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ABSTRACT

In music applications, audio beat tracking is a central com-
ponent that requires both speed and accuracy, but a fast
beat tracker typically has many beat phase errors, while
an accurate one typically requires more computation. This
paper achieves a fast tracking speed and a low beat phase
error by applying a slow but accurate beat phase detector at
only the most informative spots in a given song, and inter-
polating the rest by a fast tatum-level tracker. We present
(1) a framework for selecting a small subset of the tatum in-
dices that information-theoretically best describes the beat
phases of the song, (2) a fast HMM-based beat tracker for
tatum tracking, and (3) an accurate but slow beat detec-
tor using a deep neural network (DNN). The evaluations
demonstrate that the proposed DNN beat phase detection
halves the beat phase error of the HMM-based tracker and
enables a 98% decrease in the required number of DNN
invocations without dropping the accuracy.

1. INTRODUCTION

Offline audio beat tracking, the task of identifying beats in
a music audio signal, is now a critical component in mu-
sic applications, having uses in digital audio workstations,
synthesizers, music recommendation and many others. In
beat tracking, it is important to both estimate a reasonable
tempo (inversely proportional to the period between two
beats), as well as the timings of beat occurrence, or the
beat phase. In these applications, a beat tracker must be
fast and accurate for common types of musical pieces such
as popular music and electronic dance music. The capabil-
ity to analyze one song in a few seconds is often desirable
in end-user products, while being satisfactorily accurate.

There is a trade-off, however, between the speed and
the accuracy of a beat tracker. On the one hand, a fast beat
tracker tends to make mistakes due to some simplifying
assumptions. On the other hand, an accurate beat tracker
that employs a more elaborate model like deep neural net-
works (DNN) tends to require more computation, which is
proportional to the song duration.

We observe two points in these extrema. First, many
of the errors in a fast tracker are attributed to incorrect beat
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Figure 1. The overview of our method. Our system im-
proves a simple beat tracker with little computational over-
head by adding a slow but accurate beat phase estimator.
Computation is reduced by only using a subset of the de-
tected tatums for phase estimation, and interpolating the
estimated phase output.

phase estimation, especially for current popular music. For
example, a simple beat tracker often mistakenly tracks the
off-beat. This means that a simple method is already quite
capable of tracking the tatum, i.e., some integer subdivi-
sion of the beat, but poorly identifies which of them are the
beats.

Second, using an accurate but slow beat tracker to
sweep through an entire song is often wasteful. For many
pieces where tatum tracking is possible with a simple
method, the primary role of an elaborate method is in beat
phase identification. In many musical pieces, however, the
meter is mostly stationary, so the beat phase identification
needs to be done only sparingly. If the beats are identified
at the most informative spots in the music for beat phase
identification, the rest may be interpolated by exploiting
the stationarity of the meter.

In this paper, we combine the best of both worlds – a
fast tracking of beats with a moderate amount of beat phase
errors, and an accurate identification of the beats through
the use of elaborate methods. Our key idea, as shown in
Figure 1, is to efficiently fix the beat phase estimation er-
rors of a simple but fast beat tracker, by sparingly applying
an accurate but slow beat phase identifier, only at the most
informative spots in the song. To elaborate, we (1) detect
the tatum reliably with a simple beat tracker, (2) select a
small disjoint subset of the tatums that best describes the
beat phases of the entire song, (3) apply an elaborate beat
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identifier only at the selected tatum subset, and (4) interpo-
late the beat identification for the remaining tatums. Such
a framework is enabled by exploiting a strong tatum-level
correlation of the beat phase: it allows us to select a small
set of tatums that best describes, in the sense of mutual in-
formation, the rest of the beats, and to interpolate the rest.

Our contributions are (1) a low-overhead framework for
improving an existing simple beat tracker by cascading a
more elaborate beat phase detector, achieved by identify-
ing the most informative tatums in a song for beat phase
identification; (2) a beat phase identification method us-
ing a DNN that accurately identifies the beat phase of a
tatum-sliced data; and (3) a simple and fast HMM-based
beat detector that jointly decodes the BPM and beat phase.

2. RELATED WORK

2.1 Beat Tracking and Downbeat Estimation

Beat tracking is the task of identifying the beats in a mu-
sic audio signal, a task that has been studied extensively.
Earlier methods match hand-crafted onset features while
assuming the evolution of the tempo, through soft rules [9]
dynamic programming [8] or hidden Markov models [20],
often with an explicit tempo induction step [5, 6]. One of
the key design issues is the choice of the hand-crafted fea-
tures, such as changes of harmony [9] or variants of spec-
tral flux [8, 13, 18], and features indicating the salient beat
interval [13].

Beat phase error is a common failure mode in beat
trackers [4, 5, 18]. For example, it is often common for
a beat tracker to track half a beat behind an acceptable beat
position, or to track the off-beats (e.g., tracking second and
fourth beats in a 4/4 time) when tracking at half the under-
lying tempo. The frequency of such a failure mode occurs
suggests that tatum tracking is relatively easily done with a
simple and fast method, but identifying the beat within the
detected tatums is a more delicate problem.

To estimate the beat phase, and more generally down-
beats, modeling of the rhythmic patterns [9,16], or extract-
ing the features indicating the spectral change at multiple
temporal level [13] have been shown to be useful. More
recently, significant improvements in downbeat estimation
have been achieved through the use of DNN, which dele-
gates the delicate task of designing the relevant features to
machine learning. For example, convolutional neural net-
works [7] or recurrent neural networks [2, 15] have shown
significant improvements, at a cost of more computation.

2.2 Sensor Placement and Submodular Optimization

The core idea of our paper is to find the “best” tatum po-
sitions to apply the computationally-heavy DNN output so
that the most information may be extracted with each invo-
cation of the DNN. In a related problem of acquiring data
with costly sensors, the problem of determining the “best”
way to place each sensor as to get the most information
out is known as the sensor placement problem [14]. Sen-
sor placement problem is often tackled by exploiting the
spatial correlation. For example, if the spatial distribution

Figure 2. The state transition for the simple beat estimator.
The beat phase counts down deterministically, and the next
beat duration is chosen according to a beat period transition
probability.

of the temperature needs to be acquired, it is better to place
the temperature sensors far apart with than near each other,
since the sensor readings at two nearby points, as opposed
to far-away points, are more strongly correlated and thus
are less revealing.

The sensor placement problem can be formulated as to
maximize the mutual information between the placed sen-
sors and some other points of interest for which the sensors
are not placed. While this problem is NP-hard, the sub-
modularity of the mutual information may be exploited to
arrive at a greedy near-optimal algorithm [19]. Submodu-
larity amounts to concavity for sets, and means that a given
function f over a set A satisfies f(X ∪ {i}) ≥ f(Y ∪ {i})
for all X ⊆ Y ⊆ A and i ∈ A \ Y .

3. PROPOSED METHOD

Our method consists of (1) a simple tatum tracker that
quickly tracks the tatum in an audio signal, (2) a slow but
accurate beat identifier that identifies which of the tracked
tatums are the beats, and (3) a tatum index selector, that
selects a few tatum indices for applying the beat identifier,
as to extract the most information regarding the presence
of the beat.

3.1 Tracking Tatums with a Fast HMM Beat Tracker

We first track the tatum in a given audio signal. This is
achieved by first using a simple beat tracker to extract the
beat positions. Then, the tracked beat positions are sub-
divided equidistantly by a given factor ∆n to obtain the
tatums (∆n = 4 in this paper). Notice that while the beat
detector may often track the wrong beat phase, it usually
tracks the tatum properly.

To track the beat, we use an HMM-based beat detec-
tor, which uses onset and tempo features to jointly decode
the beat position and the tempo. For the onset feature at
frame t, we compute the first-order difference of the log-
magnitude spectrum flux ot, and for the BPM feature, we
compute a comb filter-bank with the onset feature rt, sim-
ilar to [13].

We assume that the observed feature sequence is gener-
ated from an underlying sequence of discretized beat du-
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ration (related to tempo) ω, and a “count-down” timer in-
dicating the number of feature frames until the next beat.
We assume that each normalized φ is associated to a unique
onset feature observation likelihood p(o|φ), and each value
of the beat duration ω is associated with a unique tempo
feature observation likelihood p(r|ω). Based on these as-
sumptions, the observation likelihood is given as follows:

p(ot, rt|φt, ωt) = p(ot|φt)p(rt|ωt). (1)

We choose p(o|φ) to be a Normal distribution whose mean
and the variance are selected based on the value of φ nor-
malized by the beat duration. We choose three sets of the
mean and the variance, based on whether the normalized
beat phase is 0, 0.5 and others; the parameters are trained
with maximum likelihood. Furthermore, p(r|ω) is chosen
to be a von Mises-Fisher distribution 1 , whose parameters
switches for each value of ω.

The time sequence of the beat duration ωt and the
count-down timer φt evolves such that (1) the φt decreases
deterministically until reaching zero while ωt remains con-
stant and (2) when φt is zero, the beat duration ωt switches
to a new value according to a tempo transition matrix, and
φt+1 is set to ωt+1. This amounts to the following genera-
tive process, also illustrated in Figure 2:

(φt, ωt)|(φt−1, ωt−1)

∼

{
δ(φt, φt−1 − 1)δ(ωt, ωt−1) φt−1 > 0

Rωt−1,ωt
δ(φt,Φωt

) φt−1 = 0
, (2)

where Φω is the number of audio frames corresponding to
the beat duration for the beat duration ω, and Rω1,ω2

is
a transition matrix that describes the probability of tran-
sitioning from beat duration ω1 to ω2. We reduce the
search space by pruning negligible values of R and lim-
iting the set of beat durations ω to consider, similar to
[17]. The beat positions are decoded using the Viterbi al-
gorithm to arrive at a set of N estimated tatum positions
{τn|n ∈ T = {1, 2 . . . N}}.

This model is quite similar to the bar pointer model
[24], except (1) we apply the bar pointer model only to
decode the beats and not the underlying meter or rhythm
and (2) we use both the tempo and the onset likelihoods to
decode the beats and the beat durations. The inference is
more efficient compared to the bar-pointer model because
the search space is much smaller – i.e., the state space is at
the beat level instead of the bar level, the beat duration is
discretized, and the allowed transition is pruned.

Despite the efficient processing, this method, like many
beat trackers, suffers from beat phase estimation errors, oc-
curring approximately once every ten songs, for example,
for songs with strong syncopations. Thus, we consider us-
ing a more elaborate beat phase detection that is capable
of directly modeling the kind of long-term characteristics
required for beat phase identification.

1 The likelihood is given by p(x;µ, κ) ∝ exp(κµT x) for some µ, x
in (D− 1)-sphere, D being the dimension of the comb-filter output, and
κ is a scalar parameter.
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Figure 3. The architecture for predicting the Beat phase.

3.2 Identifying the Beats with Deep Neural Networks

To detect the presence of a beat at some tatum index, we
use a DNN-based classifier of beats given tatum-sliced fea-
tures. A DNN-based model is preferable because the no-
tion of a beat depends on many factors like the rhythm and
the harmony, and a manual feature design on such a prob-
lem is difficult.

To identify the beat position using a DNN, we use as
the input the mel-scale log spectrogram (MSLS) that has
been computed at each tatum. For each tatum, an 80-
dimensional MSLS is extracted over a tatum window of
48 tatums before and after the current tatum, creating an
input of R96×80.

The network consists of three convolutional layers, each
with a leaky ReLU activation followed by max-pooling.
The number of channels and the kernel sizes, in increas-
ing order of layers, are 30, 100, 30 and (3 × 3), (3 × 10)
and (3 × 3), respectively. It is followed by dropout regu-
larization [23] during learning and a fully-connected layer
with 200-dimensional output with a batch-normalization
layer [11] and a leaky ReLU activation. Finally, a fully
connected layer with a softmax activation extracts the pos-
terior probability of the beat presence. Thus, for some
tatum index n, the DNN outputs bn ∈ {0, 1}, which is
1 if tatum index n is a beat and 0 otherwise. Note that the
model has no recurrent connections, allowing a random ac-
cess to the tatum index.

Given a ground-truth annotation of the beat presence b̂n,
we minimize the cross-entropy loss L(Θ):

L(Θ) =
∑
n

b̂n log bn(Θ)+(1− b̂n) log(1−bn(Θ)), (3)

with n indexed over the training dataset. The optimiza-
tion is done stochastically, using ADAM [12] with weight
decay regularization. The mini-batch is shuffled randomly
and we augment the data by pitch-shifting the input audio
by -7 to +7 semitones, similar to [22].

This model is similar to the network in [7] in that we
also use tatum-level features, but we (1) use the full MSLS
instead of a band-passed input, allowing simultaneous ex-
traction of both harmonic and rhythmic features that con-
tribute to beats, and (2) use both convolutional and fully
connected layers.

3.2.1 On the Choice of the Tatum Window Size

To justify the use of MSLS evaluated over a windows of 48
tatums before and after the current tatum, we have tested
the accuracy of our beat identification method when chang-
ing the window radius. The accuracy on the validation data
by changing the number of beats (assuming 4 tatums per
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L [beats] 1 2 4 8 10 12
Accuracy[%] 83 87 90 93 93 93

Table 1. Validation accuracy of the beat estimator when
changing the tatum window radius L, in beats.

beat) is shown in Table 1. Since the performance saturates
at 10 beats, use of 48 tatums provides sufficient perfor-
mance. Such a change in accuracy shows that a long-term
analysis spanning a few measures is indeed required for
properly identifying the beat.

3.3 Choosing Tatums for Beat Identification

Since the identification of the beats from a single frame is
prone to errors, it is typical to identify the beat presence bn
for allN frames to arrive at the final beat position estimate.
However, identifying the beat using all the detected tatums
is computationally expensive. Therefore we consider us-
ing a small subset of the detected tatums with K � N
elements for identifying the beats at the selected tatums
and interpolating the rest.

Let us formalize the problem. Let bn be the beat phase
estimation at some tatum index n. bn can be evaluated by
invoking an accurate but computationally expensive beat
phase estimator as was discussed. Let T = {1, 2, · · ·N}
be the set of tatum indices. The ultimate goal is to obtain
an estimate of bn for all n in T reliably while evaluating
bn only at a few spots. Thus, the goal is to find some small
subsetDK ⊂ T ofK elements for which we do invoke the
beat phase estimation algorithm. For the remaining tatums
D̄K , we interpolate the beat phase estimate by evaluating
the expectation of bD̄K

given bDK
.

To both identify the small subset DK and interpolate
the beat phase output, we exploit the strong tatum-level
correlation of the beat identification output. To illustrate,
Figure 4 shows the auto-correlation ri of the beat identifi-
cation output bn. Notice that a non-negligible correlation
exists not only nearby but also far away, up to about 100
tatums. This means that the existence of a beat at some
tatum index provides information about the beat existence
of the neighboring tatums.

To exploit such a covariance we assume that bn is a
Gaussian process [21]. That is, for some disjoint ordered
sets of indicesD,U ⊆ T , the joint pdf of bD = {bi|i ∈ D}
and bU = {bi|i ∈ U} is expressed as follows:(

bD
bU

)
∼ N

(
µ,

(
ΣDD ΣDU
ΣUD ΣUU

))
. (4)

Here, ΣAB is the cross-covariance matrix ∈ R|A|×|B| be-
tween {bi|i ∈ A} and {bi|i ∈ B}, such that element (i, j)
of ΣA,B is the covariance between the ith element of A
and the jth element of B. µ is the expectation of bi that is
computed from a training dataset.

3.3.1 Index Selection for Beat Phase Identification

Assuming the underlying Gaussian process, we seek to
identify a set of tatum indices DK ∈ T subject to |DK | =
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Figure 4. The auto-correlation of the estimated beat phase.

K, as to maximize the mutual information between beat
phase output bDK

and the unobserved beat phase output
bD̄K

. This problem is NP-hard [14], but thanks to the sub-
modularity of mutual information, a near-optimal greedy
algorithm exists [19]. To solve the problem with a greedy
near-optimal algorithm, we iteratively add a new index i to
the set of indicesDk that maximizes the increase in mutual
information, i.e., Dk = Dk−1 ∪ {i} where:

i = arg max
i′∈D̄k−1

MI(Dk−1 ∪ {i′})−MI(Dk−1), (5)

where MI(D) denotes the mutual information between D
and D̄. This can be seen as a special case of the sen-
sor placement problem based on mutual information maxi-
mization, where we ignore any points for which the sensor
may not be placed.

Equation 5 for a Gaussian process amounts to setting
i = arg maxi′∈D̄k

δk−1,i′ at step k, with the following δi,k:

δk,i =
Σi,i − Σ{i},Dk

Σ−1
Dk,Dk

ΣDk,{i}

Σi,i − Σ{i},Cki
Σ−1
Cki,Cki

ΣCki,{i}
, (6)

where Cki = Dk ∪ {i}. Here, the numerator amounts to
the conditional variance of bi given bDk

and the denomi-
nator amounts to the conditional variance of bi given the
remaining elements. Intuitively, therefore, this objective
seeks to find an index i that is unpredictable based on the
already-observed data bDk

, while being representative of
the non-selected indices, i.e., easily predictable from see-
ing the data of the non-selected indices.

It is important to notice that the computation of Equa-
tion 6 is independent of the actual values of bn. Thus, DK
can be evaluated without invoking the computationally ex-
pensive DNN beat identifier. Furthermore, given the auto-
correlation computed beforehand, the setDK depends only
on the number of tatums in a given song and not the ac-
tual observations. Thus, DK may be pre-computed for all
practical values of the number of tatums, incurring zero
runtime overhead.

3.3.2 Analysis of the Selected Indices

To see how the indices are chosen with our method, Fig-
ure 5 shows the index chosen as the index selection algo-
rithm proceeds. Notice how in the initial stage (K = 2 and
4; red and yellow boxes), the algorithm selects the middle
and the edges of the song while selecting pairs of indices
that are 2 tatums apart, congruent mod 4. This shows that
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Figure 5. The indices chosen by the the mutual infor-
mation maximization criterion as the algorithm progresses
with K = 2, 4, up to 32 (best viewed in color).

the method tries to disambiguate the beat versus the off-
beat, while staking out the entire song. As the algorithm
progresses it selects tatum indices so that it (1) is more-or-
less uniformly sampled throughout the song and (2) sam-
ples indices two tatums apart due to the weak correlation
with lag 2 as was shown in Figure 4.

3.3.3 Interpolation of the Beat Phase Outputs

For interpolation, we evaluate the conditional expectation
of bT given bDK

:

E[bi|bDK
] = Σi,DK

Σ−1
DK ,DK

bDK
. (7)

The evaluation of this function over all tatum indices re-
quires a total of K invocations to the beat phase estimator.

Finally, given the interpolated beat phase estimates
computed from Equation 7, we use in this paper a simple
heuristic to decide the beat positions. For the given level
of beat subdivision ∆n used to compute the tatums, we
find the beat phase given a beat subdivision. For each beat
phase hypothesis ρ, we compute the following quantity:

Rρ =

N/∆n∑
k=0

E[bk∆n+ρ|bDK
] (8)

Then, the beats are estimated as all tatum positions with
indices ρ̂+ k∆n with k ∈ N and ρ̂ = arg maxρRρ. This
heuristic is valid if the tatum tracking is successful and the
number of tatums per beat remains fixed at ∆n.

4. EXPERIMENTAL EVALUATION

4.1 Dataset

For the training and the validation dataset of the DNN beat
identification and for estimating the auto-correlation of the
beat identifier output at the tatum level, we used 100 popu-
lar songs from the RWC Popular Music Database [10]. For
the test dataset, we prepared an in-house dataset consisting
of 410 popular music in the United States and Japan. The
median duration of the songs was four minutes. The tatum
was extracted with the proposed method and the beat phase
was hand-annotated based on a music score data created by
professional musicians.

Method Beat phase
error

Real-time
factor

BOCK15 14.0% 0.149
Baseline 12.2% 0.012

Proposed (Full) 6.1% 0.328
Proposed (K = 4) 16.2% 0.016
Proposed (K = 8) 10.1% 0.017

Proposed (K = 16) 7.6% 0.020
Proposed (K = 32) 6.1% 0.026

Table 2. The beat phase estimation error for songs that
succeeded at tatum tracking, and the mean real-time factor.

4.2 Experiment 1: Beat Detection Improvement

First, we evaluated the beat phase estimation error of the
proposed DNN beat identification method.

4.2.1 Experimental Condition

We extracted the beats using four methods: (1) an imple-
mentation 2 of the DNN-based beat detector in [3] with the
tempo estimation method of [1], denoted “BOCK15,” (2)
the tatum detector used as a beat tracker (denoted “Base-
line”), (3) the tatum detector with the DNN beat identifier
evaluated over the entire data (denoted “Proposed (full)”),
(4) the tatum detector with the DNN beat identifier evalu-
ated over a subset of the data that has been selected with
the proposed method (denoted “Proposed (K = n)” when
using n tatum indices to evaluate the DNN). Since our fo-
cus is on fixing beat detection that succeeds at tatum track-
ing but fails at beat phase identification, we compared the
methods for songs for which tatum extraction was success-
ful (393 songs out of 410).

In addition, we computed the real-time factor, mea-
sured on a machine with Intel Core i5 processor running
at 2.6 GHz with 4 GB of RAM with no GPU, utilizing one
CPU core. Notice that the condition “Proposed (full)” is
the baseline, in terms of computational speed, for most pre-
vious DNN-based downbeat detectors such as [7], as the
previous method applies DNN to the entire audio data. The
baseline method was implemented in C++ using SSE2 for
SIMD instructions. The DNN was implemented in Python
using the Chainer 3 library (an SSE2-optimized implemen-
tation of the DNN in C++ yielded in a similar benchmark
and thus is omitted).

4.2.2 Results and Discussion

The results are shown in Table 2. It can be seen that by
choosing K = 32, the method performs identically to
when using the entire data for beat estimation, while being
twelve times faster (38x faster than real-time). The modest
increase in computation time over the Baseline suggests
that there is only a marginal overhead, especially when the
beat phase identification is executed in tandem with the
beat extraction.

2 Obtained from https://github.com/CPJKU/madmom, com-
mit de906fb

3 https://github.com/chainer/chainer

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 313



75%

80%

85%

90%

95%

100%

K=4 K=8 K=16 K=32

Head Mid Random
Linear Proposed

Figure 6. The match to the DNN beat detector when sam-
pling K tatums in a song using different methods. Greater
value indicates that the estimated beat phase better matches
that estimated by the DNN.

To get a better idea of the computational costs, the beat
detector takes 740 msec to process a minute of audio using
a single core. The selection of indices incurred virtually no
overhead, since we pre-computed the indices for all possi-
ble number of tatums. Note that this kind of index pre-
computation is viable for K = 32; even when evaluating
the indices for songs with 65000 tatums, the total memory
for storing the indices is at most only 4 MB.

Each call to the DNN used about 100 msec. Of this, the
convolutional layer comprised about 60% of the total time,
and the fully-connected layer comprised about 40%. In our
implementation, the convolution layer is performed fully
for each call to the DNN, but this is redundant because
portions of MSLS spectrograms may be shared across dif-
ferent audio frames. For songs with fewer than K × 96
tatums (e.g., song of six and a half minutes with a BPM
of 120 and K = 32), there are redundant outputs of the
convolutive layers. Such a redundancy potentially enables
us to further speed up the convolutive layers.

4.3 Experiment 2: Tatum Selection Strategy

Second, we evaluated the capability for the proposed tatum
index selection method to approximate the DNN evaluated
over all tatums, by comparing the index selection method
to other possible ways of selecting the tatum index subset.

4.3.1 Experimental Condition

For each song in the test dataset, including those for which
tatum tracking had failed, we selectedK indices withK =
[4, 8, 16, 32], with five different strategies: (1) select the
first K tatums (denoted ”Head”), (2) select the middle K
tatums (denoted ”Mid”), (3) select K uniformly-sampled
tatums (denoted ”Random”), (4) select K linearly-spaced
tatums (denoted ”Linear”), and (5) select K tatums with
the proposed method. Then we evaluated, for each strat-
egy and K, the agreement rate of the beat detection out-
put, evaluated with Equation 8, between that obtained us-
ing (1) the indices obtained by each strategy and (2) all
index. Notice that a high agreement for a given index se-
lection scheme suggests its capability to approximate the
beat identification using all indices.

4.3.2 Results and Discussion

Figure 6 shows the agreement rate between each tatum se-
lection strategy and the full DNN.

When trying to identify the beat with only more than
four tatums, the proposed method consistently outper-
formed the baselines. When choosing only four tatums
(K = 4), the strategy of choosing the middle performs the
best, perhaps because it is better to focus on one region to
estimate the beat phase instead of dispersing the selection
throughout the piece. The result nonetheless demonstrates
the capability of our method to select a “good” set of in-
dices for beat identifications compared to other intuitively-
arrived methods.

Comparing the result with the previous experiment,
with K = 32 the agreement of the proposed method does
not reach 100% even though the beat detection accuracy
for K = 32 is identical to those using the entire DNN
output. This means that interpolated beats disagree for
songs for which tatum tracking has failed. Such a disagree-
ment occurs because (1) if the tatum tracking fails, the as-
sumed covariance of the DNN output Σ poorly describes
the underlying DNN output and (2) our beat position de-
coding method relies on a proper tracking of tatums with
no change of meter.

5. CONCLUSION

This paper presented a method to improve a fast and simple
beat tracker with little computatinal overhead by using an
elaborate DNN-based beat identifier to fix the error in the
simple beat tracker at carefully-selected tatums.

We addressed the critical issue of achieving both the
accuracy enjoyed by a DNN-based beat identification of
slow and elaborate methods, and the fast speed enjoyed by
a simple but erroneous beat tracking methods. This was
tackled by applying a DNN beat identification sparingly,
only at the most informative tatum indices given by a sim-
ple beat-tracker. The selection was done as to maximize
the mutual information between the selected and the non-
selected indices for invoking the DNN.

Evaluation demonstrated that the DNN halved the beat
phase error, and the tatum selection strategy provided the
same performance as when sweeping through the entire
audio signal, resulting in a twelve-fold speed improve-
ment for a typical song. Furthermore, the subset selec-
tion method was also shown to be consistently efficient at
approximating the DNN output compared to other index
selection methods.

Future work includes (1) application of the index selec-
tion framework to other tasks in MIR such as downbeat
estimation, (2) relaxing the assumptions made for the in-
dex selection, such as assuming a known and a fixed co-
variance of the output, (3) allowing the parameter K to be
determined automatically, (4) improving the heuristics for
deciding the beat positions.
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