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ABSTRACT

We approach the singing phrase audio to score matching
problem by using phonetic and duration information – with
a focus on studying the jingju a cappella singing case. We
argue that, due to the existence of a basic melodic con-
tour for each mode in jingju music, only using melodic
information (such as pitch contour) will result in an am-
biguous matching. This leads us to propose a match-
ing approach based on the use of phonetic and duration
information. Phonetic information is extracted with an
acoustic model shaped with our data, and duration in-
formation is considered with the Hidden Markov Models
(HMMs) variants we investigate. We build a model for
each lyric path in our scores and we achieve the match-
ing by ranking the posterior probabilities of the decoded
most likely state sequences. Three acoustic models are in-
vestigated: (i) convolutional neural networks (CNNs), (ii)
deep neural networks (DNNs) and (iii) Gaussian mixture
models (GMMs). Also, two duration models are com-
pared: (i) hidden semi-Markov model (HSMM) and (ii)
post-processor duration model. Results show that CNNs
perform better in our (small) audio dataset and also that
HSMM outperforms the post-processor duration model.

1. INTRODUCTION

The ultimate goal of our research project is to automat-
ically evaluate the jingju a cappella singing of a student
in the scenario of jingju singing education – see Figure 1.
Jingju, a traditional Chinese performing art also known as
Peking or Beijing opera, is extremely demanding in the
clear pronunciation and accurate intonation of each syl-
labic or phonetic singing unit. To this end, during the initial
learning stages, students are required to completely imitate
tutor’s singing. Therefore, the automatic jingju singing
evaluation system we envision is based on this training
principle and measures the intonation and pronunciation
similarities between the student’s and the tutor’s singings.
Before measuring similarities, the singing phrase should be
automatically segmented into syllabic or phonetic units in
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Figure 1. System design framework of the entire research
project. The modules with bold border lines are addressed
in this paper.

order to capture the temporal details. Jingju music scores,
which contain the phonetic and duration information for
each singing syllable, will be beneficial for this segmenta-
tion. In the application scenario, the score of a query au-
dio could be selected from the database by the user itself.
However, to avoid manual intervention and improve the
user experience, we tackle the problem of automatically
finding the corresponding music score for a given query
audio (bold in Figure 1). Note that achieving successful
methods for audio to score matching might be beneficial
for several music informatics research (MIR) tasks, such
as score-informed automatic syllable/phoneme segmenta-
tion [5] or score-informed source separation [14]. The ob-
jective of this research task is to find the corresponding
score for a given singing audio query. We restrict this re-
search to the “matching” scope by pre-segmenting both the
singing audios and the music scores into the phrase units.

Xipi and erhuang are the main modes in jingju mu-
sic. Each has two basic melodic contours – an opening
phrase and a closing phrase. Each basic melodic contour
is constructed upon characteristic pitch progressions for
each mode [22]. Therefore, singing phrases from differ-
ent arias sharing the same mode are likely to have a sim-
ilar melodic contour. Figure 2 shows an example of this
fact. However, melodic information tends to be intuitively
used for such matching tasks. For example in Query-by-
Singing/Humming (QBSH) [15], melodic similarities can
be obtained by comparing the distance between the F0 con-
tour of the query audio and those synthesized from the can-
didate scores. Then, the best matched music score can
be retrieved by selecting the most similar melody. But
note that using this approach for jingju music would bring
matching errors since the melodic contours of the same
mode are similar in this sense. In this case, it is more ap-
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Figure 2. An example of different phrases having a similar
Xipi melodic contour in our score dataset. The lengths of
these contours are normalized to a fixed sample size.

propriate to use another notion of similarity. We propose
using the lyrics since the stories narrated in different jingju
arias are distinctive and lyrics tend to change through dif-
ferent jingju arias – even when they share the same mode.
Therefore, phonetic information might be useful to iden-
tify a similar score given a query audio.

QBSH is the most related research task to our study,
which retrieves a song by singing a portion of itself. Most
of the studies use melody information as the only cue.
The typical process of such systems was introduced by
Molina et al. [15]: firstly, the F0 contour and/or a note-
level transcription for a given singing query are extracted;
and then, a set of candidate songs are retrieved from a large
database using a melodic matcher module. The most suc-
cessful QBSH system, which obtained the best results in
MIREX 2016 contest, is based on the method of multi-
ple similarity measurements fusion [21]. This system pro-
posed a melodic matcher which combines several simi-
larities that are note-based and frame-based. The authors
claim that the fusion mechanism improves the query per-
formance because no similarity measurement is perfect.
Therefore, information sources that are complementary to
each other might be beneficial for this approach. Very few
studies have explored the capability of the phonetic infor-
mation for QBSH. Guo et al. [8] and Wang et al. [20] both
used a lyric recognizer based on Hidden Markov Models
(HMMs). Their recognition networks 1 were constructed
with the phonetic information from the query candidates
database. They used frame-based MFCCs to create the
acoustic models with GMMs. Then, the Viterbi algorithm
was executed over the recognition networks to either ob-
tain the most likely phonetic state sequence (for Wang et
al. [20]) or the posterior probability of each possible de-
coding path (for Guo et al. [8]). The final score of a
query candidate is either based on semantic similarity [20]
or based on the posterior probability of its corresponding
lyrics [8].

Another research task related to our study is singing
keyword spotting. The main goal of this task is to
search for one or more keywords in a singing query. The
system proposed by Kruspe [12] searches for a specific
singing keyword on the resulting phoneme observations.
1 The topology of the HMM is defined by the recognition network.

A keyword-filler HMMs is employed for this purpose. She
used two phoneme duration models: the HSMM and the
post-processor duration model.

Finally, both phonetic and duration information ex-
tracted from the score have been extensively used in
alignment-related tasks, such as audio-to-score alignment
and audio-to-lyrics alignment. For example, Gong et al.
[4] construct a left-to-right HSMM using phonetic and du-
ration information. Or Dzhambazov et al. [3] use a simi-
lar approach for aligning polyphonic audio. Analogously,
the proposed approach explores the use of both phonetic
and duration information (available in scores) to tackle the
matching ambiguity problem existing in jingju music.

The remainder of this paper is organized as follows:
the used dataset is introduced in section 2, section 3 ex-
plains the modules of the proposed approach – detailing
how to incorporate phonetic and duration information. Ex-
periments and results are reported in section 4, and section
5 concludes and points out future work.

2. DATASET

The jingju a cappella singing dataset is composed of two
overlapping parts: (i) audio and (ii) score datasets.

The audio dataset [1] used for this study consists of two
role-types singing: dan (young woman) and laosheng (old
man). The dan part of this dataset has 42 recordings sung
by 7 singers and the laosheng part has 23 recordings sung
by 7 laosheng singers. The boundary annotations of the au-
dio dataset have been done in Praat format (textgrid) con-
sidering a hierarchy of three levels: phrase, syllable and
phoneme – using Chinese characters, pinyin notations and
X-SAMPA notations, respectively. 32 phoneme classes are
used in the phoneme-level annotation. Two Mandarin na-
tive speakers and a jingju musicologist have been devoted
to this annotating work. Annotations and more detailed in-
formation can be found online 2 . Some statistics about the
dataset are reported in Table 2. The average phrase, sylla-
ble and voiced phoneme length of dan singing are ostensi-
bly greater than those of laosheng singing (bold numbers
in Table 2), which might indicate that dan singing tends to
have more pitch variation and ornamentation – as we could
observe empirically by listening to the data.

Num. Avg. len (s) Std. len (s)

Phrases 325 16.42 14.11
Syllables 2933 1.58 2.82
Voiced phonemes 7198 0.61 0.97
Unvoiced phonemes 2014 0.10 0.67

Phrases 247 9.47 8.14
Syllables 2289 0.88 1.48
Voiced phonemes 4948 0.39 0.78
Unvoiced phonemes 1454 0.07 0.05

Table 1. Detailed information of the jingju a cappella
singing audio dataset: dan (top), laosheng (bottom).

2 http://doi.org/10.5281/zenodo.344932
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The audio dataset, along with their boundary annota-
tions, is split into three parts: training set, development
(dev) set and test set. We define the training set to be the
non-overlapping part with the score dataset, see Figure 3.
The training set will be used for calculating the phonetic
duration (duration information) and training acoustic mod-
els (phonetic information). After taking the training set
out, we define the development set to be the half of the re-
maining phrases in the audio dataset (randomly selected)
– it will be used for parameters optimization. The test set
consists on the remaining phrases of the audio dataset – it
will be used for testing the acoustic models performance
and the matching performance.

Figure 3. The intersection between the audio and the score
datasets. The partition of the audio dataset.

On the other hand, the score dataset contains 435 dan
phrases and 481 laosheng phrases. The scores have been
typed in stave notation (including lyrics in Chinese char-
acters) using MuseScore from different printed sources in
jianpu notation. Since tempo is usually not clearly noted in
the printed score, we do not include this information in the
dataset. The relative syllabic durations are indicated by the
note durations corresponding to the lyrics, which will be
used to calculate the phonetic duration (duration informa-
tion) and the matching network. The whole score dataset
will be used as candidates for testing the matching perfor-
mance and for parameter optimization.

3. APPROACH

The proposed approach aims to match the query audio to
its score by using phonetic and duration information. Dur-
ing the training process (red boxes in Figure 4): the acous-
tic models of each phoneme are shaped by using the au-
dio training set and its phonetic boundary annotations; the
score dataset is used to construct a matching network; and
phoneme duration distributions are estimated by using both
audio training set and scores. During the matching process
(green boxes in Figure 4): two duration models –HSMM
and post-processor– are explored for the Viterbi decoding
step. Finally, the best-matched phrase is found by ranking
the decoded state sequence probabilities.

3.1 Acoustic models

Here presented acoustic models aim to represent the re-
lationship between an audio signal and the 32 phoneme

Figure 4. Diagram of the proposed approach.

classes present in our dataset. The output of these models
yield probability scores for each phoneme class.

The most popular way to approach acoustic modeling
is by using GMMs and MFCCs features [8, 20]. For that
reason, we set as baseline a 40-component GMM with the
following input vector: 13 MFCCs, their deltas and delta-
deltas. Moreover, DNNs have been found very useful for
acoustic modeling [9, 13]. Therefore, we propose an addi-
tional baseline: a DNN with 2 hidden layers followed by
the 32-way softmax output layer – the input is set to be a
log-mel spectrogram.

However, DNNs are very prone to over-fitting and
the available dataset is relatively small. For that rea-
son we propose using CNNs since these are more robust
against over-fitting – note that CNNs allow parameter shar-
ing. Additionally, Pons et al. [17] have successfully used
spectrograms-based CNNs for learning music timbre rep-
resentations from small datasets. Given that timbre is an
important feature for acoustic modeling, we propose using
the same architecture: a single convolutional layer with
filters of various sizes [16, 17]. The input is set to be a
log-mel spectrogram. We use 128 filters of sizes 50×1 and
70×1, 64 filters of sizes 50×5 and 70×5, and 32 filters of
sizes 50×10 and 70×10 – where the first and second num-
bers denote the frequential and temporal size of the filter,
respectively. A max-pool layer of 2×N ′ is followed by a
32-way softmax output layer with 30% dropout – where
N ′ denotes the temporal dimension of the resulting feature
map. 2×N ′ max-pool layer was chosen to achieve time-
invariant representations while keeping the frequency res-
olution. And same padding is used to preserve the dimen-
sions of the feature maps so that these are concatenable.
Filter shapes are designed so that filters can capture the
relevant time-frequency contexts for learning timbre rep-
resentations – according to the design strategy proposed
by Pons et al. [17]

Log-mel spectrograms are of size 80×21 – the network
takes a decision for a frame given its context: ±10 frames,
21 frames in total. Activation functions are ELUs [2]
for all deep learning models and these are optimized with
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stochastic gradient descent (batch size: 64), using ADAM
[11] and early stopping – when validation loss (categorical
cross-entropy) does not decrease after 10 epochs.

Spectrograms are computed from audio recordings
sampled at 44.1 kHz. STFT is performed using a window
length of 25ms (2048 samples with zero-padding) with a
hop size of 10ms. The 80 log-mel bands energies are calcu-
lated on frequencies between 0Hz and 11000Hz and these
are standardized to have zero mean and unit variance.

The acoustic models are trained separately for each
role-type and their performance is reported in section 4.2.

3.2 Matching network

The matching network defines the topology of the hidden
Markov model. By using each candidate phrase in the
score dataset as an isolated unit, isolated-phrase matching
networks can be constructed. Figure 5 shows the structure
of this matching network, which has K = 916 lyric paths.

Figure 5. The structure of the K paths isolated-phrase
matching network. Path 3 shows an example of the left-
to-right state chain structure of an individual lyric path.

The matching network uses HMMs or HSMMs, de-
pending on how the internal duration is modeled. Each
path is a left-to-right state chain which represents the
phoneme transcription of its lyrics. In order to construct
the lyric path, pinyin lyrics are segmented into phonetic
units and transcribed into X-SAMPA notations by using
a predefined dictionary. For example, a path which has
the lyrics yan jian de hong ri in pinyin is a chain consist-
ing of 12 states: j, En, c, j, En, c, 7, x, UN, N, r\’, 1 in
X-SAMPA notation. When the decoding process has fin-
ished, each lyric path can get a posterior probability which
will be used as the similarity measure between the query
phrase and the candidate phrase.

3.3 Phonetic duration distributions

Phonetic duration information comes from two sources:
the boundary annotations of audio training dataset and the
score dataset. The phonetic duration is not directly indi-
cated in the score. However, it is indispensable for model-
ing the phonetic duration distribution for each state in the
matching network. The syllable, of which duration can be
deduced by the corresponding note(s), is used to restrict
the durations of the phonemes.

Figure 6. Flowchart example of estimating the phonetic
durations of a syllable.

In the following, we propose a method for estimating
the absolute phonetic duration given: (i) the score, and (ii)
the phonemes duration histograms computed from the au-
dio dataset annotations. First, we omit silence parts in the
query audio (with a simple voice activity detection method
[19]) and also in the score by removing the rest notes. Sec-
ond, we compute the duration histogram and its duration
centroid for each phoneme class – by aggregating the pho-
netic durations indicated in the boundary annotations of the
audio training dataset. Then, we segment each syllabic du-
ration in the score dataset into phonetic durations accord-
ing to the proportion of their duration centroids. Finally,
as the scores do not contain tempo, we normalize the pho-
netic durations of each phrase such that their summation is
equal to the duration of the query audio. See Figure 6 for
an equivalent graphic explanation. In Figure 6, the cen-
troid durations of these three phonemes are: 0.46s, 0.9s
and 0.1s, summing: 1.46s – alternatively, these can be ex-
pressed as a proportion of 1.46s: 0.32, 0.62 and 0.06. With
these proportions and the absolute syllable duration (2s),
we can compute the absolute phoneme durations: 0.32·2s
= 0.64s, 0.62·2s=1.24s and 0.06·2s=0.12s.

The phonetic duration distribution needs to be calcu-
lated for each state in the matching network in order to
incorporate the a priori phonetic duration information. We
model it by Gaussian distributions:

N (x;µl, σ
2
l ) =

1√
2πσl

exp

(
− (x− µl)

2

2σ2
l

)
. (1)

where µl is the duration of the phoneme l deduced by the
above method and the standard deviation σl is proportional
to µl: σl = γµl. The proportionality constant γ will be
optimized in section 4.3 for each role-type.
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3.4 Duration modeling

Standard Markovian state does not impose explicitly dura-
tion distribution, instead, imposing an implicit state occu-
pancy distribution which corresponds to a “1-shifted” geo-
metric distribution [6]:

dj(u) = (1− p̃jj)p̃u−1jj (2)

where u denotes the occupancy or sojourn time in a Marko-
vian state j and p̃jj denotes the self-transition probability
of the state j. Because of the implicity of the Markovian
state occupancy, the phonetic duration distribution intro-
duced in section 3.3 can not be imposed. Kruspe [12]
presents two duration modeling techniques for HMMs:
Hidden semi-markov model (HSMM) and post-processor
duration model.

3.4.1 Hidden semi-markov model

Guédon [6] defined a semi-Markov chain St with finite
state space 0, ..., J − 1 by the following parameters:

- initial probabilities πj = P (S0 = j) with
∑

j πj = 1

- transition probability of semi-Markovian state j: for
each k 6= j, pjk = P (St+1 = k|St+1 6= j, St = j)
with

∑
k 6=j pjk = 1 and pjj = 0

An explicit occupancy distribution is attached to each
semi-Markovian state:

dj(u) = P (St+u+1 6= j, St+u−v = j, v = 0, ..., u− 2

|St+1 = j, St 6= j), u = 1, ...,Mj

(3)
where Mj denotes the upper bound to the time spent in
state j. dj(u) defines the conditional probability of leaving
state j at time t+ u+ 1 and entering state j at time t+ 1.

To apply HSMMs to the matching network, we first use
the matching network as the HSMMs topology. Thus the
state occupancy distribution is set to its corresponding pho-
netic duration distribution. Then the probabilities of each
left-to-right state transition are set to 1 because all self-
transition probabilities in HSMMs are 0. The goal is to find
the most likely sequence of hidden states for each lyric path
and collect its posterior probability. The Viterbi algorithm
meets this specific goal and its complete implementation is
provided in [7].

3.4.2 Post-processor duration model

The post-processor duration model was first introduced by
Juang et al. [10]. It was then experimentally proved in
Kruspe’s paper [12] that this duration model works better
than HSMMs for the keyword spotting task in English pop
singing voice. The post-processor duration model uses the
original HMMs Viterbi algorithm – therefore, during the
decoding process, no explicit occupancy duration distribu-
tion is imposed.

The log posterior probability of the decoded most likely
state sequence is augmented by the log duration probabili-
ties:

log f̂ = log f + α
N∑
j=1

N (uj ;µj , σ
2
j ) (4)

where f is the HMMs posterior probability, α is a weight-
ing factor which will be optimized in section 4.3, j =
1, ..., N is the decoded state number in the most likely state
sequence, and N (uj ;µj , σ

2
j ) is the occupancy probability

of being in state j for the occupancy uj .

4. EXPERIMENTS AND RESULTS

4.1 Performance metrics

Two experiments 3 are performed: the first is to evalu-
ate the performance of the acoustic models, and the sec-
ond is to evaluate the proposed matching approaches. For
the first task, we use one simple evaluation metric: the
overall classification accuracy which is defined as the frac-
tion of instances that are correctly classified. For the sec-
ond task, our goal is to evaluate the ability to match the
ground-truth phrase in the score dataset to the query one,
which is almost identical to the goal of a QBSH system:
”finding the ground-truth song in a song database from
a given singing/humming query”. Therefore, we borrow
the standard performance metrics used in QBSH task to
evaluate our approaches: Top-M hit and Mean Recipro-
cal Rank (MRR) [8]. The Top-M hit rate is the proportion
of queries for which ri ≤ M , where ri denotes the rank
of the ground-truth score phrase. MRR is the average of
the reciprocal ranks across all queries, n is the number of
queries, and ranki is the posterior probability rank of the
ground-truth phrase corresponding to the i-th query.

MRR =
1

n

n∑
i=1

1

ranki
(5)

4.2 Acoustic models

CNN, DNN and GMM acoustic models yield probability
scores for each phoneme class. In order to evaluate the
classification accuracy, we choose the phoneme class with
the maximum probability score as the prediction. Table 4.2
reports the performance of CNN, DNN and GMM acoustic
models evaluated on the test set.

dan(#parameters) laosheng(#parameters)

CNNs 0.484(222k) 0.432(222k)
DNNs 0.284(481k) 0.282(430k)
GMMs 0.290(-) 0.322(-)

Table 2. Overall classification accuracies of CNN and
baseline acoustical models for dan and laosheng datasets.

The relatively low classification accuracies for all three
models show that modeling the phonetic characteristics of
jingju singing voice is a challenging problem. Our best
results are achieved with CNNs – and GMMs perform bet-
ter than DNNs. Interestingly, these results contrast with
the literature where Hinton et al. [9] describe that DNNs
acoustic models largely outperform GMMs for automatic
speech recognition, and Maas et al. [13] showed that CNNs

3 Code:https://goo.gl/1XB6j1
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perform worse than DNNs for building speech acoustic
models. First, we argue that in our case DNNs perform
worse than GMMs and CNNs because a small amount of
training data is available. DNNs require a lot of train-
ing data to achieve good performance and note that large
amounts of training data are typically not available for
most MIR tasks. And second, note the CNNs used here are
specifically designed to efficiently learn timbre representa-
tions [17] while Maas et al. [13] used small square filters,
which proved successful in computer vision tasks. These
results show that using CNN architectures designed for the
task at hand is especially beneficial in small data scenarios.
A CNN model is used in the following experiments.

4.3 Parameters optimization

The parameters which need to be optimized for dan and
laosheng role-types are: the weighting factor α for the
post-processor duration model, and the proportionality
constant γ for both models: HSMMs and post-processor
duration model. Table 4.3 reports the optimal values we
obtained by doing grid search on the development set –
MRR metric was maximized.

Search Optimal
Parameters bounds values

α [0.25, 2] with step 0.25 1.0 / 1.0
γ HSMMs [0.1, 2] with step 0.1 0.1 / 0.1
γ post-processor [0.1, 2] with step 0.1 0.7 / 1.5

Table 3. Parameters to be optimized, search bounds and
resulting optimal values (dan / laosheng).

4.4 Duration modeling

To highlight the advantage of using duration modeling
methods for audio to score matching, a standard HMM
without explicitly imposing the occupancy distribution is
used as a baseline. Results in Figure 7 show that its perfor-
mance is inferior to the HSMM duration model.

Figure 7. Phrase matching performance of HSMM and
post-processor duration model with CNN acoustic model:
dan (top), laosheng (bottom).

One can also observe in Figure 7 that HSMM performs
the best, improving the baseline MRR metric performance
by 13.2% for dan role-type and 15.1% for laosheng role-
type. This means that HSMMs explicit duration modeling

can help achieve a better audio to score matching by using
phonetic information.

The post-processor duration model does not signifi-
cantly improve the baseline performance. This result con-
trasts with the literature, where the post-processor dura-
tion model worked better than HSMMs for singing voice
keyword spotting [12]. This inconsistency might result
from (i) the length difference of the matching unit (singing-
words vs. singing-phrases), and (ii) the large standard de-
viation of the jingju singing phonemes length. First, in
Kruspe’s work [12], the matching unit is the singing key-
word – which usually contains fewer phonemes than a
singing phrase (as in our case). And second, the vowel
length standard deviation of the a cappella dataset used by
Kruspe [12] (around 0.3s) is much short than in our dataset
(dan: 0.97s, laosheng: 0.78s) – denoting less vowel du-
ration variance than in our study case. Moreover, a sig-
nificant deficiency of the post-processor duration model is
that it does not provide the most likely state sequence by
internally considering the durations, but it computes a new
weighted likelihood given the obtained sequence [12]. If
the most likely state sequence is decoded poorly, it can’t
be restored by the post-processor duration model.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented an audio to score matching ap-
proach that uses phonetic and duration information.

We explored two duration models: HSMM and post-
processor duration model. HSMMs achieved better results
than the post-processor duration model – probably due to
(i) the matching units length, (ii) the large standard devia-
tion of the considered phonemes, and (iii) because for the
post-processor duration model it is hard to recover a decod-
ing mistake. Moreover, HSMMs achieved a better match-
ing performance than the baseline-HMMs approach, which
only took into account phonetic information, denoting the
utility of using duration information.

We also compared CNN, DNN and GMM acoustic
models, and CNNs have shown to be superior in our small
singing voice audio dataset. The used CNN architecture
was specifically designed to learn timbral representations
efficiently [17] – this being the key factor for enabling
CNNs (a deep learning method requiring large amounts of
data) to perform so well on such a small dataset.

There are many possibilities to improve our approach.
It has been shown in the speech research field that LSTM
RNNs achieved the best acoustic modeling performance
[18]. However, this method requires a large training
dataset in order prevent from over-fitting. Another pos-
sibility to improve our acoustic model is to go deeper with
the current single-layer CNN architecture, but this will also
require more training data. We plan to collect more jingju
a cappella singing recordings and perform data augmenta-
tion to leverage the capability of the acoustic models. Fur-
thermore, in order to take advantage of the melodic infor-
mation existing in both audio and score datasets, we also
plan to investigate methods which can fuse melodic, pho-
netic and duration information.
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