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ABSTRACT

Understanding human perception of music is foundational
to many research topics in Music Information Retrieval
(MIR). While the field of MIR has shown a rising interest
in the study of brain responses, access to data remains an
obstacle. Here we introduce the Naturalistic Music EEG
Dataset—Tempo (NMED-T), an open dataset of electro-
physiological and behavioral responses collected from 20
participants who heard a set of 10 commercially available
musical works. Song stimuli span various genres and tem-
pos, and all contain electronically produced beats in du-
ple meter. Preprocessed and aggregated responses include
dense-array EEG and sensorimotor synchronization (tap-
ping) responses, behavioral ratings of the songs, and basic
demographic information. These data, along with illustra-
tive analysis code, are published in Matlab format. Raw
EEG and tapping data are also made available. In this pa-
per we describe the construction of the dataset, present re-
sults from illustrative analyses, and document the format
and attributes of the published data. This dataset facilitates
reproducible research in neuroscience and cognitive MIR,
and points to several possible avenues for future studies on
human processing of naturalistic music.

1. INTRODUCTION

Humans possess a unique ability to process music, and
many topics in Music Information Retrieval (MIR) involve
computational modeling of human perception. Tasks that
humans often perform with ease—such as melody extrac-
tion, beat detection, and artist identification—remain open
topics in MIR. At the same time, a full understanding of
the cognitive and perceptual processes underlying human
processing of music has yet to be reached.

Greater cross-disciplinary collaboration between MIR
and neuroscience has been proposed [14], and a number
of studies have incorporated approaches from both fields.
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For example, neural correlates of short- and long-term fea-
tures introduced in MIR for genre classification [34] have
been sought [1, 6, 10, 20], and brain responses have been
used in MIR-related applications including tempo estima-
tion [29, 30] and emotion recognition [5, 21]. Yet even as
brain data become more prevalent in MIR research, ex-
perimental design, data collection, and data cleaning can
present challenges [14]. Therefore, the research com-
munity can arguably benefit from curated, ready-to-use
datasets of brain responses to real-world musical works.

Aiming to provide an open dataset with which sev-
eral MIR and neuroscience topics can be explored, we
introduce the Naturalistic Music EEG Dataset—Tempo
(NMED-T), a dataset of EEG and behavioral responses to
commercially available musical works. The dataset con-
tains dense-array EEG responses from 20 adult participants
who listened to 10 full-length songs, as well as tapped re-
sponses to the beat of shorter excerpts (collected in a sep-
arate listen). These responses have been cleaned and ag-
gregated, and are ready to use in Matlab format along with
ratings of familiarity and enjoyment, as well as basic de-
mographic information about the participants.

NMED-T contributes to a growing body of publicly
available music-related EEG repositories, including the
DEAP [17], Music BCI [32], NMED-H [15], and Open-
MIIR [31] datasets. It is well suited for MIR research in
that the data are cleaned and ready to use but are also made
available in raw form; stimuli are complete, naturalistic 1

musical works spanning a wide range of tempos; metadata
links to stimulus audio are provided; and behavioral data
are included. Moreover, as EEG was recorded while par-
ticipants listened attentively but did not focus on any par-
ticular dimension of the songs, these data are suitable for
studying many aspects of music processing.

The remainder of the paper is structured as follows. In
§ 2 we describe stimulus selection, study design, data col-
lection, and data preprocessing. Illustrative analyses of the
preprocessed data, which build upon past music perception
and MIR approaches and reveal cortical and behavioral ev-
idence of entrainment to musical beat, are presented in § 3.
In § 4 we document the dataset itself. We conclude and
discuss potential future uses of the data in § 5.

1 Denoting real-world music—i.e., music that was created to be con-
sumed in everyday life, as opposed to controlled stimuli created for ex-
perimental research.
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2. METHODS

2.1 Stimuli

2.1.1 Stimulus Selection

As the present dataset is focused on naturalistic music and
tempo, stimuli were ecologically valid, real-world musical
works containing steady, electronically produced beats in
duple meter at a variety of tempos. The 10 selected songs
are all 4:30–5:00 in length, contain vocals (all but one in
English), and are in the Western musical tradition. Song
information is summarized in Table 1.

To aid in song selection, we computed objective mea-
sures of tempo using publicly available Matlab code [8].
The computed tempos were then validated perceptually by
four trained musicians. The final set of selected songs
range in tempo from 56–150 BPM—a wide enough range
to potentially explore octave errors [11, 35]. To facilitate
further research on the audio as well as the responses, we
purchased digital versions of all songs from Amazon, and
include in Table 1 each song’s Amazon Standard Identifi-
cation Number (ASIN).

These real-world stimuli are complex and contain en-
ergy at various frequencies—not just those directly re-
lated to the beat. We followed the approach of Nozaradan
et al. [27] and visualized low-frequency spectra of the stim-
uli. We extracted the amplitude envelope of each song us-
ing the MIR Toolbox, version 1.5 [18] at a sampling rate of
125 Hz (the sampling rate of the preprocessed EEG), and
plotted magnitude spectra up to 15 Hz. As can be seen in
Fig. 1, spectral peaks often occur at harmonics and subhar-
monics of the beat—implicating the hierarchical timescale
of music—as well as at other frequencies.

2.1.2 Stimulus Preparation

To prepare the stimuli for the EEG experiment, full-length
songs were first converted to mono using Audacity, ver-
sion 2.1.2. 2 We then embedded the second audio channel
with an intermittent click that was transmitted directly to
the EEG amplifier (not played to participants) to ensure
precise time stamping of the stimuli. For the behavioral
experiment, we created 35-second excerpts of each song.
Using Audacity, we selected the audio from 1:00–1:34 and
applied a linear fade-in and fade-out to the first and last
2 seconds, respectively. We then appended 1 second of si-
lence to make the conclusion of each excerpt more obvious
to the participant.

2.2 Participants

Twenty right-handed participants, aged 18–29 years (mean
age 23 years, 6 female) participated in the experiment. All
reported normal hearing, fluency in English, and no cogni-
tive or decisional impairments. We imposed no eligibility
criteria related to formal musical training; 17 participants
reported having received training (mean 8.4 years among
those with training). Participants reported listening to mu-
sic for 14.5 hours per week on average.

2 http://www.audacityteam.org

2.3 Experimental Specifications & Data Collection

This study was approved by the Stanford University In-
stitutional Review Board. All participants provided writ-
ten informed consent before participating. Each partici-
pant filled out a general demographic and musical back-
ground questionnaire, after which the EEG and tapping
blocks were completed, with the EEG block always oc-
curring first.

2.3.1 EEG Experiment

First, each participant was informed that the general pur-
pose of the experiment was to study human processing of
music, and that he or she would be completing an EEG ses-
sion and a behavioral test. As the EEG data were collected
for the general study of music processing (not limited to
beat perception), no explicit mention of beat or tempo was
given at this stage of the experiment. Rather, participants
were instructed simply to listen attentively to the songs as
they played, and to avoid movement of any kind (includ-
ing stretching, yawning, and tapping or moving to the beat)
during the trials. Songs were presented in random order.
Following each trial, participants delivered ratings of fa-
miliarity and enjoyment for the song just presented, on a
scale of 1–9. The EEG experiment was split into two con-
secutive recording blocks in order to mitigate participant
fatigue, limit data size of the EEG recordings, and allow
for verification of electrode impedances between record-
ings. Therefore, a total of 40 EEG recordings were col-
lected across the 20 participants.

The EEG experiment was programmed in Matlab ver-
sion 2013b 3 with a custom template built on the Psy-
chophysics Toolbox, version 3 [4]. Each participant sat
comfortably in a chair at a desk for the duration of the
experiment. Stimuli were presented through magnetically
shielded Genelec 1030A speakers at a measured loudness
level between 73–78 dB. During the trials, the participant
viewed a fixation image presented on a computer monitor
located 57 cm in front of him or her.

Dense-array EEG was recorded using the Electrical
Geodesics, Inc. (EGI) GES300 system [33]. Data were
recorded from 128 electrodes with vertex reference using
an EGI Net Amps 300 amplifier and Net Station 4.5.7
acquisition software, sampled at 1 kHz with a range of
24 bits. Electrode impedances were verified to be no
greater than 50 kΩ—an appropriate level for this system—
at the start of each recording.

2.3.2 Behavioral Experiment

Following the EEG recordings, the electrode net was re-
moved from the participant, and the behavioral test began.
Here, each participant listened to the 35-second song ex-
cerpts, after receiving instructions to “tap to the steady beat
of the song as you perceive it.” If the participant had ques-
tions about tapping to multiple tempos for a given song, he
or she was instructed to tap to the steady beat that best re-
flected his or her perception of it in the moment. Excerpts
were presented in random order.

3 https://www.mathworks.com
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# Song Title Artist ASIN Tempo (BPM) Tempo (Hz) min:sec

1 “First Fires” Bonobo B00CJE73J6 55.97 0.9328 4:38
2 “Oino” LA Priest B00T4NHS2W 69.44 1.1574 4:31
3 “Tiptoes” Daedelus B011SAZRLC 74.26 1.2376 4:36
4 “Careless Love” Croquet Club B06X9736NJ 82.42 1.3736 4:54
5 “Lebanese Blonde” Thievery Corporation B000SF16MI 91.46 1.5244 4:49
6 “Canopée” Polo & Pan B01GOL4IB0 96.15 1.6026 4:36
7 “Doing Yoga” Kazy Lambist B01JDDVIQ4 108.70 1.8116 4:52
8 “Until the Sun Needs to Rise” Rüfüs du Sol B01APT6JKA 120.00 2.0000 4:52
9 “Silent Shout” The Knife B00IMN40O4 128.21 2.1368 4:54

10 “The Last Thing You Should Do” David Bowie B018GS2A46 150.00 2.5000 4:58

Table 1. Stimulus set. Songs were selected on the basis of vocals, electronically produced beats, genre, tempo, and length.

Figure 1. Low-frequency magnitude spectra of stimulus amplitude envelopes. Frequencies related to the musical beat
hierarchy, from 1/4x the tempo (whole notes) to 8x the tempo (32nd notes) are denoted with vertical dashed lines.

Tapping responses were collected using Tap-It, an iOS
application that plays audio while simultaneously record-
ing responses tapped on the touchscreen [16]. We note
a tap-to-timestamp latency of approximately 15 msec
(st. dev. 5 msec) [16]. An Apple iPad 2 was used for this
experiment, with stimuli delivered at a comfortable listen-
ing level using over-ear Sony MDR-V6 headphones.

2.4 Data Preprocessing

All data preprocessing and analysis was conducted using
Matlab, versions 2013b and 2016b.

2.4.1 EEG Preprocessing

The following preprocessing steps were performed on in-
dividual EEG recordings that had been exported from
Net Station to Matlab cell arrays. First, data from
each electrode in the electrodes-by-time data matrix were
zero-phase filtered using 8th-order Butterworth highpass
(0.3 Hz) and notch (59–61 Hz) filters, and a 16th-order
Chebyshev Type I lowpass (50 Hz) filter. Following this,
the filtered data were temporally downsampled by a factor
of 8 to a final sampling rate of 125 Hz.

We extracted trial labels, onsets, and behavioral rat-
ings, and corrected the stimulus onset times using the click
events sent directly from the audio to the EEG amplifier.
The data for each trial were epoched, concatenated, and
DC corrected (subtracting from each electrode its median
value). Bad electrodes were removed from the data ma-
trix, resulting in a reduction in the number of rows. We
computed EOG components for tracking vertical and hori-
zontal eye movements, and retained electrodes 1–124 for
further analysis, excluding electrodes on the face. We

applied a validated approach using Independent Compo-
nents Analysis (ICA) to remove ocular and cardiac artifacts
from the data [2, 13] using the runica function from the
EEGLAB toolbox [7].

As final preprocessing steps, transients exceeding 4
standard deviations of each electrode’s mean power were
identified in an iterative fashion and replaced with NaNs.
We then reconstituted missing rows corresponding to pre-
viously identified bad electrodes with rows of NaNs, en-
suring that each data matrix contained the same number
of rows. We appended a row of zeros—representing the
vertex reference—and converted the data frame to average
reference (subtracting from each electrode the mean of all
electrodes). All missing values (NaNs) were imputed with
the spatial average of data from neighboring electrodes,
and a final DC correction was performed. Finally, the
epochs were separated once again into single trials. There-
fore, after preprocessing, each recording produced a cell
array of EEG data, each element of which contained an
electrodes-by-time matrix of size 125×T , where T varied
according to the length of the stimulus.

After preprocessing all recordings, we aggregated the
data on a per-song basis. The data frame for each song is
thus a 3D electrodes-by-time-by-participant matrix of size
125× T × 20.

2.4.2 Preprocessing of Tapping Responses

The Tap-It application stores the timestamps of taps, in
seconds, measured from the device touchscreen on a per-
trial basis, as well as each participant’s randomized stim-
ulus ordering array [16]. We aggregated the tapping re-
sponses in a cell array and the ordering arrays in a matrix.
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3. ILLUSTRATIVE ANALYSES

The following analyses are presented to illustrate basic
properties of the dataset.

3.1 EEG Responses

One approach to studying beat processing using EEG in-
volves low-frequency (≤ 20 Hz) steady-state evoked po-
tentials (SS-EPs). In an SS-EP paradigm, stimuli presented
(e.g., flashed or sounded) at a particular frequency elicit
brain responses at that same frequency. While SS-EPs are
more often used to study vision processing [25], the ap-
proach has in recent years been used to study responses to
auditory rhythms. Here, SS-EPs have shown evidence of
entrainment to musical beat, peaking at beat- and meter-
related frequencies even when metrical accents are imag-
ined [26] or when beat frequencies do not dominate low-
frequency stimulus spectra [27]. To our knowledge, mu-
sic SS-EP studies have to date used simple, synthesized
rhythmic patterns as stimuli. Our first illustrative analysis
extends this approach to complex, naturalistic music.

Spatial filtering is a technique for EEG analysis
whereby a weighted sum of electrodes is computed sub-
ject to some criterion [3]. Advantages of concentrating ac-
tivity of interest from many electrodes to a few spatially
filtered components include dimensionality reduction, im-
proved SNR, and a reduction in multiple comparisons. For
the present analysis we consider two simple spatial filters.
The first is simply the mean across all electrodes (ME),
which can be thought of as a constant weight applied to
each electrode. For the second, we perform Principal Com-
ponents Analysis (PCA), and analyze the first PC of data.

We first averaged each song’s 3D electrodes-by-time-
by-participant matrix across participants, producing an
electrodes-by-time matrix for each song. Then, so that we
analyzed the same amount of data for each song and to
account for the time course of listener entrainment to the
beat [9], we retained 4 minutes of data from each song,
starting 15 seconds into the song.

To compute the spatial filters, we concatenated the
participant-averaged data frames across all songs, produc-
ing an electrodes-by-aggregated-time matrix. Then, for the
ME spatial filter, we computed the mean across electrodes,
while for the PCA filter we computed electrode weightings
for PC1 using Singular Value Decomposition (SVD). Fi-
nally, we reshaped each resulting song-concatenated com-
ponent vector into a songs-by-time matrix. As our current
interest is on SS-EPs, we present the magnitude spectrum
of each component on a per-song basis.

The SS-EPs are shown in Fig. 2; y-axis scaling is con-
sistent within each spatial filtering technique. By inspec-
tion of the plots, low frequencies (<15 Hz) of ME spectra
occasionally contain peaks at frequencies in the musical
beat hierarchy (e.g., Song 5). PC1 performs better, elic-
iting more robust spectral peaks at beat-related frequen-
cies. Moreover, EEG PC1 appears to peak at frequencies
directly related to musical beat, while suppressing many of
the other spectral peaks that were observed in the magni-
tude spectra of stimulus amplitude envelopes (Fig. 1).

Spatial filters can be visualized by projecting the filter
weights on a 2D scalp topography. While it is common
to convert the spatial filter weights to a so-called “forward
model,” which captures the projection of filtered activity
on the scalp, for PCA the spatial filter is equivalent to the
forward model [28]. The ME filter, applying a constant
weight to all electrodes, would reveal no spatial variation.
However, the PC1 filter topography (Fig. 2, bottom right)
applies a range of positive and negative weights to the elec-
trodes, which may help to explain why this filter produces
more prominent spectral peaks at beat frequencies.

3.2 Behavioral Ratings

Participant ratings of familiarity and enjoyment are shown
in Fig. 3. Familiarity with the songs was low overall; rat-
ings of enjoyment tended to be higher, and also varied
more across participants.

3.3 Tapped Responses

For each trial of tapping data, we first converted each inter-
tap interval to an instantaneous measure of tempo in Hz,
mapped it to the midpoint of the interval, and then linearly
interpolated the result to a consistent timing grid with a
temporal resolution of 2 Hz. We analyze and plot data from
a 17-second interval starting 15 seconds into the excerpt
(i.e., starting at time 1:15 in the complete song).

The aggregate tapping responses are shown in Fig. 4.
We present two visualizations of these results. First, the
top figure for each song shows instantaneous tempo over
the time of the excerpt for individual participants (gray
curves), with the median across participants plotted in
black. In bottom figures, we compute the median tempo
across time for each individual participant, and summa-
rize with histograms. Beat-related frequencies are shown
in the orange (1/2x tempo frequency), green (tempo fre-
quency), and red (2x tempo frequency) lines. To a large
extent, participants tended to tap at what we had previously
determined to be the tempo frequency. However, there
are cases of lower agreement, particularly for the slowest
songs (Song 1 and Song 2). Here, the histograms suggest
a nearly bimodal distribution of tapped tempos, split be-
tween the computational measure and twice that, with the
higher measure lying closer to what is considered the pre-
ferred tempo region for humans [23].

4. PUBLISHED DATASET

We publish the cleaned EEG data, aggregated behavioral
ratings, aggregated tapped responses, and basic demo-
graphic data about the participants in Matlab .mat for-
mat. Example code and helper functions for the illustrative
analyses are provided, also in Matlab format. Finally, we
publish raw EEG recordings (for researchers who wish to
apply their own preprocessing pipelines) as well as individ-
ual files of the tapped responses. The dataset is available
for download from the Stanford Digital Repository [22], 4

published under a Creative Commons CC-BY license.
4 https://purl.stanford.edu/jn859kj8079
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Figure 2. Low-frequency EEG spectra using a mean-electrode spatial filter (top) and PC1 spatial filter (bottom) for each
song. Beat-related frequencies are shown with dashed vertical lines. Bottom right: PC1 spatial filter weights.

Figure 3. Participant ratings of familiarity and enjoyment.

4.1 Cleaned EEG Data

The .mat file songSS Imputed.mat contains the
cleaned EEG records, aggregated across participants, for
song SS (§ 2.4.1). There are 10 such files, one per song.
Each .mat file contains the following variables:
• dataSS: 3D electrodes-by-time-by-participant data

frame. The size is 125 × T × 20, with T varying
according to the song.

• subsSS: Cell array of participant ids. Contents are
the same for all songs, but are included in order to
link these data to raw EEG files, raw tapping re-
sponses, and participant demographics.

• fs: Sampling rate, in Hz (always 125).

4.2 Raw EEG Data

We provide the raw EEG records in their exported state
before preprocessing. No filtering, epoching, or cleaning
has been performed. As each participant underwent two
recordings, there are a total of 40 raw EEG files. The file
PP R raw.mat refers to recording R∈ 1, 2 from partici-
pant PP. Each file contains the following variables:
• X: Raw data frame. Size is electrodes-by-time,

129×T , where T is the total length of the recording,
including time periods not related to the experimen-
tal trials. The vertex reference electrode is row 129.

• DIN 1: Cell array containing all event labels (trig-
gers) and times. We provide the helper function
parseDIN.m to extract the labels and onsets into
numeric vectors. Full specification on labels is pro-
vided in the README file accompanying the dataset.

• fs: Sampling rate, in Hz (always 1000).

4.3 Behavioral Ratings

Participants delivered ratings of familiarity (Q1) and en-
joyment (Q2) of each song during the EEG session. The
file behavioralRatings.mat contains a single vari-
able behavioralRatings, which is a 3D participant-by-
song-by-question (20× 10× 2) matrix.

4.4 Tapping Responses

Aggregated and raw tapping responses are stored in the file
TapIt.zip. This archive contains the file TapIt.mat,
which comprises the following variables:
• allTappedResponses: Aggregated tapped response

times across all participants and songs. This is a
participants-by-song (20×10) cell array. Each entry
is a column vector of tap times in seconds, recorded
from the device touchscreen.

• allSongOrders: Song-order vectors, aggregated
across all participants. This is a participants-by-trial
(20×10) matrix, where each row contains the stimu-
lus presentation order for the respective participant.
Numbering starts at 1.

Individual response files are also included in the .zip file:
• PPP SS.txt: Single trial of tapped responses, in sec-

onds, for participant PPP and song SS.
• PPP play order.txt: Stimulus presentation ordering

for participant PPP. Numbering starts at 0.

4.5 Participant Demographics

The file participantInfo.mat contains a struct ar-
ray participantInfo with participant demographics. Fields
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Figure 4. Tapping responses. Top: Instantaneous tempo over time for individual participants (gray), with median across
participants in black. Bottom: Histograms of median tempo, over time, for individual participants. Ground-truth tempos
are shown with orange (1/2x tempo frequency), green (tempo frequency), and red (2x tempo frequency) lines.

include age, nYearsTraining, weeklyListening (hours), and
id (participant identifier link to raw filenames).

4.6 Code

The file Code.zip contains the Matlab scripts for the
analyses performed in § 3. A variety of helper functions
and files (e.g., electrode location map, script to parse the
DIN 1 variable in raw EEG files) are also provided here.

5. DISCUSSION

This paper introduces NMED-T, an open dataset of elec-
trophysiological and behavioral responses collected from
20 participants listening to real-world musical excerpts.
The published data include both raw and preprocessed
dense-array EEG and tapping responses, behavioral ratings
of the songs, and basic demographic information.

Our illustrative analyses validate the frequency-tagging,
SS-EP approach [26, 27] with responses to complex, nat-
uralistic music (Fig. 2). Even a simple PCA filter com-
puted from trial-averaged responses highlights beat-related
frequencies in the EEG spectra. Many PC1 spectra show
prominent peaks between 5–10 Hz, regardless of tempo;
future research could use this dataset to investigate further
the stimulus and response attributes contributing to this
phenomenon. The variability in tapping responses (Fig. 4)
highlights the challenge of defining a ‘ground truth’ for
tempo and beat identification, particularly for complex mu-
sic [24]. Here we see various, sometimes conflicting re-
sults across and within participants’ tapped responses. Past
research has suggested that humans inherently prefer cer-
tain frequencies related to natural movement [23,35]. This
may help to explain why some participants tapped at twice
the tempo for the slowest songs, tending toward the postu-
lated 2-Hz natural resonant frequency.

We faced several trade-offs when designing the study.
Collection of EEG data, while relatively inexpensive [14],
still incurs costs of equipment and time. Participant fa-
tigue must also be taken into account when planning the
overall duration of an experiment. As we wished to col-
lect EEG responses to a set of full-length songs from ev-
ery participant, we were limited in the number of songs

we could use, and relegated the secondary tapping task to
shorter excerpts. Stimulus selection, too, is often a com-
promise of breadth and depth. For example, the OpenMIIR
dataset [31] uses shorter stimuli from a variety of genres,
but at the expense of depth within any one genre; while the
NMED-H [15] includes various stimulus manipulations of
complete songs, but only four songs from a single genre.
Our focus on full-length songs with a steady beat and a va-
riety of tempos limited the range of genres somewhat. We
also deliberately avoided massively popular songs in or-
der to minimize possible effects, on the brain responses, of
varying familiarity, established personal preferences, and
autobiographical associations with the songs [12].

There are shortfalls to the dataset. One potential con-
found is that the EEG session always preceded the behav-
ioral task; thus, participants were more familiar with the
music during the tapping task. As a result, the tapping
data may not be suitable for studying the time course of
beat entrainment. However, we chose this arrangement so
that participants would not be focused specifically on beat
while EEG responses were recorded. Second, the tapping
data show variations in tapped tempo across participants
and within-participant over time. Whether this reflects our
participant pool (not all trained musicians), inadequate in-
struction for the task, or is merely characteristic of this re-
sponse is not addressed in the present illustrative analyses.
Finally, listeners are known to exhibit variations in tempo
octave during tapping while largely agreeing on whether
a song is fast or slow [19], but we unfortunately did not
collect data here to explore this distinction.

Generally speaking, this dataset facilitates research on
encoding and decoding of naturalistic music. While the
study design and initial analyses focused primarily on beat
and tempo, the EEG responses can be analyzed in conjunc-
tion with various other stimulus features as well. Investiga-
tion of individual differences is also possible (e.g., predict-
ing a particular participant’s tapping tempo or preference
rating from his or her own EEG). Other researchers might
consider augmenting the dataset with complementary re-
sponses to the same songs. Ideally, the dataset will find ap-
plications in MIR and neuroscience research beyond those
envisioned by the authors of this study.
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