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ABSTRACT

Many approaches to Music Information Retrieval tasks
rely on correctly determining if two segments of a given
musical recording are repeats of each other. Repetitions in
recordings are rarely exact, and identifying the appropriate
threshold for these pairwise decisions is crucial for tuning
MIR algorithms. However, current approaches for deter-
mining and reporting this threshold parameter are devoid
of contextual meaning and interpretations, which makes
comparing previous results difficult and which requires ac-
cess to specific datasets. This paper highlights weaknesses
in current approaches to choosing similarity thresholds,
provides a framework using the proportion of orthogonal
musical change to tie thresholds back to feature spaces
with the cosine dissimilarity measure, and introduces new
research possibilities given a music-centered approach for
selecting similarity thresholds.

1. INTRODUCTION

Since Foote introduced the self-similarity matrix as a tech-
nique for visualizing and representing audio data [7], ma-
trix representations have been widely used to represent
music-based data, such as songs or musical scores, when
addressing different kinds of tasks in Music Information
Retrieval [6,11,13,17]. Recordings of music often contain
slight variations between repeated sections either due to
artistic interpretations or noise introduced by the record-
ing environment. Addressing these MIR tasks often re-
quires grouping time steps together using a threshold on
the self-(dis)similarity matrix representation to determine
which pairs of time steps are similar enough to be classi-
fied as repetitions of each other. There are two issues at
play when choosing this similarity threshold: 1) selecting
the best value given the task and data, and 2) using the
value with the best musical interpretation.

Similarity thresholds are currently determined in ways
that prioritize computational successes and ignore tangi-
ble musical interpretations. These thresholds are usually
dependent on the data at hand and reported as a selection
method (say a fixed percentage) instead of as a particu-
lar threshold value. These data-dependent thresholds, re-
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ported as methods, require access to common datasets in
order to compare previous and current research. Further-
more, many of the processes for determining this crucial
threshold do not have a mechanism for connecting that
threshold back to the original feature space. For example,
current methods give little understanding to what a “small-
value” cosine dissimilarity measurement corresponds to in
terms of musical sounds such as notes and chords.

Instead of only justifying similarity thresholds based on
statistical theory or computational success, we argue mu-
sical meaning should be included in the selection and dis-
cussion of a similarity threshold. In Section 2, examples
based on a jazz lead sheet offer motivation for similarity
thresholds with musical context. In Section 3, we model
a framework for tying a chosen threshold to a particular
feature space via the concept of the maximum proportion
of orthogonal musical change. In Section 4, we introduce
how music-centered thresholds can enhance MIR research.

2. MOTIVATION WITH EXAMPLES

In MIR literature, there are a variety of methods for set-
ting the similarity threshold used to decide when sections
of a song are similar. Current methods have been based
on statistical ideas combined with concise algorithmic ex-
planations. In [1, 11, 15], for a given recording of a per-
formance of a piece of music, the threshold was specified
so that a fixed percentage of a matrix representation (either
self-similarity matrix or self-dissimilarity matrix - SDM)
would be selected. The method in [18-20] sets the mean-
ing of “similar” for each time step by first looking for the
x nearest neighbors of a given time step and then by en-
forcing a mutual condition; that is that time steps ¢ and
j are determined to be similar if both time step 7 is a x
nearest neighbor of time step j and vice versa. In [3], the
threshold was set using statistical techniques on a set of
sample data. In [8-10], Goto determined a threshold us-
ing the automatic threshold selection method developed by
Otsu [16] which selects a threshold using statistics of the
grey-level histogram of a particular image. In the case of
Goto’s work [8-10], the image is a matrix representation
for a song.

While the above methods are efficient and have satisfy-
ing connections to our intuition about similarity, a crucial
weakness of these methods is a lack of a musical connec-
tion for the similarity threshold. For example, the fixed
percentage thresholds in [1, 11, 15] are easy to set and of-
fer clear methods for reproducing those workflows, but no
musical intuition is offered for these methods. Underlying
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fixed percentage thresholds is the assumption that all mu-
sic has the same proportion of similarity, which certainly
would not be the case in a collection with both classical and
jazz recordings. The method in [18-20] to some degree ad-
dresses the flaws in this assumption, but this method leaves
unanswered what it means musically to be mutual ~ near-
est neighbors.

The following four examples based off a jazz lead sheet
use the bottom-10% paradigm for similarity threshold se-
lection and highlight some of the issues with this method.
The first example is just the chords by beat as described in
the lead sheet. The second example adds absolute Gaus-
sian noise, while the third example adds notes in a re-
stricted manner, seeking to mimic the spontaneous com-
position of jazz music. The final example adds both abso-
lute Gaussian noise and restricted “note” noise. These ex-
amples are constructed from a human coded .jazz file ! of
Aisha by McCoy Tyner from 1961 found in the iRb Corpus
in **jazz format dataset [2]. Beat tracking was not used
since these examples are based on a version of the piece’s
lead sheet. Each time step represents 8 continuous beats
by concatenating adjacent 8 feature vectors (one per beat).

For each example, the distribution of dissimilarity val-
ues and the thresholded SDM are shown. All results are
from single runs of the associated random processes, but
similar results occur with repeated trials. For the thresh-
olded SDM, the original SDM values are retained to fur-
ther highlight contrast between examples.

Example 1 - Jazz Lead Sheet

This example is the ground truth for the true repeated
structure of the lead sheet. We assume that there is neither
noise nor spontaneous composition on the track.

Figure 1. Complete SDM for Aisha lead sheet. Values
near 0 are dark.

Using the bottom-10% paradigm, the threshold T is
0.375, meaning that two feature vectors with the angle be-
tween them no greater than 51.318 degrees will be deemed
similar enough to be repeats of each other. This is quite
a generous threshold; for example, a feature vector repre-
senting a C chord (held for 8 beats) and a feature vector
representing C-minor chord (also held for 8 beats) would
be deemed as repeats of each other.

! The .jazz file was converted to a .txt file using code by Yuri Broze [2].
Chromagrams were then extracted using a new converter file, available at
https://github.com/kmkinnaird/MusicalThresh
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Figure 2. Aisha lead sheet without additions

Example 2 - Jazz Lead Sheet with Gaussian Noise

In this example, we add proxy for general noise (such as
feedback in the recording environment) to the lead sheet.
To each note-beat entry of the chroma matrix for the lead
sheet, we add the absolute value of a random sample from
the Gaussian centered at 0 with standard deviation 0.5.
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(a) Thresholded SDM under
bottom-10% paradigm

(b) Histogram of all dissimilar-
ity values

Figure 3. Aisha lead sheet with added track noise

In addition to most of the similarity from Example 1,
additional segments were classified as repeats using the
bottom-10% paradigm, meaning that “similarity” is being
created under this threshold selection method. However,
this example’s threshold value is lower, so two audio shin-
gles must be more similar to be considered repeats than
in Example 1. The threshold T' is approximately 0.232,
meaning that two feature vectors with the angle between
them no greater than 39.818 degrees will be deemed sim-
ilar enough to be repeats of each other. This shifted (and
possibly contradictory) definition of similarity may be ap-
propriate given the data but there is no musical interpre-
tation of the threshold to support this choice. The lower
threshold does reflect the compression of the distribution
of dissimilarity values, shown in Figure 3(b).

Example 3 - Jazz Lead Sheet with “Note” Noise

In this third example, we add a proxy for spontaneous
composition. This added “note” noise is restricted to the
notes within the chord specified on the lead sheet and has
its note weight randomly selected from the distribution of
note values, shown in Figure 4.

The threshold 7' for this example is approximately
0.417, meaning that two feature vectors with the angle be-
tween them no greater than 54.357 degrees will be deemed
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Figure 4. Histogram of note values for “note” noise

similar enough to be repeats of each other. As expected
given this example’s construction, this threshold is similar
to the one in Example 1. However, while much of the sim-
ilarity from Example 1 was found using the bottom-10%
paradigm, it is clear that not all of it was. As with Exam-
ple 2, this threshold may be appropriate, but there is no
musical interpretation to support this choice.
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bottom-10% paradigm
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Figure 5. Aisha lead sheet with added “note” noise

Example 4 - Jazz Lead Sheet with “Note” Noise and with
Gaussian Noise

In this example, we add proxies for both track noise (as
in Example 2) and “note” noise (as in Example 3). Since
we are assuming that there is both spontaneous composi-
tion and additional noise on the track, it is tempting to sim-
ply add the thresholds from Examples 2 and 3. However,
we cannot, given the construction of the proxies and that
cosine dissimilarity measure does not observe the triangle
inequality.
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(a) Thresholded SDM under
bottom-10% paradigm
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Figure 6. Track and “note” noise added to Aisha lead sheet

Similar to Example 2, we have a possibly contradictory
definition of similarity. In this example, the bottom-10%
paradigm captures most of the similarity from Example 1
but also incorrectly matches additional repeated “similar-
ity.” However, the value of this threshold 7" is lower, at ap-
proximately 0.293, which translates to an angle no greater
than 45.026 degrees between two feature vectors deemed
similar enough to be repeats.

Comparing Four Examples

These four examples highlight some of the weaknesses
in the commonly used fixed percentage threshold selec-
tion paradigm. First, the generous thresholds in Exam-
ples 1 and 3 allow for major and minor chords (such as C-
major and C-minor) to be deemed as repeats of each other.
However, the histogram from Example 3 is quite similar
to Example 1, which signals that an appropriate choice of
threshold for a lead sheet would also be appropriate to ap-
ply to a lead sheet with spontaneous composition.

Second, when a proxy for random track noise is intro-
duced, as in Examples 2 and 4, major and minor chords
would no longer be matched. However, a passing glance on
the resulting thresholded SDMs in Examples 2 and 4 show
sections of the lead sheet designated as repeats when they
perhaps should not be. Additionally, the histograms for
Examples 2 and 4 are much more compressed than those
in Examples 1 and 3, which further signals a need in in-
corporate musical context into the selection of similarity
thresholds.

Even though these four examples are based on a lead
sheet, of which three employ random processes as prox-
ies for track noise and spontaneous compositions, these
controlled and constructed examples demonstrate the need
for careful examination of the meaning and limitations of
thresholds used in MIR tasks and approaches.

3. RELATING 7' TO MAXIMUM PROPORTION
OF ORTHOGONAL MUSICAL CHANGE

In this section, we establish a framework for linking a simi-
larity threshold 7" to the space of audio shingles composed
of chroma feature vectors under the cosine dissimilarity
measure. We define the proportion of orthogonal musical
change (or POMC) for this feature space and prove a rela-
tionship between a given threshold 7' to POMC. Although
we ground our discussion in one particular feature space, a
similar procedure can be used to tie similarity thresholds to
any feature space using the cosine dissimilarity measure.

3.1 Preliminary Definitions and Notation

We create overlapping audio shingles from k concatenated
feature vectors, where k is a fixed integer [3—5]. For a time-
step 4, the chroma feature vector y; is the column vector of
12 non-negative entries, where each entry corresponds to
one of the Western pitch classes {C, C#, ..., B} encoding
the amount of that pitch class in the i observation [14].
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For time-step ¢, the audio shingle of length k, incorporating
local information, is the column vector «;:

t
o = {X§7 X€i+1)a Xfi+2)7 cee 7X7(5i+k_1)} (D

(kx12)

Each audio shingle is an element of Ry, the non-

negative closed orthant of R(**12) and can be regarded
as vectors that start at the origin. Let Hai,aj be the an-

gle between «; and ;. Since oy, 05 € R(foxm), then
0a;.,; € [0, 5]. The pairwise cosine dissimilarity between
two audio shingles «; and «; is defined as:

D;;=1—cos eaiﬁa:’ @

It is natural to ask: Given the value D; ;, what are the
musical differences between those two time steps? We
introduce the notion of proportion of orthogonal musical
change (POMC), or rather the amount an audio shingle «;
must change orthogonally (before scaling) in order to be-
come o;. POMC encodes of how much one audio shingle
can be comprised of elements perpendicular to another au-
dio shingle before we say these two audio shingles are no
longer considered to be “similar” of one another.

Consider Figure 7; the vector 7 is orthogonal to «; and
when added to o; will meet ;. We can scale the vector
(a; + ) to match o;. Similarly & is orthogonal to a;
and when added to o; meets ;. We can scale (a; + @)
to match o;. The length of 7 is ||| - tan 0, ;. and the
length of ¢ is || ;| |-tan Oa;.0,- SO tan Oy, o, is the amount
of orthogonal change for «; to become a scalar multiple of
o and vice versa.
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Figure 7. Visualization of orthogonal musical change of
o; onto o5 and of o; onto «v;, represented respectively by

the vectors 4 and ¢.

Definition 3.1. For a pair of audio shingles a; and o, the
proportion of orthogonal musical change (POMC) is given
by tan 6%% .

3.2 Maximum POMC Given T’

Suppose that we have one audio shingle, denoted 5 ter-
minating at point £, and that we want to classify all audio
shingles that are repetitions of E Let T be the threshold de-
termining whether pairs of audio shingles are close enough
to be repeats. We define 07 as cos™(1 — T)).

Let = be the set of audio shingles that are less than 7'
cosine dissimilar from £. So ¥ € Z, iff 1 — cos 017 £ <T,
for 0, ¢ Additionally, for each vector v € =, we have:

cos@i§21—T:cosﬁT 3)

Definition 3.2. Given 7', the maximum POMC, denoted p,
is tan(f7), where O = cos™1(1 — T)).

We begin establishing the comparison between the au-
dio shingles in = and 5 using just POMC. We first note
that the set of audio shingles orthogonal to f is comprised
of the audio shingles representing silence (i.e. those with-
out any notes) and the audio shingles that do not have notes
in common time with E For example, if 5 represented a C
chord followed by a F chord, then an audio shingle that is
orthogonal to it could be one representing a C# chord fol-
lowed by an E chord. Given the importance of note and
chord order in music generally, the audio shingle repre-
senting an F note followed by a C chord is orthogonal to a
second representing a C chord followed by an F note. Nei-
ther of the above pairs would be mistaken as similar, and
so we restrict O € [0, ), since including 07 = 7 would
imply that orthogonal pairs of audio shingles are similar.

PN v

Figure 8. Visualization of =, the set of audio shingles that
are less than T cosine dissimilar from £, The gray area
flanked in dotted arrows is the set =. The dashed line con-
tinuing from 5 is the subspace defined by 5

More often, we want to compare pairs like a C chord
followed by a second C chord with a C chord followed
by a C7 chord, and determine if these two audio shingles
are close enough to be deemed similar. These two audio
shingles are the same save for the Bb note in the second
chord. Clearly a lone Bb note is orthogonal to a C chord
but is not orthogonal to the C7 chord. However, the C7
chord can be decomposed into the sum of a C chord and a
Bb note. In other words, the C7 chord is the C chord plus
a vector orthogonal to it. Such a decomposition is at the
heart of the concept of POMC.

Returning to our general case with audio shingle §_:
we make the following definitions generalizing the above
comparison of the C and C7 chords:

Definition 3.3. Let £+ denote the hyperplane that is or-
thogonal to the vector £ with the point & € £+,

We note that £ does not require that vectors in £+ to
be within =. The following definition adds this restriction:
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Definition 3.4. Let V. be the set of vectors originating at
the point £ and terminating at a point in £+ such that for
vy € Vi, we have that the cosine of the angle between
({ + ¥4 ) and £'is greater than or equal to cos 67

For any vector ¥y € V., we have that the angle be-
tween 5 and v is the right angle in a right triangle with one
leg along & with length ||£_]|2 and with another leg along
U4 with length ||y ||2. The tangent of the angle between

(£ + 7,) and € is equal to H\EHHQ , which must be less than
2

or equal to tan 7. So ||74||2 < ||€]]2 - tan(7).
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Figure 9. Visualization of the right triangle formed by 5
and ¥, € V, in R2. The solid line perpendicular to §
represents V. and is 2||§||2 -tan(fr) long. The dashed
line continuing from V; combined with V. represents £=.

The set V. represents the set of audio shingles that are
created by adding to 5 an orthogonal vector of length no
longer than HEHQ -tan(fr). For example, if 7" = 0.1 and
if f represented one C chord, then the audio shingle repre-
senting a C7-chord would terminate in the hyperplane &=,
but would not be included in =; however, if T' = 0.14, then
it would be included in =.

3.3 Decomposition of Elements in =

Thus far we have established the relationship between our
audio shingle E and the audio shingles ending in £+ N Z.
We are interested in understanding the relationship of 7T’
with all of =. We offer the following decomposition for
the elements of =, which connects the definitions of the
previous section to Definition 3.1 shown in Figure 7.

Proposition 3.1. The set = is equal to the set S, given by
S = {w(g—}— 77+)|’(7+ € V+7’LU S RZQ} .

Proof: First, we show that S C
be an element of S. So 7 = w(€ + 7. ) for some 7y € V.
and some w € R>. Let 3 denote the angle between ¥ and
€, which is also the angle between (€ 4 #4) and € since
7 and (£ + ¥,) are scalar multiples of each other. By the
definition of V., we have that cos 3 > cosfr. So ¥ € =
and thus S C =.

Next, we show that = C S. Let ¥ € = and let 917 £ be

the angle between ¢’ and E Then:

1 — cos (6‘675) <T 4)

=. We begin by letting ¢/

Let v, be the point where ¥ intersects £+ (noting that
it may be necessary to continue in the direction of ¥ to
intersect with £1). We have a right triangle with one leg in
the direction of £ with length ||£|, and another leg from £
to v, that is length |[vy — &||2. Let @, be the vector from &

to v4. By definition of v, then ||T4||2 = ||v+ — ]|z and
thus:
tan (955) llo+ —&ll2 )
’ €]l
Leveraging Eqn (5), we have that
S T [1€112
Nl = oy =&l = [log —€ll2-
€]}

|1€]|2 - tan (9@ 5) < [|€]]z - tan(67).

The last inequality is due to the angle between two vectors
in Z is less than 7, that 67 € [0, 7), and that tan(z) is a
monotonically increasing functlon on the interval [0, 7).
So ¥ € V4. Let w be the positive scalar that we multiply
(5 + @) by to get 7. Then 7 = w( + ¥4) for some
U1 € Vi andsomew € R>g. Sov e Sand=C S. O

This proposition gives us a decomposition for all au-
dio shingles that are less than 7" cosine dissimilar from
§_: regardless of how T is set. Using standard orthogo-
nal projections, we can decompose any audio shingle into
the form w(€ + @), where @ is audio shingle orthogonal
to & To check if & € V., we compute ||@||, and see if
||@|2 < [|€]]2 - tan(f7). Proposition 3.1 gives contextual
meaning to our thresholds, that is the maximum proportion
of orthogonal notes allowed between two audio shingles of
at most 7" cosine dissimilarity.

3.4 Relating Choice of T" to Audio Shingles via
Maximum POMC

The above decomposition for vectors within 7" cosine dis-
similarity measure from 5 provides us an avenue for re-
lating our chosen thresholds directly to musical building
blocks such as notes and chords, when they are represented
as chroma feature vectors. This means that we can set
a threshold by directly encoding acceptable musical vari-
ation for a small segment instead of setting the thresh-
old using parameters free from musical context, such as
a fixed percentage of entries from a matrix representation
or a fixed-number of nearest neighbors.

We can set a threshold in one of three ways: 1) choos-
ing 7" using existing methods, 2) setting the largest allow-
able 67 between two audio shingles classified as similar
enough, or 3) by setting p, the maximum POMC. Since
T, 07, and p are functions of each other, fixing one inher-
ently fixes the other two, and so we have an interpretation
for that threshold in the space of audio shingles (under the
cosine dissimilarity measure), returning musical context to
what we mean by “similar structure.”

e If we fix T, then we have 67 = cos™*(1 — T') and
1-(1-T)2
- (1-7)
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o If we fix 7, then T =1 — cos O and p = tan 0.

e If we instead fix p, then we have 7 = tan~!(p) and
1
T=1-——=
p?+1

3.5 Returning to Motivating Examples

In Section 2, we described the thresholds for each exam-
ple in terms of 6, which is still unsatisfactory in terms of
musical intuition. Now we will interpret each 7" using p.

The thresholds in Examples 1 and 3 in Section 2 have
similar interpretations, which makes sense given their con-
structions. In Example 1, we have T' = 0.375. So
p = 1.249, meaning that for each note in a given audio
shingle f_: we can add an orthogonal vector of notes with
1.249 times the magnitude of E and have the result be con-
sidered similar to £. This is quite a generous threshold. For
example, an audio shingle representing a C chord whole
note is considered similar to a second shingle representing
a C chord whole note plus a D-minor6 chord whole note
and a Bb dotted-half note. Example 3 has a similarly gen-
erous threshold with 7" = 0.417. So p = 1.395, and we
can add a few more orthogonal notes to 5 than in Example
1 and still have the result be considered similar to E

Examples 2 and 4 in Section 2 both include the incor-
poration of Gaussian noise, and their associated thresh-
olds have similar interpretations. In Example 2, we have
T = 0.232; so p = 0.834. In Example 4, we have
T = 0.293; so p = 1.001. These thresholds are less gen-
erous than those in Examples 1 and 3. In Example 4, an
audio shingle representing a C chord whole note is con-
sidered similar to a second shingle representing a C chord
whole note plus a D-minor chord.

While the above interpretations offer a musical context
for our similarity thresholds, these interpretations only re-
gard the worst case (and less likely) scenario for comparing
a given audio shingle 5 to another one; that is comparing 5
to one comprised of € added to an audio shingle orthogonal
to 5 In addition to this interpretation, we would also advo-
cate that when setting the similarity threshold, researchers
also explore comparisons of§ to audio shingles comprlsed
off with audio shingles that are not orthogonal to f

4. EXPANDING USES OF MAXIMUM POMC

Building off the examples in Section 2 and the methodol-
ogy in Section 3, we propose research directions that could
benefit from using a musically relevant threshold.

Within the song comparison tasks, we can use the max-
imum POMC to explore less well defined variants of the
version detection task. For example, we can explore how
much spontaneous composition is added to a jazz lead
sheet, while also detecting the repeated sections in the lead
sheet given a maximum POMC. In another direction, we
could use the relationship between a threshold and maxi-
mum POMC to create a lower bound threshold for detect-
ing recordings using auto-tune compared to those without.

Maximum POMC can be used beyond the song com-
parison tasks. We can leverage the maximum POMC to
perform comparisons between genres, perhaps, by quanti-
fying the amount of expected structure in a song from one
genre, and comparing that to the expected value of another
genre. Using ideas from topological data analysis, we can
create diagrams quantifying the amount of structure in a
given piece as we increase the maximum POMC. We could
also use a dynamically set maximum POMC in generative
music tasks to enforce musical style constraints given the
target genre for the generated musical work.

5. CONCLUSION

Previous work in MIR determined and reported similarity
thresholds as a specific method for a specific dataset pre-
processed in a specific manner for a specific task, and thus
it is hard to compare previous results. However we can
more easily compare future work on both new and current
song datasets if we choose a similarity threshold for our
matrix representations that includes a tangible interpreta-
tion within the feature space.

This paper offered three contributions to the study of
similarity thresholds used in MIR on the self-similarity (or
dissimilarity) matrices, like those introduced in [7]. First,
we demonstrated weaknesses in the current fixed percent-
age paradigm, using four examples based off one jazz lead
sheet to show inconsistencies between the interpretations
of the musical differences between sections of music that
are regarded as similar.

Next we demonstrated that it is possible to link a thresh-
old to the feature space of the original data, by providing
a theoretical framework relating a given threshold to the
space of audio shingles comprised of chroma vectors under
the cosine dissimilarity measure. Crucial to this framework
is the notion of proportion of orthogonal musical change
(POMC), introduced here. This paper provides an avenue
for interpreting and exploring the musical context of sim-
ilarity thresholds (regardless of how they are determined)
for self-dissimilarity matrices built from the space of audio
shingles through the maximum POMC. Since the theoret-
ical work in this paper only relied on facts of the cosine
dissimilarity measure, the present framework could easily
be adjusted to accommodate another feature space using
the cosine dissimilarity measure.

Finally we briefly proposed new MIR research direc-
tions where contextually meaningful thresholds could pro-
vide insight. We also discussed how a contextually mean-
ingful threshold could enhance current research directions.

Setting the similarity threshold can take into account
both success on a particular task, given particular data, as
well as a tangible musical interpretation of that threshold.
Understanding that continuing to use current methods for
determining the similarity threshold may be the best for
continued computational success, this paper advocates for
the inclusion of musical context into, at least, the discus-
sion of the similarity threshold, if not the selection.
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