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ABSTRACT

This paper presents a large vocabulary automatic chord es-
timation system implemented using a bidirectional long
short-term memory recurrent neural network trained with
a skewed-class-aware scheme. This scheme gives the un-
common chord types much more exposure during the train-
ing process. The evaluation results indicate that: compared
with a normal training scheme, the proposed scheme can
boost the weighted chord symbol recalls of some uncom-
mon chords and significantly improve the average chord
quality accuracy, at the expense of the overall weighted
chord symbol recall.

1. INTRODUCTION

Automatic chord estimation (ACE) is one of the central
problems in music informatics. It asks for an algorithm
to extract the harmonic progression within a piece of tonal
music and label each harmony region with a chord sym-
bol and a time stamp. For any artificial intelligence that
is able to perform music analysis, an ACE algorithm will
definitely be an important part of it.

For around two decades, ACE researches have been fo-
cusing around a very small vocabulary such as major and
minor (or majmin) [1, 7, 16, 18, 22, 25, 30, 31]. Larger vo-
cabularies are mostly only considered in some early works
[12, 19, 26, 29]. Until recently, the large vocabulary issue
has been brought back to the field [6, 9, 20], but except for
the bass-treble chromagram proposed by Mauch and Dixon
[21], the pre-segmented large vocabulary chord classifica-
tion proposed by Deng and Kwok [8], and the Bayesian
scaled likelihood estimation proposed by Humphrey [15],
there is no technique specially designed for large vocabu-
lary automatic chord estimation (LVACE).

Recently there has been a trend of using deep neural
nets to solve ACE problems. Notable examples are: a con-
volutional neural network (CNN) based system [16], a hy-
brid fully connected neural network (FCNN) + recurrent
neural network (RNN) system [3], a hybrid deep belief
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network (DBN) + RNN system [27], and a hybrid DBN
+ hidden Markov model (HMM) system [33]. They all
show promising results comparable with or better than the
state-of-the-art in terms of metrics that are based on ma-
jor and minor triads. While last year there is a hybrid
DBN + Gaussian-mixture-hidden-Markov-model (GMM-
HMM) system [9] that tries to address the LVACE prob-
lem, it does not really pay special attention to the uncom-
mon chords during the training process.

This paper, on the other hand, proposes a scheme that
is dedicated to the uncommon and long-tail chords in the
large vocabulary. The LVACE system is implemented
with a standard feature extraction process and a bidirec-
tional long short-term memory recurrent neural network
(BLSTM-RNN) sequence decoder. Unlike the scaled like-
lihood estimation [15] that incorporates the prior distribu-
tion of chords into the estimation system, our large vo-
cabulary strategy is to make sure each chord type has an
uniform probability of being “seen” by the network at the
start of each training case. This is called the “even chance”
training scheme. Compared with a normal scheme that
picks training cases at random, evaluation results show that
the even chance training scheme can achieve much bet-
ter uncommon weighted chord symbol recalls and signifi-
cantly better average chord quality accuracy.

This paper is organized as follows: Section 2 elabo-
rates on the LVACE system design; Section 3 describes
the experimental setup, which contains the details of the
proposed even chance training scheme; Section 4 reports
and discusses the evaluation results; and finally Section 5
concludes the paper with the key findings and gives some
possible future directions of LVACE.

2. THE LVACE SYSTEM

Figure 1 shows an overview of the LVACE system,
which mainly contains a feature extraction module and
a BLSTM-RNN sequence segmentation and classification
module. In the following we will first elaborate on the
feature extraction process, and then discuss the working
mechanisms of the BLSTM-RNN.

2.1 Feature Extraction

The feature extraction process resembles the one described
by Deng and Kwok [9]. It starts by resampling the raw
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Figure 1. BLSTM-RNN LVACE system overview. The
raw audio is transformed by a feature extraction process
into a piece of notegram, and then decoded by a BLSTM-
RNN into a segmented chord sequence.

audio input at 11025 Hz, which is followed by a short-
time-Fourier-transform (STFT) with 4096-point Hamming
window and 512-point hop size. It then proceeds to trans-
form the linear-frequency spectrogram (2049-bin) to the
log-frequency spectrogram (252-bin, 3 bins per semitone
ranging from MIDI note 21 to 104) using the two cosine
interpolation kernels proposed by Mauch [20]. The output
at this step is a log-spectrogramXk,m, where k is the index
of frequency bins, and m is the index of time frames. The
total number of frames is M , and the total number of bins
in each spectrum is K (in this context K = 252).

The process then estimates the amount of deviation
from standard tuning using the algorithm in [10], where
the amount of detuning is estimated as:

δ =
wrap(−ϕ− 2π/3)

2π
, (1)

where wrap is a function wrapping its input to [−π, π)
and ϕ is the phase angle at 2π/3 of the discrete-Fourier-
transform (DFT) of

∑
mXk,m/M . The tuning frequency

τ is then given by:

τ = 440 · 2δ/12, (2)

and the original tuning is thus updated by interpolating the
original spectrogram Xk,· at Xk+p,·, where:

p = (log(τ/440)/ log(2))× 36, (3)

since there are 36 bins per octave (3 bins per semitone)
in Xk,·. The interpolation results will update the origi-
nal Xk,m, and the new Xk,m spectrogram will be referred
to as “notegram”, which will be the input feature of the
BLSTM-RNN sequence decoder.

2.2 Recurrent Neural Network

An RNN is a neural network with cyclical connections, so
that the network can be recurrently unrolled into multiple
frames [11, 17]. It can be used to model the conditional
probability of an output sequence Y (Y 1, Y 2, ...) given an
input sequence X(X1, X2, ...), where the superscripts de-
note time steps. With a forward hidden layer, it models

this relationship in a sequential manner, so that every out-
put frame Y t is conditioned on not only the current input
frame Xt but also all previous input frames X1:t. Besides,
if a backward hidden layer is added to the model, Y t will
be conditioned on the whole input sequence X . This mod-
ified network is called bidirectional recurrent neural net-
work (BRNN).

When the training sequence is long, the learning signal
may die down gradually via the back-propagation-through-
time (BPTT) [24]. This gradient vanishing phenomenon
[2] often makes the training ineffective or unsuccessful.
Using LSTM [13] units instead of normal non-linearities
within a (B)RNN is a useful way to circumvent this unde-
sirable effect.

2.3 BLSTM-RNN Architecture

The proposed LVACE system uses a BRNN with LSTM
units, or a BLSTM-RNN. It has a forward and a backward
hidden layer both with 800 LSTM units. The input layer
has 252 real-value nodes, connected to a notegram spec-
trum. The output layer is a #-chord-way softmax layer. In
this implementation, we use a typical LSTM configuration,
that all LSTM gates employ sigmoid activations, and that
both the LSTM cell and the LSTM output use hyperbolic
tangent activations. Note that this network is different from
the one in [9], in that this BLSTM-RNN could take a vari-
able length input sequence and generate multiple outputs,
but the other one is designed to handle a fixed length of
input with a single softmax regression output.

3. EXPERIMENTAL SETUP

This section describes the vocabulary, datasets and
training-validation schemes used in the experiments.

3.1 Vocabulary

The large vocabulary supported by the proposed system
is the SeventhsBass introduced in MIREX ACE 2013 1 . It
contains the “NC” chord 2 , all maj and min triads, all maj7,
min7, and 7 chords, and all of their inversions.

3.2 Datasets and Data Augmentation

Six datasets of 546 tracks are used during the experiments.
They contain both eastern and western pop/rock songs.
They are: 20 tracks from the Chinese pop song dataset
(CNPop20, or C) 3 ; 29 tracks from the JayChou dataset
(JayChou29, or J) 3 ; 26 tracks from the Carole King +
Queen dataset (K) dataset 4 ; 191 songs from the USPop
dataset (U) 5 ; 100 tracks from the RWC dataset (R) 6 ; and
180 tracks from the TheBeatles180 (B) dataset [14]. The
combination of datasets is notated by concatenating their

1 music information retrieval exchange:http://www.music-ir.
org/mirex/wiki/MIREX\_HOME

2 means “not a chord”, or “no chord”
3 http://tangkk.net/label/
4 http://isophonics.net/datasets
5 https://github.com/tmc323/Chord-Annotations
6 https://staff.aist.go.jp/m.goto/RWC-MDB/
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letter codes. For example, a combination of all datasets is
denoted as “CJKURB”.

To generate the training data, all raw audios are trans-
formed to notegram representations. The original segment-
wise ground truth annotations are upsampled to become
frame-wise annotations with 1-to-1 mappings to the note-
gram frames. Due to the absence of phase information in
notegram, all data can be transposed to 12 keys to yield 12
times the original amount of data [16].

3.3 Training and Cross-validation

Two different training schemes are used. The only differ-
ence between them are the way of choosing training cases
at each iteration:

• completely random (CR): a random training case is
chosen.

• even chance (EC): a training case starting with a cer-
tain chord type is chosen, and each chord type has an
even chance to be chosen as the start.

The EC training scheme is inspired by the skewed class
sensitive training methods [5]. Considering a skewed dis-
tribution of chords in the training set [4], a random sam-
pling scheme like CR will inevitably draw samples based
on that same distribution, which causes lack of exposure of
uncommon chords. The EC scheme, however, gives each
uncommon chord much more exposure during the training
process. Concretely, the EC scheme is formalized as fol-
lows in Algorithm 1:

Algorithm 1 EvenChanceTraining
Require: training data set - (X, y); number of chord

classes - nclass; early stopping flag - es.

od = BalancedOrderedDict(y, nclass)
iter = 0
while not early-stopping do

if mod(iter, nclass) is 0 then
coidx = random shuffle(0:nclass-1)

tclist = od(coidxmod(iter,nclass))
draw a random item e from tclist
update network with (X, y)e
iter++

The core of this procedure is the “BalancedOrdered-
Dict” which generates a dictionary of (track index, chord
change position) tuples indexed by chord classes. It is for-
malized in Algorithm 2, where each entry of od contains a
list of (track index, chord change position) tuples.

It should be pointed out that, besides chord classifica-
tion, the BLSTM-RNN has to also perform segmentation,
which means the training samples have to contain chord
segmentation boundaries for the network to learn from. As
a result, we set the length of each training case to be 500
frames, which contains multiple chords. Because of this,
there is still uneven distribution of common and uncom-
mon chords during the training process. The EC scheme

Algorithm 2 BalancedOrderedDict
Require: labels of training data set - y; number of chord

classes - nclass.

for each class i from 0 to nclass− 1 do
initialize an empty list od[i]

for each track index j in y do
for each frame poistion k in y[j] do

if k is a chord change position then
append (j,k) to od[y[j][k]]

return od

can guarantee a uniform chord distribution at the start of
each training case, but it does not try to alter the sampling
of the other chords. In effect, it only boosts the exposure of
uncommon chords to a certain level, but could not make the
chances of common and uncommon chords totally even.

The following describes the remaining training proce-
dures that apply throughout the experiments. We try to
report the precise settings of every parameter so that the
readers may reproduce the results:

• Each training case contains 500 frames of audio con-
tent with ground truth labels;

• The network update signal is computed by an
Adadelta optimizer [32];

• The training is regularized with dropout [28] and
early-stopping [23];

• All dropout probabilities are set to 0.5;

• All early-stopping criteria are monitored using the
validation error of the CNPop20 dataset, which is
not in any cross-validation set; The validation cycle
is 100 iterations;

• The model with the lowest validation loss will be
saved; If the current validation loss is smaller than
0.996 of the best one, the early-stopping patience
will increase by 0.3 times the current number of it-
erations;

• Training stops when the early-stopping patience is
less than the current number of iterations.

For evaluation, five-fold cross-validation (CV) is per-
formed throughout all experiments. Each fold is a combi-
nation of approximately 1/5 tracks of each dataset. Every
model is trained on four folds and cross-validated on the re-
maining fold, resulting in a total number of five validation
scores, the average of which will be the final scores to be
reported in Section 4. For this research to be reproducible,
all implementation details are made available online 7 .

4. RESULTS AND DISCUSSIONS

Throughout this section, we use the MIREX ACE stan-
dard evaluation metric, “weighted chord symbol recall”

7 https://github.com/tangkk/tangkk-mirex-ace
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(WCSR), to report system performances. The “chord sym-
bol recall” (CSR) is defined as follows:

CSR =
|S ∩ S∗|
|S∗|

, (4)

where S and S∗ represents the automatic estimated seg-
ments, and ground truth annotated segments, respectively,
and the intersection of S and S∗ is the part where they
overlap and have equal chord annotations. WCSR is the
weighted average of all tracks’ CSRs by the lengths of
these tracks:

WCSR =

∑
Length(Tracki) ∗ CSRi∑

Length(Tracki)
, (5)

where the subscript i denotes the ith track. Likewise, the
WCSR of a specific chord type is:

WCSRC =

∑
Length(Ci) ∗ CSRi∑

Length(Ci)
, (6)

where the subscript i denotes the ith instance of chord C
within the data set.

To measure the balanced performance of a system, we
report “average chord quality accuracy” (ACQA) [6]:

ACQA =

∑
WCSRC

# of chords
. (7)

which sums up the WCSRs of all chord types in the vocab-
ulary. Systems that over-fit a few chord types or neglect
uncommon chords tend to get lower ACQAs, while those
well balanced systems will have higher ACQAs.

The original scores in this section are computed using
the MusOOEvaluator 8 .

4.1 Sevenths, Inversions and ACQA

Table 1 shows the comparison between CR and EC train-
ing schemes on some uncommon (non-majmin) [4] chords’
WCSRs as well as the ACQA. The six chord types in the ta-
ble are chosen because they have relatively more weights
in pop/rock songs than the more long-tail ones such as
min/5 and min/b3. Note that maj/5 and maj/3 are also in-
cluded in two other large vocabularies proposed by Mauch
[20] and Cho [6].

maj7 7 min7 maj/5 maj/3 7/b7 ACQA
CR 7.3 6.6 24.1 4.5 24.5 0.0 10.8
EC 14.6 9.9 30.9 12.0 32.4 7.8 13.2

Table 1. Comparison between CR and EC: seventh chords,
inversions and ACQA scores; Dataset: JKURB

The results show that EC outscores CR in all categories,
some of which by very large amount such as maj/5 and
maj/3. Although not all chord types’ results are shown, the
ACQA results suggest that the EC training scheme could
lead to a much more balanced LVACE system under a
skewed class distribution.

8 https://github.com/jpauwels/MusOOEvaluator
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Figure 2. Multiple comparison test on ACQAs

We perform a Friedman test on the track-wise ACQA
results of both systems. After that we use the Tukey HSD
(honest significant difference) to perform a multiple com-
parison test on the Friedman test’s statistics with a signifi-
cance level of 0.05. The results as shown in Figure 2 con-
firm that EC is significantly better than CR in ACQA.

4.2 Major, Minor and WCSR

The EC trained system has a more balanced performance
than the CR’s, however, it scarifies common chords’
WCSRs. Table 2 shows the comparison between CR and
EC on some common (majmin) [4] chords’ WCSRs as well
as on the overall SeventhsBass WCSR.

maj min WCSR
CR 74.2 52.2 52.0
EC 67.8 51.4 50.6

Table 2. Comparison between CR and EC: major, minor
and WCSR scores; Dataset: JKURB

Although the two schemes have very close scores on
min, there is a large difference in maj. Due to the domi-
nantly large weight of maj chords in the JKURB dataset
combination, it eventually leads to CR’s much higher
WCSR, despite EC performs better in most of the other
chord types. CR’s much higher maj WCSR is not unex-
pected: since it draws each training case at random, the
probability that each chord type gets “seen” by the neu-
ral net is subject to the distribution of chord types in the
training dataset, and therefore the maj chords are “learned”
much more than the other chords.

1.35 1.4 1.45 1.5 1.55 1.6 1.65
Friedman test with Tukey HSD: on WCSR

CR-JKURB

EC-JKURB

Figure 3. Multiple comparison test on WCSRs
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We perform a Friedman test on the track-wise WCSR re-
sults of both systems. After that we use the Tukey HSD to
perform a multiple comparison test on the Friedman test’s
statistics with a significance level of 0.05. The results as
shown in Figure 3 confirm that CR is significantly better
than EC in WCSR.

4.3 On Different Datasets

For more convincing comparison results, the same exper-
iment is run 4 times using different dataset combinations.
Table 3 shows the results of JK, JKU, JKUR and JKURB.
We only report the WCSR and ACQA for brevity.

CR-WCSR EC-WCSR CR-ACQA EC-ACQA
JK 46.4 46.4 13.5 15.5

JKU 50.4 49.1 11.2 13.5
JKUR 50.1 49.6 12.8 14.5

JKURB 52.0 50.6 10.8 13.2

Table 3. Comparison between CR and EC: WCSR and
ACQA on different datasets.

In all these experiments, the EC systems get higher
ACQAs, but lower or equal WCSRs, than the CR systems.
It is sufficient to say that EC is better at training a bal-
anced performing LVACE system under skewed class dis-
tribution, while CR is better at training an LVACE system
with higher overall performance.

For both training schemes, the increment of training
data will lead to the increase of WCSR, but the same thing
does not happen in ACQA. Assuming that every dataset
contains a certain amount of noise (i.e., mis-labeled or mis-
segmented chord regions), this observation could be tenta-
tively explained as follows. WCSR is mostly relying on the
quality of majmin chord labels, which are on average eas-
ier to be labeled. Therefore the increment of data will also
increase the WCSR score. ACQA, however, is mostly rely-
ing on the quality of non-majmin chord labels, which are
on average more difficult to be labeled. Therefore the in-
crement of data could not guarantee the increase of ACQA
score, since it is hard to guarantee the proportion of non-
majmin noise in the incremental data is smaller than those
of the original data.

5. CONCLUSIONS

This paper presents a BLSTM-RNN based LVACE sys-
tem, trained using a skewed class oriented “even chance”
scheme. This scheme is compared with a more intuitive
“completely random” scheme that chooses training case
randomly at each iteration. Evaluation results demonstrate
that the EC training scheme is superior in both the uncom-
mon (non-majmin) chords’ WCSRs and the ACQA, at the
expense of the common (majmin) chords’ WCSRs and the
overall WCSR.

A successful LVACE system is marked by both high
WCSR and high ACQA, because human chord recognition
experts are able to achieve both of them. The EC training
scheme is a technique to improve a system’s ACQA, thus

it is a valuable approach to consider when we design an
LVACE system in the future.

The fundamental driving force of LVACE research
should be the ground-truth data and their qualities, espe-
cially the qualities of the uncommon or long-tail chords.
As we see in the discussion above, ACQA is very vulner-
able to uncommon chords’ quality. Therefore, it might
be possible that in the future as we gradually increase the
amount of ground-truth data, we could use ACQA in a way
to perform sanity check on the quality of the incremental
data.
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