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ABSTRACT

Though many past works have tried to cluster expressive
timing within a phrase, there have been few attempts to
cluster features of expressive timing with constant dimen-
sions regardless of phrase lengths. For example, used as
a way to represent expressive timing, tempo curves can
be regressed by a polynomial function such that the num-
ber of regressed polynomial coefficients remains constant
with a given order regardless of phrase lengths. In this
paper, clustering the regressed polynomial coefficients is
proposed for expressive timing analysis. A model selec-
tion test is presented to compare Gaussian Mixture Models
(GMMs) fitting regressed polynomial coefficients and fit-
ting expressive timing directly. As there are no expect-
ed results of clustering expressive timing, the proposed
method is demonstrated by how well the expressive tim-
ing are approximated by the centroids of GMMs. The re-
sults show that GMMs fitting the regressed polynomial co-
efficients outperform GMMs fitting expressive timing di-
rectly. This conclusion suggests that it is possible to use
regressed polynomial coefficients to represent expressive
timing within a phrase and cluster expressive timing with-
in phrases of different lengths.

1. INTRODUCTION

In performed classical piano music, small variations of the
beat length serving music expression is known as expres-
sive timing. Expressive timing can be represented by tempo
curves that connects the value of tempo on each beat to for-
m a curve. A common method [3,5,8,11] of analysing ex-
pressive timing within a phrase in performed classical pi-
ano music is to cluster expressive timing. One of the possi-
ble unit used for clustering expressive timing is phrase [5]
that contains a certain beats forming a sensible music struc-
ture. The length of phrase, or phrase length (defined as
the number of beats contained in a phrase), is expected
to be identical throughout a piece of music by most algo-
rithms such as Li et al. [5]. Such strong restrictions make
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the large-scale applications of existing algorithms almost
impossible because the phrase lengths are not constant in
most pieces. This paper proposes a way to cluster expres-
sive timing regardless of phrase length.

In past research [14], polynomial functions, especial-
ly parabolic functions, are used to regress tempo curves.
Regressing a tempo curve, the coefficients of the resulting
polynomial function is called regressed polynomial coef-
ficients for a tempo curve. Given an order of polynomial
function to be regressed to, each tempo curve can be rep-
resented by a fixed number of regressed coefficients. In
this paper, we propose to cluster regressed polynomial co-
efficients instead of clustering expressive timing directly
in order to enable the clustering of expressive timing with-
out a pre-defined unit possible. A model selection test is
shown in this paper demonstrating the Gaussian Mixture
Models (GMMs) fitting regressed polynomial coefficients
outperform the GMMs fitting expressive timing directly.

For simplicity, the GMMs fitting the expressive tim-
ing are represented by GMMo, whereas the GMMs fitting
the regressed polynomial coefficients are represented as
GMMr. There are multiple ways to compare two GMMs.
Because the two types of GMMs fitting two different sets
of data in this paper, the traditional model selection criteria
(such as Bayesian Information Criterion [1, Ch. 3] used by
Li et al. [5]) based on model likelihood cannot be used. Al-
though comparing the clustering results with a ground truth
is a more general way to evaluate model performance, the
clustering of expressive timing has no consensus or well-
recognised “ground truth” by the musicologists. The per-
formance of GMMs is evaluated by the approximation of
each tempo curve by their corresponding centroids as this
principle is a general evaluation for clustering algorithms.

To make the clustering of expressive timing and the
regressed polynomial coefficients comparable, the pieces
we selected in this paper still have constant phrase length-
s. However, the expressive timing in various phrases can
be regressed to the polynomial function of a single order
regardless of phrase lengths. The three pieces of music
are two pieces of Chopin’s Mazurkas (Op. 24, No. 2 and
Op. 30, No. 2) used in the previous works [10, 11] and
Berekrev’s Islamey dataset, which Li et al [5] used. Al-
though the music analysed is classical music, the proposed
algorithm for clustering expressive timing may be poten-
tially used for other forms of music such as jazz music.

This paper is organised as follows: relevant literatures
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are reviewed first, then we describe how the standardised
tempo curves and the regressed polynomial coefficients are
clustered. Next, we will show how the performance of
models are represented and the results are presented. A
discussion comparing the differences of the GMMs pre-
cedes the conclusion of the paper.

2. BACKGROUNDS

Clustering is a widely used methodology for analysing ex-
pressive timing. As demonstrated by Li et al. [5], the stan-
dardised tempo curves within a phrase can be clustered.
Repp [8] used Principle Component Analysis (PCA) to
analyse expressive timing and found a certain number of
common patterns. Spiro et al. [11] used self-organising
maps to cluster expressive timing and expressive dynamic-
s patterns within a bar and asserted that expressive timing
and dynamics are affected by music structure. All these
works requested a pre-selected unit of analysis with an i-
dentical length, such as bars, phrases or the entire piece of
music. Such requirements, on the other hand, limit the us-
ability of the methods of analysis because the choice of a u-
nified unit for analysis is hard to find. Clustering regressed
polynomial coefficients instead of expressive timing di-
rectly relaxes the restriction of a constant phrase length in
the testing pieces; thus, more pieces of music can be anal-
ysed using different methodologies of clustering.

Using second-order polynomial function, or parabolic
function, to regress expressive timing tempo curves rep-
resenting expressive timing is a traditional way to model
expressive timing [14]. This method was widely used in
a range of past works [8, 9, 12, 15, 16]. Repp [8, 9] used
PCA to analyse expressive dynamics and timing in cer-
tain numbers of performances of a Chopin’s étude. Rep-
p asserted that the parabolic curves are particularly good
at modelling the expressive timing within a longer phrase
unit [8] and that parabolic curves are useful for regress-
ing the expressive dynamics [9]. Tobudic and Widmer
[13] used multi-level parabolic curves to learn how a con-
cert pianist varied both dynamics and tempo when play-
ing several Mozart pieces. The learned methods were then
used to automatically render performances of other pieces
with success. Timmers [12] suggested that using parabolic
curves to regress expressive parameters in performances is
useful in vocal performances. Despite the wide usage of
parabolic curves for modelling, it is rare to cluster expres-
sive timing with the regressed parabolic coefficients or re-
gressed polynomial coefficients. This paper intends to use
a model selection test to demonstrate that regressed poly-
nomial coefficients are a valid representation of expressive
timing for clustering.

GMMs are used to fit the distribution of expressive tim-
ing within a phrase and regressed polynomial coefficients.
The resulting GMMo and GMMr are compared in the pro-
posed model selection test. A model selection test is a
common method in machine learning research to test the
fitness of data with a mathematical model [1, Ch. 1]. Li
et al. [5] used this method to analyse expressive timing.
Model selection tests were used to demonstrate expressive

timing can be modelled by a clustered model [5] and to
determine the factors that affect the selection of cluster-
s of expressive timing [6]. Because GMMo and GMMr

model two different datasets, the approximation of expres-
sive timing by their corresponding centroids of GMMo and
GMMo is used for evaluation in this paper.

We adapt the dataset used by Li et al. [5] in which
each piece has a constant length phrase to make GMMo

and GMMr comparable. The three testing pieces of mu-
sic are Chopin’s Mazurkas (Op. 24, No. 2 and Op. 30,
No. 2) and Islamey, whose lengths of phrases are twelve
beats, twenty-four beats and eight beats throughout the en-
tire piece, respectively. For each testing piece, there are
sixty-four, thirty-four and twenty-five performances.

In each performance, the timing of each beat is record-
ed as {t1, t2, . . .} and the tempo value on each beat τi can
be calculated as the reciprocal of inter-beat interval, name-

ly τi =
1

ti+1 − ti
. The tempo value is then smoothed

by the method of moving window average with a window

size of 3 (i.e. τ̄i =
τi−1 + τi + τi+1

3
) to approximate hu-

man perception of tempo [2]. The expressive timing with-
in a phrase can then be represented as a vector of tempi
or tempo curve: T = {τ̄1, τ̄2, . . . , τ̄n}, where n repre-
sents the total number of beats. The resulting standard-
ised tempo curves T are obtained by setting the mean of
each tempo curve to 1, e.g. T = {τ̂1, τ̂2, . . . , τ̂n}, where

τ̂i =
nτ̄i∑n
j=1 τ̄j

. After the standardisation process, in each

data set there are m samples of n-dimensional data to be
clustered, where m represents the number of phrases in the
testing piece of music. These samples are the raw data for
clustering and regression.

3. MODEL EVALUATION

In this paper, a method to cluster expressive timing regard-
less of the length of phrase is proposed. As there are no
musicological ground truth available, the candidate model-
s are evaluated by a traditional way to assess unsupervised
machine learning algorithms: how well the original data
can be approximated by the centroids of clusters.

Before discussing how GMMo and GMMr are com-
pared in details, we will firstly brief how the GMMs are
trained to fit data with n dimensions. A traditional way to
train a GMM distribution is to use the Expectation Max-
imisation (EM) algorithm [7, Ch. 11] which attempts to
raise the model likelihood of the training data by adjusting
the parameters in GMM. Particularly in this paper, all the
GMMs are trained for ten times with random initialisation
and the best GMM is selected as the resulting GMM.

Next we will show how GMMo and GMMr are com-
pared. As these two types of GMMs fit different data, the
traditional measurements based on model likelihood such
as BIC (Bayesian Information Criterion) are not valid. As
a result, we evaluate how well the expressive timing within
a phrase is approximated by the centroids of the resulting
GMMo and GMMr. We will discuss how the approxima-
tion is measured in this section.
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3.1 Evaluation of the Clustered Standardised Tempo
Curves

Suppose the expressive timing in the ith phrase can be rep-
resented as Ti = {τ̂1, τ̂2, . . . , τ̂n}. The distribution of Ti

can be fitted to an A-component GMM (GMMo) as [5]

p(Ti) =

A∑
k=1

πkN (Ti|µ⃗k,Σk). (1)

The centroids of the resulting GMMo can be represent-
ed as µ⃗1, µ⃗2, . . . , µ⃗A. If µ⃗i = (µ1, µ2, . . . , µn) is used to
represent the centroids of the cluster that tempo curve of
the ith phrase (Ti = {τ̄1, τ̄2, . . . , τ̄n}) belongs to (where
µ⃗i ∈ {µ⃗1, µ⃗2, . . . , µ⃗A}), the correlation coefficient (ρ) and
Euclidean distance (D) between the corresponding cen-
troids µi and the expressive timing within a phrase Ti are
given by

ρ(Ti, µ⃗i) =

∑n
j=1(τ̄j −Ti)(µj − µ⃗i)√∑n

j=1(τ̄j −Ti)2
√∑n

j=1(µj − µ⃗i)2
(2)

D(Ti, µ⃗i) =

√√√√ n∑
j=1

(τ̄j − µj)2 (3)

where Ti =
1

n

∑n
k=1 τ̂k and µ⃗i =

1

n

∑n
k=1 µk.

3.2 Evaluation of the Regressed Polynomial
Coefficients

With the least square algorithm, the standardised tempo
curves can be regressed to a oth order polynomial func-
tion fo(x) =

∑o
i=0 bix

i. Thus the standardised tempo
curve representing expressive timing in phrase i (Ti =
{τ̄1, τ̄2, . . . , τ̄n}) can be represented by a vector of re-
gressed polynomial coefficients B⃗i = (b0, b1, b2, . . . , bo).
A GMM (GMMg) fitting the oth order of polynomial co-
efficients is represented by GMMo

g . For clarity, GMMg

represents the GMMs fitting the regressed parabolic coef-
ficient of any orders.

To prevent overfitting (e.g. the function used for regres-
sion is too complex to generalise the distribution of data),
the order of polynomial function o should be smaller than
the length of phrase n (o < n). The GMMo

g can be trained
to fit the distribution of B⃗i such that

p(B⃗i) =

A∑
k=1

πkN (B⃗i|m⃗k,Σk). (4)

If the expressive timing of phrase i (Ti) belongs to
cluster k whose centroid can be represented as m⃗k =
(bm0, bm1, . . . , bmo), the regressed polynomial curve of
the expressive timing within phrase i (Ti) can be repre-
sented as fo(x|m⃗i) =

∑o
j=0 bmjx

j = (x1, x2, . . . , xn).
Thus the correlation coefficient (ρ) and Euclidean distance
(D) between the regressed polynomial curve fo(x|m⃗i) and
the expressive timing Ti are given by

ρ(Ti, f
o(x|m⃗i)) =∑n

j=1(τ̄j −Ti)(fj − fo(x|m⃗i))√∑n
j=1(τ̄j −Ti)2

√∑n
j=1(fj − fo(x|m⃗i))2

(5)

D(Ti, f
o(x|m⃗i)) =

√√√√ n∑
j=1

(τ̄j − xj)2 (6)

where Ti =
1

n

∑n
k=1 τ̂k and fo(x|m⃗i) =

1

n

∑n
k=1 xk.

4. RESULTS

In this section, we will compare how the centroids of
GMMo and GMMg approximate expressive timing within
a phrase by showing the correlation coefficients and Eu-
clidean distance discussed in Section 3. To train a GMM
with the dataset selected, an important parameter should
be decided: the intended number of clusters. Follow-
ing the detailed discussion by Li et al. [5], we train G-
MMs with two Gaussian components for Islamey, eight
Gaussian components for Chopin Mazurka Op.24/2 and
four Gaussian components for Chopin Mazurka Op.30/2.
Moreover, the order of polynomial function for regression
is chosen between the second order and the tenth order
for both Chopin’s Mazurkas, whereas for Islamey whose
phrase length is 8 beats the chosen order of polynomial
function is between second order and the eighth order to
prevent overfitting.

Compared with the complexity of the proposed GMMo

and GMMg, the data we have is fairly limited. To preven-
t overfitting, cross validation is used in this experiment.
Rather than using the entire dataset to train the GMMo and
GMMg, only four-fifths of the performances form a train-
ing dataset, and the remaining performances form a testing
dataset. Specifically for the candidate pieces, there are 5,
13, 7 performances used for testing and the numbers of
performances for training are 20, 51, 27 for the candidate
pieces Islamey, Chopin’s Mazurka Op.24/2 and Chopin’s
Mazurka Op.30/2 respectively. To even out the possible
bias caused by the randomness of the formation of the test-
ing and training sets, cross validation tests are repeated for
100 times with the performances in the testing and train-
ing sets randomly selected. The performance of candidate
models are evaluated by the average performance in the
100 cross validation tests.

With the EM algorithm, a GMMo and a GMMg are
trained with each training dataset engaged. The re-
sulting GMMo and GMMg are used to cluster the test-
ing dataset. The centroids of the resulting clusters are
used to calculate ρ(Ti, µ⃗i), D(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i))
and D(Ti, f

o(x|m⃗i)) according to equations (2), (3), (5)
and (6) where Ti is in the testing dataset. To remove
the possible bias caused by the randomness of perfor-
mance selection, the experiment is repeated 100 times.
The resulting ρ(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i)), D(Ti, µ⃗i) and
D(Ti, f

o(x|m⃗i)) are compared pairwisely.

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 459



(a) Islamey

(b) Mazurka Op.24/2

(c) Mazurka Op.30/2

Figure 1. Box plots of the resulting correlation coefficients
and Euclidean distance between the standardised tempo
curves and their corresponding cluster centroids. The box
shows 25th and 75th percentiles. The line in the box shows
the mean. Outliers are shown by a ‘+’ sign. A higher cor-
relation coefficients and a smaller Euclidean distance indi-
cates a better approximation of expressive timing by corre-
sponding centroids. The label ‘Org’ represents the results
of clustering expressive timing directly.

In Figure 1, box plots of the resulting ρ(Ti, µ⃗i),
D(Ti, µ⃗i), ρ(Ti, f

o(x|m⃗i)) and D(Ti, f
o(x|m⃗i)) in the

100 cross-validation tests for each testing piece are shown.
In the diagram, the label ‘Org’ represents the perfor-
mance of the centroids in GMMo (namely ρ(Ti, µ⃗i) and
D(Ti, µ⃗i),). The numbered labels represent the value of o
in ρ(Ti, f

o(x|m⃗i)) and D(Ti, f
o(x|m⃗i)). In each boxing

plot, the box indicates the 25th and 75th percentiles and
the line in the box shows the mean. The ‘+’ signs show
the outliers. A higher correlation coefficient and a smaller
Euclidean distance means better approximation of the ex-
pressive timing by the corresponding centroids in GMMo

and GMMg.

In the resulting diagram, GMMo
g outperforms GMMg

regardless of the value of o. As seen in Figure 1(b) and Fig-
ure 1(c), GMMo

g outperforms GMMr according to both the
correlation coefficients and Euclidean distance. In Figure
1(a), although the correlation coefficients does not show
that GMMo

g is better than GMMr, the Euclidean distance
shows that GMMo

g outperforms GMMr. This result con-

firms that using polynomial functions to regress expres-
sive timing within a phrase can help to improve the per-
formance of clustering expressive timing.

Next, we discuss about which value of o makes the
best performed GMMo

g . With an one-way ANOVA test [7,
Ch.8], we find that a higher value of o does not always
introduce a better performance of GMMo

g. To show the
significance of the difference between the means and cor-
relation coefficients of GMMo

g and GMMr, we perform a
Tukey’s Honest Significant Difference (HSD) test.

With a preference of a simpler model, the results of
Tukey’s HSD show the following facts. If two GMMo

g

have different values of o but no differences of perfor-
mance, the GMMo

g with lower o values will be preferred
due to lower complexity of GMMo

g. For Islamey, the
performance of GMM2

g to GMM8
g does not make signif-

icant differences thus GMM2
g is preferred. As a result,

the second order of polynomial function is the most suit-
able method regressing expressive timing in Islamey. For
Chopin Mazurka Op.24/2, GMM7

g to GMM10
g make no

significant differences according to correlation coefficients
whereas according to Euclidean distance, GMM10

g is worse
than GMM7

g to GMM9
g . So in general GMM7

g is the best
model amongst the candidate models and the seventh order
of polynomial function is the best function to regress ex-
pressive timing within a phrase for Mazurka Op.24/2. For
Chopin Mazurka Op.30/2, the best performed models are
GMM7

g to GMM10
g according to Euclidean distance where-

as GMM10
g is marginally better than other models accord-

ing to correlation coefficients. As a result, amongst the
candidate models, the tenth order of polynomial function
is the best model to regress the expressive timing within a
phrase.

Considering the fact the phrase length of Islamey,
Mazurka Op.24/2 and Mazurka Op.30/2 are 8 beats, 12
beats and 24 beats respectively and the most suitable
polynomial function to regress expressive timing within a
phrase is the second, the seventh and the tenth order, there
may be a potential relationship between the most suitable
order of polynomial function for regression and the phrase
length. Demonstrating this hypothesis is beyond the scope
of this paper but is possibly a future work.

5. DISCUSSION

5.1 Centroid Pairing

From the results of the model selection test, GMMr out-
performs GMMo. However, the resulting GMMr may not
be necessary to make musical sense. As GMMo makes
musical sense [4], the centroids of GMMr and GMMo are
compared. If the regressed polynomial curves recovered
from GMMr are correlated with the centroids of GMMo,
the GMMr will also make musical sense.

Recall that in Section 3, µ⃗i represented the centroids of
the GMMs for expressive timing within a phrase and m⃗j

represented the centroids of the GMMs for regressed poly-
nomial coefficients that can be recovered as a polynomial
curve fo(x|m⃗j). The similarity between centroids can be
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defined by the correlation coefficients (ρ) between µ⃗i and
fo(x|m⃗j), namely

ρ(µ⃗i, f
o(x|m⃗j))

=

∑n
k=1(µk − µ⃗i)(xk − fo(x|m⃗j))√∑n

k=1(µk − µ⃗i)2
√∑n

k=1(xk − fo(x|m⃗j))2
(7)

where µ⃗i =
1

n

∑n
k=1 µk and fo(x|m⃗i) =

1

n

∑n
k=1 xk.

Suppose there are A Gaussian components in the
GMMr and GMMo. The centroids in GMMr and GMMo

can be paired according to Algorithm 1. In Table 1, the re-
sults of pairing the centroids of the GMMs for the oth order
polynomial coefficients are shown. In Figure 2, we demon-
strate how the centroids of GMMo compared with the re-
gressed polynomial curves with the centroids of GMM2

r

and GMM7
r in Chopin’s Mazurka Op.24 No.2. From the

results we can see that the regressed polynomial curves re-
covered from the centroids of GMM2

r are highly correlated
with GMMo while the regressed polynomial curves recov-
ered from the centroids of GMM7

r are even more similar
to GMMo due to the higher model complexity. Thus the
results demonstrate that the GMMs for the regressed poly-
nomial coefficients are musically valid.

Algorithm 1 Pair centroids
Require: fo(x|m⃗)i,i ∈ [1, A]
Require: µ⃗j ,i ∈ [1, A]
C(i, j) = ρ(µ⃗i, f

o(x|m⃗j))
while max(C) ≥ −1 do

(r,c)=arg max (Crc)
pairs:=pairs ∪ {r,c}
Associate locr with locc
Cri = -2
Cjc = -2

end while

Islamey Op.24/2 Op.30/2
GMM2

r 0.99 0.83 0.75
GMM3

r 0.99 0.82 0.74
GMM4

r 0.99 0.84 0.72
GMM5

r 0.99 0.89 0.80
GMM6

r 1.00 0.90 0.78
GMM7

r 1.00 0.90 0.82
GMM8

r 1.00 0.90 0.76
GMM9

r N/A 0.90 0.79
GMM10

r N/A 0.90 0.86

Table 1. The correlation coefficients between the polyno-
mial curves recovered from the centroids of GMMo

r and
the centroids of GMMo.

5.2 GMMr with more clusters

With the results presented, we can conclude that with the
same Gaussian components in the model, GMMg outper-

forms GMMo when the intended number of Gaussian com-
ponents is decided by the GMMo provided by Li et al. [5].
In this section, we observe whether GMMr, which has
more Gaussian components, has a better performance. As
an example, we compare the performance of GMM2

r , mea-
sured by correlation coefficients with multiple Gaussian
components. In Table 2, we show how well the regressed
parabolic curves approximate the centroids of GMM2

g by
showing ρ(Ti, f

o(x|m⃗i)) calculated by equation (5).

Clusters Islamey Op.24/2 Op.30/2
2 0.5315 0.5872 0.7339
4 0.5411 0.6181 0.7399
8 0.5718 0.6877 0.7442
16 0.6261 0.6930 0.7635
32 0.6722 0.7165 0.7677
64 0.6857 0.7324 0.7585
128 0.6978 0.7298 0.7413
256 0.6940 0.7282 N/A
512 0.6467 0.7109 N/A

Table 2. The average value of ρ(Ti, f
o(x|m⃗i)) resulting

from GMM2
g with different numbers of Gaussian compo-

nents (labelled as clusters in the table). A larger number
means a better approximation and a better performance
(bold). The number of clusters we set in the previous
experiments are in italics. The training set of Mazurka
Op.30/2 has less than 256 samples because it is impossi-
ble to set 256 and 512 clusters in the experiments.

From the table, we can see that the numbers of Gaussian
components we engaged in the experiments in section 4 for
GMM2

g do not have the best performance. Thus the GMM2
g

with more Gaussian components can improve the model
performance further.

6. CONCLUSIONS

In this paper, we demonstrate whether regressing standard-
ised tempo curves within a phrase by a polynomial func-
tion is a valid method to analyse expressive timing by com-
paring Gaussian Mixture Models (GMMs) fitting expres-
sive timing (GMMo) and fitting regressed polynomial co-
efficients (GMMg). As the candidate models fit different
sets of data and there are no musicological ground truth for
the clustering of expressive timing, the approximation of
expressive timing by the centroids of GMMo and GMMr

is used to evaluate model performance.
Measured by correlation coefficients and Euclidean dis-

tance, the experiment shows that GMMg outperforms
GMMr when the same numbers of Gaussian components
are engaged. With more Gaussian components engaged,
GMMr performs even better. The distribution of regressed
polynomial coefficients has a lower degree of freedom
compared with the tempo curves representing expressive
timing within a phrase hence the regression of expressive
timing with polynomial function reduces data dimension.
The results demonstrate that regressing expressive timing
with polynomial functions may help the clustering process.
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Figure 2. The centroids of GMMo compared with the regressed polynomial curves with the centroids of GMM2
r and

GMM7
r in Chopin’s Mazurka Op.24 No.2.

When comparing the regressed polynomial curves re-
covered from the centroids of GMMg with the centroids
of GMMo, the two sets of centroids are highly correlated
with each other, which demonstrates that the centroids of
GMMg make similar musical sense with GMMo. As a re-
sult, the polynomial functions can be used to help cluster
expressive timing, which makes clustering expressive tim-
ing across phrases with various lengths possible.
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