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ABSTRACT

Patterns are an essential part of music and there are many
different algorithms that aim to discover them. Based on
the improvements brought by using data fusion methods
to find the consensus of algorithms on other MIR tasks,
we hypothesize that fusing the output from musical pat-
tern discovery algorithms will improve the pattern discov-
ery results. In this paper, we explore two methods to com-
bine the pattern output from ten state-of-the-art algorithms
using two datasets. Both provide human-annotated pat-
terns as ground truth. We show that finding the consen-
sus among the output of different musical pattern discov-
ery algorithms is challenging for two reasons: First, the
number of patterns found by the algorithms exceeds pat-
terns in human annotations by several orders of magnitude,
with little agreement on what constitutes a pattern. Sec-
ond, the algorithms perform inconsistently across different
pieces. We show that algorithms lack a consensus with
each other. Therefore, it is difficult to harness the collec-
tive wisdom of the algorithms to find ground truth patterns.
The main contribution of this paper is a meta-analysis of
the (dis)similarities among pattern discovery algorithms’
output and using the output in two fusion methods. Fur-
thermore, we discuss the implication of our results for the
MIREX task.

1. INTRODUCTION

An important property of music is its recurring structures
[18]. Musically meaningful repetitions in the form of mu-
sical patterns or musical motifs [29] provide one of the
most intensely researched aspects both for analyzing in-
dividual musical pieces [24] and groups or collections of
musical pieces for identifying musical style based on mu-
sical patterns [8,23,34]. Automatic pattern discovery is an
active research area in Music Information Retrieval (MIR)
that aims to discover these patterns automatically. Differ-
ent pattern discovery methods have been introduced, such
as string-based approaches [4, 7, 14, 16, 17, 25], geometric
approaches [3,6,21,31], data mining approaches [28], and
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machine learning approaches [26]. Musical pattern discov-
ery algorithms have been used for different applications:
for determining similarity between musical pieces [1], for
automatic compositions [11], and for describing musical
style characteristics [8].

Although many approaches have been developed over
the recent decades (for a detailed overview see [12]), mu-
sical pattern discovery algorithms face a number of chal-
lenges. Music is inherently ambiguous: musicologists of-
ten do not agree on what the important musical patterns are
in a given piece [5]. This makes it difficult to evaluate the
quality of automatically extracted musical patterns. Fur-
thermore, each algorithm is historically tested on unasso-
ciated datasets with disparate metrics [12]. One attempt to
systematically evaluate the algorithms is the MIREX Dis-
covery of Repeated Themes & Sections task initiated in
2014. In the task, a pattern is defined as a set of time-pitch
pairs that occurs at least twice in a piece of music [10].
Although the state-of-the-art algorithms cannot reproduce
the human-annotated patterns yet, they perform acceptably
well according to the evaluation metrics in this task. How-
ever, the algorithms perform inconsistently across different
pieces which makes it hard to determine whether there ex-
ists a single ‘best’ performing algorithm.

Another problem is that algorithms tend to find far
more patterns than human annotators do [10]. Hence the
challenge is to find which potential patterns are musically
meaningful. The poor performance of automatically ex-
tracted patterns in the compression and classification task
on the Dutch Song Database in [1] also shows that pattern
discovery is far from being a solved problem in MIR and
Computational Music Analysis.

Integrating different algorithms using data fusion has
been shown to be a successful approach to improving over-
all performance in other areas dealing with ambiguous mu-
sical data, such as in Automatic Chord Estimation [15]. To
address the challenges in musical pattern discovery, we hy-
pothesize that integrating the output of state-of-the-art al-
gorithms to find a consensus among these algorithms will
help us to achieve an overall better pattern discovery re-
sult. To this end, we explore two fusion methods: a new
algorithm, the Pattern Polling Algorithm (PPA), and the
Time Indexed Novelty Algorithm (TINA), which is based
on commonly used time indexed novelty scores. Using
these two methods, we aim to integrate the patterns found
by multiple pattern discovery algorithms to a consensus
and therefore employ their collective wisdom.
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Fusing the patterns produced by individual algorithms
is challenging since there are different assumptions,
datasets and methods behind the development of each algo-
rithm. By exploring PPA and TINA using the MIREX dataset
and the Annotated Corpus from the Dutch Song Database
[32], we identify two problems with using these fusion
methods. First, because the number of patterns taken as
input of the fusion process is several orders of magnitude
larger than the human-annotated ground truth patterns and
they are disparate in terms of the pattern location, the pat-
tern length, pattern overlap, and pattern coverage of the
music pieces, it makes it difficult to find agreements among
these patterns. The disagreement reflects the ambiguity of
the pattern discovery task and a need for better definitions
of musical patterns. Second, the individual algorithms per-
form inconsistently on different pieces of music. The lack
of large musical pattern discovery data sets aggregates the
issue of the inconsistency and prevents further improve-
ments on using machine learning algorithms.

In this paper, we make two main contributions: First,
we undertake a meta (dis)similarity comparison among the
output of musical pattern discovery algorithms using two
fusion methods, TINA and PPA (Section 2 and Section 3).
Second, based on this research, we discuss issues of the
MIREX Discovery of Repeated Themes & Sections task
and suggest future directions for improving musical pat-
tern discovery research (Section 4).

2. METHODS

In this section, we introduce the two fusion methods of PPA

and TINA along with our evaluation methods. We use the
MIREX monophonic version of Chopin’s Mazurka Op. 24
No. 4 as an example to illustrate the algorithms. The code
of the algorithms and supportive explanations can be found
in https://github.com/irisyupingren/2017Pattern.

2.1 Algorithms Overview

The two new methods we use to explore musical pattern
fusion have different goals. PPA focuses on using the gath-
ered information to extract local pattern features (pattern
boundaries), while TINA focuses on globally integrating
the output patterns of individual algorithms to a probability
distribution (pattern distribution).

We devise PPA based on the fact that all pattern discov-
ery algorithms aim at finding the salient parts in musical
compositions. We assume that each algorithm’s output can
be taken as a vote on whether or not a given time point par-
ticipates in a salient part of the composition, e.g. is part
of a musical pattern. Moreover, we define a salience de-
gree of a time point which corresponds to the number of
patterns that the time point participates in. In essence, the
PPA is a voting system in which each algorithm votes on
the salience degree of a time point based on the discovered
patterns. The resulting polling curve is then taken as a base
to detect pattern beginnings and endings.

TINA is devised based on taking the polling curve and
the ground truth patterns and normalize them to a proba-

Figure 1. The pipeline of the fusion and evaluation. Same
datasets and evaluation methods are used to compare two
fusion methods (PPA and TINA) with individual algorithms.

bility distribution. Along with the polling curve, we use
the time indexed novelty score [9], which is produced by
correlating a checkerboard kernel along the main diagonal
of the similarity matrix of pattern votes. The time indexed
novelty scores are then taken as a base to compare with the
pattern distributions of individual algorithms, the polling
curve, and the human-annotated patterns.

The pipeline of the entire fusion and evaluation process
can be found in Figure 1. For a set of music data and mu-
sical pattern discovery algorithms, we first determine the
musical patterns discovered by each algorithm on each mu-
sical piece. Then we use PPA to extract pattern boundaries
and use TINA to calculate the pattern distributions. Finally,
we analyze the fusion results and the individual algorithms.

2.2 Pattern Polling Algorithm (PPA)

PPA starts with calculating a polling curve by taking into
account all musical patterns output of all algorithms. After
smoothing the polling curve, the algorithm takes the criti-
cal points (i.e. where the derivatives equal to zero) of the
curve and the first derivative as the boundaries of the pat-
terns (the beginnings and endings of the patterns). This is
because changes in salience values could potentially reveal
structural changes in music.

Polling Curve. The polling curve (PC) is created using
the output from all individual algorithms. We let each al-
gorithm vote at a given time point to decide whether it is a
salient part of the music. To create the voting time points in
the music, we use the resolution of one quarter note length.
The time points where the algorithms vote are therefore in
the vector T := [0, 1, ..., n] with the unit of a quarter note.

The voting is realized by looking up discretized time
points in the occurrences of output patterns: if there is an
occurrence interval which covers the time point, we count
that there is a valid vote. Finally, we add up the voting

672 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



0 100 200 300 400 500
Time

0

50

100

150

200
Sa

lie
nc

e 
/ P

at
te

rn
 C

ou
nt

Figure 2. The polling curve of Chopin’s Mazurka
Op. 24 No. 4 using algorithms from the MIREX task (see
Section 3). The horizontal bars show where the ground
truth patterns are present. The x-axis represents time in the
unit of quarter note and the y-axis represents the salience
value, which is the number of pattern counts if each vote
carries the same weight. We see promising correspon-
dences between the polling curve and human annotations.

from all the algorithms and produce the polling curve P (t),
which is a time series consisting of the salience values at
time points in T .

Since PPA uses a combination of algorithms, we should
consider which algorithms we want to include or exclude.
PPA could be extended if we have extra information on
which algorithms should be trusted more and make a port-
folio of algorithms as the input. The portfolio is essen-
tially a way of assigning binary weights to the algorithms’
votes: when the algorithm is included, its patterns have
weight one, and when not included, weight zero. We can
also generalize the weight to a continuous value.

To formalize the process of voting:

P (t) =
∑
A

∑
P

∑
O

IA,P
O (t) (1)

where A stands for Algorithm, P stands for Pattern, O
stands for occurrence, and IA,P

O (t) is the weighted indi-
cator function of an occurrence in the pattern P in the al-
gorithm A:

IA,P
O (t) =

{
ωA t ∈ O ⊆ P ⊆ A
0 t 6∈ O ⊆ P ⊆ A

(2)

where ωA is the weight assigned to algorithm A.
An exemplary polling curve of Chopin’s Mazurka

Op. 24 No. 4 using several algorithms from the MIREX task
is shown in Figure 2. The polling curve provides us with
a clue of where there is a salience change in the music.
Critical values (i.e. prominent changes) in salience values
will be regarded as boundaries in the polling curve times
series. In the following subsection, we will explain how to
decide what are the prominent changes and how to reduce
the possibly irrelevant micro-changes in the polling curve
and then find the pattern boundaries.

Smoothing. One common way to reduce the effects of
possibly irrelevant micro-changes in time series is smooth-
ing. In our algorithm, we use the Savitzky-Golay filter
[30], which is a linear least-square polynomial fitting fil-
ter. Each time we apply the smoothing, we reduce some
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Figure 3. Extracted pattern boundaries using PPA. The
dashed vertical lines are the boundaries. Many dashed
lines are aligned with the boundaries of human annota-
tions. We also plotted the polling curve, the ground truth,
first and second derivatives for reference.

effects of micro-changes, but at the same time, we might
also lose potentially valuable details. With different de-
grees of smoothing, we capture different levels of details
in salience’s changes. Therefore, we make the degree of
smoothness, s, to be one of the two parameters in PPA.

Derivative. After smoothing, to find the prominent
changes of the salience in music, we calculate the first
and second discrete derivatives of the polling curve and
take their critical zero-crossing points as the pattern bound-
aries. More formally: let P ′(t) = P (t+ 1)− P (t) and let
P ′′(t) = P ′(t + 1) − P ′(t), t > 0, t ∈ T . We are in-
terested in the zero crossing t̄ of P ′(t) and P ′′(t) because
the zero crossing points t̄ represent a change of direction
in the polling curve. For example, when P ′(t) < 0 and
P ′(t + 1) > 0, we have a dipping point P ′(t̄) = 0 in the
curve. There are more patterns discovered starting from
this point: it is likely to be a beginning of a pattern.

One question remains as for how strong the dipping,
tipping, concave and convex in the curve should be so that
we pick it as a boundary. Here we introduce the second
parameter: a threshold on the steepness of the zero cross-
ing points λ. With different values of λ, we create a set
of boundary sets which consist of the time at which zero
crossing happens. In Figure 3, an example of the extracted
boundaries can be found. We notice that some boundaries
line up well with ground truth boundaries. We will evalu-
ate the extracted pattern boundaries in Section 2.4.

2.3 Time Indexed Novelty Algorithm (TINA)

Since PPA extracts local boundaries, we use TINA to as-
sess globally how the extracted patterns are similar to
human-annotated patterns. Using the notions provided
in Section 2.2, TINA can be described concisely as fol-
lows: We use the pattern vote representation in Equa-
tion (2) as the input. Formally, the input matrix is M =
(IA,P1

O (t); IA,P2

O (t); ..., IA,Pn

O (t)), where n is the count of
output patterns we would like to combine. The main com-
ponent of TINA is the calculation of the time indexed nov-
elty scores described in [9]. This includes calculating the
similarity matrix S of M using the Euclidean distance and
then multiplying the diagonal with a checkerboard kernel
K = (1,−1;−1, 1), which gives us the novelty curve
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Figure 4. The TINA output novelty curve (N) distri-
bution calculated using patterns from all algorithms, the
TINA output polling curve (PC) distribution calculated us-
ing patterns from MIREX algorithms (see Section 3) and
the ground truth (GT) pattern distribution. The x-axis rep-
resents time in the unit of quarter note. Correspondences
of the time series can be seen from the three curves.

N(t). The novelty curve represents the changing rate of
the pattern vote time series IA,Pi

O (t), serving the same role
as the derivatives in PPA. In the end, we obtain a novelty
curve for each algorithm and the ensemble of algorithms,
depending on which patterns are included in M .

Next, the comparison in TINA requires the input from
the human-annotated ground truth patterns and the polling
curve. To convert the ground truth into the same time series
format as the novelty curve and the polling curve, we con-
struct the polling curve from the ground truth patterns as
GT (t). Furthermore, taking the frequentists point of view,
we normalize the time series by the sum of the entire time
series so that we get the distributions of the novelty curve
N(t), the polling curve P (t) and the ground truth patterns
GT (t). Similarly, we can also construct the pattern distri-
butions of individual algorithms PA(t).

In Figure 4, we give an example of the novelty curve
distribution, the polling curve distribution and the ground
truth pattern distribution. In an initial visual inspect, we
see some correspondences among the three curves: some
fluctuations and the tipping/dipping points of the curves
tend to coincide. We will evaluate the distribution similar-
ities globally in the next subsection.

2.4 Evaluation

We use two evaluation methods to assess how similar the
human-annotated patterns are to the output boundaries of
PPA and the output distributions of TINA.

Pattern Boundaries. To evaluate the extracted pat-
tern boundaries, we use the boundaries of the ground truth
patterns. Following the standard MIREX evaluation met-
rics, we calculate the precision, recall and F1 score of the
boundaries with a degree of fuzziness: we look for a match
of boundaries with a tolerance of one quarter note length
because of the one-quarter-length discretization we used
for creating the polling curve.

Pattern Distribution. To evaluate globally how similar
the normalized novelty curve and the polling curve are to
the ground truth pattern distribution, we calculate the Bhat-
tacharyya coefficients [13] and the Pearson correlation co-

efficients. Bhattacharyya coefficients measure the amount
of overlaps between two distributions and the Pearson cor-
relation coefficients measure the linear correlation of dis-
tributions. For the extracted patterns to be similar with the
ground truth patterns, we expect high correlation values
and high overlap values.

3. RESULTS

In this section, we first introduce the input we use for PPA

and TINA and provide a meta-analysis on the individual
algorithms. Then we explore the effects of the two param-
eters s and λ in PPA and the necessity of cross-validation.
Using our evaluation metrics, we show the performance
of the two fusion algorithms is on average similar to indi-
vidual algorithms, and we provide analysis as to why the
fusion methods do not excel.

3.1 Input: Algorithms and Music Data

We use two sets of algorithms and music data. The
first set is from the Annotated Corpus of the Dutch Song
Database (MTC-ANN) and the algorithms used in [1],
namely PatMinr [17], MotivesExtractor (ME) [25], SIATEC

[22], COSIATEC [19], and MGDP [7]. MTC-ANN [32] con-
sists of 360 dutch folk songs in 26 tune families. Because
we are interested in finding shared patterns between songs
in the same tune family, the pattern discovery algorithms
are computed on the concatenation of the songs in the same
tune family, and then the patterns discovered on the bound-
aries of concatenation are filtered out (same as the intra-
opus task described in [1]). The 360 individual songs are
taken as the input of PPA and TINA.

The second set is from the MIREX Discovery of Re-
peated Themes & Sections task. For music data, we
use a subset of the task’s training dataset. The original
dataset contains five pieces in both polyphonic and mono-
phonic format. We take three pieces in the monophonic
format: Chopin’s Mazurka Op. 24 No. 4, Mozart’s Pi-
ano Sonata K. 282, 2nd movement, and Beethoven Piano
Sonata Op. 2 No. 1, 3rd movement. For the sake of the
consistency of the task and the compatibility with MTC-
ANN, we leave out the two music pieces which are con-
structed by a concatenation of voices in the piece. The
algorithm input consists of all algorithms submitted to
the MIREX task during 2014-2016: MotivesExtractor (ME)
[25], SIATECCompress-TLP (SIAP), SIATECCompress-
TLF (SIAF), SIATECCompress-TLR (SIAR) [20], OL &
OL [17], VM & VM [33], SYMCHM (SC) [27], along
with SIARCT-CFP (SIACFP) [6], the algorithm developed
by the task captain. The output patterns of these state-
of-the-art algorithms for our example piece are shown in
Figure 5. We make several observations:

1. Different algorithms find very different patterns: some
tend to find shorter patterns, some longer; some find
many patterns while others are more “picky”.

2. We have three algorithm families (SIA, VM, and OL)
which consist of more than one algorithm. The algo-
rithms from the same algorithm family tend to find sim-
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Figure 5. Patterns extracted by all algorithms submitted to
the MIREX task 2014-2016 plus SIARCT-CFP on the mono-
phonic Chopin’s Mazurka Op. 24 No. 4. The horizontal
bars show where the patterns are present. The x-axis rep-
resents time in the unit of quarter note. We can see the
algorithms find different amount of patterns and patterns
of different length, etc.

ilar patterns. Similarities here include the number of
patterns discovered, the coverage of the song and the
overlaps of the occurrences.

3. The ground truth is sparse in comparison to the patterns
discovered by the algorithms.

4. From eyeballing the entire visualization, we see some
correspondence and similarities between the algo-
rithms and the ground truth patterns.

3.2 PPA: Parameter Space and Cross Validation

PPA extracts the local boundaries using the output patterns
from individual algorithms. We start investigating the ef-
fects s and λ in PPA using the MIREX set as input, because
a small number of music pieces gives us a clear idea of
the relation between the parameters and the performance
of PPA. Ideally, if there is a consistent best-performing s
and λ across the three pieces for precision, recall and F1
score, it would be possible that the parameters can be gen-
eralized. However, we find that no single choice of s and
λ performs well across all pieces. Nevertheless, to avoid
over-fitting using the ground truth patterns, we perform a

Algorithm Precision Recall F1
ME (0.125, 0.086) (0.184, 0.077) (0.149, 0.083)
SC (0.396, 0.022) (0.419, 0.068) (0.402, 0.046)

OL (0.420, 0.038) (0.565, 0.044) (0.462, 0.023)
OL (0.422, 0.061) (0.565, 0.044) (0.483, 0.054)

SIAF (0.139, 0.049) (0.670, 0.005) (0.228, 0.041)
SIAR (0.213, 0.039) (0.427, 0.000) (0.279, 0.021)
SIAP (0.117, 0.043) (0.596, 0.008) (0.195, 0.037)
VM (0.137, 0.035) (1.0, 0.0) (0.240, 0.029)
VM (0.206, 0.073) (0.543, 0.024) (0.296, 0.060)

SIACFP (0.819, 0.030) (0.82, 0.064) (0.815, 0.046)
PPA-P 0.478 0.206 0.249
PPA-R 0.228 0.867 0.35

PPA-F 0.248 0.738 0.360

Table 1. MIREX: (Mean, Variance) of the precision, recall
and F1 score of different algorithms at the pattern bound-
ary extraction task. The PPA-P, PPA-R and PPA-F are ob-
tained using a 3-fold cross-validation training process opti-
mizing the precision, the recall and the F1 scores. Because
we only have one piece in the test set, there is no variance
value. Bold numbers are the best results from individual
algorithms and PPA.

Algorithm Precision Recall F1
PatMinr (0.465, 0.054) (0.957, 0.020) (0.598, 0.050)
ME (0.366, 0.103) (0.353, 0.098) (0.314, .0879)
COSIATEC (0.482, 0.049) (0.774, 0.042) (0.569, 0.040)
SIATEC (0.468, 0.046) (0.975, 0.017) (0.610, 0.041)
MGDP (0.515, 0.072) (0.754, 0.093) (0.557, 0.065)
PPA-P (0.489, 0.135) (0.201, 0.023) (0.264, 0.035)
PPA-R (0.486, 0.057) (0.657, 0.046) (0.534, 0.044)
PPA-F (0.477, 0.054) (0.652, 0.047) (0.526, 0.042)

Table 2. MTC-ANN results in the format of Table 1,
the only difference being that we use a 10-fold cross-
validation. Best results are bold.

three-fold cross-validation using a split of two-pieces train-
ing and one piece testing in the MIREX dataset. The results
of the MIREX set are shown in Table 1 and the results of
MTC-ANN are shown in Table 2.

In the MIREX set, the best F1 score of PPA ranks the
fifth out of ten when using the optimal parameters found
by cross-validation. The best F1 score of PPA 0.360 is bet-
ter than the average of the F1 scores of individual algo-
rithms 0.3549. The SIACFP algorithm performs overall the
best on the MIREX set. With small differences, PPA ranks
the fourth out of five algorithms in MTC-ANN. However,
the best F1 score 0.534 of PPA is better than the average
F1 score of four individual algorithms 0.510. Although
PatMinr has the best F1 score in this set of music data and
algorithms, other algorithms follow very closely and there-
fore it is hard to determine whether there is a best algorithm
in this set of data and algorithms. On both datasets, we ob-
serve that PPA performs slightly better than the average of
the individual algorithms.

3.3 TINA: Pattern Distributions

From a global point of view, to measure the similarities of
novelty distributions, we calculate the polling curve distri-
butions and the pattern distributions of ground truth and
individual algorithms using TINA. To evaluate how similar
the distributions are, we calculate the Bhattacharyya coef-
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Figure 6. Left: Pairwise Pearson correlation coefficients
of the ground truth distribution, individual algorithm dis-
tributions, the novelty curve distribution (Novelty) and the
polling curve (PC) distribution using the 360 songs in MTC-
ANN. All p-values� 0.05. Right: Pairwise Bhattacharyya
coefficients of the same distributions.

ficients and the Pearson coefficients. The pairwise values
of the two measurements of the MTC-ANN set of music
data and algorithms are shown in Figure 6.

An obvious observation in both figures is the large dis-
tance and small correlation between the ground truth pat-
tern distribution and the output of algorithms. Using the
Bhattacharyya coefficients, we see that, in comparison to
the distribution overlap differences between the ground
truth and the individual algorithms, the differences among
the individual algorithms and the fusion algorithms are
smaller. Using the Pearson correlation coefficients, we see
less linear correlation between the polling curve distribu-
tion and the ground truth distribution. Other algorithms
have similar correlation values except SIATEC and the nov-
elty curve, which have specially high correlation. This
means the novelty curve is largely based on the SIATEC

algorithm’s output, and this is caused by the large num-
ber of output patterns generated by the algorithm. Look-
ing at both figures, from a global point of view, output
of the algorithms have similarities among themselves, but
they show less correlation and similarity compared to the
ground truth patterns. Similar observations are made in the
MIREX dataset and hence the matrices are not shown here.

3.4 Analysis on the Results

Combining all evaluation results, we identify why the fu-
sion methods do not excel over individual algorithms as
the fusion approach applied in [15]. First, the available
datasets are small and the ground truth patterns are sparse,
which is problematic for training the parameters and eval-
uating a stable performance. Second, the algorithms dis-
agree with each other on pattern length and pattern overlap
etc., which reflects the inherent ambiguity of music and a
lack of unified goal/application of the musical pattern dis-
covery task. Third, because there are well-performing al-
gorithms and relatively less well-performing algorithms in
the fusing portfolio, fusion results are understandably of
average quality since it combines results from all these dif-
ferent sources. In the end, although we observed promis-
ing correspondence and consensus among algorithms in
Figure 4 and Figure 5, a systematic evaluation reveals that

the degree of consensus is not yet enough for helping to
find patterns that agree with the annotated patterns.

4. DISCUSSION AND CONCLUSION

In this paper, we attempt to combine the output of musi-
cal pattern discovery algorithms to improve musical pat-
terns discovery. We devise a new algorithm, PPA, and ap-
ply an established method from the audio music similar-
ity field, TINA, to musical pattern discovery. We test the
fusion algorithms on pieces in the MIREX and MTC-ANN

datasets. The results show that PPA and TINA on aver-
age do not improve the performance significantly. More
specifically, the results from PPA show that we can extract
local boundaries using a combination of musical pattern
discovery algorithms, but we need to select the parame-
ters properly. The results from TINA show that the ground
truth probability distributions of musical patterns are dif-
ferent from the ones produced by algorithms. The results
of using two datasets show that algorithms perform dif-
ferently given different pieces and it is sometimes hard to
select a single ‘winner’. The reason of the dissatisfying
performance of the fusion algorithms lies in a large num-
ber of disagreeing patterns and the sparsity of the human-
annotated patterns: the salient parts of music identified by
the extracted musical patterns do not align with the human
annotations. To break the current limitations of applying
data fusion in this domain, our work implies a need for an
improved dataset and musical pattern discovery task for-
mulation. It is also possible to improve the fusion methods
by incorporating and learning more parameters from the
data source.

MIREX From using the MIREX dataset in the fusion
task, we identify three potential improvements for the task.
First, the ground truth data from the MIREX dataset is
sparse and consists of only a few pieces. It would be de-
sirable to obtain more annotations from experts. In addi-
tion, the current ground truth consists of annotations from
different sources, which could be improved by adopting a
collaborative ground truth creation process [2]. Second, an
open question is whether the patterns of algorithms should
be compared to humanly annotated patterns as a way of
evaluation, given that musicologists often disagree on the
patterns: more aspects of subjectivity should be taken into
account. In addition, since we see that pattern discovery
algorithms produce very different patterns, one might ask
whether different algorithms’ output might be useful for
different application scenarios. In the future of the MIREX

task, instead of measuring the agreement with annotated
patterns only, the testing of pattern quality by providing
a range of subtasks which employ extracted patterns into
various applications, constitutes a promising direction for
improving the evaluation of pattern discovery algorithms.
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