

nc
e

1

2

3

4

5

6

7
iKala vocal

U-N
et

 Q
ua

lit
y

Bas
el
in

e 
Qua

lit
y

Chi
m

er
a 

Qua
lit

y

U-N
et

 In
te

rfe
re

nc
e

Bas
el
in

e 
In

te
rfe

re
nc

e

Chi
m

er
a 

In
te

rfe
re

nc
e

1

2

3

4

5

6

7
MedleyDB instrumental

U-N
et

 Q
ua

lit
y

Bas
el
in

e 
Qua

lit
y

Chi
m

er
a 

Qua
lit

y

U-N
et

 In
te

rfe
re

nc
e

Bas
el
in

e 
In

te
rfe

re
nc

e

Chi
m

er
a 

In
te

rfe
re

nc
e

1

2

3

4

5

6

7
iKala instrumental

Figure 5. CrowdFlower evaluation results (mean/std)

[2] Aayush Bansal, Xinlei Chen, Bryan Russell, Ab-
hinav Gupta, and Deva Ramanan. Pixelnet: To-
wards a general pixel-level architecture. arXiv preprint
arXiv:1609.06694, 2016.

[3] Rachel M. Bittner, Justin Salamon, Mike Tierney,
Matthias Mauch, Chris Cannam, and Juan Pablo
Bello. MedleyDB: A multitrack dataset for annotation-
intensive MIR research. In Proceedings of the 15th
International Society for Music Information Retrieval
Conference, ISMIR 2014, Taipei, Taiwan, October 27-
31, 2014, pages 155–160, 2014.

[4] Kevin Brown. Karaoke Idols: Popular Music and the
Performance of Identity. Intellect Books, 2015.

[5] Tak-Shing Chan, Tzu-Chun Yeh, Zhe-Cheng Fan,
Hung-Wei Chen, Li Su, Yi-Hsuan Yang, and Roger
Jang. Vocal activity informed singing voice separation
with the iKala dataset. In Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International Con-
ference on, pages 718–722. IEEE, 2015.

[6] Pritish Chandna, Marius Miron, Jordi Janer, and Emilia
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ABSTRACT

Many classical works from 18th and 19th centuries are
sonata forms, exhibiting a piece-level tonal path through
an exposition, a development and a recapitulation and in-
volving two thematic zones as well as other elements. The
computational music analysis of scores with such a large-
scale structure is a challenge for the MIR community and
should gather different analysis techniques. We propose
first steps in that direction, combining analysis features on
symbolic scores on patterns, harmony, and other elements
into a structure estimated by a Viterbi algorithm on a Hid-
den Markov Model. We test this strategy on a set of first
movements of Haydn and Mozart string quartets. The pro-
posed computational analysis strategy finds some pertinent
features and sketches the sonata form structure in some
pieces that have a simple sonata form.

1. INTRODUCTION

1.1 Sonata Forms

Sonata form is a large-scale structure that can be found
in many works from early Classical (18th century) to late
Romantic period (end of 19th century). Sonata forms can
be found in almost all first movements (and, often, in other
movements) on Haydn, Mozart and Beethoven works.

Figure 1 shows an example of a very reduced sonata
form in a piano sonatina by Kuhlau. Basically, a sonata
form is built on a piece-level tonal path involving a pri-
mary thematic zone (P) and a contrasting secondary the-
matic zone (S). It contains the following parts [15]:

• an exposition, often repeated, containing the the-
matic zone P in the main tonality (denoted by I), and
the thematic zone S in an auxiliary tonality (usually,
but not always, the tonality of the dominant of I, de-
noted by V);

• a development (D) characterized by tonal instabil-
ity, in which the existing themes are transformed and

c© Louis Bigo, Mathieu Giraud, Richard Groult, Nicolas
Guiomard-Kagan, Florence Levé. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: Louis
Bigo, Mathieu Giraud, Richard Groult, Nicolas Guiomard-Kagan, Flo-
rence Levé. “Sketching Sonata Form Structure in Selected Classical
String Quartets”, 18th International Society for Music Information Re-
trieval Conference, Suzhou, China, 2017.

possibly new themes are introduced, finished by a re-
transition (R), that focus back to the main tonality;

• a recapitulation of the themes P and S, both in the
tonality of the tonic, possibly including elements
that were added throughout the development.

Several striking events are found between these sec-
tions, in particular cadences. The transition (TR) between
the P and S zones often ends on a Medial Caesura (MC),
that is often a Half Cadence (HC) with additional break
features [14]. The S zone generally concludes with a Per-
fect Authentic Cadence (PAC), and is followed by conclud-
ing patterns (C) without thematic content.

There are many possible variations on this basic struc-
ture. Somehow, the “regular” sonata form does not exist,
and is merely a reconstruction. Some forms even do not
have two contrasting themes but rather a “continuous ex-
position”, such as in several Haydn string quartets or in the
first movement of Mozart’s “The Hunt” K 458 [15].

More than a rigid framework between sections, what
constitutes the essence of a sonata form is a high-level bal-
ance in the whole piece: the tonal tension (the auxiliary
tonality) and the rhetorical tension (textures, themes) cre-
ated by the exposition and the development are resolved
during the recapitulation. The development of sonata form
was consubtantial to the emergence of instrumental mu-
sic, this high-level balance enabling the design of musical
works at a larger scale than before.

1.2 Sonata Forms, Musicology and Pedagogy

The term “Sonata form” was first coined in mid-1820s,
in the A. B. Marx’s Berliner allgemeine musikalische
Zeitung, and later formalized in [22] and [6], even if some
underlying principles were already known before [19, 29].
Somes authors conducted in-depth analyses of corpora
with sonata forms, such as [12, 27] for Beethoven’s String
quartets or [32] for Beethoven’s Piano sonatas.

In the last decades, authors proposed systematic theo-
ries on those forms [3, 4, 11, 21, 23, 28, 30]. The work
of Hepokoski and colleagues [13, 14], culminating in the
book [15], will be used here as a reference. These works
formalized the notion of rotations organizing musical tech-
niques throughout the piece.

Music research on sonata forms is thus still active today,
two centuries after the climax of compositions in sonata
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Figure 1. Allegretto of the piano sonatina Op. 55, no. 2 by Kuhlau. HC/PAC/EEC/ESC describe cadences and structure
endings using the notations from [15]. This movement has very short sections, a tiny development (Dev) that is almost
only a retransition, and almost no transition between themes P and S. It nevertheless features the characteristic tonal path:
S (and C) is in the dominant tonality (V, D major) during the exposition and comes back to the main tonality (I, G major)
during the recapitulation. Theme S and conclusion C are exactly transposed between the exposition and the recapitulation.
The theme P is both times in the main tonality, but lasts 8 measures in the exposition and 11 in the recapitulation.

form. Such studies help to understand some principles of
compositions and to have a new look on the history of mu-
sic. Finally, sonata forms are one of the focus of lectures
in music history, analysis or in composition.

1.3 Sonata Forms and MIR

Several works in the MIR community target in sonata
forms, for example to test pattern extraction [25], tonal-
ity estimation [34], classification on n-grams, interval and
metrical analyses [18]. However, there are very few works
focusing on the sonata form structure. There will never
be a “definitive analysis” of some piece in sonata form
– even between musicians, one may choose to focus on
some aspects. Anyway, some analytical viewpoints on
the sonata forms make consensus and can be the focus of
MIR research. On audio signals, Jiang and Müller com-
puted correlations to detect exposition/recapitulation on
the first movements of 28 Beethoven piano sonatas with
self-similarity matrices [17]. They also trace transpositions
and harmonic changes during the different parts. Weiß and
Müller propose a model of the “tonal complexity” and map
it on sections of sonata forms [35].

On symbolic data, we proposed in [7] a first approach
to detect the exposition/recapitulation based on pattern
matching. Baratè and al. proposed a model of the sonata
form strucure trough Petri Nets, but without any algo-
rithm [2].

We argue that sonata forms are very stimulating exam-
ples for MIR research, going from simple cases (repeated
pattern with a tonal path in a sonatina, as in Figure 1) to
very elaborated constructions (such as Beethoven piano
sonatas) with many deviations from the norm [36]. The
key point of an analysis of sonata forms – a large-scale
tonal path – combines local-level features (themes, har-
mony) with a piece-level analysis.

An example of the complexity is the detection of Medial
Caesura (MC) that marks the break between the two the-

matic zones. The MC is often marked by a half-cadence,
but also by a long preparation, a “triple hammer blow” and
then a silence on all voices [14]. However these events are
not always found – and such events can also appear outside
of a MC. To our knowledge, not any study in MIR tried to
detect MC in sonata forms.

More generally, sketching an analysis of large-scale
structures such as sonata forms is challenging for any an-
alyst. A student in music analysis or a music theorist con-
siders different elements and, through diligent analytical
choices, summarize them into a coherent analysis. Our
computational strategy to analyze sonata forms in sym-
bolic scores takes inspiration from this approach. We pro-
pose to detect several analysis “features” using or extend-
ing MIR techniques (Section 2) and then to combine them
to sketch the large-scale structure (Section 3). We test this
strategy on a corpus of ten Haydn and Mozart string quar-
tets and discuss the results (Sections 4 and 5).

2. ANALYSIS FEATURES

The following paragraphs list analysis features on which
we will build to sketch the structure of the sonata form.
Figures 2b and Figure 3 show these features on a first
movement of a string quartet by Mozart. Such musical
features are common in textbook or lecture descriptions of
the sonata form. Their selection was done according to
whether their presence or absence could be characteristic
of one (or several) section(s) in a sonata form.

The following paragraphs lists these features, noted
with boxes such as P . The detection of some of these fea-
tures is taken from previous works [8]. Note that these
features are already relatively mid-level or high-level MIR
features, and their detection is often a challenge by it-
self that will not be detailed and evaluated here. Al-
though not perfect, these methods detect features that can
be combined as observable symbols produced by a Hidden
Markov Model (Section 3).
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Figure 2. First movement of the String Quartet no. 4 in C major by W. A. Mozart (K157). (a.) Reference analysis indicating
the main sections, following notations of [15], with the cadential structure endings, in particular the MC (Medial Caesura)
between the P/TR and S zones. (b.) Analysis features as described in Section 2. (c.) Structure estimation by the HMM
described in Section 3.2. The section with a dotted frame, around the first MC, is detailed on Figure 3.

2.1 Thematic Features

In a “regular” sonata form, the two thematic zones are
strong markers of the form. We detect here repeated
themes by computing a similarity score [8], which is based
on equations similar to the Mongeau-Sankoff algorithm
that uses dynamic programming [24]. The score function
favors diatonic similarities, and only allows here alignment
of two notes having the same duration.

• P theme. P The P theme is searched using the score
function, forbidding any transposition, and by com-
paring the start of the piece with other parts. The
pattern is extracted only from the highest voice (first
violin), but successive occurrences may be found in
other voices. The first searched pattern begins at
the start of the piece and ends at most at 1/3 of the
length of the piece. If no repeated pattern is found,
the search is done again, starting from 2 measures
after. The P theme must start in the first 10 measures
and its length has to be more than 1 measure.

• S theme. S The S theme is searched after the first P
theme, again for at least one more occurrence. The
S theme must start before 1/3 of the length of the
piece, end before 1/2 of the length of the piece, and
its length has to be between at least 4 measures. This
time, the cost forces to find some pattern with a dom-
inant transposition between the first occurrence and
the following one. Once again, if no repeated pat-
tern is found, the search is done by starting from a
further position.

These features were introduced in [7] and may be re-
lated to the approach taken by [17] on audio signals. The
selected ratios (1/3, 1/2) reflect a generic balance of the
structure of the sonata form. The score function could be

improved by further research, in particular to allow more
variations between the statements of the themes.

2.2 Harmonic Features

As tonal path is the most striking element of a sonata form,
some features specifically focus on the harmony. Indeed,
even without detection of full P/S themes, the harmony
alone should give hints on analyzing sonata forms.

• Tonality. I A O We detect local tonalities on 2-
measures windows with a Krumhansl-Schmukler al-
gorithm [20] used with the pitch profiles improved
by Temperley [31]. Tonalities are then output rela-
tively against the main (most present) tonality of the
piece: main I , auxiliary A and other O tonalities.
As our goal is not to infer precisely the tonality but
to give a hint of the tonal context that will be used
next in a probabilistic model, we do not use any al-
gorithm improving this detection such as the full al-
gorithm of [31].

• Authentic cadences. AC Cadences are markers be-
tween sections. Moreover, cadences appear more
likely in conclusive sections (C). We detect candi-
dates of simple Perfect Authentic Cadences (PAC)
and rooted Imperfect Authentic Cadences (rIAC) by
checking harmonies over any V-I bass movement on
strong beats using the algorithm of [8]. To take for-
eign notes into account, the V chord, characterized
by the leading tone and possibly the seventh, has to
be found somewhere while the bass holds the dom-
inant. As this detection is here solely based on the
harmony, it may induce some false positives. This is
the case on Figure 3, where two successive V-I bass
movements are interpreted as PACs even if they do
not correspond to any phrase ending.
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Figure 3. First medial caesura (MC) in the first movement
of the String Quartet no. 4 in C major by W. A. Mozart
(K157), measures 29 to 32. See Figure 2 for an overview
of this movement. The MC ends the transition (TR) and is
before the beginning of the secondary theme (S). The com-
puted analysis retrieves several features within this region:
the thematic pattern S S – falsely detected even before
the MC, see discussion in the text – tonality regions corre-
sponding to auxiliary A and – falsely detected – other O

tonalities, a chromatic upward bass movement # and a full
rest r . Two spurious cadences AC are also detected at the
beginning of the secondary theme. Although not taken into
account in the present work, the extract includes a triple
hammer blow ha characteristic of the medial caesura.

• Preparation of half-cadences. We detect both chro-
matic upward bass movements # (one chromatic
semitone followed by one diatonic semitone, con-
tiguous notes with the same pitch being taken as one
note, see Figure 3) and putative diminished seven
chords 7 (any diminished seventh or augmented
second interval between two notes sounding at the
same time). These feature are often found in the
preparation of half-cadences, and especially for the
preparation of the Medial Caesura.

• Pedals. ped We detect pedals during more than 1
measure in one voice. Pedals are often found during
development and conclusion sections. On the con-
trary, they are often not found in thematic P/S zones,
except at the very beginning of the piece.

2.3 Other Features

These features combine melody and harmony and/or other
music elements.

• Full rests. r We look for rests that occur in all
voices simultaneously. Such rests are often found
at key places: after the MC, after the exposition, and
just before the recapitulation.

• Unisons. uni We detect unisons between all
the voices using the algorithm presented in [10].
Unisons are strong markers that often also break the
musical flow: They are also likely to be found in
structural breaks.

• Long harmonic sequences. L We detect harmonic
sequences by at least three successive occurrences of
melodic patterns in all four voices, using the algo-
rithm presented in [9] and reporting sequences dur-
ing at least 5 measures. Such long harmonic se-
quences, often modulating, can be found in the de-
velopment.

3. STRUCTURE ESTIMATION THROUGH
FEATURE COMBINING

Analysis features are sampled at regular intervals to give
sequences of symbols (Figure 2b). We propose to gather
these features into a sonata form structure (Figure 2c). The
following paragraphs present the Hidden Markov Models
(HMM) framework we use and then the particular HMM
designed for sonata forms.

3.1 Hidden Markov Models with Multiple Outputs

Markov model. We consider a finite alphabet of sym-
bols A = {α1, α2...} that will be here the analysis fea-
tures. The Markov model M = (Q, π, τ, T,E) on A is
defined by a set of n states Q = {q1, ...qn} corresponding
here to sections of the sonata form, the initial state prob-
abilities π = (π1, ...πn), and the final state probabilities
τ = (τ1, ...τn). T (i→ j) is the transition probability –
state qi goes to state qj – and E(i  α) is the emission
probability – state qi emits feature α. All probabilities are
between 0 and 1, and the probabilities arrays sum to 1.

Given an integer t, we call a t-tuple P = (p1, ...pt) ∈
[1, n]t a path in M. This path goes through the t states
qp1 ...qpt . We also consider a sequence of symbols w =
α1...αt−1 ∈ At−1. The probability that the modelM fol-
lows a path P while outputting the sequence w, one state
outputting one character at each step, is given by:

p(P,w) = πp1 · Πt−1
i=1(E(pi  αi) · T (pi→pi+1)) · τpt

Outputting mutiple symbols. Several features can be
predicted at the same step. We thus now consider that a
state may output simultaneously a set of symbols A =
{α1...αa} ⊂ A. If these emissions are independent events,
the probability that the state qi outputs the set A is

E(i A) = Πα∈AE(i α) · Πα∈A\A(1− E(i α))

We now consider a path P as before and a sequence
of sets of symbols W = A1...At−1. The probability
p(P,W ) that the model M follows a path P while out-
putting the sequence W is given by the same equation, re-
placing E(pi  αi) by E(pi  Ai).

HMM. Now we considerM as a Hidden Markov Model
(HMM). The path P is unknown but we observe a se-
quence of sets of symbols W .

Finding the most probable path P that maximizes
p(P,W ) is done by the classical Viterbi algorithm [26,33]
that first uses a forward stage to compute the probability
of being in a state while outputting A1...Aj , and then that
finds back the optimal path in a backward pass.
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Figure 4. Hidden Markov Model sketching a regular sonata form structure from analysis features. The initial state is P,
the final states are S’ and C’. The square states (MC/MC’ “medial caesura”, d “transition to development”, p “retransition
to primary theme”) are transient states intended to last one or a few quarters, and are characterized by break features ( # ,
7 , AC , r , uni ). Each state has a (not shown) loop transistion over itself. The horizontal straight transitions have the
second highest probabilities, and the curved dashed transitions enable to skip some states with a low probability. Only
the main emissions are shown here: the states may also emit other symbols with a low probability. For clarity, auxiliary
transitions and emissions are not shown in the recapitulation. They are the same than in the exposition, except that the
tonality emissions focus on the main tonality I .

3.2 A HMM to Sketch Sonata Form Structure

Figure 4 depicts the HMM created to sketch the
sonata form structure. The HMM uses the alphabet
{ P , S , I , A , O , # , 7 , ped , r , uni , L , AC } containing
the analysis features presented in the previous section. The
features are sampled at every quarter note. The 14 states
Q = {P,TR,MC,S,C,d,D,R,p,P′,TR′,MC′,S′,C′}
were selected to match the various sections of the “regular”
sonata form as well as some transitions {MC,d,p,MC′}
between these sections.

As discussed in the introduction, even if such a “reg-
ular” sonata form is a fiction, some pieces do follow
this structure: The proposed states intend to match these
pieces. As the model is very simple – and as the detec-
tion of the features is far from perfect – the goal is not to
perfectly match these 14 stages to actual sections of sonata
forms, but rather to sketch the structure. We defined so
many states to try to follow actual structures – for example,
TR and MC states definitely imply different music events:
in TR, focalization on the auxiliary tonality A , possibly
with some ped , and, in MC, conclusion with a cadence,
possibly AC , possibly with additional events: # , 7 , r .

Transitions and emission probabilities of the selected
symbols were choosen manually by a trial-and-error pro-
cess (see discussion in Section 5). Each state has a loop
transistion over itself with a very high probability (0.8).
The emission probabilities were drafted according to what
was described in the previous section. Some adjustments
were made to take into account limits of some feature de-
tection. For example, the feature S is often detected out-
side of S, as on Figure 3. Indeed, sometimes some few
measures before the MC in the recapitulation are exactly a
transposition of the same passage in the exposition. Thus,
in the HMM, S can also be emitted by the states TR and
MC. The model with all probabilities can be downloaded
at algomus.fr/sonata.

4. CORPUS AND RESULTS

4.1 Corpus and Reference Analysis

Experiments were done in python3, within the music21
framework [5] extended with analytic labels [1]. Pieces
were given as .krn Humdrum files [16] downloaded from
kern.humdrum.org. The corpus C10 contains 10 first
movements of classical string quartets composed by Haydn
and Mozart (see Table 1). All these are in major mode. The
selected Mozart quartets are mostly early works (K80 and
the three Milanese quartets K155, K156, K157) that have
a simple sonata form, even if the first movement of K80
is adagio. Although they have the typical tonal path, the
two Haydn quartets 54-3 and 64-4 do not exhibit a clear S
(or S’) theme. We denote by C8 the set of the 8 remaining
pieces. These pieces were analyzed following principles
of [15] to determine P/TR/S/C sections as well as MCs. At
least two curators checked every reference analysis. These
analyses are available under an open-source license from
algomus.fr/datasets.

4.2 Results of the Proposed Strategy

Table 1 shows the structure estimation of the HMM on all
pieces in C10. As written above, the 14-state HMM was
not intended to fit perfectly with the structure, but rather
to give hints on the sonata form structure. Moreover, some
sections are difficult to predict, or even to define: for ex-
ample, the start of the transition (TR) is often “blurred”
in the end of P. Note also that the features and model we
proposed do not separate well the S themes from the con-
clusions C. We thus propose here to focus the evaluation
on four key events of the sonata form (start of S, D, P’, S’):

• MC+S. In the exposition, the MC followed by the
start of S is perfectly or approximately found in 4
pieces in C8. In non-regular structures (?), a S may
be falsely detected, because the feature S may re-
port transposed sections of the theme P.
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Reference (top) and computed (bottom) analyses MC+S D P’ MC’+S’

Haydn
op. 33 no. 2

P S C P’ S’ C’

P MC S C D R P’ MC’ S’ C’

− + + −

Haydn
op. 33 no. 3

P S C P’ S’ C’

P TR MC S C d D R P’ TR’ MC’ S’ C’

− = + +

Haydn
op. 33 no. 5

P S C P’ S’ C’ O

P TR MC S C D R p P’ TR’ S’ C’

+ + + −

Haydn ?
op. 54 no. 3

P S C P’ C’ O

P TR C d D R P’ C’

· − = ·

Haydn ?
op. 64 no. 4

P TR S C P’ P’ C’

P TR C D R pP’ TR’ C’

· = ? ·

Mozart
K80 no. 1

P S C P’ S’ C’

P TR S C d D P’ MC’ S’ C’

− = + =

Mozart
K155 no. 2

P TR S C P’ TR’ S’ C’ O

P TR S CD R p P’ MC’ S’ C’

− − + −

Mozart
K156 no. 3

P S C P’ S’ C’

P S d D R p P’ MC’ S’ C’

= − + +

Mozart
K157 no. 4

P TR S C D R P’ TR’ S’ C’

P TRMC S C D R p P’ TR’MC’ S’ C’

+ + − +

Mozart
K387 no. 14

P TR S C P’ TR’ S’ C’

P TR MC S C d D R P’ TR’ MC’ S’ C’

+ − + +

Table 1. Structure detection on ten first movements of Haydn and Mozart string quartets. The top lines are the reference
analyses and the bottom line the structure found by the HMM. The four columns MC+S, D, P’ and MC’+S’ evaluate the
prediction of the start of these events or sections: + (perfect or almost, that is at most 1 measure shifted from the reference),
= (approximate match, between 2 and 3 measures), − (not found, or too far from the reference, at least 4 measures). We
do not evaluate S positions (·) for pieces marked with ?, as they do not follow a “regular” bithematic sonata form structure
with a clear secondary theme.

• D. The start of the development is perfectly or ap-
proximately found in 6 pieces in C10. This detection
is usually grounded by the feature r .

• P’. The start of the recapitulation is perfectly or ap-
proximately found in 8 pieces in C10, mainly driven
by the feature P . Haydn op. 64 no. 4 has partial
repeats of the P theme during the recapitulation, and
Mozart K157 has a long retransition that is falsely
detected as a P theme due to the feature I .

• MC’+S’. In the recapitulation, the start of S’ is ap-
proximately found in 5 pieces in C8. It is again often
grounded on the break features.

Sonata structure sketch. Back on the motivation of this
study, the predicted sonata form structure seems quite good
for Mozart K157 and K387: starts and durations of sec-
tions are quite precisely detected. For Mozart K80, K156
and Haydn 33-3 and 33-5, the structure is coarsely de-
tected, but bad lengths or shifts in some predicted sections
are not satisfying. Note that, on K80, even if the thematic
features are not detected (data not shown), the path esti-
mated by the HMM is still sensible, mainly due to tonali-
ties as well as break events.

The bad results on the other pieces mostly come from
a wrong detection of the start of S/S’. This suggest that
features helping the prediction of the MC as well as the
HMM should be improved.

5. DISCUSSION

The music analysis of large-scale structures, such as the
sonata forms, requires to gather different analytical ele-
ments into some coherent analysis. Taking inspiration
from what the analysts do, we proposed a strategy to sketch
such sonata structures, designing a HMM modeling music
knowledge over analysis features. The proposed strategy
manages to sketch the structure of some “regular” sonata
forms in string quartets, finding the most important sec-
tions (P/S, D, P’/S’) and sometimes detecting the location
of the Medial Caesura (MC).

This strategy should now be evaluated on a larger cor-
pus. More general perspectives include both the improve-
ment of individual feature detection – conceiving or using
MIR techniques that may be used to analyze any tonal mu-
sic, in classical music but also in jazz or pop repertoires –
and also improvement of the HMM. Other HMM topolo-
gies could analyze more elaborated variations of sonata
forms – especially continuous exposition. Analyzing late
Mozart quartets or some romantic quartets will also be very
challenging.

In the present work, we manually designed transition
and emission probabilities. These probabilities could also
be learned on larger corpora, but the number of parame-
ters to learn makes such a learning difficult. A solution
to benefit both from human expertise and machine learn-
ing could be also to learn the weights of only manually
selected emissions and transitions.
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schémas d’analyse musicale avec music21. In Journées
d’Informatique Musicale (JIM 2015), 2015.
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