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ABSTRACT

Complex rhythmic patterns associated with Carnatic music
are revealed from the stroke locations of percussion instru-
ments. However, a comprehensive approach for the detec-
tion of these locations from composition items is lacking.
This is a challenging problem since the melodic sounds
(typically vocal and violin) generate soft-onset locations
which result in a number of false alarms.

In this work, a separation-driven onset detection ap-
proach is proposed. Percussive separation is performed us-
ing a Deep Recurrent Neural Network (DRNN) in the first
stage. A single model is used to separate the percussive
vs the non-percussive sounds using discriminative train-
ing and time-frequency masking. This is then followed by
an onset detection stage based on group delay (GD) pro-
cessing on the separated percussive track. The proposed
approach is evaluated on a large dataset of live Carnatic
music concert recordings and compared against percussive
separation and onset detection baselines. The separation
performance is significantly better than that of Harmonic-
Percussive Separation (HPS) algorithm and onset detec-
tion performance is better than the state-of-the-art Con-
volutional Neural Network (CNN) based algorithm. The
proposed approach has an absolute improvement of 18.4%
compared with the detection algorithm applied directly on
the composition items.

1. INTRODUCTION

Detecting and characterizing musical events is an impor-
tant task in Music Information Retrieval (MIR), especially
in Carnatic music, which has a rich rhythm repertoire.
There are seven different types of repeating rhythmic pat-
terns known as tālas, which when combined with 5 jātis
give rise to 35 combinations of rhythmic cycles of fixed
intervals. By incorporating 5 further variations called
gati/nadai, 175 rhythmic cycles are obtained [13]. A tāla
cycle is made up of mātrās, which in turn are made up of
aksharās or strokes at the fundamental level. Another com-
plexity in Carnatic music is that the start of the tāla cycle
and of the composition need not be synchronous. Never-
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theless, percussion keeps track of rhythm. The detection
of percussive syllable locations aids higher level retrieval
tasks such as aksharā transcription, sama (start of tāla) and
ed. uppu (start of composition) detection and tāla tracking.

Various methods have been proposed for detecting on-
sets from music signals using a short-term signal, the lin-
ear prediction error signal, spectral magnitude or phase,
energy and their combination [1, 3, 11, 14, 15]. In [2], var-
ious acoustic features are analyzed for this task and in [7],
spectral methods are modified to enable onset detection.
These and other algorithms are analyzed in detail in [5].
Recent efforts include the use of Recurrent (RNN) [17] and
Convolutional Neural Networks (CNN) [19] for onset de-
tection. All of the above techniques are primarily for the
detection of monophonic musical onsets.

Every item in Carnatic music has, at its core, a compo-
sition. Every item in a concert is characterized by three
sections. A lyrical composition section that is performed
together by the lead performer, accompanying violinist and
the percussion artist. This section is optionally preceded
by a pure melody section (ālāpana) in which only the lead
performer and the accompanying violinist perform. The
composition section is optionally followed by a pure per-
cussion section (tani āvarthanam). Onset detection and
aksharā transcription in tani āvarthanams are performed
in [15], and [16] respectively. Percussive onset detection
for an entire concert that is made up of 10-12 items, each
associated with its own tāla cycle, is still challenging as
the composition items are made up of ensembles of a lead
vocal, violin/ensembles of the lead instrument(s) and per-
cussion.

Onset detection in polyphonic music/ensemble of per-
cussion either use audio features directly [4], or performs
detection on the separated sources. Dictionary learning-
based methods using templates are employed in the sep-
aration stage in certain music traditions [10, 22]. Har-
monic/percussive separation (HPS) from the audio mixture
is successfully attempted on Western music in [8] and [9].
Onset detection of notes is performed on polyphonic music
in [4] for transcription. Efficient percussive onset detection
on monaural music mixtures is still a challenging prob-
lem. The current approaches lead to a significant number
of false positives, owing to the difficulty in detecting only
the percussive syllables with varying amplitudes and the
presence of melodic voices.

In a Carnatic music concert, the lead artist and all the
accompanying instruments are tuned to the same base fre-
quency called tonic frequency and it may vary for each
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concert. This leads to the overlapping of pitch trajec-
tories. The bases do not vary over time in the case of
dictionary-based separation methods, leading to a limited
performance in Carnatic music renderings. HPS model [8]
does not account for the melodic component and variation
of tonic across the concerts. The state-of-the-art solo on-
set detection techniques, when applied to the polyphonic
music, perform poorer (≈ 20% absolute) than on the solo
samples [22].

In this paper, a separation-driven approach for percus-
sive onset detection is presented. A deep recurrent model
(DRNN) is used to separate the percussion from the com-
position in the first stage. It is followed by the onset detec-
tion based on signal processing in the final stage. The pro-
posed approach achieves significant improvement (18.4%)
over the onset detection algorithm applied to the mixture
and gracefully degrades (about 4.6% poorer) with respect
to onset detection on solo percussion. The proposed ap-
proach has better separation and detection performance,
when compared to that of the baseline algorithms.

2. DATASETS

Multi-track recordings of six live vocal concerts (' 14
hours) are considered for extracting the composition items.
These items contain composition segments with vocal
and/or violin segments in first track and percussive seg-
ments in the second track. To create the ground truth,
onsets are marked (manually by the authors) in the per-
cussive track. These onsets are verified by a professional
artist 1 . Details of the datasets prepared from various con-
certs are given in Table 1. The composition items consist
of recordings from both male and female artists sampled at
44.1 kHz. Some of the strokes in the mridangam are de-
pendent on the tonic, while others are not. The concerts
SS and KD also include ghatam and khanjira, which are
secondary percussion instruments. Recordings are also af-
fected by nearby sources, background applauses and the
perpetual drone.

Concert Total Length Comp. Segments No. of Strokes
hh:mm:ss mm:ss (Number)

KK 2:15:50 1:52 (3) 541
SS 2:41:14 0:38(4) 123
MH 2:31:47 1:16 (3) 329
ND 1:15:20 1:51 (3) 330
MO 2:00:15 7:14 (3) 1698
KD 2:20:23 5:32 (3) 1088

Total 13:41:59 18:23 (19) 4109

Table 1: Details of the dataset

Training examples for the percussion separation stage
are obtained from the ālāpana (vocal solo, violin solo) and
mridangam tani āvarthanam segments. These are mixed to
create the polyphonic mixture. A total of 12 musical clips
are extracted from four out of six recordings, to obtain the
training set (17min and 5s), and the validation set (4min
and 10s). Hence, around 43% of the data is found to be suf-

1 Thanks to musician Dr. Padmasundari for the verification

ficient for training. 10% of the dataset is used for the val-
idation of neural network parameters and the rest for test-
ing the separation performance. The concert segments KK
and ND are only used for testing the proposed approach
to check the generalizability of the approach across vari-
ous concerts. The composition segments shown in Table 1
column 3 (with ground truth) are used as the test data. On-
set detection is then performed on the separated percussive
track.

Figure 1: Block diagram of the proposed approach.

3. PROPOSED APPROACH

The proposed method consists of two stages: percussive
separation stage and solo onset detection stage. Initially,
the time-frequency masks specific to percussive voices
(mainly mridangam) are learned using a DRNN frame-
work. The separated percussion source is then used as in-
put to the onset detection algorithm. Figure 1 shows the
block diagram of the overall process which is explained
subsequently in detail.

3.1 Percussive Separation Stage

A deep recurrent neural network framework originally pro-
posed for singing voice separation [12] is adopted for sep-
arating the percussion from the other voices. Ālāpana seg-
ments are mixed with tani āvarthanam segments for learn-
ing the timbral patterns corresponding to each source. Fig-
ure 2 shows the time-frequency patterns of the composi-
tion mixture segment, melodic mixture and the percussive
source in Carnatic music. The patterns associated with dif-
ferent voices are mixed in composition segments leading
to a fairly complex magnitude spectrogram (Figure 2 left)
which makes separation of percussion a nontrivial task.
The DRNN architecture for percussive separation stage is
shown in Figure 3. The network takes the feature vec-
tor corresponding to the composition items (xt ) and esti-
mates the mask corresponding to the percussive (y

′1
t ) and

non-percussive (y
′2
t ) sources. The normalized mask corre-

sponding to the percussive source (M1( f )) is used to filter
the mixture spectrum and then combined with the mixture
phase to obtain the complex-valued percussive spectrum:

Ŝp( f ) = M1( f )Xt( f ) (1)

Sp(t) = IST FT (Ŝp 6 Xt) (2)
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Figure 2: Spectrograms of a segment of composition (left) ob-
tained from the mixture (KK dataset) containing melodic sources,
vocal and violin (middle) and the percussive source (right).

where, ISTFT refers to inverse short-time Fourier trans-
form, Ŝp is the estimated percussive spectrum, 6 (Xt) is the
mixture phase at time t and, Sp(t) is the percussive signal
estimated for tth time frame.

We use the short-time Fourier transform (STFT) feature
as it performs better than conventional features in musical
source separation tasks [21]. The regression problem of
finding the source specific-magnitude spectrogram is for-
mulated as a binary mask estimation problem where each
time-frequency bin is classified as either percussive or non-
percussive voice. The network is jointly optimized with the
normalized masking function (M1( f )) by adding an extra
deterministic layer to the output layer. We use a single
model to learn both these masks despite the fact that only
percussive sound is required in the second stage. Thus, dis-
criminative information is also used for the learning prob-
lem. The objective function (Mean Squared Error) that is
minimized is given by:

||ŷ1t−y1t ||2 + ||ŷ2t−y2t ||2−γ(||ŷ1t−y2t ||2 + ||ŷ2t−y1t ||2)
(3)

where ŷt and yt are the estimated and original magnitude
spectra respectively. The γ parameter is optimized such
that more importance is given to minimizing the error for
the percussive voices than maximizing the difference with
respect to the other sources. This is primarily to ensure
that the characteristics of percussive voice are not affected
significantly by separation, as the percussive voice will be
used later for onset detection. The recurrent connections
are employed to capture the temporal dynamics of the per-
cussive source which are not captured using the contextual
windows. The network has a recurrent connection at the
second hidden layer and is parametrically chosen based on
the performance on development data. The second hidden
layer output is calculated from the current input and output
of the same hidden layer in the previous time-step as:

h2(xt) = f (W 2h2(xt)+b2 +V 2h2(xt−1)) (4)

where, W and V are the weight matrices, V being the tem-
poral weight matrix and the function f (·) is the ReLU ac-
tivation [12].

A recurrent network trained with Ālāpana and tani
āvarthanam separates the percussion from the voice by
generating a time-frequency percussive mask. This mask

2 Example redrawn from [12]

Figure 3: Percussive separation architecture 2

is used to separate the percussive voice in the composition
segment of a Carnatic music item. The separated signal is
used for onset detection in the next stage (Figure 1).

3.2 Onset Detection Stage

The separated percussive voice is used as the source sig-
nal for the onset detection task. Note that this signal has
other source interferences, artifacts and other distortions.
The second block in Figure 1 corresponds to the onset de-
tection stage. Onset detection consists of two steps. In the
first step a detection function is derived from the percus-
sive strokes which is then used in onset detection in the
second step.

It is observed that the percussive strokes in Carnatic mu-
sic can be modeled by an AM-FM signal based on am-
plitude and frequency variations in the vicinity of an on-
set [15]. An amplitude and frequency modulated signal
(x(t)) is given by,

x(t) = m1(t)cos(ωct + k f

∫
m2(t)dt) (5)

where, k f is the frequency modulation factor, ωc is the car-
rier frequency and, m1(t) and m2(t) are the message sig-
nals. The changes in the frequency are emphasized in the
amplitude of the waveform by finding the differences of
the time-limited discrete version of the signal, x[n]. The
envelope function e[n] is the amplitude part of x

′
[n]. The

real-valued envelope signal can be represented by the cor-
responding analytic signal defined as:

ea[n] = e[n]+ ieH [n] (6)

eH [n] is the Hilbert transform of the envelope function.
The magnitude of ea[n] is the detection function for the
onsets. The high-energy positions of the envelope signal
(e[n]) corresponds to the onset locations. However, these
positions have a large dynamic range and the signal has
a limited temporal resolution. It has been shown in [20]
that minimum-phase group delay (GD) based smoothing
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Figure 4: Solo onset detection algorithm. (a) Percussion signal (b) Derivative of (a). c) Envelope estimated on (b) using Hilbert
transform. (d) Minimum phase group delay computed on (c).

leads to a better resolution for any positive signal that is
characterized by peaks and valleys. The envelope is a non-
minimum phase signal and it needs to be converted to a
minimum phase equivalent to apply this processing.

It is possible to derive such an equivalent representation
with a root cepstral representation. The causal portion of
the inverse Fourier transform of the magnitude spectrum
raised to a power of α is always minimum phase [18].

e
′
[k] = {s[k] |k>0, s[k] = IFT ((e(n)+ e[−n])α)} (7)

Note that e
′
[k] is in root cepstral domain and k is the que-

frency index. This minimum-phase equivalent envelope is
then subjected to group delay processing.

The group delay is defined as negative frequency deriva-
tive of the unwrapped phase function. It can be computed
directly from the cepstral domain input signal e

′
[k] as:

τ(ω) =
XR(e jω)YR(e jω)+XI(e jω)YI(e jω)

|X(e jω)|2
(8)

where, X(e jω) and Y (e jω) are the discrete Fourier trans-
forms of e

′
[k] and ne

′
[k] respectively. Also, R and I denote

the real and imaginary parts respectively. The high reso-
lution property of the group delay domain emphasizes the
onset locations. Onsets are reported as instants of signifi-
cant rise, above a threshold.

Figure 4 illustrates the different steps in the algorithm
using a mridangam excerpt taken from a tani āvarthanam
segment. It is interesting to note that in the final step, the
group delay function emphasizes all the strokes approx-
imately to an equal amplitude, and even those onsets in

which there is no noticeable change in amplitude are also
obtained as peaks (highlighted area in Figure 4).

4. PERFORMANCE EVALUATION

The proposed percussive onset detection approach is de-
veloped specifically for rhythm analysis in Carnatic music
composition items. However, it is instructive to compare
the performance with other separation and onset detection
algorithms. Also, it is important to note that the proposed
approach could be applied to any music tradition with
enough training musical excerpts to extract the onset lo-
cations from the polyphonic mixture. The dataset for these
tasks is described in Section 2. The vocal-violin channel
(ālāpana) and the percussion channel (tani āvarthanam)
are mixed at 0 dB SNR. The STFT with a window length
of 1024 samples and hop size of 512 samples is used as the
feature for training a DRNN with 3 hidden layers (1000
units/layer) and temporal connection at the 2nd layer. This
architecture shows a very good separation for the singing
voice separation task [12]. The dataset consists of seg-
ments with varying tempo, loudness and number of sources
at a given time. The challenge lies in detecting the onsets
in the presence of the interference caused by other sources
and the background voices.

4.1 Evaluation Metrics

Since the estimation of percussive onsets also depends on
the quality of separation, it is necessary to evaluate the sep-
arated track. We measure this using three quantitative mea-
sures based on BSS-EVAL 3.0 metrics [23]: Source to Ar-
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tifacts Ratio (SAR), Source to Interference Ratio (SIR) and
Source to Distortion Ratio (SDR). The artifacts introduced
in the separated track is measured by SAR. The suppres-
sion achieved for the interfering sources (vocal and violin)
is represented in terms of SIR which is an indicator of the
timbre differences between the vocal-violin mixture and
percussive source. SDR gives the overall separation qual-
ity. The length-weighted means of these measures are used
for representing the overall performance in terms of global
measures (GSAR, GSIR and GSDR).

The conventional evaluation metric for the onset detec-
tion is F-measure, which is the harmonic mean of precision
and recall. An onset is treated as correct (True Positive)
if it is reported within a ±50ms threshold of the ground
truth [6] as strokes inside this interval are usually unre-
solvable. Additionally, this margin accounts for the pos-
sible errors in the manual annotation. The F-measure is
computed from sensitivity and precision. Since it is im-
possible to differentiate between simple and composite 3

strokes for mridangam, the closely spaced onsets (within
30 ms) are not merged together unlike in [5].

4.2 Comparison Methods

The performance of the separation stage is compared with
a widely used Harmonic/Percussive Separation (HPS) al-
gorithm [8] for musical mixtures. It is a signal processing-
based algorithm in which median filtering is employed on
the spectral features for separation. Other supervised per-
cussive separation models were specific to the music tra-
ditions. We have not considered the Non negative Matrix
Factorization (NMF)-based approaches since the separa-
tion performance was worse on Carnatic music, hinting the
inability of a constant dictionary to capture the variability
across the percussive sessions and instruments.

The onset detection performance is compared with the
state-of-the-art CNN-based onset detection approach [19].
In this approach, a convolutional network is trained as a
binary classifier to predict whether the given set of frames
has an onset or not. It is trained using percussive and
non percussive solo performances. We evaluate the per-
formance of this algorithm on the separated percussive
track and, on the mixture . The onset threshold amplitude
is optimized with respect to the mixture and percussive
solo channel for evaluating the performance on the sepa-
rated and mixture tracks respectively for both of these al-
gorithms.

5. RESULTS AND DISCUSSION

5.1 Percussive Separation

The results of percussive separation are compared with that
of the HPS algorithm in Table 2. The large variability
of the spectral structure with respect to the tonic, strokes
and the percussive instruments (different types of mridan-
gam as well) cause the HPS model to perform poorly with
respect to the proposed approach. The DRNN separa-
tion benefits from the training whereas the presence of the

3 both left and right strokes co-occurring in the mridangam

DRNN HPS
Concert GSDR GSIR GSAR GSDR GSIR GSAR

SS 7.00 13.70 8.61 3.39 6.73 7.93
ND 7.54 17.30 8.98 0.46 3.05 7.67
KK 7.37 13.93 8.93 0.66 2.04 10.09
MH 6.40 15.64 7.63 0.82 3.31 7.79
KR 7.37 13.93 8.93 1.32 2.43 9.09
MD 6.40 15.64 7.63 2.40 8.06 4.78

Average 7.01 15.02 8.45 1.50 4.27 7.89

Table 2: Percussive separation performance in terms of BSS
evaluation metrics for the proposed approach and HPS algorithm

melodic component with rich harmonic content adds to the
interference in HPS method. This results in a poor sep-
aration of melodic mixture and percussive voice in HPS
approach as indicated by an overall difference of 5.51 dB
SDR with respect to DRNN approach. Although DRNN is
not trained on the concerts KK and MD, separation mea-
sures are quite similar to other concerts. This is an indi-
cator of the generalization capability of the network since
each concert is of a unique tonic (base) frequency, and is
recorded under a different environment. Separated sound
examples are available online 4 .

5.2 Onset Detection

Concert Proposed Direct Solo CNN CNN Sep.
SS 0.747 0.448 0.864 0.685 0.656
ND 0.791 0.650 0.924 0.711 0.740
KK 0.891 0.748 0.972 0.587 0.636
MH 0.874 0.687 0.808 0.813 0.567
KR 0.891 0.748 0.972 0.859 0.848
MD 0.874 0.687 0.808 0.930 0.919

Average 0.845 0.661 0.891 0.764 0.727

Table 3: Comparison of F-measures for the proposed approach,
direct onset detection on the mixture, solo percussion channel,
CNN on the mixture and on the separated percussive channel.

The accuracy of onset detection is evaluated using F-
measure in Table 3. The performance varies with the
dataset and the results with the maximum average F-
measure is reported. The degradation in performance with
respect to the solo source is only about 4.6%, while the
improvement in performance compared to the direct onset
detection on the composite source is 18.4%. The separa-
tion step plays a crucial role in onset detection of the com-
position items as the performance has improved for all the
datasets upon separation. It should be noted that the al-
gorithm performs really well for solo percussive source.
This is reason for making comparisons with solo perfor-
mances. For SS data (Table 1) with fast tempo (owing to
multiple percussive voices) and significant loudness vari-
ation (Example online 4 ), the direct onset method causes
a large number of false positives resulting in lower preci-
sion whereas the proposed approach results in a reduced
number of false positives. Figure 5 shows an example of a

4 https://sites.google.com/site/
percussiononsetdetection

564 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



−0.02

0

0.02

A
m

p
li

tu
d
e

(a) A segment of composition item with the ground truth onsets

 

 

−0.4

0

0.4

G
D

 A
m

p
li

tu
d
e

(b) Group delay representation for the mixture signal with the detected onsets

0 0.045 0.09 0.135 0.18 0.225 0.27

−0.5

0

0.5

G
D

 A
m

p
li

tu
d
e

(c) Group delay representation for the separated signal with the detected onsets

Time in Seconds

 

 

Figure 5: An excerpt from SS dataset illustrating the performance of the proposed approach with respect to the direct onset
detection method. Red dotted lines represent the ground truth onsets, violet (b) and green (c) lines represent the onsets
detected on the mixture signal and the separated percussive signal respectively.

composition item taken from the SS dataset. It compares
the performance of the proposed approach with that of the
onset detection algorithm applied directly on the mixture.
By adjusting the threshold of onset, the number of false
positives can be reduced. However, it leads to false neg-
atives as shown in Figure 5(b). The proposed approach is
able to detect almost all of the actual onset locations (5(c)).

The proposed approach is then compared with the CNN
algorithm. The optimum threshold of the solo algorithm
for the Carnatic dataset [15] is used to evaluate the per-
formance. The proposed method performs better than the
CNN algorithm applied on the mixture (Table 3). This
is because the CNN method is primarily for solo onset
detection. The performance of the baseline on the sepa-
rated channel is also compared with the group delay-based
method. The threshold is optimized with respect to the per-
formance of the baseline algorithm on the mixture track.
The average F-measure of the proposed approach is 11.8%
better than that of the CNN-based algorithm. This is be-
cause CNN-based onset detection requires different thresh-
olds for different concert segments. This suggests that
the GD based approach generalizes better in the separated
voice track and is able to tolerate the inter-segment vari-
ability. A consistently better F-measure is obtained by the
GD based method across all recordings. This separation-
driven algorithm can be extended to any music tradition
with sharp percussive onsets and having enough number

of polyphonic musical ensembles for the training. These
onset locations can be used to extract the strokes of per-
cussion instruments and perform tāla analysis.

6. CONCLUSION AND FUTURE WORK

A separation-driven approach for percussive onset detec-
tion in monaural music mixture is presented in this paper
with a focus on Carnatic music. Owing to its tonic depen-
dency and improvisational nature, conventional dictionary-
based learning methods perform poorly on percussion sep-
aration in Carnatic music ensembles. Vocal and violin seg-
ments from the ālāpana and mridangam phrases from the
tani āvarthanam of concert recordings are used to train a
DRNN for the percussive separation stage. The separated
percussive source is then subjected to onset detection. The
performance of the proposed approach is comparable to
that of the onset detection applied on the solo percussion
channel and achieves 18.4% absolute improvement over its
direct application to the mixture. It compares favourably
with the separation and onset detection baselines on the
solo and separated channels. The onset locations can be
used for analyzing the percussive strokes. Using repeat-
ing percussion patterns, the tāla cycle can be ascertained.
This opens up a plethora of future tasks in Carnatic MIR.
Moreover, the proposed approach is generalizable to other
music traditions which include percussive instruments.
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