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ABSTRACT

This work demonstrates an approach to generating strongly
labeled data for vocal activity detection by pairing instru-
mental versions of songs with their original mixes. Though
such pairs are rare, we find ample instances in a massive
music collection for training deep convolutional networks
at this task, achieving state of the art performance with a
fraction of the human effort required previously. Our error
analysis reveals two notable insights: imperfect systems
may exhibit better temporal precision than human anno-
tators, and should be used to accelerate annotation; and,
machine learning from mined data can reveal subtle biases
in the data source, leading to a better understanding of the
problem itself. We also discuss future directions for the de-
sign and evolution of benchmarking datasets to rigorously
evaluate Al systems.

1. INTRODUCTION

Over the last few years, the ubiquity of cheap computa-
tional power and high quality open-source machine learn-
ing software toolkits has grown considerably. This trend
underscores the fact that attaining state-of-the-art solutions
via machine learning increasingly depends more on the
availability of large quantities of data than the sophisti-
cation of the approach itself. Thus, when tackling less
traditional or altogether novel problems, machine learning
practitioners often choose between two paths to acquiring
data: manually create (or curate) a dataset, or attempt to
leverage existing resources.

Both approaches present unique challenges. Curation
is necessary when precise information is required or in-
sufficient data are available, but can incur large costs in
both time and money. Alternatively, “mining” data — re-
covering useful information that occurs serendipitously in
different contexts — can result in large datasets with far
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less effort, e.g., recovering labels from the text around an
image. While this information is typically generated as a
by-product of some other pre-existing human activity and
prone to both noise and bias, recent machine learning re-
search has managed to use this approach to great effect [5].

With the continued growth of digital music services, vo-
cal activity detection (VAD) is a task of increasing impor-
tance. Robust VAD is a key foundational technology that
could power or simplify a number of end-user applica-
tions, such as vocalist similarity, music recommendation,
artist identification, source separation, or lyrics transcrip-
tion. Despite previous research, the state of the art contin-
ues to advance with diminishing returns, rendering VAD
an unsolved problem with considerable potential.

Given the dominance of data-driven methods in ma-
chine learning, it stands to reason that data scarcity may
be contributing to the apparent ceiling in the performance
of VAD algorithms. Modest progress has been made to-
ward increasing the size of labeled datasets, limiting the
efficacy of modern approaches, e.g., deep learning. Ef-
forts to leverage strongly labeled datasets have converged
to hundreds of observations [1,13,15,16], with which com-
plex methods have been explored [9, 10, 18]. Recent re-
search succeeded in curating a private dataset of 10k, 30
second weakly labeled clips, e.g., “completely instrumen-
tal” or “contains singing voice”, using this dataset to train
convolutional neural networks [17].

In short, VAD research remains largely dependent on
sustained human involvement in sourcing labeled data, but
this approach struggles to scale. Here, we propose leverag-
ing a huge, untapped resource in modern music to circum-
vent this challenge: the “instrumental version”, i.e., a song
in which the vocals have been omitted. The goal of this
work is thus the exploration of this opportunity, achieved
in four steps: mine original-instrumental pairs from a mas-
sive catalogue of music content; estimate time-varying vo-
cal density given corresponding tracks; exploit this signal
to train deep neural networks to detect singing voice; and
understand the effects of this data source on the resulting
models.
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2. DATA GENERATION

In Western popular music, a song’s arrangement often re-
volves around a lead vocalist, accompanied by instruments
such as guitar, drums, bass, efc. It is not uncommon for an
artist to also release an “instrumental” version of the same
song (to be used for e.g., remixes or karaoke), in which the
primary difference between it and the corresponding “orig-
inal” recording is the absence of vocals. ! In principle, the
difference between these two sound recordings should be
highly correlated with vocal activity, which would provide
a fine-grained signal for training machine learning models.
However, to exploit this property at scale, it is necessary to
identify and align pairs of original recordings and match-
ing instrumental versions automatically.

We outline a three-step approach toward mining
strongly labeled instances of singing voice from a music
catalogue: identify original-instrumental pairs from track
metadata; estimate a vocal density signal for the original
track, given its instrumental; draw positive observations
from an original track as a function of estimated vocal den-
Sity.

2.1 Selection of Matching Recordings

We search the full Spotify catalogue, a set of tens of mil-
lions of commercially recorded tracks, for paired versions
using a heuristic based on track metadata. A pair of tracks
(A, B) are marked as (original, instrumental) if:

e A and B are recorded by the same artist.

e “instrumental” does not appear in the title of A.
e “instrumental” does appear in the title of B.

e The titles of A and B are fuzzy matches.

e The track durations differ by less than 10 seconds.

Fuzzy matching is performed on track titles by first
latinizing non-ASCII characters, removing parenthesized
text, and finally converting to lower-case; this yields about
164k instrumental tracks. Note that this is a many-to-many
mapping, as an original version can point to several differ-
ent instrumentals, and vice versa.

A tiny subset of this content is manually reviewed to
check for quality, and we find roughly 1 in 10 tracks to be
a mismatched pair: the majority of errors are due to instru-
mental tracks that appear on multiple albums, such as com-
pilations or movie soundtracks, but are only tagged as such
in some contexts. An open-source audio fingerprinting al-
gorithm is used to remove suspect pairs from the candidate
set [6]. Sequences of codes for tracks are extracted, and
track pairs are discarded as a function of Jaccard similarity
if code sequences do not overlap sufficiently (an erroneous
fuzzy metadata match) or overlap too much (the tracks in
the pair being both instrumental or vocal). Finally, re-
dundant associations from this mapping are removed, so
that each original track is linked to only one instrumental

! Though other differences in signal characteristics may occur due to
production effects, e.g., mastering, compression, equalization, these are
not considered here.

track. Overall this process yields roughly 24k tracks, or
12k original-instrumental pairs, totaling some 1500 hours
of audio.

2.2 Estimating Vocal Density

Let 7€ and T' denote two recordings, corresponding to
an “original” and “instrumental” version, respectively. A
Time-Frequency Representation (TFR) is computed for
both tracks, respectively X© and X!. Subsequently, the
TFRs are aligned to estimate time-varying vocal density.

In this work a Constant-Q Transform (CQT) [3] is cho-
sen for its complementary relationship between convolu-
tional neural networks and music audio; the CQT uses a
logarithmic frequency scale that linearizes pitch, allowing
networks to learn pitch-invariant features as a result [8].
The frequency range of the transform is constrained to
the human vocal range, i.e., E2 - E7 (5 octaves, spanning
82.4-2637 Hz), and a moderately high resolution is em-
ployed, with 36 bins per octave and 32 frames per second.
Logarithmic compression is applied pointwise to the TFR.

The pair of TFRs (X, X1) undergoes a feature dimen-
sionality reduction via Principal Component Analysis?,
producing (Z, Z'); based on empirical findings, k& = 20
components were found to yield good results. This step
not only provides an increase in computational efficiency
in subsequent processing steps, but also affords a useful
degree of invariance because of the lower dimensionality.

The transformed sequences are then aligned using Dy-
namic Time Warping (DTW), yielding two sequences,
n®,n!, of indices over the original and instrumental song,
respectively [14]. This allows us to recover points in time
from both a full and instrumental mix where the back-
ground musical content is roughly identical.

Using these indices, the CQT spectra (X, X 1) are re-
sampled to equivalent shapes, and the half-wave rectified
difference between log-magnitude spectra yields the fol-
lowing residual:

0k = max (0,log | X0 + 1] —log | X5, +1[) ()

In the ideal case, where any difference is due entirely
to vocals, this residual represents the vocal CQT spectra,
and will behave like a smooth contour through succes-
sive time-frequency bins. Practically, however, there will
likely be other sources of residual energy, due to subopti-
mal alignment or true signal differences. To best charac-
terize contour-like residuals, we normalize the spectral en-
ergy in each time frame and apply the Viterbi algorithm to
decode the most likely path through the residual spectra;
this step is inspired by previous work on tracking funda-
mental frequency in a time-frequency activation map [12].
Empirically we find this process far more robust to residual
noise than simpler aggregation schemes, such as summing
energy over frequency.

2 We are not interested in learning a general transform; the Principal
Components of each pair of tracks are computed independently of the
overall dataset.
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Figure 1. The intermediate stages in estimating vocal
density from an original-instrumental pair of recordings,
showing (i) the original and (ii) instrumental CQT spectra,
(iii) the residual with a trace of its fundamental, and (iv)
the estimated vocal density over time.

The amplitude of this time-frequency path, p, provides
an estimate of vocal density, ¢, the likelihood that vocals
are present in the original recording, T©, as a function
of time. Finally, we forwards-backwards filter ¢ with a
Hanning window (L = 15), to both smooth and dilate the
density signal to encompass vocal onsets and offsets. The
stages of this process are pictured in Figure 1.

2.3 Sampling of Positive and Negative Observations

Having estimated where vocals likely occur in a piece of
audio, we turn our attention to how this information is
utilized for supervised training. We highlight that track-
level metadata presents a multiple-instance learning prob-
lem, where each recording can be understood as a bag of
samples with a single binary label: “vocal” if it contains
at least one positive sample, or “non-vocal” if all samples
are negative. In this setting, positively labeled bags are in-
herently noisy, with some unknown percentage of negative
samples effectively mislabeled as a result. To address this
issue, the vocal density estimate is used to reweight the
contributions of samples drawn from positive bags.

An estimator is trained by drawing positive (Y = 1) and
negative (Y = 0) samples from original and instrumental
tracks, with equal frequency. Negative samples are drawn
uniformly from instrumental tracks, while positive samples
are drawn as a function of the vocal density ¢. To smoothly

interpolate between a uniform distribution and the vocal
density estimate over positive samples, two parameters are
introduced, a threshold, 7, and a compression factor, €:

Oy On 2T

0 otherwise

Pr(X2lYy =1) « { 2)

Here, we are interested in exponentials in the range of
0 < € < 1, which flatten the density function. Note that
€ = 0,7 = 0 corresponds to uniform sampling over time,
and is equivalent to the weakly labeled setting, i.e., a label
applies equally to all samples.

As a final consideration, we highlight that the original
and instrumental recordings are aligned in the course of
computing the vocal density estimate. Therefore, it is pos-
sible to draw correlated positive-negative pairs from both
the original and instrumental tracks corresponding to the
same point in time, a sampling condition we refer to as
entanglement, ¢ € {True, False}. One would expect that
these paired samples live near the decision boundary, being
near-neighbors in the input space but belonging to differ-
ent classes, and we are interested in exploring how training
with entangled pairs may affect model behavior.

3. SYSTEM DESIGN
3.1 Previous Approaches

The majority of VAD research follows a similar architec-
ture: short-time observations are fed to a classifier, each
observation is assigned to either a vocal or a non-vocal
class, and optionally post-processing is applied to elimi-
nate spurious predictions. Early work uses “the acoustic
classifier of a speech recognizer as a detector for speech-
like sounds” to feed an Artificial Neural Network trained
on a speech dataset (NIST Broadcast News) [1], while
[16] attempts to explicitly exploit vibrato and tremolo, two
characteristics that are specific of vocal signals. Alternativ-
ley, Support Vector Machines (SVMs) are used for frame
classification and Hidden Markov Models act as smoothing
step [15]; a similar solution is proposed by [13], which ex-
ploits a wider set of features, including ones derived from
a predominant melody extraction step.

More recently, increasingly complex classifiers are pre-
ferred to feature engineering, given the widespread success
of deep learning methods and modest increases in available
training data. Much prior research explores the application
of deep learning to music tagging, which typically encom-
passes one or more classes for singing voice in the taxon-
omy considered [7]. Elsewhere, deep networks have been
used for pinpointing singing voice in source separation
systems [19]. Regarding the particular task at hand, [9]
proposes a sophisticated architecture based on Recurrent
Neural Networks that does not have a separate smoothing
step, while [17] uses a conventional convolutional network
topology, further advancing the state of the art.

3.2 Proposed System

The log-magnitude CQT representation described in 2.2
is processed in 1 second windows, with a dimensional-
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ity of (32 x 180) bins in time and frequency, respec-
tively. We adopt a five-layer neural network, with three
(3D) convolutional layers, each followed by max-pooling,
and two fully-connected layers, with the following pa-
rameter shapes: wo = (1,64,5,13),p0 = (2,3), w1 =
(64,32,3,9),p1 = (2,2), w2 = (32,24,5,1),p2 = (2,1),
ws = (1540, 768), wy = (768, 2). All layer activations are
hard rectified linear units (ReLUs), with the exception of
the last (classifer) layer, which uses a softmax.

The network is trained using a negative log-likelihood
loss function and parameters are optimized with minibatch
stochastic gradient descent. We implement our model in
Theano? , leveraging the Pescador® package for drawing
samples from our dataset, and accelerate training with a
NVIDIA Titan X GPU. Networks are trained for 500k iter-
ations (= 20 hours) with a learning rate of 0.05 and a batch
size of 50. Dropout is used in all but the last layer, with a
parameter of 0.125. In addition to the weakly labeled case,
{e = 0.0,7 = 0.0,{ = F}, we explore model behavior
over two sampling parameter settings, with and without en-
tanglement: {¢ = 0.3,7 = 0.05} and {¢ = 1.0,7 = 0.2}.
These values are informed by first computing a histogram
of vocal activation signals over the collection, revealing
that a large number of values occur near zero (< 0.05),
while the upper bound rolls off smoothly at ~ 2.5.

4. EXPERIMENTAL RESULTS

We evaluate our models on two standard datasets in VAD
research: the Jamendo collection, containing 93 manually
annotated songs [15]; and the RWC-Pop collection, con-
taining 100 manually annotated songs [13]. To compare
with previously reported results, we consider the area un-
der the curve (AUC) score and max-accuracy [17]. The
AUC score provides insight into the rank ordering of class
likelihoods, and max-accuracy indicates the performance
ceiling (or error floor) given an optimal threshold.

4.1 Quantitative Evaluation

Table 1 shows the summary statistics over the two datasets
considered as a function of sampling parameters, alongside
previously reported results for comparison [17]. The first
three systems («, 3, 7) are successive boosted versions of
each other, i.e., « is trained with weak labels, and its pre-
dictions on the training set are used to train (3, and so on;
the fine model is trained directly with strongly labeled data,
and we refer to each by suffix, e.g., . Additionally, the au-
thors train these models with a witheld dataset unavailable
to our work here.

These results provide a few notable insights. First, we
confirm that our automated approach of mining training
data is sufficient to train models that can match state of
the art performance. Configuration I, corresponding to the
weak labeling condition, performs roughly on par with a
comparably trained system, o, validating previous results;
configuration V achieves the best scores of our models, and

3https://github.com/Theano/Theano
4nttps://github.com/pescadores/pescador

RWC JAMENDO

AUC acct AUC acct
SCHLUTER-« 0.879 0.856 0.913 0.865
SCHLUTER-f3 0.890 0.861 0.923 0.875
SCHLUTER-y 0.939 0.887 0.960 0.901
SCHLUTER-FINE 0.947 0.882 0.951 0.880

T € vy
1 0.0 0.0 F | 0.891 0.856 0.911 0.856
II 0.05 03 F | 0918 0.879 0.925 0.869
Ir 0.05 03 T | 0918 0.879 0.934 0.874
v 0.2 1.0 F | 0.937 0.887 0.935 0.872
\'% 0.2 1.0 T | 0.939 0.890 0.939 0.878
Table 1. AUC-scores and maximum accuracies across

models on the RWC and Jamendo datasets.
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Figure 2. Trackwise error rates, plotting false positives
versus false negatives for IV; one outlier (fn ~ 0.66) in
the Jamendo set is not shown to maintain aspect ratio.

is consistent with gains in prior work. That said, the dif-
ference between models is in the range of 0.02-0.05 across
metrics, which is of limited reliability with datasets of this
size. In terms of sampling parameters, we observe a direct
correlation between signal-to-noise ratio in our training
data, i.e., the more non-vocal observations are discarded,
the better the models behave on these measures. Training
with entangled pairs (( = T') also seems to have a small
positive effect. Finally, we note a possible corpus effect be-
tween these systems and previously reported results, where
models (V and ) perform better on different data. Though
minor, this potential corpus effect serves as a dimension to
explore in subsequent analysis.

4.2 Error Analysis

As the systems reported here are high performing, a poten-
tially more informative path to understanding model be-
havior is through analyzing the errors made. Here, false
positives occur when a different sound source is mistaken
for voice; false negatives occur when the energy of a vocal
source has fallen below the model’s sensitivity. Observa-
tions drawn from the same music recording will be highly
correlated, due to the repetitive nature of music, and so we
explore the track-wise frequency of errors to identify be-
haviors that may reveal broader trends.

A slight corpus effect is seen in Figure 2 between the
RWC and Jamendo collections. In the former, the majority
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Figure 3. Examples from the evaluation dataset, showing the ground truth (black), estimated likelihoods (blue) and thresh-
olded prediction (green) over time: (top) a track from the RWC corpus demonstrates how a model can operate with greater
temporal precision than a human annotator, a common source of false negatives; (bottom) a track from the Jamendo collec-
tion illustrates different challenges, including imposter sources (a guitar solo), sensitivity to vocals, and annotator error.

of error is due to false positives, but at a much lower rate
of occurrence (fp < 0.1) than false negatives. Addition-
ally, when errors do occur in a track, they tend to be pri-
marily of one type, and seldom both. This is less the case
for the Jamendo set, comprised of both “worse” tracks and
a (slightly) larger co-occurrence of error types in a given
track.

Using this visualization of trackwise errors, an investi-
gation into the various outliers yields a few observations.
There are two primary sources of false negatives: one,
shown in Figure 3 (top), trained models exhibit a level of
temporal precision beyond the annotators’ in either dataset,
pinpointing breaths and pauses in otherwise continuous vo-
calizations; and two, nuances of the data used for train-
ing seem to induce a production bias, whereby the model
under-predicts singing voice in lower quality mixes. In
hindsight, it is unsurprising that models trained on pro-
fessionally produced music might develop a sensitivity to
mixing quality, and we note this as a topic for future ex-
ploration. A similar bias also appears to account for the
majority of all false positives, often corresponding with
monophonic instrumental melodies, e.g., guitar riffs or so-
los, but less so for polyphonic melodies, i.e., two or more
notes played simultaneously by the same source, consistent
with previous findings [11].

Figure 3 (bottom) illustrates an interesting example of
this behavior. In the first 80 seconds shown here, the model
agrees with the human annotation. The model fails at the
180 second mark, misclassifying a guitar line, and contin-
ues through 194-210 seconds, where the model struggles
to detect rap vocals at a softer volume. However, from that
point onwards, the human annotation itself is wrong, while
the model is correct; vocals are indeed present between
210-230 seconds and 230-252 contains no voice, which
accounts for 16% of the track. Coincidentally, this further
underscores the need for large, diverse evaluation datasets
to produce reliable metrics.

4.3 Multitrack Analysis

The above results confirm the intuition that it can be chal-
lenging to manually annotate singing voice activity with
machine precision. Ideally, though, human annotation ap-
proximates a smoothed, thresholded version of the vocal
signal energy in isolation, and as such, we are interested
understanding the degree to which model estimations cor-
respond with the pure vocal signal. Another way of mea-
suring our models’ capacity to estimate singing voice from
a “down-mixed” recording is through the use of multitrack
audio, which provides direct access to the signal of inter-
est, i.e., vocals, in isolation.

We now turn our attention to MedleyDB, a dataset of
122 songs containing recordings of individual stems and
corresponding mixes [2]. For each of the 47 songs that
have vocals in isolation, we create a single vocal track for
analysis, and compute the log-magnitude CQT for the full
mix (the “original” version) X M and the isolated vocals,
XV, Whereas previously Viterbi was used to track vocal
density, here the reference vocal density contains no noise
and can be computed by summing the spectral energy over
frequency, i.e., ¢, = >, X ;. The trained models are
applied to the full mix, X, for inference, producing a
time-varying likelihood, L.

The reference vocal density is not a class label but a
continuous value, and the comparison metrics must be ad-
justed accordingly. Maximum accuracy is generalized to
the case where independent thresholds are considered for
¢V, LM over the dataset, providing insight into the best-
case agreement between the two signals. We also con-
sider the Spearman rank-order correlation between the two
sets, a measure of the relative rank order between distribu-
tions [20].

An exploration of model performance on this dataset
validates earlier observations, summarized in Table 2. On
manual inspection of the temporal precision of the model
on the Medley dataset, we confirm that deviations between
estimated likelihoods and the reference vocal density are
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{r,e,C} | SPEARMAN-R ACCT
I 0.0,0.0, F 0.681 0.812
11 0.05,0.3,F 0.779 0.849
IIr 0.05,0.3, T 0.768 0.854
v 0.2,1.0,F 0.784 0.852
\% 0.2,1.0, T 0.796 0.862

Table 2. Spearman rank-order correlation and maximum
accuracy scores across models on the MedleyDB vocal
subset.

representative of true model errors, setting a baseline for
future work. As seen previously, false negatives again cor-
respond to vocal loudness relative to the mix, and false
positives are caused by loud melodic contours. Note also
that the Spearman rank-order correlation is consistent with
previously observed trends across models, while provid-
ing more nuance; the greatest difference between models
is > 0.11, versus =~ 0.05 for maximum accuracy. Fi-
nally, we note that the flexibility of multitrack datasets
presents a great opportunity for rigorously testing future
work, whereby the pitch and loudness of a vocal track can
be used to synthesize “imposters” with different timbres,
e.g., a sine wave or flute, mixed with instrumental tracks,
and used to measure false positives.

5. DISCUSSION

This work presents an approach to mining strongly labeled
data from web-scale music collections for detecting vocal
activity. Original recordings, containing vocals, are auto-
matically paired with their instrumental counterparts, and
differential information is used to estimate vocal activity
over time. This signal can be used to train convolutional
neural networks; the strongly labeled training data pro-
duces superior results to the weakly labeled setting, achiev-
ing state of the art performance. While analyzing errors
made by our models, three distinct lessons stood out.

First, in addition to curation and mining, it is valuable
to recall a third path to acquiring sufficiently large datasets:
active learning. Imperfect models can be leveraged to
make the annotation process more efficient by perform-
ing aspects of annotation that humans may find difficult or
time-consuming, as well as prioritizing data as a function
of model uncertainty. Here, for example, we observe that
regions annotated as vocal tend to include brief pauses, no
doubt resulting from the time and effort it would require to
annotate at that level of detail. Alternatively, a performant
model, like those described here, could segment audio into
short, labeled excerpts for a human to verify or correct,
eliminating a huge time cost. This would allow reliable
data to be obtained at a faster rate.

Second, the application of machine learning to mined
datasets can help identify particular challenges of a given
task, unlocking new research directions. Here, our model
identifies an interesting bias in the dataset that we had not
previously considered, being the tight coupling between
singing voice (timbre), melody (pitch), and production ef-
fects (loudness). Often in Western popular music, lead

vocals carry the melody and tend to be one of the more
prominent sources in the mix. Thus, in the dataset mined
from a commercial music catalogue, instrumental versions
not only lack vocal timbres, but prominent melodic con-
tours are missing as well. This complex relationship is less
obvious at a distance, but our experiments illustrate the
challenges faced data-driven approaches to singing voice
detection. By the same token, this also identifies an oppor-
tunity to build systems invariant to these dimensions.

Finally, these insights serve as a reminder that it is good
practice to both design and evolve benchmarking datasets
to encompass challenging test cases and known failure
modes as they are identified. In our analysis, we find
that the available benchmarking datasets consist mostly of
musical content in which the melody is also voice, and
therefore more “difficult” signals would help reliably dis-
criminate between models. This content could be identi-
fied automatically via incremental evaluation methods, in
which disagreement between machine estimations effec-
tively prioritizes data to maximize discrimination between
models [4].

5.1 Future Work

Perhaps the most logical next step for this work is to bet-
ter augment training data, such that pitch and melodic in-
formation are well represented in negative examples. One
possible approach, for example, would be to use the fre-
quency of the vocal density estimate recovered in Section
?? to synthesize the melody with different timbres to be
mixed into the instrumental recording. Whereas before
entangled pairs contrast the presence of vocals, this ap-
proach would yield pairs that differ only in the timbre of
the voice. Alternatively, additional sources could be lever-
aged for building models invariant to less relevant char-
acteristics, such as instrumental content without a corre-
sponding “original” version, or multitrack audio.

Additionally, more effort is required to advance eval-
uation methodology for automatic vocal activity detec-
tion. Multitrack datasets like MedleyDB, are a particularly
promising route for rigorous benchmarking. The isolated
vocal signal provides an optimal reference signal, while
the other, non-vocal stems can be recombined as needed
to deeply explore system behavior. We also recognize that
larger, more diverse evaluation datasets are a prerequisite
to advancing the state of the art in this domain. Thus, as
a first step toward these ends, we provide machine estima-
tions from our model over the datasets used here, as well as
a large publicly available dataset (with audio) to facilitate
the manual annotation process.®> Though human effort is
necessary to verify or correct these machine estimations,
we share this data in the hope that it can serve as a starting
point to accelerate the growth of labeled data for this task
and facilitate efforts toward incremental evaluation.

Shttps://github.com/ejhumphrey/vox-detect-jams
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