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ABSTRACT

Chord recognition is a fundamental task in the harmonic
analysis of tonal music, in which music is processed into
a sequence of segments such that the notes in each seg-
ment are consistent with a corresponding chord label. We
propose a machine learning model for chord recognition
that uses semi-Markov Conditional Random Fields (semi-
CRFs) to perform a joint segmentation and labeling of
symbolic music. One benefit of using a semi-Markov
model is that it enables the utilization of segment-level fea-
tures, such as segment purity and chord coverage, that cap-
ture the extent to which the events in an entire segment of
music are compatible with a candidate chord label. Corre-
spondingly, we develop a rich set of segment-level features
for a semi-CRF model that also incorporates the likelihood
of a large number of chord-to-chord transitions. Evalua-
tions on a dataset of Bach chorales and a corpus of theme
and variations for piano by Beethoven and Mozart show
that the proposed semi-CRF model outperforms a discrim-
inatively trained Hidden Markov Model (HMM) that does
sequential labeling of sounding events, thus demonstrating
the suitability of semi-Markov models for joint segmenta-
tion and labeling of music.

1. INTRODUCTION AND MOTIVATION

Harmonic analysis is an important step towards creating
high level representations of tonal music. High level struc-
tural relationships form an essential component of music
analysis, whose aim is to achieve a deep understanding of
how music works. At its most basic level, harmonic anal-
ysis requires the partitioning of music into segments along
the time dimension, such that the notes in each segment
correspond to a musical chord. This chord recognition
task can often be time consuming and cognitively demand-
ing, hence the utility of computer-based implementations.
Reflecting historical trends in artificial intelligence, auto-
matic approaches to harmonic analysis have evolved from
purely grammar-based and rule-based systems [6, 15], to
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Figure 1. Segment-based recognition (top) vs. event-
based recognition (bottom), on measures 11 and 12 from
Beethoven WoO68.

systems employing weighted rules and optimization algo-
rithms [8, 11, 13, 14], to data driven approaches based on
supervised machine learning (ML) [9, 10]. Due to their re-
quirements for annotated data, ML approaches have also
led to the development of music analysis datasets contain-
ing a large number of manually annotated harmonic struc-
tures, such as the 60 Bach Chorales introduced in [9], and
the 27 theme and variations of TAVERN [2].

A relatively common strategy in ML approaches to
chord recognition is to break the musical input into a se-
quence of short duration spans and then train sequence
tagging algorithms such as HMMs to assign a chord label
to each span in the sequence (at the bottom in Figure 1).
The spans can result from quantization using a fixed mu-
sical period such as half a measure [10] or constructed
from consecutive note onsets and offsets [9]. Variable-
length chord segments are then created by joining consec-
utive spans labeled with the same chord symbol (at the top
in Figure 1). A significant drawback of these short-span
tagging approaches is that segments are not known during
training and inference, therefore the ML model cannot use
features that capture properties of segments that are known
to be relevant with respect to their harmonic content. The
chordal analysis system of Pardo and Birmingham [8] is
an example where the assignment of chords to segments
takes into account segment-based features, however it uses
a processing pipeline where segmentation is done indepen-
dently of the subsequent chord labeling.

In this paper, we propose a machine learning approach
to chord recognition in which a semi-Markov CRF model
is trained to do joint segmentation and labeling of sym-
bolic music. Also called segmental CRFs, this class of
models can exploit features that look at all the notes in-
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side a segment. Correspondingly, we define a rich set of
features that capture the extent to which the events in an
entire segment of music are compatible with a candidate
chord label. When evaluated on a dataset of Bach chorales,
the semi-CRF approach obtains a 15% error reduction over
an event-tagging system. Substantially larger improve-
ments in event-level and segment-level performance are
observed on a more difficult corpus of theme and variations
by Beethoven and Mozart, thus validating empirically the
modeling advantage of joint segmentation and labeling.

2. SEMI-MARKOV CRF MODEL FOR CHORD
RECOGNITION

Since harmonic changes may occur only when notes be-
gin or end, we first create a sorted list of all the note on-
sets and offsets in the input music, i.e. the list of partition
points [8]. A basic music event [9] is then defined as the
set of notes sounding in the time interval between two con-
secutive partition points. Let s = hs1, s2, ..., sKi denote
a segmentation of the musical input x, where a segment
sk = hsk.f, sk.li is identified by the indices sk.f and sk.l
of its first and last events, respectively.

Let y = hy1, y2, ..., yKi be the vector of chord labels
corresponding to the segmentation s. The set of labels
can range from coarse grained labels that indicate only the
chord root [14] to fine grained labels that capture mode,
inversions, added and missing notes [3], and even chord
function [2]. Here we follow the middle ground proposed
by Radicioni and Esposito [9] and define a set of labels that
encode the chord root (12 pitch classes), the mode (ma-
jor, minor, diminished), and the added note (none, fourth,
sixth, seventh), for a total of 144 different labels. Since
the labels do not encode for function, the model does not
require knowing the key in which the input was written.

A semi-Markov CRF [12] defines a probability distribu-
tion over segmentations and their labels as shown in Equa-
tions 1 and 2. Here, the global segmentation feature vec-
tor F decomposes as a sum of local segment feature vec-
tors f(sk, yk, yk�1,x), with label y0 set to a constant “no
chord” value. The ensuing factorization of the distribution
enables an efficient computation of the most likely seg-
mentation argmax

s,y P (s,y|x,w) using a semi-Markov
analogue of the Viterbi algorithm [12].

P (s,y|x,w) =

ew
T
F(s,y,x)

Z(x)

(1)

Z(x) =

X

s,y

ew
T
F(s,y,x)

F(s,y,x) =

KX

k=1

f(sk, yk, yk�1,x) (2)

Following Muis and Lu [7], for faster inference, we further
restrict the local segment features to two types: segment-
label features f(sk, yk,x) that depend on the segment and
its label, and label transition features g(yk, yk�1,x) that
depend on the labels of the current and previous segments.
The corresponding probability distribution over segmenta-
tions is shown in Equations 3 to 5 below.

Given an arbitrary segment s and a label y, the vector
of segment-label features can be written as f(s, y,x) =

[f1(s, y), ..., f|f |(s, y)], where the input x is left implicit
in order to compress the notation. Similarly, given arbi-
trary labels y and y0, the vector of label transition features
can be written as g(y, y0,x) = [g1(y, y0), ..., g|g|(y, y

0
)].

In Section 3 we describe the set of segment-label features
fi(s, y) and label transition features gj(y, y0) that are used
in our semi-CRF chord recognition system.

P (s,y|x,w) =

ew
T
F(s,y,x)+u

T
G(s,y,x)

Z(x)

(3)

F(s,y,x) =

KX

k=1

f(sk, yk,x) (4)

G(s,y,x) =

KX

k=1

g(yk, yk�1,x) (5)

3. CHORD RECOGNITION FEATURES

Given a segment s and chord y, we will use the following
notation:

• s.Notes , s.N = the set of notes in the segment s.

• s.Events , s.E = the sequence of events in s.

• e.len, n.len = the length of event e or note n, in
quarters.

• e.acc, n.acc = the accent value of event e or note n,
as computed by the beatStrength() function in
Music21 1 . This is a value that is determined based
on the metrical position of n, e.g. in a song written
in a 4/4 time signature, the first beat position would
have a value of 1.0, the third beat 0.5, and the sec-
ond and fourth beats 0.25. Any other eighth note
position within a beat would have a value of 0.125,
any sixteenth note position strictly within the beat
would have a value of 0.0625, and so on.

• y.root , y.third , and y.fifth = the triad tones of the
chord y.

• y.added = the added note of chord y, if y is an added
tone chord.

We use the following heuristics to determine whether a
note n from a segment s is a figuration note with respect to
a candidate chord label y:

1. Passing: There are two anchor notes n1 and n2 such
that: n1’s offset coincides with n’s onset; n2’s onset
coincides with n’s offset; n1 is one scale step below
n and n2 is one step above n, or n1 is one step above
n and n2 one step below; n is not longer than either
n1 or n2; the accent value of n is strictly smaller than
the accent value of n1; at least one of the two anchor
notes belongs to segment s; n is non-harmonic with
respect to chord y, i.e. n is not equivalent to the root,

1 http://web.mit.edu/music21
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third, fifth, or added note of y; both n1 and n2 are
harmonic with respect to the segments they belong
to.

2. Neighbor: There are two anchor notes n1 and n2

such that: n1’s offset coincides with n’s onset; n2’s
onset coincides with n’s offset; n1 and n2 are both
either one step below or one step above n; n is not
longer than either n1 or n2; the accent value of n is
strictly smaller than the accent value of n1; at least
one of the two anchor notes belongs to segment s; n
is non-harmonic with respect to chord y; both anchor
notes are harmonic with respect to the segments they
belong to.

3. Suspension: Note n belongs to the first event of seg-
ment s. There is an anchor note m in the previous
event (last event in the previous segment) such that:
m and n have the same pitch; n is either tied with
m (i.e. held over) or m’s offset coincides with n’s
onset (i.e. restruck); n is not longer than m; n is
non-harmonic with respect to chord y, while m is
harmonic with respect to the previous chord.

4. Anticipation: Note n belongs to the last event of
segment s. There is an anchor note m in the next
event (first event in the next segment) such that: n
and m have the same pitch; m is either tied with
n (i.e. held over) or n’s offset coincides with m’s
onset (i.e. restruck); n is not longer than m; n is
non-harmonic with respect to chord y, while m is
harmonic relative to all other notes in its event.

Futhermore, because we are using the weak semi-CRF fea-
tures shown in Equation 4, we need a heuristic to determine
whether an anchor note is harmonic whenever the anchor
note precedes the current segment. The heuristic simply
looks at the other notes in the event containing the anchor
note: if the event contains 2 or more other notes, at least 2
of them need to be consonant with the anchor, i.e. intervals
of octaves, fifths, thirds, and their inversions; if the event
contains just one other note, it has to be consonant with the
anchor.

We emphasize that the rules mentioned above for de-
tecting figuration notes are only approximations. We rec-
ognize that correctly identifying figuration notes can also
depend on subtler stylistic and contextual cues, thus allow-
ing for exceptions to each of these rules.

Equipped with this heuristic definition of figuration
notes, we augment the notation as follows:

• s.Fig(y) = the set of notes in s that are figuration
with respect to chord y.

• s.NonFig(y) = s.Notes � s.Fig(y) = the set of
notes in s that are not figuration with respect to y.

Some of the segment-label features introduced in this
section have real values. Given a real-valued feature
f(s, y) that takes values in [0, 1], we discretize it into K+2

Boolean features by partitioning the [0, 1] interval into a set

of K subinterval bins B = {(bk�1, bk]|1  k  K}. For
each bin, the corresponding Boolean feature determines
whether f(s, y) 2 (bk�1, bk]. Additionally, two Boolean
features are defined for the boundary cases f(s, y) = 0 and
f(s, y) = 1. For each real-valued feature, unless specified
otherwise, we use the bin set B = [0, 0.1, ..., 0.9, 1.0].

3.1 Segment Purity

The segment purity feature f1(s, y) computes the fraction
of the notes in segment s that are harmonic, i.e. belong to
chord y:

f1(s, y) =

X

n2s.Notes

1[n 2 y]

|s.Notes|
The duration-weighted version f2(s, y) of the purity fea-

ture weighs each note n by its length n.len:

f2(s, y) =

X

n2s.Notes

1[n 2 y] ⇤ n.len

X

n2s.Notes

n.len

The accent-weighted version f3(s, y) of the purity feature
weighs each note n by its accent weight n.acc:

f3(s, y) =

X

n2s.Notes

1[n 2 y] ⇤ n.acc

X

n2s.Notes

n.acc

The 3 real-valued features are discretized using the default
bin set B.

3.1.1 Figuration-Controlled Segment Purity

For each segment purity feature, we create a figuration-
controlled version that ignores notes that were heuristi-
cally detected as figuration, i.e. replace s.Notes with
s.NonFig(y) in each feature formula.

3.2 Chord Coverage

The chord coverage features determine which of the chord
notes belong to the segment. The first 3 features refer to
the triad notes:

f4(s, y) = 1[y.root 2 s.Notes]

f5(s, y) = 1[y.third 2 s.Notes]

f6(s, y) = 1[y.fifth 2 s.Notes]

A separate feature determines if the segment contains all
the notes in the chord:

f7(s, y) =
Y

n2y

1[n 2 s.Notes]

A chord may have an added tone y.added , such as a 4th,
a 6th, or a 7th. If a chord has an added tone, we define two
features that determine whether the segment contains the
added note:

f8(s, y) = 1[9y.added ^ y.added 2 s.Notes]

f9(s, y) = 1[9y.added ^ y.added /2 s.Notes]
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Through the first feature, the system can learn to prefer the
added tone version of the chord when the segment con-
tains it, while the second feature enables the system to
learn to prefer the triad-only version if no added tone is
in the segment. To prevent the system from recognizing
added chords too liberally, we add a feature that is trig-
gered whenever the total length of the added note in the
segment is greater than the total length of the root:

alen(s, y) =
X

n2s.Notes

1[n = y.added ] ⇤ n.len

rlen(s, y) =
X

n2s.Notes

1[n = y.root ] ⇤ n.len

f10(s, y) = 1[9y.added ] ⇤ 1[alen(s, y) > rlen(s, y)]

The duration-weighted versions of the chord coverage fea-
tures weigh each chord tone by its total duration in the
segment. For the root, the feature would be computed as
shown below:

f11(s, y) =

X

n2s.Notes

1[n = y.root ] ⇤ n.len

X

n2s.Notes

n.len

Similar features f12 and f13 are computed for the third and
the fifth. The corresponding accent-weighted features f14,
f15, and f16 are computed in a similar way, by replacing
the note duration n.len in the duration-weighted formulas
with the note accent value n.acc.

The duration-weighted feature for the added tone is
computed similarly:

f17(s, y) =

1[9y.added ] ⇤
X

n2s.Notes

1[n = y.added ] ⇤ n.len

X

n2s.Notes

n.len

Furthermore, by replacing n.len with n.acc, we also ob-
tain the accent-weighted version f18.

An alternative definition of duration-weighted features
is based on the proportion of the segment time that is
covered by a particular chord note. The corresponding
duration-weighted feature for the chord root is shown be-
low:

f19(s, y) =

X

e2s.Events

1[y.root 2 e] ⇤ e.len

X

e2s.Events

e.len

Similar duration-weighted features normalized by the seg-
ment length are defined for thirds, fifths, and added notes.

All duration-weighted and accent-weighted features are
discretized using the default bin set B.

3.2.1 Figuration-Controlled Chord Coverage

For each chord coverage feature, we create a figuration-
controlled version that ignores notes that were heuristi-
cally detected as figuration, i.e. replace s.Notes with
s.NonFig(y) in each feature formula.

3.3 Bass

The bass note provides the foundation for the harmony of
a musical segment. For a correct segment, its bass note of-
ten matches the root of its chord label. If the bass note in-
stead matches the chord’s third, fifth, or added dissonance,
this may indicate that the chord is inverted. Thus, compar-
ing the bass note with the chord tones can provide useful
features for determining whether a segment is compatible
with a chord label.

There are multiple ways to define the bass note of a seg-
ment s. One possible definition is the lowest note of the
first event in the segment, i.e. s.e1.bass . Comparing it with
the root, third, fifth, and added tones of a chord results in
the following features:

f20(s, y) = 1[s.e1.bass = y.root ]

f21(s, y) = 1[s.e1.bass = y.third ]

f22(s, y) = 1[s.e1.bass = y.fifth]

f23(s, y) = 1[9y.added ^ s.e1.bass = y.added ]

An alternative definition of the bass note of a segment is
the lowest note in the entire segment, i.e. mine2s.E e.bass .
The corresponding features will be:

f24(s, y) = 1[y.root = min

e2s.E
e.bass]

f25(s, y) = 1[y.third = min

e2s.E
e.bass]

f26(s, y) = 1[y.fifth = min

e2s.E
e.bass]

f27(s, y) = 1[9y.added ^ y.added = min

e2s.E
e.bass]

The duration-weighted version of the bass features
weigh each chord tone by the time it is used as the low-
est note in each segment event, normalized by the duration
of the bass notes in all the events. For the root, the feature
is computed as shown below:

f28(s, y) =

X

e2s.Events

1[e.bass = y.root ] ⇤ e.len

X

e2s.Events

e.len

Similar features f29 and f30 are computed for the third
and the fifth. The duration-weighted feature for the added
tone is computed as follows:

f31(s, y) =

1[9y.added ] ⇤
X

e2s.E

1[e.bass = y.root ] ⇤ e.len

X

e2s.E

e.len

The corresponding accent-weighted features f31, f32, f33,
and f34 are computed in a similar way, by replacing the
bass duration e.bass.len in the duration-weighted formulas
with the note accent value e.bass.acc.

All duration-weighted and accent-weighted features are
discretized using the default bin set B.
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3.3.1 Figuration-Controlled Bass

For each bass feature, we create a figuration-controlled
version that ignores event bass notes that were heuristi-
cally detected as figuration, i.e. replace e 2 s.Events with
e 2 s.Events^e.bass /2 s.Fig(y) in each feature formula.

3.4 Chord Bigrams

The arrangement of chords in chord progressions is an im-
portant component of harmonic syntax [1]. A first order
semi-Markov CRF model can capture chord sequencing in-
formation only through the chord labels y and y0 of the cur-
rent and previous segment. To obtain features that gener-
alize to unseen chord sequences, we follow Radicioni and
Esposito [9] and create chord bigram features using only
a) the mode: major (M), minor (m), or diminished (d); b)
the added note: none (;), fourth (4), sixth (6), or seventh
(7); and c) the interval in semitones between the roots of
the two chords.

g1(y, y
0) = 1[y.mode={M,m, d} ^ y.added={;, 4, 6, 7}^

y0.mode={M,m, d} ^ y0.added={;, 4, 6, 7}^
��y.root � y0.root

�� = {0, 1, ..., 11}]

Note that g1(y, y0) is a feature template that can gen-
erate (3 modes ⇥ 4 added)2⇥ 12 intervals = 1,728 dis-
tinct features. To reduce the number of features, we use
only the (mode.added)–(mode.added)’–interval combina-
tions that appear in the manually annotated chord bigrams
from the training data.

4. CHORD RECOGNITION DATASETS

For evaluation, we used two chord recognition datasets:

1. BCHD: this is the Bach Choral Harmony Dataset, a
corpus of 60 four-part Bach chorales that contains
5,664 events and 3,090 segments in total [9].

2. TAVERN: this is a corpus of 27 complete sets of
theme and variations for piano, composed by Mozart
and Beethoven. It consists of 63,876 events and
12,802 segments overall [2].

The BCHD corpus has been annotated by a human expert
with chord labels, using the set of labels described in Sec-
tion 2. Of the 144 possible labels, 102 appear in the dataset
and of these only 68 appear 5 times or more. Some of the
chord labels used in the manual annotation are enharmonic,
e.g. C-sharp major and D-flat major, or D-sharp major and
E-flat major. Reliably producing one of two enharmonic
chords cannot be expected from a system that is agnostic
of the key context. Therefore, we normalize the chord la-
bels and for each mode we define a set of 12 canonical
roots, one for each scale degree. When two enharmonic
chords are available for a given scale degree, we selected
the one with the fewest sharps or flats in the correspond-
ing key signature. Consequently, for the major mode we
use the canonical root set {C, Db, D, Eb, F, Gb, G, Ab,
A, Bb, B}, whereas for the minor and diminished modes

we used the root set {C, C#, D, D#, F, F#, G, G#, A, Bb,
B}. Thus, if a chord is manually labeled as C-sharp ma-
jor, the label is automatically changed to the enharmonic
D-flat major. The actual chord notes used in the music are
left unchanged. Whether they are spelled with sharps or
flats is immaterial, as long as they are enharmonic with the
root, third, fifth, or added note of the labeled chord.

The TAVERN dataset 2 currently contains 17 works by
Beethoven (181 variations) and 10 by Mozart (100 vari-
ations). The themes and variations are divided into a
total of 1,060 phrases, 939 in major and 121 in minor.
The pieces have two levels of segmentations: chords and
phrases. The chords are annotated with Roman numer-
als, using the Humdrum representation for functional har-
mony 3 . When finished, each phrase will have annotations
from two different experts, with a third expert adjudicat-
ing cases of disagreement between the two. After adjudi-
cation, a unique annotation of each phrase is created and
joined with the note data into a combined file encoded in
standard **kern format. However, many pieces do not cur-
rently have the second annotation or the adjudicated ver-
sion. Consequently, we only used the first annotation for
each of the 27 sets. Furthermore, since our chord recog-
nition approach is key agnostic, we developed a script that
automatically translated the Roman numeral notation into
the key-independent canonical set of labels used in BCHD.
Because the TAVERN annotation does not mark added
fourth or sixth notes, the only added chords that were gen-
erated by the translation script were those containing sev-
enths. This results in a set of 72 possible labels, of which
69 appear in the dataset.

Few other annotated chord recognition datasets exist.
One of these is the Kostka-Payne corpus 4 , a dataset of 46
brief excerpts compiled by David Temperley from Kostka
and Payne’s music theory textbook [4]. Several chord
recognition systems have used this dataset in the past [8,9].
However, it is smaller than both BCHD and TAVERN,
with 3,964 events and only 779 segments. Another dataset
is Chris Harte’s Beatles collection [3], containing anno-
tations for 12 complete albums. Though this dataset is
much larger in size, the chord labels are mapped to audio.
We considered re-mapping these labels to MIDI files, but
had difficulty finding accurate MIDI files for most Beatles
songs.

5. EXPERIMENTAL EVALUATION

We implemented the semi-Markov CRF chord recognition
system using a multi-threaded package 5 that has been pre-
viously used for noun-phrase chunking of informal text [7].
Following the experimental setting from [9], we evaluated
the semi-CRF model on BCHD using 10-fold cross val-
idation: the 60 Bach Chorales were split into 10 folds,
and each fold was used as test data, with the other nine
folds being used for training. We used the same parti-

2 https://github.com/jcdevaney/TAVERN
3 http://www.humdrum.org/Humdrum/representations/harm.rep.html
4 http://www.cs.northwestern.edu/ pardo/kpcorpus.zip
5 http://statnlp.org/research/ie/
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tion into folds as that employed by Radicioni and Espos-
ito [9], to enable comparison with their perceptron-trained
HMM system, henceforth referred to as HMPerceptron.
We also used their set of labels, consisting of the 102
chords observed in the dataset, which corresponds to 90
canonical chords. For each feature we computed its fre-
quency of occurrence in the training data, using only the
true segment boundaries and their labels. To speedup train-
ing and reduce overfitting, we only used features whose
counts were at least 5. The performance measures were
computed by pooling together the results from the 10 test
folds. Table 1 shows the event-level and segment-level
performance of the semi-CRF model, together with two
versions of the HMPerceptron: HMPerceptron1, for which
we do enharmonic normalization both on training and test
data, similar to the normalization done for semi-CRF; and
HMPerceptron2, which is the original system from [9] that
does enharmonic normalization only on test data. When
computing the segment-level performance, a predicted seg-
ment is considered correct only if both its boundaries and
its label match those of the true segment.

System AccE PS RS FS

semi-CRF 83.16% 77.60% 73.48% 75.48%
HMP-tron1 80.30% 74.18% 69.76% 71.90%
HMP-tron2 80.16% 70.24% 65.78% 67.94%

Table 1. Comparative results on the BCHD dataset, using
Event-level accuracy (AccE) and Segment-level precision
(PS), recall (RS), and F-measure (FS).

The semi-CRF model achieves a 3% improvement in
accuracy over the original HMPerceptron model, which
corresponds to a 15% relative error reduction. The im-
provement in accuracy over HMPerceptron1 is statistically
significant at a p-value of 0.01, using a one-tailed Welch’s
t-test over the sample of 60 chorale results. The improve-
ment in segment-level performance is even more substan-
tial, with a 7.5% absolute improvement in F-measure over
the original HMPerceptron model, and a 3.6% improve-
ment in F-measure over the HMPerceptron1 version, which
is statistically significant at a p-value of 0.04, using a one-
tailed Welch’s t-test.

Error analysis revealed wrong predictions being made
on chords that contained dissonances that spanned the du-
ration of the entire segment (e.g. a second above the root of
the annotated chord), likely due to an insufficient number
of such examples during training. Manual inspection also
revealed a non-trivial number of cases in which the authors
disagreed with the manually annotated chords, e.g. some
chord labels were clear mistakes, as they did not contain
any of the notes in the chord. This further illustrates the
necessity of building music analysis datasets that are an-
notated by multiple experts, with adjudication steps akin
to the ones followed by TAVERN.

To evaluate on the TAVERN corpus, we created a test
dataset from 6 Beethoven sets (B063, B064, B065, B066,
B068, B069) and 4 Mozart sets (K025, K179, K265, K353).

The remaining 11 Beethoven sets and 6 Mozart sets were
used for training. All sets were normalized enharmoni-
cally before being used for training or testing. Table 2
shows the event-level and segment-level performance of
the semi-CRF and HMPerceptron model on the TAVERN
dataset. Despite the smaller number of chord labels (69 in

System AccE PS RS FS

semi-CRF 77.47% 66.86% 60.35% 63.44%
HMP-tron 60.55% 27.83% 23.21% 25.31%

Table 2. Comparative results on the TAVERN dataset, us-
ing Event-level accuracy (AccE) and Segment-level preci-
sion (PS), recall (RS), and F-measure (FS).

TAVERN vs. 90 in BCHD), the results in Tables 1 and 2
show that chord recognition is substantially more difficult
in the TAVERN dataset. The comparatively lower perfor-
mance on TAVERN is likely due to the substantially larger
number of figurations and higher rhythmic diversity of the
variations compared to the easier, mostly note-for-note tex-
ture of the chorales. Error analysis on TAVERN revealed
many segments where the first event did not contain the
root of the chord. For such segments, HMPerceptron in-
correctly assigned chord labels whose root matched the
bass of this first event. Since a single wrongly labeled
event invalidates the entire segment, this can explain the
larger discrepancy between the event-level accuracy and
the segment-level performance. In contrast, semi-CRF as-
signed the correct labels in these cases, likely due to its
ability to exploit context through segment-level features,
such as the chord root coverage feature f4 and its duration-
weighted version f11.

6. CONCLUSION AND FUTURE WORK

We presented a semi-Markov CRF approach to chord
recognition that does joint segmentation and labeling of
tonal music in symbolic form. Compared to event-level
tagging approaches based on HMMs or linear CRFs, the
segmental CRF approach has the advantage that it can ac-
commodate features that consider all the notes in a candi-
date segment. This capability was shown to be especially
useful for music with complex textures that diverge from
the simpler note-for-note structures of the Bach chorales.
On the more difficult TAVERN corpus, the semi-CRF sub-
stantially outperformed a previous system based on event-
level tagging, thus validating empirically the suitability of
joint segmentation and labeling for chord recognition.

Manually engineering good features for chord recogni-
tion is a cognitively demanding and time consuming pro-
cess that requires music theoretical knowledge and that
is unlikely to lead to optimal sets of features, especially
when complex features are involved. In future work we
plan to investigate automatic feature extraction using re-
current neural networks (RNN) that preserve the semi-
Markov property, such as the recently proposed segmental
RNNs [5].
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