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ABSTRACT

Score information has been shown to improve music
source separation when included into non-negative matrix
factorization (NMF) frameworks. Recently, deep learning
approaches have outperformed NMF methods in terms of
separation quality and processing time, and there is scope
to extend them with score information. In this paper, we
propose a score-informed separation system for classical
music that is based on deep learning. We propose a method
to derive training features from audio files and the corre-
sponding coarsely aligned scores for a set of classical mu-
sic pieces. Additionally, we introduce a convolutional neu-
ral network architecture (CNN) with the goal of estimating
time-frequency masks for source separation. Our system is
trained with synthetic renditions derived from the original
scores and can be used to separate real-life performances
based on the same scores, provided a coarse audio-to-score
alignment. The proposed system achieves better perfor-
mance (SDR and SIR) and is less computationally inten-
sive than a score-informed NMF system on a dataset com-
prising Bach chorales.

1. INTRODUCTION

As a special case of audio source separation, music source
separation has gained significant attention during the past
years. Recovering the sources corresponding to the instru-
ments from an audio mixture allows for interesting appli-
cations such as music upmixing [9] or virtual-reality con-
certs [16], and it is useful in music information retrieval
tasks [11,30].

In contrast to speech separation, music source separa-
tion poses different challenges due to the variety of sources
which are correlated in time and frequency [7]. Because of
the multitude of harmonic instruments, often related tim-
bres, variations in dynamics, Western classical music is
a challenging case [21]. On the other hand, results can
improve if prior knowledge about the nature of sources
[5,29] and their timbre [2] informs the separation frame-
work. Considerable improvements are obtained in the case
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of parametric models, such as NMF, which are restricted
using coarsely aligned scores [4,7, 10, 14].

Recently, neural network approaches have outper-
formed NMF in audio source separation challenges [18].
Deep learning systems estimate soft masks for specific in-
strument classes [3, 13, 15] or computing the instrument
spectra directly [27]. In contrast to NMF methods, a deep
learning framework is less computationally expensive [3]
at the separation stage, as estimating the sources involves
a single feed forward pass through the network rather than
an iterative procedure. Thus, it can be used in a low la-
tency scenario. Furthermore, recurrent [15] and convolu-
tional [3, 13] networks have the advantage of modeling a
larger time context.

Novel deep learning source separation systems propose
specialized models which propose building an NMF logic
into an autoenconder [26] or cluster components over large
time spans [19]. Including score information into the deep
learning separation frameworks can yield further improve-
ments [8].

In this paper we introduce a monaural score-informed
source separation framework for Western classical music
using convolutional neural networks (CNN). We assume
that for a given classical music piece the instruments are
known and the score is available. Thus, for a set of given
scores we generate renditions which are used to train a
CNN. The trained model is used to separate real-life per-
formances based on these scores [22].

A global alignment of the score with the audio of a per-
formance can be obtained by a score following system [4].
Then, the resulting coarsely aligned score, with errors up
to 0.2 seconds, is used to derive score-based soft masks for
each of the sources. From these masks we generate score-
filtered spectrograms as input features for the CNN.

Training neural networks for source separation requires
isolated audio tracks which are difficult to obtain. There-
fore, we use the data generation method in [22]. Accord-
ingly, we synthesize renditions of original scores with vari-
ations in timbre, dynamics and local timing deviations.

The remainder of the paper is structured as follows. In
Section 2 we state our contributions in relation with the
previous work. In Section 3 we introduce the proposed
method including the feature computation, the architecture
of the network and the training procedure. In Section 4 we
discuss the evaluation of the proposed method. We present
our conclusions in Section 5.
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2. RELATION TO PREVIOUS WORK

Score-informed constraints [7,10] are imposed to the NMF
framework through restricting the activations of the note
templates. In a similar manner, we use the score to gener-
ate sparse training features which are used as input to the
CNN. Furthermore, since score following errors influence
the quality of separation [4,20], we compensate for local
misalignments in a similar manner to [7, 10], by allowing
a tolerance window around note onsets and offsets while
computing our training features. For our experiments and
the dataset we used the size of this window is 0.2 seconds.

Deep learning systems can become more robust to real-
life cases by increasing the size and variability of the train-
ing dataset through data generation [22] or augmentation
[24,25]. In this sense, the difference in performance be-
tween two similar deep learning methods can be largely ex-
plained by the difference between training datasets rather
than new features or methods [1]. We are motivated by re-
cent advance in deep learning which go beyond the black-
box model and try to integrate musically meaningful fea-
tures [19,26]. Thus, we aim at improving source separation
for classical music with a context-driven method which in-
cludes score information.

The CNN architecture in this paper is adapted from the
convolutional autoencoder proposed in [3, 22]. In com-
parison to [3] our CNN architecture has different filter
and layer sizes. Moreover, the original scores from which
training data is generated are further used to derive score-
informed features which are given as input to the CNN in a
representation analogous to multi-channel images. To that
extent, our approach contrasts with [8] which uses score
restrictions inside the deep learning framework. Further-
more, to our best knowledge, deep learning audio process-
ing methods do not use a multi-channel input as in im-
age processing applications. Thus, we analyze whether
the convolutional autoencoder introduced in [3,22] learns a
better representation from a multi-channel input than from
a single channel input, given that the feature maps are
shared between all channels. In addition, we use bootstrap-
ping with replacement to train such an architecture when
working with big datasets.

3. METHOD

The diagram of the separation framework with the two
stages, training and separation, can be seen in Figure 1.
For the training stage, we start from the original scores
from which we derive synthetic audio renditions with the
method in [22]. The same scores are used to derive fea-
tures for training the CNN in form of score-based soft
masks, explained in Section 3.1.1, and score-filtered spec-
trograms, explained in Section 3.1.2. For the separation
stage, our framework takes as input an audio mixture and
the corresponding coarsely aligned score. Similar to the
training stage, we compute the score-based soft masks and
the score-filtered spectrograms which are feed-forwarded
through the CNN model to obtain the magnitude spectro-
grams of the separated sources.

original score-based Training
scores soft-masks
score- dat
filtered ata
spectrum processing
audio magnitude
synthesis spectrum CNN
training
aligned score-based
score soft-masks
score- ined
audio magnitude filtered tra;ni
rendition spectrum spectrum mode
phase separated
. spectrum sources
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Figure 1. The overview of the separation system compris-
ing the two stages: training and separation

3.1 Feature computation

The goal of computing score-based soft masks is to de-
rive additional sparse score-filtered spectrograms which
are used as an input to the CNN.

3.1.1 Score-based soft masks

A score gives the note onsets and offsets time and the MIDI
note numbers. Assuming that the source is harmonic and
we know the tuning frequency, f,, the MIDI note associ-
ated with A4, m 44, we can compute the fundamental fre-
quency fo = fq- 212 (m=mas) where m is the MIDI note
number.

Score information yields the time-frequency zones
where the notes are played. Correspondingly, for a given
note n that plays between the time frames ¢, and ¢, we can
define the time range as:

U,(t) =u(t —ty —ty) — u(t — te — tw) (1

where w is the unit step function, and t,, is tolerance
window set around onset ¢; and offset £, which compen-
sates for local misalignments in score-following, similarly
to [4,7,10,14]. The tolerance window is applied at training
and separation.

Furthermore, if we consider the fundamental frequency
fo of the note n we define the frequency range as:

H
V() =Y ul(f —hfo/fi) = u(f = hfofi) (2)
h=1

where h = 1 : H are the harmonic partials, and f; =
27¢/1200 ig the allowed frequency interval below and above
each harmonic partials, with f. being the allowed interval
in cents, and 1200 is the number of cents per octave.

For each source j = 1 : J and all its notes n = 1 : IV;
we can compute score-based binary matrices K; (¢, f) asa
sum of outer products:

N
K;(t, /)= Un(t) @ Vou(f) 3)

n=1
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Figure 2. Feature computation for the first 4 seconds and
frequencies between 0-6500Hz, for the piece Ach Gottund
Herr of Bach10 dataset [4] comprising four instruments.

An example of K for a classical music piece comprising
four harmonic sources is shown in the first column of Fig-
ure 2.

The score-based soft masks for each source, j = 1: J,
are given by the equation:

| K|

Ri(ft)= — 3
#59) Y K|+ e

“)

where ¢ = 1710 is a constant to handle division by zero.
We illustrate a set of R; matrices in the second column of
Figure 2.

In this paper we consider solely combinations between
harmonic sources, which are reflected in the initialization
of V,, using a series of harmonic partials, as seen in Equa-
tion 2. However, the proposed solution can be easily ex-
tended to model non-harmonic sources by initializing the
vector V,,(f) = 1 along all the frequency range, resulting
in a less sparse score-filtered spectrogram which is solely
informed by onsets and offsets times through U, (¢).

3.1.2 Score-filtered spectrograms

We calculate the STFT magnitude spectrogram of the au-
dio mixture as X (f,t). Then, we derive score-filtered
spectrograms for each of the sources j = 1 : J, by com-
puting the element-wise product between the spectrogram
of the mixture, X, and the score-based soft masks, R;:

X;(f,t)=X"R; (&)

(3,T,F)

(J,T,F) J,T,F) (J,T,F)

(T,F)

(30,T,F) (30,T,F) (30,T,F) (30,T,F)

IR
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conv2  convl
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30xTxF,

4 5
s(1,4) E; M; X = X;
with j=1:J

Figure 3. The CNN architecture used in the separation
framework for J = 4 sources

3.2 Convolutional Neural Network architecture

The convolutional autoencoder architecture can be seen in
Figure 3. It comprises a convolution stage with two convo-
lution layers, two dense layers, and a deconvolution stage.
The sources are reconstructed using the filters learned at
the convolution stage. In addition, we have two determin-
istic layers to compute the spectrograms of the sources.

In contrast to the CNN architectures in [3, 13,22], our
CNN takes as input J score-filtered spectrograms for a
time context 7" and a number of frequency bins F', rather
than a single spectrogram of the mixture. The J score-
filtered spectrograms share the same feature maps, in a
similar way to image processing deep learning methods
that use color RGB channels [1]. Our assumption is that
this additional information can better guide the separation
between the sources. Furthermore, as shown in Figure 2,
the score-filtered spectrograms are sparser versions of the
original spectrogram, offering a better representation for
source separation [23].

The first layer convl is a convolution layer with filter
shape (1, 30), hence the convolution only happens in fre-
quency. For this layer we have a stride ! of (1,4), which
reduces dimensionality by keeping into account the spar-
sity of the input.

This layer outputs feature maps of size (30,7, F}),
where F; = (F — 30)/4 + 1, where 30 is the length of
the filter and 4 is the stride. The second layer conv2 is
a convolution layer with filter shape (20, 1), which learns
temporal patterns. The output of this layer has the size
(30,74, Fy), where 77 = (T — 20) + 1 with 20 being the
length of the filter. This layer has a stride of (1, 1), since
we are interested in maintaining a good temporal resolu-
tion at the reconstruction. Note that the convolution layers
have a linear activation function.

We use a dense bottleneck layer as in [3] with 256 units
and a rectifier linear unit activation function [1], denoted
as densel. The limited number of units and the activa-
tion function have been proven to better guide the param-
eter learning and prevent overfitting in the case of timbre-
informed source separation [3].

To match dimensions necessary for the deconvolution
(30,11, Fy) for each of the J sources, we introduce a layer

! The stride controls how much a filter is shifted on the input.
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dense2 comprising J dense layers of shape 30- 17 - F;. For
each of these J layers we perform the inverse operations
of conv2 and convl and we obtain a set of estimations E;
for each of the separated sources j = 1: J.

Following [3, 15], we integrate the computation of the
soft masks into the architecture of the network as an ad-
ditional deterministic layer. Thus, the soft masks M, for
each source j = 1 : J, are computed from the output of
the previous layer, Ej;, as:

M- Bl (6)
J J
> iy [ Bl +e

where ¢ = 1710 is a constant to handle division by zero.
The magnitude spectrogram corresponding to the sources,
X j» are given by the element-wise multiplication between
input spectrogram and the soft-masks X; = M;; - X. The
soft masks M; are not to be confounded with the score-
based soft-masks R; introduced in Section 3.1.1 and used
to derive input features for the CNN.

3.3 Training procedure

The network is trained according to the mean-squared
error between the magnitude spectrograms of the tar-
get sources, X j» and the magnitude spectrograms of
the sources yielded by the network, X, as: Loss =
S 1% — X%

The parameters of the CNN are updated using mini-
batch Stochastic Gradient Descent with the AdaDelta al-
gorithm [31].

With the method in [22] we can generate a high num-
ber of renditions, covering a high number of possibilities,
which makes the framework more robust to real-life data.
However, training on big datasets is an expensive proce-
dure and we experimented with a faster training method
summarized in the Algorithm 1. In this case, we sam-
ple a limited number data points before each epoch rather
than having a fixed dataset at the beginning of training. In
statistics, this procedure is known as bootstrapping with re-
placement [17]. Note that, for this training procedure, the
concept of epoch (a single pass through the entire training
set) does not hold anymore.

Algorithm 1 Bootstrapping with replacement

1 repeat

2 randomly sample a number of data points from the dataset

3 for each training batch do

4 compute weights and bias gradients for the current
batch

5 accumulate the gradients

6 end for

7 adjust weights and bias using accumulated gradients

8 until total number of stages is reached

3.4 Separated source estimation

We assume that the individual sources y;(t),j = 1 : J,
that compose the audio mixture x(¢) are linearly mixed,

J
so that z(t) = ) y;(t). Therefore, from the estimated
j=1

magnitude spectrograms X; and using the original phase
of the audio mixture we can obtain the signals associated to
the sources, y;(t), with an inverse overlap-add STFT [10].

The neural network yields estimations of shape (7, F")
for each of the J sources. Considering an audio mixture of
variable time shape, the estimation is done for overlapping
segments of shape (T, F'), with the algorithm described in
[22].

4. EVALUATION
4.1 Datasets

For evaluation purposes we use ten Bach chorales from the
Bach10 dataset [4], played by bassoon, clarinet, tenor sax-
ophone, and violin. The mean duration of a piece is ~ 30
seconds. In addition, each piece is accompanied by the
score aligned with the audio, the original score, and an au-
tomatic alignment obtained with the algorithm in [4]. This
dataset has been widely used in tasks as source separation,
alignment, and transcription.

4.2 Generating training data

We generate training data with the method in [22] which
uses sample-based synthesis with samples from the RWC
instrument sound database [12]. The method synthesizes
original scores at different tempos, dynamics, considering
local timing deviations, and using different timbres to gen-
erate a wide variety of renditions of given pieces.

In this case, we have three different timbres and three
level of dynamics. In addition, to account for local
timing variations, we circular-shift the audio with s =
{0,0.1,0.2} seconds. An analogous transformation needs
to be applied to the associated score by adding s seconds
to the note onsets and offsets.

Considering the variations of the factors above (3 - 3 -
3 = 27) for the four instruments, we can generate a total
number of 274 = 531441 renditions for a single piece.
Because it is not feasible to generate such a high number of
audio files, we randomly choose 400 renditions to build our
training dataset. Samples are uniformly distributed across
the dataset. Since we are training a CNN model for all the
10 pieces in Bach10 dataset, we have a total number of
4000 renditions.

4.3 Evaluation setup

We used the evaluation framework and the metrics de-
scribed in [28] and [6] : Source to Distortion Ratio (SDR),
Source to Interference Ratio (SIR), and Source to Artifacts
Ratio (SAR).

The STFT is computed using a Blackman-Harris win-
dow of length 4096 samples, which at a sampling rate of
44.1 KHz corresponds to 93 milliseconds (ms), and a hop
size of 512 samples (11ms).

When computing the soft-masks from the score, as de-
scribed in Section 3.1.1, we consider the tuning frequency,
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fq = 440Hz, the MIDI note associated with A4, m 4 =
69, and we allow f. = 40 cents above and below each
harmonic partials to account for vibrato. Additionally, be-
cause we want to train our score-informed system to ac-
count for errors in score following, we set the tolerance
window to be t,, = 0.2 seconds around onsets and offsets.

The time context modeled by the CNN is 7" = 30
frames. Furthermore, a more robust system is achieved by
taking consecutive 7T-sized frames with an overlap of 25
frames with the algorithm described in [22].

The number of epochs is variable for each training ex-
periment. The size of a mini-batch is set to 32.

This paper follows the principles of research repro-
ducibility 2. The code used in this paper is made available
online? . Itis built on top of Lasagne, a framework for neu-
ral networks using Theano *. We ran the experiments on a
Ubuntu 16.04 PC with GeForce GTX TITAN X GPU, In-
tel Core 17-5820K 3.3GHz 6-Core Processor, X99 gaming
5 x99 ATX DDR44 motherboard.

4.4 Experiments

In a first experiment, we compare the proposed framework
with an NMF counterpart on the Bach10 dataset. We train
our CNN framework on the synthetic dataset we described
in Section 4.2 (10 x 400 renditions) and the correspond-
ing scores. Because we want the model to learn to deal
with errors in alignment we set a tolerance window around
notes’ onsets and offsets. Then, we test the resulting model
on real-life performances in Bach10 dataset and the scores
yielded by the score-following system in [4].

Because we want to isolate the influence of the score-
following system, we test our system on the score perfectly
aligned (PA) with the audio. For this case, denoted as CNN
PA, the tolerance window is not needed, neither for train-
ing nor testing. Furthermore, to assess the influence of the
proposed features, we train the CNN architecture without
any score information, having as input the magnitude spec-
trogram of the mixture, similarly to the system in [22]. We
denote this experiment as CNN T.

We compare our score-informed system to a state of the
art NMF counterpart [20]. The note templates are trained
on the RWC dataset and are kept fixed during the factor-
ization. Score-information is introduced through the acti-
vation matrix by setting to zero the activations correspond-
ing to notes which are not played. The activations which
are set to zero will remain this way during factorization,
allowing the energy to be distributed between the active
templates.

For the NMF system we use as input the score aligned
with [4] with a tolerance window of 0.2 seconds, and the
perfectly aligned score, as two separate cases, denoted as
NMF and NMF PA. Furthermore, for the NMF we kept
the default parameters presented in the paper [20]: 50 it-
erations for the factorization, beta-divergence distortion

2http://soundsoftware.ac.uk/resources/

3https://github.com/MTG/DeepConvSep

“http://lasagne.readthedocs.io/en/latest /Lasagne
and http://deeplearning.net/software/theano/Theano

B = 1.3, STFT window size 93ms, and hop size 11ms.

For this first experiment we do not test the bootstrapping
with replacement procedure. To that extent, we train the
CNN with all the 4000 renditions for a maximum number
of 20 epochs and we stop training if the loss between two
epochs drops below 0.2.

In a second experiment, we test the effectiveness of the
training procedure based on bootstrapping with replace-
ment, described in Algorithm 1 and compare it with the
standard training procedure which maintains the same data
points during training. Furthermore, since we want to de-
termine the optimal value for the number of renditions used
at each epoch or stage, we train the CNN successively with
the two procedures using different numbers of renditions.
For this experiment we train for a number of 50 epochs or
stages.

4.5 Results

The SDR, SIR, and SAR for our system (CNN and CNN
PA), the timbre informed version CNN T, and the NMF
framework are presented in the Figure 4. Error bars are
drawn for a confidence interval of 95%.

We observe that the proposed score-informed frame-
work performs better than NMF when working with
coarsely aligned scores: 6dB vs 5dB in SDR. Hence, with
our framework we are able to compensate for local mis-
alignment errors around 0.2 seconds. This results in less
interference, since the CNN method has 2d B more in SIR
than the NMF, and can be due to the fact that the CNN
models temporal patterns in the conv2 layer and to the non-
linearities in the bottleneck densel layer.
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Figure 4. Results in terms of SDR, SIR, SAR for the pro-
posed CNN framework and the NMF framework [20]

Having score-filtered spectrograms as input (CNN) im-
proved 2d B in SDR in comparison to giving the magnitude
spectrograms as input (CNN T), which proves the effec-
tiveness of the features derived from score.

When the score is perfectly aligned with the audio, there
is no significant difference in SDR between the CNN PA
and NMF PA. However, the proposed method has 1dB
higher SIR and similar SAR values to the NMF PA. Note
that CNN PA is trained on the original scores and it is not
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targeted for special case. To that extent, as the CNN and
CNN PA achieve similar results, we believe that having a
perfect alignment does not improve results for this particu-
lar type of CNN architecture. This is in line with the results
obtained in [22].
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Figure 5. Results for each instrument in terms of SDR for
the considered approaches: CNN and NMF [20]

We present the results in terms of SDR for each instru-
ment in Figure 5. The CNN framework performs signif-
icantly better than the NMF for all the instruments, with
the exception of bassoon. While experimenting with dif-
ferent STFT window sizes, we observed that the quality
of the separation for bassoon improved considerably with
the increase in the window size, while remaining the same
for the other instruments. However, a larger window size
means a higher feature dimensionality, hence more weights
to be trained and a larger model.

We observe that the proposed framework effectively
compensates for errors in alignment across all instruments,
especially for clarinet.

The audio examples for the CNN framework and the
computed metrics for CNN,CNN PA, CNN T, NMF, and
NMF PA as .mat files can be accessed online > .

In the second experiment we are interested in testing
the bootstrapping with replacement training procedure and
the standard procedure. The results for various number of
renditions can be seen in Figure 6.
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Figure 6. Results in terms of SDR,SIR,SAR when training
the proposed CNN with stardard training method vs boot-
strapping with replacement with various number of train-
ing samples

We observe that bootstrapping with replacement always

Shttp://doi.org/10.5281/zenodo.821128

improves over the standard training procedure, particu-
larly for a small number of training renditions. How-
ever, a lower than 50 number of renditions, decreases the
performance for both of the training methods. In some
cases (50,60,100), using the proposed training procedure
with fewer samples is slightly better than training with the
whole dataset, as it prevents overfitting, in a similar way to
early stopping [1]. The optimum number of renditions for
our experimental scenario is 50 samples.

5. CONCLUSION

We proposed a score-informed source separation frame-
work targeted at Western classical music. Our framework
is based on the assumption that classical music pieces are
accompanied by scores and this information can be lever-
aged. Thus, we proposed a framework which is trained
with generated renditions synthesized from the original
scores. Provided an accurate automatic audio-to-score
alignment can be obtained by a score-following system,
our framework separates with low latency any real-life per-
formances based on those scores, accompanied by a coarse
alignment.

We presented a novel method to derive training fea-
tures in the form of score-filtered spectrograms, which can
easily be integrated with CNN architectures. In particu-
lar, these sorts of homogeneous features are well suited to
learning convolutional filters which are shared between the
input channels of the CNN.

The proposed system has better SDR and SIR than a
state of the art score-informed NMF framework, particu-
larly when working with coarsely aligned score, as it is
the case of the output of score-following systems. Further-
more, we tested a faster training procedure, bootstrapping
with replacement, which preserves the performance and in
some cases prevents overfitting. As future work, we plan
on extending this framework to multi-microphone orches-
tral music which is a more complex scenario due to in-
creased number of instruments. Moreover, reiterating the
method, by inputting the output of the network to another
similar network, could improve results [27].
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