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ABSTRACT

This work addresses the Optical Music Recognition
(OMR) task in an end-to-end fashion using neural net-
works. The proposed architecture is based on a Recurrent
Convolutional Neural Network topology that takes as input
an image of a monophonic score and retrieves a sequence
of music symbols as output. In the first stage, a series of
convolutional filters are trained to extract meaningful fea-
tures of the input image, and then a recurrent block models
the sequential nature of music. The system is trained us-
ing a Connectionist Temporal Classification loss function,
which avoids the need for a frame-by-frame alignment be-
tween the image and the ground-truth music symbols. Ex-
perimentation has been carried on a set of 90,000 synthetic
monophonic music scores with more than 50 different pos-
sible labels. Results obtained depict classification error
rates around 2 % at symbol level, thus proving the po-
tential of the proposed end-to-end architecture for OMR.
The source code, dataset, and trained models are publicly
released for reproducible research and future comparison
purposes.

1. INTRODUCTION

Large-scale analysis of music is of great interest, and so
many computational tools have been developed for such
purpose. Quite often, the bottleneck for exploiting these
ideas is the lack of large corpora of symbolic music.

The transcription of sheet music into some machine-
readable format can be carried out manually. However, the
complexity of music notation inevitably leads to burden-
some software for music score editing, which makes the
whole process very time-consuming and prone to errors.
As a consequence, the development of automatic transcrip-
tion systems for musical documents is gaining importance
over the last years.

The field devoted to address this task is known as Opti-
cal Music Recognition (OMR) [1]. Typically, an OMR tool
takes an image of a music score and provides its symbolic
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content encoded in some structured digital format such as
MEI or MusicXML. Unfortunately, OMR is a challeng-
ing problem, and results have not been very promising so
far [18].

The process of automatically recognizing the content of
a music score is complex, and therefore the workflow of an
OMR system is very extensive. Previous proposals related
to this task focus on specific aspects of the pipeline, such
as the binarization of the image [14], the detection of the
staves [2], the separation between lyrics and music [3], the
staff-line removal [8]—which may be even considered as
a task by itself [7]—or the classification of isolated sym-
bols [17]. It therefore comes as no surprise that no work
have directly addressed the whole OMR process for mod-
ern western notation. We only find full recognition propos-
als for old music [5,15,16] that, in spite of involving music
notation, entails a very different challenge.

One of the practical aspects that constrains end-to-end
OMR research is the difficulty of obtaining an aligned
dataset containing the labeled music symbols along with
their exact position in the image of the score. Note that,
from a musical perspective, it is not necessary to retrieve
the exact position of each music symbol in the image since
the important information is the succession of the music
figures. Thus, it seems interesting to tackle the OMR task
in an holistic fashion, in which the output is directly the se-
quence of symbols present in the score image disregarding
their exact position in pixels.

Our work aims at setting the basis towards the develop-
ment of systems that can directly work with a greater part
of the OMR workflow. For that, we propose the use of
recurrent neural networks, which have been applied with
great success to many sequential recognition task such as
speech recognition [11], handwriting recognition [12], or
automatic music transcription [20]. The premise is that
the network works on a single staff section, much in the
same way as most Optical Character Recognition systems
focuses on recognizing words appearing in a given line im-
age [21, 23].

The traditional limitation of such type of networks is
that they require a strongly-aligned training set, i.e., the
network has to be provided with the desired output of the
recurring block for every single input frame of the im-
age. This constraint has typically led to consider other
sequential models such as hidden Markov Models, which
can be trained with just pairs of input images and tran-
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script sequences. Nonetheless, Graves et al. [10] proposed
a method to train recurrent networks with unaligned data
known as Connectionist Temporal Classification (CTC).
The CTC is actually a loss function that focuses on the de-
sired output sequence, regardless of which frames output
each symbol.

For the precise case of this work, we rely on the Convo-
lutional Recurrent Neural Network (CRNN) architecture
for scene text recognition proposed by Shi et al. [19]. A
CRNN is a deep neural network that comprises a series
of convolutional layers, which focus on learning a suitable
representation of the input image, followed by recurrent
layers, which deal with the sequential nature of the task.
In order to jointly train the network in an end-to-end fash-
ion, the CTC loss function is considered.

Besides text recognition, Shi et al. also evaluated
CRNN with a small number of music scores, just to as-
sess its capabilities for any sequence-based task. Taking
this work as a starting point, we further study the poten-
tial of the mentioned end-to-end CRNN model for the case
of OMR. More precisely, our contributions are: (i) the re-
design and optimization of the original CRNN architecture
for this particular task; (ii) a thorough and quantitative as-
sessment of the proposed architecture in terms of a large
collection of more than 90,000 monophonic music scores.

The rest of the paper is structured as follows: Section 2
describes the details of the corpus created for this work;
Section 3 describes the end-to-end model proposed; the
evaluation procedure as well as the results obtained are
shown and discussed in Section 4; finally, Section 5 con-
cludes the work and proposes future lines to address.

2. CORPUS GENERATION

For assessing the proposed scheme we generated a set of
monophonic score images together with their ground-truth
annotations disregarding any frame-level alignment for the
case of end-to-end training. This set contains 94,984 ran-
dom sequences from a vocabulary of 52 Common Western
Music Notation symbols: music notes from C4 to E5 (10
pitches), four possible note durations (half, quarter, eighth,
and sixteenth) and their four respective silences, three time
signatures (3/4, 4/4, and 6/8), accidentals (sharp, flat, and
natural), the treble clef, and the bar line.

All the scores follow this structure: an initial clef; a
set of alterations for the key of the piece; the time signa-
ture; the music content, being always the bar line annotated
as it constitutes a symbol to be recognized. Note that bar
lines are not randomly placed in the score but in their cor-
responding positions at the end of each complete bar.

The length of the generated sequences is random, with
a minimum length of 4 symbols and a maximum of 37.
Figure 1 shows a histogram of the length of the produced
sequences.

The generation of the music content is random, i.e., no
restriction is imposed about the pitch interval between two
consecutive notes or their respective duration. Similarly,
accidentals are randomly applied to further increase the
variability in the scores. Given a sequence of music sym-
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Figure 1. Histogram of the length of the sequences of the
corpus.

bols we generated the image scores with the music engrav-
ing software Lilypond 1 . Figure 2 shows two examples of
music scores along with their ground-truth annotations.

(a) Simple score (8 symbols)

(b) Challenging score (34 symbols)

Figure 2. Example of scores depicting different levels
of difficulty from our collection, along with its associated
ground-truth.

3. FRAMEWORK

Our OMR approach is based on a Convolutional Recur-
rent Neural Network (CRNN) which takes as input an im-
age of a monophonic staff section and directly outputs
the sequence of music symbols, with no previous symbol
segmentation or staff-line removal process. A conceptual
scheme is illustrated in Figure 3.

Before the actual CRNN, we assume that a preprocess-
ing step identifies and segments the different monophonic
staff sections from the initial image for processing them in-
dependently. While this may be seen as a strong assump-
tion, there exist algorithms in the literature that success-
fully address this task [6]. Once this monophonic staff sec-
tion is segmented, the resulting image is normalized (pixel
values between 0 and 1), rescaled to an aspect ratio of 1:4

1 http://lilypond.org/
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Figure 3. Conceptual scheme of the proposed approach. The input score is processed with a series of convolutional filters;
the resulting features are then processed by the recurrent layers to model the temporal context of the piece; a frame-wise
transcription using CTC is performed to obtain the estimation in an end-to-end fashion.

(i.e., the width is four times the height), and used as input
to the CRNN. We established that this ratio is adequate for
the task at issue by means of informal testing.

Table 1 shows the specific details of the proposed
CRNN architecture, whose configuration and parameter-
ization were determined experimentally. First, the im-
age is processed with a series of convolutional layers
which use Rectifier Linear Unit (ReLU) activation func-
tions, followed by max pooling layers. Then, the out-
put of the convolutional block is reshaped to serve as in-
put to a recurrent neural network block, which is com-
posed of three Bidirectional Long-Short Term Memory
(BLSTM) networks [9, 13] with 256 hidden units. Finally,
a fully-connected layer with a SoftMax activation function
is added to retrieve the most likely class of each frame.

The CRNN model is trained using a batch size of 32
samples (i.e., 32 monophonic staff sections), RMSprop as
the gradient descent method, and the aforementioned CTC
as the loss function. We set 20 epochs for the training of
the model and selecting the configuration that minimizes
the validation error.

Note that the output of the CRNN is a framewise pre-
diction that must be processed to obtain the actual output
symbol sequence. However, this process is very straight-
forward because the CTC loss function forces the network
to predict a blank symbol to indicate the separation be-
tween consecutive symbols [10].

4. EVALUATION

4.1 Partitions

We split the generated corpus in three fixed partitions:
training and validation, which are meant to train the model
and select the most appropriate hyper-parameters of the
network, and a test partition to eventually assess the per-
formance of the system. These sets represent the 60 %,
20 %, and 20 % out of the total set of available scores,
respectively.

Table 2 describes these partitions in terms of the number
of scores, measures, and running symbols in each of them.
It must be noted that at least one element of the vocabulary
appears in all the partitions, and so there are no out-of-
vocabulary elements.

4.2 Metrics

In order to assess the performance of the proposed method
we consider three metrics which allow the evaluation at
different levels:

• Score-level error rate (Se): ratio of scores that are
not correctly recognized in their entirely (i.e., con-
tain at least one error amongst the estimated ones).

• Edit distance (Ed): average number of edit oper-
ations to convert the predicted sequence into the
ground-truth one.

• Normalized edit distance (EdN
): same as the Edit

distance metric but normalizing each sequence by
its length.

Note that the relevance of each metric depends on the fi-
nal scenario. If a totally autonomous system is pursued, it
is important to pay attention to the score-level error. How-
ever, quite often it is assumed that an expert user will su-
pervise the output of the system because guaranteeing a
error-free model is not feasible [4]. In this case, therefore,
it is more interesting to measure the errors at the symbol
level, which is more related to the number of corrections
to be made.

4.3 Results

Input images must be resized to fixed dimensions for the
input of the network. As mentioned earlier, an aspect ra-
tio of 1:4 was chosen. Thus, we have experimented with
values involving 40× 160, 50× 200, and 60× 240.

For each case, network parameters are optimized by
means of the training set, while the validation set is used
to find the most appropriate epoch to stop. The metric cho-
sen to determine the performance after each epoch during
training is the normalized edit distance (EdN

).
Once a model is trained, predictions are made on the

samples of test set. Table 3 shows the results of our se-
ries of experiments in terms of the three figures of merit
previously described.

An initial remark to begin is that all input sizes behave
similarly. In all the cases, a remarkable performance at
symbol level is attained, with figures lower than 0.6 and
4% for Ed and EdN

, respectively. It is true, however, that
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Block Configuration

Convolutional
Conv(64,3,3)

MaxPool (2,2)

Conv(128,3,3)

MaxPool (2,2)

Conv(256,3,3)

Conv(256,3,3)

MaxPool(2,1)

Conv(512,3,3)

Conv(512,3,3)

MaxPool(2,1)

Recurrent BLSTM (256) BLSTM (256) BLSTM (256) FC (52)

Table 1. Description of the CRNN architecture considered. Notation Conv(f,w,h) stands for a layer with f convolution
operators of size w× h pixels followed by a ReLU activation function. MaxPool(w,h) stands for the max-pooling operator
of dimensions w × h pixels, BLSTM(n) represents a Bidirectional Long-Short Term Memory unit with n hidden layers,
and FC(n) is a fully-connected layer of n neurons followed by a SoftMax activation function.

Training Validation Test

Scores 56 991 18 996 18 997

Measures 125 971 41 883 41 986

Symbols 989 744 329 802 330 092

Table 2. Statistics of the partitions used in this work, re-
porting the number of scores, the number of measures, and
the number of running symbols.

Metric

Input image Se (%) Ed EdN
(%)

40× 160 27.30 0.52 3.01

50× 200 29.79 0.54 3.12

60× 240 22.37 0.37 2.16

Table 3. Performance achieved on the test partition with
respect to the shape of the input image.

the score-level error rates are much higher. That is, quite
often there is at least one incorrectly recognized symbol in
each score sequence.

Best results are obtained using images of 60 × 240.
In that case, a symbol-level error rate of 22.37 % is at-
tained, with an average of 0.37 symbol-level errors per
score (2.16% of the symbols if lengths are taken into ac-
count). This means that less than one symbol has to be
corrected to obtain the actual score, on average. An exam-
ple of prediction results depicting representative transcrip-
tion errors is illustrated in Figure 4. Note how some of
these error change the arrangement of the beamed groups,
as the predicted sequence does not fulfill time signature
constraints.

Clearly, these results reflect that the proposed frame-
work allows recognizing accurately the symbols of mono-
phonic scores in an end-to-end manner. In turn, the ap-
proach is not so reliable to optimize the number of per-
fectly recognized images, regardless of the number of er-
rors. However, it has to be considered that some music
symbols of the generated scores have vertical overlapping,

(a) Input score

(b) Prediction of the CRNN

Figure 4. An example of prediction with errors (Ed = 3,
EdN

= 11.53) obtained in our experiments.

as can be seen in the first note C from Figure 2. When
this happens, the order of the symbolic sequence might not
perfectly align with the order of the symbols in the image,
thereby introducing noise in the samples.

As discussed in Sect. 1, there are no previous ap-
proaches dealing with the OMR task in an end-to-end way
and, therefore, there is no feasible comparison in this work.
Nevertheless, it is our hope that these results will establish
a new way of approaching OMR.

4.4 Further Analysis

In this section we further analyze some details of the ex-
periments carried out.

First we intend to measure the performance of the mod-
els with respect to the size of the input sequence. Clearly,
the size of the sequence has a direct impact on the abil-
ity of the models to recognize all their symbols. It is ex-
pected that the greater the number of symbols in the score,
the worse performance the models attain. Figure 5 shows
the performance curves as a function of the size of the se-
quences. On the one hand, Figure 5(a) reports the error rate
curve, which depicts that the performance gets dramati-
cally worsen from sequences of 10-15 symbols, depending
on the model. On the other hand, Figure 5(b) shows the
curve of the edit distance, for which it is observed that the
average number of editing operations to correct a sequence
predicted by the model is less than 1 up to 25 symbols. The
interesting remark about these curves is that they allow us
to conclude that in relatively short sequences, the models

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 475



can obtain an almost optimal performance. Fortunately,
the scores can be further subdivided into bars, which have
a limited number of symbols. Therefore, it might be in-
teresting to address the problem by first performing a seg-
mentation of measures, for which there already exists suc-
cessful algorithms [22] as previously mentioned.
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Figure 5. Performance attained by the models with respect
to the length of the input sequences.

Finally, it is interesting to analyze the convergence for
each considered model, since that is an indicator of the
representation capacity and the difficulty with which they
learn the task. Figure 6 shows the normalized edit distance
on the validation set as a function of the number of train-
ing epochs. It is observed that all models follow a simi-
lar trend, in which there is a drastic decrease in the first 6
epochs. After that, models begin to need more epochs to
improve their results, reaching convergence (except for mi-
nor fluctuations) around 12 epochs. We can therefore say
that all models have a similar representation capabilities,
although it has been demonstrated in the previous section
that the model that accepts 60 × 240 images has a greater
generalization ability. In addition, the low number of re-
quired epochs indicate that the models are able to learn the
task quickly.

5. CONCLUSIONS

This work addresses the Optical Music Recognition task in
an end-to-end fashion with the use of a Convolutional Re-
current Neural Network (CRNN). We have redesigned the
architecture from Shi et al. [19] for OMR using a large col-
lection of over 90,000 synthetic scores generated through
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Figure 6. Validation performance (normalized edit dis-
tance) with respect to the number of training epochs.

Lilypond, a music engraving system. As the network is
trained using a Connectionist Temporal Classification loss
function, the music symbols do not need to be aligned with
the pixels of the original images.

The CRNN topology and hyper-parameters were exper-
imentally adjusted for the task at hand, obtaining remark-
ably low error rates with the evaluated corpus. The net-
work converges quickly and an average edit distance of
0.37 is obtained using as input 60× 240 images.

In order to increase the accuracy of the proposed
method, those scores containing temporal overlappings
could be removed from the corpus. However, the ultimate
goal of OMR is to detect music symbols in polyphonic
scores. This is a challenging task using CRNN as it im-
plies to extend CTC for multi-label classification, which
stands as future work to explore and study.

Another evident future work line is to train the network
with real scores. Synthetic data could be used as a basis
by adding noise and transformations such as rotation or
scaling for a preliminary experimentation as in [19], but
ideally a large real corpus should be used instead. Cur-
rently there are no large datasets containing labeled images
of real scores, but an end-to-end annotation of the data is
straightforward as it does not requires the symbols to be
aligned with the image pixels.

Finally, note that one of the main advantages of the pro-
posed neural-based approach is that alternative notations
could be recognized by just changing the corpus and re-
training the model. This opens a path for research in re-
search of ancient music recognition written in, for instance,
mensural or neume notation, among others.

6. REPRODUCIBILITY

For reproducibility purposes, the source code, trained
models, and considered data have been publicly re-
leased at http://grfia.dlsi.ua.es/gen.php?
id=software.
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