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ABSTRACT

Most of cover song identification algorithms are based
on the pairwise (dis)similarity between two songs which
are represented by harmonic features such as chroma, and
therefore the choice of a distance measure and a feature has
a significant impact on performance. Furthermore, since
the similarity measure is query-dependent, it cannot rep-
resent an absolute distance measure. In this paper, we
present a novel approach to tackle the cover song identi-
fication problem from a new perspective. We first con-
struct a set of core songs, and represent each song in a
high-dimensional space where each dimension indicates
the pairwise distance between the given song and the other
in the pre-defined core set. There are several advantages
to this. First, using a number of reference songs in the
core set, we make the most of relative distances to many
other songs. Second, as all songs are transformed into the
same high-dimensional space, kernel methods and metric
learning are exploited for distance computation. Third, our
approach does not depend on the computation method for
the pairwise distance, and thus can use any existing algo-
rithms. Experimental results confirm that the proposed ap-
proach achieved a large performance gain compared to the
state-of-the-art methods.

1. INTRODUCTION

A cover song, or simply cover, is a new version of existing
music that is recorded or arranged by another musician. A
cover reuses the melody and lyrics of the original song,
but it is performed with new singers and instruments. The
other musical factors such as key, rhythm, and genre can
be reinterpreted by the new artist. Since the copyright of
composition and lyrics of the cover still belongs to the au-
thor of the original song, releasing a cover song without
permission of the original author may cause a legal con-
flict. Another case is music sampling, which is the act of
process that reuses a snippet of existing sound recordings.
The sampling is widely considered to be a technique for
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creating music today, but licensing that the original cre-
ator authorizes its reuse is a legal requirement. Cover song
identification is a task that aims to measure the similarity
between two songs. It can be used to prevent the infringe-
ment of copyright, and also to be an objective reference in
case of conflict.

For a decade, many approaches for cover song identi-
fication have been proposed. Humans generally recognize
the cover through the melodic or lyric similarity, but sep-
aration of the predominant melody from a mixed music
signal is still not at a reliable level, and extraction of the
lyrics can be attempted only if it is clearly separated. For
this reason, most of the existing algorithms use the har-
monic progression represented by an acoustic feature such
as chroma [6], and measure the similarity in the features to
determine the distance between two songs.

Cover song identification generally consists of two main
stages: feature extraction and distance calculation. In
most related works, chroma or harmonic pitch class pro-
file (HPCP) are usually chosen, as well as its variants such
as CENS [9], CRP [8], and MPLPLC [2]. It is reported that
the abstraction of the chroma-like feature to focus on the
chord progression rather than instantaneous note changes
improves the identification performance [2, 15]. In early
days, the feature was synchronized with the beat to take
into account the covers with different tempo [4]. However,
since the error in beat tracking degrades the performance
and the tempo change is usually not extreme, the hop size
with a fixed length is recently preferred [14]. Besides,
two-dimensional Fourier transform magnitude (2DFTM)
of the chroma feature is applicable for large-scale cover
song identification [1]. The 2DFTM is key-invariant and
thus does not require any preprocessing for key transposi-
tion. Also, regardless of the duration of the song, its fixed
size has the advantage of keeping the locality.

In respect to the distance calculation, an early approach
finds the best-correlated point using cross-correlation of
the beat-synchronous chroma [4]. The next popular ap-
proach is based on dynamic time warping (DTW), which
can be sensitive to tempo changes even when the hop size
is fixed [14]. This approach uses the overall distance af-
ter aligning over the whole region of the two given songs.
On the other hand, a more recent approach called similar-
ity matrix profile (SiMPle) yields a high similarity when
many local similar regions are found [15].

The conventional approaches described above calculate
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Figure 1. (a) The original distance between a query ¢;
and the other songs. (b) The distance between each query
and the core set C. (c) New representation of songs in the
|C|-space.

the distance between a query and the songs to be com-
pared, and determine that the song with the nearest dis-
tance is highly likely to be a cover. Since this process is
separate from each query, the result from “another version
of the same cover” cannot be taken into account. If it is
possible, songs with different lengths can be represented
in the same space. Furthermore, if similar/dissimilar song
pairs are known, the metric to measure the song distance
can be optimized, rather than using the Euclidean distance.
Instead of taking the distance matrix directly to rank the
similarity, we first perform a nonlinear transformation us-
ing kernel principal component analysis (KPCA) to rear-
range each song in the high-dimensional space. Next, the
distance metric is learned from song pairs in the new rep-
resentation and their labels. We select “core songs” with
diverse musical properties and use them for both embed-
ding and training. In summary, our approach assumes that
the distance between the core set and each song can be a
discriminating feature to easily group the same covers. The
conceptual illustration of this new representation is shown
in Figure 1.

The goal of this paper is to examine whether the dis-
tance metric learning can be effective to retrieve the simi-
larity between songs. Also, this paper aims to achieve the
best performance in cover song identification by applying
the metric learning to the distance matrix generated by ex-
isting algorithms. Currently, MIREX hosts an annual task
for cover song identification, but the dataset is not publicly
available. In the later section, we report a performance
comparison using our own dataset with the same specifica-
tion as that of the MIREX.

The rest of this paper is organized as follows. Sec-
tion 2 defines some important terms throughout this pa-
per, and summarizes three popular algorithms for measur-
ing the distance between songs. In section 3, we describe
the technical method for better representation of songs and
metric learning. After that, the experimental setup and re-
sults are presented in section 4. Finally, the conclusions of
this paper are drawn in section 5.

2. DISTANCE MATRIX

The distance matrix is defined by a two-dimensional ma-
trix that contains the pairwise distances for all possible
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Figure 2. Block diagram of the proposed method.

combinations of two songs. The range of distance may
vary depending on the algorithm, but it should be low be-
tween songs belonging to the same cover group, and should
be high if they are not associated.

We define three sets of songs as follows:

e Query set (Q): A set of songs to be a query for iden-
tification. Each cover group consists of the same
number of versions.

e Evaluation set ([£): A set for performance evaluation
which includes the query set Q. The remainders are
“confusing songs” that are not associated with any
cover groups.

e Core set (C): An additional set of songs for embed-
ding and training in the proposed method. It is good
to select songs in the core set with diverse musical
styles (i.e. genre, tempo, instruments).

Among these sets, Q C E and EN C = & should be
satisfied.

The distance matrix is a square matrix calculated from
all the songs in the three sets. We employed three al-
gorithms for measuring the song-wise distance: dynamic
time warping (DTW), Smith—Waterman algorithm, and
similarity matrix profile (SiMPle). In the following sub-
sections, we give a brief overview of each algorithm to
construct the distance matrix.

2.1 Dynamic Time Warping

DTW performs dynamic programming to retrieve the op-
timal path that minimizes the warping cost. Given a se-
quence A of length n and a sequence B of length m, it
constructs an n-by-m matrix that contains the Euclidean
distance J; ; between both sequences at two time instances
¢ and j. The cumulative distance +; ; is the sum of the
distance in the current point and the minimum cumulative
distance from the three adjacent points,

Vij = 0ij +min (vi—1 j—1,Yi-1,5, Vij—1)- (1)

The overall distance between two sequences A and B is
determined by the cumulative distance at the end of the

629



Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017

path,
dA,B = Yn,m- (2)

To prevent unrealistic warping and reduce the number
of paths to consider, DTW can be implemented with global
and local constraints. The two popular global constraints
are Sakoe—Chiba band [11] and Itakura parallelogram [5].
On the other hand, the local constraints allows deviations
of the double or half the original tempo by using warpings
(i—1,i—1),(i—2,j—1),and (s — 1,5 — 2) [10].

2.2 Smith—-Waterman Algorithm

Similar to DTW, Smith—Waterman algorithm performs dy-
namic programming to find the optimal path that max-
imizes the similarity score between two sequences [16].
The main difference to the classic DTW is that the optimal
path is produced locally. That is, it is not necessary that
the path with the maximum similarity covers the whole se-
quence. Given a sequence A of length n and a sequence B
of length m, it constructs an (n + 1)-by-(m + 1) scoring
matrix H. The first row and column are initialized with 0.
The recursion formula to fill the rest of the scoring matrix
is,

H;_1 ;-1 + s(a;, bj),
maxkzl{Hi,kJ — Wk}7
max&l{Hi’j,l — W1}7
0

3

Hi’j = max

where s(a;, b;) is the similarity score between ith element
of A and jth element of B, and W, is the penalty of a
gap with length n. The overall similarity of the Smith—
Waterman algorithm is defined as the maximum value on
the scoring matrix.

2.3 Similarity Matrix Profile

Similarity matrix profile (SiMPle) efficiently evaluates
similarities between songs based on subsequence similar-
ity joins in the features [15]. For a time-frequency repre-
sentation A of length m and B of length n, SiMPle iden-
tifies the nearest neighbor of each continuous subsets in A
from all continuous subsets in B. Euclidean distance be-
tween the subset of A with time index ¢ and the subset of B
with time index j, d; ;, is calculated using MASS (Mueen’s
Algorithm for Similarity Search), the fastest known algo-
rithm for distance vector computation [7].

d; ; = MASS(A[i], B[j]) (4)

SiMPle P; is obtained by choosing the minimum value in
the distance between a subset of A and each subset of B.
Pi = min(di,l7 di,27 e 7di,7L) (5)

The overall distance between two sequences A and B is
defined as the median value of SiMPle [15].

da,p = median(FP;) (6)

Note that SiMPle is not a symmetric distance measure, i.e.,
dp A #da,B.

3. DISTANCE METRIC LEARNING

Distance metric learning has been studied in machine
learning literature. Classical metric learning algorithms are
motivated by Mahalanobis distance given as

d(z1,22) = \/(1’1 —x2)TE 1z — x2), (N

where ¥ is the covariance matrix of X. The main intu-
ition behind Mahalanobis distance is that it calculates the
Euclidean distance in a linearly transformed space by R,
where RTR = S~!. Mahalanobis distance is a conve-
nient metric since it is scale-invariant, and it takes the cor-
relations of data set into account. The linear transform R
makes the data have the isotropic covariance as the same
as the covariance of multivariate normal distribution. The
goal of metric learning algorithms is to learn A, which cor-
responds to the precision matrix (¥ ~1) based on a variety
of criterion.

d(z1,29) = \/(xl —29)TA(z1 — x2), (8)

where A is a symmetric positive semidefinite matrix A >
0, A = AT, Training may require additional labels such as
classes and similar/dissimilar pairs depending on the ob-
jective of the frameworks.

The main difficulty to apply the classical metric learn-
ing algorithms to cover song identification problems is that
the songs should be represented in a vector space. One
simple approach is to extract a set of fixed length features
from songs, e.g., mean MFCCs, mean Chroma, and beats
per minute (BPM). But these features do not capture the
temporal information within a song. So, a variety of time
series analysis methods has been shown to be more effec-
tive such as dynamic time warping (DTW).

Can we embed songs in a vector space preserving the
temporal information? If this is possible, then distance
metric learning algorithms are able to find a better distance
between songs with both the temporal information and ad-
ditional labels (similar/dissimilar pairs or classes). One op-
tion is kernel PCA. Fortunately, distance metric learning
can be extended in the context of kernel methods as well.
The kernel methods do not require the original data to be in
a vector space. We can get a gram matrix (or inner product
matrix) by pairwise dissimilarity measures. For embed-
ding, other embedding algorithms can be used for instance
multidimensional scaling (MDS), ISOMAP, locally linear
embedding (LLE) and so on. We discuss our framework
to calculate the gram matrix and embed songs in a vector
space shortly.

3.1 Embedding of songs

As discussed above, we start from a pairwise dissimilarity
measures. We calculate the distance matrix as described
in Section 2. The gram matrix in the conventional kernel
methods should be symmetric positive-semidefinite ma-
trix. If the matrix is given as not symmetric (e.g. SiMPle),
it needs to be symmetrized by d; ; = 1 (di; +dj;), where
d; ; is defined in Eqn (6).
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After symmetrization of the distance matrix, we per- mization program is given as
form a kernel PCA. PCA seeks for eigenvectors of the co-
variance matrix of the data given as min Z max(0, Tr(AZ;; ZZ) —u)
A
(4,5)€S
N
c- L S il ©) + Y max(0,1 - Tr(AZ;Z)),  (12)
N < (i.4)€D

Similarly, kernel PCA seeks for eigen functions of the co-
variance function. In other words, Given a nonlinear func-
tion ®(-) to map data to feature space, the covariance ma-
trix is calucated by

N
_ 1
C= NZ@(xi)@(xi)T, (10)

where ®(z) is centered, i.e., va ®(z;) = 0. Thanks
to the kernel trick, without performing the map ®, ker-
nel methods can be computed by kernel functions K;; =
k(z;,xj) = (®(z;), ®(x;)). In this paper, we used the Ra-
dial basis function (Gaussian kernel). The kernel function
is given by

d)?
= exp <(222 ) (11)

where d;; is the symmetrized dissimilarity measure (dis-
tance) and o is a tuning parameter. So only with the
pairwise dissimilarity measure, the gram matrix for ker-
nel PCA is obtained. The remaining procedure is similar to
classical PCA. For more details, we refer the reader to [12].

Let z1, - - - , 2y be the new representation of songs from
KPCA described above. In our experiments, the number
of basis functions and the bandwidth ¢ in Eqn (11) were
empirically selected.

Remarks. When KPCA embeds songs in a vector space
based on dissimilarity measured by SiMPle, we found that
in the vector representations of some songs may have ex-
tremely large norms. So regardless of the metric learned by
A in Eqn (8), these songs tend to have large distance from
most of other songs. In other words, these songs cannot be
detected as a cover song. To prevent this problem, we nor-
malized the vector representation of songs zj,--- , zy by
their ¢ norms. All songs now are on the unit sphere and
the problem can be alleviated. The empirical performance
gain is provided in Section 4.3. The normalized vector rep-
resentation will be used for metric learning.

3.2 Metric Learning

We adopt the Information-Theoretic Metric Learning
(ITML) [3] except the regularization to make A close to
the prior Ay, which is selected by users. Let S and D be
a similar set and a dissimilar set, respectively. Then opti-

st. A= 0and AT = A,

where Z;; = z; — z; and Tr(-) is the trace. The input
z; for the metric learning in Eqn (12) is the new (normal-
ized) representation of ith song obtained by KPCA. The
objective of this metric learning is to seek for an A matrix,
which make the distance of dissimilar pairs larger than a
threshold [ (and the distance of similar pairs smaller than
a threshold w). A similar pair consists of an original song
and its cover song, or it can be two cover songs from an
original song. The dissimilar pairs in our experiments are
all possible pairs of songs except the similar pairs.

The way we label the relationship between songs natu-
rally yields highly skewed labels. For example, if two out
of ten songs are the only covers, then we have one similar
pair against (120) — 1 = 44 dissimilar pairs. Interestingly,
it turns out that the skewness of labels does not hurt the
performance of our framework. Rather, as the number of
dissimilar pairs increases, the performance increases. Our
experiment evidences this phenomenon, see Section 4.3.

The formulation in Eqn (12) is optimized by projected
stochastic subgradient descent as in Alg. 1. Since the ob-
jective function is a nonsmooth and convex function, we
used the subgradient descent function. Also for the sym-
metric positive semidefinite constraint, the projection is
added in line 12. The step size « can be updated by any
reasonable method.

Algorithm 1 Projected SSGD for metric learning.
1: for k=1:maxiter do
2: DATA’ = randperm(DATA)

3 for (i, j) = DATA’ do

4: p=20

5: if (i,7) € S then

6: if max (0, Tr(AZ;; Z};) — u) > 0 then
8: else

9: if max (0,1 — Tr(AZ;; Z;)) > 0 then
10: p= —ZLJZ,LJ;

11: A=A—ap

12: A = mpu(A)

13: update «

4. EVALUATION
4.1 Dataset and Metrics

We used two separate datasets to evaluation and train our
method. The specification of our evaluation dataset resem-
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Figure 3. Improved performance by each step in the proposed method: the original distance matrix, kernel PCA, and

metric learning with kernel PCA.

bles as in the MIREX cover song identification task ! . The
evaluation set [E consists of 330 cover songs, which make
the query set Q, and 670 non-covers. There are 30 differ-
ent kinds of cover songs and each has 11 cover versions.
The training dataset consists of 254 covers and each cover
has two to five different versions, and have 1,175 songs in
total. It was used as the core set C in the experiments. Both
datasets are disjoint, and contain various genres of Korean
pops released from 1980 to 2016.

We employed four conventional metrics that have been
used in the MIREX: total number of covers identified in top
10, mean number of covers identified in top 10 (MNIT10),
mean average precision (MAP), and mean rank of the first
correctly identified cover (MR1). In the experimental re-
sults, we skipped the first one because it is exactly the same
as the second metric multiplied by |Q).

4.2 Experiments

Since selection of features and calculation of pairwise song
distance are not our interest, the chroma energy normalized
statistics (CENS) [9] was fixed as the feature vector and
extracted for every half a second in all the following ex-
periments. Also, before calculating the distance between
two songs, we transposed one using the optimal transpose
index (OTI) [13] so that both songs have the same key.

In the first experiment, we examined the effect of two
proposed steps on identification performance: new rep-
resentation transformed by the kernel PCA, and the met-
ric learning using similar/dissimilar pairs in the core set.
135 basis functions were empirically selected, and 2435
similar pairs (for covers) and 687k dissimilar pairs (for
non-covers) were used as training data for metric learning.
This experiment allows reporting the maximum perfor-
mance we could achieve and how each part of the proposed
method contributes to the performance improvement.

The second experiment aims to verify that the metric
learning converges to a higher performance as more train-
ing data are used. We tested different numbers of the train-
ing data, which are song pairs in the core set. Songs are
randomly chosen with the given number of pairs in each
class. Since we have much less similar pairs than dissimi-

"http://www.music-ir.org/mirex/wiki/2016:
Audio_Cover_Song_Identification

lar pairs, the training will be imbalanced when all possible
similar pairs are used. In this experiment, we fixed the
original distance measure by the SiMPle algorithm.

4.3 Results and Discussions

The first experimental result is shown in Figure 3. When
comparing the original performance of the existing algo-
rithms, Smith—Waterman algorithm achieved 26% higher
performance than classic DTW. This is almost the same re-
sult as reported in a previous work [15]. The SiMPle algo-
rithm, which we consider to be the state-of-the-art method,
originally scored a slightly lower performance than Smith—
Waterman algorithm in our experiment. However, the pro-
posed method improved its original performance by 25%
(in MNIT10), which was the largest improvement. Algo-
rithms based on dynamic programming (DP) seem to have
limitations in potential performance gain. One possible
reason is that the differences in distance between similar
and dissimilar pairs are not so discriminated; while the
SiMPle mainly depends on local similarity joins with a
fixed length of 10 seconds, DP-based algorithms may take
much longer sequences into account. Meanwhile, MR1
was increased by the metric learning. This will be dis-
cussed in detail in the next paragraph.

Figure 4 shows the learning curve of the metric learn-
ing with different number of pairs. A hundred pairs for
each class were not sufficient to converge. As more pairs
were used for training, both MNIT10 and MAP converged
to higher performance. This result was also obtained when
more but imbalanced training data was used. Interestingly,
the trend of MR1 increased after a certain number of it-
erations. This is caused by that the metric learning con-
centrates on the performance for a large majority of query
songs, while it fails for very few queries. To support this,
we first calculated the median instead of the arithmetic
mean rank, and noticed that the correct cover had the high-
est similarity in most queries (i.e. median = 1) for every
number of pairs and iteration. Nevertheless, since it is not
suitable to show that the performance is getting improved
with more iterations, the 90th percentile of rank of the first
correctly identified cover (PooR1) is shown instead in the
figure.

In summary, our experiments confirm that the use
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Figure 4. Learning curve of the metric learning with dif-
ferent number of pairs (similar, dissimilar). The black dot-
ted line indicates each metric resulted from the original dis-
tance matrix.

of KPCA and metric learning on the SiMPle algorithm
achieves the highest performance in a general situation.
Although MR1 was increased by metric learning, it was ex-
plained by the second experiment showing that the trained
metric failed only for a very small number of queries,
while it was optimized for the most of queries. Since met-
ric learning takes longer computation time and its perfor-
mance improvement was not prominent as much as KPCA,
it is possible to expect a good performance gain using
empirically optimized parameters of KPCA for a fixed
dataset. However, considering that scalability is an im-
portant issue in cover song identification, metric learning
cannot be excluded especially for large-scale collections.

In the new representation through KPCA, each dimen-
sion represents the distance from each core song. This
implies that core songs with diverse styles of music al-
lows dimensions to be nearly orthogonal, and may yield
better performance. In the metric learning, on the other
hand, higher performance could be achieved with a suffi-
cient number of similar and dissimilar pairs for training. It
is not easy to satisfy both of the above conditions simul-
taneously, because collection of songs with various styles
includes songs that are not very popular and rarely cov-
ered. Therefore, when a high recall is required (to avoid
very low identification performance for very few queries),
it is expected that it can be more important to have many
similar pairs than various styles.

5. CONCLUSIONS

In this paper, we have presented a novel approach to im-
prove the performance of existing algorithms for cover

song identification. Our approach exploits an external set
of core songs so that all the given songs are newly repre-
sented by the distance between each core song. Through
the distance metric learning after embedding of songs us-
ing kernel PCA, the original performance of the state-of-
the-art method was improved by more than 20%.

With different features and distance measures, the pro-
posed method can be easily applied to similarity analysis
of other tag-based data such as genre, mood, and style. We
plan to further explore our approach to many other MIR
tasks, and seek for proper criteria to choose the core set
from large-scale collections. A sufficient number of well-
organized core songs and efficient computation for metric
learning will be also studied in the next step.
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