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ABSTRACT

Automatic chord recognition systems operating in the
large-vocabulary regime must overcome data scarcity: cer-
tain classes occur much less frequently than others, and
this presents a significant challenge when estimating model
parameters. While most systems model the chord recog-
nition task as a (multi-class) classification problem, few
attempts have been made to directly exploit the intrinsic
structural similarities between chord classes.

In this work, we develop a deep convolutional-recurrent
model for automatic chord recognition over a vocabulary
of 170 classes. To exploit structural relationships between
chord classes, the model is trained to produce both the
time-varying chord label sequence as well as binary en-
codings of chord roots and qualities. This binary encod-
ing directly exposes similarities between related classes,
allowing the model to learn a more coherent representa-
tion of simultaneous pitch content. Evaluations on a cor-
pus of 1217 annotated recordings demonstrate substantial
improvements compared to previous models.

1. INTRODUCTION

Automatic chord recognition has been an active area of re-
search within music informatics for nearly two decades [8].
Chord recognition systems take as input an audio signal,
and produce a time-varying symbolic representation of the
signal in terms of chord labels, which encode simultaneous
pitch class content, such as C:maj or G:hdim7. Many
systems focus on simplified versions of this task, by pre-
dicting only the root note and major or minor qualities,
or no-chord (N). Recently, interest has shifted toward the
large-vocabulary regime, where a broader class of chord
qualities must be estimated, such as triads, sixths, sevenths,
and suspended chords.

Typical chord recognition systems model the task as a
time-varying multi-class classification problem. This ap-
proach may be reasonable for the small-vocabulary regime,
where the classes are sufficiently distinct to be modeled
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as unrelated, and each class may be observed with ap-
proximately uniform probability. However, in the large-
vocabulary setting, the multi-class formulation ignores the
structural similarity between related chords, such as the
shared notes between C:min and C:min7. Moreover,
the distribution of classes becomes highly skewed, thereby
making it difficult to model these relationships from purely
symbolic representations with no additional structure. We
hypothesize that leveraging known relationships between
chord classes in terms of common roots and shared pitch
classes can help mitigate the problem of observation bias,
resulting in more accurate models of rare classes.

1.1 Our Contributions

We address the problem of large-vocabulary chord recog-
nition by introducing a structured representation of chord
qualities, which decouples the problem of detecting roots
and pitch classes from the problem of mapping these prop-
erties onto symbolic labels. We integrate this represen-
tation with deep, convolutional-recurrent neural networks,
which are trained end-to-end to predict time-varying chord
sequences from spectral audio representations. The pro-
posed models achieve substantially higher accuracy than
previous models based on convolutional networks and hid-
den Markov models, resulting in absolute gains of 4–5% in
the most difficult categories (sevenths and tetrads).

2. RELATED WORK

Chord recognition has received a substantial amount of
attention in the MIR literature, and a comprehensive sur-
vey of existing methods is beyond the scope of this paper.
Here, we highlight the work that is most closely related to
the proposed methods in this paper.

Hidden Markov models (HMMs) have been a popular
method for designing chord recognition systems, and pro-
vide a flexible framework in which to integrate musical
domain knowledge. The general HMM approach models
chord identities as latent state variables to be inferred from
observed time-series features (e.g., chroma vectors). Sys-
tems like Chordino [17] and HPA [20] extend this idea by
introducing additional latent variables to model key, bass,
and metrical position. In these systems, bass is modeled
by weighting or partitioning the frequency range to pro-
duce distinct bass and treble chroma observations. The K-
stream HMM takes this idea a step further by modeling K
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distinct frequency sub-bands, though it does not explicitly
infer bass [5]. The structured representation we describe
in Section 3 differs in that root, bass, and chord quality are
jointly inferred from the entire spectrum, and it makes no
assumptions about absolute height. Weller et al. [23] also
adapted structured training techniques for chord recogni-
tion, but at the level of dynamics rather than the chord vo-
cabulary.

In recent years, deep learning methods have been in-
creasingly popular for chord recognition. The majority of
existing systems are trained in two stages. First, a model
is built first to encode short patches of audio, e.g., as an
idealized chroma vector [2, 16] or likelihood distribution
over chord categories [7, 11, 22, 24]. Second, a dynamics
model integrates the time-series of learned representations
to produce a sequence of predicted labels, e.g., using an
HMM [11, 24], recurrent neural network (RNN) [2, 22],
or simple point-wise prediction [16]. The models pro-
posed here differ in that they are jointly trained end-to-end
from spectral features, and learn the internal representation
along with the dynamics using multiple recurrent layers.

Regardless of the model architecture, it is common to
exploit some structural properties of chords, e.g., by ty-
ing model parameters for the same chord quality across
roots [11], or rotating chroma vectors through all possible
root positions during training [5]. Although the methods
we propose do not model quality independent of root, they
do model active pitch class sets independently. Chroma
rotation can be viewed as a form of data augmentation,
and the models we develop benefit substantially from a
slightly more general form of augmentation described in
Section 3.4. To the best of our knowledge, the proposed
method is the first to exploit similarities between chords
by jointly modeling labels and structured encodings.

3. METHODS

This section outlines the data preparation, architectures,
and training strategies for the models under comparison.
We consider three independent design choices: convolu-
tional or recurrent decoding, the inclusion of structured
output training, and the use of data augmentation. This
results in eight model configurations.

3.1 Encoder-decoder models

The models we investigate fall under the umbrella of
encoder-decoder architectures [3]. The encoder compo-
nent maps time-varying input (audio) into a latent feature
space, while the decoder component maps from the latent
feature space to the output space (chord labels).

3.1.1 The encoder architecture

The encoder, and depicted in Figure 1, is common to all
models considered in this paper. Input audio is represented
as a T × F time-series of log-power constant-Q transform
(CQT) spectra (for T frames and F frequency bands). Af-
ter batch normalization [13], the first convolutional layer
consists of a single two-dimensional 5 × 5 filter, followed

Conv2D
5x5 [1]
ReLU

Conv1D
1 [36]
ReLU

Bi-GRU

Batch-
norm

Figure 1. The encoder module uses a convolutional-
recurrent network architecture to map the input (CQT
frames) to a sequence of hidden state vectors h(t) ∈ RD.

by a bank of 36 single-frame, one-dimensional convolu-
tional filters, resulting in a T × 36 feature map. Both lay-
ers use rectified linear (ReLU) activations. The first layer
can be interpreted as a harmonic saliency enhancer, as it
tends to learn to suppress transients and vibrato while em-
phasizing sustained tones. The second layer summarizes
the pitch content of each frame, and can be interpreted as
a local feature extractor.

Finally, the local features are encoded by a bi-
directional gated recurrent unit (GRU) model [4]. The
GRU model is similar to the long-short-term memory
(LSTM) model [10], but has fewer parameters and per-
forms comparably in practice [14]. For a sequence of d-
dimensional input vectors x(t) ∈ Rd, a GRU layer pro-
duces a sequence of D-dimensional hidden state vectors
h(t) ∈ [−1,+1]

D as follows:

r(t) = σ (Wrx(t) + Trh(t− 1) + br) (1)

u(t) = σ (Wux(t) + Tuh(t− 1) + bu) (2)

ĥ(t) = ρ (Whx(t) + Th (r(t)� h(t− 1)) + bh) (3)

h(t) = u(t)� h(t− 1) + (1− u(t))� ĥ(t), (4)

where r(t), u(t) ∈ [0, 1]
D are the reset and update vec-

tors, each of which are controlled by RNN dynamics
depending on the input x(t) and previous hidden state
h(t − 1), σ(x) = (1 + e−x)

−1 denotes the logistic func-
tion, and ρ = tanh. The parameters are the input map-
pings W∗ ∈ RD×d, transition operators T∗ ∈ RD×D, and
bias vectors b∗ ∈ RD.

When an element j of the update vector uj(t) ≈ 1,
the corresponding element of the previous hidden state is
copied directly to the current state hj(t) ← hj(t− 1).
Otherwise, if r(t) ≈ 1, then h(t) evolves according to stan-
dard RNN dynamics. However, when both u(t), r(t) ≈ 0,
the h term in (3) goes to 0 and the update resets, depend-
ing only on the input x(t). This allows the GRU model
to persist a hidden state across arbitrarily long spans of
time, and capture variable-length temporal dependencies.
These properties make the GRU model appealing for chord
recognition, where dependencies may span long ranges
(compared to frames), and are subject to sudden changes
rather than gradual evolution.

The bi-directional variant consists of two independent
GRUs, one running in each temporal direction, whose
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hidden state vectors are concatenated to produce the bi-
directional hidden state vector h(t). This layer integrates
over the entire input signal, and provides temporal smooth-
ing and context for the encoded feature representation.

3.1.2 Decoder architectures

We investigate two models, depicted in Figure 3, for de-
coding h(t) to the sequence of chord labels ŷ(t). The first
model, denoted CR1, decodes each frame independently:

ŷ(t) := softmax (Wyh(t) + by) , (5)

where the soft-max operates over the chord vocabulary V ,
producing a likelihood vector ŷ(t) ∈ [0, 1]

|V |. For the CR1
architecture, we set the dimensionality of the hidden state
vector to 512 (256 for each temporal direction).

The second model, denoted CR2, uses a bi-GRU layer
to map h(t) to an intermediate representation h2(t) prior
to frame-wise decoding by eq. (5). To keep the number
of parameters roughly comparable between CR1 and CR2,
we set the dimensionality CR2’s recurrent layers to 256.

For each configuration, all model parameters Θ are
jointly trained to maximize the empirical log-likelihood:

argmax
Θ

∑
t

∑
c∈V

yc(t) log ŷc(t), (6)

where the reference labels are one-hot encoded vectors
y(t) ∈ {0, 1}|V |. While both architectures have access
to the entire observation sequence, CR2 may be better at
capturing long-range interactions. This should allow the
encoder to focus on short-term smoothing and local con-
text, while the decoder can model chord progressions and
global context. In the CR1 model, the encoder is responsi-
ble for both short- and long-range interactions.

At test time, the maximum likelihood label is selected
for each frame, and the series of chord labels is run-length
encoded to form the estimated annotation for the track.

3.2 Chord vocabulary simplification

To formulate chord recognition as a classification task, we
define a mapping of all valid chord descriptions to a finite
vocabulary V . 1 First, inversions and suppressed or addi-
tional notes are discarded, e.g.:

D[:maj(9)/3 7→ D[:maj/3 7→ D[:maj.

Next, labels are decomposed into root and pitch classes
(relative to the root) using mir eval [21]:

D[:maj 7→

{
1 root
(0, 4, 7) pitch classes

.

The set of active pitch classes is matched against 14
templates: min, maj, dim, aug, min6, maj6,
min7, minmaj7, maj7, 7, dim7, hdim7,
sus2, sus4. The root and matched template are

1 A valid chord is any string belonging to the formal language of
Harte et al. [9], or the extended grammar implemented by JAMS [12].

combined, and mapped to a canonical form to resolve
enharmonic equivalences:

(1, (0, 4, 7)) 7→ C]:maj.

If the pitch class set does not match one of the templates,
it is mapped to the unknown chord symbol X; the no-chord
symbol is represented distinctly as N. The final vocabulary
contains 170 classes: 2 special symbols (N, X), and 12×
14 = 168 combinations of root and quality.

3.3 Structured training

The CR models described above map each hidden state
vector h(t) to a fixed vocabulary produced described in
Section 3.2. They can be optimized in the usual way to
maximize (6), but this approach has some clear drawbacks.

First, it does not leverage the inherent structure of the
space of chords. If the model predicts B:maj instead of
B:7, it is penalized just as badly as if it had predicted
C:maj. This is at odds with evaluation, where predictions
are evaluated along multiple dimensions, such as capturing
the root, third, or fifth. More generally, some mistakes are
simply more severe than others, and this is not reflected in
a 1-of-K classification formulation.

Second, the chord simplification strategy is lossy in that
it discards information such as suppressed or additional
notes. This can render certain chords ambiguous, and can
introduce discrepancies between the (simplified) annota-
tion and the corresponding acoustic content. Continuing
the D[:maj(9)/3 example, the simplification C]:maj
implies the absence of D], although it was explicitly in-
cluded in the original annotation and should be expected
in the signal. This introduces label noise to the model, and
may negatively impact accuracy.

Third, out-of-gamut chords all map to a common class
X, despite having disparate roots and tonal content. This
class provides little useful information to the model while
training. At test time, it would be beneficial if the model
could predict “nearby” chords, but multi-class training pro-
vides little incentive to learn this behavior.

To counteract these effects, we introduce a structured
representation, depicted in Figure 2. This is inspired by the
standard evaluation criteria for chord recognition, which
operate over a decomposed representation of (root, pitch
classes, bass) [21]. This representation can be computed
for any valid chord label, and provided as supervision
to the model, thereby helping it learn common features
shared by similar chords. At prediction time, the struc-
tured representation is used as an intermediate representa-
tion which contributes to the chord label prediction, which
can now be interpreted as a human-readable decoding of
the structured representation.

The structured models (denoted as CR1/2+S), depicted
in Figure 3, predict for each frame t the root pitch class
(C–B, plus N for no-root), the bass pitch class, and the ac-
tive pitch classes from the hidden state vector h(t). Root
and bass estimation are modeled as a multi-class predic-
tion with a soft-max non-linearity. Pitch class prediction
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Db:maj(9)/3 C#:maj
C D E F G A B N

Simplification

Encoding

root

bass

pitches

Figure 2. Target chords are represented in both simplified
canonical form (Section 3.2), and as binary vectors encod-
ing the root, bass, and pitch classes (Section 3.3). The spe-
cial symbols N,X map to an extra root/bass class N, and
the all-zeros pitch vector.

Chords

Root

Pitches

Bass

Bi-GRU
[256]

Encoder
[256]

Input

Chords

Root

Pitches

Bass

Encoder
[512]

Input

ChordsBi-GRU
[256]

Encoder
[256]

Input

ChordsEncoder
[512]

Input

CR1

CR2

CR1+S

CR2+S

Figure 3. Block diagrams of all architectures described in
Section 3. The encoder block is depicted in Figure 1.

is modeled as a multi-label prediction, and uses a logis-
tic (sigmoid) non-linearity. This results in an idealized
chroma representation similar to that of Korzeniowski and
Widmer [16], but estimated from the full input observation
rather than a fixed spectrogram patch. An illustrative ex-
ample of this predicted encoding is provided in Figure 4.

It is generally non-trivial to invert the root-pitch-bass
representation to a unique chord label. Therefore, these
three layers are concatenated, along with the hidden state
h(t), to produce the structured representation from which
the chord label is predicted. During training, the struc-
tured models learn to minimize the sum of losses across
all outputs: root, pitches, bass, and label ŷ(t). Minimizing
the root and pitches losses corresponds to maximizing the
root and tetrads recall scores during training, while eq. (6)
learns the decoding into the human-readable chord vocab-
ulary. This formulation effectively decouples the problems
of root and pitch class identification from chord annotation,
which is known to be subjective [11].

3.4 Data augmentation

To increase training set variability, we apply pitch-shifting
data augmentation using MUDA [18]. For each training
example, 12 deformations are generated by shifting up or
down by between 1–6 semitones. Because each observa-
tion exists in all twelve root classes, this provides a brute-
force, approximate root invariance to the model. Models
trained with data augmentation are denoted by +A.

10 15 20 25 30
Time

A#:maj
A#:min
C:maj

F:7
F:maj

G#:maj
G:maj
G:min

N
A#:min6

C:7
D#:maj

F:min
G:7

G:min7

Chords

Reference
Estimate

Figure 4. The predicted chord encodings and labels for
The Beatles — Hold Me Tight by model CR2+S+A.

4. EVALUATION

For evaluation, we used the dataset provided by Humphrey
and Bello [11], which includes 1217 tracks from the Iso-
phonics, Billboard, RWC Pop, and MARL collections. To
facilitate comparison with previous work, we retain the
same 5-fold cross-validation splits, and randomly hold out
1/4 of each training set for validation. We compare to two
strong baselines: a deep convolutional network [11] (de-
noted DNN), and the K-stream HMM [5] (KHMM). 2

4.1 Pre-processing

Feature extraction was performed with librosa 0.5.0 [19].
Each track was represented as a log-power constant-Q
spectrogram with 36 bins per octave, spanning 6 octaves
starting at C1, and clipped at 80dB below the peak. Signals
were analyzed at 44.1KHz with a hop length of 4096 sam-
ples, resulting in a frame rate of approximately 10.8Hz.

4.2 Training

All models are trained on 8-second patches (86 frames),
though they readily support input of arbitrary length. For
tracks with multiple reference annotations, the output is
selected uniformly at random from all references for the
patch, which reduces sampling bias toward specific anno-
tators. Models are trained using mini-batches of 32 patches
per batch, and 512 batches per epoch. We use the ADAM
optimizer [15], and reduce the learning rate if there is no
improvement in validation score after 10 epochs. Train-
ing is stopped early if there is no improvement in valida-
tion score after 20 epochs, and limited to a maximum of
100 epochs total. For all models, validation score is deter-
mined solely by label likelihood (eq. (6)). All models were
implemented with Keras 2.0 and Tensorflow 1.0 [1, 6]. 3

4.3 Results

The main results of the evaluation are listed in Fig-
ure 5, which illustrates the median weighted recall scores
achieved by each model. 4 Each subplot reports the recall

2 Comparisons were facilitated using the pre-computed outputs pro-
vided at https://github.com/ejhumphrey/ace-lessons.

3 Our implementation is available at https://github.com/
bmcfee/ismir2017_chords.

4 The trends for the mean scores are qualitatively similar, but the scores
are lower for all models. We report the median here to reduce the in-
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Figure 5. Weighted recall scores for all methods under comparison. Each dot represents the median score across all test
points, with error bars covering the 95% confidence interval estimated by bootstrap sampling. KHMM denotes the K-stream
HMM of Cho [5]; DNN denotes the convolutional network of Humphrey and Bello [11].

scores computed by mir eval: 1. root; 2. thirds: root
and third; 3. triads: root, third, and fifth; 4. sevenths: root,
third, fifth, and seventh; 5. tetrads: all intervals; 6. ma-
j-min: 12 major, 12 minor, and N class; and 7. MIREX: at
least three correct notes.

From Figure 5, several trends can be observed. First,
data augmentation (+A variants) provides a consistent and
substantial improvement for all models. This is to be ex-
pected, since the CR models do not separate root from
quality. Note that DNN models these independently, and
KHMM was trained with chroma-rotation data augmenta-
tion, so it is unsurprising that augmentation is necessary to
match performance of these methods.

Second, structured training (+S variants) provides a
modest, but consistent improvement, for both the shallow
CR1 and deep CR2 decoder models. The difference is most
pronounced in the root evaluation, which is expected due
to the explicit objective to correctly identify the root.

Third, the deep decoder models CR2 provide another
small, but consistent improvement over the shallow de-
coders CR1. The aggregate scores are reported in Table 1;
for brevity, only the models with data augmentation are in-
cluded. The combined effect of structured training, deep
decoder, and data augmentation (CR2+S+A) results in the
highest scoring model across all metrics.

4.4 Error analysis

To get some more insight about the mistakes made by the
model at test time, we illustrate the frame-wise, within-

fluence of the erroneous or otherwise spurious reference annotations re-
ported by Humphrey and Bello [11].
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Figure 6. Within-root, frame-wise quality confusions for
the best performing model CR2+S+A. The value at row i,
column j corresponds to the fraction of frames labeled as
class i but predicted as class j.

root quality confusion matrix for the CR2+S+A model in
Figure 6. For each frame of a test track, its (simplified)
reference label is compared to the label estimated by the
model if they match at the root. Results are then aggre-
gated across all test tracks, and normalized by (reference
quality) frequency to produce the confusion matrix. Under
this evaluation, the CR2+S+A achieves 63.6% accuracy of
correctly identifying the simplified chord label (root and
quality) at the frame level.
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Method Root Thirds Triads Sevenths Tetrads Maj-Min MIREX

CR2+S+A 0.861 0.836 0.812 0.729 0.671 0.855 0.852
CR2+A 0.850 0.828 0.801 0.719 0.659 0.845 0.837
CR1+S+A 0.850 0.824 0.801 0.716 0.648 0.842 0.832
CR1+A 0.841 0.815 0.791 0.702 0.647 0.834 0.829

KHMM [5] 0.849 0.822 0.785 0.674 0.629 0.817 0.827
DNN [11] 0.838 0.809 0.766 0.654 0.605 0.803 0.812

Table 1. Median weighted recall scores for methods under comparison.

m
in

m
aj

di
m

au
g

m
in

6

m
aj

6

m
in

7

m
in

m
aj

7

m
aj

7 7

di
m

7

hd
im

7

su
s2

su
s4 N X

Estimate

min

maj

dim

aug

min6

maj6

min7

minmaj7

maj7

7

dim7

hdim7

sus2

sus4

N

X

R
ef

er
en

ce

0.15

0.10

0.05

0.00

0.05

0.10

0.15

Figure 7. The difference between confusion matrices for
CR2+S+A and the unstructured CR2+A (best viewed in
color). Positive values along the diagonal indicate in-
creased accuracy for CR2+S+A.

In Figure 6, the first obvious trend is a bias to-
ward min and maj, in accordance with the natural bias
in the training set (13.6% and 52.5% of the data, re-
spectively, by duration). Note, however, that the con-
fusions are generally understandable as simplifications:
e.g., (min7,minmaj7)→min and (maj7,7)→maj. The
model still appears to struggle with 6th and suspended
chords, which account for 1.5% and 2.5% of the data, re-
spectively. The bottom row corresponds to out-of-gamut
X-chords, which map overwhelmingly to maj and min.
This can be explained by examining which labels map to
X during simplification. There are 4557 instances of such
chords in the corpus (2.2% of the data), and of these, 2091
are 1-chords (only the root) and 2365 are power chords
(root+fifth), neither of which map unambiguously onto the
simplified vocabulary. The model appears to resolve these
toward the more commonly used min and maj qualities.

To understand the influence of structured training, Fig-
ure 7 illustrates the difference between the confusion ma-
trices of the structured model CR2+S+A and the unstruc-
tured model CR2+A. Positive values (red) along the diago-
nal indicate increased accuracy for the structured model,
while negative values along the diagonal (blue) indicate
decreased accuracy. The net effect is positive, increasing
accuracy by +0.8% over CR2+A (62.8%).

Despite a slight degradation for maj7, there are sub-

stantial improvements for aug, dim7, hdim7, and mod-
est improvement for sus4. Moreover, the negative values
in the second column reveal a consistent reduction of con-
fusions to maj. This indicates that the structured model is
more robust to quality bias in the training set. Compared
to the unstructured model, the structured model reduces
confusions from aug to (maj, 7), and dim7 to (min, 7,
N). The CR2+S+A still performs poorly on the rarest class
minmaj7 (0.03% of the data), but compared to CR2+A, it
resolves toward min more often and min7 less often. The
structured model appears to be better at abstaining from
predicting a seventh if it appears unlikely, rather than pre-
dict the wrong seventh.

5. CONCLUSION

This work developed deep architectures and a structured
training framework for chord recognition in large vocab-
ularies. Although the proposed models improve over the
baseline methods, there are clear directions forward in ex-
tending the ideas presented here. First, although the pro-
posed model predicts the bass note, this feature is only
used for establishing context in decoding, and the model
does not predict inversions. Supporting inversion predic-
tion would be a simple extension of the method described
here, and would not require creating special vocabulary en-
tries for each potential inversion. Second, the structured
representation facilitates modeling infrequently observed,
complex chords, and could readily be extended to support
extended chords by using a multi-octave pitch class repre-
sentation. However, doing so effectively—and evaluating
the resulting predictions—would require larger annotated
corpora for these classes than are presently available.
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