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ABSTRACT

Tempo estimation is a fundamental problem in music in-
formation retrieval and has been researched extensively.
One problem still unsolved is the tendency of tempo es-
timation algorithms to produce results that are wrong by a
small number of known factors (so-called octave errors).
We propose a method that uses supervised learning to pre-
dict such tempo estimation errors. In a post-processing
step, these predictions can then be used to correct an algo-
rithm’s tempo estimates. While being simple and relying
only on a small number of features, our proposed method
significantly increases accuracy for state-of-the-art tempo
estimation methods.

1. INTRODUCTION

Tempo-related tasks are well established in music informa-
tion retrieval (MIR) [1]. One common task is to estimate
the tempo humans “tap” along to a beat when listening to
music. Another task, beat tracking, attempts to determine
the exact times at which beats occur. In this paper, we
deal with tempo estimation exclusively. While in some
genres—like Romantic music—local tempo changes are
common [11], Pop, Rock, and Dance music often have one
steady, global tempo, i.e. it can be represented by a single
number usually specified in beats per minute (BPM). The
method proposed in this paper is only suitable for music
with such a global tempo.

Over the years, many different approaches to tempo
estimation have been taken. Gouyon et al. [9] provided
a comparative evaluation of the systems that participated
in the ISMIR 2004 contest. Five years later, Zapata and
Gomez gave an updated overview [30]. To our knowledge,
the most recent comprehensive evaluations are presented
in [2,23,24]. For a textbook-style introductory overview
describing different approaches, see [20] by Miiller.

Many methods divide the estimation problem into two
phases. First, via an onset strength signal (OSS) or nov-
elty curve, beat candidates are found. Second, one or more
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periodicities are extracted from the OSS. Methods for find-
ing periodicities are often based on the Fourier transform,
but also include autocorrelation [23], tempograms [29], the
interonset interval (IOI) histograms [26], and resonating
comb filters [2]. The decision for a final result is based on
simple heuristics, genre classification [15, 25], secondary
tempo estimates [24], the discrete cosine transform of I101
histograms [6], or a feature-based learning approach like
Gaussian mixture models (GMM) [22], support vector ma-
chines (SVM) [8,23], k-nearest neighbor classification (k-
NNCO) [29], and neural networks [5].

For evaluation, results are typically compared with a
ground truth allowing a 4% tolerance. This measure is
called Accuracyl. Because many algorithms have a ten-
dency to under- or over-estimate the true value by a factor
of 2 or 3, a second measure called Accuracy2 has been in-
troduced. Accuracy? allows for errors that correspond to a
factor of 2, 3, 12, or 13, also known as octave errors. De-
spite evidence that algorithms as well as humans can dis-
tinguish between slow and fast music [13, 18], Accuracyl
values for state-of-the-art algorithms are still below Accu-
racy2. One way to change this may lie in genre- or style-
related knowledge [4]. Many genres are partially defined
by a certain tempo or tempo range, which can be exploited
to pick the right octave. Schuller et al. [25] demonstrated
this for the Ballroom dataset and Horschlidger et al. [15]
did the same for the GiantSteps tempo dataset. The fact
that the excellent method by Bock et al. [2] scores remark-
able 95% when trained on the Ballroom dataset with 8-
fold cross validation, but reaches only 66.8% on the mixed
genre GTZAN dataset further supports this notion.

In this paper we describe a supervised learning ap-
proach to correct common tempo estimation errors. This
is achieved by re-framing error correction as a classifica-
tion problem. We are able to demonstrate that the pro-
posed method performs better or as well as state-of-the-art
algorithms when combined with a simple tempo estima-
tion method. Furthermore, because our error correction
approach can be trained for any tempo detection method,
we are able to show improvements in Accuracyl for previ-
ously published algorithms via post-processing.

The remainder of this paper is structured as follows:
in Section 2 we describe a simple tempo estimation algo-
rithm, test datasets, measures, and investigate common es-
timation error classes. Then, in Section 3, we explain our
post-processing procedure, which corrects tempo estimates
using supervised learning based on a small number of au-
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dio features. In Section 4 we evaluate the proposed fea-
tures, and then compare our results with those from other
methods. Finally, in Section 5, we present our conclusions.

2. TEMPO ESTIMATION

To lay the groundwork for our error correction method, we
first describe a simple tempo estimation algorithm, then in-
troduce several test datasets and discuss common pitfalls.
In Section 2.5, we introduce performance metrics and de-
scribe observed errors.

2.1 Algorithm

To estimate the dominant pulse we follow the approach
taken in [24], which is similar to [23,28]: We first con-
vert the signal to mono and downsample to 11025 Hz.
Then we compute the power spectrum Y of 93 ms win-
dows with half overlap, by applying a Hamming win-
dow and performing an STFT. The power for each bin
Eel0: K]:={0,1,2,...,K}attimem € [0: M] :=
{0,1,2,..., M} is given by Y (m, k), its positive logarith-
mic power Yi,(m, k) := In (1000 - Y (m, k) + 1), and its
frequency by F'(k) given in Hz. We define the onset signal
strength OSS(m) as the sum of the bandwise differences
between the logarithmic powers Yi,(m, k) and Yi,(m —
1, k) for those k where the frequency F'(k) € [30,720]
and Y (m, k) is greater than oY (m — 1, k) (see [16]):

1 ifY(m,k)>aY(m—1,k)

I(m,k) = and F'(k) € [30,720], €))
0 otherwise
08S(m) = 3 (Yia(m, k) — Yia(m — 1,k)) - I(m. k)

k

Both the factor & = 1.76 and the frequency range were
found experimentally [24].

The OSS(m) is transformed using a DFT with length
8192. At the given sample rate, this ensures a resolution
of 0.156 BPM. The peaks of the resulting beat spectrum
B represent the strength of BPM values in the signal [7],
but do not take harmonics into account [10,21]. There-
fore we derive an enhanced beat spectrum Bp that boosts
frequencies supported by harmonics:

2
Bg(k) = > |B(|%2 +0.5])| 2)
i=0

Similar to an enhanced beat histogram [28], By, incor-
porates harmonics by simply adding to each bin the mag-
nitudes of the bins denoted by half and by a quarter of its
own frequency—or, if not available—the closest available
bin. We choose to use fractions instead of multiples for
modeling harmonics and thus essentially model the fourth
harmonic, not the first. This allows us to take advantage of
the full DFT resolution without oversampling, as each bin
for the first harmonic is mapped to four different bins for
the fourth harmonic. To estimate the tempo 7" of the dom-
inant pulse (or periodicity in the OSS), we determine the
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Figure 1. Tempo distributions for the test datasets.

highest value of Bg, divide its frequency by 4 to find the
first harmonic, and finally convert its associated frequency
to BPM:

60
T = F(argmax Bg(k)) - vy 3)
k
To ensure meaningful results for most kinds of Western
music, we constrain 7" to [40, 250] by halving or doubling
its value, if necessary.

2.2 Test Datasets

It has become customary to benchmark tempo estimation
methods with results reported for a small set of well known
datasets. These are ACM MIRUM [18, 22], Ballroom [9],
GTZAN [27], Hainsworth [12], ISMIR04 Songs [9], and
SMC [14]. The latter was specifically designed to be diffi-
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Dataset Eo £y Ey FEiy, Es FEys Ey FEyy FEsyy Eos FEsyy FEys Eys Esy
ACM 'MIRUM 0.7 735 16.0 7.0 0.8 0.0 0.1 0.0 1.8 0.1 0.0 0.0 0.0 0.1
Ballroom 0.4 64.3 1.0 29.7 0.0 1.1 0.0 0.7 0.1 2.3 0.0 0.0 0.0 0.3
Hainsworth 8.6 64.4 1.4 194 0.0 0.5 0.0 0.0 1.8 1.8 0.9 0.5 0.5 0.5
GTZAN 4.0 722 15.7 51 0.4 0.1 0.0 0.0 1.0 0.4 0.1 0.4 0.5 0.1
ISMIR04 Songs 4.3 64.7 194 6.3 1.1 0.2 0.0 0.0 2.4 0.4 0.4 0.2 0.2 0.4
SMC 29.0 37.8 6.0 10.6 0.0 2.3 0.0 0.0 5.1 2.3 0.5 2.3 0.9 3.2
Combined 3.9 681 123 11.2 0.5 0.4 0.0 0.1 1.5 0.8 0.1 0.3 0.2 0.4
GiantSteps 7.1  63.1 4.1 21.5 0.0 0.0 0.0 0.0 0.6 0.3 0.8 0.9 0.5 1.2

Table 1. Error class distribution for tempo estimates 1" (given in BPM) for different datasets in percent.

Dataset [ SweetOct. Cov. [ 90% [ 95%

ACM MIRUM 69 — 138 72.8 | 50 —152 | 50 — 170
Ballroom 71— 142 T1.1 | 84 —204 | 82— 204
Hainsworth 79 — 158 82.4 | 58 — 150 | 57 — 167
GTZAN 66 — 132 80.9 | 55— 130 | 52 — 138
ISMIR04 Songs 59 — 118 74.1 | 48 — 131 | 36 — 136
SMC 51 — 102 68.7 | 32 —115 | 32 —143
Combined 69 — 138 72.9 | 40 — 150 | 50 — 180
GiantSteps 91 —182 88.1 | 85— 175 | 80 — 180

Table 2. Sweet octaves and their respective coverage in
percent for the test datasets (left). Shortest BPM inter-
vals required to achieve a test set coverage of 90% or 95%
(right).

cult for beat trackers. Where applicable, we used the cor-
rected annotations from [23]. We refer to the union of these
six datasets as the Combined dataset. Additionally, we test
against the recently published GiantSteps dataset for elec-
tronic dance music (EDM) [17]. It is not included in Com-
bined to allow direct comparisons with older literature.

Not surprisingly, all mentioned datasets differ in their
composition (Figure 1). The mean tempo ranges from
78 BPM (SMC) to 137 BPM (GiantSteps) and the stan-
dard deviation spans from 24 (GTZAN) to 40 (Ballroom).
Furthermore, the tempo distributions of Ballroom and Gi-
antSteps contain some distinct spikes, while the other
datasets more closely resemble normal distributions. None
of the datasets have uniformly distributed tempi.

2.3 Octave Bias

If a dataset’s tempo distribution is not uniform and most
values fall into a relatively small interval, constraining re-
sults to this interval may lead to fewer octave errors. We
call deliberately choosing such an interval octave bias.

To illustrate this, assume an algorithm for the Gi-
antSteps dataset with 50% Accuracyl, but 100% Accu-
racy2. Further assume that all errors are by a factor of
2 or 1/2. 88.1% of all tempi in GiantSteps happen to be in
[91,182). If we constrained results to this interval by halv-
ing and doubling, Accuracyl would increase from 50% to
88.1%.

Each described dataset has such a sweet octave, i.e. a
tempo interval [j,27) that contains more of the dataset’s
songs than any other octave (Table 2). In the absence of a
uniform test set, it is therefore important to test the same al-
gorithm against datasets with different sweet octaves, thus
revealing the effects of octave bias. On the positive side,

a specialized or genre-aware algorithm may benefit from
exploiting knowledge about the test dataset (e.g. EDM-
specific tempi [15]). Additionally to sweet octaves, Table 2
lists the shortest BPM intervals required to achieve a cer-
tain test set coverage. For example, to cover 90% of the
tempi in the ACM MIRUM test set, one only needs to look
at the interval [50, 152] and not at the considerably larger
interval [37, 257] required for full coverage.

2.4 Genre Bias

While octave bias describes how algorithms can exploit
constraining results to certain tempo intervals, genre bias
describes a technique for algorithms to constrain their out-
put to a relatively small set of distinct tempi that are char-
acteristic for the genres in the dataset.

A good example for this is the Ballroom dataset. Even
though the dataset contains 698 songs, only 63 different
tempi occur. Assuming an unbiased algorithm with integer
precision is constrained to the [40,250] BPM interval, it
solves a task equivalent to choosing one out of 210 classes.
An algorithm trained on the Ballroom dataset using k-fold
cross validation “knows” that there are only 63 classes and
therefore has a considerably easier task to solve.

2.5 Measures

As mentioned above, tempo estimation algorithms are usu-
ally evaluated with two metrics: Accuracyl, defined as the
percentage of correct estimates with 4% tolerance, and Ac-
curacy?2, the percentage of correct estimates ignoring er-
rors caused by the factors 2, 3, 1/2, and 1/3.

Because we aim to correct estimation errors, we need to
test our tempo estimation method against the test datasets
and record not just accuracies, but also the kinds of er-
rors. To do so, we define the error classes Fo, F3, Fjy,
Es/y, sy, Eayy and their reciprocals with the index in-
dicating the error factor. Just like Accuracyl and Accu-
racy2 we allow a 4% tolerance. Since not all estimates
are wrong and some errors are not covered by the men-
tioned classes, we define F; for correct estimates (equiv-
alent to Accuracyl) and Ey for errors not described oth-
erwise. This leads to a total of 14 classes forming the
label set E := {Ey, E1,...}. Table 1 shows the distri-
bution of estimated tempi over [E for the test datasets us-
ing the tempo estimation method from Section 2.1. For
Combined, 12.3% of all tempi are in Fs, while 11.2%
are in I1/,. Only 3.9% of all estimated values cannot be
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explained by one of the defined factors and thus are col-
lected under the label Ey. This implies an upper bound of
96.1% Accuracyl for any error correction scheme based
on E w.r.t. the Combined datasets.

3. TEMPO ERROR CORRECTION

As we have seen, most wrong tempo estimates are off by
a limited number of factors. Therefore the correction of
T can be re-framed as a classification problem, which is
solvable using supervised machine learning. Knowing the
error class for an estimate then allows us to calculate the
true tempo. In the following subsections we describe the
features used for classification, the training dataset, and the
tempo correction procedure.

3.1 Features

In order to keep the algorithm simple, we use as features
only 7" and a very small set of audio features. While not at-
tempting to specifically model genres, the features we use
aim at characterizing rhythm, tonality and beat intensity.
Combined, we expect them to capture essential informa-
tion about a musical piece.

3.1.1 Log Beat Spectrum

The tempi corresponding to the most common estimation
classes Fy,, F1, and Es fall onto a logarithmic scale. To
mirror this, we use a logarithmic beat spectrum (LBS) to
describe the different periodicities in the signal. LBS is
computed by resampling/interpolating B into 10 logarith-
mically spaced bands representing tempi ranging from 40
to 500 BPM. Subsequently it is normalized so that its
highest value is 1.

While LBS provides a more complete picture of the pe-
riodicities than just the dominant tempo 7', it does not add
any information about the frequency bands these periodic-
ities stem from. As a second modification to B, we create
different versions of LBS based on the five slightly over-
lapping bands [30, 110], [100, 220], [200, 440], [400, 880]
and [800,1600] Hz. Combined, these spectra form the
multiband logarithmic beat spectrum (LBSy). For a given
song, LBSy consists of 5 x 10 = 50 features.

3.1.2 Spectral Flatness

To represent tonality we use spectral flatness (SF), also
known as Wiener entropy. It is defined as the ratio be-
tween the geometric and the arithmetic mean of the power
spectrum:

SF(m) =

(HkK=olY(m,k))R;' @

% 5:01 Y(m, k

To determine SF(m), we re-use the power spectra
Y (m, k) already computed in Section 2.1. For increased
robustness against low sample rates, we limit k to F'(k) €
[30,3000]. As the two features for a given song we use
both the mean and the variance of all its SF(m).

Other
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Figure 2. Distribution of genres and tempi for Train.

3.1.3 Temporal Flatness

To represent onset intensity we use a feature called tem-
poral flatness (TF). Instead of calculating the Wiener en-
tropy along the frequency axis of Y (m, k), as we did for
SF, we calculate it over a window of length ¢ along the
time axis:

(TIZy Y (m+i,k))*
R = e i O
Y) =0 ’

To compute TF values, we again re-use Y and limit
k to F(k) € [30,3000]. Y is split into non-overlapping
windows with length ¢ = 100. For each bin k in a given
window we compute TF. We then calculate the average
TFw(m, ) over all k. As the two features for a song we
use the mean and the variance of all its TFy (m, £) values.

3.2 Training Dataset

To avoid learning the test datasets, we use a dataset for
training the classifier that has been created separately.
Train is the union of an annotated, private music collec-
tion and the Extended Ballroom dataset [ 19] minus the 354
songs also occurring in the regular Ballroom set. Genre la-
bels are available for 71% of the recordings. The genre as
well as the tempo distribution are shown in Figure 2.

3.3 Correcting the Tempo Estimate

Differences between the training dataset’s true tempo val-
ues and the estimated tempo values let us derive error class
labels. With those and the proposed features, we can train
a classifier. Using the classifier, we are then able to predict
an estimated error class E¥ € E for any song for which we
also have features and a tempo estimate. Note that this es-
timate does not have to stem from our own algorithm intro-
duced in Section 2.1. One main idea of this paper, indeed,
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Features \ Accuracyl  Accuracy2
base 69.00- 94.31
LBS 75.84- 94.16
LBS + SF 76.68 94.09
LBS + TF 77.41 94.11
LBS + SF + TF 77.31 94.04
LBSwm 76.66 93.87
LBSm + SF 75.91- 94.21
LBSwm + TF 77.31 93.97
LBSwm + SF + TF 76.21 94.14

Table 3. Accuracyl and Accuracy?2 for different feature
combinations trained on Train and tested against Com-
bined. The ‘—’ signs indicate a statistically significant dif-
ference between the marked results and LBS + TF.

is that the classification model is algorithm-specific. In
other words, the classifier must be trained for each tempo
estimation algorithm. Once trained, it can be used to cor-
rect octave errors inherent to the given tempo estimation
algorithm.

For the prediction process itself, we use a Random For-
est [3] with 300 trees and a maximum depth of 25.

Given the estimated tempo 7" and the predicted error £
the calculation of the corrected tempo Tcorrected 1S Straight
forward:

(1 ifE=E
J(T,E) = { i for B ©)
Teorrectea = T+ J(T: E)

4. EVALUATION

In a first evaluation step, we compute Accuracyl for differ-
ent feature combinations. We then compare the best com-
bination with publicly available algorithms as well as other
simple correction schemes.

4.1 Feature Evaluation

We trained the classifier using the dataset Train with differ-
ent combinations of the proposed audio features and mea-
sured the performance against the dataset Combined. All
tested feature combinations clearly outperformed the base-
line algorithm base (1" without correction) by at least 6pp
(percentage points) for Accuracyl (Table 3). As was to be
expected, Accuracy? didn’t change significantly. The best
performing feature combination was LBS + TF with an
Accuracyl of 77.41%. When testing for significance with
McNemar’s test and a significance level of p < 0.01 [30],
we found that LBS + TF performed significantly better
w.r.t. Accuracyl than LBS, LBSy; + SF, and base. In
the following we refer to the error classifier trained with
LBS + TF as new. If no tempo estimation algorithm is
explicitly mentioned, the method from Section 2.1 is oth-
erwise implied.

4.2 Comparative Evaluation

We compared our method base+new to its baseline base
and the three publicly available algorithms b&ck, stem,

100 : :
0 @ algorithm [ 0 algorithm+new
< 90| a
IS
= N < 2
~ 80 = < + g 02
3
= 60
50 T T T
base stem bock schr

Tempo estimation algorithm

Figure 3. Accuracyl for Combined for different algo-
rithms with and without new error correction. All algo-
rithms reach significantly higher scores when combined
with new.
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Figure 4. Accuracyl for Combined using no error correc-
tion, constraint-based correction, and new correction for
various tempo estimation algorithms.

and schr using the test datasets described in Section 2.2.
bdck ! is the algorithm published by Bock et al. in [2],
but trained with different datasets—among them our test
data, i.e. the algorithm is “familiar” with the test sets. Ac-
cording to the authors, this configuration participated in
MIREX 2016. stem is an algorithm aiming for low com-
putational complexity published by Percival et al. [23].
We used the implementation contained in Marsyas 0.5.0. 2
Lastly, schr? was published by Schreiber et al. in [24].
Since our error estimation and correction method can be
used as a post-processor for any tempo estimator, we also
trained the classifier for each of these three tempo estima-
tion algorithms to investigate potential improvements.
Figure 3 shows the Accuracyl results for the four al-
gorithms when tested against Combined, both with and
without new post-processing. All of them score signif-
icantly higher values when combined with new than in
their plain form (McNemar, p < 0.01). The algorithms
base (77.4%, increase of +8.4pp) and stem (74.7%,
+5.3pp) clearly benefit the most, but also béck (74.5%,
+2.1pp) and schr (76.6%, +3.9pp) gain several percent-

'https://github.com/CPJKU/madmom/

http://marsyas.info/

3http://www.tagtraum.com/download/schreiber_
icassp2014.zip
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Dataset | base  Dbasetnew | stem stemtnew | bdck Dbdck+new [ schr  schr+new
ACM MIRUM 73.6 81.8+ 74.3 79.9+ 74.5 76.1+ 76.3 81.3+
ISMIR04 Songs 65.5 69.2 60.1 62.3 55.4 58.4+ 74.1 70.7-
Ballroom 64.3 85.1+ 64.0 81.8+ 84.8 90.4+ 67.0 85.0+
Hainsworth 64.9 73.4+ 69.8 74.8+ 84.2 85.6 73.0 75.7
GTZAN 73.5 78.8+ 77.9 76.9 70.7 71.1 78.0 76.2
SMC 452 39.6 29.5 29.5 51.1 51.6 41.5 35.5-
Dataset Average 64.5 71.3 62.6 67.5 70.1 72.2 68.3 70.7
Combined 69.0 77.4+ 69.1 74.4+ 72.4 74.5+ 72.8 76.6+
GiantSteps 64.5 64.0 47.0 65.0+ 61.5 70.9+ 58.0 60.1
GiantSteps+Combined | 68.4 75.5+ 66.0 73.1+ 70.8 74.0+ 70.7 74.3+

Table 4. Tempo results for Accuracyl in percent. The ‘4’ and ‘—

)

signs indicate a statistically significant difference

between an algorithm and the same algorithm enhanced with new. Bold numbers mark the best-performing algorithm(s)
for a dataset. Dataset Average is the mean of the algorithms’ results for each dataset except GiantSteps.

age points.

As discussed in Section 2.3, a simple error correction
scheme can be based on octave bias exploiting statisti-
cal properties of the test dataset. We therefore compared
our method with such a constraint-based scheme, where
tempi below a lower interval bound are doubled and above
an upper bound are halved. For intervals we used the
sweet octave and those listed in Table 2 with 90% and
95% coverage. Results are shown in Figure 4. Except for
bock, none of the algorithms benefitted much from the
simple correction—perhaps a certain bias is already built-
in. When comparing béck+new and bock+90% we were
not able to observe a significant difference. It appears, as if
bdck’s octave errors are harder to predict and correct than
those of the other algorithms, perhaps because they are less
systematic in nature.

Table 4 provides a detailed overview of Accuracyl re-
sults for each of the test algorithms for all test datasets.
As mentioned, base+new reaches the highest score for
the Combined dataset (77.4%). To the best of our knowl-
edge, this is the highest Accuracyl score reported for Com-
bined to date. For four of the six Combined datasets,
base+new reaches significantly higher values than base
(indicated by ‘+’ signs in Table 4). The largest improve-
ment was achieved for the Ballroom test set. The score
for base+new is more than 20pp higher than base’s.
The fact that 29% of Train consists of ballroom tracks cer-
tainly plays a role here. While the base+new score for
ISMIRO04 Songs is 3.7pp higher than base’s, the improve-
ment is not significant. Similarly, the change for the SMC
dataset (—5.6pp) is not significant, but noteworthy. We be-
lieve that both octave and genre bias may play a role here.
Tracks in SMC are very different in style from those in
Train. And compared to SMC, Train contains relatively
few examples for slow tracks with 60 BPM or less. Infor-
mal tests confirm that choosing a different training dataset
leads to better results.

Dataset-specific scores for bdck+new are all higher
than those for béck—more than half of them significantly.
The largest increase can be observed for the GiantSteps
dataset. Plain b&ck scores 61.5%—combined with new
it reaches 70.9% (+9.4pp). To the best of our knowl-
edge, this is the highest reported value for an unbiased,

non-commercial algorithm to date. *

Dataset Average is the mean of the results for each of
the six datasets in Combined. Because it is an unweighted
average, it is not dominated by the larger datasets. But just
like for Combined, we can observe higher scores for all al-
gorithms when combined with new. With 72.2% (42.1pp)
b&ck+new reaches the highest score, closely followed
by base+new with 71.3% (+6.8pp). stem (67.5%,
+4.9pp) and schr (70.7%, +2.4pp) benefitted as well.

Though not the topic of this paper, we also measured
Accuracy2. As expected, the results did not surprise and
stayed stable.

5. CONCLUSIONS

We have shown that the proposed error correction method
based on supervised learning of tempo estimation errors is
capable of significantly improving Accuracyl results for
existing tempo estimation algorithms. It does so in an
algorithm-specific post-processing step. Combined with a
simple tempo estimation algorithm, it outperforms other
state-of-the-art algorithms for most of the tested datasets.
We believe the error correction method can be enhanced
even further by carefully selecting and incorporating other
genre-related features.

We also discussed different kinds of biases that can have
a large influence on the accuracy of tempo estimation al-
gorithms. Ideally, evaluations of general purpose tempo
estimators should be based on datasets with a mostly uni-
form tempo and genre distribution. Because better train-
ing data potentially leads to better results, training datasets
should be an integral part of the comparison to make fair
benchmarking possible. Defined train/test splits for exist-
ing datasets could be a first step in this direction.
Additional Material:
Binaries and other material are available at http://
www.tagtraum.com/tempo_estimation.html.
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