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ABSTRACT

The term ‘sampling’ refers to the usage of snippets or
loops from existing songs or sample libraries in new songs,
mashups, or other music productions. The ability to auto-
matically detect sampling in music is, for instance, benefi-
cial for studies tracking artist influences geographically and
temporally. We present a method based on Non-negative
Matrix Factorization (NMF) and Dynamic Time Warping
(DTW) for the automatic detection of a sample in a pool
of songs. The method comprises of two processing steps:
first, the DTW alignment path between NMF activations
of a song and query sample is computed. Second, features
are extracted from this path and used to train a Random
Forest classifier to detect the presence of the sample. The
method is able to identify samples that are pitch shifted
and/or time stretched with approximately 63% F-measure.
We evaluate this method against a new publicly available
dataset of real-world sample and song pairs.

1. INTRODUCTION

In the context of music composition and production, sam-
pling stands for the concept of reusing pre-existing digital
recordings in new compositions in a way that it fits the
musical context. In digital sampling, an artist records a seg-
ment of a song or sound that they wish to sample, possibly
modifies it, and then reuses it (and possibly other samples)
by incorporating it into a new composition [11]. Sampling
of audio has become popular in mainstream pop, hip-hop,
and rap music.

A Sample Detection (SD) system automatically detects
samples from a pool of songs and thus enables musico-
logical studies of the influence of older artists over newer
generation artists by observing sampling patterns over the
years and geographically. Another possible use case of a SD
system could be to detect plagiarism or copyright infringe-
ment. Sampling is legally controversial and determining
fair use is largely left to the judicial system. A system that
gives an objective measure of the likelihood of a sample
being present in an audio file could add weight to either
party’s argument in a lawsuit.
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The algorithm discussed in this paper focuses on solving
the problem of detecting the presence of a given sample in
a set of songs as well as its time location in the song.

2. RELATED WORK

The task of SD has been addressed in only few previous
publications. There exist, however, several parallels that
may be drawn from other areas of research that are relevant
to SD such as cover song detection, audio fingerprinting,
and remix recognition.

2.1 Audio Fingerprinting

Audio Fingerprinting (AFP) refers to the method of extract-
ing content-based signatures from audio [1, 5, 10]. It is
commonly used in content-based music identification sys-
tems such as Shazam. 1 Van Balen proposed the use of AFP
for sample detection [24,25], using a popular fingerprinting
algorithm by Wang [27] in an implementation by Ellis [8].

Fingerprinting systems are robust against noise injection
and, with appropriate modifications, pitch shifting and time
stretching [31]. As long as the level difference between the
sample and other sources is within the noise level expecta-
tions, a modified system could be a good choice for sample
detection. Given that a sample might be mixed at a low
level, it is questionable if this assumption really holds true
for the majority of cases.

2.2 Cover Song Detection

Cover Song Detection (CSD) is the task of recognizing
whether a given reference track has a cover song in a set of
test tracks [2,9,19]. Covers may, for example, be transposed
and deviate from the original song in terms of tempo and
other properties. Dynamic Time Warping (DTW) [20] is
often used to make the comparison tempo-invariant. The
difference from SD is that covers are renditions of a musical
piece, while samples are snippets of audio which are usually
a part of the mix overlaid with multiple other instruments
and sounds unrelated to the sample. The evaluation of SD
systems, however, is similar to that of CSD. Both have a
test/reference pair which is then categorized as a positive or
negative match with or without a confidence measure.

2.3 Remix Recognition

Work done in remix recognition by Casey and Slaney [6]
draws inspiration from a method for web crawling called

1 https://www.shazam.com, last accessed: 4/26/2017
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‘shingling’ which utilizes a stream of text position-based
features to detect if a document has already been crawled
before. In their work, they compute audio features such
as pitch-class profiles and Log-Frequency Cepstral Coef-
ficients using 0.1 second frames. They concatenate these
feature vectors into 4 second ’shingles’ and model the distri-
bution of pair-wise distances between shingles from remixes
and shingles that are not from remixes. A nearest neighbor
classifier is used to identify which distribution a query ’shin-
gle’ belongs to. Such a system is not appropriate for SD
since this method relies on long-term similarity between
the query and the reference, however, a sample may be a
short, one-shot sample (triggered samples without looping).
A working remix recognition system, however, would be
helpful in ways similar to SD in that it helps with tracing
influences across artists. In addition, some remixing cases
might also involve instances of sampling.

2.4 Sample Detection with Non-negative Matrix
Factorization

Dittmar et al. listed sampling as one of three kinds of pla-
giarism in music [7]. They utilize Non-negative Matrix
Factorization (NMF) to learn the spectral templates from
the sample and detect the presence of these templates in the
suspect audio. Correlating the activations from the sample
and the song then gives the likelihood of plagiarism. While
the authors provide a general outline of a sample detection
system, they neither offer a detailed algorithmic description
nor a formal evaluation of their proposed system. In [28],
Whitney uses NMF in a similar manner except that instead
of factorizing entire spectrograms, NMF is applied to short
texture windows in the sample and the song. The detection
is done using pairwise 2-dimensional cross-correlation of
the two activation matrices obtained. To account for pitch
shifting and time stretching, the audio files are resampled
using factors computed by taking the ratio of the sample and
song BPM and multiple NMFs are performed. The issue
with this approach is that the time stretching and pitch shift
factor are not necessarily inverse when sampling. Nonethe-
less, NMF appears to be a good choice for a SD system
as fixed templates allow to obtain activations for only the
common components between the song and the sample.

The task of sample detection has been identified in music
information retrieval literature, and various approaches have
been proposed. However, it has not yet been well defined
in terms of evaluation methodology or metrics. Reasonably
sized datasets are also non-existent or proprietary. There-
fore, there is no formal evaluation that can be performed
to compare different sample detection methods. This paper
aims to bridge this gap by providing a dataset and propose
a common evaluation framework.

3. METHOD

The algorithm presented in this paper is inspired by the
proposal of Dittmar et al. [7]. Since the task of sample
detection is similar to a source identification problem where
the sample is one of the sources present in the mix, an NMF-
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Figure 1. High Level Block Diagram

based approach is fitting due to its prevalence in audio
source separation tasks [18, 21]. The block diagram in
Figure 1 shows the processing steps of the algorithm.

3.1 Non-Negative Matrix Factorization

NMF is a widely popular algorithm in unsupervised
learning with applications in recommendation systems
[12, 15, 16] and signal processing tasks, specifically source
separation [13, 23, 26]. NMF factorizes a signal matrix
V ∈ RM×N into a template matrix W ∈ RM×K and an
activation matrix H ∈ RK×N such that:

V ≈W ·H. (1)

If V is the magnitude spectrogram with M frequency bins
and N blocks, W contains the K spectral or harmonic
component templates in V while H contains temporal in-
formation about each corresponding spectral component in
the template matrix [22].

In a pre-processing step, both the original sample and the
paired song are RMS-normalized, downmixed, and down-
sampled to 22.05 kHz; then, their magnitude spectrogram
is computed (block size: 4096, hop size: 1024 samples).
Using NMF, the sample spectrogram will be factorized into
K templates Wo and the activation matrix Ho, o indicating
’original’. A sample, used in a song, may be thought of as
one source in a mixture of multiple sources in this song.
The factorization of the song will then be performed using
partially fixed NMF (PFNMF) [29, 30]. In this case, the
template matrix W consists of a fixed, not updated, part
containing the extracted templates Wo and a randomly ini-
tialized part Wm with L templates that is iteratively learned
and represents what we refer to as the mixture templates.
The dimension of the complete template matrix is thus
M × (K + L). All activations are iteratively updated as
well.

3.1.1 NMF Rank Selection

The rank K of the sample spectrogram has to be chosen
based on how many spectral templates can approximate the
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Figure 2. Geometric mean of cross-correlation functions.
Black function shows sample occurrence, while blue does
not have any samples.

specific sample. Similarly, while computing the PFNMF,
the rank L for approximating the templates representing
the remaining mixture in the song has to be selected in a
way that minimizes the impact on the fixed sample template
activations in order to robustly detect the sample.

Different songs will usually require different ranks for
accurately approximating and factorizing their magnitude
spectrograms with a low reconstruction error. In the current
algorithm, however, fixed ranks are chosen: K = 10 and
L = 20. The rationale behind using fixed low ranks is that
for this task a perfect reconstruction is not required and that
the following processing steps should be robust enough to
detect the sample regardless of whether the templates are
able to combine linearly to an accurate reconstruction of the
original spectrogram. If the sample is used in a song, the
same fixed templates should produce a roughly similar set
of activations independent of the mixture rank. Larger fixed
ranks were tested but no gain in performance was observed
while resulting in increased computational cost.

Still, a future extension might be to analyze the audio
separately as a pre-processing step to obtain a ‘complexity’
measure that could be used to adapt the ranks K and L
based on the signals to be modeled.

3.2 Activation Function Processing

In the subsequent analysis, only the activations Hs are of
interest. These are the activations corresponding to the orig-
inal templates Wo after PFNMF and indicate the presence
of the sample in the song if they match the pattern of the
original activations Ho. If the sample were neither pitch
shifted nor time stretched, cross-correlation functions be-
tween each corresponding activation in Ho and Hs could
be computed. Peaks in the aggregated (across the K di-
mensions) cross-correlation function would then indicate
the presence of the sample. Figure 2 shows two example
functions after using the geometric mean for aggregation: a
sample occurs twice in the black song (as indicated by the
two local maxima), while it is not present in the blue song.

3.2.1 Activation Normalization

Proper normalization of the activation matrix is essential
for accurate sample detection, however, there is no “cor-
rect” way to do this as the level (or even the presence) of
the sample in the paired song is unknown. The relative
activation levels between the K templates of one matrix,
however, should remain identical. Thus, each activation
matrix H is normalized by the absolute maximum across
all the K activations across time, preserving the relative
activation strengths for the spectral templates of the sample:
Hnormalized = H

max(H) .

3.2.2 Pitch Shifting & Time Stretching

The assumption that the sample is neither time stretched nor
pitch shifted is false for the majority of cases. In the dataset
used for this study, for example, 57.5% of samples are pitch
shifted. Pitch shifting is often required for the sample to
match the tonality of the song, and time stretching is often
required to adjust for tempo differences between the two.

In case of pitch shifting, the original templates Wo will
no longer be valid templates since the frequency axis of
the spectral content will be scaled by the pitch shift factor.
In order to account for pitch shifting, we construct new
spectral templates W p

o by scaling the frequency axis of
the original templates with a set of hypothetical pitch shift
factors. Now, a partially fixed NMF will be able to extract
activations corresponding to the pitch shifted templates and
these may be compared to the activations from the original
sample. Ideally, we would perform factorizations for a
set of hypothetical pitch shifts usually ranging from one
octave lower to one octave higher in semi-tone or quarter-
tone steps. For this paper, however, we allow the dataset
to inform our pitch shift steps. The used pitch shift set in
semi-tone steps from the original sample templates Wo is:

P = {p | p ∈ {−5,−4,−3,−2,−1, 0, 0.5, 1, 2, 3, 4, 5}}.

Partially-fixed NMF is then performed individually for
each pitch shift in P , i.e., 12 times. The activations Hp

s

correspond to the pitch shifted templates W p
o .

When the sample is time stretched, the activations from
the song will be stretched or compressed accordingly; there-
fore, cross-correlation cannot be used. In such a scenario,
DTW can align the activations Ho with the activations Hp

s

in the song for each pitch shift p. A distance matrix D is
constructed using the pair-wise correlation distance between
the K-dimensional activations. The size of D is No ×Ns,
where No is the number of frames in the original sample
activations and Ns is the number of frames in the song acti-
vations. Correlation is used as the distance measure because
it is scale independent. Preliminary tests showed that other
frequently used distance measures perform either similarly
or worse. The resulting distance matrix shows how similar
a set of activations is to the extracted activations at each
time instant. The distance matrix D and properties of the
extracted path can be used to indicate the presence of a
sample in a song. Figure 3 shows an example of a distance
matrix with a looped sample. The low cost parallel blue
paths indicate the presence of the sample.

266 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



0.5

1

1.5

Figure 3. Distance matrix computed between activations
in the case where a sample is looped

The problem is now a subsequence search for the sample
activations Ho within the series of activations correspond-
ing to the sample templates in the song, Hp

s . A standard
DTW implementation would initialize the cost matrix C by
accumulating the first row and first column of the distance
matrix D. Such a scheme can be applied when only one
global optimal path that aligns the two entire time series is
required. In the case of sample detection, a sample could
be present in multiple locations within the song; hence, the
detection of multiple alignment paths at multiple locations
in D is required. Each of these paths should align the entire
sample with segments of the song. Therefore, the initial-
ization of C is modified to only accumulate the distances
along the dimension of the sample, which in our case is the
column. This subsequence DTW scheme [17] initializes
the cost matrix C as follows:

C(1, j) = D(1, j)

C(i, 1) =
i∑

k=1

D(k, i)
(2)

Initializing in this fashion and proceeding to compute the
cost matrix allows us to obtain backtracking paths from
every index in the last row of D (as opposed to one path
from the last element of D, which is the case for “standard”
DTW). The last row of the cost matrix C corresponds to
the cost of aligning the sample backtracking from every
frame of the song. The backtracking paths now satisfy the
requirement of aligning the entire sample with a section in
the song. To summarize, every alignment path obtained is
the path that aligns the sample activations Ho backtracking
from every frame f in the song activations Hp

s . Note that
the subsequence DTW is performed for each p ∈ P .

3.2.3 Pitch Candidate Selection

From the set of pitch shifts, the most likely pitch shift is
inferred before feature extraction. Of the 12 cost matrices,
the one corresponding to the most likely pitch candidate
will be the one with the global minimum cost (minimum of
the last row of the cost matrix),i.e., the one with a minimum
cost lower than the minimum cost of all other matrices. All
subsequent computations are based on the activation matrix
of the selected candidate; the results for the 11 remaining
pitch shifted templates are discarded.

Figure 4. DTW cost function; minima indicate the end of
the sample

3.3 Feature Extraction

The last row of the cost matrix C, containing the alignment
path costs normalized by the length of the path, will be
referred to as DTW cost function. Local minima in this
DTW cost function indicate potential sample end points.

Using an absolute threshold on the DTW cost function
to detect a sample is not meaningful because the absolute
cost level depends on both sample and song characteristics.
The mixing ratio of different samples in different songs will
be different. Some samples might occur in a section with no
other sources while others might be heavily overlaid with
other sounds, leading to interference and varying strength
in activations across different (song, sample) pairs. The
DTW backtracking paths from all possible end points to
their corresponding start location results in a set of unique
start locations in the song for each (song, sample) pair. We
refer to this mapping from every end point to a start point
in the song as DTW path start function. Every unique start
location is a candidate for a sample being present. Note
that each unique start location can have multiple paths/end
points. Figure 5 shows one example of this function. We
choose to derive features from the two functions we defined
above because we expect that the properties of the DTW
alignment paths vary depending on whether a sample is
present or not. The features extracted from this data are
explained in the following sections.

3.3.1 Cost-based Features

From the multiple path end points of each start location,
the following three features are extracted: (i) the minimum
DTW cost across all end points, (ii) the average DTW cost
across all end points, and (iii) the standard deviation of the
DTW cost across all end points.

3.3.2 Path-based Features

The properties of the DTW alignment path should be mean-
ingful for detecting the presence of the sample. For exam-
ple, the tempo of the sample should stay roughly constant,
meaning that the slope of the path stays constant as well.
Thus, the idealized path would connect start point and end
point with a straight line. Note that when we refer to end
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Figure 5. DTW path start function; Longer steps indicate
sample; Long steps indicate that several DTW paths back-
tracked to the same start point.

points here, we refer to the group of end points that map
to one unique start location. Overall, the following fea-
tures are extracted for every unique start location: (i) the
absolute length of the minimum cost path normalized by
the sample length, (ii) the slope of the minimum cost path,
(iii) the average perpendicular deviation of the minimum
cost path from the idealized path, normalized by the length
of the path, (iv) the average slope across all end point paths,
(v) the standard deviation of the slope across all end point
paths, (vi) the average absolute length of all end point paths
normalized by the sample length, (vii) the standard devia-
tion of the absolute length of all end point paths normalized
by the sample length, (viii) the average perpendicular de-
viation from the idealized path across all end point paths,
normalized by the length of the paths, (ix) the standard
deviation of the perpendicular deviation from the idealized
path across all end point paths, normalized by the length of
the path, and (x) the number of end points mapping to this
unique start location.

3.4 Classification

Each unique start location is represented by a 13-
dimensional feature vector, which is a data point that can be
used as the input to a binary classifier for detecting whether
a sample is present or not. A random forest classifier with an
ensemble of 200 decision trees was chosen [3]. The number
of features chosen for each decision split is 4 and has been
decided based on the convention of choosing round(

√
n)

where n is the number of features, 13. The output is a
probability of the data point belonging to each class.

4. EVALUATION

4.1 Dataset

A dataset for Sample Detection was compiled using data
from whosampled.com 2 which aggregates information
about songs that sample or cover other songs. The au-
dio was downloaded using web services from streaming
websites such as Youtube or Dailymotion.

2 www.whosampled.com, last accessed: 1/22/2017

Eighty popular samples (according to the users of
Whosampled) were selected from the catalog of songs
by popular and frequently sampled artists such as James
Brown, Stevie Wonder, Michael Jackson, and Queen. The
resulting set has a balanced distribution among the genres
Pop, Rock, Funk and Hip-Hop.

The samples cover several variations of sampling such
as: one-shot samples of musical snippets or voice samples,
looped drums, and looped melodies. The length of the
longest sample is 25 s, the shortest is half a second and the
average length of the samples is 4.5 s seconds. The total
number of sampling instances is 876. The overall dataset
contains 80 pairs of original song and sampling song.

The following annotations were added manually with
the software Sonic Visualizer [4]: (i) start and end time in
seconds of the sample in the original song, (ii) start time in
seconds of the sample in the sampling song, and (iii) pitch
shift (in semi-tones) of the sample in the sampling song.
57.5% of the samples are pitch shifted. Pitch shift was
annotated by a human listener by ear. In cases where the
pitch shift was difficult to ascertain, the sample and song
snippet was compared in a DAW and different pitch shifts
were tested until a match was found. These annotations
plus additional meta-data including the song names, iden-
tifiers, and URLs for obtaining the audio have been made
available publicly in an online repository. 3 The repository
also contains the MATLAB source code for the algorithm.

4.2 Experiments

For each of the 80 samples in our dataset, there are 79
songs in which the sample does not occur. We randomly
pick 9 songs from these 79 songs. This, in combination
with the one song that includes the sample, results in a pool
of 10 songs to be paired with each sample, resulting in an
overall number of queries: 80 ·10 = 800 for the 80 samples.
Performing experiments with all possible pairs in the entire
dataset would be impractical without more compute power.
This overall set is split into a training set of 50 samples/500
queries and a test set of 30 samples/300 queries.

In order to use the ground truth data for training, one
additional step of interaction is necessary: all unique start
points have to be labeled as ‘0’ or ‘1’ based on whether
a sample is present. More specifically, the start points
associated with minimum DTW cost within a 1 s window
of the ground truth annotation are labeled ‘1’ and the rest
are labeled ‘0’. Multiple start points within the tolerance
range are merged so that the minimum cost path remains.

For the test set, any positive detection of the sample
within a 1 s tolerance window of the ground truth anno-
tation will be regarded as True Positive. Every positive
detection outside of this tolerance window and for queries
not containing the sample will be regarded as False Positive.

With respect to the metrics, the False Positive Rate, Preci-
sion, Recall, and the F-measure are reported for the sample
location detection. We refer to these as Micro-accuracy
measures as they take into account the sample location and
the number of occurrences.

3 https://github.com/SiddGururani/sample detection
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Precision Recall F-measure Fp-rate
Micro 79.37% 34.60% 48.19% 0.04%
Macro 83.33% 50.00% 62.50% 1.11%

Table 1. Results for song-level macro accuracy and sample
location-level micro accuracy measures

Macro-accuracy measures, on the other hand, report the
song-level sample detection results and indicate whether
a sample is present in a song or not regardless of position
and number of occurrences. The same metrics are reported,
but the sample detection is evaluated per song rather than
per sample instance. In summary, using both the Macro
and Micro-level accuracy metrics we are able to report the
performance of the method in two usage scenarios: First,
detecting whether a sample is present in a song (Macro),
and second, detecting where in a song and how often a
given sample is present (Micro).

5. RESULTS AND DISCUSSION

Table 1 reports the test accuracy of the classifier. The re-
sults show that the presented method is somewhat effective
at detecting the presence of sampling in a set of songs with
a low false-positive rate and a reasonably high precision.
The low recall of the method can be attributed to the highly
imbalanced nature of the problem as depicted in the confu-
sion matrix in Table 5: the testing dataset has 289 instances
of sampling against around 74,000 instances that are not
locations of sampling. The training set is similarly skewed
in its distribution of positive and negative classes. We ob-
serve an area under receiver operating characteristic curve
(AUROC) of 72.54%, a result strongly impacted by the low
false positive rate due to the imbalanced classes.

A possible reason for the low recall is also that the
method is not always accurate when it comes to picking
candidates. More specifically, it already misses approx-
imately 7% of sampling instances during the candidate
selection stage. This number is computed by classifying all
unique start locations as sample instances and calculating
the number of false negatives. A closer investigation of
some training samples showed that sometimes the DTW
cost function did not have a minimum at respective sam-
ple locations. In these cases, the distance matrix would
not contain clear alignment paths like the one shown in
Figure 3. The absence of clear alignment paths might stem
from incorrect modeling of the fixed sample templates in
the song NMF step or pitch shifts not considered in our
algorithm. The choice of the distance measure might also
impact the results: while the use of the correlation distance
makes sense because it is scale invariant, custom distance
measures might outperform it in this particular use-case.

It is worth pointing out that most problematic cases that
we came across were hard to detect for humans as well.
These cases included sparse drum loops, very short sam-
ples, samples that were mixed at a very low level, and
samples with excessive use of audio effects applied to them.
The high precision of our method, especially in the macro-

Micro Not Sample Sample
Not Sample 74126 26

Sample 189 100

Macro No Sample Has Sample
No Sample 267 3
Has Sample 15 15

Table 2. Confusion Matrices for Micro & Macro Accuracy

accuracy use case, enables utilizing this system as a pre-
processing step to a manual detection of sampling instances,
e.g., for studies that trace artist influences. Given a database
of songs and a set of samples to look for in the database,
this method can be used to pre-label data as cases of sam-
pling with high confidence on songs where samples are
detected, allowing the human operator to focus on the re-
maining database. In the context of plagiarism detection, a
high precision enables such a system to be used with high
confidence in case of a positive detection of plagiarism.
However, a low recall system “favors” the sampling artists
so the involvement of human experts remains a requirement.

6. CONCLUSION AND FUTURE WORK

We introduced a method to detect the presence of a sam-
ple in a set of songs robust against common sampling modi-
fications such as pitch shifting and time stretching. PFNMF
is used to extract sample activations from the song, and
DTW is used to align the set of activations obtained from
the song and the sample. We also present a new publicly
available dataset of real-world samples and songs contain-
ing fine-grained annotations for exact time locations of
sample occurrences within the song. The presented method
is evaluated against this dataset and we obtain 79.37% pre-
cision in detecting the exact location of the sample and
83.33% precision in song-level detection of a given sample.

Further research is required in order to improve the us-
ability of this method. Since the algorithm works for many
cases, a systematic way to improve it would be to more
closely investigate the problematic cases in order to design
modifications and algorithmic extensions to increase recall.

As this problem is inherently unbalanced, a possible
direction is to observe best practices for machine learn-
ing on imbalanced datasets. In addition to undersampling,
other techniques such as algorithmic modifications and cost-
sensitive learning that may be employed to solve imbal-
anced classification problems [14].

Investigating custom distance measures for the DTW
is another possible avenue to explore. Applying a non-
linearity to the NMF activations may help in increasing the
sparsity, possibly improving the differentiation between an
instance containing a sample and one that does not.

Sample detection is an intriguing and challenging, yet
largely untouched MIR task and it is our hope that the
dataset and this paper will encourage future work on this
topic in the MIR community.
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