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ABSTRACT

Existing systems for automatic transcription of drum
tracks from polyphonic music focus on detecting drum in-
strument onsets but lack consideration of additional meta
information like bar boundaries, tempo, and meter. We ad-
dress this limitation by proposing a system which has the
capability to detect drum instrument onsets along with the
corresponding beats and downbeats. In this design, the sys-
tem has the means to utilize information on the rhythmical
structure of a song which is closely related to the desired
drum transcript. To this end, we introduce and compare
different architectures for this task, i.e., recurrent, convo-
lutional, and recurrent-convolutional neural networks. We
evaluate our systems on two well-known data sets and an
additional new data set containing both drum and beat
annotations. We show that convolutional and recurrent-
convolutional neural networks perform better than state-of-
the-art methods and that learning beats jointly with drums
can be beneficial for the task of drum detection.

1. INTRODUCTION

The automatic creation of symbolic transcripts from music
in audio files is an important high-level task in music infor-
mation retrieval. Automatic music transcription systems
(AMT) aim at solving this task and have been proposed in
the past (cf. [1]), but there is yet no general solution to this
problem. The transcription of the drum instruments from
an audio file of a song is a sub-task of automatic music
transcription, called automatic drum transcription (ADT).
Usually, such ADT systems focus solely on the detection
of drum instrument note onsets. While this is the necessary
first step, for a full transcript of the drum track more in-
formation is required. Sheet music for drums—equally to
sheet music for other instruments—contains additional in-
formation required by a musician to perform a piece. This
information comprises (but is not limited to): meter, over-
all tempo, indicators for bar boundaries, indications for lo-
cal changes in tempo, dynamics, and playing style of the
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piece. To obtain some of this information, beat and down-
beat detection methods can be utilized. While beats pro-
vide tempo information, downbeats add bar boundaries,
and the combination of both provides indication for the
meter within the bars.

In this work, neural networks for joint beat and drum
detection are trained in a multi-task learning fashion.
While it is possible to extract drums and beats separately
using existing work and combine the results afterwards,
we show that it is beneficial to train for both tasks together,
allowing a joint model to leverage commonalities of the
two problems. Additionally, recurrent (RNN), convolu-
tional (CNN) and convolutional-recurrent neural network
(CRNN) models for drum transcription and joint beat and
drum detection are evaluated on two well-known, as well
as a new data set.

The remainder of this work is structured as follows. In
the next section, we discuss related work. In sec. 3, we
describe the implemented drum transcription pipeline used
to evaluate the network architectures, followed by a sec-
tion discussing the different network architectures (sec. 4).
In sec. 5, we explain the experimental setup to evaluate the
joint learning approach. After that, a discussion of the re-
sults follows in sec. 6 before we draw conclusions in sec. 7.

2. RELATED WORK

While in the past many different approaches for ADT have
been proposed [11,13,15,16,22,24,25,34,38], recent work
focuses on end-to-end approaches calculating activation
functions for each drum instrument. These methods uti-
lize non-negative matrix factorization (NMF, e.g. adaptive-
NMF in Dittmar et al. [7] and partially fixed NMF in Wu
et al. [37]) as well as RNNs (RNNs with label time-shift
in Vogl et al. [35, 36] and bidirectional RNNs in Southall
et al. [31]) to extract the activation functions from spec-
trograms of the audio signal. Such activation-function-
based end-to-end ADT systems circumvent certain issues
associated with other architectures. Methods which first
segment the song (e.g. using onset detection) and subse-
quently classify these segments [22, 23, 38] suffer from a
loss of information after the segmentation step—i.e. when-
ever the system fails to detect a segment, this information
is lost. Such systems heavily depend on the accuracies of
the single components, and can never perform better than
the weakest component in the pipeline. Additionally, infor-
mation of the input signal which is discarded after a pro-
cessing step might still be of value for later steps.

150



Since RNNs, especially long short-term memory
(LSTM) [17] and gated recurrent unit (GRU) [5] networks,
are designed to model long term relationships, one might
suspect that systems based on RNNs [31,35,36] can lever-
age the repetitive structure of the drum tracks and make
use of this information. Contrary to this intuition this is
not the case for RNN-based systems proposed so far. Both
the works of Vogl et al. [35, 36] and Southall et al. [31]
use snippets with length of only about one second to train
the RNNs. This prohibits learning long-term structures
of drum rhythms which are typically in the magnitude of
two or more seconds. In [35], it has been shown that
RNNs with time-shift perform equally well as bidirectional
RNNs, and that backward directional RNNs perform better
than forward directional RNNs. Combining these findings
indicates that the learned models actually mostly consider
local features. Therefore, RNNs trained in such a manner
seem to learn only an acoustic, but not a structural model
for drum transcription.

Many works on joint beat and downbeat tracking have
been published in recent years [2, 9, 10, 19–21, 26]. A dis-
cussion of all the different techniques would go beyond the
scope of this work. One of the most successful methods by
Böck et al. [2] is a joint beat and downbeat tracking sys-
tem using bidirectional LSTM networks. This approach
achieves top results in the 2016 MIREX task for beat de-
tection and can be considered the current state of the art. 1

In this work, a multi-task learning strategy is used to
address the discussed issues of current drum transcription
systems, cf. [4]. The use of a model jointly trained on
drum and beat annotations, combined with longer train-
ing snippets, allows the model to learn long-term relations
of the drum patterns in combination with beats and down-
beats. Furthermore, learning multiple related tasks simul-
taneously at once can improve results for the single tasks.
To this end, different architectures of RNNs, CNNs, and
a combination of both, convolutional-recurrent neural net-
works (CRNNs) [8, 27, 39], are evaluated.

The rationale behind selecting these three methods for
comparison is as follows. RNNs have proven to be well-
suited for both drum and beat detection, as well as learning
long-term dependencies for music language models [30].
CNNs are among the best performing methods for many
image processing and other machine learning tasks, and
have been used on spectrograms of music signals in the
past. For instance, Schlüter and Böck [28] use CNNs to
improve onset detection results, while Gajhede et al. [12]
use CNNs to successfully classify samples of three drum
sound classes on a non-public data set. CRNNs should re-
sult in a model, in which the convolutional layers focus on
acoustic modeling of the events, while the recurrent layers
learn temporal structures of the features.

3. DRUM TRANSCRIPTION PIPELINE

The implemented method is an ADT system using a similar
pipeline as presented in [31] and [36]. Fig. 1 visualizes

1 http://www.music-ir.org/mirex/wiki/2016:
MIREX2016_Results

Figure 1. System overview of the implemented drum tran-
scription pipeline used to evaluate the different neural net-
work architectures.

the overall structure of the system. The next subsections
discuss the single blocks of the system in more detail.

3.1 Feature Extraction

First, a logarithmic magnitude spectrogram is calculated
using a 2048-samples window size and a resulting frame
rate of 100Hz from a 44.1kHz 16bit mono audio signal
input. Then, the frequency bins are transformed to a loga-
rithmic scale using triangular filters (twelve per octave) in
a frequency range from 20 to 20,000 Hz. Finally, the posi-
tive first-order-differential over time of this spectrogram is
calculated and concatenated. This results in feature vectors
with a length of 168 values (2x84 frequency bins).

3.2 Activation Function Calculation

The central block in fig. 1 represents the activation func-
tion calculation step. This task is performed using a neu-
ral network (NN) trained on appropriate training data (see
sec. 4). As in most of the related work, we only consider
three drum instruments: bass- or kick drum, snare drum,
and hi-hat.

While the architectures of the single NNs are different,
they share certain commonalities: i. all NNs are trained
using the same input features; ii. the RNN architectures
are implemented as bidirectional RNNs (BRNN) [29]; iii.
the output layers consist of three or five sigmoid units, rep-
resenting three drum instruments under observation (drum
only) or three drum instruments plus beat and downbeat
(drum and beats), respectively; and iv. the NNs are all
trained using the RMSprop optimization algorithm pro-
posed by Tieleman et al. [33], using mini-batches of size
eight. For training, we follow a three-fold cross validation
strategy on all data sets. Two splits are used for training,
15% of the training data is separated and used for valida-
tion after each epoch, while testing/evaluation is done on
the third split. The NNs are trained using a fixed learn-
ing rate with additional refinement if no improvement on
the validation set is achieved for 10 epochs. During refine-
ment the learning rate is reduced and training continues
using the parameters of the best performing model so far.

More details on the individual NN architectures are pro-
vided in sec. 4.
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Figure 2. Comparison of mode of operation of RNNs, CNNs, and CRNNs on spectrograms of audio signals. RNNs process
the input in a sequential manner. Usually, during training, only sub-sequences of the input signal are used to reduce the
memory footprint of the networks. CNNs process the signal frame by frame without being aware of sequences. Because
of this, a certain spectral context is added for each input frame. CRNNs, like RNNs, process the input sequentially, but
additionally, a spectral context is added to every frame on which convolution is performed by the convolutional layers.

3.3 Preparation of Target Functions

For training the NNs, target functions of the desired out-
put are required besides the input features. These target
functions are generated by setting frames of a signal with
the same frame rate as the input features to 1 whenever an
annotation is present and to 0 otherwise. A separate target
function is created for each drum instrument as well as for
beats and downbeats.

3.4 Peak Picking

In the last step of our pipeline (rightmost block of fig. 1),
the drum instrument onsets (and beats if applicable) are
identified using a simple peak picking method introduced
for onset detection in [3]: A point n in the activation func-
tion fa(n) is considered a peak if these terms are fulfilled:

1. fa(n) = max(fa(n−m), · · · , fa(n)),

2. fa(n) ≥ mean(fa(n− a), · · · , fa(n)) + δ,

3. n− nlp > w,

where δ is a variable threshold. A peak must be the
maximum value within a window of size m + 1, and ex-
ceeding the mean value plus a threshold within a window
of size a + 1. Additionally, a peak must have at least a
distance of w + 1 to the last detected peak (nlp). Values
for the parameters were tuned on a development data set to
be: m = a = w = 2.

The threshold for peak picking is determined on the
validation set. Since the activation functions produced by
the NN contain little noise and are quite spiky, rather low
thresholds (0.1− 0.2) give best results.

4. NEURAL NETWORK MODELS

In this section, we explore the properties of the neural net-
work models considered more closely. Of the NN cat-
egories mentioned before, we investigate three different
types: bidirectional recurrent networks (BRNN), convolu-
tional networks (CNN), and convolutional bidirectional re-
current networks (CBRNN). For every class of networks,

two different architectures are implemented: i. a smaller
network, with less capacity, trained on shorter subse-
quences (with focus only on acoustic modeling), and ii.
a larger network, trained on longer subsequences (with ad-
ditional focus on pattern modeling).

Even though we previously showed that RNNs with la-
bel time-shift achieve similar performance as BRNNs [35,
36], in this work, we will not use time-shift for target la-
bels. This is due to three reasons: i. the focus of this work
is not real-time transcription but a comparison of NN ar-
chitectures and training paradigms, therefore using a bidi-
rectional architecture has no downsides; ii. it is unclear
how label time-shift would affect CNNs; iii. in [2], the
effectiveness of BRNNs (BLSTMs) for beat and down-
beat tracking is shown. Thus, in the context of this work,
using BRNNs facilitates combining state-of-the-art drum
and beat detection methods while allowing us to compare
CNNs and RNNs in a fair manner.

4.1 Bidirectional Recurrent Neural Network

Gated recurrent units (GRUs [5]) are similar to LSTMs in
the sense that both are gated RNN-cell types that facilitate
learning of long-term relations in the data. While LSTMs
feature forget, input, and output gates, GRUs only exhibit
two gates: update and output. This makes the GRU less
complex in terms of number of parameters. It has been
shown that both are equally powerful [6], with the differ-
ence that more GRUs are needed in an NN layer to achieve
the same model capacity as with LSTMs, resulting in more
or less equal number of total parameters. An advantage of
using GRUs is that hyperparameter optimization for train-
ing is usually easier compared to LSTMs.

In this work, two bidirectional GRU (BGRU) architec-
tures are used. The small model (BGRU-a) features two
layers of 50 nodes each, and is trained on sequences of
100 frames; the larger model (BGRU-b) consists of three
layers of 30 nodes each, and is trained on sequences of
400 frames. For training an initial learning rate of 0.007 is
used.
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Frames Context Conv. Layers Rec. Layers Dense Layers
BGRU-a 100 — — 2 x 50 GRU —
BGRU-b 400 — — 3 x 30 GRU —
CNN-a — 9 1xA + 1xB — 2 x 256
CNN-b — 25 1xA + 1xB — 2 x 256
CBGRU-a 100 9 1xA + 1xB 2 x 50 GRU —
CBGRU-b 400 13 1xA + 1xB 3 x 60 GRU —

Table 1. Overview of used neural network model architectures and parameters. Every network additionally contains a
dense sigmoid output layer. Conv. block A consists of 2 layers with 32 3x3 filters and 3x3 max-pooling; conv. block B
consists of 2 layers with 64 3x3 filters and 3x3 max-pooling; both use batch normalization.

4.2 Convolutional Neural Network

Convolutional neural networks have been successfully ap-
plied not only in image processing, but also many other
machine learning tasks. The convolutional layers are con-
structed using two different building blocks: block A con-
sists of two layers with 32 3x3 filters and block B consists
of two layers with 64 3x3 filters; both in combination with
batch normalization [18], and each followed by a 3x3 max
pooling layer and a drop-out layer (λ = 0.3) [32].

For both CNN models, block A is used as input, fol-
lowed by block B, and two fully connected layers of size
256. The only difference between the small (CNN-a) and
the large (CNN-b) model is the context used to classify a
frame: 9 and 25 frames are used for CNN-a and CNN-b re-
spectively. While plain CNNs do not feature any memory,
the spectral context allows the CNN to access surround-
ing information during training and classification. How-
ever, a context of 25 frames (250ms) is not enough to find
repetitive structures in the rhythm patterns. Therefore, the
CNN can only rely on acoustic, i.e., spectral features of the
signal. Nevertheless, with advanced training methods like
batch normalization, as well as the advantage that CNNs
can easily learn pitch invariant kernels, CNNs are well-
equipped to learn a task adequate acoustic model. For
training an initial learning rate of 0.001 is used.

4.3 Convolutional Bidirectional RNN

Convolutional recurrent neural networks (CRNN) repre-
sent a combination of CNNs and RNNs. They feature con-
volutional layers as well as recurrent layers. Different im-
plementations are possible. In this work, the convolutional
layers directly process the input features, i.e. spectrogram
representations, meant to learn an acoustic model (cf. 2D
image processing tasks). The recurrent layers are placed
after the convolutional layers and are supposed to serve as
a means for the network to learn structural patterns.

For this class of NN, the two versions differ in the fol-
lowing aspects: CBGRU-a features 2 recurrent layers with
30 GRUs each, uses a spectral context of 9 frames for con-
volution, and is trained on sequences of length 100; while
CBGRU-b features 3 recurrent layers with 60 GRUs each,
uses a spectral context of 13 frames, and is trained on se-
quences of length 400. For training an initial learning rate
of 0.0005 is used.

Table 1 recaps the information of the previous sections
in a more compact form. Figure 2 visualizes the modes
of operation of the different NN architectures on the input
spectrograms.

5. EVALUATION

For evaluation of the introduced NN architectures, the dif-
ferent models are individually trained on single data sets in
a three-fold cross-validation manner. For data sets which
comprise beat annotations, three different experiments are
performed (explained in more detail in section 5.2); using
data sets only providing drum annotations, just the drum
detection task is performed.

5.1 Data Sets

In this work, the different methods are evaluated using
three different data sets, consisting of two well-known and
a newly introduced set.

5.1.1 IDMT-SMT-Drums v.1 (SMT)

Published along with [7], the IDMT-SMT-Drums 2 data
set comprises tracks containing three different drum-set
types. These are: i. real-world, acoustic drum sets (ti-
tled RealDrum), ii. drum synthesizers (TechnoDrum), and
iii. drum sample libraries (WaveDrum). It consists of 95
simple drum tracks containing bass drum, snare drum and
hi-hat only. The tracks have an average length of 15s and
a total length of 24m. Also included are additional 285
shorter, single-instrument training tracks as well as 180
single instrument tracks for 60 of the 95 mixture tracks
(from the WaveDrum02 subset)—intended to be used for
source separation experiments. These additional single in-
strument tracks are used as additional training samples (to-
gether with their corresponding split) but not for evalua-
tion.

5.1.2 ENST Drums (ENST)

The ENST-Drums set [14] contains real drum recordings
of three different drummers performing on different drum
kits. 3 Audio files for separate solo instrument tracks

2 https://www.idmt.fraunhofer.de/en/business_
units/m2d/smt/drums.html

3 http://perso.telecom-paristech.fr/˜grichard/
ENST-drums/
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Input Features Target Functions
Spectrogram Beats Drums Beats

DT 3 3

BF 3 3 3

MT 3 3 3

Table 2. Overview of experimental setup. Rows repre-
sent individual tasks and show their input feature and target
function combinations.

as well as for two mixtures are included. Additionally,
accompaniment tracks are available for a subset of the
recordings—the so called minus-one tracks. In this work,
the wet mixes (contains standard post-processing like com-
pression and equalizing) of the minus-one tracks were
used. They make up 64 tracks of 61s average length and a
total length of 1h.

Evaluation was performed on the drum-only tracks
(ENST solo) as well as the mixes with their accompani-
ment tracks (ENST acc.). Since the ENST-Drums data set
contains more than the three instruments under observa-
tion, only the snare, bass, and hi-hat annotations were used.

5.1.3 RBMA Various Assets 2013 (RBMA13)

This new data set consists of the 30 tracks of the freely
available 2013 Red Bull Music Academy Various As-
sets sampler. 4 The sampler covers a variety of elec-
tronically produced music, which encompasses electronic
dance music (EDM) but also singer-songwriter tracks and
even fusion-jazz styled music. Three tracks on the sampler
do not contain any drums and are therefore ignored. An-
notations for drums, beats, and downbeats were manually
created. Tracks in this set have an average length of 3m
50s. The total length of the data set is 1h 43m.

This data set is different from the other two data sets in
three aspects: i. it contains quite diverse drum sounds, ii.
the drum patterns are arranged in the usual song-structure
within a full length track, and iii. most of the tracks contain
singing voice, which showed to be a challenge for systems
solely trained on music without singing voice. The annota-
tions for drums and beats have been manually created and
are publicly available for download. 5

5.2 Experimental Setup

To compare the different NN architectures, and evaluate
them in the context of ADT using joint learning of beat
and drum activations, the following experiments were per-
formed.

5.2.1 Drum Detection (DT)

In this set of experiments, the features as explained in
sec. 3.1 and target functions generated from the drum an-
notations described in sec. 3.3 are used for NN training.

4 https://rbma.bandcamp.com/album/various-
assets-not-for-sale-red-bull-music-academy-
new-york-2013

5 http://ifs.tuwien.ac.at/˜vogl/datasets/

SMT ENST RBMA13
solo acc. DT BF MT

GRUts [36] 92.5 83.3 75.0 - - -
BGRU-a 93.0 80.9 70.1 59.8 63.6 64.6
BGRU-b 93.3 82.9 72.3 61.8 64.5 64.3
CNN-a 87.6 78.6 70.8 66.2 66.7 63.3
CNN-b 93.4 85.0 78.3 66.8 65.2 64.8
CBGRU-a 95.2 84.6 76.4 65.2 66.1 66.9
CBGRU-b 93.8 83.9 78.4 67.3 68.4 67.2

Table 3. F-measure results for the evaluated models on
different data sets. The columns DT, BF, and MT show
results for models trained only for drum detection, trained
using oracle beats as additional input features, and simul-
taneously trained on drums and beats, respectively. Bold
values represent the best performance for an experiment
across models. The baseline can be found in the first row.

These experiments are comparable to the ones in the re-
lated work, since we use a similar setup. As baseline, the
results in [36] are used. The results of this set of experi-
ments allow to compare the performance of different NN
architectures for drum detection.

5.2.2 Drum Detection with Oracle Beat Features (BF)

For this set of experiments, in addition to the input features
explained in sec. 3.1, the annotated beats, represented as
the target functions for beats and downbeats, are included
as input features. As targets for NN training only the drum
target functions are utilized. Since beat annotations are re-
quired for this experiment, only data sets comprising beat
annotations can be used. Using the results of these experi-
ments, it can be investigated if the prior knowledge of beat
and downbeat positions is beneficial for drum detection.

5.2.3 Joint Drum and Beat Detection (MT)

This set of experiments represents the multi-task learning
investigation. As input for training, again, only the spec-
trogram features are used. Targets for training of the NNs
comprise, in this case, drum and beat activation functions.
As discussed in the introduction, in some cases it can be
beneficial to train related properties simultaneously. Beats
and drums are closely related, because usually drum pat-
tern are repetitive on a bar-level (separated by downbeats)
and drum onsets often correlate with beats.

The insight which can be drawn from these experi-
ments is whether simultaneous training of drums, beats,
and downbeats is beneficial. It is of interest if the result-
ing performance is higher than the one achieved for DT;
and also if it is below, comparable, or even surpasses the
results in the BF experiment series.

Table 2 gives an overview of the properties of the ex-
periments and the used feature/target combination.

5.3 Evaluation Method

To evaluate the performance of the different architectures
and training methods, the well-known metrics precision,
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Figure 3. Results for RBMA13 data set, highlighting the
influence of oracle beat features (BF) and multi-task learn-
ing (MT). While recurrent models (left and right) benefit,
convolutional models (center) do not.

recall, and F-measure are used. These are calculated for
drum instrument onsets as well as beat positions. True pos-
itive, false positive, and false negative onset and beat po-
sitions are identified by using a 20ms tolerance window.
This is in line with the evaluation in [36] which is used as
baseline for the experiments of this work. Note that other
work, e.g. [7, 25, 31], uses less strict tolerance windows of
30ms or 50ms for evaluation.

6. RESULTS AND DISCUSSION

Table 3 shows the F-measure results for the individual NN
architectures on the data sets used for evaluation. The re-
sults for BGRU-a and BGRU-b on the ENST data set are
lower than for the baseline, although the models should be
comparable. This is due to the fact that in [36] data aug-
mentation is applied. This is especially helpful in the case
of the ENST data set, since e.g. the pitches of the base
drums vary greatly over the different drum kits. The re-
sults for CNN-a are lower than the state of the art, which
implies that the context of 9 frames is too small to detect
drum events using a CNN. All other results on the ENST
and SMT data sets represent an improvement over the state
of the art. This shows that CNN with a large enough spec-
tral context (25 frames in this work) can detect drum events
better than RNNs. A part of the large increase for the ENST
data set can be attributed to the fact that CNNs can model
pitch invariance easier than RNNs.

The results for the MT experiments show the follow-
ing tendencies: For the BGRU-a and BGRU-b models, an
improvement can be observed when applying multi-task
learning. Compared to using oracle beats (BF) for train-
ing, the improvement is higher for BGRU-a and similar in
the case of BGRU-b. This result is interesting for two rea-
sons: i. although BGRU-a is trained on short sequences, an
improvement can be observed, and ii. the improvement is
comparable to that when using oracle beats (BF) although
the beat tracking results are low. This could imply that
multi-task learning is also beneficial for the acoustic model
of the system. As expected, the CNNs (CNN-a, CNN-
b) can not improve when using multi-task learning, but
rather the results deteriorate. In case of the convolutional-

BLSTM [2] 85.6
BGRU-a 46.4
BGRU-b 46.2
CNN-a 44.9
CNN-b 46.9
CBGRU-a 47.6
CBGRU-b 48.8

Table 4. F-measure results for beat detection for the multi-
task learning experiments compared to a state-of-the-art
approach (first row) on the RBMA13 set.

recurrent models, the result for CBGRU-a is similar to
BGRU-a. In case of CBGRU-b no improvement of drum
detection performance using multi-task learning can be ob-
served, although it is the case using oracle beats (BF). We
attribute this to the fact that CBGRU-b has enough capacity
for good acoustic modeling, while the low beat detection
results limit the effects of multi-task learning on this level.

Table 4 shows the F-measure results for beat and down-
beat tracking. The results are all below the state-of-the-art
beat tracker used as baseline [2]. This is due to several
factors. In [2], i. much larger training sets for beat and
downbeat tracking are used, ii. the LSTMs are trained on
full sequences of the input data, giving the model more
context, and iii. an additional music language model in the
form of a dynamic Bayesian network (DBN) is used.

The results for CNNs and CRNNs show that convolu-
tional feature processing is beneficial for drum detection.
The finding considering drum detection results for multi-
task learning are also promising. The low results of beat
and downbeat tracking are certainly a limiting factor and
probably the reason for the lack of improvement for MT
over DT in the case of BGRU-b. As a next step, to better
leverage multi-task learning effects, beat detection results
must be improved using similar techniques as in [2].

7. CONCLUSIONS

In this work, convolutional and convolutional-recurrent
NN models for drum transcription were introduced and
compared to the state of the art of recurrent models. The
evaluation shows that the new models are able to outper-
form this state of the art. Furthermore, an investigation
whether i. beat and downbeat input features are benefi-
cial for drum detection, and ii. this benefit is also achiev-
able using multi-task learning of drums, beats, and down-
beats, was conducted. The results show that this is the
case, although the low beat and downbeat detection results
achieved with the implemented architectures is a limiting
factor. While the goal of this work was not to improve
the capabilities of beat and downbeat tracking per se, fu-
ture work will focus on improving these aspects, as we be-
lieve this will have an overall positive impact on the per-
formance of the joint model. The newly created data set
consisting of freely available music and annotations for
drums, beats and downbeats will be an asset for this line
of research to the community.
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