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ABSTRACT

Previous research has demonstrated that similarity
judgements are context specific, as they are shaped by
cultural exposure, familiarity, and the musical aesthetic
of the content being compared. Although such research
suggests that the criterion for similarity judgement varies
with respect to the musical style of the content being com-
pared, the specific musical factors which shape this cri-
terion are unknown. Since dimensional complexity dif-
ferentiates musical genres, and has been shown to affect
similarity judgements following lifelong exposure, this ex-
periment investigates the short-term influence of dimen-
sional complexity on similarity judgements. Rhythmic and
pitch sequences with two levels of complexity were facto-
rially combined to create four distinct types of prototype
melodies. 51 participants rated the similarity of each type
of prototype melody (M) to two variations, one in which
the pitch content was modified (M̄p), and another in which
the rhythmic content was modified (M̄r). The results in-
dicate that rhythm and pitch complexity both play a sig-
nificant role, influencing the perceived similarity of M̄p,
and M̄r. The dimension bearing low complexity informa-
tion was found to be the predominant factor in similarity
judgements, as participants found modifications to this di-
mension to significantly decrease perceived similarity.

1. INTRODUCTION

Similarity directly informs our experience of music, en-
abling the perception of cohesion within a musical work,
and the categorization of musical works. Consequently,
developing models that encapsulate the manner in which
similarity is perceived, is of critical importance within the
areas of Musicology, Music Cognition and Music The-
ory [30]. In particular, the search for robust and flexi-
ble similarity measures has dominated research in the Mu-
sic Information Retrieval (MIR) domain, as large digital
databases of music information necessitate content-based
querying and retrieval, and classification. Although there
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is a large body of research that explores similarity percep-
tion within music, many aspects of similarity perception
are not yet fully understood. The current study corrobo-
rates previous evidence that similarity criterion vary with
respect to the musical content being compared [9], demon-
strating that the complexity of pitch and rhythmic content
influence similarity perception.

Since pitch and rhythm are the two most prominent mu-
sical dimensions in the context of symbolic notation, the
current study will manipulate complexity along these di-
mensions and observe the effects on similarity perception.
Although no musical dimensions are completely orthogo-
nal, as a modification in a particular dimension may affect
the perception of other dimensions, the complexity of pitch
and rhythmic content can be measured independently, and
there is evidence that these dimensions are processed sep-
arately in cognition [13, 27]. Therefore, pitch and rhythm
complexity were considered to be independent for the pur-
poses of this study. Pitch content refers to the sequence
of pitches encapsulated in a particular melody, and rhythm
content refers to the sequence of durations. Dimensional
complexity refers to the absolute level of complexity along
a particular musical dimension. In this study we measure
the dimensional complexity of pitch and rhythm content.

2. RELATED WORK

Previous work examining the perception of musical simi-
larity, has focused on establishing a hierarchy of musical
dimensions, ranking their observed contributions to simi-
larity perception. On a whole, most research claims that
rhythmic information is the most important. Halpern [7]
constructed 16 melodies — a factorial combination of two
pitch sequences, two rhythmic sequences, two tonal struc-
tures and forward and reversed versions — and found that
rhythm was the most important distinguishing factor, fol-
lowed by pitch, direction and tonal structure. Similarly,
Rosner and Meyer [19] found rhythm to be the strongest
determinant of melodic similarity. Despite the general
consensus that rhythm plays a dominant role in similarity
judgements, pitch still plays a considerable role. Dowl-
ing [2] demonstrated that a modified imitation of a proto-
type melody is often misidentified as the prototype when it
has a similar pitch contour.

Given the multidimensional nature of music, many re-
searchers have found it useful to make the distinction
between surface-level and structural features. In gen-
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eral, surface-level attributes include contour, loudness and
tempo while structural attributes denote aspects of form,
thematic development and patterns. In short term contexts,
where participants are unfamiliar with the musical material
being compared, surface-level features are a strong predic-
tor of both melodic [15,19,22] and polyphonic [9] similar-
ity. Prince [15] found that rhythm was the dominant aspect
informing perceived melodic similarity, followed by con-
tour, meter, and tonal structure.

However, there is increasing evidence which questions
the generality of these results, as contextual factors includ-
ing familiarity, cultural exposure, and the aesthetic of the
musical content being compared, have been shown to have
a considerable effect on similarity perception. Pollard-Gott
found that with repeated listening, surface level features
became less influential and thematic material became more
important [14]. Similarly, the long term analysis of a col-
lection of folk melodies by a panel of experts, placed em-
phasis on thematic and motivic similarity above all other
factors [31]. Schubert and Stevens [22] found that contour
is more important than harmonic structure for making sim-
ilarity comparisons, but with musical expertise, harmonic
structure also has an effect.

Other research has shown that cultural exposure affects
similarity perception. Hannon and Trehub [8] found the
metrical bias of North American adults to be the result
of an enculturation processes, with no evidence of a nat-
ural predisposition for the simple meters which character-
ize much of western music. Goldstone [6] suggests that
humans learn by focusing on perceptual features that are
more informative, at the cost of decreased attention to-
wards other dimensions. This phenomenon has been ob-
served in a musical context, where the voice that consists
of immediate and exact repetitions of a short musical frag-
ment tends to perceptually decrease in salience for the lis-
tener over time [24]. Instead, the listener is naturally drawn
to focus on the high complexity voice. Since distinct rhyth-
mic durations occur at a relatively higher frequency than
distinct pitches in western music, they demand less atten-
tion than pitch content. After years of exposure, this likely
results in an increased sensitivity to the pitch content in
a melody [17]. Notably, Eerola et al. [3] demonstrated
that musical complexity perceptions are shaped by expo-
sure to different musical culture, which likely results from
the mechanisms described above.

In addition to the factors mentioned above, music aes-
thetic has been shown to influence how similarity is per-
ceived. Lamont and Dibben [9] examined similarity rela-
tionships in two contrasting musical styles, requiring par-
ticipants to rate the similarity of extracts from a Beethoven
sonata (op. 10, no. 1, first movement) and a dodecaphonic
work composed by Schoenberg (Klavierstück op. 33a).
Nine polyphonic excerpts were selected from each piece,
each approximately eight measures long, and the similar-
ity of each possible combination was rated by participants,
resulting in 36 similarity ratings for each piece. Notably,
both pieces are composed for solo piano, and have more
than one theme which is developed throughout the duration

of each work. They found that similarity judgements were
primarily based on surface level features, however, the sim-
ilarity judgements for each piece were predominantly in-
fluenced by different surface features. These results sug-
gested that each piece establishes a different similarity cri-
terion within which listeners make appropriate similarity
judgements. Although Lamont and Dibben demonstrated
that the criterion for similarity judgements varies with re-
spect to the musical aesthetic of the stimuli being com-
pared, the specific musical factors which caused this phe-
nomenon are still unknown, directly motivating our exper-
iment.

3. MOTIVATION

As evidenced by the brief overview in section 2, nu-
merous studies have demonstrated the prevalent influence
of contextual factors on musical similarity judgements
[8, 9, 14, 17, 31], directly motivating further study in this
area. Since contextual factors like cultural exposure and
familiarity are difficult to integrate into a similarity mea-
sure, this study examines the third contextual factor, the
role of the musical content itself in shaping a criterion for
similarity judgements. The phenomenon that Lamont and
Dibben [9] observed, provides evidence that musical con-
tent influences the manner in which music is compared,
as participants used different musical dimensions to make
comparisons depending on the nature of the musical con-
tent. In light of this evidence, it is worthwhile to examine
how specific musical characteristics of the content being
compared shape similarity judgements, which does not ap-
pear to have been examined previously. Due to the fact that
dimensional complexity differentiates musical genres [3],
and affects similarity judgements following lifelong ex-
posure [8], this experiment investigates the short-term in-
fluence of dimensional complexity on melodic similarity
judgements. More specifically, this study investigates the
role of dimensional complexity in shaping awareness to
modifications in that particular dimension, effectively es-
tablishing a criterion for melodic similarity judgements.

Previous research has shown that limitations on the hu-
man capacity for musical memory, have an effect on mu-
sical perception. Participants found it more difficult to
retain melodies with complex contours, which were de-
void of any repetition, and were often unable to distin-
guish them from another complex contour [18]. Moreover,
complexity was one of four variables which collectively
predicted the recognizability of melodies when presented
a second time [20]. In these cases, it seems likely that
working memory limitations make it difficult to encapsu-
late all aspects of a complex melody on first exposure. In
summarizing recent research on working memory limita-
tions, Cowan [1] proposes that there is a capacity of three
to five chunks in working memory for young adults. Ac-
cording to these findings, modifications to the musical di-
mension bearing the least complex musical material should
be the easiest to detect, which suggests that this musical
dimension would have a predominant influence on simi-
larity judgements. Collectively, this research supports the
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following hypothesis: modifications to the musical dimen-
sion bearing low complexity information will result in a
significant decrease in similarity, in comparison to similar
modifications to the musical dimension bearing high com-
plexity information.

4. METHODOLOGY

4.1 Participants

The participants were recruited online using the Crowd-
flower 1 crowdsourcing platform, and required to pass a
test before participating in the experiment. Participants
were paid $0.02 USD for each question they answered,
in accordance with the typical compensation offered to
Crowdflower users. Of the 96 participants who took the
test, 76 passed (79.2%) and 63 completed the experiment.
12 participants responses were deemed ineligible based on
the inconsistent responses to an identical question. In total,
51 participants came from 25 different countries.

4.2 Stimuli

4.2.1 Measuring Complexity

Given the multifaceted nature of complexity, it is necessary
to make the distinction between the entropy based com-
plexity measures proposed by Eerola et al. [3], and the no-
tion of complexity which grounds the current study. Shan-
non Entropy quantifies the disorder or uncertainty inherent
in an information source based on a representative proba-
bility distribution [23]. Eerola et al. calculate entropy us-
ing the marginal probability of each symbol in a sequence.
This type of complexity will be referred to as entropym.
Although entropym has been shown to correlate with the
percieved complexity of musical sequences [16], this mea-
surement of complexity does not provide the necessary res-
olution to make comparisons between many musical se-
quences. For an explicit example, consider the follow-
ing pitch sequences, s1 = {c, d, e, f, c, d, e, f}, and s2 =
{c, f, e, d, e, c, d, f}. Even though s1 exhibits less com-
plexity than s2, both s1 and s2 have the same entropym,
as this measurement does not take the repetition of longer
phrases into consideration. Clearly, it is necessary to take
the repetition of phrases into consideration when measur-
ing complexity.

Admittedly, this can be accomplished by calculating the
entropy rate of an n-th order markov chain derived from
the musical sequence being measured, however there are
still issues with this approach. In contrast to the manner in
which humans percieve musical content, and by extension
musical complexity, the entropy rate is not designed to dis-
tiguish between repetition which occurs within the prevail-
ing metric structure, and repetition which spans metrical
boundaries. Research suggests that humans perceive mu-
sic by breaking it into a series of chunks [5], and have a
natural tendency to project metre onto sequences of sound,
despite the absence of acoustic cues for metric organiza-
tion [4]. In addition, when listening to music, humans

1 https://www.crowdflower.com/

naturally extract motivic patterns [32], and larger formal
structures [12]. Since humans segment music in accor-
dance with metrical boundaries, it is likely that humans
are less sensitive to repetition which is obscured by these
boundaries. Consequently, a true measure of musical com-
plexity must take this distinction into account.

Furthermore, an entropy based model of complexity is
not capable of taking similarity into consideration, as en-
tropy is based on the lossless encoding of an information
source [23]. This becomes more of an issue when entropy
is being measured with respect to larger subsequences, as
is the case when measuring the n-th order entropy rate.
This formulation of complexity cannot make the distinc-
tion between a collection of subsequences which share the
same contour, and a collection that does not. As a result,
it seems most reasonable to take the collective dissimilar-
ity of subsequences segmented with respect to the prevail-
ing metric structure, as a measure of complexity. Conse-
quently, a homogenous collection of segments would be
perceived as having a low complexity, while a diverse col-
lection of segments would be perceived as having a high
complexity. We use the term redundancy to refer to this
type of complexity throughout the paper.

In order to quantify redundancy, two different measures
were used. Thul’s [28] adaptation of Tanguiane’s [25, 26]
algorithm, measures redundancy by counting the number
of root patterns, at several hierarchical levels. This will
be referred to as Tanguiane’s Rhythmic Complexity (TRC).
The other measure of redudancy is calculated using Eqn
(1), where (S) is a set of subsequences, derived by seg-
menting a sequence of symbols into measures. Notably,
Eqn (1) also requires a distance metric (D). Chrono-
tonic distance [29] is used to measure Rhythmic Sequence
Complexity (RSC), and a similarity measure proposed by
Maidı́n [10] is used to measure Pitch Sequence Complexity
(PSC). Admittedly, segmenting a pitch sequence accord-
ing to metre means that PSC is dependant on the rhythmic
content, however, within-measure rhythmic patterns have
no bearing on PSC in this paradigm, and the metric struc-
ture is not being manipulated in this study. Although PSC
does not account for the complexity of invidual segments,
section 4.2.2 describes how complexity is restricted in this
experiment, effectively mitigating the variance of segment
complexity in the current study.

f(S) =
1

|S|

|S|∑
i=1

min{D(Si, Sj) : j 6= i; 1 ≤ j ≤ |S|}

(1)

4.2.2 Prototype Melodies

In this experiment, there were four types of melodies;
rhythms-pitchs, rhythms-pitchc, rhythmc-pitchs, and
rhythmc-pitchc, where s denotes a simple or low complex-
ity sequence, and c denotes a complex sequence 2 . In
addition, eight versions of each melody type were con-
structed, resulting in 32 (4×8) prototype melodies of equal

2 The melodies used in this experiment can be found at
https://mlab%2Dexperiments.iat.sfu.ca/ismir2017/audio.
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Figure 1. A melody with complex rhythm and simple pitch, using letters to show the form of each dimension.

length (three measures). As mentioned in section 4.2.1,
redundancy quantifies the degree to which an information
source is self similar and contains periodic repetition in
conjunction with the prevailing metrical structure. In light
of this aim, melodies were comprised of three measure-
length phrases, with phrase repetition varied to create two
distinct levels of complexity. Low complexity sequences
had a formal pattern AAB, where a pattern is repeated in
the first two measures, and a new pattern is introduced in
the last measure. High complexity sequences had a formal
pattern ABC, where each measure is dissimilar. This con-
struction process is demonstrated in Figure 1, which shows
a high complexity rhythm sequence and a low complexity
pitch sequence.

Care was taken to restrict the variability of entropym
based complexity, using measures proposed by Eerola et
al. [3]. Since the pitch sequences were constructed from
scales consisting of five distinct pitch classes, Entropy
of pitch class distribution and Entropy of interval distri-
bution did not vary significantly. Similarly, rhythm se-
quences were constructed from four distinct durations, lim-
iting the variance of Entropy of note duration distribution
and Rhythmic variability. Notably, it seemed reasonable to
have fewer distinct durations than pitch classes, as research
has demonstrated that most listeners are able to perceive
pitch diversity more readily [17]. A One-Way Analysis of
Variance (ANOVA) across all four prototype melody types
demonstrated that none of these entropym based complex-
ity measures were a significant source of variance, while
PSC, RSC and TRC varied significantly. Furthermore, the
entropy rate – calculated using a first order markov chain
– did not vary significantly across melody type. This ver-
ified that our experiment measured the effect of variations
in redundancy in relative isolation.

In order to restrict the variance of segment complexity,
Mean interval size and Note density were restricted, which
Eerola et al. [3] found to be a significant source of com-
plexity. Each melody was constrained to an octave range,
restricting the Mean interval size. The Note density, was
invariant for each constructed melody, as each melody had
four notes per measure, and was three measures long.

4.2.3 Modified Melodies

For each prototype melody (M), two modified versions
were constructed for the main experiment: a version in
which the pitch is modified (M̄p), and a version in which
the rhythm is modified (M̄r). This process involved re-
versing the order of the measures in the dimension which

is to be modified. As a result, regardless of the nature of the
prototype melody, the first and last measures of the mod-
ified melody were different. Since test questions required
a ground truth answer, three additional types of modified
melodies were constructed: a melody in which the pattern
form ofM was transformed from AAB to ABA in the pitch
dimension (M̄rp̄), a melody in which the pattern form of
M was transformed from AAB to ABA in the rhythm di-
mension (M̄pr̄), and a melody in which both dimensions
were modified (M̄b).

4.3 Experimental Design

The experiment consisted of two independent variables,
rhythm and pitch content complexity. Both rhythm and
pitch complexity had two levels, low and high. This re-
sulted in a 2 × 2 repeated measures experimental design,
with four distinct types of prototype melodies. Partici-
pants were presented with a series of questions, consist-
ing of a prototype melody (M) and two modified melodies
(melody A, melody B). There were two types of test ques-
tions, which were developed using the modified melodies
described above. The first type of question, compared ei-
ther M̄rp̄ and M against the prototype M , or M̄pr̄ and M
against M . This had an indisputable answer, as one of the
modified melodies was in fact an exact replica of the pro-
totype. The second type of question, compared M̄p and
M̄b to the prototype, or compared M̄r and M̄b to the pro-
totype. Given the manner in which these melodies were
constructed, M̄p and M̄r are more similar to the prototype,
as they are identical to the prototype along a single dimen-
sion, while M̄b is dissimilar in both dimensions.

For the actual experiment itself, there was a single
type of question, in which M̄r and M̄p were compared
against the prototype. Irregardless of the type of ques-
tion, the two modified melodies were randomly assigned
to be melody A or melody B. For each question, partici-
pants rated the similarity of melody A to M , and melody
B to M , on a Likert scale from 1 to 20, where 20 indi-
cates maximal similarity. In the analysis below, the dif-
ference (D = S(M, M̄r) − S(M, M̄p)) between the per-
ceived similarity of M̄r to M (S(M,M̄r)), and the per-
ceived similarity of M̄p to M (S(M,M̄p)), is taken as the
dependent variable. As a result, a positive value of D indi-
cates that modifications to the rhythm dimension have less
of an effect on similarity than modifications to the pitch
dimension, while a negative value of D indicates the op-
posite.
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4.4 Procedure

Before participating in the experiment, participants were
required to complete 10 test questions with a minimum
accuracy of 80%. The test questions served two pur-
poses, eliminating those who were not taking the task se-
riously, and familiarizing participants with the similarity
domain within which they were being asked to make com-
parisons. Once the test was successfully completed, par-
ticipants were presented with 10 randomly ordered ques-
tions, consisting of eight different experiment questions
(representing each of the eight different types of prototype
melodies), a test question, and a repeated experiment ques-
tion. The repeated experiment question was used to deter-
mine if participants were answering the questions consis-
tently. For each question, the prototype melody was se-
lected randomly from a collection of eight versions, and
the key was randomly transposed so that the content var-
ied from question to question. After listening to all three
melodies, participants were asked to indicate which of the
two modified versions was more similar to the prototype,
and rate the similarity of melody A and melody B on a Lik-
ert scale from 1 to 20.

5. RESULTS

Since the ANOVA is relatively robust to violations of
normality [21], the 2-Way ANOVA was conducted with-
out transforming the data, despite the violation of the as-
sumption of normality. A 2-Way ANOVA revealed the
main effect of rhythm complexity (F (50) = 9.17, p =
.004, η2

p = .155) and pitch complexity (F (50) =
5.31, p = .025, η2

p = .096), while the interaction between
rhythm complexity and pitch complexity was insignificant
(p = .657). To be thorough, an Aligned Rank Transform
was performed on the data, correcting for the effects of
the non-normal distributions of the data [33]. Using the
transformed data, a 2-Way ANOVA revealed main effect of
rhythm complexity (F (50) = 9.82, p = .003, η2

p = .164)
and pitch complexity (F (50) = 6.26, p = .016, η2

p =
.111), while the interaction between rhythm complexity
and pitch complexity was insignificant (p = .601). These
results corroborate the analysis of the untransformed data,
indicating that 16.4% of the variability in similarity rat-
ings were explained by changes in rhythm complexity, and
11.1% of the variability was explained by changes in pitch
complexity.

As predicted, there was a main effect of rhythm com-
plexity and pitch complexity, both shown in Figure 2b.
Melodies containing low complexity rhythmic content
(M = 0.451, SD = 5.26) were significantly lower
than those containing high complexity rhythmic content
(M = 2.49, SD = 5.81), which indicates that partic-
ipants were more sensitive to pitch modifications when
pitch sequences were less complex. This effect was pro-
nounced in cases where the rhythmic sequence was more
complex, as participants found pitch modified melodies
(M̄p) to be significantly less similar to rhythmc-pitchs pro-
totype melodies than rhythm modified melodies (M̄r).

Conversely, melodies containing low complexity pitch
content (M = 2.26, SD = 5.43) were significantly
higher than those containing high complexity pitch con-
tent (M = 0.676, SD = 5.73), which indicates that par-
ticipants were more sensitive to rhythmic modifications
when rhythmic sequences were less complex. Similarly,
this effect was pronounced in cases where the pitch se-
quence was more complex, as participants found rhythm
modified melodies (M̄r) to be significantly less similar
to rhythms-pitchc prototype melodies than pitch modified
melodies (M̄p). Therefore, the dimension bearing low
complexity musical content was found to play a signifi-
cant role in similarity judgements, as modifications to that
dimension significantly decreased perceived similarity.

An analysis of the individual prototype melody con-
ditions revealed that the rhythms-pitchc condition (M =
−0.235, SD = 5.21) was significantly less than the
rhythmc-pitchs condition (M = 3.39, SD = 5.39),
as pitch modified melodies were the most similar to
rhythms-pitchc prototypes, and rhythm modified melodies
were the most similar to rhythmc-pitchs prototypes. The
rhythms-pitchs condition (M = 1.14, SD = 5.27) and the
rhythmc-pitchc condition (M = 1.59, SD = 6.12) were
roughly equivalent, and participants did not find a partic-
ular type of modified melody to be more similar, relative
to the two other conditions. Collectively, these results in-
dicate that melodies which are modified in the dimension
bearing low complexity information are perceived as sig-
nificantly less similar than melodies which are modified in
the dimension bearing high complexity information.

6. DISCUSSION

As evidenced by the results presented above, modifica-
tions to the dimension bearing low complexity informa-
tion result in a significant decrease in perceived similarity,
demonstrating that the dimension bearing low complex-
ity information plays a more significant role in melodic
similarity judgments. On a whole, the values for all four
conditions were positively skewed (Figure 2a), indicating
that modifications to the pitch content of a melody had a
greater influence on perceived similarity. Since there is
no benchmark with which to compare rhythmic sequence
complexity and pitch sequence complexity, it was not pos-
sible to equate the complexity across dimensions. Conse-
quently, some skew in either direction was expected. The
positive skew may indicate that the rhythmic content of the
melodies in this experiment was on average more complex,
and participants had difficulty noticing modifications in the
rhythm dimension. Alternatively, due to the enculturation
process that Hannon and Trehub [8] observed, participants
may have paid more attention to the pitch content, resulting
in the slight positive skew. When these factors are consid-
ered, it is arguably most meaningful to interpret the con-
ditions in relation to each other, as some skew in either
direction was inevitable. Viewed from this perspective, the
hypothesis is directly corroborated, as the rhythms-pitchc
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Figure 2. (a) The difference between the perceived similarity of the modified rhythm melody and the perceived similarity
of the modified pitch version for each prototype melody complexity category, with 95% confidence intervals. (b) The main
effects of pitch and rhythm complexity with 95% confidence intervals

condition is the lowest, the rhythmc-pitchs is the highest,
and the rhythms-pitchs and rhythmc-pitchc conditions are
in the middle.

Further analysis reveals that previous experiments are
likely a special case of the generalized theory proposed
in this paper. Monahan et al. [11] and Halpern [7] both
make the claim that rhythm contributes more significantly
to similarity perception, however, the rhythmic component
of their stimuli is predominantly low complexity, and the
pitch component of their stimuli is relatively higher on av-
erage. Notably, this was measured using PSC, RSC, and
TRC. Although Halpern and Monahan et al. attribute their
results to an inherent bias towards rhythm, the results of
this experiment suggest that the relative complexity of the
rhythm and pitch content provides a more robust explana-
tion.

Admittedly, there are several limitations to the gener-
alization of the results of this study. First and foremost,
the observed relationship between dimensional complexity
and similarity judgements may manifest itself quite differ-
ently when working with longer melodies, or polyphonic
music. Secondly, due to the fact that musical complexity
is multifaceted and far from understood, determining the
relatively low complexity dimension may be quite difficult
in some contexts. Despite the aforementioned limitations,
the limited variance of Eerola et al.’s entropy based com-
plexity measures provides substantial support for the gen-
eralization of these findings, as most western music makes
use of the same limited collection of distinct note durations
and pitch classes [16]. As a result, although this form of
entropy based complexity is the source of some variability
within the musical cannon, redundancy arguably accounts
for more of this variation. Consequently, the results of this
study are not restricted to a particular genre, and are rele-
vant across musical genres.

7. CONCLUSION

Similarity is shaped by several factors, including familiar-
ity, and cultural conditioning. This study asserts the sig-
nificance of another factor – the nature of the musical con-
tent which is being compared – by examining the effects
of dimensional complexity on similarity judgements. The
general notion that characteristics of the musical content
being compared have some bearing on the criterion used
to make similarity judgements, is not new, and has been
observed in past experiments [9]. However, the manner in
which musical content establishes a criterion for similarity
judgements has not been explored previously. The results
of this study provide evidence that pitch and rhythmic com-
plexity are factors which shape the criterion used in simi-
larity judgements, as the dimension bearing relatively low
complexity information has a greater influence on similar-
ity perception. Furthermore, the results of this experiment
are corroborated by previous experiments [7, 11], offering
a general explanation for these previous findings.

Developing robust and flexible similarity measures con-
tinues to be a dominant area of research in the MIR do-
main, as large digital databases of music information ne-
cessitate accurate methods for comparison and categoriza-
tion. As a result, adapting existing similarity measures
to take dimensional complexity into account, is a possi-
ble application of the findings of this study. Future re-
search is also necessary to investigate the role of complex-
ity along other dimensions, including dynamics, articula-
tion and timbre. Furthermore, the manner in which com-
plexity is percieved along a single dimension is in need of
continued exploration, as several issues with pre–existing
methods for measuring complexity have been discussed in
section 4.2.1. Clearly, musical similarity is a complex phe-
nomenon which is deserving of continued exploration, as
the results of this experiment have explicitly demonstrated
that similarity judgements are dependant on another con-
textual factor, the complexity of pitch and rhythm content
in the musical material being compared.
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