
AUTOMATIC INTERPRETATION OF MUSIC STRUCTURE ANALYSES:
A VALIDATED TECHNIQUE FOR POST-HOC ESTIMATION OF THE

RATIONALE FOR AN ANNOTATION

Jordan B. L. Smith
National Institute of Advanced Industrial
Science and Technology (AIST), Japan
jordan.smith@aist.go.jp

Elaine Chew
Queen Mary University of London
elaine.chew@qmul.ac.uk

ABSTRACT

Annotations of musical structure usually provide a low le-
vel of detail: they include boundary locations and section
labels, but do not indicate what makes the sections similar
or distinct, or what changes in the music at each boundary.
For those studying annotated corpora, it would be useful to
know the rationale for each annotation, but collecting this
information from listeners is burdensome and difficult. We
propose a new algorithm for estimating which musical fea-
tures formed the basis for each part of an annotation. To
evaluate our approach, we use a synthetic dataset of music
clips, all designed to have ambiguous structure, that was
previously used and validated in a psychology experiment.
We find that, compared to a previous optimization-based
algorithm, our correlation-based approach is better able to
predict the rationale for an analysis. Using the best version
of our algorithm, we process examples from the SALAMI
dataset and demonstrate how we can augment the struc-
ture annotation data with estimated rationales, inviting new
ways to research and use the data.

1. INTRODUCTION

Listeners perceive structure in music, and trying to pre-
dict the structures they perceive is a popular task in the
MIR community [14]. Since the perception of structure
is a complex phenomenon, the community focuses on a
simpler, operational version: we imagine that structure,
as perceived, can be characterized as a set of time points
regarded as boundaries, and a set of labels that indicate
which of the intervening segments repeat similar material.
This simplification is not made naı̈vely: those who cre-
ate annotations of musical structure are aware of its limita-
tions, and the methodologies for annotating [1, 16, 21] and
evaluating [7, 9, 11] structural analyses have become their
own important subtopics in MIR.

Still, the simplification is unfortunate because musical
similarity is multi-dimensional. If a listener declares that
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two excerpts are “similar”, they could mean with respect
to melody, contour, rhythm, timbre, or any combination of
these or other musical attributes. This is in addition to the
issue that structure itself is multi-dimensional; as pointed
out in [16], boundaries may be perceived for reasons of
musical similarity, musical function, or instrumentation.

Thus, in the transition from structure perception to struc-
ture annotation, we usually fail to capture why a listener
has included a boundary or chosen a label. This infor-
mation, if preserved (or reconstructed), would help us to
understand the content of the annotations, and could lead
to fairer evaluations of structure segmentation algorithms.
It would also provide more meaningful data to analyze in
musicology or music perception research.

How feasible is it to collect this information? As we
found in [23], to transcribe the rationale for every aspect
of an annotation is difficult and requires prolonged self-
interrogation. Even before that, it is difficult to decide what
information to collect, and how to collect it: should the
data be collected after a listener has provided the segmen-
tation, in the manner of music perception experiments [2]?
Or should each piece be annotated several times, each time
with a focus on a single feature [19]? No matter how it is
done, collecting this information is burdensome.

A more practical possibility is to estimate this informa-
tion automatically from existing annotations, which was
our motivation in [22]. Our algorithm compared self-dis-
tance matrices (SDMs) for different features to the ground
truth annotation, and found which parts of the feature-based
SDMs best re-created the annotation-based SDM. While
[22] presented some examples to demonstrate the plausi-
bility of the approach, we offered no experimental valida-
tion.

Validation requires paired responses: a set of listeners’
analyses, and the listeners’ justifications for each analysis.
Producing this data is time-consuming and burdensome for
the reasons described above. However, we recently pro-
duced data suited to this purpose for a music perception
study [20]. The goal of that study was to determine what
role attention plays in the perception of structure.

In this article, we make three main contributions: first,
we test whether the approach described in [22] can effec-
tively predict the attention of the listeners, based on the
dataset created for [20]. Second, we explain some short-
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comings of the previous approach, and suggest and test
two improvements. Third, we demonstrate how the val-
idated algorithm can be used to analyze and to augment
real-world data with new information layers.

The next two sections recap the studies on which this
article builds. In Section 2, we briefly recall [22]’s algo-
rithm, point out some shortcomings, and introduce a re-
fined approach. In Section 3, we summarize the results of
the experiment in [20], and describe in more detail the data
developed for that study and used in this one. In Sections
4 and 5, we outline the validation experiment and discuss
the results, and in Section 6 we use the algorithm to create
new information layers for examples from SALAMI [21].
We close with a few observations on the limitations of the
present work and recommendations for future research.

2. AN ALGORITHM FOR ESTIMATING
FEATURE RELEVANCE

In [22] we estimated the relevance of musical features to a
listener’s analysis section-by-section by finding the weigh-
ted sum of feature-derived SDMs that best matched the
analysis. The analysis is represented as a binary SDM,
expanded to the same timescale as the feature SDMs. A
number n of feature matrices are computed; from each, we
derive m single-section SDMs by taking only the rows and
columns associated with that single segment, as defined by
the annotation. (This row and column selection is done by
multiplying the SDM with a segment mask.) This gives
n · m component matrices. A quadratic program (QP) is
used to find the weights for these components whose sum
optimally reproduces the annotation-derived SDM; these
weights, the reconstruction coefficients, are taken to indi-
cate feature relevance.

The method is illustrated in Fig. 1. The sound exam-
ple has the form ABAB with respect to harmony, AABB
with respect to rhythm, and ABBA with respect to tim-
bre. If a listener gives the analysis ABAB, segmenting the
audio at the 1/4, 2/4 and 3/4 marks, we obtain the four seg-
ment masks given in the top row. We compute four audio
features, each related to a different musical attribute (see
Section 4.1 for details), which are pointwise multiplied by
the masks to give 8 potential components. The QP finds
the optimal combination of components to reproduce the
annotation in the top-left corner, and gives the coefficients
shown above each component. In this case, the algorithm
has successfully identified that bass chroma is the feature
that best justifies the analysis.

2.1 Algorithm Improvements

One limitation of this approach is that none of the feature
matrices may properly reflect the homogeneity of a given
section. We could include additional SDMs that have been
smoothed at different timescales (as demonstrated in [22]),
but the smoothing can blur the boundaries between sec-
tions even as they make the sections more homogeneous.
We could use stripe-based instead of block-based masks
in order to capture repetitions of feature sequences, but in

Figure 1. Illustration of component-building for QP al-
gorithm. Four beat-indexed feature matrices (at left) are
multiplied by the masks (top) given by the segmentation,
which here is ABAB. The number above each component
is the QP’s estimate of the component’s importance.

non-square blocks (which occur whenever two segments
have unequal lengths), it is not easy to guess the best ori-
entation or placement of the stripes.

A second problem is that it is unclear how to inter-
pret some aspects of the QP. Should the individual recon-
struction coefficients, or their sum, be bounded? Leaving
them unbounded can lead to unconstrained solutions, but
if bounds are imposed, how should they be interpreted?

A third problem is that by finding the single optimal
sum of matrix components, some good explanations may
be ignored. For example, if there are two matrix compo-
nents which both justify a particular part of the analysis,
the QP may find that only one is necessary. Thus, we can-
not conclude that features omitted from the solution are
necessarily irrelevant, which is a big limitation.

For the first problem, we propose that instead of using
the original SDMs, with all their heterogeneities, we re-
duce them to segment-indexed SDMs, a common practice
since [4]. Similar to [13], we may take the distance be-
tween each pair of segments to be the average distance of
all the pixels in the submatrix over which the segments in-
tersect. The segment-indexed SDM can then be analyzed
with the QP as before, although with a substantial reduc-
tion in complexity.

A second way to address the problem is to use a diago-
nal stripe-based mask instead of a block-based mask. Since
the diagonals are the most salient portions of the SDM,
it makes sense to focus on reconstructing this portion of
the SDM. Emphasizing stripes is a common SDM analy-
sis technique, and a comparison of block and stripe fea-
tures found that when boundaries were given, stripe fea-
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Figure 2. Illustration of proposed segment-indexed ap-
proach, with both QP- and correlation-based estimates of
feature relevance.

tures were more effective [12]. We remember the caveat
above, that repeated segments with different durations pose
a problem for creating a stripe-based mask, but we can still
test it in cases where this is not an issue.

A third proposal, which addresses the second and third
problems above, is to dispense with the QP altogether and
simply take the element-wise Pearson correlation between
the feature-derived and annotation-derived matrices. (The
same section-by-section method still applies.) Correlations
are perhaps more intuitive than QPs and reconstruction co-
efficients, and using them would permit second-place fea-
tures to be more readily identified in the solution.

Fig. 2 shows the output for an example of a three-part
stimulus, using the suggested improvement of segment-
indexing: the features have been averaged over the blocks
given by the segmentation. The sum of the reconstruction
coefficients obtained using the QP method are given in the
“QP sum” column, and the mean point-wise correlation be-
tween the masked regions is shown in the “Mean corr.”
column. Fig. 3 shows the output for the same example but
using the stripe-based mask. The mask is constructed by
drawing a diagonal line across each block of the original
beat-indexed SDM, and then applying a 2D convolution
with a Gaussian kernel of width 5 beats.

To sum up, we suggest three improvements to the algo-
rithm: (1) using the correlation between submatrices, in-
stead of QP, to estimate their relevance; (2) using a segment-
indexed version of the SDM; and (3) applying a stripe mask
to the SDM, instead of using the blocks.

3. A DATASET OF VALIDATED ANALYSES

Researchers in music psychology, like those in MIR, are
invested in modeling how listeners perceive structure. (For
one discussion, see [15].) The goal of [20] was to de-
termine whether listeners could be influenced to perceive

Figure 3. Illustration of proposed stripe approach with cor-
relation. Like in Fig. 2, QP coefficients are in the middle
column, correlations on the right.

different structures by manipulating the musical feature to
which they paid attention. In order to test this, we com-
posed a set of artificial musical stimuli in which four dif-
ferent features (harmony, melody, rhythm and timbre) were
systematically changed at different times, creating musical
passages with ambiguous forms. These four features were
chosen because they figured most prominently in studies
where listeners were asked to justify why they perceived a
given boundary, such as [2].

The three-part stimuli had two potential structures, AAB
or ABB, with different features changing at different times.
For example, the passage in Fig. 4a has form AAB with re-
spect to harmony, and form ABB with respect to melody.
The four-part stimuli had three potential structures, AABB,
ABAB or ABBA, so that at every boundary there were
two features that changed. For example, in the passage
in Fig. 4d, the rhythm and harmony both change after the
second measure.

As stated above, validating the algorithm requires musi-
cal examples where listeners’ analyses are paired with their
justifications—i.e., with the musical attributes to which they
were paying attention. Many datasets of structural analy-
ses exist, but none indicate which musical attributes justify
the analyses. Also, in typical pieces of music, attributes
change frequently, to different extents, and often simulta-
neously. To validate this algorithm we should use music
with known, controlled changes. Hence, artificial stimuli
such as these are valuable resources to validate the algo-
rithm: each passage contains precise change points related
to known musical attributes; and the link between the at-
tributes and the different forms has been affirmed by lis-
teners in an experimental setting.

More artificial stimuli could be generated and tested
in future work; this may be a convenient way to provide
deep-learning algorithms with the quantity of labelled data
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Figure 4. (a) Example stimulus with harmonic form AAB
and melodic form ABB. (b) Harmonic form AAB, timbral
form ABB. (c) Rhythmic form AAB, timbral form ABB.
(d) Example four-part stimulis with melodic form AABB,
rhythmic form ABAB, and harmonic form ABBA.

they require. However, it is not as simple as sonifying a
symbolic score, since scores must be annotated in order to
know the perceived structure and the musical features that
motivate that analysis. The stimuli in our study are rare in
that they were (1) composed so that musical features var-
ied systematically, and (2) used in a listening experiment
to validate that the intended structures were perceived, for
the intended reason.

3.1 Stimulus Details

For [20], we composed three sets of stimuli. Each stim-
ulus contains two voices, and in each set of stimuli, each
voice potentially expresses changes in two different fea-
tures. The examples in Fig. 4 are from the “HT-MR” set,
where one voice expresses changes in harmony and timbre,
and the other, changes in melody and rhythm. “HM-RT”
and “HR-MT” sets were also composed.

Since in each set of stimuli, certain features are “con-
volved,” some incorrect answers are less wrong than oth-
ers. For instance, the feature that changes at the second
boundary of the example in Fig. 4c is rhythm, but if an al-
gorithm said that the boundary was justified by melody, it
would be partially right.

The stems for the stimuli were composed using a Dig-
ital Audio Workstation with standard instrument patches.
The 8 stems for each set were systematically recombined
to generate 192 three-part stimuli and 384 four-part stim-
uli, for a total of 1728 stimuli among all sets. Efforts were
made to keep constant all musical features other than har-

mony, melody, rhythm and timbre: the tempo of all stimuli
is 140 bpm, and the loudness of each voice and each pas-
sage is approximately equal. The stimuli are now freely
available on Github. 1

4. EXPERIMENT

4.1 Features

The stimuli manipulated four different musical attributes
(in three environments): harmony, melody, rhythm and
timbre. We want to extract audio features that match each
of these attributes independently. Each audio feature should
change when the related musical feature changes, and be
robust to changes in other musical features. We selected
two audio features for each musical feature, all available
as Vamp plugins 2 and listed in Tab. 1. We used ground
truth beat locations, and median feature values were taken
for each beat. Each dimension was normalized (indepen-
dently for each stimulus) to zero mean, unit variance. All
features were extracted using Sonic Annotator [3] using
the default settings. For some features, we performed ad-
ditional processing:

Chords: Chord labels were estimated from Chordino
and reconverted back to a chroma-like representation. This
feature is thus based on the same information as bass chro-
ma, but refined with the chord-estimation algorithm.

Melody: The chroma of the estimated melody, and the
interval between the current steady-state note and the pre-
vious one, each a 12-dimensional feature per frame. We
also used the register of the melody: low, middle or high.

Autocorrelation: this was computed on an onset detec-
tion function with a sliding window.

Low level features: a concatenation of loudness, RMS
amplitude, rolloff, sharpness, smoothness, tristimulus, zero-
crossing rate, and the centroid, kurtosis, skewness, and
slope of the spectrum.

Feature Vamp plugins used to obtain feature

Harmony
Bass chroma, from Chordino and NNLS
Chroma plugin [8]
Chord notes [8]

Melody
Treble chroma [8]
Melody, based on MELODIA [18]

Rhythm
Cyclic tempogram [6]
Autocorrelation, based on UAPlugins’s
Note Onset Detector [17]

Timbre
MFCCs (2nd to 13th), from Chris Cannam
and Jamie Bullock’s LibXtract library
Low level features, a set of fifteen one-di-
mensional descriptors from LibXtract

Table 1. List of features chosen, and Vamp plugins used to
obtain them

1 https://github.com/jblsmith/
music-structure-stimuli.

2 vamp-plugins.org

438 Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017



4.2 Results

We applied the algorithms, discussed in Section 2, on the
stimuli discussed in Section 3. For each three-part stimu-
lus, we ran the algorithms twice: once with analysis AAB,
once with ABB. Likewise, we ran the algorithm thrice on
each four-part stimulus to find the best justifications for
forms AABB, ABAB and ABBA. Each algorithm takes
one of these analyses as input. The output of each algo-
rithm is a matrix of feature relevance values xi,j : one per
section i, per feature j. The importance of feature j is the
sum across all the sections: sj =

∑
i xi,j . The importance

of each musical attribute a is the sum of the two values sj
related to that feature: ya = sa1 + sa2. We end up with
four values ya.

We test whether the maximum value correctly predicts
the feature related to the analysis with argmaxa ya. The
fraction of trials with correct guesses is the accuracy. Each
trial has one focal pattern and three potential wrong an-
swers, so the random baseline performance is 25%.

The five algorithm options were: whether to use cosine
or Euclidean distance (in either case, the values were re-
scaled between 0 and 1); whether to compute beat-indexed
or segment-indexed SDMs; whether to apply stripe-based
masks to the SDMs; whether to use the QP or correlation-
based approach; and finally, if using QP, what constraint
to use. We tested three constraints: (a)

∑
i,j xi,j = C

(the sum of the coefficients over the entire piece has a
fixed value); (b)

∑
j xi,j = C (the sum of the coefficients

for each section in the piece has a fixed value); and (c)
0 ≤ xi,j ≤ 1. These options were tested in a full-factorial
design, replicated across three variables that were not part
of the algorithm: the relevant feature; the music environ-
ment; and the stimulus length (3 or 4 sections).

We fit a linear model to the results and used ANOVA
to interpret the eight factors. With 268,512 trials, three
factors were insignificant (p > 0.05): stimulus length,
distance metric, and QP constraint. The other five fac-
tors all had p < 0.0001, and main effect plots for each
are shown in Fig. 5. They show that performance varied
greatly among the music examples and features. However,
the three proposed changes to the original algorithm—using
correlation instead of QP, using stripe masks, and using
segment-indexed SDMs—all saw improvements, albeit a
minor one in the case of segment indexing.

Tab. 2 gives the accuracy for different parameter set-
tings. It shows that although the main effects appear mod-
est in Fig. 5, their impact is additive: the original approach
achieved 47% accuracy, and the three changes (using cor-
relation, segment-indexing, and applying a stripe mask) to-
gether raised the accuracy to nearly 70%.

These are the accuracies for choosing the most correct
answer, but not all errors are equally bad: guessing a fea-
ture that was convolved in the stimulus with the correct one
is sometimes a fair mistake. However, Tab. 2 shows that the
“convolved-with-correct” answer was not given any spe-
cial weight by the algorithms. There are 3 features besides
the correct one, so the chance of randomly guessing the
convolved feature is 33%. In all cases, fewer than a third

Figure 5. Main effect of significant factors on accuracy
(i.e., rate of correct guesses).

Method: Quad. Prog. Correlation
Settings: Correct Conv. Correct Conv.
Regular 47.1 13.7 52.3 12.8

Seg.-indexing 46.9 16.3 60.6 8.9
Stripe mask 52.4 13.5 62.4 11.9

Seg. and stripes 59.6 12.8 69.6 7.2

Table 2. Comparison of QP-based and correlation-based
algorithms. Columns indicate how often the guessed fea-
ture was correct (“Correct”) or convolved with the correct
feature (“Conv.”). For example, in the HT-MR environ-
ment, if the correct feature for a trial is timbre, guessing
harmony could be half-right.

of the incorrect answers related to the convolved feature.
Prediction accuracy varied greatly among the features,

as can be seen in the confusion matrices for the algorithms.
Three are shown in Fig. 6, one for each music environment.
These are the results for the best-performing algorithm.
For harmony, we can observe that chord notes were more
effective than bass chroma, the feature from which they
derive. Bass chroma were especially misled in the HM-
RT setting, possibly due to the difference in bass drum be-
tween the two timbre settings. With melody, it was also the
case that the 2nd-order feature (the estimated predominant
pitch and interval) was better than the lower-level feature
(treble chroma).

5. DISCUSSION

The results validate the algorithm proposed in [22]. How-
ever, they also show that a simpler correlation-based ap-
proach is better at predicting how best to justify an anal-
ysis: it outperformed the QP approach by roughly 10%.
Two other refinements, the stripe-based mask and the seg-
ment indexing, increased accuracy by roughly another 10%.

However, the confusion matrices revealed great dispar-
ities between the features we chose to use: some, such as
Chordino, were effective; others, such as the tempogram
and MFCCs, were often wrong. Arguably, it is naı̈ve for us
to presume that off-the-shelf features can detect the types
of musical changes we created in the stimuli. Perhaps it
is no accident that the four features we tweaked or assem-

Proceedings of the 18th ISMIR Conference, Suzhou, China, October 23-27, 2017 439



Figure 6. Confusion matrix for algorithm using correla-
tion, stripe masks, and segment-indexed SDMs. The rows
gives the correct musical attribute; the column indicates
the audio feature with maximum relevance.

bled for this purpose (chord notes, MELODIA-based fea-
ture, onset autocorrelation and low-level features) tended
to outperform their off-the-shelf rivals.

Still, the underperformance is surprising, since the stim-
uli are highly constrained: in the study for which the stim-
uli were created, listeners identified the attribute that chan-
ged at a boundary with 85% accuracy [20]. It seems rea-
sonable to expect that, say, MFCCs will change more when
a trumpet is swapped for a flute than when a trumpet plays
a different melody; or that when the harmony changes,
bass chroma will be more affected than the tempogram.
Yet these are among the errors made by the features in this
study. The results thus remind us of the utility of carefully-
designed features, such as timbre-invariant chroma [10].

An alternative to testing hand-crafted features is to learn
features with deep learning, but as mentioned earlier, this
would require building a much larger, more representative
stimulus set—more stimuli than can easily be validated in
a listener study. The small set used here is suitable for
testing existing features, but not learning new ones.

6. APPLICATION

The correlation algorithm can be used to interpret annota-
tions in the SALAMI corpus [21]. We used the segment-
indexing setting but not the stripe-masking, which (as noted
in Section 2.1) is not applicable when unequal segment
lengths give rectangular blocks. The audio processing was
the same except that BeatRoot [5] was used to locate beats.

Fig. 7 visualizes a listener’s analysis of “We Are The
Champions” by Queen at the long and short timescales.
Each vertical slice corresponds to a single section, and the
brightness of each cell indicates the correlation of that fea-

Figure 7. Example augmented annotation for the song
“We Are The Champions” by Queen. The letters and col-
ors both encode the section labels. Brightness indicates a
feature’s relevance to a section.

ture to that section. We can see that on a long timescale, the
verse sections (A) were characterized by their harmonic
and melodic content, while the chorus sections (B) were
characterized more by their timbre. However, on a short
timescale, subsection a was also characterized by timbre,
and many of the subsections of B were more strongly char-
acterized by harmony and melody compared to B itself.

This, it turns out, is an accurate description of the song:
in a, Freddie Mercury sings above a piano and bass only;
the electric guitar enters quietly in b, but the drums come
in with c in a raucous crescendo to the chorus. The tim-
bral inconsistency of A means that timbre would be a poor
feature to use to justify grouping the first four subsections
into a larger unit.

On the other hand, the timbre of the choruses is rela-
tively homogeneous; this makes it a good feature to justify
grouping the B sections together, but also makes it a poor
feature to justify giving the subsections of B different la-
bels. The fact that subsections d, e, f and g have different
labels must therefore reflect their pitch content.

7. CONCLUSION

We have validated the algorithm proposed by [22], and pro-
posed three modifications to improve its effectiveness. Al-
though we restricted this study to stimuli that were vali-
dated in a psychology experiment, it would be possible to
generate large amounts of artificial music, with more com-
plicated patterns of repetition and variation, and changes
in more musical parameters, like loudness, tempo, synco-
pation, dissonance, and so on.

The accuracy of the algorithms fell short of human per-
formance. Given the disparities among the features, this
must be due in part to the mismatch between the audio fea-
tures we chose and the musical attributes manipulated in
the stimuli. Despite this, the algorithm is useful for visual-
izing the structure of pieces in a new way: by highlighting
the musical features that explain the annotation.
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